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1.1 problem 1
1.1.1 Solving as first order nonlinear p but separable ode . . . . . . . 3
1.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 5

Internal problem ID [6767]
Internal file name [OUTPUT/6014_Monday_July_25_2022_01_59_32_AM_9550685/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 1.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[_separable]

x2y′
2 − y2 = 0

1.1.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = 1
x2 , g = y2. Hence the ode is

(y′)2 = y2

x2

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg
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To be able to solve as separable ode, we have to now assume that f > 0, g > 0.
1
x2 > 0

y2 > 0

Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives

1√
y2

dy =
(√

1
x2

)
dx

− 1√
y2

dy =
(√

1
x2

)
dx

Integrating now gives the solutions.∫ 1√
y2

dy =
∫ √ 1

x2dx+ c1∫
− 1√

y2
dy =

∫ √ 1
x2dx+ c1

Integrating gives

y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

−y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

Therefore
y ln (y)√

y2
=
√

1
x2 x ln (x) + c1

−y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

4



Summary
The solution(s) found are the following

(1)y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

(2)−y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

Verification of solutions

y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

Verified OK. {0 < 1/x^2, 0 < y^2}

−y ln (y)√
y2

=
√

1
x2 x ln (x) + c1

Verified OK. {0 < 1/x^2, 0 < y^2}

1.1.2 Maple step by step solution

Let’s solve
x2y′2 − y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (y) = ln (x) + c1

• Solve for y
y = x ec1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x^2*diff(y(x),x)^2-y(x)^2=0,y(x), singsol=all)� �

y(x) = c1x

y(x) = c1
x

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 24� �
DSolve[x^2*(y'[x])^2-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x

y(x) → c1x
y(x) → 0

6



1.2 problem 2
1.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 8

Internal problem ID [6768]
Internal file name [OUTPUT/6015_Monday_July_25_2022_01_59_33_AM_45017633/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 2.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

xy′
2 − (3y + 2x) y′ + 6y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2 (1)

y′ = 3y
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

2 dx

= c1 + 2x

Summary
The solution(s) found are the following

(1)y = c1 + 2x
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Verification of solutions

y = c1 + 2x

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 3y
x

Where f(x) = 3
x
and g(y) = y. Integrating both sides gives

1
y
dy = 3

x
dx∫ 1

y
dy =

∫ 3
x
dx

ln (y) = 3 ln (x) + c2

y = e3 ln(x)+c2

= c2x
3

Summary
The solution(s) found are the following

(1)y = c2x
3

Verification of solutions

y = c2x
3

Verified OK.

1.2.1 Maple step by step solution

Let’s solve
xy′2 − (3y + 2x) y′ + 6y = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x
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∫ (
xy′2 − (3y + 2x) y′ + 6y

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
xy′2 − (3y + 2x) y′ + 6y

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x*diff(y(x),x)^2-(2*x+3*y(x))*diff(y(x),x)+6*y(x)=0,y(x), singsol=all)� �

y(x) = c1x
3

y(x) = c1 + 2x

3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 26� �
DSolve[x*(y'[x])^2-(2*x+3*y[x])*y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
3

y(x) → 2x+ c1
y(x) → 0
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1.3 problem 3
1.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 12

Internal problem ID [6769]
Internal file name [OUTPUT/6016_Monday_July_25_2022_01_59_35_AM_69854974/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 3.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x2y′
2 − 5xyy′ + 6y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2y
x

(1)

y′ = 3y
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 2y
x

10



Where f(x) = 2
x
and g(y) = y. Integrating both sides gives

1
y
dy = 2

x
dx∫ 1

y
dy =

∫ 2
x
dx

ln (y) = 2 ln (x) + c1

y = e2 ln(x)+c1

= c1x
2

Summary
The solution(s) found are the following

(1)y = c1x
2

Verification of solutions

y = c1x
2

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 3y
x

Where f(x) = 3
x
and g(y) = y. Integrating both sides gives

1
y
dy = 3

x
dx∫ 1

y
dy =

∫ 3
x
dx

ln (y) = 3 ln (x) + c2

y = e3 ln(x)+c2

= c2x
3

Summary
The solution(s) found are the following

(1)y = c2x
3
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Verification of solutions

y = c2x
3

Verified OK.

1.3.1 Maple step by step solution

Let’s solve
x2y′2 − 5xyy′ + 6y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 3

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 3
x
dx+ c1

• Evaluate integral
ln (y) = 3 ln (x) + c1

• Solve for y
y = ec1x3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x^2*diff(y(x),x)^2-5*x*y(x)*diff(y(x),x)+6*y(x)^2=0,y(x), singsol=all)� �

y(x) = c1x
3

y(x) = c1x
2

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 26� �
DSolve[x^2*(y'[x])^2-5*x*y[x]*y'[x]+6*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
2

y(x) → c1x
3

y(x) → 0
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1.4 problem 4
1.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 16

Internal problem ID [6770]
Internal file name [OUTPUT/6017_Monday_July_25_2022_01_59_37_AM_73862004/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 4.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "dif-
ferentialType", "homogeneousTypeD2", "homogeneousTypeMapleC", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x2y′
2 + xy′ − y2 − y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y

x
(1)

y′ = −1 + y

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x

14



Where f(x) = 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = 1

x
dx∫ 1

y
dy =

∫ 1
x
dx

ln (y) = ln (x) + c1

y = eln(x)+c1

= c1x

Summary
The solution(s) found are the following

(1)y = c1x

Verification of solutions
y = c1x

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y − 1
x

Where f(x) = 1
x
and g(y) = −y − 1. Integrating both sides gives

1
−y − 1 dy = 1

x
dx∫ 1

−y − 1 dy =
∫ 1

x
dx

− ln (1 + y) = ln (x) + c2

Raising both side to exponential gives
1

1 + y
= eln(x)+c2

Which simplifies to
1

1 + y
= c3x
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Which simplifies to

y = −(c3x ec2 − 1) e−c2

c3x

Summary
The solution(s) found are the following

(1)y = −(c3x ec2 − 1) e−c2

c3x

Verification of solutions

y = −(c3x ec2 − 1) e−c2

c3x

Verified OK.

1.4.1 Maple step by step solution

Let’s solve
x2y′2 + xy′ − y2 − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (y) = ln (x) + c1

• Solve for y
y = x ec1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x^2*diff(y(x),x)^2+x*diff(y(x),x)-y(x)^2-y(x)=0,y(x), singsol=all)� �

y(x) = c1x

y(x) = −x+ c1
x

3 Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 31� �
DSolve[x^2*(y'[x])^2+x*y'[x]-y[x]^2-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x

y(x) → −1 + c1
x

y(x) → −1
y(x) → 0
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1.5 problem 5
1.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 20

Internal problem ID [6771]
Internal file name [OUTPUT/6018_Monday_July_25_2022_01_59_38_AM_27299389/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 5.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

xy′
2 +

(
1− yx2) y′ − xy = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = xy (1)

y′ = −1
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= xy

18



Where f(x) = x and g(y) = y. Integrating both sides gives

1
y
dy = x dx∫ 1

y
dy =

∫
x dx

ln (y) = x2

2 + c1

y = ex2
2 +c1

= c1e
x2
2

Summary
The solution(s) found are the following

(1)y = c1e
x2
2

Verification of solutions

y = c1e
x2
2

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−1
x
dx

= − ln (x) + c2

Summary
The solution(s) found are the following

(1)y = − ln (x) + c2

Verification of solutions

y = − ln (x) + c2

Verified OK.
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1.5.1 Maple step by step solution

Let’s solve
xy′2 + (1− yx2) y′ − xy = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
xy′2 + (1− yx2) y′ − xy

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
xy′2 + (1− yx2) y′ − xy

)
dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(x*diff(y(x),x)^2+(1-x^2*y(x))*diff(y(x),x)-x*y(x)=0,y(x), singsol=all)� �

y(x) = − ln (x) + c1

y(x) = ex2
2 c1
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3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 28� �
DSolve[x*(y'[x])^2+(1-x^2*y[x])*y'[x]-x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x2
2

y(x) → − log(x) + c1
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1.6 problem 6
1.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 23

Internal problem ID [6772]
Internal file name [OUTPUT/6019_Monday_July_25_2022_01_59_42_AM_10893776/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 6.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

y′
2 −

(
yx2 + 3

)
y′ + 3yx2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 3 (1)
y′ = yx2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

3 dx

= 3x+ c1

Summary
The solution(s) found are the following

(1)y = 3x+ c1
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Verification of solutions

y = 3x+ c1

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= y x2

Where f(x) = x2 and g(y) = y. Integrating both sides gives

1
y
dy = x2 dx∫ 1

y
dy =

∫
x2 dx

ln (y) = x3

3 + c2

y = ex3
3 +c2

= c2e
x3
3

Summary
The solution(s) found are the following

(1)y = c2e
x3
3

Verification of solutions

y = c2e
x3
3

Verified OK.

1.6.1 Maple step by step solution

Let’s solve
y′2 − (yx2 + 3) y′ + 3yx2 = 0

• Highest derivative means the order of the ODE is 1
y′

23



• Integrate both sides with respect to x∫ (
y′2 − (yx2 + 3) y′ + 3yx2) dx =

∫
0dx+ c1

• Cannot compute integral∫ (
y′2 − (yx2 + 3) y′ + 3yx2) dx = c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)^2-(x^2*y(x)+3)*diff(y(x),x)+3*x^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1e
x3
3

y(x) = 3x+ c1

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 27� �
DSolve[(y'[x])^2-(x^2*y[x]+3)*y'[x]+3*x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x3
3

y(x) → 3x+ c1
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1.7 problem 7
1.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 26

Internal problem ID [6773]
Internal file name [OUTPUT/6020_Monday_July_25_2022_01_59_43_AM_41766277/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 7.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

xy′
2 − (xy + 1) y′ + y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y (1)

y′ = 1
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
y
dy = x+ c1

ln (y) = x+ c1

y = ex+c1

y = c1ex
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Summary
The solution(s) found are the following

(1)y = c1ex

Verification of solutions

y = c1ex

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫ 1

x
dx

= ln (x) + c2

Summary
The solution(s) found are the following

(1)y = ln (x) + c2

Verification of solutions

y = ln (x) + c2

Verified OK.

1.7.1 Maple step by step solution

Let’s solve
xy′2 − (xy + 1) y′ + y = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
xy′2 − (xy + 1) y′ + y

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
xy′2 − (xy + 1) y′ + y

)
dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x*diff(y(x),x)^2-(1+x*y(x))*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = ln (x) + c1
y(x) = exc1

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 20� �
DSolve[x*(y'[x])^2-(1+x*y[x])*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x

y(x) → log(x) + c1
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1.8 problem 8
1.8.1 Solving as first order nonlinear p but separable ode . . . . . . . 28
1.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 30

Internal problem ID [6774]
Internal file name [OUTPUT/6021_Monday_July_25_2022_01_59_46_AM_52332013/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 8.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but_sep-
arable"

Maple gives the following as the ode type
[_separable]

y′
2 − y2x2 = 0

1.8.1 Solving as first order nonlinear p but separable ode

The ode has the form

(y′) n
m = f(x)g(y) (1)

Where n = 2,m = 1, f = x2, g = y2. Hence the ode is

(y′)2 = y2x2

Solving for y′ from (1) gives

y′ =
√

fg

y′ = −
√

fg

To be able to solve as separable ode, we have to now assume that f > 0, g > 0.

x2 > 0
y2 > 0
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Under the above assumption the differential equations become separable and can be
written as

y′ =
√

f
√
g

y′ = −
√
f
√
g

Therefore
1
√
g
dy =

(√
f
)
dx

− 1
√
g
dy =

(√
f
)
dx

Replacing f(x), g(y) by their values gives
1√
y2

dy =
(√

x2
)
dx

− 1√
y2

dy =
(√

x2
)
dx

Integrating now gives the solutions.∫ 1√
y2

dy =
∫ √

x2dx+ c1∫
− 1√

y2
dy =

∫ √
x2dx+ c1

Integrating gives
y ln (y)√

y2
= x

√
x2

2 + c1

−y ln (y)√
y2

= x
√
x2

2 + c1

Therefore
y ln (y)√

y2
= x

√
x2

2 + c1

−y ln (y)√
y2

= x
√
x2

2 + c1

Summary
The solution(s) found are the following

(1)y ln (y)√
y2

= x
√
x2

2 + c1

(2)−y ln (y)√
y2

= x
√
x2

2 + c1
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Verification of solutions

y ln (y)√
y2

= x
√
x2

2 + c1

Verified OK. {0 < x^2, 0 < y^2}

−y ln (y)√
y2

= x
√
x2

2 + c1

Verified OK. {0 < x^2, 0 < y^2}

1.8.2 Maple step by step solution

Let’s solve
y′2 − y2x2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
xdx+ c1

• Evaluate integral
ln (y) = x2

2 + c1

• Solve for y

y = ex2
2 +c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)^2-x^2*y(x)^2=0,y(x), singsol=all)� �

y(x) = e−x2
2 c1

y(x) = ex2
2 c1

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 38� �
DSolve[(y'[x])^2-x^2*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x2

2

y(x) → c1e
x2
2

y(x) → 0
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1.9 problem 9
1.9.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 32

Internal problem ID [6775]
Internal file name [OUTPUT/6022_Monday_July_25_2022_01_59_47_AM_53691888/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 9.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(x+ y)2 y′2 − y2 = 0

1.9.1 Solving as dAlembert ode

Let p = y′ the ode becomes

(x+ y)2 p2 − y2 = 0

Solving for y from the above results in

y = − px

1 + p
(1A)

y = − px

−1 + p
(2A)

This has the form

y = xf(p) + g(p) (*)
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Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = − p

1 + p

g = 0

Hence (2) becomes

p+ p

1 + p
= x

(
− 1
1 + p

+ p

(1 + p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ p

1 + p
= 0

Solving for p from the above gives

p = −2
p = 0

Substituting these in (1A) gives

y = −2x
y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + p(x)

1+p(x)

x
(
− 1

1+p(x) +
p(x)

(1+p(x))2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 1

1+p
+ p

(1+p)2

)
p+ p

1+p

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
(2 + p) p (1 + p)

q(p) = 0

Hence the ode is

d

dp
x(p) + x(p)

(2 + p) p (1 + p) = 0

The integrating factor µ is

µ = e
∫ 1

(2+p)p(1+p)dp

= e− ln(1+p)+ ln(p)
2 + ln(2+p)

2

Which simplifies to

µ =
√
p
√
2 + p

1 + p

The ode becomes

d
dpµx = 0

d
dp

(√
p
√
2 + p x

1 + p

)
= 0

Integrating gives
√
p
√
2 + p x

1 + p
= c3

Dividing both sides by the integrating factor µ =
√
p
√
2+p

1+p
results in

x(p) = c3(1 + p)
√
p
√
2 + p
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = − y

x+ y

Substituting the above in the solution for x found above gives

x = c3x

(x+ y)
√
− y

x+y

√
2x+y
x+y

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = − p

−1 + p

g = 0

Hence (2) becomes

p+ p

−1 + p
= x

(
− 1
−1 + p

+ p

(−1 + p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ p

−1 + p
= 0

Solving for p from the above gives

p = 0
p = 0

Removing solutions for p which leads to undefined results and substituting these in
(1A) gives

y = 0
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + p(x)

−1+p(x)

x
(
− 1

−1+p(x) +
p(x)

(−1+p(x))2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 1

−1+p
+ p

(−1+p)2

)
p+ p

−1+p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 1
p2 (−1 + p)

q(p) = 0

Hence the ode is
d

dp
x(p)− x(p)

p2 (−1 + p) = 0

The integrating factor µ is

µ = e
∫
− 1

p2(−1+p)dp

= e− ln(−1+p)+ln(p)− 1
p

Which simplifies to

µ = p e−
1
p

−1 + p

The ode becomes
d
dpµx = 0

d
dp

(
p e−

1
px

−1 + p

)
= 0
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Integrating gives

p e−
1
px

−1 + p
= c5

Dividing both sides by the integrating factor µ = p e−
1
p

−1+p
results in

x(p) = c5(−1 + p) e
1
p

p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = y

x+ y

Substituting the above in the solution for x found above gives

x = −c5x e
x+y
y

y

Summary
The solution(s) found are the following

(1)y = −2x
(2)y = 0
(3)x = c3x

(x+ y)
√
− y

x+y

√
2x+y
x+y

(4)y = 0

(5)x = −c5x e
x+y
y

y
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Verification of solutions

y = −2x

Verified OK.
y = 0

Verified OK.

x = c3x

(x+ y)
√
− y

x+y

√
2x+y
x+y

Verified OK.
y = 0

Verified OK.

x = −c5x e
x+y
y

y

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 47� �
dsolve((x+y(x))^2*diff(y(x),x)^2=y(x)^2,y(x), singsol=all)� �

y(x) = x

LambertW (x ec1)
y(x) = −x−

√
x2 + 2c1

y(x) = −x+
√
x2 + 2c1

3 Solution by Mathematica
Time used: 4.023 (sec). Leaf size: 101� �
DSolve[(x+y[x])^2*(y'[x])^2==y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x−
√
x2 + e2c1

y(x) → −x+
√
x2 + e2c1

y(x) → x

W (e−c1x)
y(x) → 0
y(x) → −

√
x2 − x

y(x) →
√
x2 − x
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1.10 problem 10
1.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 42

Internal problem ID [6776]
Internal file name [OUTPUT/6023_Monday_July_25_2022_01_59_50_AM_35329907/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 10.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "quadrature", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_quadrature]

yy′
2 +

(
x− y2

)
y′ − xy = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = y (1)

y′ = −x

y
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
y
dy = x+ c1

ln (y) = x+ c1

y = ex+c1

y = c1ex
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Summary
The solution(s) found are the following

(1)y = c1ex

Verification of solutions

y = c1ex

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x

y

Where f(x) = −x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = −x dx

∫ 1
1
y

dy =
∫

−x dx

y2

2 = −x2

2 + c2

Which results in
y =

√
−x2 + 2c2

y = −
√

−x2 + 2c2

Summary
The solution(s) found are the following

(1)y =
√

−x2 + 2c2
(2)y = −

√
−x2 + 2c2

41



Verification of solutions

y =
√

−x2 + 2c2

Verified OK.

y = −
√

−x2 + 2c2

Verified OK.

1.10.1 Maple step by step solution

Let’s solve
yy′2 + (x− y2) y′ − xy = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
1dx+ c1

• Evaluate integral
ln (y) = x+ c1

• Solve for y
y = ex+c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(y(x)*diff(y(x),x)^2+(x-y(x)^2)*diff(y(x),x)-x*y(x)=0,y(x), singsol=all)� �

y(x) =
√
−x2 + c1

y(x) = −
√

−x2 + c1
y(x) = exc1

3 Solution by Mathematica
Time used: 0.134 (sec). Leaf size: 54� �
DSolve[y[x]*(y'[x])^2+(x-y[x]^2)*y'[x]-x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x

y(x) → −
√
−x2 + 2c1

y(x) →
√
−x2 + 2c1

y(x) → 0
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1.11 problem 11
1.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 46

Internal problem ID [6777]
Internal file name [OUTPUT/6024_Monday_July_25_2022_01_59_51_AM_43122919/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 11.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "riccati", "sepa-
rable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′
2 − xy(x+ y) y′ + x3y3 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = xy2 (1)
y′ = yx2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= y2x
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Where f(x) = x and g(y) = y2. Integrating both sides gives

1
y2

dy = x dx∫ 1
y2

dy =
∫

x dx

−1
y
= x2

2 + c1

Which results in

y = − 2
x2 + 2c1

Summary
The solution(s) found are the following

(1)y = − 2
x2 + 2c1

Verification of solutions

y = − 2
x2 + 2c1

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= y x2

Where f(x) = x2 and g(y) = y. Integrating both sides gives
1
y
dy = x2 dx∫ 1

y
dy =

∫
x2 dx

ln (y) = x3

3 + c2

y = ex3
3 +c2

= c2e
x3
3
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Summary
The solution(s) found are the following

(1)y = c2e
x3
3

Verification of solutions

y = c2e
x3
3

Verified OK.

1.11.1 Maple step by step solution

Let’s solve
y′2 − xy(x+ y) y′ + x3y3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x2

• Integrate both sides with respect to x∫
y′

y
dx =

∫
x2dx+ c1

• Evaluate integral
ln (y) = x3

3 + c1

• Solve for y

y = ex3
3 +c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x)^2-x*y(x)*(x+y(x))*diff(y(x),x)+x^3*y(x)^3=0,y(x), singsol=all)� �

y(x) = − 2
x2 − 2c1

y(x) = c1e
x3
3

3 Solution by Mathematica
Time used: 0.122 (sec). Leaf size: 38� �
DSolve[(y'[x])^2-x*y[x]*(x+y[x])*y'[x]+x^3*y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x3
3

y(x) → − 2
x2 + 2c1

y(x) → 0
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1.12 problem 12
1.12.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 48
1.12.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 51

Internal problem ID [6778]
Internal file name [OUTPUT/6025_Monday_July_25_2022_01_59_52_AM_16739784/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 12.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_quadrature]

(4x− y) y′2 + 6(x− y) y′ − 5y = −2x

1.12.1 Solving as dAlembert ode

Let p = y′ the ode becomes

(−y + 4x) p2 + 6(x− y) p− 5y = −2x

Solving for y from the above results in

y = 2(2p+ 1)x
p+ 5 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 4p+ 2
p+ 5

g = 0

Hence (2) becomes

p− 4p+ 2
p+ 5 = x

(
4

p+ 5 − 4p+ 2
(p+ 5)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 4p+ 2
p+ 5 = 0

Solving for p from the above gives

p = 1
p = −2

Substituting these in (1A) gives

y = −2x
y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 4p(x)+2

p(x)+5

x
(

4
p(x)+5 −

4p(x)+2
(p(x)+5)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

4
p+5 −

4p+2
(p+5)2

)
p− 4p+2

p+5
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = − 18
p3 + 6p2 + 3p− 10

q(p) = 0

Hence the ode is

d

dp
x(p)− 18x(p)

p3 + 6p2 + 3p− 10 = 0

The integrating factor µ is

µ = e
∫
− 18

p3+6p2+3p−10dp

= e− ln(p−1)+2 ln(p+2)−ln(p+5)

Which simplifies to

µ = (p+ 2)2

(p− 1) (p+ 5)

The ode becomes

d
dpµx = 0

d
dp

(
(p+ 2)2 x

(p− 1) (p+ 5)

)
= 0

Integrating gives

(p+ 2)2 x
(p− 1) (p+ 5) = c3

Dividing both sides by the integrating factor µ = (p+2)2
(p−1)(p+5) results in

x(p) = c3(p− 1) (p+ 5)
(p+ 2)2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −2x− 5y
4x− y
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Substituting the above in the solution for x found above gives

x = −12x(x− y) c3
(2x+ y)2

Summary
The solution(s) found are the following

(1)y = −2x
(2)y = x

(3)x = −12x(x− y) c3
(2x+ y)2

Verification of solutions

y = −2x

Verified OK.
y = x

Verified OK.

x = −12x(x− y) c3
(2x+ y)2

Verified OK.

1.12.2 Maple step by step solution

Let’s solve
(4x− y) y′2 + 6(x− y) y′ − 5y = −2x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
(4x− y) y′2 + 6(x− y) y′ − 5y

)
dx =

∫
−2xdx+ c1

• Cannot compute integral∫ (
(4x− y) y′2 + 6(x− y) y′ − 5y

)
dx = −x2 + c1

51



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 55� �
dsolve((4*x-y(x))*diff(y(x),x)^2+6*(x-y(x))*diff(y(x),x)+2*x-5*y(x)=0,y(x), singsol=all)� �

y(x) = −x+ c1

y(x) = −4c1x+
√
−12c1x+ 1 + 1
2c1

y(x) = −4c1x−
√
−12c1x+ 1 + 1
2c1

3 Solution by Mathematica
Time used: 1.077 (sec). Leaf size: 90� �
DSolve[(4*x-y[x])*(y'[x])^2+6*(x-y[x])*y'[x]+2*x-5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−4x− e

c1
2
√
12x+ ec1 − ec1

)
y(x) → 1

2

(
−4x+ e

c1
2
√
12x+ ec1 − ec1

)
y(x) → −x+ c1

52



1.13 problem 13
1.13.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 53

Internal problem ID [6779]
Internal file name [OUTPUT/6026_Monday_July_25_2022_01_59_56_AM_71060998/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 13.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(x− y)2 y′2 − y2 = 0

1.13.1 Solving as dAlembert ode

Let p = y′ the ode becomes

(x− y)2 p2 − y2 = 0

Solving for y from the above results in

y = px

−1 + p
(1A)

y = px

1 + p
(2A)

This has the form

y = xf(p) + g(p) (*)
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Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p

−1 + p

g = 0

Hence (2) becomes

p− p

−1 + p
= x

(
1

−1 + p
− p

(−1 + p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p

−1 + p
= 0

Solving for p from the above gives

p = 0
p = 2

Substituting these in (1A) gives

y = 0
y = 2x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)

−1+p(x)

x
(

1
−1+p(x) −

p(x)
(−1+p(x))2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1
−1+p

− p

(−1+p)2

)
p− p

−1+p

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
(−2 + p) p (−1 + p)

q(p) = 0

Hence the ode is

d

dp
x(p) + x(p)

(−2 + p) p (−1 + p) = 0

The integrating factor µ is

µ = e
∫ 1

(−2+p)p(−1+p)dp

= e− ln(−1+p)+ ln(p)
2 + ln(−2+p)

2

Which simplifies to

µ =
√
p
√
−2 + p

−1 + p

The ode becomes

d
dpµx = 0

d
dp

(√
p
√
−2 + p x

−1 + p

)
= 0

Integrating gives
√
p
√
−2 + p x

−1 + p
= c3

Dividing both sides by the integrating factor µ =
√
p
√
−2+p

−1+p
results in

x(p) = c3(−1 + p)
√
p
√
−2 + p
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = − y

x− y

Substituting the above in the solution for x found above gives

x = − c3x

(x− y)
√

− y
x−y

√
−2x+y
x−y

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p

1 + p

g = 0

Hence (2) becomes

p− p

1 + p
= x

(
1

1 + p
− p

(1 + p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p

1 + p
= 0

Solving for p from the above gives

p = 0
p = 0

Removing solutions for p which leads to undefined results and substituting these in
(1A) gives

y = 0
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)

1+p(x)

x
(

1
1+p(x) −

p(x)
(1+p(x))2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1
1+p

− p

(1+p)2

)
p− p

1+p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 1
p2 (1 + p)

q(p) = 0

Hence the ode is
d

dp
x(p)− x(p)

p2 (1 + p) = 0

The integrating factor µ is

µ = e
∫
− 1

p2(1+p)dp

= e− ln(1+p)+ 1
p
+ln(p)

Which simplifies to

µ = p e
1
p

1 + p

The ode becomes
d
dpµx = 0

d
dp

(
p e

1
px

1 + p

)
= 0
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Integrating gives

p e
1
px

1 + p
= c5

Dividing both sides by the integrating factor µ = p e
1
p

1+p
results in

x(p) = c5(1 + p) e−
1
p

p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = y

x− y

Substituting the above in the solution for x found above gives

x = c5x e
−x+y

y

y

Summary
The solution(s) found are the following

(1)y = 0
(2)y = 2x
(3)x = − c3x

(x− y)
√

− y
x−y

√
−2x+y
x−y

(4)y = 0

(5)x = c5x e
−x+y

y

y
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Verification of solutions

y = 0

Verified OK.
y = 2x

Verified OK.

x = − c3x

(x− y)
√

− y
x−y

√
−2x+y
x−y

Verified OK.
y = 0

Verified OK.

x = c5x e
−x+y

y

y

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 47� �
dsolve((x-y(x))^2*diff(y(x),x)^2=y(x)^2,y(x), singsol=all)� �

y(x) = x−
√
x2 − 2c1

y(x) = x+
√

x2 − 2c1
y(x) = − x

LambertW (−x e−c1)

3 Solution by Mathematica
Time used: 4.446 (sec). Leaf size: 99� �
DSolve[(x-y[x])^2*(y'[x])^2==y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−
√
x2 − e2c1

y(x) → x+
√
x2 − e2c1

y(x) → − x

W (−e−c1x)
y(x) → 0
y(x) → x−

√
x2

y(x) →
√
x2 + x
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1.14 problem 14
1.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 63

Internal problem ID [6780]
Internal file name [OUTPUT/6027_Monday_July_25_2022_01_59_58_AM_88349000/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 14.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "quadrature", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

xyy′
2 +

(
xy2 − 1

)
y′ − y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −y (1)

y′ = 1
xy

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
−1
y
dy =

∫
dx

− ln (y) = x+ c1

Raising both side to exponential gives
1
y
= ex+c1
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Which simplifies to
1
y
= c2ex

Summary
The solution(s) found are the following

(1)y = e−x

c2

Verification of solutions

y = e−x

c2

Verified OK.
Solving equation (2)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 1
yx

Where f(x) = 1
x
and g(y) = 1

y
. Integrating both sides gives

1
1
y

dy = 1
x
dx

∫ 1
1
y

dy =
∫ 1

x
dx

y2

2 = ln (x) + c3

Which results in
y =

√
2 ln (x) + 2c3

y = −
√

2 ln (x) + 2c3

Summary
The solution(s) found are the following

(1)y =
√

2 ln (x) + 2c3
(2)y = −

√
2 ln (x) + 2c3
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Verification of solutions

y =
√
2 ln (x) + 2c3

Verified OK.

y = −
√

2 ln (x) + 2c3

Verified OK.

1.14.1 Maple step by step solution

Let’s solve
xyy′2 + (xy2 − 1) y′ − y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= −1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
(−1) dx+ c1

• Evaluate integral
ln (y) = −x+ c1

• Solve for y
y = e−x+c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
dsolve(x*y(x)*diff(y(x),x)^2+(x*y(x)^2-1)*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) =
√
2 ln (x) + c1

y(x) = −
√
2 ln (x) + c1

y(x) = c1e−x

3 Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 57� �
DSolve[x*y[x]*(y'[x])^2+(x*y[x]^2-1)*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x

y(x) → −
√
2
√

log(x) + c1

y(x) →
√
2
√

log(x) + c1
y(x) → 0
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1.15 problem 15
1.15.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 65

Internal problem ID [6781]
Internal file name [OUTPUT/6028_Tuesday_July_26_2022_05_04_37_AM_9550685/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 15.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
x2 + y2

)2
y′

2 − 4y2x2 = 0

1.15.1 Solving as dAlembert ode

Let p = y′ the ode becomes (
x2 + y2

)2
p2 − 4y2x2 = 0

Solving for y from the above results in

y =
(
1 +

√
−p2 + 1

)
x

p
(1A)

y = −
(
−1 +

√
−p2 + 1

)
x

p
(2A)

y =
(
−1 +

√
−p2 + 1

)
x

p
(3A)

y = −
(
1 +

√
−p2 + 1

)
x

p
(4A)

This has the form

y = xf(p) + g(p) (*)
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Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = 1 +
√
−p2 + 1
p

g = 0

Hence (2) becomes

p− 1 +
√
−p2 + 1
p

= x

(
− 1√

−p2 + 1
− 1 +

√
−p2 + 1
p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 +
√
−p2 + 1
p

= 0

Solving for p from the above gives

p = 1
p = −1

Substituting these in (1A) gives

y = −x

y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 1+

√
−p(x)2+1
p(x)

x

(
− 1√

−p(x)2+1
− 1+

√
−p(x)2+1
p(x)2

) (3)

This ODE is now solved for p(x).
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Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 1√

−p2+1
− 1+

√
−p2+1
p2

)
p− 1+

√
−p2+1
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 1 +
√
−p2 + 1√

−p2 + 1 p
(
−p2 +

√
−p2 + 1 + 1

)
q(p) = 0

Hence the ode is

d

dp
x(p)−

x(p)
(
1 +

√
−p2 + 1

)
p
√
−p2 + 1

(
−p2 +

√
−p2 + 1 + 1

) = 0

The integrating factor µ is

µ = e
∫
− 1+

√
−p2+1√

−p2+1 p

(
−p2+

√
−p2+1+1

)dp

= e
ln(p+1)

2 + ln(p−1)
2 −ln(p)

Which simplifies to

µ =
√
p+ 1

√
p− 1

p

The ode becomes
d
dpµx = 0

d
dp

(√
p+ 1

√
p− 1x

p

)
= 0

Integrating gives
√
p+ 1

√
p− 1x

p
= c3
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Dividing both sides by the integrating factor µ =
√
p+1

√
p−1

p
results in

x(p) = c3p√
p+ 1

√
p− 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = 2xy
x2 + y2

Substituting the above in the solution for x found above gives

x = 2c3xy√
(x+y)2
x2+y2

√
− (x−y)2

x2+y2
(x2 + y2)

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = 1−
√
−p2 + 1
p

g = 0

Hence (2) becomes

p− 1−
√
−p2 + 1
p

= x

(
1√

−p2 + 1
− 1−

√
−p2 + 1
p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1−
√
−p2 + 1
p

= 0

Solving for p from the above gives

p = 1
p = −1
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Substituting these in (1A) gives

y = −x

y = x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− 1−

√
−p(x)2+1
p(x)

x

(
1√

−p(x)2+1
− 1−

√
−p(x)2+1
p(x)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1√
−p2+1

− 1−
√

−p2+1
p2

)
p− 1−

√
−p2+1
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −1 +
√
−p2 + 1√

−p2 + 1 p
(
p2 +

√
−p2 + 1− 1

)
q(p) = 0

Hence the ode is

d

dp
x(p) +

x(p)
(
−1 +

√
−p2 + 1

)
√
−p2 + 1 p

(
p2 +

√
−p2 + 1− 1

) = 0

The integrating factor µ is

µ = e
∫ −1+

√
−p2+1√

−p2+1 p

(
p2+

√
−p2+1−1

)dp

= e
ln(p+1)

2 + ln(p−1)
2 −ln(p)
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Which simplifies to

µ =
√
p+ 1

√
p− 1

p

The ode becomes
d
dpµx = 0

d
dp

(√
p+ 1

√
p− 1x

p

)
= 0

Integrating gives
√
p+ 1

√
p− 1x

p
= c6

Dividing both sides by the integrating factor µ =
√
p+1

√
p−1

p
results in

x(p) = c6p√
p+ 1

√
p− 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = 2xy
x2 + y2

Substituting the above in the solution for x found above gives

x = 2c6xy√
(x+y)2
x2+y2

√
− (x−y)2

x2+y2
(x2 + y2)

Solving ode 3A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −1 +
√
−p2 + 1
p

g = 0
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Hence (2) becomes

p− −1 +
√
−p2 + 1
p

= x

(
− 1√

−p2 + 1
− −1 +

√
−p2 + 1
p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −1 +
√
−p2 + 1
p

= 0

No singular solution are found

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− −1+

√
−p(x)2+1
p(x)

x

(
− 1√

−p(x)2+1
− −1+

√
−p(x)2+1

p(x)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 1√

−p2+1
− −1+

√
−p2+1

p2

)
p− −1+

√
−p2+1
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − −1 +
√
−p2 + 1(

p2 −
√
−p2 + 1 + 1

)√
−p2 + 1 p

q(p) = 0

Hence the ode is

d

dp
x(p)−

(
−1 +

√
−p2 + 1

)
x(p)(

p2 −
√
−p2 + 1 + 1

)√
−p2 + 1 p

= 0

The integrating factor µ is

µ = e
∫
− −1+

√
−p2+1(

p2−
√

−p2+1+1
)√

−p2+1 p
dp
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The ode becomes

d
dpµx = 0

d
dp

e
∫
− −1+

√
−p2+1(

p2−
√

−p2+1+1
)√

−p2+1 p
dp

x

 = 0

Integrating gives

e
∫
− −1+

√
−p2+1(

p2−
√

−p2+1+1
)√

−p2+1 p
dp

x = c8

Dividing both sides by the integrating factor µ = e
∫
− −1+

√
−p2+1(

p2−
√

−p2+1+1
)√

−p2+1 p
dp

results in

x(p) = c8e
−

∫ −1+
√

−p2+1√
−p2+1 p

(
−p2+

√
−p2+1−1

)dp


Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 4A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −1−
√
−p2 + 1
p

g = 0

Hence (2) becomes

p− −1−
√
−p2 + 1
p

= x

(
1√

−p2 + 1
− −1−

√
−p2 + 1
p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −1−
√
−p2 + 1
p

= 0
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Solving for p from the above gives

p = i
√
3

p = −i
√
3

Substituting these in (1A) gives

y = −i
√
3x

y = i
√
3x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− −1−

√
−p(x)2+1
p(x)

x

(
1√

−p(x)2+1
− −1−

√
−p(x)2+1

p(x)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1√
−p2+1

− −1−
√

−p2+1
p2

)
p− −1−

√
−p2+1
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − 1 +
√
−p2 + 1√

−p2 + 1 p
(
p2 +

√
−p2 + 1 + 1

)
q(p) = 0

Hence the ode is

d

dp
x(p)−

x(p)
(
1 +

√
−p2 + 1

)
p
√
−p2 + 1

(
p2 +

√
−p2 + 1 + 1

) = 0

The integrating factor µ is

µ = e
∫
− 1+

√
−p2+1√

−p2+1 p

(
p2+

√
−p2+1+1

)dp
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The ode becomes

d
dpµx = 0

d
dp

e
∫
− 1+

√
−p2+1√

−p2+1 p

(
p2+

√
−p2+1+1

)dp
x

 = 0

Integrating gives

e
∫
− 1+

√
−p2+1√

−p2+1 p

(
p2+

√
−p2+1+1

)dp
x = _C10

Dividing both sides by the integrating factor µ = e
∫
− 1+

√
−p2+1√

−p2+1 p

(
p2+

√
−p2+1+1

)dp
results in

x(p) = _C10 e
∫ 1+

√
−p2+1√

−p2+1 p

(
p2+

√
−p2+1+1

)dp

Since the solution x(p) has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

(1)y = −x
(2)y = x

(3)x = 2c3xy√
(x+y)2
x2+y2

√
− (x−y)2

x2+y2
(x2 + y2)

(4)y = −x
(5)y = x

(6)x = 2c6xy√
(x+y)2
x2+y2

√
− (x−y)2

x2+y2
(x2 + y2)

(7)y = −i
√
3x

(8)y = i
√
3x
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Verification of solutions

y = −x

Verified OK.
y = x

Verified OK.

x = 2c3xy√
(x+y)2
x2+y2

√
− (x−y)2

x2+y2
(x2 + y2)

Verified OK.
y = −x

Verified OK.
y = x

Verified OK.

x = 2c6xy√
(x+y)2
x2+y2

√
− (x−y)2

x2+y2
(x2 + y2)

Verified OK.

y = −i
√
3x

Verified OK.

y = i
√
3x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 255� �
dsolve((x^2+y(x)^2)^2*diff(y(x),x)^2=4*x^2*y(x)^2,y(x), singsol=all)� �

y(x) = 1−
√

4x2c21 + 1
2c1

y(x) = 1 +
√

4x2c21 + 1
2c1

y(x) = −

2

c1x
2 −

(
4+4

√
4c31x6+1

) 2
3

4


√
c1
(
4 + 4

√
4c31x6 + 1

) 1
3

y(x) = −

(
1 + i

√
3
) (

4 + 4
√

4c31x6 + 1
) 1

3

4√c1
−

(
i
√
3− 1

)
x2√c1(

4 + 4
√

4c31x6 + 1
) 1

3

y(x) =
4i
√
3 c1x2 + i

√
3
(
4 + 4

√
4c31x6 + 1

) 2
3 + 4c1x2 −

(
4 + 4

√
4c31x6 + 1

) 2
3

4
(
4 + 4

√
4c31x6 + 1

) 1
3 √

c1
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3 Solution by Mathematica
Time used: 15.845 (sec). Leaf size: 345� �
DSolve[(x^2+y[x]^2)^2*(y'[x])^2==4*x^2*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−
√
4x2 + e2c1 − ec1

)
y(x) → 1

2

(√
4x2 + e2c1 − ec1

)
y(x) →

3
√√

4x6 + e6c1 + e3c1

3
√
2

−
3
√
2x2

3
√√

4x6 + e6c1 + e3c1

y(x) →
i22/3

(√
3 + i

) (√
4x6 + e6c1 + e3c1

) 2/3 + 3
√
2
(
2 + 2i

√
3
)
x2

4 3
√√

4x6 + e6c1 + e3c1

y(x) →
(
1− i

√
3
)
x2

22/3 3
√√

4x6 + e6c1 + e3c1
−
(
1 + i

√
3
) 3
√√

4x6 + e6c1 + e3c1

2 3
√
2

y(x) → 0

78



1.16 problem 16
1.16.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 79

Internal problem ID [6782]
Internal file name [OUTPUT/6029_Tuesday_July_26_2022_05_04_40_AM_96206336/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 16.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(x+ y)2 y′2 +
(
2y2 + xy − x2) y′ + y(−x+ y) = 0

1.16.1 Solving as dAlembert ode

Let p = y′ the ode becomes

(x+ y)2 p2 +
(
−x2 + xy + 2y2

)
p+ y(−x+ y) = 0

Solving for y from the above results in

y = −(p− 1)x
1 + p

(1A)

y = − xp

1 + p
(2A)

This has the form

y = xf(p) + g(p) (*)
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Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −p+ 1
1 + p

g = 0

Hence (2) becomes

p− −p+ 1
1 + p

= x

(
− 1
1 + p

− −p+ 1
(1 + p)2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −p+ 1
1 + p

= 0

Solving for p from the above gives

p =
√
2− 1

p = −1−
√
2

Substituting these in (1A) gives

y = −x− x
√
2

y = −x+ x
√
2

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− −p(x)+1

1+p(x)

x
(
− 1

1+p(x) −
−p(x)+1
(1+p(x))2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 1

1+p
− −p+1

(1+p)2

)
p− −p+1

1+p

(4)
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This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
(p2 + 2p− 1) (1 + p)

q(p) = 0

Hence the ode is

d

dp
x(p) + 2x(p)

(p2 + 2p− 1) (1 + p) = 0

The integrating factor µ is

µ = e
∫ 2(

p2+2p−1
)
(1+p)

dp

= e− ln(1+p)+
ln
(
p2+2p−1

)
2

Which simplifies to

µ =
√
p2 + 2p− 1
1 + p

The ode becomes

d
dpµx = 0

d
dp

(√
p2 + 2p− 1x

1 + p

)
= 0

Integrating gives
√
p2 + 2p− 1x

1 + p
= c3

Dividing both sides by the integrating factor µ =
√

p2+2p−1
1+p

results in

x(p) = c3(1 + p)√
p2 + 2p− 1
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Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = x− y

x+ y

Substituting the above in the solution for x found above gives

x = c3x
√
2

(x+ y)
√

x2−2xy−y2

(x+y)2

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = − p

1 + p

g = 0

Hence (2) becomes

p+ p

1 + p
= x

(
− 1
1 + p

+ p

(1 + p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p+ p

1 + p
= 0

Solving for p from the above gives

p = −2
p = 0

Substituting these in (1A) gives

y = −2x
y = 0
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x) + p(x)

1+p(x)

x
(
− 1

1+p(x) +
p(x)

(1+p(x))2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
− 1

1+p
+ p

(1+p)2

)
p+ p

1+p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
(2 + p) p (1 + p)

q(p) = 0

Hence the ode is
d

dp
x(p) + x(p)

(2 + p) p (1 + p) = 0

The integrating factor µ is

µ = e
∫ 1

(2+p)p(1+p)dp

= e− ln(1+p)+ ln(p)
2 + ln(2+p)

2

Which simplifies to

µ =
√
p
√
2 + p

1 + p

The ode becomes
d
dpµx = 0

d
dp

(√
p
√
2 + p x

1 + p

)
= 0
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Integrating gives
√
p
√
2 + p x

1 + p
= c6

Dividing both sides by the integrating factor µ =
√
p
√
2+p

1+p
results in

x(p) = c6(1 + p)
√
p
√
2 + p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = − y

x+ y

Substituting the above in the solution for x found above gives

x = c6x

(x+ y)
√
− y

x+y

√
2x+y
x+y

Summary
The solution(s) found are the following

(1)y = −x− x
√
2

(2)y = −x+ x
√
2

(3)x = c3x
√
2

(x+ y)
√

x2−2xy−y2

(x+y)2

(4)y = −2x
(5)y = 0
(6)x = c6x

(x+ y)
√
− y

x+y

√
2x+y
x+y
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Verification of solutions

y = −x− x
√
2

Verified OK.

y = −x+ x
√
2

Verified OK.

x = c3x
√
2

(x+ y)
√

x2−2xy−y2

(x+y)2

Verified OK.
y = −2x

Verified OK.
y = 0

Verified OK.

x = c6x

(x+ y)
√
− y

x+y

√
2x+y
x+y

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 85� �
dsolve((y(x)+x)^2*diff(y(x),x)^2+(2*y(x)^2+x*y(x)-x^2)*diff(y(x),x)+y(x)*(y(x)-x)=0,y(x), singsol=all)� �

y(x) = −x−
√
x2 + 2c1

y(x) = −x+
√

x2 + 2c1

y(x) = −c1x−
√
2x2c21 + 1

c1

y(x) = −c1x+
√
2x2c21 + 1

c1
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3 Solution by Mathematica
Time used: 0.492 (sec). Leaf size: 172� �
DSolve[(y[x]+x)^2*(y'[x])^2+(2*y[x]^2+x*y[x]-x^2)*y'[x]+y[x]*(y[x]-x)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x−
√
x2 + e2c1

y(x) → −x+
√
x2 + e2c1

y(x) → −x−
√
2x2 + e2c1

y(x) → −x+
√
2x2 + e2c1

y(x) → −
√
x2 − x

y(x) →
√
x2 − x

y(x) → −
√
2
√
x2 − x

y(x) →
√
2
√
x2 − x
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1.17 problem 17
1.17.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 88

Internal problem ID [6783]
Internal file name [OUTPUT/6030_Tuesday_July_26_2022_05_04_42_AM_73131458/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 17.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

xy
(
x2 + y2

) (
y′

2 − 1
)
− y′

(
x4 + y2x2 + y4

)
= 0

1.17.1 Solving as dAlembert ode

Let p = y′ the ode becomes

xy
(
x2 + y2

) (
p2 − 1

)
− p
(
x4 + y2x2 + y4

)
= 0

Solving for y from the above results in

y =
(
−1 +

√
−4p2 + 1

)
x

2p (1A)

y = −
(
1 +

√
−4p2 + 1

)
x

2p (2A)

y =
(
p

2 +
√
p2 − 4
2

)
x (3A)

y =
(
p

2 −
√
p2 − 4
2

)
x (4A)

This has the form

y = xf(p) + g(p) (*)
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Where f, g are functions of p = y′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = −1 +
√
−4p2 + 1
2p

g = 0

Hence (2) becomes

p− −1 +
√
−4p2 + 1
2p = x

(
−−1 +

√
−4p2 + 1
2p2 − 2√

−4p2 + 1

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −1 +
√
−4p2 + 1
2p = 0

No singular solution are found

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− −1+

√
−4p(x)2+1
2p(x)

x

(
−−1+

√
−4p(x)2+1

2p(x)2 − 2√
−4p(x)2+1

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
−−1+

√
−4p2+1

2p2 − 2√
−4p2+1

)
p− −1+

√
−4p2+1
2p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = − 1−
√
−4p2 + 1

p
√
−4p2 + 1

(
−2p2 +

√
−4p2 + 1− 1

)
q(p) = 0

Hence the ode is

d

dp
x(p)−

x(p)
(
1−

√
−4p2 + 1

)
p
√
−4p2 + 1

(
−2p2 +

√
−4p2 + 1− 1

) = 0

The integrating factor µ is

µ = e
∫
− 1−

√
−4p2+1

p

√
−4p2+1

(
−2p2+

√
−4p2+1−1

)dp

The ode becomes
d
dpµx = 0

d
dp

e
∫
− 1−

√
−4p2+1

p

√
−4p2+1

(
−2p2+

√
−4p2+1−1

)dp
x

 = 0

Integrating gives

e
∫
− 1−

√
−4p2+1

p

√
−4p2+1

(
−2p2+

√
−4p2+1−1

)dp
x = c2

Dividing both sides by the integrating factor µ = e
∫
− 1−

√
−4p2+1

p

√
−4p2+1

(
−2p2+

√
−4p2+1−1

)dp
results

in

x(p) = c2e
−

∫ −1+
√

−4p2+1

p

√
−4p2+1

(
−2p2+

√
−4p2+1−1

)dp


Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −1−
√
−4p2 + 1
2p

g = 0

Hence (2) becomes

p− −1−
√
−4p2 + 1
2p = x

(
−−1−

√
−4p2 + 1
2p2 + 2√

−4p2 + 1

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− −1−
√
−4p2 + 1
2p = 0

Solving for p from the above gives

p = i
√
2

p = −i
√
2

Substituting these in (1A) gives

y = −i
√
2x

y = i
√
2x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− −1−

√
−4p(x)2+1
2p(x)

x

(
−−1−

√
−4p(x)2+1

2p(x)2 + 2√
−4p(x)2+1

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(
−−1−

√
−4p2+1

2p2 + 2√
−4p2+1

)
p− −1−

√
−4p2+1
2p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)
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Where here

p(p) = − 1 +
√
−4p2 + 1

p
√
−4p2 + 1

(
2p2 +

√
−4p2 + 1 + 1

)
q(p) = 0

Hence the ode is

d

dp
x(p)−

x(p)
(
1 +

√
−4p2 + 1

)
p
√
−4p2 + 1

(
2p2 +

√
−4p2 + 1 + 1

) = 0

The integrating factor µ is

µ = e
∫
− 1+

√
−4p2+1

p

√
−4p2+1

(
2p2+

√
−4p2+1+1

)dp

The ode becomes

d
dpµx = 0

d
dp

e
∫
− 1+

√
−4p2+1

p

√
−4p2+1

(
2p2+

√
−4p2+1+1

)dp
x

 = 0

Integrating gives

e
∫
− 1+

√
−4p2+1

p

√
−4p2+1

(
2p2+

√
−4p2+1+1

)dp
x = c4

Dividing both sides by the integrating factor µ = e
∫
− 1+

√
−4p2+1

p

√
−4p2+1

(
2p2+

√
−4p2+1+1

)dp
results in

x(p) = c4e
∫ 1+

√
−4p2+1

p

√
−4p2+1

(
2p2+

√
−4p2+1+1

)dp

Since the solution x(p) has unresolved integral, unable to continue.

Solving ode 3A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

2 +
√
p2 − 4
2

g = 0

Hence (2) becomes

p

2 −
√
p2 − 4
2 = x

(
1
2 + p

2
√
p2 − 4

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p

2 −
√
p2 − 4
2 = 0

No singular solution are found

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)
2 −

√
p(x)2−4

2

x

(
1
2 +

p(x)

2
√

p(x)2−4

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1
2 +

p

2
√

p2−4

)
p
2 −

√
p2−4
2

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − p+
√
p2 − 4√

p2 − 4
(
p−

√
p2 − 4

)
q(p) = 0
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Hence the ode is

d

dp
x(p)−

(
p+

√
p2 − 4

)
x(p)

√
p2 − 4

(
p−

√
p2 − 4

) = 0

The integrating factor µ is

µ = e
∫
− p+

√
p2−4√

p2−4
(
p−
√

p2−4
)dp

= e−
√

p2−4 p

4 − p2
4

The ode becomes
d
dpµx = 0

d
dp

(
e−

√
p2−4 p

4 − p2
4 x

)
= 0

Integrating gives

e−
√

p2−4 p

4 − p2
4 x = c6

Dividing both sides by the integrating factor µ = e−
√

p2−4 p

4 − p2
4 results in

x(p) = c6e

(
p+
√

p2−4
)
p

4

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = x2 + y2

xy

Substituting the above in the solution for x found above gives

x = c6e


√√√√(

x2−y2
)2

y2x2
xy+x2+y2

(x2+y2
)

4y2x2

Solving ode 4A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

2 −
√
p2 − 4
2

g = 0

Hence (2) becomes

p

2 +
√
p2 − 4
2 = x

(
1
2 − p

2
√
p2 − 4

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p

2 +
√
p2 − 4
2 = 0

No singular solution are found

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)
2 +

√
p(x)2−4

2

x

(
1
2 −

p(x)

2
√

p(x)2−4

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1
2 −

p

2
√

p2−4

)
p
2 +

√
p2−4
2

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = − −p+
√
p2 − 4√

p2 − 4
(
p+

√
p2 − 4

)
q(p) = 0
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Hence the ode is

d

dp
x(p)−

x(p)
(
−p+

√
p2 − 4

)
√
p2 − 4

(
p+

√
p2 − 4

) = 0

The integrating factor µ is

µ = e
∫
− −p+

√
p2−4√

p2−4
(
p+
√

p2−4
)dp

= e
√

p2−4 p

4 − p2
4

The ode becomes

d
dpµx = 0

d
dp

(
e
√

p2−4 p

4 − p2
4 x

)
= 0

Integrating gives

e
√

p2−4 p

4 − p2
4 x = c8

Dividing both sides by the integrating factor µ = e
√

p2−4 p

4 − p2
4 results in

x(p) = c8e−
(
−p+

√
p2−4

)
p

4

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = x2 + y2

xy

Substituting the above in the solution for x found above gives

x = c8e

−

√√√√(
x2−y2

)2
y2x2

xy+x2+y2

(x2+y2
)

4y2x2
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Summary
The solution(s) found are the following

(1)y = −i
√
2x

(2)y = i
√
2x

(3)x = c6e


√√√√(

x2−y2
)2

y2x2
xy+x2+y2

(x2+y2
)

4y2x2

(4)x = c8e

−

√√√√(
x2−y2

)2
y2x2

xy+x2+y2

(x2+y2
)

4y2x2

Verification of solutions

y = −i
√
2x

Verified OK.

y = i
√
2x

Verified OK.

x = c6e


√√√√(

x2−y2
)2

y2x2
xy+x2+y2

(x2+y2
)

4y2x2

Verified OK.

x = c8e

−

√√√√(
x2−y2

)2
y2x2

xy+x2+y2

(x2+y2
)

4y2x2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 1.015 (sec). Leaf size: 248� �
dsolve(x*y(x)*(x^2+y(x)^2)*(diff(y(x),x)^2-1)=diff(y(x),x)*(x^4+x^2*y(x)^2+y(x)^4),y(x), singsol=all)� �

y(x) =

√
x2c1

(
c1x2 −

√
c21x

4 + 1
)

x
(
c1x2 −

√
c21x

4 + 1
)
c1

y(x) =

√
x2c1

(
c1x2 +

√
c21x

4 + 1
)

x
(
c1x2 +

√
c21x

4 + 1
)
c1

y(x) =

√
x2c1

(
c1x2 −

√
c21x

4 + 1
)

x
(
−c1x2 +

√
c21x

4 + 1
)
c1

y(x) = −

√
x2c1

(
c1x2 +

√
c21x

4 + 1
)

x
(
c1x2 +

√
c21x

4 + 1
)
c1

y(x) =
√

2 ln (x) + c1 x

y(x) = −
√
2 ln (x) + c1 x
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3 Solution by Mathematica
Time used: 9.298 (sec). Leaf size: 248� �
DSolve[x*y[x]*(x^2+y[x]^2)*((y'[x])^2-1)==y'[x]*(x^4+x^2*y[x]^2+y[x]^4),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x2 −

√
x4 + e4c1

y(x) →
√

−x2 −
√
x4 + e4c1

y(x) → −
√
−x2 +

√
x4 + e4c1

y(x) →
√

−x2 +
√
x4 + e4c1

y(x) → −x
√
2 log(x) + c1

y(x) → x
√
2 log(x) + c1

y(x) → −
√
−
√
x4 − x2

y(x) →
√

−
√
x4 − x2

y(x) → −
√√

x4 − x2

y(x) →
√√

x4 − x2
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1.18 problem 18
1.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 103

Internal problem ID [6784]
Internal file name [OUTPUT/6031_Tuesday_July_26_2022_05_04_44_AM_84731963/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 18.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature",
"separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

xy′
3 −

(
x2 + x+ y

)
y′

2 +
(
x2 + xy + y

)
y′ − xy = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1 (1)
y′ = x (2)

y′ = y

x
(3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

1 dx

= x+ c1
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Summary
The solution(s) found are the following

(1)y = x+ c1

Verification of solutions

y = x+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

x dx

= x2

2 + c2

Summary
The solution(s) found are the following

(1)y = x2

2 + c2

Verification of solutions

y = x2

2 + c2

Verified OK.
Solving equation (3)

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x
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Where f(x) = 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = 1

x
dx∫ 1

y
dy =

∫ 1
x
dx

ln (y) = ln (x) + c3

y = eln(x)+c3

= c3x

Summary
The solution(s) found are the following

(1)y = c3x

Verification of solutions
y = c3x

Verified OK.

1.18.1 Maple step by step solution

Let’s solve
xy′3 − (x2 + x+ y) y′2 + (x2 + xy + y) y′ − xy = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
xy′3 − (x2 + x+ y) y′2 + (x2 + xy + y) y′ − xy

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
xy′3 − (x2 + x+ y) y′2 + (x2 + xy + y) y′ − xy

)
dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(x*diff(y(x),x)^3-(x^2+x+y(x))*diff(y(x),x)^2+(x^2+x*y(x)+y(x))*diff(y(x),x)-x*y(x)=0,y(x), singsol=all)� �

y(x) = c1x
y(x) = x+ c1

y(x) = x2

2 + c1

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 36� �
DSolve[x*(y'[x])^3-(x^2+x+y[x])*(y'[x])^2+(x^2+x*y[x]+y[x])*y'[x]-x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
y(x) → x+ c1

y(x) → x2

2 + c1

y(x) → 0
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1.19 problem 19
1.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 106

Internal problem ID [6785]
Internal file name [OUTPUT/6032_Tuesday_July_26_2022_05_04_44_AM_54275792/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 19.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

xyy′
2 + (x+ y) y′ = −1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −1
y

(1)

y′ = −1
x

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
−ydy = x+ c1

−y2

2 = x+ c1

Solving for y gives these solutions

y1 =
√
−2c1 − 2x

y2 = −
√
−2c1 − 2x
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Summary
The solution(s) found are the following

(1)y =
√
−2c1 − 2x

(2)y = −
√
−2c1 − 2x

Verification of solutions

y =
√
−2c1 − 2x

Verified OK.

y = −
√
−2c1 − 2x

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−1
x
dx

= − ln (x) + c2

Summary
The solution(s) found are the following

(1)y = − ln (x) + c2

Verification of solutions

y = − ln (x) + c2

Verified OK.

1.19.1 Maple step by step solution

Let’s solve
xyy′2 + (x+ y) y′ = −1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
xyy′2 + (x+ y) y′

)
dx =

∫
(−1) dx+ c1

• Cannot compute integral
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∫ (
xyy′2 + (x+ y) y′

)
dx = −x+ c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
dsolve(x*y(x)*diff(y(x),x)^2+(x+y(x))*diff(y(x),x)+1=0,y(x), singsol=all)� �

y(x) = − ln (x) + c1
y(x) =

√
c1 − 2x

y(x) = −
√
c1 − 2x

3 Solution by Mathematica
Time used: 0.062 (sec). Leaf size: 53� �
DSolve[x*y[x]*(y'[x])^2+(x+y[x])*y'[x]+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2
√
−x+ c1

y(x) →
√
2
√
−x+ c1

y(x) → − log(x) + c1
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2 CHAPTER 16. Nonlinear equations. Section 97.
The p-discriminant equation. EXERCISES Page
314

2.1 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.2 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.3 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
2.4 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.5 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2.6 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2.7 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
2.8 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
2.9 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

108



2.1 problem 8
2.1.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 109

Internal problem ID [6786]
Internal file name [OUTPUT/6033_Tuesday_July_26_2022_05_04_45_AM_33678810/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 8.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′
2 − 2y′y = −4x

2.1.1 Solving as dAlembert ode

Let p = y′ the ode becomes

x p2 − 2py = −4x

Solving for y from the above results in

y = x(p2 + 4)
2p (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2 + 4
2p

g = 0

Hence (2) becomes

p− p2 + 4
2p = x

(
1− p2 + 4

2p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p2 + 4
2p = 0

Solving for p from the above gives

p = 2
p = −2

Substituting these in (1A) gives

y = −2x
y = 2x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)2+4

2p(x)

x
(
1− p(x)2+4

2p(x)2

) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = −1
x

q(x) = 0
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Hence the ode is

p′(x)− p(x)
x

= 0

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dxµp = 0

d
dx

(p
x

)
= 0

Integrating gives
p

x
= c1

Dividing both sides by the integrating factor µ = 1
x
results in

p(x) = c1x

Substituing the above solution for p in (2A) gives

y = c21x
2 + 4
2c1

Summary
The solution(s) found are the following

(1)y = −2x
(2)y = 2x

(3)y = c21x
2 + 4
2c1
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Verification of solutions

y = −2x

Verified OK.
y = 2x

Verified OK.

y = c21x
2 + 4
2c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 30� �
dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+4*x=0,y(x), singsol=all)� �

y(x) = −2x
y(x) = 2x

y(x) = 4c21 + x2

2c1
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3 Solution by Mathematica
Time used: 0.294 (sec). Leaf size: 43� �
DSolve[x*(y'[x])^2-2*y[x]*y'[x]+4*x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2x cosh(− log(x) + c1)
y(x) → −2x cosh(log(x) + c1)
y(x) → −2x
y(x) → 2x
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2.2 problem 9
Internal problem ID [6787]
Internal file name [OUTPUT/6034_Tuesday_July_26_2022_05_04_47_AM_71368481/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 9.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

3x4y′
2 − xy′ − y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1 +
√
1 + 12yx2

6x3 (1)

y′ = −−1 +
√
1 + 12yx2

6x3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = 1 +
√
12y x2 + 1
6x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
1 +

√
12y x2 + 1

)
(b3 − a2)

6x3 −
(
1 +

√
12y x2 + 1

)2
a3

36x6

−
(
−1 +

√
12y x2 + 1
2x4 + 2y

x2
√
12y x2 + 1

)
(xa2 + ya3 + a1)

− xb2 + yb3 + b1

x
√
12y x2 + 1

= 0

Putting the above in normal form gives

−−36b2x6√12y x2 + 1 + 36x6b2 − 72x5ya2 − 36x5yb3 − 144x4y2a3 + 36x5b1 − 144x4ya1 − 12
√
12y x2 + 1x3a2 − 6

√
12y x2 + 1x3b3 − 18

√
12y x2 + 1x2ya3 + (12y x2 + 1)

3
2 a3 − 18

√
12y x2 + 1x2a1 − 12x3a2 − 6x3b3 + 6x2ya3 − 18x2a1 + a3

√
12y x2 + 1 + 2a3

36x6
√
12y x2 + 1

= 0

Setting the numerator to zero gives

(6E)
36b2x6

√
12y x2 + 1− 36x6b2 + 72x5ya2 + 36x5yb3 + 144x4y2a3

− 36x5b1 + 144x4ya1 + 12
√

12y x2 + 1x3a2 + 6
√

12y x2 + 1x3b3

+ 18
√

12y x2 + 1x2ya3 −
(
12y x2 + 1

) 3
2 a3 + 18

√
12y x2 + 1 x2a1

+ 12x3a2 + 6x3b3 − 6x2ya3 + 18x2a1 − a3
√
12y x2 + 1− 2a3 = 0

Simplifying the above gives

(6E)

36b2x6
√

12y x2 + 1− 36x6b2 − 72x5ya2 − 36x5yb3 − 72x4y2a3
+ 12

(
12y x2 + 1

)
x3a2 + 6

(
12y x2 + 1

)
x3b3 + 18

(
12y x2 + 1

)
x2ya3

− 36x5b1 − 72x4ya1 + 18
(
12y x2 + 1

)
x2a1 + 12

√
12y x2 + 1x3a2

+ 6
√

12y x2 + 1x3b3 + 18
√
12y x2 + 1x2ya3 −

(
12y x2 + 1

) 3
2 a3

+ 18
√

12y x2 + 1x2a1 − 2
(
12y x2 + 1

)
a3 − a3

√
12y x2 + 1 = 0
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Since the PDE has radicals, simplifying gives

36b2x6
√
12y x2 + 1−36x6b2+72x5ya2+36x5yb3+144x4y2a3−36x5b1+144x4ya1

+ 12
√

12y x2 + 1x3a2 + 6
√
12y x2 + 1x3b3 + 6

√
12y x2 + 1x2ya3 + 12x3a2

+ 6x3b3 + 18
√

12y x2 + 1x2a1 − 6x2ya3 + 18x2a1 − 2a3
√

12y x2 + 1− 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
12y x2 + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
12y x2 + 1 = v3

}
The above PDE (6E) now becomes

(7E)36b2v61v3 + 72v51v2a2 + 144v41v22a3 − 36v61b2 + 36v51v2b3 + 144v41v2a1
− 36v51b1 + 12v3v31a2 + 6v3v21v2a3 + 6v3v31b3 + 18v3v21a1
+ 12v31a2 − 6v21v2a3 + 6v31b3 + 18v21a1 − 2a3v3 − 2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)36b2v61v3 − 36v61b2 + (72a2 + 36b3) v51v2 − 36v51b1 + 144v41v22a3
+ 144v41v2a1 + (12a2 + 6b3) v31v3 + (12a2 + 6b3) v31 + 6v3v21v2a3
− 6v21v2a3 + 18v3v21a1 + 18v21a1 − 2a3v3 − 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

18a1 = 0
144a1 = 0
−6a3 = 0
−2a3 = 0
6a3 = 0

144a3 = 0
−36b1 = 0
−36b2 = 0
36b2 = 0

12a2 + 6b3 = 0
72a2 + 36b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
1 +

√
12y x2 + 1
6x3

)
(x)

= −12y x2 −
√
12y x2 + 1− 1
6x2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−12y x2−
√

12y x2+1−1
6x2

dy

Which results in

S = − ln (y)
2 − arctanh

(√
12y x2 + 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 1 +
√
12y x2 + 1
6x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x
√
12y x2 + 1

Sy =
−1 + 1√

12y x2+1

2y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
2 − arctanh

(√
1 + 12yx2

)
= c1

Which simplifies to

− ln (y)
2 − arctanh

(√
1 + 12yx2

)
= c1

Summary
The solution(s) found are the following

(1)− ln (y)
2 − arctanh

(√
1 + 12yx2

)
= c1

Verification of solutions

− ln (y)
2 − arctanh

(√
1 + 12yx2

)
= c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −−1 +
√
12y x2 + 1
6x3

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

(
−1 +

√
12y x2 + 1

)
(b3 − a2)

6x3 −
(
−1 +

√
12y x2 + 1

)2
a3

36x6

−
(
− 2y
x2
√
12y x2 + 1

+ −1 +
√
12y x2 + 1
2x4

)
(xa2 + ya3 + a1)

+ xb2 + yb3 + b1

x
√
12y x2 + 1

= 0

Putting the above in normal form gives

−−36b2x6√12y x2 + 1− 36x6b2 + 72x5ya2 + 36x5yb3 + 144x4y2a3 − 36x5b1 + 144x4ya1 − 12
√
12y x2 + 1x3a2 − 6

√
12y x2 + 1x3b3 − 18

√
12y x2 + 1 x2ya3 + (12y x2 + 1)

3
2 a3 − 18

√
12y x2 + 1x2a1 + 12x3a2 + 6x3b3 − 6x2ya3 + 18x2a1 + a3

√
12y x2 + 1− 2a3

36x6
√
12y x2 + 1

= 0

Setting the numerator to zero gives

(6E)
36b2x6

√
12y x2 + 1 + 36x6b2 − 72x5ya2 − 36x5yb3 − 144x4y2a3

+ 36x5b1 − 144x4ya1 + 12
√
12y x2 + 1x3a2 + 6

√
12y x2 + 1x3b3

+ 18
√

12y x2 + 1x2ya3 −
(
12y x2 + 1

) 3
2 a3 + 18

√
12y x2 + 1 x2a1

− 12x3a2 − 6x3b3 + 6x2ya3 − 18x2a1 − a3
√

12y x2 + 1 + 2a3 = 0
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Simplifying the above gives

(6E)

36b2x6
√

12y x2 + 1 + 36x6b2 + 72x5ya2 + 36x5yb3 + 72x4y2a3
− 12

(
12y x2 + 1

)
x3a2 − 6

(
12y x2 + 1

)
x3b3 − 18

(
12y x2 + 1

)
x2ya3

+ 36x5b1 + 72x4ya1 − 18
(
12y x2 + 1

)
x2a1 + 12

√
12y x2 + 1x3a2

+ 6
√

12y x2 + 1x3b3 + 18
√
12y x2 + 1 x2ya3 −

(
12y x2 + 1

) 3
2 a3

+ 18
√

12y x2 + 1 x2a1 + 2
(
12y x2 + 1

)
a3 − a3

√
12y x2 + 1 = 0

Since the PDE has radicals, simplifying gives

36b2x6
√
12y x2 + 1+36x6b2−72x5ya2−36x5yb3−144x4y2a3+36x5b1−144x4ya1

+ 12
√

12y x2 + 1x3a2 + 6
√
12y x2 + 1x3b3 + 6

√
12y x2 + 1x2ya3 − 12x3a2

− 6x3b3 + 18
√

12y x2 + 1x2a1 + 6x2ya3 − 18x2a1 − 2a3
√

12y x2 + 1 + 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
12y x2 + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
12y x2 + 1 = v3

}
The above PDE (6E) now becomes

(7E)36b2v61v3 − 72v51v2a2 − 144v41v22a3 + 36v61b2 − 36v51v2b3 − 144v41v2a1
+ 36v51b1 + 12v3v31a2 + 6v3v21v2a3 + 6v3v31b3 + 18v3v21a1
− 12v31a2 + 6v21v2a3 − 6v31b3 − 18v21a1 − 2a3v3 + 2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)36b2v61v3 + 36v61b2 + (−72a2 − 36b3) v51v2 + 36v51b1 − 144v41v22a3
− 144v41v2a1 + (12a2 + 6b3) v31v3 + (−12a2 − 6b3) v31
+ 6v3v21v2a3 + 6v21v2a3 + 18v3v21a1 − 18v21a1 − 2a3v3 + 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−144a1 = 0
−18a1 = 0
18a1 = 0

−144a3 = 0
−2a3 = 0
2a3 = 0
6a3 = 0
36b1 = 0
36b2 = 0

−72a2 − 36b3 = 0
−12a2 − 6b3 = 0
12a2 + 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
−−1 +

√
12y x2 + 1
6x3

)
(x)

= −12y x2 +
√
12y x2 + 1− 1
6x2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−12y x2+
√

12y x2+1−1
6x2

dy

Which results in

S = − ln (y)
2 + arctanh

(√
12y x2 + 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−1 +
√
12y x2 + 1
6x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
x
√
12y x2 + 1

Sy =
− 1√

12y x2+1
− 1

2y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
2 + arctanh

(√
1 + 12yx2

)
= c1

Which simplifies to

− ln (y)
2 + arctanh

(√
1 + 12yx2

)
= c1

Summary
The solution(s) found are the following

(1)− ln (y)
2 + arctanh

(√
1 + 12yx2

)
= c1

Verification of solutions

− ln (y)
2 + arctanh

(√
1 + 12yx2

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 97� �
dsolve(3*x^4*diff(y(x),x)^2-x*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = − 1
12x2

y(x) = −i
√
3 c1 − 3x
3c21x

y(x) = i
√
3 c1 − 3x
3x c21

y(x) = i
√
3 c1 − 3x
3x c21

y(x) = −i
√
3 c1 − 3x
3c21x

3 Solution by Mathematica
Time used: 0.518 (sec). Leaf size: 123� �
DSolve[3*x^4*(y'[x])^2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−x
√

12x2y(x) + 1arctanh
(√

12x2y(x) + 1
)

√
12x4y(x) + x2

− 1
2 log(y(x)) = c1, y(x)


Solve

x√12x2y(x) + 1arctanh
(√

12x2y(x) + 1
)

√
12x4y(x) + x2

− 1
2 log(y(x)) = c1, y(x)


y(x) → 0

126



2.3 problem 10
2.3.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 127

Internal problem ID [6788]
Internal file name [OUTPUT/6035_Tuesday_July_26_2022_05_04_48_AM_61588331/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 10.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
2 − xy′ − y = 0

2.3.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 − xp− y = 0

Solving for y from the above results in

y = p2 − xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p

g = p2

Hence (2) becomes

2p = (−x+ 2p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

2p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 2p(x)
−x+ 2p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −x(p) + 2p

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
2p

q(p) = 1
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Hence the ode is

d

dp
x(p) + x(p)

2p = 1

The integrating factor µ is

µ = e
∫ 1

2pdp

= √
p

The ode becomes
d
dp(µx) = µ

d
dp(

√
p x) = √

p

d(√p x) = √
pdp

Integrating gives

√
p x =

∫
√
p dp

√
p x = 2p 3

2

3 + c1

Dividing both sides by the integrating factor µ = √
p results in

x(p) = 2p
3 + c1√

p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = x

2 +
√
x2 + 4y
2

p = x

2 −
√
x2 + 4y
2

Substituting the above in the solution for x found above gives

x = x

3 +
√
x2 + 4y
3 + 2c1√

2x+ 2
√
x2 + 4y

x = x

3 −
√
x2 + 4y
3 + 2c1√

2x− 2
√
x2 + 4y
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = x

3 +
√
x2 + 4y
3 + 2c1√

2x+ 2
√
x2 + 4y

(3)x = x

3 −
√
x2 + 4y
3 + 2c1√

2x− 2
√
x2 + 4y

Verification of solutions

y = 0

Verified OK.

x = x

3 +
√
x2 + 4y
3 + 2c1√

2x+ 2
√
x2 + 4y

Verified OK.

x = x

3 −
√
x2 + 4y
3 + 2c1√

2x− 2
√
x2 + 4y

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 77� �
dsolve(diff(y(x),x)^2-x*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

c1√
2x− 2

√
x2 + 4y (x)

+ 2x
3 +

√
x2 + 4y (x)

3 = 0

c1√
2x+ 2

√
x2 + 4y (x)

+ 2x
3 −

√
x2 + 4y (x)

3 = 0
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3 Solution by Mathematica
Time used: 60.178 (sec). Leaf size: 1003� �
DSolve[(y'[x])^2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

(
x2 + 3

√
−x6 + 20e3c1x3 + 8

√
e3c1 (−x3 + e3c1) 3 + 8e6c1

)
2 + 8e3c1x

4 3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

y(x) → 1
8

4x2 −
i
(√

3− i
)
x(x3 + 8e3c1)

3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

+ i
(√

3 + i
)

3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x) → 1

8

4x2 +
i
(√

3 + i
)
x(x3 + 8e3c1)

3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

−
(
1 + i

√
3
)

3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x)

→
2 3
√
2x4 + 22/3

(
−2x6 − 10e3c1x3 +

√
e3c1 (4x3 + e3c1) 3 + e6c1

)
2/3 + 4x2 3

√
−2x6 − 10e3c1x3 +

√
e3c1 (4x3 + e3c1) 3 + e6c1 − 4 3

√
2e3c1x

8 3
√
−2x6 − 10e3c1x3 +

√
e3c1 (4x3 + e3c1) 3 + e6c1

y(x) → 1
16

8x2 +
2 3
√
2
(
1 + i

√
3
)
x(−x3 + 2e3c1)

3
√

−2x6 − 10e3c1x3 +
√

e3c1 (4x3 + e3c1) 3 + e6c1

+ i22/3
(√

3 + i
)

3
√

−2x6 − 10e3c1x3 +
√
e3c1 (4x3 + e3c1) 3 + e6c1


y(x) → 1

16

8x2 +
2i 3
√
2
(√

3 + i
)
x(x3 − 2e3c1)

3
√

−2x6 − 10e3c1x3 +
√

e3c1 (4x3 + e3c1) 3 + e6c1

− 22/3
(
1 + i

√
3
)

3
√

−2x6 − 10e3c1x3 +
√
e3c1 (4x3 + e3c1) 3 + e6c1
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2.4 problem 11
2.4.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 133

Internal problem ID [6789]
Internal file name [OUTPUT/6036_Tuesday_July_26_2022_05_04_51_AM_70143130/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 11.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 − xy′ + y = 0

2.4.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 − xp+ y = 0

Solving for y from the above results in

y = −p2 + xp (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = −p2 + xp

= −p2 + xp
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = −p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = −c21 + c1x

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p2, then the
above equation becomes

x+ g′(p) = x− 2p
= 0
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Solving the above for p results in

p1 =
x

2

Substituting the above back in (1) results in

y1 =
x2

4

Summary
The solution(s) found are the following

(1)y = −c21 + c1x

(2)y = x2

4
Verification of solutions

y = −c21 + c1x

Verified OK.

y = x2

4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)^2-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = x2

4
y(x) = c1(x− c1)

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 25� �
DSolve[(y'[x])^2-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x− c1)

y(x) → x2

4
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2.5 problem 12
Internal problem ID [6790]
Internal file name [OUTPUT/6037_Tuesday_July_26_2022_05_04_52_AM_5469299/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 12.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
2 + 4y′x5 − 12yx4 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2
(
−x3 +

√
x6 + 3y

)
x2 (1)

y′ = 2
(
−x3 −

√
x6 + 3y

)
x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = 2
(
−x3 +

√
x6 + 3y

)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 + 2

(
−x3 +

√
x6 + 3y

)
x2(b3 − a2)− 4

(
−x3 +

√
x6 + 3y

)2
x4a3

−
(
2
(
−3x2 + 3x5

√
x6 + 3y

)
x2 + 4

(
−x3 +

√
x6 + 3y

)
x

)
(xa2 + ya3 + a1)

− 3x2(xb2 + yb3 + b1)√
x6 + 3y

= 0

Putting the above in normal form gives

−−8x13a3 + 4
√
x6 + 3y x10a3 + 12x8a2 − 2x8b3 − 14x7ya3 + 4(x6 + 3y)

3
2 x4a3 + 10x7a1 − 12

√
x6 + 3y x5a2 + 2

√
x6 + 3y x5b3 − 10

√
x6 + 3y x4ya3 − 10

√
x6 + 3y x4a1 + 3x3b2 + 18x2ya2 − 3x2yb3 + 12x y2a3 + 3x2b1 + 12xya1 − b2

√
x6 + 3y√

x6 + 3y
= 0

Setting the numerator to zero gives

(6E)
8x13a3 − 4

√
x6 + 3y x10a3 − 12x8a2 + 2x8b3 + 14x7ya3

− 4
(
x6 + 3y

) 3
2 x4a3 − 10x7a1 + 12

√
x6 + 3y x5a2 − 2

√
x6 + 3y x5b3

+ 10
√

x6 + 3y x4ya3 + 10
√

x6 + 3y x4a1 − 3x3b2 − 18x2ya2

+ 3x2yb3 − 12x y2a3 − 3x2b1 − 12xya1 + b2
√
x6 + 3y = 0

Simplifying the above gives

(6E)
−4
√

x6 + 3y x10a3+8
(
x6+3y

)
x7a3− 6x8a2− 6x7ya3− 4

(
x6+3y

) 3
2 x4a3

− 6x7a1 + 12
√

x6 + 3y x5a2 − 2
√

x6 + 3y x5b3 + 10
√
x6 + 3y x4ya3

+10
√

x6 + 3y x4a1 − 6
(
x6 +3y

)
x2a2 +2

(
x6 +3y

)
x2b3 − 4

(
x6 +3y

)
xya3

− 4
(
x6 + 3y

)
xa1 − 3x3b2 − 3x2yb3 − 3x2b1 + b2

√
x6 + 3y = 0
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Since the PDE has radicals, simplifying gives

8x13a3 − 8
√

x6 + 3y x10a3 − 12x8a2 + 2x8b3 + 14x7ya3 − 10x7a1

+ 12
√

x6 + 3y x5a2 − 2
√

x6 + 3y x5b3 − 2
√

x6 + 3y x4ya3 + 10
√
x6 + 3y x4a1

− 3x3b2 − 18x2ya2 + 3x2yb3 − 12x y2a3 − 3x2b1 − 12xya1 + b2
√
x6 + 3y = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x6 + 3y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x6 + 3y = v3
}

The above PDE (6E) now becomes

(7E)8v131 a3 − 8v3v101 a3 − 12v81a2 + 14v71v2a3 + 2v81b3 − 10v71a1
+ 12v3v51a2 − 2v3v41v2a3 − 2v3v51b3 + 10v3v41a1 − 18v21v2a2
− 12v1v22a3 − 3v31b2 + 3v21v2b3 − 12v1v2a1 − 3v21b1 + b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)8v131 a3 − 8v3v101 a3 + (−12a2 + 2b3) v81 + 14v71v2a3 − 10v71a1
+ (12a2 − 2b3) v51v3 − 2v3v41v2a3 + 10v3v41a1 − 3v31b2
+ (−18a2 + 3b3) v21v2 − 3v21b1 − 12v1v22a3 − 12v1v2a1 + b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−12a1 = 0
−10a1 = 0
10a1 = 0

−12a3 = 0
−8a3 = 0
−2a3 = 0
8a3 = 0
14a3 = 0
−3b1 = 0
−3b2 = 0

−18a2 + 3b3 = 0
−12a2 + 2b3 = 0
12a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 6a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 6y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 6y −
(
2
(
−x3 +

√
x6 + 3y

)
x2
)
(x)

= 2x6 − 2
√

x6 + 3y x3 + 6y
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x6 − 2
√
x6 + 3y x3 + 6y

dy

Which results in

S = ln (y)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 −

ln
(
x3 +

√
x6 + 3y

)
6

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2
(
−x3 +

√
x6 + 3y

)
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x2
√
x6 + 3y

Sy =
1√

x6 + 3y
(
−2x3 + 2

√
x6 + 3y

)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 = c1

Which simplifies to

ln (y)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 = c1

Summary
The solution(s) found are the following

(1)ln (y)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 = c1

Verification of solutions

ln (y)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −2x2
(
x3 +

√
x6 + 3y

)
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 − 2x2

(
x3 +

√
x6 + 3y

)
(b3 − a2)− 4x4

(
x3 +

√
x6 + 3y

)2
a3

−
(
−4x

(
x3 +

√
x6 + 3y

)
− 2x2

(
3x2 + 3x5

√
x6 + 3y

))
(xa2 + ya3 + a1)

+ 3x2(xb2 + yb3 + b1)√
x6 + 3y

= 0

Putting the above in normal form gives

−8x13a3 + 4
√
x6 + 3y x10a3 − 12x8a2 + 2x8b3 + 14x7ya3 + 4(x6 + 3y)

3
2 x4a3 − 10x7a1 − 12

√
x6 + 3y x5a2 + 2

√
x6 + 3y x5b3 − 10

√
x6 + 3y x4ya3 − 10

√
x6 + 3y x4a1 − 3x3b2 − 18x2a2y + 3x2yb3 − 12x y2a3 − 3x2b1 − 12xa1y − b2

√
x6 + 3y√

x6 + 3y
= 0

Setting the numerator to zero gives

(6E)
−8x13a3 − 4

√
x6 + 3y x10a3 + 12x8a2 − 2x8b3 − 14x7ya3

− 4
(
x6 + 3y

) 3
2 x4a3 + 10x7a1 + 12

√
x6 + 3y x5a2 − 2

√
x6 + 3y x5b3

+ 10
√

x6 + 3y x4ya3 + 10
√

x6 + 3y x4a1 + 3x3b2 + 18x2a2y

− 3x2yb3 + 12x y2a3 + 3x2b1 + 12xa1y + b2
√

x6 + 3y = 0
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Simplifying the above gives

(6E)
−4
√

x6 + 3y x10a3− 8
(
x6+3y

)
x7a3+6x8a2+6x7ya3− 4

(
x6+3y

) 3
2 x4a3

+ 6x7a1 + 12
√

x6 + 3y x5a2 − 2
√
x6 + 3y x5b3 + 10

√
x6 + 3y x4ya3

+10
√

x6 + 3y x4a1 +6
(
x6 +3y

)
x2a2 − 2

(
x6 +3y

)
x2b3 +4

(
x6 +3y

)
xya3

+ 4
(
x6 + 3y

)
xa1 + 3x3b2 + 3x2yb3 + 3x2b1 + b2

√
x6 + 3y = 0

Since the PDE has radicals, simplifying gives

−8x13a3 − 8
√

x6 + 3y x10a3 + 12x8a2 − 2x8b3 − 14x7ya3 + 10x7a1

+ 12
√

x6 + 3y x5a2 − 2
√

x6 + 3y x5b3 − 2
√

x6 + 3y x4ya3 + 10
√
x6 + 3y x4a1

+ 3x3b2 + 18x2a2y − 3x2yb3 + 12x y2a3 + 3x2b1 + 12xa1y + b2
√

x6 + 3y = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x6 + 3y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x6 + 3y = v3
}

The above PDE (6E) now becomes

(7E)−8v131 a3 − 8v3v101 a3 + 12v81a2 − 14v71v2a3 − 2v81b3 + 10v71a1
+ 12v3v51a2 − 2v3v41v2a3 − 2v3v51b3 + 10v3v41a1 + 18v21a2v2
+ 12v1v22a3 + 3v31b2 − 3v21v2b3 + 12v1a1v2 + 3v21b1 + b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−8v131 a3 − 8v3v101 a3 + (12a2 − 2b3) v81 − 14v71v2a3 + 10v71a1
+ (12a2 − 2b3) v51v3 − 2v3v41v2a3 + 10v3v41a1 + 3v31b2
+ (18a2 − 3b3) v21v2 + 3v21b1 + 12v1v22a3 + 12v1a1v2 + b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
10a1 = 0
12a1 = 0

−14a3 = 0
−8a3 = 0
−2a3 = 0
12a3 = 0
3b1 = 0
3b2 = 0

12a2 − 2b3 = 0
18a2 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 6a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 6y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 6y −
(
−2x2

(
x3 +

√
x6 + 3y

))
(x)

= 2x6 + 2
√

x6 + 3y x3 + 6y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x6 + 2
√
x6 + 3y x3 + 6y

dy

Which results in

S = ln (y)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 +

ln
(
x3 +

√
x6 + 3y

)
6

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x2
(
x3 +

√
x6 + 3y

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2
√
x6 + 3y

Sy =
1√

x6 + 3y
(
2x3 + 2

√
x6 + 3y

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 = c1

Which simplifies to

ln (y)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 = c1

Summary
The solution(s) found are the following

(1)ln (y)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 = c1

Verification of solutions

ln (y)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x)-2*(diff(y(x), x))/x, y(x)` *** Sublevel 4 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- 1st order ODE linearizable_by_differentiation successful
-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �
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3 Solution by Maple
Time used: 0.359 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)^2+4*x^5*diff(y(x),x)-12*x^4*y(x)=0,y(x), singsol=all)� �

y(x) = −x6

3
y(x) = c1x

3 + 3
4c

2
1

3 Solution by Mathematica
Time used: 1.361 (sec). Leaf size: 217� �
DSolve[(y'[x])^2+4*x^5*y'[x]-12*x^4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

1
6

(
log(y(x))− x2

√
x6 + 3y(x) log(y(x))√
x4 (x6 + 3y(x))

)

+
x2
√

x6 + 3y(x) log
(√

x6 + 3y(x) + x3
)

3
√

x4 (x6 + 3y(x))
= c1, y(x)


Solve

1
6

(
x2
√

x6 + 3y(x) log(y(x))√
x4 (x6 + 3y(x))

+ log(y(x))
)

−
x2
√
x6 + 3y(x) log

(√
x6 + 3y(x) + x3

)
3
√

x4 (x6 + 3y(x))
= c1, y(x)


y(x) → −x6

3
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2.6 problem 13
Internal problem ID [6791]
Internal file name [OUTPUT/6038_Tuesday_July_26_2022_05_04_55_AM_15542793/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 13.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

4y3y′2 − 4xy′ + y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x+
√
x2 − y4

2y3 (1)

y′ = −−x+
√
x2 − y4

2y3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = x+
√
−y4 + x2

2y3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
x+

√
−y4 + x2

)
(b3 − a2)

2y3 −
(
x+

√
−y4 + x2

)2
a3

4y6

−

(
1 + x√

−y4+x2

)
(xa2 + ya3 + a1)
2y3

−

(
− 1√

−y4 + x2 −
3
(
x+

√
−y4 + x2

)
2y4

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−4b2
√
−y4 + x2 y6 + 2x y6b2 − 2y7a2 + 4y7b3 + 2y6b1 − 6

√
−y4 + x2 x2y2b2 + 4

√
−y4 + x2 x y3a2 − 8

√
−y4 + x2 x y3b3 + 2

√
−y4 + x2 y4a3 − 6x3y2b2 + 4x2y3a2 − 8x2y3b3 − 6

√
−y4 + x2 x y2b1 + 2

√
−y4 + x2 y3a1 − 6x2y2b1 + 2x y3a1 + (−y4 + x2)

3
2 a3 +

√
−y4 + x2 x2a3 + 2x3a3

4
√
−y4 + x2 y6

= 0

Setting the numerator to zero gives

(6E)
4b2
√

−y4 + x2 y6 − 2x y6b2 +2y7a2 − 4y7b3 − 2y6b1 +6
√

−y4 + x2 x2y2b2

− 4
√

−y4 + x2 x y3a2 + 8
√

−y4 + x2 x y3b3 − 2
√
−y4 + x2 y4a3

+ 6x3y2b2 − 4x2y3a2 + 8x2y3b3 + 6
√

−y4 + x2 x y2b1 − 2
√

−y4 + x2 y3a1

+ 6x2y2b1 − 2x y3a1 −
(
−y4 + x2) 3

2 a3 −
√
−y4 + x2 x2a3 − 2x3a3 = 0
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Simplifying the above gives

(6E)

4b2
√
−y4 + x2 y6 + 4x y6b2 + 4y7b3 + 4y6b1 + 6

(
−y4 + x2)x y2b2

− 2
(
−y4 + x2) y3a2 + 8

(
−y4 + x2) y3b3 + 6

√
−y4 + x2 x2y2b2

− 4
√

−y4 + x2 x y3a2 + 8
√

−y4 + x2 x y3b3

− 2
√

−y4 + x2 y4a3 − 2x2y3a2 − 2x y4a3 + 6
(
−y4 + x2) y2b1

+ 6
√

−y4 + x2 x y2b1 − 2
√

−y4 + x2 y3a1 − 2x y3a1
−
(
−y4 + x2) 3

2 a3 − 2
(
−y4 + x2)xa3 −√−y4 + x2 x2a3 = 0

Since the PDE has radicals, simplifying gives

−2x y6b2 + 4b2
√
−y4 + x2 y6 + 2y7a2 − 4y7b3 − 2y6b1 + 6x3y2b2

+ 6
√

−y4 + x2 x2y2b2 − 4x2y3a2 + 8x2y3b3 − 4
√
−y4 + x2 x y3a2

+ 8
√

−y4 + x2 x y3b3 −
√

−y4 + x2 y4a3 + 6x2y2b1 + 6
√
−y4 + x2 x y2b1

− 2x y3a1 − 2
√

−y4 + x2 y3a1 − 2x3a3 − 2
√

−y4 + x2 x2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−y4 + x2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−y4 + x2 = v3
}

The above PDE (6E) now becomes

(7E)2v72a2 − 2v1v62b2 + 4b2v3v62 − 4v72b3 − 2v62b1 − 4v21v32a2 − 4v3v1v32a2
− v3v

4
2a3 + 6v31v22b2 + 6v3v21v22b2 + 8v21v32b3 + 8v3v1v32b3 − 2v1v32a1

− 2v3v32a1 + 6v21v22b1 + 6v3v1v22b1 − 2v31a3 − 2v3v21a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

152



Equation (7E) now becomes

(8E)6v31v22b2 − 2v31a3 + (−4a2 + 8b3) v21v32 + 6v3v21v22b2 + 6v21v22b1
− 2v3v21a3 − 2v1v62b2 + (−4a2 + 8b3) v1v32v3 − 2v1v32a1 + 6v3v1v22b1
+ (2a2 − 4b3) v72 + 4b2v3v62 − 2v62b1 − v3v

4
2a3 − 2v3v32a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
−2a3 = 0
−a3 = 0
−2b1 = 0
6b1 = 0

−2b2 = 0
4b2 = 0
6b2 = 0

−4a2 + 8b3 = 0
2a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x+

√
−y4 + x2

2y3

)
(2x)

= y4 −
√
−y4 + x2 x− x2

y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y4−
√

−y4+x2 x−x2

y3

dy

Which results in

S = − ln (y2 − x)
4 + ln (y)− ln (y2 + x)

4 + ln (y4 − x2)
4 +

x ln
(

2x2+2
√
x2
√

−y4+x2

y2

)
2
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x+
√
−y4 + x2

2y3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x+
√
−y4 + x2

2
√
−y4 + x2 x

Sy = − y3√
−y4 + x2

(
x+

√
−y4 + x2

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

Summary
The solution(s) found are the following

(1)ln (2)
2 + ln (x)

2 +
ln
(
x+

√
x2 − y4

)
2 = ln (x)

2 + c1

Verification of solutions

ln (2)
2 + ln (x)

2 +
ln
(
x+

√
x2 − y4

)
2 = ln (x)

2 + c1

Verified OK.
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Solving equation (2)

Writing the ode as

y′ = −
√
−y4 + x2 − x

2y3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(√

−y4 + x2 − x
)
(b3 − a2)

2y3 −
(√

−y4 + x2 − x
)2

a3

4y6

+

(
−1 + x√

−y4+x2

)
(xa2 + ya3 + a1)

2y3

−

(
1√

−y4 + x2 +
3
√

−y4+x2

2 − 3x
2

y4

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−4b2
√
−y4 + x2 y6 − 2x y6b2 + 2y7a2 − 4y7b3 − 2y6b1 − 6

√
−y4 + x2 x2y2b2 + 4

√
−y4 + x2 x y3a2 − 8

√
−y4 + x2 x y3b3 + 2

√
−y4 + x2 y4a3 + 6x3y2b2 − 4x2y3a2 + 8x2y3b3 − 6

√
−y4 + x2 x y2b1 + 2

√
−y4 + x2 y3a1 + 6x2y2b1 − 2x y3a1 + (−y4 + x2)

3
2 a3 +

√
−y4 + x2 x2a3 − 2x3a3

4
√
−y4 + x2 y6

= 0
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Setting the numerator to zero gives

(6E)
4b2
√

−y4 + x2 y6 + 2x y6b2 − 2y7a2 + 4y7b3 + 2y6b1 + 6
√

−y4 + x2 x2y2b2

− 4
√

−y4 + x2 x y3a2 + 8
√

−y4 + x2 x y3b3 − 2
√
−y4 + x2 y4a3

− 6x3y2b2 + 4x2y3a2 − 8x2y3b3 + 6
√

−y4 + x2 x y2b1 − 2
√

−y4 + x2 y3a1

− 6x2y2b1 + 2x y3a1 −
(
−y4 + x2) 3

2 a3 −
√

−y4 + x2 x2a3 + 2x3a3 = 0

Simplifying the above gives

(6E)

4b2
√
−y4 + x2 y6 − 4x y6b2 − 4y7b3 − 4y6b1 − 6

(
−y4 + x2)x y2b2

+ 2
(
−y4 + x2) y3a2 − 8

(
−y4 + x2) y3b3 + 6

√
−y4 + x2 x2y2b2

− 4
√

−y4 + x2 x y3a2 + 8
√

−y4 + x2 x y3b3

− 2
√

−y4 + x2 y4a3 + 2x2y3a2 + 2x y4a3 − 6
(
−y4 + x2) y2b1

+ 6
√

−y4 + x2 x y2b1 − 2
√

−y4 + x2 y3a1 + 2x y3a1
−
(
−y4 + x2) 3

2 a3 + 2
(
−y4 + x2)xa3 −√−y4 + x2 x2a3 = 0

Since the PDE has radicals, simplifying gives

2x y6b2 + 4b2
√

−y4 + x2 y6 − 2y7a2 + 4y7b3 + 2y6b1 − 6x3y2b2

+ 6
√

−y4 + x2 x2y2b2 + 4x2y3a2 − 8x2y3b3 − 4
√
−y4 + x2 x y3a2

+ 8
√

−y4 + x2 x y3b3 −
√

−y4 + x2 y4a3 − 6x2y2b1 + 6
√

−y4 + x2 x y2b1

+ 2x y3a1 − 2
√

−y4 + x2 y3a1 + 2x3a3 − 2
√

−y4 + x2 x2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−y4 + x2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−y4 + x2 = v3
}

The above PDE (6E) now becomes

(7E)−2v72a2 + 2v1v62b2 + 4b2v3v62 + 4v72b3 + 2v62b1 + 4v21v32a2 − 4v3v1v32a2
− v3v

4
2a3 − 6v31v22b2 + 6v3v21v22b2 − 8v21v32b3 + 8v3v1v32b3 + 2v1v32a1

− 2v3v32a1 − 6v21v22b1 + 6v3v1v22b1 + 2v31a3 − 2v3v21a3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−6v31v22b2 + 2v31a3 + (4a2 − 8b3) v21v32 + 6v3v21v22b2 − 6v21v22b1
− 2v3v21a3 + 2v1v62b2 + (−4a2 + 8b3) v1v32v3 + 2v1v32a1 + 6v3v1v22b1
+ (−2a2 + 4b3) v72 + 4b2v3v62 + 2v62b1 − v3v

4
2a3 − 2v3v32a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2a1 = 0

−2a3 = 0
−a3 = 0
2a3 = 0

−6b1 = 0
2b1 = 0
6b1 = 0

−6b2 = 0
2b2 = 0
4b2 = 0
6b2 = 0

−4a2 + 8b3 = 0
−2a2 + 4b3 = 0
4a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−
√
−y4 + x2 − x

2y3

)
(2x)

= y4 +
√
−y4 + x2 x− x2

y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y4+
√

−y4+x2 x−x2

y3

dy

Which results in

S = ln (y4 − x2)
4 − ln (y2 − x)

4 + ln (y)− ln (y2 + x)
4 −

x ln
(

2x2+2
√
x2
√

−y4+x2

y2

)
2
√
x2
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Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√
−y4 + x2 − x

2y3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −x+
√
−y4 + x2

2
√
−y4 + x2 x

Sy =
−y4 + 2x2 + 2

√
−y4 + x2 x

y
√
−y4 + x2

(
x+

√
−y4 + x2

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − −y4 +

√
−y4 + x2 x+ x2

2
√
−y4 + x2 x

(
x+

√
−y4 + x2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

Which gives

y = e
ln(2)
4 +

ln
(
−2 e4c1e−2c1+2 e2c1e−2c1x

)
4 + c1

2
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Summary
The solution(s) found are the following

(1)y = e
ln(2)
4 +

ln
(
−2 e4c1e−2c1+2 e2c1e−2c1x

)
4 + c1

2

Verification of solutions

y = e
ln(2)
4 +

ln
(
−2 e4c1e−2c1+2 e2c1e−2c1x

)
4 + c1

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[2*x, y]� �
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3 Solution by Maple
Time used: 0.281 (sec). Leaf size: 85� �
dsolve(4*y(x)^3*diff(y(x),x)^2-4*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) =
√
−x

y(x) = −
√
−x

y(x) =
√
x

y(x) = −
√
x

y(x) = 0

y(x) = RootOf
(
− ln (x) + 2

(∫ _Z
−_a4 −

√
−_a4 + 1− 1

_a (_a4 − 1) d_a
)
+ c1

)√
x

3 Solution by Mathematica
Time used: 0.587 (sec). Leaf size: 282� �
DSolve[4*y[x]^3*(y'[x])^2-4*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e
c1
4 4
√
ec1 − 2ix

y(x) → −ie
c1
4 4
√
ec1 − 2ix

y(x) → ie
c1
4 4
√
ec1 − 2ix

y(x) → e
c1
4 4
√
ec1 − 2ix

y(x) → −e
c1
4 4
√
2ix+ ec1

y(x) → −ie
c1
4 4
√
2ix+ ec1

y(x) → ie
c1
4 4
√
2ix+ ec1

y(x) → e
c1
4 4
√
2ix+ ec1

y(x) → 0
y(x) → −

√
x

y(x) → −i
√
x

y(x) → i
√
x

y(x) →
√
x

162



2.7 problem 14
Internal problem ID [6792]
Internal file name [OUTPUT/6039_Tuesday_July_26_2022_05_04_58_AM_75081633/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 14.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

4y3y′2 + 4xy′ + y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −x+
√
x2 − y4

2y3 (1)

y′ = −x+
√
x2 − y4

2y3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
√
−y4 + x2 − x

2y3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(√

−y4 + x2 − x
)
(b3 − a2)

2y3 −
(√

−y4 + x2 − x
)2

a3

4y6

−

(
−1 + x√

−y4+x2

)
(xa2 + ya3 + a1)

2y3

−

(
− 1√

−y4 + x2 −
3
(√

−y4 + x2 − x
)

2y4

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−4b2
√
−y4 + x2 y6 + 2x y6b2 − 2y7a2 + 4y7b3 + 2y6b1 + 6

√
−y4 + x2 x2y2b2 − 4

√
−y4 + x2 x y3a2 + 8

√
−y4 + x2 x y3b3 − 2

√
−y4 + x2 y4a3 − 6x3y2b2 + 4x2y3a2 − 8x2y3b3 + 4x y4a3 + 6

√
−y4 + x2 x y2b1 − 2

√
−y4 + x2 y3a1 − 6x2y2b1 + 2x y3a1 + (−y4 + x2)

3
2 a3 +

√
−y4 + x2 x2a3 − 2x3a3

4
√
−y4 + x2 y6

= 0

Setting the numerator to zero gives

(6E)
4b2
√

−y4 + x2 y6 − 2x y6b2 +2y7a2 − 4y7b3 − 2y6b1 − 6
√

−y4 + x2 x2y2b2

+ 4
√

−y4 + x2 x y3a2 − 8
√
−y4 + x2 x y3b3 + 2

√
−y4 + x2 y4a3 + 6x3y2b2

− 4x2y3a2 + 8x2y3b3 − 4x y4a3 − 6
√

−y4 + x2 x y2b1 + 2
√
−y4 + x2 y3a1

+ 6x2y2b1 − 2x y3a1 −
(
−y4 + x2) 3

2 a3 −
√
−y4 + x2 x2a3 + 2x3a3 = 0
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Simplifying the above gives

(6E)

4b2
√
−y4 + x2 y6 + 4x y6b2 + 4y7b3 + 4y6b1 + 6

(
−y4 + x2)x y2b2

− 2
(
−y4 + x2) y3a2 + 8

(
−y4 + x2) y3b3 − 6

√
−y4 + x2 x2y2b2

+4
√

−y4 + x2 x y3a2−8
√
−y4 + x2 x y3b3+2

√
−y4 + x2 y4a3−2x2y3a2

− 2x y4a3 + 6
(
−y4 + x2) y2b1 − 6

√
−y4 + x2 x y2b1 + 2

√
−y4 + x2 y3a1

− 2x y3a1 −
(
−y4 + x2) 3

2 a3 + 2
(
−y4 + x2)xa3 −√−y4 + x2 x2a3 = 0

Since the PDE has radicals, simplifying gives

−2x y6b2 + 4b2
√

−y4 + x2 y6 + 2y7a2 − 4y7b3 − 2y6b1
+ 6x3y2b2 − 6

√
−y4 + x2 x2y2b2 − 4x2y3a2 + 8x2y3b3

+ 4
√
−y4 + x2 x y3a2 − 8

√
−y4 + x2 x y3b3 − 4x y4a3

+ 3
√
−y4 + x2 y4a3 + 6x2y2b1 − 6

√
−y4 + x2 x y2b1 − 2x y3a1

+ 2
√
−y4 + x2 y3a1 + 2x3a3 − 2

√
−y4 + x2 x2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−y4 + x2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−y4 + x2 = v3
}

The above PDE (6E) now becomes

(7E)2v72a2 − 2v1v62b2 + 4b2v3v62 − 4v72b3 − 2v62b1 − 4v21v32a2 + 4v3v1v32a2
− 4v1v42a3 + 3v3v42a3 + 6v31v22b2 − 6v3v21v22b2 + 8v21v32b3 − 8v3v1v32b3
− 2v1v32a1 + 2v3v32a1 + 6v21v22b1 − 6v3v1v22b1 + 2v31a3 − 2v3v21a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

165



Equation (7E) now becomes

(8E)6v31v22b2 + 2v31a3 + (−4a2 + 8b3) v21v32 − 6v3v21v22b2 + 6v21v22b1 − 2v3v21a3
− 2v1v62b2 − 4v1v42a3 + (4a2 − 8b3) v1v32v3 − 2v1v32a1 − 6v3v1v22b1
+ (2a2 − 4b3) v72 + 4b2v3v62 − 2v62b1 + 3v3v42a3 + 2v3v32a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2a1 = 0

−4a3 = 0
−2a3 = 0
2a3 = 0
3a3 = 0

−6b1 = 0
−2b1 = 0
6b1 = 0

−6b2 = 0
−2b2 = 0
4b2 = 0
6b2 = 0

−4a2 + 8b3 = 0
2a2 − 4b3 = 0
4a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(√

−y4 + x2 − x

2y3

)
(2x)

= y4 + x2 −
√
−y4 + x2 x

y3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y4+x2−
√

−y4+x2 x
y3

dy

Which results in

S = ln (y4 + 3x2)
6 + ln (y)

3 −
x ln

(
2x2+2

√
x2
√

−y4+x2

y2

)
6
√
x2

+

x ln

8x2−2
√
−3x2

(
y2−

√
−3x2

)
+4

√
x2
√

−
(
y2−

√
−3x2

)2
−2

√
−3x2

(
y2−

√
−3x2

)
+4x2

y2−
√
−3x2


6
√
x2

+

x ln

8x2+2
√
−3x2

(
y2+

√
−3x2

)
+4

√
x2
√

−
(
y2+

√
−3x2

)2
+2

√
−3x2

(
y2+

√
−3x2

)
+4x2

y2+
√
−3x2


6
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
−y4 + x2 − x

2y3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
√
−y4 + x2 y4 − 7y4x+ 11

√
−y4 + x2 x2 + 7x3

6
(
x+ i

√
3 y2 + 2

√
−y4 + x2

) (
x− i

√
3 y2 + 2

√
−y4 + x2

)√
−y4 + x2 x

Sy =
y8 − 4x y4

√
−y4 + x2 − 7y4x2 + 6

√
−y4 + x2 x3 + 6x4(

x+ i
√
3 y2 + 2

√
−y4 + x2

) (
x− i

√
3 y2 + 2

√
−y4 + x2

) (
x+

√
−y4 + x2

)√
−y4 + x2 y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y8 − 5x y4

√
−y4 + x2 − 10y4x2 + 9

√
−y4 + x2 x3 + 9x4

6
(
x+ i

√
3 y2 + 2

√
−y4 + x2

) (
x− i

√
3 y2 + 2

√
−y4 + x2

)√
−y4 + x2 x

(
x+

√
−y4 + x2

)
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

6R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y4 + 3x2)
6 + 2 ln (y)

3 + ln (2)
6 + ln (x)

6 −
ln
(
x+

√
x2 − y4

)
6 +

ln
(
ix+

√
3 y2 + 2i

√
x2 − y4

)
6 −

ln
(√

3x+ iy2
)

6 +
ln
(
ix−

√
3 y2 + 2i

√
x2 − y4

)
6 −

ln
(
iy2 −

√
3x
)

6 = ln (x)
6 + c1

Which simplifies to

ln (y4 + 3x2)
6 + 2 ln (y)

3 + ln (2)
6 −

ln
(
x+

√
x2 − y4

)
6 +

ln
(
ix+

√
3 y2 + 2i

√
x2 − y4

)
6 + ln (3)

6 −
ln
(
i
√
3 y2 + 3x

)
6 +

ln
(
ix−

√
3 y2 + 2i

√
x2 − y4

)
6 −

ln
(
i
√
3 y2 − 3x

)
6 − c1 = 0
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Summary
The solution(s) found are the following

(1)

ln (y4 + 3x2)
6 + 2 ln (y)

3 + ln (2)
6 −

ln
(
x+

√
x2 − y4

)
6

+
ln
(
ix+

√
3 y2 + 2i

√
x2 − y4

)
6 + ln (3)

6 −
ln
(
i
√
3 y2 + 3x

)
6

+
ln
(
ix−

√
3 y2 + 2i

√
x2 − y4

)
6 −

ln
(
i
√
3 y2 − 3x

)
6 − c1 = 0

Verification of solutions

ln (y4 + 3x2)
6 + 2 ln (y)

3 + ln (2)
6 −

ln
(
x+

√
x2 − y4

)
6

+
ln
(
ix+

√
3 y2 + 2i

√
x2 − y4

)
6 + ln (3)

6 −
ln
(
i
√
3 y2 + 3x

)
6

+
ln
(
ix−

√
3 y2 + 2i

√
x2 − y4

)
6 −

ln
(
i
√
3 y2 − 3x

)
6 − c1 = 0

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −x+
√
−y4 + x2

2y3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
x+

√
−y4 + x2

)
(b3 − a2)

2y3 −
(
x+

√
−y4 + x2

)2
a3

4y6

+

(
1 + x√

−y4+x2

)
(xa2 + ya3 + a1)
2y3

−

(
1√

−y4 + x2 +
3x
2 + 3

√
−y4+x2

2
y4

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−4b2
√
−y4 + x2 y6 − 2x y6b2 + 2y7a2 − 4y7b3 − 2y6b1 + 6

√
−y4 + x2 x2y2b2 − 4

√
−y4 + x2 x y3a2 + 8

√
−y4 + x2 x y3b3 − 2

√
−y4 + x2 y4a3 + 6x3y2b2 − 4x2y3a2 + 8y3b3x2 − 4x y4a3 + 6

√
−y4 + x2 x y2b1 − 2

√
−y4 + x2 y3a1 + 6y2b1x2 − 2x y3a1 + (−y4 + x2)

3
2 a3 +

√
−y4 + x2 x2a3 + 2x3a3

4
√
−y4 + x2 y6

= 0

Setting the numerator to zero gives

(6E)
4b2
√

−y4 + x2 y6 + 2x y6b2 − 2y7a2 + 4y7b3 + 2y6b1 − 6
√

−y4 + x2 x2y2b2

+ 4
√

−y4 + x2 x y3a2 − 8
√

−y4 + x2 x y3b3 + 2
√
−y4 + x2 y4a3 − 6x3y2b2

+ 4x2y3a2 − 8y3b3x2 + 4x y4a3 − 6
√

−y4 + x2 x y2b1 + 2
√

−y4 + x2 y3a1

− 6y2b1x2 + 2x y3a1 −
(
−y4 + x2) 3

2 a3 −
√

−y4 + x2 x2a3 − 2x3a3 = 0

Simplifying the above gives

(6E)

4b2
√
−y4 + x2 y6 − 4x y6b2 − 4y7b3 − 4y6b1 − 6

(
−y4 + x2)x y2b2

+ 2
(
−y4 + x2) y3a2 − 8

(
−y4 + x2) y3b3 − 6

√
−y4 + x2 x2y2b2

+4
√

−y4 + x2 x y3a2−8
√

−y4 + x2 x y3b3+2
√

−y4 + x2 y4a3+2x2y3a2

+ 2x y4a3 − 6
(
−y4 + x2) y2b1 − 6

√
−y4 + x2 x y2b1 + 2

√
−y4 + x2 y3a1

+ 2x y3a1 −
(
−y4 + x2) 3

2 a3 − 2
(
−y4 + x2)xa3 −√−y4 + x2 x2a3 = 0

Since the PDE has radicals, simplifying gives

2x y6b2 + 4b2
√

−y4 + x2 y6 − 2y7a2 + 4y7b3 + 2y6b1
− 6x3y2b2 − 6

√
−y4 + x2 x2y2b2 + 4x2y3a2 − 8y3b3x2

+ 4
√

−y4 + x2 x y3a2 − 8
√

−y4 + x2 x y3b3 + 4x y4a3
+ 3
√

−y4 + x2 y4a3 − 6y2b1x2 − 6
√
−y4 + x2 x y2b1 + 2x y3a1

+ 2
√

−y4 + x2 y3a1 − 2x3a3 − 2
√

−y4 + x2 x2a3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−y4 + x2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−y4 + x2 = v3
}

The above PDE (6E) now becomes

(7E)−2v72a2 + 2v1v62b2 + 4b2v3v62 + 4v72b3 + 2v62b1 + 4v21v32a2 + 4v3v1v32a2
+ 4v1v42a3 + 3v3v42a3 − 6v31v22b2 − 6v3v21v22b2 − 8v32b3v21 − 8v3v1v32b3
+ 2v1v32a1 + 2v3v32a1 − 6v22b1v21 − 6v3v1v22b1 − 2v31a3 − 2v3v21a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−6v31v22b2 − 2v31a3 + (4a2 − 8b3) v21v32 − 6v3v21v22b2 − 6v22b1v21 − 2v3v21a3
+ 2v1v62b2 + 4v1v42a3 + (4a2 − 8b3) v1v32v3 + 2v1v32a1 − 6v3v1v22b1
+ (−2a2 + 4b3) v72 + 4b2v3v62 + 2v62b1 + 3v3v42a3 + 2v3v32a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2a3 = 0
3a3 = 0
4a3 = 0

−6b1 = 0
2b1 = 0

−6b2 = 0
2b2 = 0
4b2 = 0

−2a2 + 4b3 = 0
4a2 − 8b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[2*x, y]� �
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3 Solution by Maple
Time used: 0.313 (sec). Leaf size: 307� �
dsolve(4*y(x)^3*diff(y(x),x)^2+4*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �
y(x) = 0(∫ x

_b
−2_a+

√
−y(x)4+_a2

y(x)4+3_a2 d_a
)

2

−


∫ y(x)

(
1 +

(
_f4 −

√
−_f4 + x2 x+ x2

)(∫ x

_b
_f4+4

√
−_f4+_a2_a−5_a2√

−_f4+_a2
(
_f4+3_a2

)2 d_a
))

_f3

_f4 −
√

−_f4 + x2 x+ x2
d_f


+ c1 = 0

−

(∫ x

_b
2_a+

√
−y(x)4+_a2

y(x)4+3_a2 d_a
)

2

−


∫ y(x)

(
1 +

(
_f4 +

√
−_f4 + x2 x+ x2

)(∫ x

_b
−_f4+5_a2+4

√
−_f4+_a2_a√

−_f4+_a2
(
_f4+3_a2

)2 d_a
))

_f3

_f4 +
√

−_f4 + x2 x+ x2
d_f


+ c1 = 0

3 Solution by Mathematica
Time used: 60.284 (sec). Leaf size: 2815� �
DSolve[4*y[x]^3*(y'[x])^2+4*x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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2.8 problem 15
2.8.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 175

Internal problem ID [6793]
Internal file name [OUTPUT/6040_Tuesday_July_26_2022_05_05_00_AM_657202/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 15.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_dAlembert]

y′
3 + xy′

2 − y = 0

2.8.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p3 + x p2 − y = 0

Solving for y from the above results in

y = p3 + x p2 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

175



Comparing the form y = xf + g to (1A) shows that

f = p2

g = p3

Hence (2) becomes

−p2 + p =
(
3p2 + 2xp

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p2 + p = 0

Solving for p from the above gives

p = 0
p = 1

Substituting these in (1A) gives

y = 0
y = 1 + x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −p(x)2 + p(x)
3p (x)2 + 2p (x)x

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = 3p2 + 2x(p) p

−p2 + p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is
d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p− 1

q(p) = − 3p
p− 1
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Hence the ode is
d

dp
x(p) + 2x(p)

p− 1 = − 3p
p− 1

The integrating factor µ is

µ = e
∫ 2

p−1dp

= (p− 1)2

The ode becomes
d
dp(µx) = (µ)

(
− 3p
p− 1

)
d
dp
(
(p− 1)2 x

)
=
(
(p− 1)2

)(
− 3p
p− 1

)
d
(
(p− 1)2 x

)
= (−3p(p− 1)) dp

Integrating gives

(p− 1)2 x =
∫

−3p(p− 1) dp

(p− 1)2 x = −p3 + 3
2p

2 + c1

Dividing both sides by the integrating factor µ = (p− 1)2 results in

x(p) =
−p3 + 3

2p
2

(p− 1)2
+ c1

(p− 1)2

which simplifies to

x(p) = −2p3 + 3p2 + 2c1
2 (p− 1)2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
108y − 8x3 + 12

√
81y2 − 12yx3

) 1
3

6 + 2x2

3
(
108y − 8x3 + 12

√
81y2 − 12yx3

) 1
3
− x

3

p = −
(
108y − 8x3 + 12

√
81y2 − 12yx3

) 1
3

12 − x2

3
(
108y − 8x3 + 12

√
81y2 − 12yx3

) 1
3
− x

3 +
i
√
3
((

108y−8x3+12
√

81y2−12yx3
) 1

3

6 − 2x2

3
(
108y−8x3+12

√
81y2−12yx3

) 1
3

)
2

p = −
(
108y − 8x3 + 12

√
81y2 − 12yx3

) 1
3

12 − x2

3
(
108y − 8x3 + 12

√
81y2 − 12yx3

) 1
3
− x

3 −

i
√
3
((

108y−8x3+12
√

81y2−12yx3
) 1

3

6 − 2x2

3
(
108y−8x3+12

√
81y2−12yx3

) 1
3

)
2
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Substituting the above in the solution for x found above gives

x

=
24
(
x3 + 3x2

2 − 3y + 3c1
)(

x3 − 3
√
3
√

−4yx3+27y2
2 − 27y

2

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 96

((√
3
(
x3 − 27y

4

)√
−4yx3 + 27y2 − x6

2 + 27yx3

2 − 243y2
4

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + x

(
−

5
√
3
(
x3− 54y

5

)√
−4yx3+27y2

2 + x6 − 81yx3

2 + 243y2
))(

x+ 3
2

)
(
2x3 − 3

√
3
√
−4yx3 + 27y2 − 27y

) ((
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 2x

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + 4x2 − 6

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3
)2

x

=
96
(
x3 + 3x2

2 − 3y + 3c1
)(

x3 − 3
√
3
√

−4yx3+27y2
2 − 27y

2

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 192

(
x+ 3

2

)((
−3
(
x3 − 27y

4

) (
i+

√
3
3

)√
−4yx3 + 27y2 +

(
1+i

√
3
)(

x6−27yx3+ 243y2
2

)
2

)(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + x

(
−

15
(
i−

√
3

3

)(
x3− 54y

5

)√
−4yx3+27y2

2 +
(
x6 − 81yx3

2 + 243y2
) (

i
√
3− 1

)))
(
2x3 − 3

√
3
√
−4yx3 + 27y2 − 27y

) (
4i
√
3x2 − i

√
3
(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 4x2 + 4x

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 +

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 12

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3
)2

x

=
96
(
x3 + 3x2

2 − 3y + 3c1
)(

x3 − 3
√
3
√

−4yx3+27y2
2 − 27y

2

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 192

(
x+ 3

2

)((
−3
(
i−

√
3
3

) (
x3 − 27y

4

)√
−4yx3 + 27y2 +

(
i
√
3−1

)(
x6−27yx3+ 243y2

2

)
2

)(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + x

(
−

15
(
i+

√
3

3

)(
x3− 54y

5

)√
−4yx3+27y2

2 +
(
1 + i

√
3
) (

x6 − 81yx3

2 + 243y2
)))

(
2x3 − 3

√
3
√
−4yx3 + 27y2 − 27y

) (
4i
√
3x2 − i

√
3
(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 4x2 − 4x

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 −

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 12

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3
)2

Summary
The solution(s) found are the following

(1)y = 0
(2)y = 1 + x
(3)x

=
24
(
x3 + 3x2

2 − 3y + 3c1
)(

x3 − 3
√
3
√

−4yx3+27y2
2 − 27y

2

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 96

((√
3
(
x3 − 27y

4

)√
−4yx3 + 27y2 − x6

2 + 27yx3

2 − 243y2
4

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + x

(
−

5
√
3
(
x3− 54y

5

)√
−4yx3+27y2

2 + x6 − 81yx3

2 + 243y2
))(

x+ 3
2

)
(
2x3 − 3

√
3
√
−4yx3 + 27y2 − 27y

) ((
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 2x

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + 4x2 − 6

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3
)2

(4)x

=
96
(
x3 + 3x2

2 − 3y + 3c1
)(

x3 − 3
√
3
√

−4yx3+27y2
2 − 27y

2

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 192

(
x+ 3

2

)((
−3
(
x3 − 27y

4

) (
i+

√
3
3

)√
−4yx3 + 27y2 +

(
1+i

√
3
)(

x6−27yx3+ 243y2
2

)
2

)(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + x

(
−

15
(
i−

√
3

3

)(
x3− 54y

5

)√
−4yx3+27y2

2 +
(
x6 − 81yx3

2 + 243y2
) (

i
√
3− 1

)))
(
2x3 − 3

√
3
√
−4yx3 + 27y2 − 27y

) (
4i
√
3x2 − i

√
3
(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 4x2 + 4x

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 +

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 12

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3
)2

(5)x

=
96
(
x3 + 3x2

2 − 3y + 3c1
)(

x3 − 3
√
3
√

−4yx3+27y2
2 − 27y

2

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 192

(
x+ 3

2

)((
−3
(
i−

√
3
3

) (
x3 − 27y

4

)√
−4yx3 + 27y2 +

(
i
√
3−1

)(
x6−27yx3+ 243y2

2

)
2

)(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + x

(
−

15
(
i+

√
3

3

)(
x3− 54y

5

)√
−4yx3+27y2

2 +
(
1 + i

√
3
) (

x6 − 81yx3

2 + 243y2
)))

(
2x3 − 3

√
3
√
−4yx3 + 27y2 − 27y

) (
4i
√
3x2 − i

√
3
(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 4x2 − 4x

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 −

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 12

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3
)2
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Verification of solutions

y = 0

Verified OK.
y = 1 + x

Verified OK.
x

=
24
(
x3 + 3x2

2 − 3y + 3c1
)(

x3 − 3
√
3
√

−4yx3+27y2
2 − 27y

2

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 96

((√
3
(
x3 − 27y

4

)√
−4yx3 + 27y2 − x6

2 + 27yx3

2 − 243y2
4

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + x

(
−

5
√
3
(
x3− 54y

5

)√
−4yx3+27y2

2 + x6 − 81yx3

2 + 243y2
))(

x+ 3
2

)
(
2x3 − 3

√
3
√
−4yx3 + 27y2 − 27y

) ((
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 2x

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + 4x2 − 6

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3
)2

Warning, solution could not be verified
x

=
96
(
x3 + 3x2

2 − 3y + 3c1
)(

x3 − 3
√
3
√

−4yx3+27y2
2 − 27y

2

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 192

(
x+ 3

2

)((
−3
(
x3 − 27y

4

) (
i+

√
3
3

)√
−4yx3 + 27y2 +

(
1+i

√
3
)(

x6−27yx3+ 243y2
2

)
2

)(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + x

(
−

15
(
i−

√
3

3

)(
x3− 54y

5

)√
−4yx3+27y2

2 +
(
x6 − 81yx3

2 + 243y2
) (

i
√
3− 1

)))
(
2x3 − 3

√
3
√
−4yx3 + 27y2 − 27y

) (
4i
√
3x2 − i

√
3
(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 4x2 + 4x

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 +

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 + 12

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3
)2

Warning, solution could not be verified
x

=
96
(
x3 + 3x2

2 − 3y + 3c1
)(

x3 − 3
√
3
√

−4yx3+27y2
2 − 27y

2

) (
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 192

(
x+ 3

2

)((
−3
(
i−

√
3
3

) (
x3 − 27y

4

)√
−4yx3 + 27y2 +

(
i
√
3−1

)(
x6−27yx3+ 243y2

2

)
2

)(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 + x

(
−

15
(
i+

√
3

3

)(
x3− 54y

5

)√
−4yx3+27y2

2 +
(
1 + i

√
3
) (

x6 − 81yx3

2 + 243y2
)))

(
2x3 − 3

√
3
√
−4yx3 + 27y2 − 27y

) (
4i
√
3x2 − i

√
3
(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 4x2 − 4x

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3 −

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 2
3 − 12

(
108y − 8x3 + 12

√
3
√
−4yx3 + 27y2

) 1
3
)2

Warning, solution could not be verified
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 994� �
dsolve(diff(y(x),x)^3+x*diff(y(x),x)^2-y(x)=0,y(x), singsol=all)� �
y(x) = 0
y(x)

=

(
4x2 − 2x

(
−36x2 − 54x+ 108c1 − 8x3 + 27 + 6

√
−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)

) 1
3 + 12x+ 3

(
−36x2 − 54x+ 108c1 − 8x3 + 27 + 6

√
−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)

) 1
3 +

(
−36x2 − 54x+ 108c1 − 8x3 + 27 + 6

√
−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)

) 2
3 + 9

)2(
4x2 + 4x

(
−36x2 − 54x+ 108c1 − 8x3 + 27 + 6

√
−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)

) 1
3 + 12x+ 3

(
−36x2 − 54x+ 108c1 − 8x3 + 27 + 6

√
−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)

) 1
3 +

(
−36x2 − 54x+ 108c1 − 8x3 + 27 + 6

√
−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)

) 2
3 + 9

)
−1728x3 − 7776x2 − 11664x+ 23328c1 + 1296

√
−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x) + 5832

y(x)

=

((
−i

√
3−1

)(
−36x2−54x+108c1−8x3+27+6

√
−6(1+2c1)(4x3+18x2−27c1+27x)

) 2
3

4 +
(
2x+ 3

2

) (
−36x2 − 54x+ 108c1 − 8x3 + 27 + 6

√
−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)

) 1
3 +

(
x+ 3

2

)2 (
i
√
3− 1

))((−36x2−54x+108c1−8x3+27+6
√

−6(1+2c1)(4x3+18x2−27c1+27x)
) 2

3
(
i−

√
3
)

4 − i
(
−x+ 3

2

) (
−36x2 − 54x+ 108c1 − 8x3 + 27 + 6

√
−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)

) 1
3 +

(
x+ 3

2

)2 (√3 + i
))2

216x3 + 972x2 + 1458x− 2916c1 − 162
√

−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)− 729
y(x)

=

((
i
√
3−1

)(
−36x2−54x+108c1−8x3+27+6

√
−6(1+2c1)(4x3+18x2−27c1+27x)

) 2
3

4 −
(
−2x− 3

2

) (
−36x2 − 54x+ 108c1 − 8x3 + 27 + 6

√
−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)

) 1
3 +

(
−i

√
3− 1

) (
x+ 3

2

)2)((−36x2−54x+108c1−8x3+27+6
√

−6(1+2c1)(4x3+18x2−27c1+27x)
) 2

3
(√

3+i
)

4 + i
(
x− 3

2

) (
−36x2 − 54x+ 108c1 − 8x3 + 27 + 6

√
−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)

) 1
3 +

(
x+ 3

2

)2 (
i−

√
3
))2

216x3 + 972x2 + 1458x− 2916c1 − 162
√

−6 (1 + 2c1) (4x3 + 18x2 − 27c1 + 27x)− 729
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3 Solution by Mathematica
Time used: 84.497 (sec). Leaf size: 1516� �
DSolve[(y'[x])^3+x*(y'[x])^2-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
−16x4 + 8

(
3
√

−8x3 − 36x2 − 54x+ 108c1 + 6
√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 27− 12
)
x3 − 4

((
−8x3 − 36x2 − 54x+ 108c1 + 6

√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 27
)

2/3 − 9 3
√
−8x3 − 36x2 − 54x+ 108c1 + 6

√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 27 + 54
)
x2 + 6

(
72c1 + 2

(
−8x3 − 36x2 − 54x+ 108c1 + 6

√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 27
)

2/3 + 4
√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 9 3
√

−8x3 − 36x2 − 54x+ 108c1 + 6
√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 27
)
x+ 3

(
4c1
(
2
(
−8x3 − 36x2 − 54x+ 108c1 + 6

√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 27
)

2/3 + 9 3
√

−8x3 − 36x2 − 54x+ 108c1 + 6
√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 27 + 54
)
+ 9
(
−8x3 − 36x2 − 54x+ 108c1 + 6

√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 27
)

2/3 + 12
√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 2
√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) 3
√

−8x3 − 36x2 − 54x+ 108c1 + 6
√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 27 + 27 3
√

−8x3 − 36x2 − 54x+ 108c1 + 6
√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 27 + 81
)

24
(
−8x3 − 36x2 − 54x+ 108c1 + 6

√
6
√

− ((4x3 + 18x2 + 27x− 27c1) (2c1 + 1)) + 27
)

2/3

y(x)

→ 1
6

−
i
(√

3− i
)
x(2x+ 3)2

3
√

−8x3 − 36x2 + 6
√
6
√

− ((1 + 2c1) (4x3 + 18x2 + 27x− 27c1))− 54x+ 27 + 108c1

+ 1
16

−
i
(√

3− i
)
(2x+ 3)2

3
√

−8x3 − 36x2 + 6
√
6
√
− ((1 + 2c1) (4x3 + 18x2 + 27x− 27c1))− 54x+ 27 + 108c1

+i
(√

3+i
)

3
√

−8x3 − 36x2 + 6
√
6
√

− ((1 + 2c1) (4x3 + 18x2 + 27x− 27c1))− 54x+ 27 + 108c1

− 4x+ 6

 2 + i
(√

3

+i
)
x

3
√

−8x3 − 36x2 + 6
√
6
√

− ((1 + 2c1) (4x3 + 18x2 + 27x− 27c1))− 54x+ 27 + 108c1

+ 2(3− 2x)x− 6x+ 6c1


y(x)

→ 1
6

 i
(√

3 + i
)
x(2x+ 3)2

3
√

−8x3 − 36x2 + 6
√
6
√

− ((1 + 2c1) (4x3 + 18x2 + 27x− 27c1))− 54x+ 27 + 108c1

+ 1
16

 (
1− i

√
3
)
(2x+ 3)2

3
√

−8x3 − 36x2 + 6
√
6
√

− ((1 + 2c1) (4x3 + 18x2 + 27x− 27c1))− 54x+ 27 + 108c1

+
(
1+i

√
3
)

3
√
−8x3 − 36x2 + 6

√
6
√

− ((1 + 2c1) (4x3 + 18x2 + 27x− 27c1))− 54x+ 27 + 108c1

+ 4x− 6

 2 −
(
1

+i
√
3
)
x

3
√

−8x3 − 36x2 + 6
√
6
√

− ((1 + 2c1) (4x3 + 18x2 + 27x− 27c1))− 54x+ 27 + 108c1

+ 2(3− 2x)x− 6x+ 6c1
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2.9 problem 16
Internal problem ID [6794]
Internal file name [OUTPUT/6041_Tuesday_July_26_2022_05_07_04_AM_18042897/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 16.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y4y′
3 − 6xy′ + 2y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−y3 +

√
y6 − 8x3

) 1
3

y2
+ 2x

y2
(
−y3 +

√
y6 − 8x3

) 1
3

(1)

y′ = −
(
−y3 +

√
y6 − 8x3

) 1
3

2y2 − x

y2
(
−y3 +

√
y6 − 8x3

) 1
3
+

i
√
3
((

−y3+
√

y6−8x3
) 1

3

y2
− 2x

y2
(
−y3+

√
y6−8x3

) 1
3

)
2

(2)

y′ = −
(
−y3 +

√
y6 − 8x3

) 1
3

2y2 − x

y2
(
−y3 +

√
y6 − 8x3

) 1
3
−

i
√
3
((

−y3+
√

y6−8x3
) 1

3

y2
− 2x

y2
(
−y3+

√
y6−8x3

) 1
3

)
2

(3)

Now each one of the above ODE is solved.
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Solving equation (1)

Writing the ode as

y′ =
(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

y2
(
−y3 +

√
y6 − 8x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +

((
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)
(b3 − a2)

y2
(
−y3 +

√
y6 − 8x3

) 1
3

−

((
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)2
a3

y4
(
−y3 +

√
y6 − 8x3

) 2
3

−


− 8x2(

−y3+
√

y6−8x3
) 1

3√y6−8x3
+ 2

y2
(
−y3 +

√
y6 − 8x3

) 1
3

+
4
((

−y3 +
√
y6 − 8x3

) 2
3 + 2x

)
x2

y2
(
−y3 +

√
y6 − 8x3

) 4
3
√
y6 − 8x3

 (xa2 + ya3 + a1)

−

 −2y2 + 2y5√
y6−8x3

y2
(
−y3 +

√
y6 − 8x3

) 2
3
−

2
((

−y3 +
√
y6 − 8x3

) 2
3 + 2x

)
y3
(
−y3 +

√
y6 − 8x3

) 1
3

−

((
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)(
−3y2 + 3y5√

y6−8x3

)
3y2
(
−y3 +

√
y6 − 8x3

) 4
3

 (xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

−
−4

√
y6 − 8x3 x y5a2 −

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 2
3 y5b3 − 2

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 5
3 yb1 −

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 2
3 y4b1 + 6

√
y6 − 8x3 x2y4b2 + 8

√
y6 − 8x3 x y5b3 − 4

(
−y3 +

√
y6 − 8x3

) 2
3 x3y2a2 − 4

(
−y3 +

√
y6 − 8x3

) 2
3 x2y3a3 + 4

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 4
3 xa3 + 6

√
y6 − 8x3 x y4b1 − 4

(
−y3 +

√
y6 − 8x3

) 2
3 x2y2a1 + 4

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 2
3 x2a3 − 2

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 5
3 xyb2 −

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 2
3 x y4b2 +

(
−y3 +

√
y6 − 8x3

) 2
3 x y7b2 − b2y

4(−y3 +
√
y6 − 8x3

) 4
3
√
y6 − 8x3 +

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 5
3 y2a2 − 3

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 5
3 y2b3 + (y6 − 8x3)

3
2 a3 + 2y8a1 − 6x2y7b2 − 8x y8b3 − 6x y7b1 − 24x4y2a2 + 8x3y3a3 − 8x3y2a1 +

(
−y3 +

√
y6 − 8x3

) 2
3 y8b3 +

(
−y3 +

√
y6 − 8x3

) 2
3 y7b1 −

√
y6 − 8x3 y6a3 − 2

√
y6 − 8x3 y5a1 + 4x y8a2 + 32x5yb2 + 48x4y2b3 + 32x4yb1

y4
(
−y3 +

√
y6 − 8x3

) 4
3
√
y6 − 8x3

= 0

Setting the numerator to zero gives

(6E)

4
√

y6 − 8x3 x y5a2 +
√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 2
3
y5b3

+ 2
√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 5
3
yb1

+
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

) 2
3
y4b1 − 6

√
y6 − 8x3 x2y4b2

− 8
√

y6 − 8x3 x y5b3 + 4
(
−y3 +

√
y6 − 8x3

) 2
3
x3y2a2

+ 4
(
−y3 +

√
y6 − 8x3

) 2
3
x2y3a3

− 4
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

) 4
3
xa3

− 6
√

y6 − 8x3 x y4b1 + 4
(
−y3 +

√
y6 − 8x3

) 2
3
x2y2a1

− 4
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

) 2
3
x2a3

+ 2
√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 5
3
xyb2

+
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

) 2
3
x y4b2

−
(
−y3 +

√
y6 − 8x3

) 2
3
x y7b2

+ b2y
4
(
−y3 +

√
y6 − 8x3

) 4
3 √

y6 − 8x3

−
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

) 5
3
y2a2

+ 3
√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 5
3
y2b3

−
(
y6 − 8x3) 3

2 a3 − 2y8a1 + 6x2y7b2 + 8x y8b3
+ 6x y7b1 + 24x4y2a2 − 8x3y3a3 + 8x3y2a1

−
(
−y3 +

√
y6 − 8x3

) 2
3
y8b3 −

(
−y3 +

√
y6 − 8x3

) 2
3
y7b1

+
√

y6 − 8x3 y6a3 + 2
√

y6 − 8x3 y5a1 − 4x y8a2
− 32x5yb2 − 48x4y2b3 − 32x4yb1 = 0
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Simplifying the above gives

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 2
3
y5b3 + 2

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 5
3
yb1

− 2
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

)
y3a3 +

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 2
3
y4b1

− 2
√

y6 − 8x3 x2y4b2 − 2
√

y6 − 8x3 x y5b3 + 4
(
−y3 +

√
y6 − 8x3

) 2
3
x3y2a2

+ 4
(
−y3 +

√
y6 − 8x3

) 2
3
x2y3a3 − 4

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 4
3
xa3

− 2
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

)
y2a1 − 2

√
y6 − 8x3 x y4b1

+ 4
(
−y3 +

√
y6 − 8x3

) 2
3
x2y2a1 − 4

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 2
3
x2a3

+ 2
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

) 5
3
xyb2 +

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 2
3
x y4b2

+ 4
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

)
x2yb2 − 4

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

)
x y2a2

+ 6
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

)
x y2b3 + 4

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

)
xyb1

−
(
−y3 +

√
y6 − 8x3

) 2
3
x y7b2 + b2y

4
(
−y3 +

√
y6 − 8x3

) 4
3 √

y6 − 8x3

−
√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 5
3
y2a2 + 3

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 5
3
y2b3

+2x2y7b2+2x y8b3+2x y7b1−8x4y2a2−8x3y3a3−8x3y2a1−
(
−y3+

√
y6 − 8x3

) 2
3
y8b3

−
(
−y3 +

√
y6 − 8x3

) 2
3
y7b1 −

√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

)2
a3 = 0

(6E)
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Since the PDE has radicals, simplifying gives

4
√

y6 − 8x3 x y5a2 − 2
√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 2
3
y5b3

−
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

) 2
3
y4b1

− 6
√

y6 − 8x3 x2y4b2 − 8
√

y6 − 8x3 x y5b3

+ 12
(
−y3 +

√
y6 − 8x3

) 2
3
x3y2a2 + 4

(
−y3 +

√
y6 − 8x3

) 2
3
x2y3a3

− 6
√

y6 − 8x3 x y4b1 + 4
(
−y3 +

√
y6 − 8x3

) 2
3
x2y2a1

− 4
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

) 2
3
x2a3

+ 32x4
(
−y3 +

√
y6 − 8x3

) 1
3
a3 + 8x3

√
y6 − 8x3 a3

+
(
−y3 +

√
y6 − 8x3

) 1
3
y10b2 −

(
−y3 +

√
y6 − 8x3

) 2
3
y8a2

−
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

) 1
3
y7b2

+
√
y6 − 8x3

(
−y3 +

√
y6 − 8x3

) 2
3
y5a2

− 24x3
(
−y3 +

√
y6 − 8x3

) 2
3
y2b3

− 16x3
(
−y3 +

√
y6 − 8x3

) 2
3
yb1 − 8x3

(
−y3 +

√
y6 − 8x3

) 1
3
y4b2

− 4x
(
−y3 +

√
y6 − 8x3

) 1
3
y6a3 − 16x4

(
−y3 +

√
y6 − 8x3

) 2
3
yb2

−
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

) 2
3
x y4b2

+ 4x
√

y6 − 8x3
(
−y3 +

√
y6 − 8x3

) 1
3
y3a3

+
(
−y3 +

√
y6 − 8x3

) 2
3
x y7b2 − 2y8a1 + 6x2y7b2

+ 8x y8b3 + 6x y7b1 + 24x4y2a2 − 8x3y3a3 + 8x3y2a1

+ 2
(
−y3 +

√
y6 − 8x3

) 2
3
y8b3 +

(
−y3 +

√
y6 − 8x3

) 2
3
y7b1

+ 2
√

y6 − 8x3 y5a1 − 4x y8a2 − 32x5yb2 − 48x4y2b3 − 32x4yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−y3 +

√
y6 − 8x3

) 1
3
,
(
−y3 +

√
y6 − 8x3

) 2
3
,
√

y6 − 8x3
}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

(
−y3+

√
y6 − 8x3

) 1
3 = v3,

(
−y3+

√
y6 − 8x3

) 2
3 = v4,

√
y6 − 8x3 = v5

}

The above PDE (6E) now becomes

(7E)

v3v
10
2 b2 − 4v1v82a2 − v4v

8
2a2 + 6v21v72b2 + v4v1v

7
2b2 − v5v3v

7
2b2

+ 8v1v82b3 + 2v4v82b3 − 2v82a1 − 4v1v3v62a3 + 6v1v72b1 + v4v
7
2b1

− 8v31v3v42b2 + 4v5v1v52a2 + v5v4v
5
2a2 − 6v5v21v42b2 − v5v4v1v

4
2b2

− 8v5v1v52b3 − 2v5v4v52b3 + 2v5v52a1 + 24v41v22a2 + 12v4v31v22a2 − 8v31v32a3
+ 4v4v21v32a3 + 4v1v5v3v32a3 − 6v5v1v42b1 − v5v4v

4
2b1 − 32v51v2b2

− 16v41v4v2b2 − 48v41v22b3 − 24v31v4v22b3 + 8v31v22a1 + 4v4v21v22a1
+ 32v41v3a3 − 32v41v2b1 − 16v31v4v2b1 + 8v31v5a3 − 4v5v4v21a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)

32v41v3a3 + 8v31v5a3 + v3v
10
2 b2 + 6v21v72b2 + 6v1v72b1 − 8v31v32a3

+ 8v31v22a1 + v4v
7
2b1 + 2v5v52a1 − 32v51v2b2 − 32v41v2b1 − v5v4v

4
2b1

− 6v5v21v42b2 + 4v4v21v32a3 − 6v5v1v42b1 + 4v4v21v22a1 − 4v5v4v21a3
− v5v3v

7
2b2 − 16v31v4v2b1 − 8v31v3v42b2 − 4v1v3v62a3 − 16v41v4v2b2

+ v4v1v
7
2b2 − 2v82a1 + (−4a2 + 8b3) v1v82 + (−a2 + 2b3) v82v4

+ (12a2 − 24b3) v31v22v4 + (4a2 − 8b3) v1v52v5 + (a2 − 2b3) v52v4v5
+ (24a2 − 48b3) v41v22 − v5v4v1v

4
2b2 + 4v1v5v3v32a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−2a1 = 0
2a1 = 0
4a1 = 0
8a1 = 0

−8a3 = 0
−4a3 = 0
4a3 = 0
8a3 = 0
32a3 = 0

−32b1 = 0
−16b1 = 0
−6b1 = 0
−b1 = 0
6b1 = 0

−32b2 = 0
−16b2 = 0
−8b2 = 0
−6b2 = 0
−b2 = 0
6b2 = 0

−4a2 + 8b3 = 0
−a2 + 2b3 = 0
a2 − 2b3 = 0
4a2 − 8b3 = 0

12a2 − 24b3 = 0
24a2 − 48b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

2x
= y

2x

This is easily solved to give

y = c1
√
x

Where now the coordinate R is taken as the constant of integration. Hence

R = y√
x
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And S is found from

dS = dx

ξ

= dx

2x
Integrating gives

S =
∫

dx

T

= ln (x)
2

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

y2
(
−y3 +

√
y6 − 8x3

) 1
3

Evaluating all the partial derivatives gives

Rx = − y

2x 3
2

Ry =
1√
x

Sx = 1
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

√
x y2

(
−y3 +

√
y6 − 8x3

) 1
3

−y3
(
−y3 +

√
y6 − 8x3

) 1
3 + 2

(
−y3 +

√
y6 − 8x3

) 2
3 x+ 4x2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

R2(−R3 +
√
R6 − 8

) 1
3(

−R3 +
√
R6 − 8

) 1
3 R3 − 2

(
−R3 +

√
R6 − 8

) 2
3 − 4
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

R2(−R3 +
√
R6 − 8

) 1
3

−
(
−R3 +

√
R6 − 8

) 1
3 R3 + 2

(
−R3 +

√
R6 − 8

) 2
3 + 4

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x)
2 =

∫ y√
x _a2

(
−_a3 +

√
_a6 − 8

) 1
3

−
(
−_a3 +

√
_a6 − 8

) 1
3 _a3 + 2

(
−_a3 +

√
_a6 − 8

) 2
3 + 4

d_a+ c1

Which simplifies to

ln (x)
2 =

∫ y√
x _a2

(
−_a3 +

√
_a6 − 8

) 1
3

−
(
−_a3 +

√
_a6 − 8

) 1
3 _a3 + 2

(
−_a3 +

√
_a6 − 8

) 2
3 + 4

d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x)
2 =

∫ y√
x _a2

(
−_a3 +

√
_a6 − 8

) 1
3

−
(
−_a3 +

√
_a6 − 8

) 1
3 _a3 + 2

(
−_a3 +

√
_a6 − 8

) 2
3 + 4

d_a+ c1

Verification of solutions

ln (x)
2 =

∫ y√
x _a2

(
−_a3 +

√
_a6 − 8

) 1
3

−
(
−_a3 +

√
_a6 − 8

) 1
3 _a3 + 2

(
−_a3 +

√
_a6 − 8

) 2
3 + 4

d_a+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ =
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

)
(b3 − a2)

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

−

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

)2
a3

4y4
(
−y3 +

√
y6 − 8x3

) 2
3

−


− 8i

√
3x2(

−y3+
√

y6−8x3
) 1

3√y6−8x3
− 2i

√
3 + 8x2(

−y3+
√

y6−8x3
) 1

3√y6−8x3
− 2

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

+
2
(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

)
x2

y2
(
−y3 +

√
y6 − 8x3

) 4
3
√
y6 − 8x3

 (xa2

+ ya3 + a1)−


2i
√
3
(
−3y2+ 3y5√

y6−8x3

)

3
(
−y3+

√
y6−8x3

) 1
3

−
2
(
−3y2+ 3y5√

y6−8x3

)

3
(
−y3+

√
y6−8x3

) 1
3

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

−
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

y3
(
−y3 +

√
y6 − 8x3

) 1
3

−

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x−

(
−y3 +

√
y6 − 8x3

) 2
3 − 2x

)(
−3y2 + 3y5√

y6−8x3

)
6y2
(
−y3 +

√
y6 − 8x3

) 4
3

 (xb2

+ yb3 + b1) = 0
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Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−y3 +

√
y6 − 8x3

) 1
3
,
(
−y3 +

√
y6 − 8x3

) 2
3
,
√

y6 − 8x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

(
−y3+

√
y6 − 8x3

) 1
3 = v3,

(
−y3+

√
y6 − 8x3

) 2
3 = v4,

√
y6 − 8x3 = v5

}
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The above PDE (6E) now becomes

(7E)

4v82a1 − 4v5v3v72b2 − 2v5v4v52a2 − 32v31v3v42b2 − 16v1v3v62a3
+ 32v41v4v2b2 + 48v31v4v22b3 + 32v31v4v2b1 − 2v4v1v72b2
+ 8v5v4v21a3 + 4v5v4v52b3 + 2v5v4v42b1 + 12v5v21v42b2
+ 16v5v1v52b3 − 24v4v31v22a2 − 8v4v21v32a3 + 2v5v4v1v42b2
+ 16v1v5v3v32a3 − 2i

√
3 v5v4v1v42b2 + 16i

√
3 v31v32a3

− 4i
√
3 v5v52a1 − 12i

√
3 v21v72b2 + 8i

√
3 v1v82a2 − 16i

√
3 v1v82b3

+ 2i
√
3 v4v72b1 − 16i

√
3 v31v5a3 − 2i

√
3 v4v82a2 + 4i

√
3 v4v82b3

− 16i
√
3 v31v22a1 − 12i

√
3 v1v72b1 + 64i

√
3 v51v2b2

− 48i
√
3 v41v22a2 + 96i

√
3 v41v22b3 + 64i

√
3 v41v2b1 + 12v5v1v42b1

− 8v4v21v22a1 − 8v5v1v52a2 + 4i
√
3 v82a1 − 4v5v52a1 − 16v31v5a3

+ 8v1v82a2 + 64v51v2b2 + 96v41v22b3 + 64v41v2b1 − 48v41v22a2
+ 16v31v32a3 − 16v31v22a1 − 12v21v72b2 − 16v1v82b3 − 12v1v72b1
− 4v4v82b3 − 2v4v72b1 + 4v3v102 b2 + 2v4v82a2 + 128v41v3a3
+ 2i

√
3 v4v1v72b2 + 8i

√
3 v4v21v32a3 + 8i

√
3 v4v21v22a1

− 8i
√
3 v5v4v21a3 + 12i

√
3 v5v21v42b2 − 8i

√
3 v5v1v52a2

+ 16i
√
3 v5v1v52b3 + 12i

√
3 v5v1v42b1 + 2i

√
3 v5v4v52a2

− 4i
√
3 v5v4v52b3 − 2i

√
3 v5v4v42b1 − 32i

√
3 v41v4v2b2

+ 24i
√
3 v4v31v22a2 − 48i

√
3 v31v4v22b3 − 32i

√
3 v31v4v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−4v5v3v72b2 +
(
4i
√
3 a1 + 4a1

)
v82 − 32v31v3v42b2

− 16v1v3v62a3 +
(
−32i

√
3 b2 + 32b2

)
v41v2v4

+
(
24i

√
3 a2 − 48i

√
3 b3 − 24a2 + 48b3

)
v31v

2
2v4

+
(
−32i

√
3 b1 + 32b1

)
v31v2v4 +

(
12i

√
3 b2 + 12b2

)
v21v

4
2v5

+
(
8i
√
3 a3 − 8a3

)
v21v

3
2v4 +

(
8i
√
3 a1 − 8a1

)
v21v

2
2v4

+
(
−8i

√
3 a3 + 8a3

)
v21v4v5 +

(
2i
√
3 b2 − 2b2

)
v1v

7
2v4

+
(
−8i

√
3 a2 + 16i

√
3 b3 − 8a2 + 16b3

)
v1v

5
2v5

+
(
12i

√
3 b1 + 12b1

)
v1v

4
2v5

+
(
2i
√
3 a2 − 4i

√
3 b3 − 2a2 + 4b3

)
v52v4v5

+
(
−2i

√
3 b1 + 2b1

)
v42v4v5 + 16v1v5v3v32a3

+
(
−48i

√
3 a2 + 96i

√
3 b3 − 48a2 + 96b3

)
v41v

2
2

+
(
64i

√
3 b1 + 64b1

)
v41v2 +

(
16i

√
3 a3 + 16a3

)
v31v

3
2

+
(
−16i

√
3 a1 − 16a1

)
v31v

2
2

+
(
−16i

√
3 a3 − 16a3

)
v31v5 +

(
−12i

√
3 b2 − 12b2

)
v21v

7
2

+
(
8i
√
3 a2 − 16i

√
3 b3 + 8a2 − 16b3

)
v1v

8
2

+
(
−12i

√
3 b1 − 12b1

)
v1v

7
2

+
(
−2i

√
3 a2+4i

√
3 b3+2a2−4b3

)
v82v4+

(
2i
√
3 b1−2b1

)
v72v4

+
(
−4i

√
3 a1 − 4a1

)
v52v5 + 4v3v102 b2 + 128v41v3a3

+
(
64i

√
3 b2 + 64b2

)
v51v2 +

(
−2i

√
3 b2 + 2b2

)
v1v

4
2v4v5 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−16a3 = 0
16a3 = 0
128a3 = 0
−32b2 = 0
−4b2 = 0
4b2 = 0

−32i
√
3 b1 + 32b1 = 0

−32i
√
3 b2 + 32b2 = 0

−16i
√
3 a1 − 16a1 = 0

−16i
√
3 a3 − 16a3 = 0

−12i
√
3 b1 − 12b1 = 0

−12i
√
3 b2 − 12b2 = 0

−8i
√
3 a3 + 8a3 = 0

−4i
√
3 a1 − 4a1 = 0

−2i
√
3 b1 + 2b1 = 0

−2i
√
3 b2 + 2b2 = 0

2i
√
3 b1 − 2b1 = 0

2i
√
3 b2 − 2b2 = 0

4i
√
3 a1 + 4a1 = 0

8i
√
3 a1 − 8a1 = 0

8i
√
3 a3 − 8a3 = 0

12i
√
3 b1 + 12b1 = 0

12i
√
3 b2 + 12b2 = 0

16i
√
3 a3 + 16a3 = 0

64i
√
3 b1 + 64b1 = 0

64i
√
3 b2 + 64b2 = 0

−48i
√
3 a2 + 96i

√
3 b3 − 48a2 + 96b3 = 0

−8i
√
3 a2 + 16i

√
3 b3 − 8a2 + 16b3 = 0

−2i
√
3 a2 + 4i

√
3 b3 + 2a2 − 4b3 = 0

2i
√
3 a2 − 4i

√
3 b3 − 2a2 + 4b3 = 0

8i
√
3 a2 − 16i

√
3 b3 + 8a2 − 16b3 = 0

24i
√
3 a2 − 48i

√
3 b3 − 24a2 + 48b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2−

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)
(b3 − a2)

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

−

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)2
a3

4y4
(
−y3 +

√
y6 − 8x3

) 2
3

−

−

− 8i
√
3x2(

−y3+
√

y6−8x3
) 1

3√y6−8x3
− 2i

√
3− 8x2(

−y3+
√

y6−8x3
) 1

3√y6−8x3
+ 2

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

−
2
(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)
x2

y2
(
−y3 +

√
y6 − 8x3

) 4
3
√
y6 − 8x3

 (xa2

+ ya3 + a1)−

−

2i
√
3
(
−3y2+ 3y5√

y6−8x3

)

3
(
−y3+

√
y6−8x3

) 1
3

+
−2y2+ 2y5√

y6−8x3(
−y3+

√
y6−8x3

) 1
3

2y2
(
−y3 +

√
y6 − 8x3

) 1
3

+
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

y3
(
−y3 +

√
y6 − 8x3

) 1
3

+

(
i
√
3
(
−y3 +

√
y6 − 8x3

) 2
3 − 2i

√
3x+

(
−y3 +

√
y6 − 8x3

) 2
3 + 2x

)(
−3y2 + 3y5√

y6−8x3

)
6y2
(
−y3 +

√
y6 − 8x3

) 4
3

 (xb2

+ yb3 + b1) = 0
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Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−y3 +

√
y6 − 8x3

) 1
3
,
(
−y3 +

√
y6 − 8x3

) 2
3
,
√

y6 − 8x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

(
−y3+

√
y6 − 8x3

) 1
3 = v3,

(
−y3+

√
y6 − 8x3

) 2
3 = v4,

√
y6 − 8x3 = v5

}
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The above PDE (6E) now becomes

(7E)

4v82a1 − 2iv4
√
3 v1v72b2 + 2iv5v4

√
3 v42b1 − 8iv4

√
3 v21v32a3

− 8iv4
√
3 v21v22a1 + 8iv5v4

√
3 v21a3 − 2i

√
3 v5v4v52a2

+ 32i
√
3 v41v4v2b2 + 16i

√
3 v31v5a3 + 12i

√
3 v21v72b2

− 8i
√
3 v1v82a2+16i

√
3 v1v82b3+12i

√
3 v1v72b1− 64i

√
3 v51v2b2

+ 48i
√
3 v41v22a2 − 96i

√
3 v41v22b3 − 24iv4

√
3 v31v22a2

+ 48i
√
3 v31v4v22b3 + 32i

√
3 v31v4v2b1 + 4iv5v4

√
3 v52b3

− 12iv5
√
3 v21v42b2 + 8iv5

√
3 v1v52a2 − 16iv5

√
3 v1v52b3

− 12iv5
√
3 v1v42b1 + 2iv5v4

√
3 v1v42b2 + 2v5v4v1v42b2

+ 16v1v5v3v32a3 − 64i
√
3 v41v2b1 − 2iv4

√
3 v72b1 + 16i

√
3 v31v22a1

+ 4iv5
√
3 v52a1 − 16i

√
3 v31v32a3 + 2i

√
3 v4v82a2 − 4iv4

√
3 v82b3

− 4i
√
3 v82a1 − 8v4v21v32a3 + 12v5v1v42b1 − 8v4v21v22a1

− 4v5v3v72b2 − 2v5v4v52a2 + 32v31v4v2b1 − 32v31v3v42b2
− 16v1v3v62a3 + 32v41v4v2b2 + 48v31v4v22b3 − 2v4v1v72b2
+ 8v5v4v21a3 + 4v5v4v52b3 + 2v5v4v42b1 + 12v5v21v42b2
+ 16v5v1v52b3 − 8v5v1v52a2 − 24v4v31v22a2 + 8v1v82a2 + 64v51v2b2
+ 96v41v22b3 + 64v41v2b1 − 48v41v22a2 + 16v31v32a3 − 16v31v22a1
− 12v21v72b2 − 16v1v82b3 − 12v1v72b1 − 4v4v82b3 − 2v4v72b1
+ 2v4v82a2 + 128v41v3a3 − 16v31v5a3 − 4v5v52a1 + 4v3v102 b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
−4i

√
3 a1 + 4a1

)
v82 +

(
−64i

√
3 b2 + 64b2

)
v51v2

+
(
48i

√
3 a2 − 96i

√
3 b3 − 48a2 + 96b3

)
v41v

2
2

+
(
−64i

√
3 b1 + 64b1

)
v41v2

+
(
−16i

√
3 a3 + 16a3

)
v31v

3
2 +

(
16i

√
3 a1 − 16a1

)
v31v

2
2

+
(
16i

√
3 a3 − 16a3

)
v31v5 +

(
12i

√
3 b2 − 12b2

)
v21v

7
2

+
(
−8i

√
3 a2 + 16i

√
3 b3 + 8a2 − 16b3

)
v1v

8
2

+
(
12i

√
3 b1−12b1

)
v1v

7
2+
(
2i
√
3 a2−4i

√
3 b3+2a2−4b3

)
v82v4

+
(
32i

√
3 b2 + 32b2

)
v41v2v4

+
(
−24i

√
3 a2 + 48i

√
3 b3 − 24a2 + 48b3

)
v31v

2
2v4

+
(
32i

√
3 b1 + 32b1

)
v31v2v4 +

(
−12i

√
3 b2 + 12b2

)
v21v

4
2v5

+
(
−8i

√
3 a3 − 8a3

)
v21v

3
2v4 +

(
−8i

√
3 a1 − 8a1

)
v21v

2
2v4

+
(
8i
√
3 a3 + 8a3

)
v21v4v5 +

(
−2i

√
3 b2 − 2b2

)
v1v

7
2v4

+ 16v1v5v3v32a3 − 4v5v3v72b2 − 32v31v3v42b2 − 16v1v3v62a3
+
(
−2i

√
3 b1 − 2b1

)
v72v4 +

(
4i
√
3 a1 − 4a1

)
v52v5

+
(
8i
√
3 a2 − 16i

√
3 b3 − 8a2 + 16b3

)
v1v

5
2v5

+
(
−12i

√
3 b1 + 12b1

)
v1v

4
2v5

+
(
−2i

√
3 a2 + 4i

√
3 b3 − 2a2 + 4b3

)
v52v4v5

+
(
2i
√
3 b1 + 2b1

)
v42v4v5 + 128v41v3a3

+ 4v3v102 b2 +
(
2i
√
3 b2 + 2b2

)
v1v

4
2v4v5 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−16a3 = 0
16a3 = 0
128a3 = 0
−32b2 = 0
−4b2 = 0
4b2 = 0

−64i
√
3 b1 + 64b1 = 0

−64i
√
3 b2 + 64b2 = 0

−16i
√
3 a3 + 16a3 = 0

−12i
√
3 b1 + 12b1 = 0

−12i
√
3 b2 + 12b2 = 0

−8i
√
3 a1 − 8a1 = 0

−8i
√
3 a3 − 8a3 = 0

−4i
√
3 a1 + 4a1 = 0

−2i
√
3 b1 − 2b1 = 0

−2i
√
3 b2 − 2b2 = 0

2i
√
3 b1 + 2b1 = 0

2i
√
3 b2 + 2b2 = 0

4i
√
3 a1 − 4a1 = 0

8i
√
3 a3 + 8a3 = 0

12i
√
3 b1 − 12b1 = 0

12i
√
3 b2 − 12b2 = 0

16i
√
3 a1 − 16a1 = 0

16i
√
3 a3 − 16a3 = 0

32i
√
3 b1 + 32b1 = 0

32i
√
3 b2 + 32b2 = 0

−24i
√
3 a2 + 48i

√
3 b3 − 24a2 + 48b3 = 0

−8i
√
3 a2 + 16i

√
3 b3 + 8a2 − 16b3 = 0

−2i
√
3 a2 + 4i

√
3 b3 − 2a2 + 4b3 = 0

2i
√
3 a2 − 4i

√
3 b3 + 2a2 − 4b3 = 0

8i
√
3 a2 − 16i

√
3 b3 − 8a2 + 16b3 = 0

48i
√
3 a2 − 96i

√
3 b3 − 48a2 + 96b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-y(x)^4*x^3+y(x))/(2*y(x)^3*x^4-2*x), y(x)` *** Sublevel 3 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.266 (sec). Leaf size: 167� �
dsolve(y(x)^4*diff(y(x),x)^3-6*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)� �

y(x) =
√

x
(
−i

√
3− 1

)
y(x) =

√(
i
√
3− 1

)
x

y(x) = −
√
−
(
1 + i

√
3
)
x

y(x) = −
√(

i
√
3− 1

)
x

y(x) =
√
x
√
2

y(x) = −
√
x
√
2

y(x) = 0

y(x) = 2 2
3 (−c31 + 6c1x)

1
3

2

y(x) = −
2 2

3 (−c31 + 6c1x)
1
3
(
1 + i

√
3
)

4

y(x) =
2 2

3 (−c31 + 6c1x)
1
3
(
i
√
3− 1

)
4

3 Solution by Mathematica
Time used: 70.054 (sec). Leaf size: 22649� �
DSolve[y[x]^4*(y'[x])^3-6*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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3 CHAPTER 16. Nonlinear equations. Section 99.
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3.1 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
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3.23 problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
3.24 problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
3.25 problem 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
3.26 problem 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
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3.1 problem 3
Internal problem ID [6795]
Internal file name [OUTPUT/6042_Tuesday_July_26_2022_11_23_37_PM_9550685/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 3.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
2 + x3y′ − 2x2y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−x2

2 +
√
x4 + 8y
2

)
x (1)

y′ =
(
−x2

2 −
√
x4 + 8y
2

)
x (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
(
−x2 +

√
x4 + 8y

)
x

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
−x2 +

√
x4 + 8y

)
x(b3 − a2)

2 −
(
−x2 +

√
x4 + 8y

)2
x2a3

4

−


(
−2x+ 2x3√

x4+8y

)
x

2 − x2

2 +
√
x4 + 8y
2

 (xa2 + ya3 + a1)

− 2x(xb2 + yb3 + b1)√
x4 + 8y

= 0

Putting the above in normal form gives

−−2x8a3 +
√
x4 + 8y x6a3 + (x4 + 8y)

3
2 x2a3 + 8x5a2 − 2x5b3 − 10x4ya3 − 8

√
x4 + 8y x3a2 + 2

√
x4 + 8y x3b3 − 6

√
x4 + 8y x2ya3 + 6x4a1 − 6

√
x4 + 8y x2a1 + 8x2b2 + 32xya2 − 8xyb3 + 16y2a3 − 4b2

√
x4 + 8y + 8xb1 + 16ya1

4
√
x4 + 8y

= 0

Setting the numerator to zero gives

(6E)
2x8a3 −

√
x4 + 8y x6a3 −

(
x4 + 8y

) 3
2 x2a3 − 8x5a2

+ 2x5b3 + 10x4ya3 + 8
√
x4 + 8y x3a2 − 2

√
x4 + 8y x3b3

+ 6
√

x4 + 8y x2ya3 − 6x4a1 + 6
√
x4 + 8y x2a1 − 8x2b2

− 32xya2 + 8xyb3 − 16y2a3 + 4b2
√
x4 + 8y − 8xb1 − 16ya1 = 0

Simplifying the above gives

(6E)
−
√

x4 + 8y x6a3 + 2
(
x4 + 8y

)
x4a3 −

(
x4 + 8y

) 3
2 x2a3 − 4x5a2 − 4x4ya3

+ 8
√

x4 + 8y x3a2 − 2
√

x4 + 8y x3b3 + 6
√

x4 + 8y x2ya3 − 4x4a1

− 4
(
x4 + 8y

)
xa2 + 2

(
x4 + 8y

)
xb3 − 2

(
x4 + 8y

)
ya3 + 6

√
x4 + 8y x2a1

− 2
(
x4 + 8y

)
a1 − 8x2b2 − 8xyb3 + 4b2

√
x4 + 8y − 8xb1 = 0
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Since the PDE has radicals, simplifying gives

2x8a3 − 2
√
x4 + 8y x6a3 − 8x5a2 + 2x5b3 + 10x4ya3 − 6x4a1 + 8

√
x4 + 8y x3a2

− 2
√

x4 + 8y x3b3 − 2
√

x4 + 8y x2ya3 + 6
√

x4 + 8y x2a1 − 8x2b2

− 32xya2 + 8xyb3 − 16y2a3 − 8xb1 + 4b2
√
x4 + 8y − 16ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x4 + 8y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x4 + 8y = v3
}

The above PDE (6E) now becomes

(7E)2v81a3 − 2v3v61a3 − 8v51a2 + 10v41v2a3 + 2v51b3 − 6v41a1
+ 8v3v31a2 − 2v3v21v2a3 − 2v3v31b3 + 6v3v21a1 − 32v1v2a2
− 16v22a3 − 8v21b2 + 8v1v2b3 − 16v2a1 − 8v1b1 + 4b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)2v81a3 − 2v3v61a3 + (−8a2 + 2b3) v51 + 10v41v2a3 − 6v41a1
+ (8a2 − 2b3) v31v3 − 2v3v21v2a3 + 6v3v21a1 − 8v21b2
+ (−32a2 + 8b3) v1v2 − 8v1b1 − 16v22a3 − 16v2a1 + 4b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−16a1 = 0
−6a1 = 0
6a1 = 0

−16a3 = 0
−2a3 = 0
2a3 = 0
10a3 = 0
−8b1 = 0
−8b2 = 0
4b2 = 0

−32a2 + 8b3 = 0
−8a2 + 2b3 = 0
8a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 4a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 4y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4y −
((

−x2 +
√
x4 + 8y

)
x

2

)
(x)

= x4

2 −
√
x4 + 8y x2

2 + 4y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4

2 −
√

x4+8y x2

2 + 4y
dy

Which results in

S = ln (y)
4 −

ln
(
x2 +

√
x4 + 8y

)
4 +

ln
(
−x2 +

√
x4 + 8y

)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−x2 +

√
x4 + 8y

)
x

2
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x√
x4 + 8y

Sy =
2(

−x2 +
√
x4 + 8y

)√
x4 + 8y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
4 −

ln
(
x2 +

√
x4 + 8y

)
4 +

ln
(
−x2 +

√
x4 + 8y

)
4 = c1

Which simplifies to

ln (y)
4 −

ln
(
x2 +

√
x4 + 8y

)
4 +

ln
(
−x2 +

√
x4 + 8y

)
4 = c1

Summary
The solution(s) found are the following

(1)ln (y)
4 −

ln
(
x2 +

√
x4 + 8y

)
4 +

ln
(
−x2 +

√
x4 + 8y

)
4 = c1

Verification of solutions

ln (y)
4 −

ln
(
x2 +

√
x4 + 8y

)
4 +

ln
(
−x2 +

√
x4 + 8y

)
4 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −
x
(
x2 +

√
x4 + 8y

)
2

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
x
(
x2 +

√
x4 + 8y

)
(b3 − a2)

2 −
x2(x2 +

√
x4 + 8y

)2
a3

4

−

−x2

2 −
√
x4 + 8y
2 −

x
(
2x+ 2x3√

x4+8y

)
2

 (xa2 + ya3 + a1)

+ 2x(xb2 + yb3 + b1)√
x4 + 8y

= 0

Putting the above in normal form gives

−2x8a3 +
√
x4 + 8y x6a3 + (x4 + 8y)

3
2 x2a3 − 8x5a2 + 2x5b3 + 10x4ya3 − 8

√
x4 + 8y x3a2 + 2

√
x4 + 8y x3b3 − 6

√
x4 + 8y x2ya3 − 6x4a1 − 6

√
x4 + 8y x2a1 − 8x2b2 − 32xa2y + 8xyb3 − 16y2a3 − 4b2

√
x4 + 8y − 8xb1 − 16a1y

4
√
x4 + 8y

= 0

Setting the numerator to zero gives

(6E)
−2x8a3 −

√
x4 + 8y x6a3 −

(
x4 + 8y

) 3
2 x2a3 + 8x5a2

− 2x5b3 − 10x4ya3 + 8
√
x4 + 8y x3a2 − 2

√
x4 + 8y x3b3

+ 6
√

x4 + 8y x2ya3 + 6x4a1 + 6
√
x4 + 8y x2a1 + 8x2b2

+ 32xa2y − 8xyb3 + 16y2a3 + 4b2
√

x4 + 8y + 8xb1 + 16a1y = 0
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Simplifying the above gives

(6E)
−
√

x4 + 8y x6a3 − 2
(
x4 + 8y

)
x4a3 −

(
x4 + 8y

) 3
2 x2a3 + 4x5a2 + 4x4ya3

+ 8
√

x4 + 8y x3a2 − 2
√

x4 + 8y x3b3 + 6
√
x4 + 8y x2ya3 + 4x4a1

+ 4
(
x4 + 8y

)
xa2 − 2

(
x4 + 8y

)
xb3 + 2

(
x4 + 8y

)
ya3 + 6

√
x4 + 8y x2a1

+ 2
(
x4 + 8y

)
a1 + 8x2b2 + 8xyb3 + 4b2

√
x4 + 8y + 8xb1 = 0

Since the PDE has radicals, simplifying gives

−2x8a3 − 2
√

x4 + 8y x6a3 + 8x5a2 − 2x5b3 − 10x4ya3 + 6x4a1

+ 8
√

x4 + 8y x3a2 − 2
√

x4 + 8y x3b3 − 2
√

x4 + 8y x2ya3 + 6
√

x4 + 8y x2a1

+ 8x2b2 + 32xa2y − 8xyb3 + 16y2a3 + 8xb1 + 4b2
√

x4 + 8y + 16a1y = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x4 + 8y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x4 + 8y = v3
}

The above PDE (6E) now becomes

(7E)−2v81a3 − 2v3v61a3 + 8v51a2 − 10v41v2a3 − 2v51b3 + 6v41a1
+ 8v3v31a2 − 2v3v21v2a3 − 2v3v31b3 + 6v3v21a1 + 32v1a2v2
+ 16v22a3 + 8v21b2 − 8v1v2b3 + 16a1v2 + 8v1b1 + 4b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−2v81a3 − 2v3v61a3 + (8a2 − 2b3) v51 − 10v41v2a3 + 6v41a1
+ (8a2 − 2b3) v31v3 − 2v3v21v2a3 + 6v3v21a1 + 8v21b2
+ (32a2 − 8b3) v1v2 + 8v1b1 + 16v22a3 + 16a1v2 + 4b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

6a1 = 0
16a1 = 0

−10a3 = 0
−2a3 = 0
16a3 = 0
8b1 = 0
4b2 = 0
8b2 = 0

8a2 − 2b3 = 0
32a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 4a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 4y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 4y −
(
−
x
(
x2 +

√
x4 + 8y

)
2

)
(x)

= x4

2 +
√
x4 + 8y x2

2 + 4y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4

2 +
√

x4+8y x2

2 + 4y
dy

Which results in

S = ln (y)
4 +

ln
(
x2 +

√
x4 + 8y

)
4 −

ln
(
−x2 +

√
x4 + 8y

)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
x
(
x2 +

√
x4 + 8y

)
2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x√
x4 + 8y

Sy =
2√

x4 + 8y
(
x2 +

√
x4 + 8y

)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
4 +

ln
(
x2 +

√
x4 + 8y

)
4 −

ln
(
−x2 +

√
x4 + 8y

)
4 = c1

Which simplifies to

ln (y)
4 +

ln
(
x2 +

√
x4 + 8y

)
4 −

ln
(
−x2 +

√
x4 + 8y

)
4 = c1

Summary
The solution(s) found are the following

(1)ln (y)
4 +

ln
(
x2 +

√
x4 + 8y

)
4 −

ln
(
−x2 +

√
x4 + 8y

)
4 = c1

Verification of solutions

ln (y)
4 +

ln
(
x2 +

√
x4 + 8y

)
4 −

ln
(
−x2 +

√
x4 + 8y

)
4 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(y(x), x), x)-(diff(y(x), x))/x, y(x)` *** Sublevel 4 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

<- 1st order ODE linearizable_by_differentiation successful
-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �
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3 Solution by Maple
Time used: 0.375 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)^2+x^3*diff(y(x),x)-2*x^2*y(x)=0,y(x), singsol=all)� �

y(x) = −x4

8
y(x) = c1

(
x2 + 2c1

)
3 Solution by Mathematica
Time used: 1.255 (sec). Leaf size: 209� �
DSolve[(y'[x])^2+x^3*y'[x]-2*x^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

√x6 + 8x2y(x) log
(√

x4 + 8y(x) + x2
)

2x
√
x4 + 8y(x)

+ 1
4

(
1−

√
x6 + 8x2y(x)

x
√

x4 + 8y(x)

)
log(y(x)) = c1, y(x)


Solve

1
4

(√
x6 + 8x2y(x)

x
√

x4 + 8y(x)
+ 1
)
log(y(x))

−

√
x6 + 8x2y(x) log

(√
x4 + 8y(x) + x2

)
2x
√

x4 + 8y(x)
= c1, y(x)


y(x) → −x4

8
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3.2 problem 4
Internal problem ID [6796]
Internal file name [OUTPUT/6043_Tuesday_July_26_2022_11_23_40_PM_37504089/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 4.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
2 + 4x5y′ − 12yx4 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2
(
−x3 +

√
x6 + 3y

)
x2 (1)

y′ = 2
(
−x3 −

√
x6 + 3y

)
x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = 2
(
−x3 +

√
x6 + 3y

)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 + 2

(
−x3 +

√
x6 + 3y

)
x2(b3 − a2)− 4

(
−x3 +

√
x6 + 3y

)2
x4a3

−
(
2
(
−3x2 + 3x5

√
x6 + 3y

)
x2 + 4

(
−x3 +

√
x6 + 3y

)
x

)
(xa2 + ya3 + a1)

− 3x2(xb2 + yb3 + b1)√
x6 + 3y

= 0

Putting the above in normal form gives

−−8x13a3 + 4
√
x6 + 3y x10a3 + 12x8a2 − 2x8b3 − 14x7ya3 + 4(x6 + 3y)

3
2 x4a3 + 10x7a1 − 12

√
x6 + 3y x5a2 + 2

√
x6 + 3y x5b3 − 10

√
x6 + 3y x4ya3 − 10

√
x6 + 3y x4a1 + 3x3b2 + 18x2ya2 − 3x2yb3 + 12x y2a3 + 3x2b1 + 12xya1 − b2

√
x6 + 3y√

x6 + 3y
= 0

Setting the numerator to zero gives

(6E)
8x13a3 − 4

√
x6 + 3y x10a3 − 12x8a2 + 2x8b3 + 14x7ya3

− 4
(
x6 + 3y

) 3
2 x4a3 − 10x7a1 + 12

√
x6 + 3y x5a2 − 2

√
x6 + 3y x5b3

+ 10
√

x6 + 3y x4ya3 + 10
√

x6 + 3y x4a1 − 3x3b2 − 18x2ya2

+ 3x2yb3 − 12x y2a3 − 3x2b1 − 12xya1 + b2
√
x6 + 3y = 0

Simplifying the above gives

(6E)
−4
√

x6 + 3y x10a3+8
(
x6+3y

)
x7a3− 6x8a2− 6x7ya3− 4

(
x6+3y

) 3
2 x4a3

− 6x7a1 + 12
√

x6 + 3y x5a2 − 2
√

x6 + 3y x5b3 + 10
√
x6 + 3y x4ya3

+10
√

x6 + 3y x4a1 − 6
(
x6 +3y

)
x2a2 +2

(
x6 +3y

)
x2b3 − 4

(
x6 +3y

)
xya3

− 4
(
x6 + 3y

)
xa1 − 3x3b2 − 3x2yb3 − 3x2b1 + b2

√
x6 + 3y = 0
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Since the PDE has radicals, simplifying gives

8x13a3 − 8
√

x6 + 3y x10a3 − 12x8a2 + 2x8b3 + 14x7ya3 − 10x7a1

+ 12
√

x6 + 3y x5a2 − 2
√

x6 + 3y x5b3 − 2
√

x6 + 3y x4ya3 + 10
√
x6 + 3y x4a1

− 3x3b2 − 18x2ya2 + 3x2yb3 − 12x y2a3 − 3x2b1 − 12xya1 + b2
√
x6 + 3y = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x6 + 3y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x6 + 3y = v3
}

The above PDE (6E) now becomes

(7E)8v131 a3 − 8v3v101 a3 − 12v81a2 + 14v71v2a3 + 2v81b3 − 10v71a1
+ 12v3v51a2 − 2v3v41v2a3 − 2v3v51b3 + 10v3v41a1 − 18v21v2a2
− 12v1v22a3 − 3v31b2 + 3v21v2b3 − 12v1v2a1 − 3v21b1 + b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)8v131 a3 − 8v3v101 a3 + (−12a2 + 2b3) v81 + 14v71v2a3 − 10v71a1
+ (12a2 − 2b3) v51v3 − 2v3v41v2a3 + 10v3v41a1 − 3v31b2
+ (−18a2 + 3b3) v21v2 − 3v21b1 − 12v1v22a3 − 12v1v2a1 + b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−12a1 = 0
−10a1 = 0
10a1 = 0

−12a3 = 0
−8a3 = 0
−2a3 = 0
8a3 = 0
14a3 = 0
−3b1 = 0
−3b2 = 0

−18a2 + 3b3 = 0
−12a2 + 2b3 = 0
12a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 6a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 6y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 6y −
(
2
(
−x3 +

√
x6 + 3y

)
x2
)
(x)

= 2x6 − 2
√

x6 + 3y x3 + 6y
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x6 − 2
√
x6 + 3y x3 + 6y

dy

Which results in

S = ln (y)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2
(
−x3 +

√
x6 + 3y

)
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x2
√
x6 + 3y

Sy =
1√

x6 + 3y
(
−2x3 + 2

√
x6 + 3y

)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Which simplifies to

ln (y)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Summary
The solution(s) found are the following

(1)ln (y)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Verification of solutions

ln (y)
6 −

ln
(
x3 +

√
x6 + 3y

)
6 +

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −2x2
(
x3 +

√
x6 + 3y

)
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 − 2x2

(
x3 +

√
x6 + 3y

)
(b3 − a2)− 4x4

(
x3 +

√
x6 + 3y

)2
a3

−
(
−4x

(
x3 +

√
x6 + 3y

)
− 2x2

(
3x2 + 3x5

√
x6 + 3y

))
(xa2 + ya3 + a1)

+ 3x2(xb2 + yb3 + b1)√
x6 + 3y

= 0

Putting the above in normal form gives

−8x13a3 + 4
√
x6 + 3y x10a3 − 12x8a2 + 2x8b3 + 14x7ya3 + 4(x6 + 3y)

3
2 x4a3 − 10x7a1 − 12

√
x6 + 3y x5a2 + 2

√
x6 + 3y x5b3 − 10

√
x6 + 3y x4ya3 − 10

√
x6 + 3y x4a1 − 3x3b2 − 18x2a2y + 3x2yb3 − 12x y2a3 − 3x2b1 − 12xa1y − b2

√
x6 + 3y√

x6 + 3y
= 0

Setting the numerator to zero gives

(6E)
−8x13a3 − 4

√
x6 + 3y x10a3 + 12x8a2 − 2x8b3 − 14x7ya3

− 4
(
x6 + 3y

) 3
2 x4a3 + 10x7a1 + 12

√
x6 + 3y x5a2 − 2

√
x6 + 3y x5b3

+ 10
√

x6 + 3y x4ya3 + 10
√

x6 + 3y x4a1 + 3x3b2 + 18x2a2y

− 3x2yb3 + 12x y2a3 + 3x2b1 + 12xa1y + b2
√

x6 + 3y = 0
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Simplifying the above gives

(6E)
−4
√

x6 + 3y x10a3− 8
(
x6+3y

)
x7a3+6x8a2+6x7ya3− 4

(
x6+3y

) 3
2 x4a3

+ 6x7a1 + 12
√

x6 + 3y x5a2 − 2
√
x6 + 3y x5b3 + 10

√
x6 + 3y x4ya3

+10
√

x6 + 3y x4a1 +6
(
x6 +3y

)
x2a2 − 2

(
x6 +3y

)
x2b3 +4

(
x6 +3y

)
xya3

+ 4
(
x6 + 3y

)
xa1 + 3x3b2 + 3x2yb3 + 3x2b1 + b2

√
x6 + 3y = 0

Since the PDE has radicals, simplifying gives

−8x13a3 − 8
√

x6 + 3y x10a3 + 12x8a2 − 2x8b3 − 14x7ya3 + 10x7a1

+ 12
√

x6 + 3y x5a2 − 2
√

x6 + 3y x5b3 − 2
√

x6 + 3y x4ya3 + 10
√
x6 + 3y x4a1

+ 3x3b2 + 18x2a2y − 3x2yb3 + 12x y2a3 + 3x2b1 + 12xa1y + b2
√

x6 + 3y = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x6 + 3y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

x6 + 3y = v3
}

The above PDE (6E) now becomes

(7E)−8v131 a3 − 8v3v101 a3 + 12v81a2 − 14v71v2a3 − 2v81b3 + 10v71a1
+ 12v3v51a2 − 2v3v41v2a3 − 2v3v51b3 + 10v3v41a1 + 18v21a2v2
+ 12v1v22a3 + 3v31b2 − 3v21v2b3 + 12v1a1v2 + 3v21b1 + b2v3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−8v131 a3 − 8v3v101 a3 + (12a2 − 2b3) v81 − 14v71v2a3 + 10v71a1
+ (12a2 − 2b3) v51v3 − 2v3v41v2a3 + 10v3v41a1 + 3v31b2
+ (18a2 − 3b3) v21v2 + 3v21b1 + 12v1v22a3 + 12v1a1v2 + b2v3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
10a1 = 0
12a1 = 0

−14a3 = 0
−8a3 = 0
−2a3 = 0
12a3 = 0
3b1 = 0
3b2 = 0

12a2 − 2b3 = 0
18a2 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 6a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 6y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 6y −
(
−2x2

(
x3 +

√
x6 + 3y

))
(x)

= 2x6 + 2
√

x6 + 3y x3 + 6y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x6 + 2
√
x6 + 3y x3 + 6y

dy

Which results in

S = ln (y)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x2
(
x3 +

√
x6 + 3y

)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2
√
x6 + 3y

Sy =
1√

x6 + 3y
(
2x3 + 2

√
x6 + 3y

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Which simplifies to

ln (y)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Summary
The solution(s) found are the following

(1)ln (y)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Verification of solutions

ln (y)
6 +

ln
(
x3 +

√
x6 + 3y

)
6 −

ln
(
−x3 +

√
x6 + 3y

)
6 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`� �
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3 Solution by Maple
Time used: 0.359 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)^2+4*x^5*diff(y(x),x)-12*x^4*y(x)=0,y(x), singsol=all)� �

y(x) = −x6

3
y(x) = c1x

3 + 3
4c

2
1

3 Solution by Mathematica
Time used: 0.603 (sec). Leaf size: 217� �
DSolve[(y'[x])^2+4*x^5*y'[x]-12*x^4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

1
6

(
log(y(x))− x2

√
x6 + 3y(x) log(y(x))√
x4 (x6 + 3y(x))

)

+
x2
√

x6 + 3y(x) log
(√

x6 + 3y(x) + x3
)

3
√

x4 (x6 + 3y(x))
= c1, y(x)


Solve

1
6

(
x2
√

x6 + 3y(x) log(y(x))√
x4 (x6 + 3y(x))

+ log(y(x))
)

−
x2
√
x6 + 3y(x) log

(√
x6 + 3y(x) + x3

)
3
√

x4 (x6 + 3y(x))
= c1, y(x)


y(x) → −x6

3
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3.3 problem 5
Internal problem ID [6797]
Internal file name [OUTPUT/6044_Tuesday_July_26_2022_11_23_43_PM_92405610/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 5.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

2xy′3 − 6yy′2 = −x4

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3

2x + 2y2

x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3
+ y

x
(1)

y′ = −
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3

4x − y2

x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3
+ y

x
+

i
√
3
((

−2x6+2
√

x6−8y3 x3+8y3
) 1

3

2x − 2y2

x
(
−2x6+2

√
x6−8y3 x3+8y3

) 1
3

)
2

(2)

y′ = −
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3

4x − y2

x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3
+ y

x
−

i
√
3
((

−2x6+2
√

x6−8y3 x3+8y3
) 1

3

2x − 2y2

x
(
−2x6+2

√
x6−8y3 x3+8y3

) 1
3

)
2

(3)

Now each one of the above ODE is solved.
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Solving equation (1)

Writing the ode as

y′ =
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3 + 2y

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 + 4y2

2x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

234



Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

+

((
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3 + 2y

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 + 4y2

)
(b3 − a2)

2x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3

−

((
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3 + 2y

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 + 4y2

)2
a3

4x2
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3

−


−8x5+ 4x8√

x6−8y3
+4
√

x6−8y3 x2

(
−2x6+2

√
x6−8y3 x3+8y3

) 1
3
+

2y
(
−12x5+ 6x8√

x6−8y3
+6
√

x6−8y3 x2

)

3
(
−2x6+2

√
x6−8y3 x3+8y3

) 2
3

2x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3

−
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3 + 2y

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 + 4y2

2x2
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3

−

((
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3 + 2y

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 + 4y2

)(
−12x5 + 6x8√

x6−8y3
+ 6

√
x6 − 8y3 x2

)
6x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 4
3

 (xa2

+ ya3 + a1)

−


− 16x3y2√

x6−8y3
+16y2

(
−2x6+2

√
x6−8y3 x3+8y3

) 1
3
+ 2
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 +

2y
(
− 24x3y2√

x6−8y3
+24y2

)

3
(
−2x6+2

√
x6−8y3 x3+8y3

) 2
3
+ 8y

2x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3

−

((
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3 + 2y

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 + 4y2

)(
− 24x3y2√

x6−8y3
+ 24y2

)
6x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display
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Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−2x6 +2

√
x6 − 8y3 x3 +8y3

) 1
3
,
(
−2x6 +2

√
x6 − 8y3 x3 +8y3

) 2
3
,
√
x6 − 8y3

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 = v3,

(
−2x6

+ 2
√

x6 − 8y3 x3 + 8y3
) 2

3 = v4,
√

x6 − 8y3 = v5

}

The above PDE (6E) now becomes

(7E)

8v151 a3 − 8v5v121 a3 + 32v101 v22a2 − 80v91v32a3 − 16v91v3v22a3
− 32v111 v2b2 − 16v101 v22b3 + 48v91v22a1 + 8v91v3v2a1 − 8v4v101 a2
− 12v4v91v2a3 − 32v101 v2b1 − 8v101 v3b1 + 4v101 v4b3 − 4v4v91a1
− 32v5v71v22a2 + 48v5v61v32a3 + 16v61v5v3v22a3 + 32v5v81v2b2
+16v5v71v22b3 − 48v5v61v22a1 − 8v61v5v3v2a1 +8v5v4v71a2 − 128v41v52a2
+12v5v4v61v2a3+256v31v62a3+128v31v3v52a3+32v5v71v2b1+8v71v5v3b1
+ 192v51v42b2 − 4v71v5v4b3 + 64v41v52b3 + 4v5v4v61a1 − 256v31v52a1
− 64v31v3v42a1+32v4v41v32a2+64v4v31v42a3+192v41v42b1+64v41v3v32b1
+ 16v4v51v22b2 − 16v4v41v32b3 − 128v5v62a3 − 64v5v3v52a3 + 16v4v41v22b1
− 64v5v21v42b2 + 64v5v52a1 + 32v5v3v42a1 − 32v5v4v42a3 − 64v5v1v42b1
− 32v1v5v3v32b1 − 16v5v4v21v22b2 + 16v5v4v32a1 − 16v5v4v1v22b1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)

8v151 a3 + 16v5v4v32a1 + 32v5v3v42a1 + 32v5v81v2b2 + 32v5v71v2b1
+ 64v4v31v42a3 + (−32a2 + 16b3) v71v22v5 + (8a2 − 4b3) v71v4v5
+ (32a2 − 16b3) v41v32v4 + 12v5v4v61v2a3 − 16v5v4v21v22b2
− 16v5v4v1v22b1 + 16v61v5v3v22a3 − 8v61v5v3v2a1 − 32v1v5v3v32b1
−16v91v3v22a3+8v91v3v2a1+128v31v3v52a3+64v41v3v32b1−64v31v3v42a1
+ 8v71v5v3b1 − 12v4v91v2a3 + 48v5v61v32a3 + 4v5v4v61a1 − 48v5v61v22a1
+16v4v51v22b2+16v4v41v22b1− 32v5v4v42a3− 64v5v21v42b2− 64v5v1v42b1
+ (32a2 − 16b3) v101 v22 + (−8a2 +4b3) v101 v4 + (−128a2 +64b3) v41v52
− 8v101 v3b1 − 80v91v32a3 + 48v91v22a1 + 192v51v42b2 + 192v41v42b1
− 4v4v91a1 + 256v31v62a3 − 256v31v52a1 − 8v5v121 a3 − 128v5v62a3
+ 64v5v52a1 − 32v111 v2b2 − 32v101 v2b1 − 64v5v3v52a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−256a1 = 0
−64a1 = 0
−48a1 = 0
−8a1 = 0
−4a1 = 0
4a1 = 0
8a1 = 0
16a1 = 0
32a1 = 0
48a1 = 0
64a1 = 0

−128a3 = 0
−80a3 = 0
−64a3 = 0
−32a3 = 0
−16a3 = 0
−12a3 = 0
−8a3 = 0
8a3 = 0
12a3 = 0
16a3 = 0
48a3 = 0
64a3 = 0
128a3 = 0
256a3 = 0
−64b1 = 0
−32b1 = 0
−16b1 = 0
−8b1 = 0
8b1 = 0
16b1 = 0
32b1 = 0
64b1 = 0
192b1 = 0
−64b2 = 0
−32b2 = 0
−16b2 = 0
16b2 = 0
32b2 = 0
192b2 = 0

−128a2 + 64b3 = 0
−32a2 + 16b3 = 0
−8a2 + 4b3 = 0
8a2 − 4b3 = 0

32a2 − 16b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 2y
x

= 2y
x

This is easily solved to give

y = c1x
2

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x2
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And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3 + 2y

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 + 4y2

2x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3

Evaluating all the partial derivatives gives

Rx = −2y
x3

Ry =
1
x2

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

2x2(−2x6 + 2
√
x6 − 8y3 x3 + 8y3

) 1
3(

−2x6 + 2
√
x6 − 8y3 x3 + 8y3

) 2
3 − 2y

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 + 4y2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

22 1
3
(
4R3 +

√
−8R3 + 1− 1

) 1
3

2 2
3
(
4R3 +

√
−8R3 + 1− 1

) 2
3 − 2 2 1

3
(
4R3 +

√
−8R3 + 1− 1

) 1
3 R + 4R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 2

(
8R3 + 2

√
−8R3 + 1− 2

) 1
3

4 1
3

((
4R3 +

√
−8R3 + 1− 1

)2) 1
3 − 2R

(
8R3 + 2

√
−8R3 + 1− 2

) 1
3 + 4R2

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y

x2 2
(
8_a3 + 2

√
−8_a3 + 1− 2

) 1
3

4 1
3

((
4_a3 +

√
−8_a3 + 1− 1

)2) 1
3 − 2_a

(
8_a3 + 2

√
−8_a3 + 1− 2

) 1
3 + 4_a2

d_a+ c1

Which simplifies to

ln (x) =
∫ y

x2 2
(
8_a3 + 2

√
−8_a3 + 1− 2

) 1
3

4 1
3

((
4_a3 +

√
−8_a3 + 1− 1

)2) 1
3 − 2_a

(
8_a3 + 2

√
−8_a3 + 1− 2

) 1
3 + 4_a2

d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x)

=
∫ y

x2 2
(
8_a3 + 2

√
−8_a3 + 1− 2

) 1
3

4 1
3

((
4_a3 +

√
−8_a3 + 1− 1

)2) 1
3 − 2_a

(
8_a3 + 2

√
−8_a3 + 1− 2

) 1
3 + 4_a2

d_a

+ c1

Verification of solutions

ln (x)

=
∫ y

x2 2
(
8_a3 + 2

√
−8_a3 + 1− 2

) 1
3

4 1
3

((
4_a3 +

√
−8_a3 + 1− 1

)2) 1
3 − 2_a

(
8_a3 + 2

√
−8_a3 + 1− 2

) 1
3 + 4_a2

d_a

+ c1

Verified OK.
Solving equation (2)
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Writing the ode as

y′ =
i
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3
√
3−

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3 + 4y

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 − 4i

√
3 y2 − 4y2

4x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−2x6 +2

√
x6 − 8y3 x3 +8y3

) 1
3
,
(
−2x6 +2

√
x6 − 8y3 x3 +8y3

) 2
3
,
√
x6 − 8y3

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 = v3,

(
−2x6

+ 2
√

x6 − 8y3 x3 + 8y3
) 2

3 = v4,
√

x6 − 8y3 = v5

}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
16i

√
3 a3 + 16a3

)
v121 v5 +

(
64i

√
3 b2 + 64b2

)
v111 v2

+
(
−64i

√
3 a2 + 32i

√
3 b3 − 64a2 + 32b3

)
v101 v22

+
(
64i

√
3 b1 + 64b1

)
v101 v2

+
(
−16i

√
3 a2 + 8i

√
3 b3 + 16a2 − 8b3

)
v101 v4

+
(
160i

√
3 a3+160a3

)
v91v

3
2+
(
−96i

√
3 a1−96a1

)
v91v

2
2

− 32v101 v3b1 +
(
−16i

√
3 a3 − 16a3

)
v151 + 32v71v3v5b1

− 256v3v5v52a3 + 128v3v5v42a1 − 64v91v3v22a3
+ 32v91v3v2a1 + 512v31v3v52a3 + 256v41v3v32b1
− 256v31v3v42a1 + 64v61v3v5v22a3 − 32v61v3v5v2a1
− 128v1v3v5v32b1 +

(
24i

√
3 a3 − 24a3

)
v61v2v4v5

+
(
−32i

√
3 b2 + 32b2

)
v21v

2
2v4v5

+
(
−32i

√
3 b1 + 32b1

)
v1v

2
2v4v5

+
(
−64i

√
3 b2 − 64b2

)
v81v2v5

+
(
64i

√
3 a2 − 32i

√
3 b3 + 64a2 − 32b3

)
v71v

2
2v5

+
(
−64i

√
3 b1 − 64b1

)
v71v2v5

+
(
16i

√
3 a2 − 8i

√
3 b3 − 16a2 + 8b3

)
v71v4v5

+
(
−96i

√
3 a3 − 96a3

)
v61v

3
2v5

+
(
96i

√
3 a1 + 96a1

)
v61v

2
2v5

+
(
8i
√
3 a1 − 8a1

)
v61v4v5 +

(
32i

√
3 b2 − 32b2

)
v51v

2
2v4

+
(
64i

√
3 a2 − 32i

√
3 b3 − 64a2 + 32b3

)
v41v

3
2v4

+
(
32i

√
3 b1 − 32b1

)
v41v

2
2v4

+
(
128i

√
3 a3 − 128a3

)
v31v

4
2v4

+
(
128i

√
3 b2 + 128b2

)
v21v

4
2v5

+
(
128i

√
3 b1 + 128b1

)
v1v

4
2v5

+
(
−64i

√
3 a3 + 64a3

)
v42v4v5

+
(
32i

√
3 a1 − 32a1

)
v32v4v5

+
(
−24i

√
3 a3 + 24a3

)
v91v2v4

+
(
−8i

√
3 a1+8a1

)
v91v4+

(
−384i

√
3 b2−384b2

)
v51v

4
2

+
(
256i

√
3 a2 − 128i

√
3 b3 + 256a2 − 128b3

)
v41v

5
2

+
(
−384i

√
3 b1 − 384b1

)
v41v

4
2

+
(
−512i

√
3 a3 − 512a3

)
v31v

6
2

+
(
512i

√
3 a1 + 512a1

)
v31v

5
2

+
(
256i

√
3 a3 + 256a3

)
v62v5

+
(
−128i

√
3 a1 − 128a1

)
v52v5 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−256a1 = 0
−32a1 = 0
32a1 = 0
128a1 = 0

−256a3 = 0
−64a3 = 0
64a3 = 0
512a3 = 0

−128b1 = 0
−32b1 = 0
32b1 = 0
256b1 = 0

−512i
√
3 a3 − 512a3 = 0

−384i
√
3 b1 − 384b1 = 0

−384i
√
3 b2 − 384b2 = 0

−128i
√
3 a1 − 128a1 = 0

−96i
√
3 a1 − 96a1 = 0

−96i
√
3 a3 − 96a3 = 0

−64i
√
3 a3 + 64a3 = 0

−64i
√
3 b1 − 64b1 = 0

−64i
√
3 b2 − 64b2 = 0

−32i
√
3 b1 + 32b1 = 0

−32i
√
3 b2 + 32b2 = 0

−24i
√
3 a3 + 24a3 = 0

−16i
√
3 a3 − 16a3 = 0

−8i
√
3 a1 + 8a1 = 0

8i
√
3 a1 − 8a1 = 0

16i
√
3 a3 + 16a3 = 0

24i
√
3 a3 − 24a3 = 0

32i
√
3 a1 − 32a1 = 0

32i
√
3 b1 − 32b1 = 0

32i
√
3 b2 − 32b2 = 0

64i
√
3 b1 + 64b1 = 0

64i
√
3 b2 + 64b2 = 0

96i
√
3 a1 + 96a1 = 0

128i
√
3 a3 − 128a3 = 0

128i
√
3 b1 + 128b1 = 0

128i
√
3 b2 + 128b2 = 0

160i
√
3 a3 + 160a3 = 0

256i
√
3 a3 + 256a3 = 0

512i
√
3 a1 + 512a1 = 0

−64i
√
3 a2 + 32i

√
3 b3 − 64a2 + 32b3 = 0

−16i
√
3 a2 + 8i

√
3 b3 + 16a2 − 8b3 = 0

16i
√
3 a2 − 8i

√
3 b3 − 16a2 + 8b3 = 0

64i
√
3 a2 − 32i

√
3 b3 − 64a2 + 32b3 = 0

64i
√
3 a2 − 32i

√
3 b3 + 64a2 − 32b3 = 0

256i
√
3 a2 − 128i

√
3 b3 + 256a2 − 128b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3
√
3 +

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 2
3 − 4y

(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 − 4i

√
3 y2 + 4y2

4x
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

(
−2x6 +2

√
x6 − 8y3 x3 +8y3

) 1
3
,
(
−2x6 +2

√
x6 − 8y3 x3 +8y3

) 2
3
,
√
x6 − 8y3

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−2x6 + 2

√
x6 − 8y3 x3 + 8y3

) 1
3 = v3,

(
−2x6

+ 2
√

x6 − 8y3 x3 + 8y3
) 2

3 = v4,
√

x6 − 8y3 = v5

}

247



The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
−24i

√
3 a3 − 24a3

)
v61v2v4v5

+
(
32i

√
3 b2 + 32b2

)
v21v

2
2v4v5

− 32v101 v3b1 +
(
32i

√
3 b1 + 32b1

)
v1v

2
2v4v5

− 64v91v3v22a3 +
(
128i

√
3 a1 − 128a1

)
v52v5

+
(
−16i

√
3 a3 + 16a3

)
v121 v5

+
(
−64i

√
3 b2 + 64b2

)
v111 v2

+
(
64i

√
3 a2 − 32i

√
3 b3 − 64a2 + 32b3

)
v101 v22

+
(
−64i

√
3 b1 + 64b1

)
v101 v2

+
(
16i

√
3 a2 − 8i

√
3 b3 + 16a2 − 8b3

)
v101 v4

+
(
−160i

√
3 a3+160a3

)
v91v

3
2+
(
96i

√
3 a1−96a1

)
v91v

2
2

+
(
8i
√
3 a1 + 8a1

)
v91v4 +

(
384i

√
3 b2 − 384b2

)
v51v

4
2

+
(
−256i

√
3 a2 + 128i

√
3 b3 + 256a2 − 128b3

)
v41v

5
2

+
(
384i

√
3 b1−384b1

)
v41v

4
2+
(
512i

√
3 a3−512a3

)
v31v

6
2

+
(
−512i

√
3 a1 + 512a1

)
v31v

5
2

+
(
−256i

√
3 a3 + 256a3

)
v62v5 + 32v91v3v2a1

+ 512v31v3v52a3 + 256v41v3v32b1 − 256v31v3v42a1
+ 128v3v5v42a1 + 32v71v3v5b1 − 256v3v5v52a3
+
(
16i

√
3 a3 − 16a3

)
v151 +

(
24i

√
3 a3 + 24a3

)
v91v2v4

+
(
64i

√
3 b2 − 64b2

)
v81v2v5

+
(
−64i

√
3 a2 + 32i

√
3 b3 + 64a2 − 32b3

)
v71v

2
2v5

+
(
64i

√
3 b1 − 64b1

)
v71v2v5

+
(
−16i

√
3 a2 + 8i

√
3 b3 − 16a2 + 8b3

)
v71v4v5

+
(
96i

√
3 a3 − 96a3

)
v61v

3
2v5

+
(
−96i

√
3 a1 + 96a1

)
v61v

2
2v5

+
(
−8i

√
3 a1 − 8a1

)
v61v4v5

+
(
−32i

√
3 b2 − 32b2

)
v51v

2
2v4

+
(
−64i

√
3 a2 + 32i

√
3 b3 − 64a2 + 32b3

)
v41v

3
2v4

+
(
−32i

√
3 b1 − 32b1

)
v41v

2
2v4

+
(
−128i

√
3 a3 − 128a3

)
v31v

4
2v4

+
(
−128i

√
3 b2 + 128b2

)
v21v

4
2v5

+
(
−128i

√
3 b1 + 128b1

)
v1v

4
2v5

+
(
64i

√
3 a3 + 64a3

)
v42v4v5

+
(
−32i

√
3 a1 − 32a1

)
v32v4v5 + 64v61v3v5v22a3

− 32v61v3v5v2a1 − 128v1v3v5v32b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−256a1 = 0
−32a1 = 0
32a1 = 0
128a1 = 0

−256a3 = 0
−64a3 = 0
64a3 = 0
512a3 = 0

−128b1 = 0
−32b1 = 0
32b1 = 0
256b1 = 0

−512i
√
3 a1 + 512a1 = 0

−256i
√
3 a3 + 256a3 = 0

−160i
√
3 a3 + 160a3 = 0

−128i
√
3 a3 − 128a3 = 0

−128i
√
3 b1 + 128b1 = 0

−128i
√
3 b2 + 128b2 = 0

−96i
√
3 a1 + 96a1 = 0

−64i
√
3 b1 + 64b1 = 0

−64i
√
3 b2 + 64b2 = 0

−32i
√
3 a1 − 32a1 = 0

−32i
√
3 b1 − 32b1 = 0

−32i
√
3 b2 − 32b2 = 0

−24i
√
3 a3 − 24a3 = 0

−16i
√
3 a3 + 16a3 = 0

−8i
√
3 a1 − 8a1 = 0

8i
√
3 a1 + 8a1 = 0

16i
√
3 a3 − 16a3 = 0

24i
√
3 a3 + 24a3 = 0

32i
√
3 b1 + 32b1 = 0

32i
√
3 b2 + 32b2 = 0

64i
√
3 a3 + 64a3 = 0

64i
√
3 b1 − 64b1 = 0

64i
√
3 b2 − 64b2 = 0

96i
√
3 a1 − 96a1 = 0

96i
√
3 a3 − 96a3 = 0

128i
√
3 a1 − 128a1 = 0

384i
√
3 b1 − 384b1 = 0

384i
√
3 b2 − 384b2 = 0

512i
√
3 a3 − 512a3 = 0

−256i
√
3 a2 + 128i

√
3 b3 + 256a2 − 128b3 = 0

−64i
√
3 a2 + 32i

√
3 b3 − 64a2 + 32b3 = 0

−64i
√
3 a2 + 32i

√
3 b3 + 64a2 − 32b3 = 0

−16i
√
3 a2 + 8i

√
3 b3 − 16a2 + 8b3 = 0

16i
√
3 a2 − 8i

√
3 b3 + 16a2 − 8b3 = 0

64i
√
3 a2 − 32i

√
3 b3 − 64a2 + 32b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
-> Calling odsolve with the ODE`, diff(y(x), x) = ((2*x^3+y(x)^3)*y(x)/x-3*y(x)*x^2)/(2*y(x)^3-2*x^3), y(x)` *** Sublevel 3

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.328 (sec). Leaf size: 56� �
dsolve(2*x*diff(y(x),x)^3-6*y(x)*diff(y(x),x)^2+x^4=0,y(x), singsol=all)� �

y(x) = −
(
1 + i

√
3
)
x2

4

y(x) =
(
i
√
3− 1

)
x2

4
y(x) = x2

2
y(x) = 1

6c21
+ c1x

3

3

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[2*x*(y'[x])^3-6*y[x]*(y'[x])^2+x^4==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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3.4 problem 6
3.4.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 254

Internal problem ID [6798]
Internal file name [OUTPUT/6045_Tuesday_July_26_2022_11_23_48_PM_44109262/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 6.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y′
2 − xy′ + y = 0

3.4.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p2 − xp+ y = 0

Solving for y from the above results in

y = −p2 + xp (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = −p2 + xp

= −p2 + xp
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = −p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = −c21 + c1x

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p2, then the
above equation becomes

x+ g′(p) = x− 2p
= 0
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Solving the above for p results in

p1 =
x

2

Substituting the above back in (1) results in

y1 =
x2

4

Summary
The solution(s) found are the following

(1)y = −c21 + c1x

(2)y = x2

4
Verification of solutions

y = −c21 + c1x

Verified OK.

y = x2

4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)^2-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = x2

4
y(x) = c1(x− c1)

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 25� �
DSolve[(y'[x])^2-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x− c1)

y(x) → x2

4
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3.5 problem 7
3.5.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 258

Internal problem ID [6799]
Internal file name [OUTPUT/6046_Tuesday_July_26_2022_11_23_49_PM_95069466/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 7.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y − xy′ − ky′
2 = 0

3.5.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

−k p2 − xp+ y = 0

Solving for y from the above results in

y = k p2 + xp (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = k p2 + xp

= k p2 + xp
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = k p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c21k + c1x

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = k p2, then the
above equation becomes

x+ g′(p) = 2kp+ x

= 0
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Solving the above for p results in

p1 = − x

2k

Substituting the above back in (1) results in

y1 = −x2

4k

Summary
The solution(s) found are the following

(1)y = c21k + c1x

(2)y = −x2

4k
Verification of solutions

y = c21k + c1x

Verified OK.

y = −x2

4k

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

260



3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 22� �
dsolve(y(x)=diff(y(x),x)*x+k*diff(y(x),x)^2,y(x), singsol=all)� �

y(x) = −x2

4k
y(x) = c1(c1k + x)

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 28� �
DSolve[y[x]==y'[x]*x+k*(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x+ c1k)

y(x) → −x2

4k
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3.6 problem 8
Internal problem ID [6800]
Internal file name [OUTPUT/6047_Tuesday_July_26_2022_11_23_50_PM_50530793/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 8.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

x8y′
2 + 3xy′ + 9y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
−3

2 +
3
√

1−4yx6

2
x7 (1)

y′ = −
3
(
1 +

√
1− 4yx6

)
2x7 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =
−3

2 +
3
√

−4x6y+1
2

x7

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
3
(
−1 +

√
−4x6y + 1

)
(b3 − a2)

2x7 −
9
(
−1 +

√
−4x6y + 1

)2
a3

4x14

−

(
−
21
(
−1 +

√
−4x6y + 1

)
2x8 − 18y

x2
√
−4x6y + 1

)
(xa2 + ya3 + a1)

+ 3xb2 + 3yb3 + 3b1√
−4x6y + 1x

= 0

Putting the above in normal form gives

−−4b2x14√−4x6y + 1− 12x14b2 + 72x13ya2 + 12x13yb3 + 96x12y2a3 − 12x13b1 + 96x12ya1 + 36
√
−4x6y + 1x7a2 + 6

√
−4x6y + 1x7b3 + 42

√
−4x6y + 1x6ya3 + 42

√
−4x6y + 1x6a1 − 36x7a2 − 6x7b3 + 30x6ya3 − 42x6a1 + 9(−4x6y + 1)

3
2 a3 + 9a3

√
−4x6y + 1− 18a3

4x14
√
−4x6y + 1

= 0

Setting the numerator to zero gives

(6E)
4b2x14

√
−4x6y + 1 + 12x14b2 − 72x13ya2 − 12x13yb3 − 96x12y2a3

+ 12x13b1 − 96x12ya1 − 36
√

−4x6y + 1 x7a2 − 6
√

−4x6y + 1x7b3

− 42
√

−4x6y + 1x6ya3 − 42
√

−4x6y + 1x6a1 + 36x7a2 + 6x7b3

− 30x6ya3 + 42x6a1 − 9
(
−4x6y + 1

) 3
2 a3 − 9a3

√
−4x6y + 1 + 18a3 = 0

Simplifying the above gives

(6E)

4b2x14
√

−4x6y + 1 + 12x14b2 + 72x13ya2 + 12x13yb3 + 72x12y2a3
+ 12x13b1 + 72x12ya1 + 36

(
−4x6y + 1

)
x7a2 + 6

(
−4x6y + 1

)
x7b3

+ 42
(
−4x6y + 1

)
x6ya3 + 42

(
−4x6y + 1

)
x6a1 − 36

√
−4x6y + 1x7a2

− 6
√

−4x6y + 1x7b3 − 42
√

−4x6y + 1x6ya3 − 42
√
−4x6y + 1x6a1

− 9
(
−4x6y + 1

) 3
2 a3 + 18

(
−4x6y + 1

)
a3 − 9a3

√
−4x6y + 1 = 0
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Since the PDE has radicals, simplifying gives

4b2x14
√

−4x6y + 1 + 12x14b2 − 72x13ya2 − 12x13yb3 − 96x12y2a3

+ 12x13b1 − 96x12ya1 − 36
√
−4x6y + 1x7a2 − 6

√
−4x6y + 1x7b3

− 6
√

−4x6y + 1x6ya3 + 36x7a2 + 6x7b3 − 42
√
−4x6y + 1 x6a1

− 30x6ya3 + 42x6a1 − 18a3
√
−4x6y + 1 + 18a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−4x6y + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−4x6y + 1 = v3
}

The above PDE (6E) now becomes

(7E)4b2v141 v3 − 72v131 v2a2 − 96v121 v22a3 + 12v141 b2 − 12v131 v2b3 − 96v121 v2a1
+ 12v131 b1 − 36v3v71a2 − 6v3v61v2a3 − 6v3v71b3 − 42v3v61a1
+ 36v71a2 − 30v61v2a3 + 6v71b3 + 42v61a1 − 18a3v3 + 18a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)4b2v141 v3 + 12v141 b2 + (−72a2 − 12b3) v131 v2 + 12v131 b1 − 96v121 v22a3
− 96v121 v2a1 + (−36a2 − 6b3) v71v3 + (36a2 + 6b3) v71 − 6v3v61v2a3
− 30v61v2a3 − 42v3v61a1 + 42v61a1 − 18a3v3 + 18a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−96a1 = 0
−42a1 = 0
42a1 = 0

−96a3 = 0
−30a3 = 0
−18a3 = 0
−6a3 = 0
18a3 = 0
12b1 = 0
4b2 = 0
12b2 = 0

−72a2 − 12b3 = 0
−36a2 − 6b3 = 0
36a2 + 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −6a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −6y

265



Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −6y −
(
−3

2 +
3
√

−4x6y+1
2

x7

)
(x)

= −12x6y − 3
√
−4x6y + 1 + 3

2x6

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−12x6y−3
√

−4x6y+1+3
2x6

dy

Which results in

S = − ln (y)
6 +

arctanh
(√

−4x6y + 1
)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
−3

2 +
3
√

−4x6y+1
2

x7
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
x
√
−4x6y + 1

Sy =
−1− 1√

−4x6y+1

6y
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
6 +

arctanh
(√

1− 4yx6
)

3 = c1

Which simplifies to

− ln (y)
6 +

arctanh
(√

1− 4yx6
)

3 = c1

Summary
The solution(s) found are the following

(1)− ln (y)
6 +

arctanh
(√

1− 4yx6
)

3 = c1

Verification of solutions

− ln (y)
6 +

arctanh
(√

1− 4yx6
)

3 = c1

Verified OK.
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Solving equation (2)

Writing the ode as

y′ = −
3
(√

−4x6y + 1 + 1
)

2x7

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
3
(√

−4x6y + 1 + 1
)
(b3 − a2)

2x7 −
9
(√

−4x6y + 1 + 1
)2

a3

4x14

−

(
18y

x2
√
−4x6y + 1

+
21
√

−4x6y+1
2 + 21

2
x8

)
(xa2 + ya3 + a1)

− 3(xb2 + yb3 + b1)
x
√
−4x6y + 1

= 0

Putting the above in normal form gives

−−4b2x14√−4x6y + 1 + 12x14b2 − 72x13ya2 − 12x13yb3 − 96x12y2a3 + 12x13b1 − 96x12ya1 + 36
√
−4x6y + 1x7a2 + 6

√
−4x6y + 1x7b3 + 42

√
−4x6y + 1 x6ya3 + 42

√
−4x6y + 1x6a1 + 36x7a2 + 6x7b3 − 30x6ya3 + 42x6a1 + 9(−4x6y + 1)

3
2 a3 + 9a3

√
−4x6y + 1 + 18a3

4x14
√
−4x6y + 1

= 0

Setting the numerator to zero gives

(6E)
4b2x14

√
−4x6y + 1− 12x14b2 + 72x13ya2 + 12x13yb3 + 96x12y2a3

− 12x13b1 + 96x12ya1 − 36
√
−4x6y + 1x7a2 − 6

√
−4x6y + 1x7b3

− 42
√

−4x6y + 1x6ya3 − 42
√

−4x6y + 1x6a1 − 36x7a2 − 6x7b3

+ 30x6ya3 − 42x6a1 − 9
(
−4x6y + 1

) 3
2 a3 − 9a3

√
−4x6y + 1− 18a3 = 0
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Simplifying the above gives

(6E)

4b2x14
√

−4x6y + 1− 12x14b2 − 72x13ya2 − 12x13yb3 − 72x12y2a3
− 12x13b1 − 72x12ya1 − 36

(
−4x6y + 1

)
x7a2 − 6

(
−4x6y + 1

)
x7b3

− 42
(
−4x6y + 1

)
x6ya3 − 42

(
−4x6y + 1

)
x6a1 − 36

√
−4x6y + 1x7a2

− 6
√

−4x6y + 1x7b3 − 42
√

−4x6y + 1 x6ya3 − 42
√

−4x6y + 1x6a1

− 9
(
−4x6y + 1

) 3
2 a3 − 18

(
−4x6y + 1

)
a3 − 9a3

√
−4x6y + 1 = 0

Since the PDE has radicals, simplifying gives

4b2x14
√

−4x6y + 1− 12x14b2 + 72x13ya2 + 12x13yb3 + 96x12y2a3

− 12x13b1 + 96x12ya1 − 36
√

−4x6y + 1x7a2 − 6
√

−4x6y + 1x7b3

− 6
√

−4x6y + 1x6ya3 − 36x7a2 − 6x7b3 − 42
√
−4x6y + 1x6a1

+ 30x6ya3 − 42x6a1 − 18a3
√
−4x6y + 1− 18a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−4x6y + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

−4x6y + 1 = v3
}

The above PDE (6E) now becomes

(7E)4b2v141 v3 + 72v131 v2a2 + 96v121 v22a3 − 12v141 b2 + 12v131 v2b3 + 96v121 v2a1
− 12v131 b1 − 36v3v71a2 − 6v3v61v2a3 − 6v3v71b3 − 42v3v61a1
− 36v71a2 + 30v61v2a3 − 6v71b3 − 42v61a1 − 18a3v3 − 18a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)4b2v141 v3 − 12v141 b2 + (72a2 + 12b3) v131 v2 − 12v131 b1 + 96v121 v22a3
+ 96v121 v2a1 + (−36a2 − 6b3) v71v3 + (−36a2 − 6b3) v71 − 6v3v61v2a3
+ 30v61v2a3 − 42v3v61a1 − 42v61a1 − 18a3v3 − 18a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−42a1 = 0
96a1 = 0

−18a3 = 0
−6a3 = 0
30a3 = 0
96a3 = 0

−12b1 = 0
−12b2 = 0

4b2 = 0
−36a2 − 6b3 = 0
72a2 + 12b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −6a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −6y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −6y −
(
−
3
(√

−4x6y + 1 + 1
)

2x7

)
(x)

= −12x6y + 3
√
−4x6y + 1 + 3

2x6

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−12x6y+3
√

−4x6y+1+3
2x6

dy

Which results in

S = − ln (y)
6 −

arctanh
(√

−4x6y + 1
)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
3
(√

−4x6y + 1 + 1
)

2x7

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x
√
−4x6y + 1

Sy =
−1 + 1√

−4x6y+1

6y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
6 −

arctanh
(√

1− 4yx6
)

3 = c1

Which simplifies to

− ln (y)
6 −

arctanh
(√

1− 4yx6
)

3 = c1

Summary
The solution(s) found are the following

(1)− ln (y)
6 −

arctanh
(√

1− 4yx6
)

3 = c1

Verification of solutions

− ln (y)
6 −

arctanh
(√

1− 4yx6
)

3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 45� �
dsolve(x^8*diff(y(x),x)^2+3*x*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)� �

y(x) = 1
4x6

y(x) = −x3 + c1
x3c21

y(x) = −x3 − c1
x3c21

273



3 Solution by Mathematica
Time used: 0.583 (sec). Leaf size: 130� �
DSolve[x^8*(y'[x])^2+3*x*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

x√4x6y(x)− 1 arctan
(√

4x6y(x)− 1
)

3
√

x2 − 4x8y(x)
− 1

6 log(y(x)) = c1, y(x)


Solve

√x2 − 4x8y(x) arctan
(√

4x6y(x)− 1
)

3x
√

4x6y(x)− 1
− 1

6 log(y(x)) = c1, y(x)


y(x) → 0
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3.7 problem 9
Internal problem ID [6801]
Internal file name [OUTPUT/6048_Tuesday_July_26_2022_11_23_52_PM_64795675/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 9.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

x4y′
2 + 2yy′x3 = 4

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −yx+
√
y2x2 + 4

x2 (1)

y′ = −yx−
√
y2x2 + 4

x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −xy −
√
x2y2 + 4
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
xy −

√
x2y2 + 4

)
(b3 − a2)

x2 −
(
xy −

√
x2y2 + 4

)2
a3

x4

−

−
y − x y2√

x2y2+4

x2 + 2xy − 2
√
x2y2 + 4

x3

 (xa2 + ya3 + a1)

+

(
x− y x2√

x2y2+4

)
(xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−x5yb2 − 3x3y3a3 − 2b2x4√x2y2 + 4 + 2
√
x2y2 + 4x2y2a3 + x4yb1 − x3y2a1 −

√
x2y2 + 4x3b1 +

√
x2y2 + 4x2ya1 + (x2y2 + 4)

3
2 a3 − 4x2a2 − 4x2b3 − 16xya3 − 8xa1

x4
√
x2y2 + 4

= 0

Setting the numerator to zero gives

(6E)−x5yb2 + 3x3y3a3 + 2b2x4
√

x2y2 + 4− 2
√

x2y2 + 4x2y2a3

− x4yb1 + x3y2a1 +
√

x2y2 + 4x3b1 −
√

x2y2 + 4x2ya1

−
(
x2y2 + 4

) 3
2 a3 + 4x2a2 + 4x2b3 + 16xya3 + 8xa1 = 0

Simplifying the above gives

(6E)−x5yb2−x4y2a2−x4y2b3−x3y3a3+2b2x4
√
x2y2 + 4−2

√
x2y2 + 4x2y2a3

− x4yb1 − x3y2a1 +
(
x2y2 + 4

)
x2a2 +

(
x2y2 + 4

)
x2b3 + 4

(
x2y2 + 4

)
xya3

+
√
x2y2 + 4x3b1−

√
x2y2 + 4x2ya1−

(
x2y2+4

) 3
2 a3+2

(
x2y2+4

)
xa1 = 0
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Since the PDE has radicals, simplifying gives

−x5yb2 + 3x3y3a3 + 2b2x4
√
x2y2 + 4− x4yb1 + x3y2a1

− 3
√

x2y2 + 4x2y2a3 +
√

x2y2 + 4x3b1 −
√

x2y2 + 4x2ya1

+ 4x2a2 + 4x2b3 + 16xya3 + 8xa1 − 4
√

x2y2 + 4 a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2y2 + 4

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2y2 + 4 = v3

}
The above PDE (6E) now becomes

(7E)3v31v32a3 − v51v2b2 + v31v
2
2a1 − 3v3v21v22a3 − v41v2b1 + 2b2v41v3 − v3v

2
1v2a1

+ v3v
3
1b1 + 4v21a2 + 16v1v2a3 + 4v21b3 + 8v1a1 − 4v3a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v51v2b2 − v41v2b1 + 2b2v41v3 + 3v31v32a3 + v31v
2
2a1 + v3v

3
1b1 − 3v3v21v22a3

− v3v
2
1v2a1 + (4a2 + 4b3) v21 + 16v1v2a3 + 8v1a1 − 4v3a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
8a1 = 0

−4a3 = 0
−3a3 = 0
3a3 = 0
16a3 = 0
−b1 = 0
−b2 = 0
2b2 = 0

4a2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−xy −

√
x2y2 + 4
x2

)
(−x)

=
√
x2y2 + 4

x
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

x2y2+4
x

dy

Which results in

S =
x ln

(
x2y√
x2 +

√
x2y2 + 4

)
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy −
√
x2y2 + 4
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y√
x2y2 + 4

Sy =
x√

x2y2 + 4
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
yx+

√
y2x2 + 4

)
= ln (x) + c1

Which simplifies to

ln
(
yx+

√
y2x2 + 4

)
= ln (x) + c1

Which gives

y = (e2c1x2 − 4) e−c1

2x2

Summary
The solution(s) found are the following

(1)y = (e2c1x2 − 4) e−c1

2x2

Verification of solutions

y = (e2c1x2 − 4) e−c1

2x2

Verified OK.
Solving equation (2)
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Writing the ode as

y′ = −xy +
√
x2y2 + 4
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(
xy +

√
x2y2 + 4

)
(b3 − a2)

x2 −
(
xy +

√
x2y2 + 4

)2
a3

x4

−

−
y + x y2√

x2y2+4

x2 + 2xy + 2
√
x2y2 + 4

x3

 (xa2 + ya3 + a1)

+

(
x+ y x2√

x2y2+4

)
(xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−−x5yb2 + 3x3y3a3 − 2b2x4√x2y2 + 4 + 2
√
x2y2 + 4x2y2a3 − x4yb1 + x3y2a1 −

√
x2y2 + 4x3b1 +

√
x2y2 + 4x2ya1 + (x2y2 + 4)

3
2 a3 + 4x2a2 + 4x2b3 + 16xya3 + 8xa1

x4
√
x2y2 + 4

= 0

Setting the numerator to zero gives

(6E)x5yb2 − 3x3y3a3 + 2b2x4
√

x2y2 + 4− 2
√

x2y2 + 4x2y2a3

+ x4yb1 − x3y2a1 +
√
x2y2 + 4x3b1 −

√
x2y2 + 4x2ya1

−
(
x2y2 + 4

) 3
2 a3 − 4x2a2 − 4x2b3 − 16xya3 − 8xa1 = 0
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Simplifying the above gives

(6E)x5yb2 + x4y2a2 + x4y2b3 + x3y3a3 + 2b2x4
√

x2y2 + 4− 2
√

x2y2 + 4x2y2a3
+ x4yb1 + x3y2a1 −

(
x2y2 + 4

)
x2a2 −

(
x2y2 + 4

)
x2b3 − 4

(
x2y2 + 4

)
xya3

+
√

x2y2 + 4x3b1−
√
x2y2 + 4x2ya1−

(
x2y2+4

) 3
2 a3−2

(
x2y2+4

)
xa1 = 0

Since the PDE has radicals, simplifying gives

x5yb2 − 3x3y3a3 + 2b2x4
√

x2y2 + 4 + x4yb1 − x3y2a1

− 3
√

x2y2 + 4x2y2a3 +
√

x2y2 + 4x3b1 −
√

x2y2 + 4x2ya1

− 4x2a2 − 4x2b3 − 16xya3 − 8xa1 − 4
√
x2y2 + 4 a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2y2 + 4

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2y2 + 4 = v3

}
The above PDE (6E) now becomes

(7E)−3v31v32a3 + v51v2b2 − v31v
2
2a1 − 3v3v21v22a3 + v41v2b1 + 2b2v41v3

− v3v
2
1v2a1 + v3v

3
1b1 − 4v21a2 − 16v1v2a3 − 4v21b3 − 8v1a1 − 4v3a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)v51v2b2 + v41v2b1 + 2b2v41v3 − 3v31v32a3 − v31v
2
2a1 + v3v

3
1b1 − 3v3v21v22a3

− v3v
2
1v2a1 + (−4a2 − 4b3) v21 − 16v1v2a3 − 8v1a1 − 4v3a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−8a1 = 0
−a1 = 0

−16a3 = 0
−4a3 = 0
−3a3 = 0
2b2 = 0

−4a2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−xy +

√
x2y2 + 4
x2

)
(−x)

= −
√
x2y2 + 4

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√

x2y2+4
x

dy

Which results in

S = −
x ln

(
x2y√
x2 +

√
x2y2 + 4

)
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy +
√
x2y2 + 4
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y√
x2y2 + 4

Sy = − x√
x2y2 + 4
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
yx+

√
y2x2 + 4

)
= ln (x) + c1

Which simplifies to

− ln
(
yx+

√
y2x2 + 4

)
= ln (x) + c1

Which gives

y = −(4 e2c1x2 − 1) e−c1

2x2

Summary
The solution(s) found are the following

(1)y = −(4 e2c1x2 − 1) e−c1

2x2

Verification of solutions

y = −(4 e2c1x2 − 1) e−c1

2x2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 49� �
dsolve(x^4*diff(y(x),x)^2+2*x^3*y(x)*diff(y(x),x)-4=0,y(x), singsol=all)� �

y(x) = −2i
x

y(x) = 2i
x

y(x) = 2 sinh (− ln (x) + c1)
x

y(x) = −2 sinh (− ln (x) + c1)
x

3 Solution by Mathematica
Time used: 0.688 (sec). Leaf size: 71� �
DSolve[x^4*(y'[x])^2+2*x^3*y[x]*y'[x]-4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 4ec1
x2 − e−c1

4
y(x) → e−c1

4 − 4ec1
x2

y(x) → −2i
x

y(x) → 2i
x
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3.8 problem 10
3.8.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 288

Internal problem ID [6802]
Internal file name [OUTPUT/6049_Tuesday_July_26_2022_11_23_53_PM_99466071/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 10.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′
2 − 2yy′ = −4x

3.8.1 Solving as dAlembert ode

Let p = y′ the ode becomes

x p2 − 2yp = −4x

Solving for y from the above results in

y = x(p2 + 4)
2p (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p2 + 4
2p

g = 0

Hence (2) becomes

p− p2 + 4
2p = x

(
1− p2 + 4

2p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p2 + 4
2p = 0

Solving for p from the above gives

p = 2
p = −2

Substituting these in (1A) gives

y = −2x
y = 2x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)2+4

2p(x)

x
(
1− p(x)2+4

2p(x)2

) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = −1
x

q(x) = 0
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Hence the ode is

p′(x)− p(x)
x

= 0

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dxµp = 0

d
dx

(p
x

)
= 0

Integrating gives
p

x
= c1

Dividing both sides by the integrating factor µ = 1
x
results in

p(x) = c1x

Substituing the above solution for p in (2A) gives

y = c21x
2 + 4
2c1

Summary
The solution(s) found are the following

(1)y = −2x
(2)y = 2x

(3)y = c21x
2 + 4
2c1
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Verification of solutions

y = −2x

Verified OK.
y = 2x

Verified OK.

y = c21x
2 + 4
2c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 30� �
dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+4*x=0,y(x), singsol=all)� �

y(x) = −2x
y(x) = 2x

y(x) = 4c21 + x2

2c1
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3 Solution by Mathematica
Time used: 0.202 (sec). Leaf size: 43� �
DSolve[x*(y'[x])^2-2*y[x]*y'[x]+4*x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2x cosh(− log(x) + c1)
y(x) → −2x cosh(log(x) + c1)
y(x) → −2x
y(x) → 2x
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3.9 problem 11
Internal problem ID [6803]
Internal file name [OUTPUT/6050_Tuesday_July_26_2022_11_23_55_PM_24219364/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 11.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

3x4y′
2 − xy′ − y = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1 +
√
1 + 12x2y

6x3 (1)

y′ = −−1 +
√
1 + 12x2y

6x3 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = 1 +
√
12y x2 + 1
6x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
1 +

√
12y x2 + 1

)
(b3 − a2)

6x3 −
(
1 +

√
12y x2 + 1

)2
a3

36x6

−
(
−1 +

√
12y x2 + 1
2x4 + 2y

x2
√
12y x2 + 1

)
(xa2 + ya3 + a1)

− xb2 + yb3 + b1

x
√
12y x2 + 1

= 0

Putting the above in normal form gives

−−36b2x6√12y x2 + 1 + 36x6b2 − 72x5ya2 − 36x5yb3 − 144x4y2a3 + 36x5b1 − 144x4ya1 − 12
√
12y x2 + 1x3a2 − 6

√
12y x2 + 1x3b3 − 18

√
12y x2 + 1x2ya3 + (12y x2 + 1)

3
2 a3 − 18

√
12y x2 + 1x2a1 − 12x3a2 − 6x3b3 + 6x2ya3 − 18x2a1 + a3

√
12y x2 + 1 + 2a3

36x6
√
12y x2 + 1

= 0

Setting the numerator to zero gives

(6E)
36b2x6

√
12y x2 + 1− 36x6b2 + 72x5ya2 + 36x5yb3 + 144x4y2a3

− 36x5b1 + 144x4ya1 + 12
√

12y x2 + 1x3a2 + 6
√

12y x2 + 1x3b3

+ 18
√

12y x2 + 1x2ya3 −
(
12y x2 + 1

) 3
2 a3 + 18

√
12y x2 + 1 x2a1

+ 12x3a2 + 6x3b3 − 6x2ya3 + 18x2a1 − a3
√
12y x2 + 1− 2a3 = 0

Simplifying the above gives

(6E)

36b2x6
√

12y x2 + 1− 36x6b2 − 72x5ya2 − 36x5yb3 − 72x4y2a3
+ 12

(
12y x2 + 1

)
x3a2 + 6

(
12y x2 + 1

)
x3b3 + 18

(
12y x2 + 1

)
x2ya3

− 36x5b1 − 72x4ya1 + 18
(
12y x2 + 1

)
x2a1 + 12

√
12y x2 + 1x3a2

+ 6
√

12y x2 + 1x3b3 + 18
√
12y x2 + 1x2ya3 −

(
12y x2 + 1

) 3
2 a3

+ 18
√

12y x2 + 1x2a1 − 2
(
12y x2 + 1

)
a3 − a3

√
12y x2 + 1 = 0
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Since the PDE has radicals, simplifying gives

36b2x6
√
12y x2 + 1−36x6b2+72x5ya2+36x5yb3+144x4y2a3−36x5b1+144x4ya1

+ 12
√

12y x2 + 1x3a2 + 6
√
12y x2 + 1x3b3 + 6

√
12y x2 + 1x2ya3 + 12x3a2

+ 6x3b3 + 18
√

12y x2 + 1x2a1 − 6x2ya3 + 18x2a1 − 2a3
√

12y x2 + 1− 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
12y x2 + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
12y x2 + 1 = v3

}
The above PDE (6E) now becomes

(7E)36b2v61v3 + 72v51v2a2 + 144v41v22a3 − 36v61b2 + 36v51v2b3 + 144v41v2a1
− 36v51b1 + 12v3v31a2 + 6v3v21v2a3 + 6v3v31b3 + 18v3v21a1
+ 12v31a2 − 6v21v2a3 + 6v31b3 + 18v21a1 − 2a3v3 − 2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)36b2v61v3 − 36v61b2 + (72a2 + 36b3) v51v2 − 36v51b1 + 144v41v22a3
+ 144v41v2a1 + (12a2 + 6b3) v31v3 + (12a2 + 6b3) v31 + 6v3v21v2a3
− 6v21v2a3 + 18v3v21a1 + 18v21a1 − 2a3v3 − 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

18a1 = 0
144a1 = 0
−6a3 = 0
−2a3 = 0
6a3 = 0

144a3 = 0
−36b1 = 0
−36b2 = 0
36b2 = 0

12a2 + 6b3 = 0
72a2 + 36b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
1 +

√
12y x2 + 1
6x3

)
(x)

= −12y x2 −
√
12y x2 + 1− 1
6x2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−12y x2−
√

12y x2+1−1
6x2

dy

Which results in

S = − ln (y)
2 − arctanh

(√
12y x2 + 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 1 +
√
12y x2 + 1
6x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x
√
12y x2 + 1

Sy =
−1 + 1√

12y x2+1

2y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
2 − arctanh

(√
1 + 12x2y

)
= c1

Which simplifies to

− ln (y)
2 − arctanh

(√
1 + 12x2y

)
= c1

Summary
The solution(s) found are the following

(1)− ln (y)
2 − arctanh

(√
1 + 12x2y

)
= c1

Verification of solutions

− ln (y)
2 − arctanh

(√
1 + 12x2y

)
= c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ = −−1 +
√
12y x2 + 1
6x3

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

(
−1 +

√
12y x2 + 1

)
(b3 − a2)

6x3 −
(
−1 +

√
12y x2 + 1

)2
a3

36x6

−
(
− 2y
x2
√
12y x2 + 1

+ −1 +
√
12y x2 + 1
2x4

)
(xa2 + ya3 + a1)

+ xb2 + yb3 + b1

x
√
12y x2 + 1

= 0

Putting the above in normal form gives

−−36b2x6√12y x2 + 1− 36x6b2 + 72x5ya2 + 36x5yb3 + 144x4y2a3 − 36x5b1 + 144x4ya1 − 12
√
12y x2 + 1x3a2 − 6

√
12y x2 + 1x3b3 − 18

√
12y x2 + 1 x2ya3 + (12y x2 + 1)

3
2 a3 − 18

√
12y x2 + 1x2a1 + 12x3a2 + 6x3b3 − 6x2ya3 + 18x2a1 + a3

√
12y x2 + 1− 2a3

36x6
√
12y x2 + 1

= 0

Setting the numerator to zero gives

(6E)
36b2x6

√
12y x2 + 1 + 36x6b2 − 72x5ya2 − 36x5yb3 − 144x4y2a3

+ 36x5b1 − 144x4ya1 + 12
√
12y x2 + 1x3a2 + 6

√
12y x2 + 1x3b3

+ 18
√

12y x2 + 1x2ya3 −
(
12y x2 + 1

) 3
2 a3 + 18

√
12y x2 + 1 x2a1

− 12x3a2 − 6x3b3 + 6x2ya3 − 18x2a1 − a3
√

12y x2 + 1 + 2a3 = 0
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Simplifying the above gives

(6E)

36b2x6
√

12y x2 + 1 + 36x6b2 + 72x5ya2 + 36x5yb3 + 72x4y2a3
− 12

(
12y x2 + 1

)
x3a2 − 6

(
12y x2 + 1

)
x3b3 − 18

(
12y x2 + 1

)
x2ya3

+ 36x5b1 + 72x4ya1 − 18
(
12y x2 + 1

)
x2a1 + 12

√
12y x2 + 1x3a2

+ 6
√

12y x2 + 1x3b3 + 18
√
12y x2 + 1 x2ya3 −

(
12y x2 + 1

) 3
2 a3

+ 18
√

12y x2 + 1 x2a1 + 2
(
12y x2 + 1

)
a3 − a3

√
12y x2 + 1 = 0

Since the PDE has radicals, simplifying gives

36b2x6
√
12y x2 + 1+36x6b2−72x5ya2−36x5yb3−144x4y2a3+36x5b1−144x4ya1

+ 12
√

12y x2 + 1x3a2 + 6
√
12y x2 + 1x3b3 + 6

√
12y x2 + 1x2ya3 − 12x3a2

− 6x3b3 + 18
√

12y x2 + 1x2a1 + 6x2ya3 − 18x2a1 − 2a3
√

12y x2 + 1 + 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
12y x2 + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
12y x2 + 1 = v3

}
The above PDE (6E) now becomes

(7E)36b2v61v3 − 72v51v2a2 − 144v41v22a3 + 36v61b2 − 36v51v2b3 − 144v41v2a1
+ 36v51b1 + 12v3v31a2 + 6v3v21v2a3 + 6v3v31b3 + 18v3v21a1
− 12v31a2 + 6v21v2a3 − 6v31b3 − 18v21a1 − 2a3v3 + 2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)36b2v61v3 + 36v61b2 + (−72a2 − 36b3) v51v2 + 36v51b1 − 144v41v22a3
− 144v41v2a1 + (12a2 + 6b3) v31v3 + (−12a2 − 6b3) v31
+ 6v3v21v2a3 + 6v21v2a3 + 18v3v21a1 − 18v21a1 − 2a3v3 + 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−144a1 = 0
−18a1 = 0
18a1 = 0

−144a3 = 0
−2a3 = 0
2a3 = 0
6a3 = 0
36b1 = 0
36b2 = 0

−72a2 − 36b3 = 0
−12a2 − 6b3 = 0
12a2 + 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
−−1 +

√
12y x2 + 1
6x3

)
(x)

= −12y x2 +
√
12y x2 + 1− 1
6x2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−12y x2+
√

12y x2+1−1
6x2

dy

Which results in

S = − ln (y)
2 + arctanh

(√
12y x2 + 1

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−1 +
√
12y x2 + 1
6x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
x
√
12y x2 + 1

Sy =
− 1√

12y x2+1
− 1

2y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)
2 + arctanh

(√
1 + 12x2y

)
= c1

Which simplifies to

− ln (y)
2 + arctanh

(√
1 + 12x2y

)
= c1

Summary
The solution(s) found are the following

(1)− ln (y)
2 + arctanh

(√
1 + 12x2y

)
= c1

Verification of solutions

− ln (y)
2 + arctanh

(√
1 + 12x2y

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 97� �
dsolve(3*x^4*diff(y(x),x)^2-x*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = − 1
12x2

y(x) = −i
√
3 c1 − 3x
3c21x

y(x) = i
√
3 c1 − 3x
3x c21

y(x) = i
√
3 c1 − 3x
3x c21

y(x) = −i
√
3 c1 − 3x
3c21x

3 Solution by Mathematica
Time used: 0.512 (sec). Leaf size: 123� �
DSolve[3*x^4*(y'[x])^2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−x
√

12x2y(x) + 1arctanh
(√

12x2y(x) + 1
)

√
12x4y(x) + x2

− 1
2 log(y(x)) = c1, y(x)


Solve

x√12x2y(x) + 1arctanh
(√

12x2y(x) + 1
)

√
12x4y(x) + x2

− 1
2 log(y(x)) = c1, y(x)


y(x) → 0
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3.10 problem 12
3.10.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 306

Internal problem ID [6804]
Internal file name [OUTPUT/6051_Tuesday_July_26_2022_11_23_57_PM_14832249/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 12.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _dAlembert]

xy′
2 + (x− y) y′ − y = −1

3.10.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

x p2 + (x− y) p− y = −1

Solving for y from the above results in

y = x p2 + xp+ 1
p+ 1 (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = xp+ 1
p+ 1

= xp+ 1
p+ 1
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = 1
p+ 1

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ 1
c1 + 1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = 1
p+1 , then the

above equation becomes

x+ g′(p) = x− 1
(p+ 1)2

= 0

307



Solving the above for p results in

p1 = −
√
x− 1√
x

p2 = −
√
x+ 1√
x

Substituting the above back in (1) results in

y1 = 2
√
x− x

y2 = −x− 2
√
x

Summary
The solution(s) found are the following

(1)y = c1x+ 1
c1 + 1

(2)y = 2
√
x− x

(3)y = −x− 2
√
x

Verification of solutions

y = c1x+ 1
c1 + 1

Verified OK.

y = 2
√
x− x

Verified OK.

y = −x− 2
√
x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 44� �
dsolve(x*diff(y(x),x)^2+(x-y(x))*diff(y(x),x)+1-y(x)=0,y(x), singsol=all)� �

y(x) = −x− 2
√
x

y(x) = −x+ 2
√
x

y(x) = c21x+ c1x+ 1
c1 + 1

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 46� �
DSolve[x*(y'[x])^2+(x-y[x])*y'[x]+1-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x+ 1
1 + c1

y(x) → −x− 2
√
x

y(x) → 2
√
x− x
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3.11 problem 13
3.11.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 310

Internal problem ID [6805]
Internal file name [OUTPUT/6052_Tuesday_July_26_2022_11_23_59_PM_12534222/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 13.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _Clairaut]

y′(xy′ − y + k) = −a

3.11.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

p(xp+ k − y) = −a

Solving for y from the above results in

y = p2x+ kp+ a

p
(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = xp+ kp+ a

p

= xp+ kp+ a

p
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = kp+ a

p

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ c1k + a

c1

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = kp+a
p

, then the
above equation becomes

x+ g′(p) = x+ k

p
− kp+ a

p2

= 0
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Solving the above for p results in

p1 =
√
xa

x

p2 = −
√
xa

x

Substituting the above back in (1) results in

y1 =
2xa+

√
xa k√

xa

y2 =
√
xa k − 2xa√

xa

Summary
The solution(s) found are the following

(1)y = c1x+ c1k + a

c1

(2)y = 2xa+
√
xa k√

xa

(3)y =
√
xa k − 2xa√

xa

Verification of solutions

y = c1x+ c1k + a

c1

Verified OK.

y = 2xa+
√
xa k√

xa

Verified OK.

y =
√
xa k − 2xa√

xa

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 42� �
dsolve(diff(y(x),x)*( x*diff(y(x),x)-y(x)+k )+a=0,y(x), singsol=all)� �

y(x) = k − 2
√
ax

y(x) = k + 2
√
ax

y(x) = c21x+ c1k + a

c1

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 58� �
DSolve[y'[x]*( x*y'[x]-y[x]+k )+a==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a

c1
+ k + c1x

y(x) → Indeterminate
y(x) → k − 2

√
a
√
x

y(x) → 2
√
a
√
x+ k
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3.12 problem 14
Internal problem ID [6806]
Internal file name [OUTPUT/6053_Tuesday_July_26_2022_11_24_01_PM_41120136/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 14.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

x6y′
3 − 3xy′ − 3y = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

y′ =

((
12yx+4

√
9y2x3−4

x

)
x2
) 1

3

2x2 + 2

x

((
12yx+4

√
9y2x3−4

x

)
x2
) 1

3

x
(1)

y′ =

−

((
12yx+4

√
9y2x3−4

x

)
x2
) 1

3

4x2 − 1

x

((
12yx+4

√
9y2x3−4

x

)
x2
) 1

3
+

i
√
3


((

12yx+4
√

9y2x3−4
x

)
x2
) 1

3

2x2 − 2

x

((
12yx+4

√
9y2x3−4

x

)
x2
) 1

3


2

x
(2)

y′ =

−

((
12yx+4

√
9y2x3−4

x

)
x2
) 1

3

4x2 − 1

x

((
12yx+4

√
9y2x3−4

x

)
x2
) 1

3
−

i
√
3


((

12yx+4
√

9y2x3−4
x

)
x2
) 1

3

2x2 − 2

x

((
12yx+4

√
9y2x3−4

x

)
x2
) 1

3


2

x
(3)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =

((
12xy + 4

√
9x3y2−4

x

)
x2
) 2

3

+ 4x

2x3
((

12xy + 4
√

9x3y2−4
x

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +

(((
12xy + 4

√
9x3y2−4

x

)
x2
) 2

3

+ 4x
)
(b3 − a2)

2x3
((

12xy + 4
√

9x3y2−4
x

)
x2
) 1

3

−

(((
12xy + 4

√
9x3y2−4

x

)
x2
) 2

3

+ 4x
)2

a3

4x6
((

12xy + 4
√

9x3y2−4
x

)
x2
) 2

3

−



2

12y+
54x y2−

2
(
9x3y2−4

)
x2√

9x3y2−4
x

x2

3 +
4
(
12xy+4

√
9x3y2−4

x

)
x

3((
12xy+4

√
9x3y2−4

x

)
x2
) 1

3
+ 4

2x3
((

12xy + 4
√

9x3y2−4
x

)
x2
) 1

3

−
3
(((

12xy + 4
√

9x3y2−4
x

)
x2
) 2

3

+ 4x
)

2x4
((

12xy + 4
√

9x3y2−4
x

)
x2
) 1

3

−

(((
12xy + 4

√
9x3y2−4

x

)
x2
) 2

3

+ 4x
)((

12y + 54x y2−
2
(
9x3y2−4

)
x2√

9x3y2−4
x

)
x2 + 2

(
12xy + 4

√
9x3y2−4

x

)
x

)

6x3
((

12xy + 4
√

9x3y2−4
x

)
x2
) 4

3


(xa2

+ ya3 + a1)−


12x+ 36y x2√

9x3y2−4
x

3
((

12xy + 4
√

9x3y2−4
x

)
x2
) 2

3

x

−

(((
12xy + 4

√
9x3y2−4

x

)
x2
) 2

3

+ 4x
)(

12x+ 36y x2√
9x3y2−4

x

)

6x
((

12xy + 4
√

9x3y2−4
x

)
x2
) 4

3

 (xb2+yb3+b1) = 0
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Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.x, y,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 1
3

,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 2
3

,

√
9x3y2 − 4

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 1
3

= v3,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 2
3

= v4,

√
9x3y2 − 4

x
= v5


The above PDE (6E) now becomes

(7E)

−48v21
(
4v32

2
3v51b2 − 3v5v32

2
3v71v2b2 − 3v5v42

1
3v41v2a2 − 2v5v42

1
3v41v2b3

− 6v5v42
1
3v31v

2
2a3 − 6v5v42

1
3v31v2a1 + 6v5v32

2
3v21v2a3 − 12v5v51v2a2

− 8v5v51v2b3 − 18v5v41v2a1 + 6v42
1
3v21a2 + 4v42

1
3v21b3 + 2v5v42

1
3a3

+ 10v42
1
3v1a1 − 6v71v2b2 − 36v61v22a2 − 24v61v22b3 − 6v61v2b1 − 54v51v22a1

− 4v21v2a3 − 2v5v61b2 − 2v5v51b1 − 8v32
2
3a3 − 4v5v1a3 − 6v42

1
3v51v

2
2b3

− 18v42
1
3v41v

3
2a3 + v5v42

1
3v51b2 + 3v42

1
3v51v2b1 − 18v42

1
3v41v

2
2a1

+ v5v42
1
3v41b1 + 12v31a2 + 8v31b3 + 20v21a1 + 18v32

2
3v31v

2
2a3

+ 10v42
1
3v1v2a3 − 9v32

2
3v81v

2
2b2 + 3v42

1
3v61v2b2 − 9v42

1
3v51v

2
2a2
)
= 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)

−480 2 1
3a1v4v

3
1 + 384 2 2

3a3v3v
2
1 − 960a1v41 + 864 2 1

3a3v
3
2v4v

6
1

+ 864 2 1
3a1v

2
2v4v

6
1 +

(
144 2 1

3a2 + 96 2 1
3 b3
)
v2v4v5v

6
1 − 48 2 1

3 b1v4v5v
6
1

− 864 2 2
3a3v

2
2v3v

5
1 − 480 2 1

3a3v2v4v
3
1 − 96 2 1

3a3v4v5v
2
1

+ 432 2 2
3 b2v

2
2v3v

10
1 − 144 2 1

3 b2v2v4v
8
1 − 144 2 1

3 b1v2v4v
7
1

− 48 2 1
3 b2v4v5v

7
1 + 288 2 1

3a1v2v4v5v
5
1 − 288 2 2

3a3v2v3v5v
4
1

+
(
432 2 1

3a2 + 288 2 1
3 b3
)
v22v4v

7
1 + (576a2 + 384b3) v2v5v71

− 192 2 2
3 b2v3v

7
1 +864a1v2v5v61 +144 2 2

3 b2v2v3v5v
9
1 +288 2 1

3a3v
2
2v4v5v

5
1

+ (−576a2 − 384b3) v51 + 192a3v2v41 +
(
−288 2 1

3a2 − 192 2 1
3 b3
)
v4v

4
1

+ 192a3v5v31 + 288b2v2v91 + (1728a2 + 1152b3) v22v81
+ 288b1v2v81 + 96b2v5v81 + 2592a1v22v71 + 96b1v5v71 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−960a1 = 0
864a1 = 0
2592a1 = 0
192a3 = 0
96b1 = 0
288b1 = 0
96b2 = 0
288b2 = 0

−480 2 1
3a1 = 0

288 2 1
3a1 = 0

864 2 1
3a1 = 0

−480 2 1
3a3 = 0

−96 2 1
3a3 = 0

288 2 1
3a3 = 0

864 2 1
3a3 = 0

−144 2 1
3 b1 = 0

−48 2 1
3 b1 = 0

−144 2 1
3 b2 = 0

−48 2 1
3 b2 = 0

−864 2 2
3a3 = 0

−288 2 2
3a3 = 0

384 2 2
3a3 = 0

−192 2 2
3 b2 = 0

144 2 2
3 b2 = 0

432 2 2
3 b2 = 0

−576a2 − 384b3 = 0
576a2 + 384b3 = 0

1728a2 + 1152b3 = 0
−288 2 1

3a2 − 192 2 1
3 b3 = 0

144 2 1
3a2 + 96 2 1

3 b3 = 0
432 2 1

3a2 + 288 2 1
3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 = −2b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

−2x
3

= −3y
2x

This is easily solved to give

y = c1

x
3
2

Where now the coordinate R is taken as the constant of integration. Hence

R = y x
3
2
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And S is found from

dS = dx

ξ

= dx

−2x
3

Integrating gives

S =
∫

dx

T

= −3 ln (x)
2

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =

((
12xy + 4

√
9x3y2−4

x

)
x2
) 2

3

+ 4x

2x3
((

12xy + 4
√

9x3y2−4
x

)
x2
) 1

3

Evaluating all the partial derivatives gives

Rx = 3y
√
x

2
Ry = x

3
2

Sx = − 3
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

3
√
x

(
3y x3 + x2

√
9x3y2−4

x

) 1
3

3y x2
(
3y x3 + x2

√
9x3y2−4

x

) 1
3

+ 22 1
3x+

(
3y x3 + x2

√
9x3y2−4

x

) 2
3

2 2
3

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

3
(√

9R2 − 4 + 3R
) 1

3(√
9R2 − 4 + 3R

) 2
3 2 2

3 + 3
(√

9R2 − 4 + 3R
) 1

3 R + 22 1
3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

−
3
(√

9R2 − 4 + 3R
) 1

3(√
9R2 − 4 + 3R

) 2
3 2 2

3 + 3
(√

9R2 − 4 + 3R
) 1

3 R + 22 1
3

dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−3 ln (x)
2 =

∫ yx
3
2

−
3
(√

9_a2 − 4 + 3_a
) 1

3(√
9_a2 − 4 + 3_a

) 2
3 2 2

3 + 3
(√

9_a2 − 4 + 3_a
) 1

3 _a+ 22 1
3

d_a+ c1

Which simplifies to

−3 ln (x)
2 =

∫ yx
3
2

−
3
(√

9_a2 − 4 + 3_a
) 1

3(√
9_a2 − 4 + 3_a

) 2
3 2 2

3 + 3
(√

9_a2 − 4 + 3_a
) 1

3 _a+ 22 1
3

d_a+ c1

Summary
The solution(s) found are the following

(1)

−3 ln (x)
2 =

∫ yx
3
2

−
3
(√

9_a2 − 4 + 3_a
) 1

3(√
9_a2 − 4 + 3_a

) 2
3 2 2

3 + 3
(√

9_a2 − 4 + 3_a
) 1

3 _a+ 22 1
3

d_a

+ c1

Verification of solutions

−3 ln (x)
2 =

∫ yx
3
2

−
3
(√

9_a2 − 4 + 3_a
) 1

3(√
9_a2 − 4 + 3_a

) 2
3 2 2

3 + 3
(√

9_a2 − 4 + 3_a
) 1

3 _a+ 22 1
3

d_a+ c1

Verified OK.
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Solving equation (2)

Writing the ode as

y′ =
i
√
3
((

12xy + 4
√

9x3y2−4
x

)
x2
) 2

3

− 4i
√
3x−

((
12xy + 4

√
9x3y2−4

x

)
x2
) 2

3

− 4x

4x3
((

12xy + 4
√

9x3y2−4
x

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display
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Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

x, y,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 1
3

,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 2
3

,

√
9x3y2 − 4

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 1
3

= v3,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 2
3

= v4,

√
9x3y2 − 4

x
= v5


The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

576 2 2
3 b2v2v3v5v

9
1 +

(
1920i

√
3 a1 + 1920a1

)
v41

+
(
1152i

√
3 a2 + 768i

√
3 b3 + 1152a2 + 768b3

)
v51

− 1152 2 2
3a3v2v3v5v

4
1 + 1728 2 2

3 b2v
2
2v3v

10
1

− 3456 2 2
3a3v

2
2v3v

5
1 +

(
288i2 1

3
√
3 a2

+ 192i2 1
3
√
3 b3 − 288 2 1

3a2 − 192 2 1
3 b3
)
v2v4v5v

6
1

+
(
576i2 1

3
√
3 a3 − 576 2 1

3a3
)
v22v4v5v

5
1

+
(
576i2 1

3
√
3 a1 − 576 2 1

3a1
)
v2v4v5v

5
1

+
(
1728i2 1

3
√
3 a3 − 1728 2 1

3a3
)
v32v4v

6
1

+
(
1728i2 1

3
√
3 a1 − 1728 2 1

3a1
)
v22v4v

6
1

+
(
−1728i

√
3 a1 − 1728a1

)
v2v5v

6
1

+
(
−96i2 1

3
√
3 b1 + 96 2 1

3 b1
)
v4v5v

6
1

+
(
−288i2 1

3
√
3 b2 + 288 2 1

3 b2
)
v2v4v

8
1

+
(
−960i2 1

3
√
3 a3 + 960 2 1

3a3
)
v2v4v

3
1

+
(
−192i2 1

3
√
3 a3 + 192 2 1

3a3
)
v4v5v

2
1 +

(
864i2 1

3
√
3 a2

+ 576i2 1
3
√
3 b3 − 864 2 1

3a2 − 576 2 1
3 b3
)
v22v4v

7
1

+
(
−288i2 1

3
√
3 b1 + 288 2 1

3 b1
)
v2v4v

7
1

+
(
−1152i

√
3 a2 − 768i

√
3 b3 − 1152a2 − 768b3

)
v2v5v

7
1

+
(
−96i2 1

3
√
3 b2 + 96 2 1

3 b2
)
v4v5v

7
1 + 1536 2 2

3a3v3v
2
1

− 768 2 2
3 b2v3v

7
1 +

(
−576i

√
3 b2 − 576b2

)
v2v

9
1

+
(
−5184i

√
3 a1 − 5184a1

)
v22v

7
1

+
(
−192i

√
3 b1 − 192b1

)
v5v

7
1

+
(
−3456i

√
3 a2 − 2304i

√
3 b3 − 3456a2 − 2304b3

)
v22v

8
1

+
(
−576i

√
3 b1−576b1

)
v2v

8
1+
(
−192i

√
3 b2−192b2

)
v5v

8
1

+
(
−384i

√
3 a3 − 384a3

)
v2v

4
1 +

(
−576i2 1

3
√
3 a2

− 384i2 1
3
√
3 b3 + 576 2 1

3a2 + 384 2 1
3 b3
)
v4v

4
1

+
(
−960i2 1

3
√
3 a1 + 960 2 1

3a1
)
v4v

3
1

+
(
−384i

√
3 a3 − 384a3

)
v5v

3
1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−3456 2 2

3a3 = 0
−1152 2 2

3a3 = 0
1536 2 2

3a3 = 0
−768 2 2

3 b2 = 0
576 2 2

3 b2 = 0
1728 2 2

3 b2 = 0
−5184i

√
3 a1 − 5184a1 = 0

−1728i
√
3 a1 − 1728a1 = 0

−576i
√
3 b1 − 576b1 = 0

−576i
√
3 b2 − 576b2 = 0

−384i
√
3 a3 − 384a3 = 0

−192i
√
3 b1 − 192b1 = 0

−192i
√
3 b2 − 192b2 = 0

1920i
√
3 a1 + 1920a1 = 0

−960i2 1
3
√
3 a1 + 960 2 1

3a1 = 0
−960i2 1

3
√
3 a3 + 960 2 1

3a3 = 0
−288i2 1

3
√
3 b1 + 288 2 1

3 b1 = 0
−288i2 1

3
√
3 b2 + 288 2 1

3 b2 = 0
−192i2 1

3
√
3 a3 + 192 2 1

3a3 = 0
−96i2 1

3
√
3 b1 + 96 2 1

3 b1 = 0
−96i2 1

3
√
3 b2 + 96 2 1

3 b2 = 0
576i2 1

3
√
3 a1 − 576 2 1

3a1 = 0
576i2 1

3
√
3 a3 − 576 2 1

3a3 = 0
1728i2 1

3
√
3 a1 − 1728 2 1

3a1 = 0
1728i2 1

3
√
3 a3 − 1728 2 1

3a3 = 0
−3456i

√
3 a2 − 2304i

√
3 b3 − 3456a2 − 2304b3 = 0

−1152i
√
3 a2 − 768i

√
3 b3 − 1152a2 − 768b3 = 0

1152i
√
3 a2 + 768i

√
3 b3 + 1152a2 + 768b3 = 0

−576i2 1
3
√
3 a2 − 384i2 1

3
√
3 b3 + 576 2 1

3a2 + 384 2 1
3 b3 = 0

288i2 1
3
√
3 a2 + 192i2 1

3
√
3 b3 − 288 2 1

3a2 − 192 2 1
3 b3 = 0

864i2 1
3
√
3 a2 + 576i2 1

3
√
3 b3 − 864 2 1

3a2 − 576 2 1
3 b3 = 0

327



Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 = −3a2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −3y
2

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
((

12xy + 4
√

9x3y2−4
x

)
x2
) 2

3

− 4i
√
3x+

((
12xy + 4

√
9x3y2−4

x

)
x2
) 2

3

+ 4x

4x3
((

12xy + 4
√

9x3y2−4
x

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.x, y,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 1
3

,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 2
3

,

√
9x3y2 − 4

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 1
3

= v3,

((
3xy +

√
9x3y2 − 4

x

)
x2

) 2
3

= v4,

√
9x3y2 − 4

x
= v5


329



The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−768 2 2
3 b2v3v

7
1 +

(
96i2 1

3
√
3 b2 + 96 2 1

3 b2
)
v4v5v

7
1

+
(
960i2 1

3
√
3 a3 + 960 2 1

3a3
)
v2v4v

3
1

+
(
192i2 1

3
√
3 a3 + 192 2 1

3a3
)
v4v5v

2
1

+
(
−1728i2 1

3
√
3 a3 − 1728 2 1

3a3
)
v32v4v

6
1

+
(
−1728i2 1

3
√
3 a1 − 1728 2 1

3a1
)
v22v4v

6
1

+
(
1728i

√
3 a1 − 1728a1

)
v2v5v

6
1

+
(
96i2 1

3
√
3 b1 + 96 2 1

3 b1
)
v4v5v

6
1 + 576 2 2

3 b2v2v3v5v
9
1

+ 1536 2 2
3a3v3v

2
1 +

(
288i2 1

3
√
3 b2 + 288 2 1

3 b2
)
v2v4v

8
1

+
(
−864i2 1

3
√
3 a2 − 576i2 1

3
√
3 b3 − 864 2 1

3a2

− 576 2 1
3 b3
)
v22v4v

7
1 +

(
288i2 1

3
√
3 b1 + 288 2 1

3 b1
)
v2v4v

7
1

+
(
1152i

√
3 a2 + 768i

√
3 b3 − 1152a2 − 768b3

)
v2v5v

7
1

+
(
576i

√
3 b2 − 576b2

)
v2v

9
1

+
(
3456i

√
3 a2 + 2304i

√
3 b3 − 3456a2 − 2304b3

)
v22v

8
1

+
(
576i

√
3 b1 − 576b1

)
v2v

8
1 +

(
192i

√
3 b2 − 192b2

)
v5v

8
1

+
(
5184i

√
3 a1 − 5184a1

)
v22v

7
1

+
(
192i

√
3 b1 − 192b1

)
v5v

7
1 +

(
384i

√
3 a3 − 384a3

)
v2v

4
1

+
(
576i2 1

3
√
3 a2+384i2 1

3
√
3 b3+576 2 1

3a2+384 2 1
3 b3
)
v4v

4
1

+
(
960i2 1

3
√
3 a1 + 960 2 1

3a1
)
v4v

3
1

+
(
384i

√
3 a3 − 384a3

)
v5v

3
1

− 3456 2 2
3a3v

2
2v3v

5
1 − 1152 2 2

3a3v2v3v5v
4
1

+
(
−576i2 1

3
√
3 a1 − 576 2 1

3a1
)
v2v4v5v

5
1

+
(
−1152i

√
3 a2 − 768i

√
3 b3 + 1152a2 + 768b3

)
v51

+
(
−1920i

√
3 a1 + 1920a1

)
v41 +

(
−288i2 1

3
√
3 a2

− 192i2 1
3
√
3 b3 − 288 2 1

3a2 − 192 2 1
3 b3
)
v2v4v5v

6
1

+
(
−576i2 1

3
√
3 a3 − 576 2 1

3a3
)
v22v4v5v

5
1

+ 1728 2 2
3 b2v

2
2v3v

10
1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−3456 2 2

3a3 = 0
−1152 2 2

3a3 = 0
1536 2 2

3a3 = 0
−768 2 2

3 b2 = 0
576 2 2

3 b2 = 0
1728 2 2

3 b2 = 0
−1920i

√
3 a1 + 1920a1 = 0

192i
√
3 b1 − 192b1 = 0

192i
√
3 b2 − 192b2 = 0

384i
√
3 a3 − 384a3 = 0

576i
√
3 b1 − 576b1 = 0

576i
√
3 b2 − 576b2 = 0

1728i
√
3 a1 − 1728a1 = 0

5184i
√
3 a1 − 5184a1 = 0

−1728i2 1
3
√
3 a1 − 1728 2 1

3a1 = 0
−1728i2 1

3
√
3 a3 − 1728 2 1

3a3 = 0
−576i2 1

3
√
3 a1 − 576 2 1

3a1 = 0
−576i2 1

3
√
3 a3 − 576 2 1

3a3 = 0
96i2 1

3
√
3 b1 + 96 2 1

3 b1 = 0
96i2 1

3
√
3 b2 + 96 2 1

3 b2 = 0
192i2 1

3
√
3 a3 + 192 2 1

3a3 = 0
288i2 1

3
√
3 b1 + 288 2 1

3 b1 = 0
288i2 1

3
√
3 b2 + 288 2 1

3 b2 = 0
960i2 1

3
√
3 a1 + 960 2 1

3a1 = 0
960i2 1

3
√
3 a3 + 960 2 1

3a3 = 0
−1152i

√
3 a2 − 768i

√
3 b3 + 1152a2 + 768b3 = 0

1152i
√
3 a2 + 768i

√
3 b3 − 1152a2 − 768b3 = 0

3456i
√
3 a2 + 2304i

√
3 b3 − 3456a2 − 2304b3 = 0

−864i2 1
3
√
3 a2 − 576i2 1

3
√
3 b3 − 864 2 1

3a2 − 576 2 1
3 b3 = 0

−288i2 1
3
√
3 a2 − 192i2 1

3
√
3 b3 − 288 2 1

3a2 − 192 2 1
3 b3 = 0

576i2 1
3
√
3 a2 + 384i2 1

3
√
3 b3 + 576 2 1

3a2 + 384 2 1
3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 = −3a2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −3y
2

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
-> Calling odsolve with the ODE`, diff(y(x), x) = ((1/3)*(x^2*y(x)^5-3)*y(x)+(2/3)*y(x)^6*x^2)/(2*x-2*y(x)^5*x^3), y(x)` ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 32� �
dsolve(x^6*diff(y(x),x)^3-3*x*diff(y(x),x)-3*y(x)=0,y(x), singsol=all)� �

y(x) = − 2
3x 3

2

y(x) = 2
3x 3

2

y(x) = c31
3 − c1

x

3 Solution by Mathematica
Time used: 136.42 (sec). Leaf size: 24834� �
DSolve[x^6*(y'[x])^3-3*x*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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3.13 problem 15
Internal problem ID [6807]
Internal file name [OUTPUT/6054_Tuesday_July_26_2022_11_24_06_PM_71082803/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 15.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y − x6y′
3 + xy′ = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
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will generate a solution. The equations generated are

y′ =

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3

6x2 + 2

x

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3

x
(1)

y′ =

−

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3

12x2 − 1

x

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3
+

i
√
3


((

108yx+12
√
3
√

27y2x3−4
x

)
x2
) 1

3

6x2 − 2

x

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3


2

x
(2)

y′ =

−

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3

12x2 − 1

x

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3
−

i
√
3


((

108yx+12
√
3
√

27y2x3−4
x

)
x2
) 1

3

6x2 − 2

x

((
108yx+12

√
3
√

27y2x3−4
x

)
x2
) 1

3


2

x
(3)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ =

((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x

6x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +

(((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x
)
(b3 − a2)

6x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

−

(((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x
)2

a3

36x6
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 2

3

−



2

108y+
6
√
3
(
81x y2− 27x3y2−4

x2

)
√

27x3y2−4
x

x2

3 +
4
(
108xy+12

√
3
√

27x3y2−4
x

)
x

3((
108xy+12

√
3
√

27x3y2−4
x

)
x2
) 1

3
+ 12

6x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

−

((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x

2x4
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

−

(((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x
)((

108y +
6
√
3
(
81x y2− 27x3y2−4

x2

)
√

27x3y2−4
x

)
x2 + 2

(
108xy + 12

√
3
√

27x3y2−4
x

)
x

)

18x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 4

3


(xa2

+ ya3 + a1)−


108x+ 324

√
3 y x2√

27x3y2−4
x

9
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 2

3

x

−

(((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x
)(

108x+ 324
√
3 y x2√

27x3y2−4
x

)

18x
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 4

3

 (xb2

+ yb3 + b1) = 0 339



Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.x, y,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

,

√
27x3y2 − 4

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

= v3,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

= v4,

√
27x3y2 − 4

x
= v5


The above PDE (6E) now becomes

(7E)

−72v21
(
3v512

2
3v4v

5
1b2 + 3v512

2
3v4v

4
1b1 + 24

√
3 12 1

3v3v
5
1b2

+ 6
√
3 12 2

3v4v
2
1a2 + 4

√
3 12 2

3v4v
2
1b3 + 10

√
3 12 2

3v4v1a1 − 36v5v51b1
− 36v5v61b2 + 72

√
3 v31a2 + 48

√
3 v31b3 + 120

√
3 v21a1 − 24v5v1a3

− 648
√
3 v61v22a2 − 432

√
3 v61v22b3 − 108

√
3 v61v2b1 − 972

√
3 v51v22a1

− 216v5v51v2a2 − 144v5v51v2b3 − 324v5v41v2a1 + 2v512
2
3v4a3

− 24
√
3 v21v2a3 − 16

√
3 12 1

3v3a3 − 162
√
3 12 1

3v3v
8
1v

2
2b2

+ 9
√
3 12 2

3v4v
6
1v2b2 − 27

√
3 12 2

3v4v
5
1v

2
2a2 − 18

√
3 12 2

3v4v
5
1v

2
2b3

− 54
√
3 12 2

3v4v
4
1v

3
2a3 + 9

√
3 12 2

3v4v
5
1v2b1 − 54

√
3 12 2

3v4v
4
1v

2
2a1

− 54v512
1
3v3v

7
1v2b2 − 9v512

2
3v4v

4
1v2a2 − 6v512

2
3v4v

4
1v2b3

− 18v512
2
3v4v

3
1v

2
2a3 − 18v512

2
3v4v

3
1v2a1 + 108

√
3 12 1

3v3v
3
1v

2
2a3

+ 10
√
3 12 2

3v4v1v2a3 + 36v512
1
3v3v

2
1v2a3 − 108

√
3 v71v2b2

)
= 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)

(
46656

√
3 a2 + 31104

√
3 b3
)
v22v

8
1 + 2592b2v5v81

+ 2592b1v5v71 +
(
−5184

√
3 a2 − 3456

√
3 b3
)
v51

+
(
−432

√
3 12 2

3a2 − 288
√
3 12 2

3 b3
)
v4v

4
1

− 8640
√
3 a1v41 − 1728

√
3 12 1

3 b2v3v
7
1 − 216 12 2

3 b2v4v5v
7
1

+
(
648 12 2

3a2 + 432 12 2
3 b3
)
v2v4v5v

6
1 − 216 12 2

3 b1v4v5v
6
1

− 720
√
3 12 2

3a1v4v
3
1 + 1152

√
3 12 1

3a3v3v
2
1 − 144 12 2

3a3v4v5v
2
1

+ 23328a1v2v5v61 + 1728
√
3 a3v2v41 + 7776

√
3 b2v2v91

+ 7776
√
3 b1v2v81 +

(
1944

√
3 12 2

3a2 + 1296
√
3 12 2

3 b3
)
v22v4v

7
1

+ 69984
√
3 a1v22v71 + (15552a2 + 10368b3) v2v5v71

+ 1728a3v5v31 + 11664
√
3 12 1

3 b2v
2
2v3v

10
1 + 3888 12 1

3 b2v2v3v5v
9
1

−648
√
3 12 2

3 b2v2v4v
8
1−648

√
3 12 2

3 b1v2v4v
7
1+3888

√
3 12 2

3a3v
3
2v4v

6
1

+ 3888
√
3 12 2

3a1v
2
2v4v

6
1 − 7776

√
3 12 1

3a3v
2
2v3v

5
1

+ 1296 12 2
3a3v

2
2v4v5v

5
1 + 1296 12 2

3a1v2v4v5v
5
1

− 2592 12 1
3a3v2v3v5v

4
1 − 720

√
3 12 2

3a3v2v4v
3
1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
23328a1 = 0
1728a3 = 0
2592b1 = 0
2592b2 = 0

−8640
√
3 a1 = 0

69984
√
3 a1 = 0

1728
√
3 a3 = 0

7776
√
3 b1 = 0

7776
√
3 b2 = 0

−2592 12 1
3a3 = 0

3888 12 1
3 b2 = 0

1296 12 2
3a1 = 0

−144 12 2
3a3 = 0

1296 12 2
3a3 = 0

−216 12 2
3 b1 = 0

−216 12 2
3 b2 = 0

−7776
√
3 12 1

3a3 = 0
1152

√
3 12 1

3a3 = 0
−1728

√
3 12 1

3 b2 = 0
11664

√
3 12 1

3 b2 = 0
−720

√
3 12 2

3a1 = 0
3888

√
3 12 2

3a1 = 0
−720

√
3 12 2

3a3 = 0
3888

√
3 12 2

3a3 = 0
−648

√
3 12 2

3 b1 = 0
−648

√
3 12 2

3 b2 = 0
15552a2 + 10368b3 = 0

−5184
√
3 a2 − 3456

√
3 b3 = 0

46656
√
3 a2 + 31104

√
3 b3 = 0

648 12 2
3a2 + 432 12 2

3 b3 = 0
−432

√
3 12 2

3a2 − 288
√
3 12 2

3 b3 = 0
1944

√
3 12 2

3a2 + 1296
√
3 12 2

3 b3 = 0342



Solving the above equations for the unknowns gives

a1 = 0

a2 = −2b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

−2x
3

= −3y
2x

This is easily solved to give

y = c1

x
3
2

Where now the coordinate R is taken as the constant of integration. Hence

R = y x
3
2
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And S is found from

dS = dx

ξ

= dx

−2x
3

Integrating gives

S =
∫

dx

T

= −3 ln (x)
2

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =

((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x

6x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

Evaluating all the partial derivatives gives

Rx = 3y
√
x

2
Ry = x

3
2

Sx = − 3
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

9
√
x

(
x2√3

√
27x3y2−4

x
+ 9y x3

) 1
3

9y x2
(
x2
√
3
√

27x3y2−4
x

+ 9y x3
) 1

3

+ 12 2
3x+ 12 1

3

(
x2
√
3
√

27x3y2−4
x

+ 9y x3
) 2

3

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

9
(√

3
√
27R2 − 4 + 9R

) 1
3

12 1
3
(√

3
√
27R2 − 4 + 9R

) 2
3 + 12 2

3 + 9
(√

3
√
27R2 − 4 + 9R

) 1
3 R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

−
9
(√

81R2 − 12 + 9R
) 1

3

12 1
3

((√
81R2 − 12 + 9R

)2) 1
3 + 12 2

3 + 9
(√

81R2 − 12 + 9R
) 1

3 R

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−3 ln (x)
2 =

∫ yx
3
2

−
9
(√

81_a2 − 12 + 9_a
) 1

3

12 1
3

((√
81_a2 − 12 + 9_a

)2) 1
3 + 12 2

3 + 9
(√

81_a2 − 12 + 9_a
) 1

3 _a
d_a+ c1

Which simplifies to

−3 ln (x)
2 =

∫ yx
3
2

−
9
(√

81_a2 − 12 + 9_a
) 1

3

12 1
3

((√
81_a2 − 12 + 9_a

)2) 1
3 + 12 2

3 + 9
(√

81_a2 − 12 + 9_a
) 1

3 _a
d_a+ c1

Summary
The solution(s) found are the following

(1)

−3 ln (x)
2

=
∫ yx

3
2

−
9
(√

81_a2 − 12 + 9_a
) 1

3

12 1
3

((√
81_a2 − 12 + 9_a

)2) 1
3 + 12 2

3 + 9
(√

81_a2 − 12 + 9_a
) 1

3 _a
d_a

+ c1
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Verification of solutions

−3 ln (x)
2

=
∫ yx

3
2

−
9
(√

81_a2 − 12 + 9_a
) 1

3

12 1
3

((√
81_a2 − 12 + 9_a

)2) 1
3 + 12 2

3 + 9
(√

81_a2 − 12 + 9_a
) 1

3 _a
d_a+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ =
i
√
3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 2

3

− 12i
√
3x−

((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

− 12x

12x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display
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Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

x, y,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

,

√
27x3y2 − 4

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

= v3,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

= v4,

√
27x3y2 − 4

x
= v5


The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

46656
√
3 12 1

3 b2v
2
2v3v

10
1 + 15552 12 1

3 b2v2v3v5v
9
1

− 31104
√
3 12 1

3a3v
2
2v3v

5
1 − 10368 12 1

3a3v2v3v5v
4
1

+
(
−31104i

√
3 a2 − 20736i

√
3 b3

− 31104a2 − 20736b3
)
v2v5v

7
1

+
(
−432i

√
3 12 2

3 b2 + 432 12 2
3 b2
)
v4v5v

7
1

+
(
−4320i12 2

3a3 + 1440
√
3 12 2

3a3
)
v2v4v

3
1

+
(
−288i

√
3 12 2

3a3 + 288 12 2
3a3
)
v4v5v

2
1

+
(
23328i12 2

3a3 − 7776
√
3 12 2

3a3
)
v32v4v

6
1

+
(
23328i12 2

3a1 − 7776
√
3 12 2

3a1
)
v22v4v

6
1

+
(
−46656i

√
3 a1 − 46656a1

)
v2v5v

6
1

+
(
−432i

√
3 12 2

3 b1 + 432 12 2
3 b1
)
v4v5v

6
1

+
(
−3888i12 2

3 b2 + 1296
√
3 12 2

3 b2
)
v2v4v

8
1

+
(
11664i12 2

3a2 + 7776i12 2
3 b3

− 3888
√
3 12 2

3a2 − 2592
√
3 12 2

3 b3
)
v22v4v

7
1

+
(
−3888i12 2

3 b1 + 1296
√
3 12 2

3 b1
)
v2v4v

7
1

+
(
−4320i12 2

3a1 + 1440
√
3 12 2

3a1
)
v4v

3
1

+
(
−3456i

√
3 a3 − 3456a3

)
v5v

3
1

+
(
−419904ia1 − 139968

√
3 a1
)
v22v

7
1

+
(
−5184i

√
3 b1 − 5184b1

)
v5v

7
1

+
(
−10368ia3 − 3456

√
3 a3
)
v2v

4
1 +

(
−2592i12 2

3a2

− 1728i12 2
3 b3 + 864

√
3 12 2

3a2 + 576
√
3 12 2

3 b3
)
v4v

4
1

+
(
−46656ib2 − 15552

√
3 b2
)
v2v

9
1 +

(
−279936ia2

− 186624ib3 − 93312
√
3 a2 − 62208

√
3 b3
)
v22v

8
1

+
(
−46656ib1 − 15552

√
3 b1
)
v2v

8
1

+
(
−5184i

√
3 b2 − 5184b2

)
v5v

8
1 − 6912

√
3 12 1

3 b2v3v
7
1

+ 4608
√
3 12 1

3a3v3v
2
1 +

(
1296i

√
3 12 2

3a2

+ 864i
√
3 12 2

3 b3 − 1296 12 2
3a2 − 864 12 2

3 b3
)
v2v4v5v

6
1

+
(
2592i

√
3 12 2

3a3 − 2592 12 2
3a3
)
v22v4v5v

5
1

+
(
2592i

√
3 12 2

3a1 − 2592 12 2
3a1
)
v2v4v5v

5
1

+
(
31104ia2 +20736ib3 +10368

√
3 a2 +6912

√
3 b3
)
v51

+
(
51840ia1 + 17280

√
3 a1
)
v41 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−10368 12 1

3a3 = 0
15552 12 1

3 b2 = 0
−31104

√
3 12 1

3a3 = 0
4608

√
3 12 1

3a3 = 0
−6912

√
3 12 1

3 b2 = 0
46656

√
3 12 1

3 b2 = 0
−419904ia1 − 139968

√
3 a1 = 0

−46656ib1 − 15552
√
3 b1 = 0

−46656ib2 − 15552
√
3 b2 = 0

−10368ia3 − 3456
√
3 a3 = 0

51840ia1 + 17280
√
3 a1 = 0

−46656i
√
3 a1 − 46656a1 = 0

−5184i
√
3 b1 − 5184b1 = 0

−5184i
√
3 b2 − 5184b2 = 0

−4320i12 2
3a1 + 1440

√
3 12 2

3a1 = 0
−4320i12 2

3a3 + 1440
√
3 12 2

3a3 = 0
−3888i12 2

3 b1 + 1296
√
3 12 2

3 b1 = 0
−3888i12 2

3 b2 + 1296
√
3 12 2

3 b2 = 0
−3456i

√
3 a3 − 3456a3 = 0

23328i12 2
3a1 − 7776

√
3 12 2

3a1 = 0
23328i12 2

3a3 − 7776
√
3 12 2

3a3 = 0
−432i

√
3 12 2

3 b1 + 432 12 2
3 b1 = 0

−432i
√
3 12 2

3 b2 + 432 12 2
3 b2 = 0

−288i
√
3 12 2

3a3 + 288 12 2
3a3 = 0

2592i
√
3 12 2

3a1 − 2592 12 2
3a1 = 0

2592i
√
3 12 2

3a3 − 2592 12 2
3a3 = 0

−279936ia2 − 186624ib3 − 93312
√
3 a2 − 62208

√
3 b3 = 0

31104ia2 + 20736ib3 + 10368
√
3 a2 + 6912

√
3 b3 = 0

−31104i
√
3 a2 − 20736i

√
3 b3 − 31104a2 − 20736b3 = 0

−2592i12 2
3a2 − 1728i12 2

3 b3 + 864
√
3 12 2

3a2 + 576
√
3 12 2

3 b3 = 0
11664i12 2

3a2 + 7776i12 2
3 b3 − 3888

√
3 12 2

3a2 − 2592
√
3 12 2

3 b3 = 0
1296i

√
3 12 2

3a2 + 864i
√
3 12 2

3 b3 − 1296 12 2
3a2 − 864 12 2

3 b3 = 0349



Solving the above equations for the unknowns gives

a1 = 0

a2 = −2b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 2

3

− 12i
√
3x+

((
108xy + 12

√
3
√

27x3y2−4
x

)
x2
) 2

3

+ 12x

12x3
((

108xy + 12
√
3
√

27x3y2−4
x

)
x2
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.x, y,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

,

√
27x3y2 − 4

x


The following substitution is now made to be able to collect on all terms with {x, y}
in themx= v1, y= v2,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 1
3

= v3,

((
√
3
√

27x3y2 − 4
x

+ 9xy
)
x2

) 2
3

= v4,

√
27x3y2 − 4

x
= v5
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The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
419904ia1 − 139968

√
3 a1
)
v22v

7
1

+
(
5184i

√
3 b1 − 5184b1

)
v5v

7
1

+
(
46656ib2 − 15552

√
3 b2
)
v2v

9
1 +

(
279936ia2

+ 186624ib3 − 93312
√
3 a2 − 62208

√
3 b3
)
v22v

8
1

+
(
46656ib1 − 15552

√
3 b1
)
v2v

8
1

+
(
5184i

√
3 b2 − 5184b2

)
v5v

8
1

+
(
10368ia3 − 3456

√
3 a3
)
v2v

4
1

+ 46656
√
3 12 1

3 b2v
2
2v3v

10
1 + 15552 12 1

3 b2v2v3v5v
9
1

− 31104
√
3 12 1

3a3v
2
2v3v

5
1 − 10368 12 1

3a3v2v3v5v
4
1

+
(
4320i12 2

3a3 + 1440
√
3 12 2

3a3
)
v2v4v

3
1

+
(
288i

√
3 12 2

3a3 + 288 12 2
3a3
)
v4v5v

2
1

+
(
−23328i12 2

3a3 − 7776
√
3 12 2

3a3
)
v32v4v

6
1

+
(
−23328i12 2

3a1 − 7776
√
3 12 2

3a1
)
v22v4v

6
1

+
(
46656i

√
3 a1 − 46656a1

)
v2v5v

6
1

+
(
432i

√
3 12 2

3 b1 + 432 12 2
3 b1
)
v4v5v

6
1

+
(
3888i12 2

3 b2 + 1296
√
3 12 2

3 b2
)
v2v4v

8
1

+
(
−11664i12 2

3a2 − 7776i12 2
3 b3

− 3888
√
3 12 2

3a2 − 2592
√
3 12 2

3 b3
)
v22v4v

7
1

+
(
3888i12 2

3 b1+1296
√
3 12 2

3 b1
)
v2v4v

7
1+
(
31104i

√
3 a2

+ 20736i
√
3 b3 − 31104a2 − 20736b3

)
v2v5v

7
1

+
(
432i

√
3 12 2

3 b2 + 432 12 2
3 b2
)
v4v5v

7
1 +

(
2592i12 2

3a2

+ 1728i12 2
3 b3 + 864

√
3 12 2

3a2 + 576
√
3 12 2

3 b3
)
v4v

4
1

+
(
4320i12 2

3a1 + 1440
√
3 12 2

3a1
)
v4v

3
1

+
(
3456i

√
3 a3 − 3456a3

)
v5v

3
1 +

(
−31104ia2

− 20736ib3 + 10368
√
3 a2 + 6912

√
3 b3
)
v51

+
(
−51840ia1 + 17280

√
3 a1
)
v41 +

(
−1296i

√
3 12 2

3a2

− 864i
√
3 12 2

3 b3 − 1296 12 2
3a2 − 864 12 2

3 b3
)
v2v4v5v

6
1

+
(
−2592i

√
3 12 2

3a3 − 2592 12 2
3a3
)
v22v4v5v

5
1

+
(
−2592i

√
3 12 2

3a1 − 2592 12 2
3a1
)
v2v4v5v

5
1

− 6912
√
3 12 1

3 b2v3v
7
1 + 4608

√
3 12 1

3a3v3v
2
1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−10368 12 1

3a3 = 0
15552 12 1

3 b2 = 0
−31104

√
3 12 1

3a3 = 0
4608

√
3 12 1

3a3 = 0
−6912

√
3 12 1

3 b2 = 0
46656

√
3 12 1

3 b2 = 0
−51840ia1 + 17280

√
3 a1 = 0

10368ia3 − 3456
√
3 a3 = 0

46656ib1 − 15552
√
3 b1 = 0

46656ib2 − 15552
√
3 b2 = 0

419904ia1 − 139968
√
3 a1 = 0

−23328i12 2
3a1 − 7776

√
3 12 2

3a1 = 0
−23328i12 2

3a3 − 7776
√
3 12 2

3a3 = 0
3456i

√
3 a3 − 3456a3 = 0

3888i12 2
3 b1 + 1296

√
3 12 2

3 b1 = 0
3888i12 2

3 b2 + 1296
√
3 12 2

3 b2 = 0
4320i12 2

3a1 + 1440
√
3 12 2

3a1 = 0
4320i12 2

3a3 + 1440
√
3 12 2

3a3 = 0
5184i

√
3 b1 − 5184b1 = 0

5184i
√
3 b2 − 5184b2 = 0

46656i
√
3 a1 − 46656a1 = 0

−2592i
√
3 12 2

3a1 − 2592 12 2
3a1 = 0

−2592i
√
3 12 2

3a3 − 2592 12 2
3a3 = 0

288i
√
3 12 2

3a3 + 288 12 2
3a3 = 0

432i
√
3 12 2

3 b1 + 432 12 2
3 b1 = 0

432i
√
3 12 2

3 b2 + 432 12 2
3 b2 = 0

−31104ia2 − 20736ib3 + 10368
√
3 a2 + 6912

√
3 b3 = 0

279936ia2 + 186624ib3 − 93312
√
3 a2 − 62208

√
3 b3 = 0

−11664i12 2
3a2 − 7776i12 2

3 b3 − 3888
√
3 12 2

3a2 − 2592
√
3 12 2

3 b3 = 0
2592i12 2

3a2 + 1728i12 2
3 b3 + 864

√
3 12 2

3a2 + 576
√
3 12 2

3 b3 = 0
31104i

√
3 a2 + 20736i

√
3 b3 − 31104a2 − 20736b3 = 0

−1296i
√
3 12 2

3a2 − 864i
√
3 12 2

3 b3 − 1296 12 2
3a2 − 864 12 2

3 b3 = 0354



Solving the above equations for the unknowns gives

a1 = 0

a2 = −2b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
-> Calling odsolve with the ODE`, diff(y(x), x) = ((x^2*y(x)^5-1)*y(x)+2*y(x)^6*x^2)/(-6*y(x)^5*x^3+2*x), y(x)` *** Sublevel

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.187 (sec). Leaf size: 36� �
dsolve(y(x)=x^6*diff(y(x),x)^3-x*diff(y(x),x),y(x), singsol=all)� �

y(x) = −2
√
3

9x 3
2

y(x) = 2
√
3

9x 3
2

y(x) = c31 −
c1
x

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y[x]==x^6*(y'[x])^3-x*y'[x],y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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3.14 problem 16
Internal problem ID [6808]
Internal file name [OUTPUT/6055_Tuesday_July_26_2022_11_24_10_PM_54110075/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 16.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

xy′
4 − 2yy′3 = −12x3

Solving the given ode for y′ results in 1 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = RootOf
(
x_Z4 − 2y_Z3 + 12x3) (1)

Now each one of the above ODE is solved.

Solving equation (1)

Unable to determine ODE type.

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
-> Calling odsolve with the ODE`, diff(y(x), x) = ((18*y(x)+(x^6+324*y(x)^2)^(1/2))^(2/3)*x^7-2*x^9+(x^6+324*y(x)^2)^(1/2)*(18*y(

Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Calling odsolve with the ODE`, diff(y(x), x) = (3*(x^4+12*y(x)^2)*y(x)/x-4*y(x)*x^3)/(-x^4+36*y(x)^2), y(x)` *** Sublevel
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.203 (sec). Leaf size: 66� �
dsolve(x*diff(y(x),x)^4-2*y(x)*diff(y(x),x)^3+12*x^3=0,y(x), singsol=all)� �

y(x) = 2
√
6 (−x)

3
2

3

y(x) = −2
√
6 (−x)

3
2

3

y(x) = −2
√
6x 3

2

3

y(x) = 2
√
6x 3

2

3
y(x) = 12c41 + x2

2c1

3 Solution by Mathematica
Time used: 37.824 (sec). Leaf size: 30947� �
DSolve[x*(y'[x])^4-2*y[x]*(y'[x])^3+12*x^3==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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3.15 problem 17
3.15.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 361

Internal problem ID [6809]
Internal file name [OUTPUT/6056_Tuesday_July_26_2022_11_39_14_PM_76761105/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 17.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

xy′
3 − yy′

2 = −1

3.15.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

x p3 − y p2 = −1

Solving for y from the above results in

y = x p3 + 1
p2

(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px+ 1
p2

= px+ 1
p2
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = 1
p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ 1
c21

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = 1
p2
, then the

above equation becomes

x+ g′(p) = x− 2
p3

= 0
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Solving the above for p results in

p1 =
2 1

3 (x2)
1
3

x

p2 = −2 1
3 (x2)

1
3

2x + i
√
3 2 1

3 (x2)
1
3

2x

p3 = −2 1
3 (x2)

1
3

2x − i
√
3 2 1

3 (x2)
1
3

2x

Substituting the above back in (1) results in

y1 =
3x22 1

3

2 (x2)
2
3

y2 = − 3x22 1
3

(x2)
2
3
(
1 + i

√
3
)

y3 =
3x22 1

3

(x2)
2
3
(
i
√
3− 1

)
Summary
The solution(s) found are the following

(1)y = c1x+ 1
c21

(2)y = 3x22 1
3

2 (x2)
2
3

(3)y = − 3x22 1
3

(x2)
2
3
(
1 + i

√
3
)

(4)y = 3x22 1
3

(x2)
2
3
(
i
√
3− 1

)
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Verification of solutions

y = c1x+ 1
c21

Verified OK.

y = 3x22 1
3

2 (x2)
2
3

Verified OK.

y = − 3x22 1
3

(x2)
2
3
(
1 + i

√
3
)

Verified OK.

y = 3x22 1
3

(x2)
2
3
(
i
√
3− 1

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

364



3 Solution by Maple
Time used: 0.11 (sec). Leaf size: 66� �
dsolve(x*diff(y(x),x)^3-y(x)*diff(y(x),x)^2+1=0,y(x), singsol=all)� �

y(x) = 3 2 1
3 (x2)

1
3

2

y(x) = −
3 2 1

3 (x2)
1
3
(
1 + i

√
3
)

4

y(x) =
3 2 1

3 (x2)
1
3
(
i
√
3− 1

)
4

y(x) = c1x+ 1
c21

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 69� �
DSolve[x*(y'[x])^3-y[x]*(y'[x])^2+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x+ 1
c12

y(x) → 3
(
−1
2

)2/3

x2/3

y(x) → 3x2/3

22/3

y(x) → −3 3
√
−1x2/3

22/3
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3.16 problem 19
3.16.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 366

Internal problem ID [6810]
Internal file name [OUTPUT/6057_Tuesday_July_26_2022_11_39_17_PM_13635991/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 19.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
2 − xy′ − y = 0

3.16.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 − xp− y = 0

Solving for y from the above results in

y = p2 − xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p

g = p2

Hence (2) becomes

2p = (−x+ 2p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

2p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 2p(x)
−x+ 2p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −x(p) + 2p

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
2p

q(p) = 1
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Hence the ode is

d

dp
x(p) + x(p)

2p = 1

The integrating factor µ is

µ = e
∫ 1

2pdp

= √
p

The ode becomes
d
dp(µx) = µ

d
dp(

√
p x) = √

p

d(√p x) = √
pdp

Integrating gives

√
p x =

∫
√
p dp

√
p x = 2p 3

2

3 + c1

Dividing both sides by the integrating factor µ = √
p results in

x(p) = 2p
3 + c1√

p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = x

2 +
√
x2 + 4y
2

p = x

2 −
√
x2 + 4y
2

Substituting the above in the solution for x found above gives

x = x

3 +
√
x2 + 4y
3 + 2c1√

2x+ 2
√
x2 + 4y

x = x

3 −
√
x2 + 4y
3 + 2c1√

2x− 2
√
x2 + 4y
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = x

3 +
√
x2 + 4y
3 + 2c1√

2x+ 2
√
x2 + 4y

(3)x = x

3 −
√
x2 + 4y
3 + 2c1√

2x− 2
√
x2 + 4y

Verification of solutions

y = 0

Verified OK.

x = x

3 +
√
x2 + 4y
3 + 2c1√

2x+ 2
√
x2 + 4y

Verified OK.

x = x

3 −
√
x2 + 4y
3 + 2c1√

2x− 2
√
x2 + 4y

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 77� �
dsolve(diff(y(x),x)^2-x*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

c1√
2x− 2

√
x2 + 4y (x)

+ 2x
3 +

√
x2 + 4y (x)

3 = 0

c1√
2x+ 2

√
x2 + 4y (x)

+ 2x
3 −

√
x2 + 4y (x)

3 = 0
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3 Solution by Mathematica
Time used: 60.129 (sec). Leaf size: 1003� �
DSolve[(y'[x])^2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

(
x2 + 3

√
−x6 + 20e3c1x3 + 8

√
e3c1 (−x3 + e3c1) 3 + 8e6c1

)
2 + 8e3c1x

4 3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

y(x) → 1
8

4x2 −
i
(√

3− i
)
x(x3 + 8e3c1)

3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

+ i
(√

3 + i
)

3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x) → 1

8

4x2 +
i
(√

3 + i
)
x(x3 + 8e3c1)

3
√

−x6 + 20e3c1x3 + 8
√

e3c1 (−x3 + e3c1) 3 + 8e6c1

−
(
1 + i

√
3
)

3
√

−x6 + 20e3c1x3 + 8
√
e3c1 (−x3 + e3c1) 3 + 8e6c1


y(x)

→
2 3
√
2x4 + 22/3

(
−2x6 − 10e3c1x3 +

√
e3c1 (4x3 + e3c1) 3 + e6c1

)
2/3 + 4x2 3

√
−2x6 − 10e3c1x3 +

√
e3c1 (4x3 + e3c1) 3 + e6c1 − 4 3

√
2e3c1x

8 3
√
−2x6 − 10e3c1x3 +

√
e3c1 (4x3 + e3c1) 3 + e6c1

y(x) → 1
16

8x2 +
2 3
√
2
(
1 + i

√
3
)
x(−x3 + 2e3c1)

3
√

−2x6 − 10e3c1x3 +
√

e3c1 (4x3 + e3c1) 3 + e6c1

+ i22/3
(√

3 + i
)

3
√

−2x6 − 10e3c1x3 +
√
e3c1 (4x3 + e3c1) 3 + e6c1


y(x) → 1

16

8x2 +
2i 3
√
2
(√

3 + i
)
x(x3 − 2e3c1)

3
√

−2x6 − 10e3c1x3 +
√

e3c1 (4x3 + e3c1) 3 + e6c1

− 22/3
(
1 + i

√
3
)

3
√

−2x6 − 10e3c1x3 +
√
e3c1 (4x3 + e3c1) 3 + e6c1
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3.17 problem 20
3.17.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 372

Internal problem ID [6811]
Internal file name [OUTPUT/6058_Thursday_July_28_2022_04_28_20_AM_9550685/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 20.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

2y′3 + xy′ − 2y = 0

3.17.1 Solving as dAlembert ode

Let p = y′ the ode becomes

2p3 + xp− 2y = 0

Solving for y from the above results in

y = p3 + 1
2xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

2
g = p3

Hence (2) becomes
p

2 =
(x
2 + 3p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p

2 = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)
x+ 6p (x)2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = x(p) + 6p2

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −1
p

q(p) = 6p
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Hence the ode is
d

dp
x(p)− x(p)

p
= 6p

The integrating factor µ is

µ = e
∫
− 1

p
dp

= 1
p

The ode becomes
d
dp(µx) = (µ) (6p)

d
dp

(
x

p

)
=
(
1
p

)
(6p)

d
(
x

p

)
= 6dp

Integrating gives
x

p
=
∫

6 dp
x

p
= 6p+ c1

Dividing both sides by the integrating factor µ = 1
p
results in

x(p) = c1p+ 6p2

which simplifies to

x(p) = p(c1 + 6p)

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
108y + 6

√
6x3 + 324y2

) 1
3

6 − x(
108y + 6

√
6x3 + 324y2

) 1
3

p = −
(
108y + 6

√
6x3 + 324y2

) 1
3

12 + x

2
(
108y + 6

√
6x3 + 324y2

) 1
3
+

i
√
3
((

108y+6
√

6x3+324y2
) 1

3

6 + x(
108y+6

√
6x3+324y2

) 1
3

)
2

p = −
(
108y + 6

√
6x3 + 324y2

) 1
3

12 + x

2
(
108y + 6

√
6x3 + 324y2

) 1
3
−

i
√
3
((

108y+6
√

6x3+324y2
) 1

3

6 + x(
108y+6

√
6x3+324y2

) 1
3

)
2
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Substituting the above in the solution for x found above gives

x

=

((
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)((
108y + 6

√
6x3 + 324y2

) 2
3 + c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
6
(
108y + 6

√
6x3 + 324y2

) 2
3

x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 + 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3

x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3

Summary
The solution(s) found are the following

(1)y = 0
(2)x

=

((
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)((
108y + 6

√
6x3 + 324y2

) 2
3 + c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
6
(
108y + 6

√
6x3 + 324y2

) 2
3

(3)x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 + 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3

(4)x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3
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Verification of solutions

y = 0

Verified OK.
x

=

((
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)((
108y + 6

√
6x3 + 324y2

) 2
3 + c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
6
(
108y + 6

√
6x3 + 324y2

) 2
3

Verified OK.
x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x−

(
108y + 6

√
6x3 + 324y2

) 2
3 + 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 + 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3

Warning, solution could not be verified
x

=

(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 6x

)(
i
(
108y + 6

√
6x3 + 324y2

) 2
3
√
3 + 6i

√
3x+

(
108y + 6

√
6x3 + 324y2

) 2
3 − 2c1

(
108y + 6

√
6x3 + 324y2

) 1
3 − 6x

)
24
(
108y + 6

√
6x3 + 324y2

) 2
3

Warning, solution could not be verified

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 58� �
dsolve(2*diff(y(x),x)^3+x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)� �

y(x) = (−c21 − 24x)
√

c21 + 24x
432 − c31

432 − c1x

12

y(x) = (c21 + 24x)
3
2

432 − c31
432 − c1x

12

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[2*(y'[x])^3+x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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3.18 problem 21
3.18.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 378

Internal problem ID [6812]
Internal file name [OUTPUT/6059_Thursday_July_28_2022_04_28_33_AM_759705/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 21.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

2y′2 + xy′ − 2y = 0

3.18.1 Solving as dAlembert ode

Let p = y′ the ode becomes

2p2 + xp− 2y = 0

Solving for y from the above results in

y = p2 + 1
2xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

2
g = p2

Hence (2) becomes
p

2 =
(x
2 + 2p

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p

2 = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)
x+ 4p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = x(p) + 4p

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −1
p

q(p) = 4
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Hence the ode is
d

dp
x(p)− x(p)

p
= 4

The integrating factor µ is

µ = e
∫
− 1

p
dp

= 1
p

The ode becomes
d
dp(µx) = (µ) (4)

d
dp

(
x

p

)
=
(
1
p

)
(4)

d
(
x

p

)
=
(
4
p

)
dp

Integrating gives
x

p
=
∫ 4

p
dp

x

p
= 4 ln (p) + c1

Dividing both sides by the integrating factor µ = 1
p
results in

x(p) = 4p ln (p) + c1p

which simplifies to

x(p) = p(4 ln (p) + c1)

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −x

4 +
√
x2 + 16y

4

p = −x

4 −
√
x2 + 16y

4
Substituting the above in the solution for x found above gives

x = −
(
x−

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x+

√
x2 + 16y

)
+ c1

)
4

x = −
(
x+

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x−

√
x2 + 16y

)
+ c1

)
4
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = −
(
x−

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x+

√
x2 + 16y

)
+ c1

)
4

(3)x = −
(
x+

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x−

√
x2 + 16y

)
+ c1

)
4

Verification of solutions

y = 0

Verified OK.

x = −
(
x−

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x+

√
x2 + 16y

)
+ c1

)
4

Verified OK.

x = −
(
x+

√
x2 + 16y

) (
−8 ln (2) + 4 ln

(
−x−

√
x2 + 16y

)
+ c1

)
4

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 31� �
dsolve(2*diff(y(x),x)^2+x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)� �

y(x) =
x2
(
1 + 2LambertW

(
x e

c1
4

4

))
16 LambertW

(
x e

c1
4

4

)2
3 Solution by Mathematica
Time used: 1.194 (sec). Leaf size: 130� �
DSolve[2*(y'[x])^2+x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

− 1
2x
√

x2 + 16y(x)− 8y(x) log
(√

x2 + 16y(x)− x
)
+ x2

2

8y(x) = c1, y(x)


Solve

 1
2x
√

x2 + 16y(x)− 8y(x) log
(√

x2 + 16y(x)− x
)
− x2

2

8y(x) + log(y(x)) = c1, y(x)


y(x) → 0
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3.19 problem 22
3.19.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 383

Internal problem ID [6813]
Internal file name [OUTPUT/6060_Thursday_July_28_2022_04_28_35_AM_13746180/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 22.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
3 + 2xy′ − y = 0

3.19.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p3 + 2xp− y = 0

Solving for y from the above results in

y = p3 + 2xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p
g = p3

Hence (2) becomes

−p =
(
3p2 + 2x

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)
3p (x)2 + 2x

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −3p2 + 2x(p)

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p

q(p) = −3p
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Hence the ode is

d

dp
x(p) + 2x(p)

p
= −3p

The integrating factor µ is

µ = e
∫ 2

p
dp

= p2

The ode becomes

d
dp(µx) = (µ) (−3p)

d
dp
(
p2x
)
=
(
p2
)
(−3p)

d
(
p2x
)
=
(
−3p3

)
dp

Integrating gives

p2x =
∫

−3p3 dp

p2x = −3p4
4 + c1

Dividing both sides by the integrating factor µ = p2 results in

x(p) = −3p2
4 + c1

p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
108y + 12

√
96x3 + 81y2

) 1
3

6 − 4x(
108y + 12

√
96x3 + 81y2

) 1
3

p = −
(
108y + 12

√
96x3 + 81y2

) 1
3

12 + 2x(
108y + 12

√
96x3 + 81y2

) 1
3
+

i
√
3
((

108y+12
√

96x3+81y2
) 1

3

6 + 4x(
108y+12

√
96x3+81y2

) 1
3

)
2

p = −
(
108y + 12

√
96x3 + 81y2

) 1
3

12 + 2x(
108y + 12

√
96x3 + 81y2

) 1
3
−

i
√
3
((

108y+12
√

96x3+81y2
) 1

3

6 + 4x(
108y+12

√
96x3+81y2

) 1
3

)
2
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Substituting the above in the solution for x found above gives

x = −

((
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
48
(
108y + 12

√
96x3 + 81y2

) 2
3

+
36c1

(
108y + 12

√
96x3 + 81y2

) 2
3((

108y + 12
√
96x3 + 81y2

) 2
3 − 24x

)2

x =
3
((√

3+i
)(

108y+12
√

96x3+81y2
) 2

3

24 + x
(
−i+

√
3
))2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
√
3
(
108y + 12

√
96x3 + 81y2

) 2
3 + 24i

√
3x−

(
108y + 12

√
96x3 + 81y2

) 2
3 + 24x

)2

x =
3
((

108y+12
√

96x3+81y2
) 2

3
(
−i+

√
3
)

24 + x
(√

3 + i
))2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
√
3
(
108y + 12

√
96x3 + 81y2

) 2
3 + 24i

√
3x+

(
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
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Summary
The solution(s) found are the following

(1)y = 0

x = −

((
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
48
(
108y + 12

√
96x3 + 81y2

) 2
3

+
36c1

(
108y + 12

√
96x3 + 81y2

) 2
3((

108y + 12
√
96x3 + 81y2

) 2
3 − 24x

)2
(2)

(3)x =
3
((√

3+i
)(

108y+12
√

96x3+81y2
) 2

3

24 + x
(
−i+

√
3
))2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
√
3
(
108y + 12

√
96x3 + 81y2

) 2
3 + 24i

√
3x−

(
108y + 12

√
96x3 + 81y2

) 2
3 + 24x

)2

(4)x =
3
((

108y+12
√

96x3+81y2
) 2

3
(
−i+

√
3
)

24 + x
(√

3 + i
))2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
√
3
(
108y + 12

√
96x3 + 81y2

) 2
3 + 24i

√
3x+

(
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
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Verification of solutions

y = 0

Verified OK.

x = −

((
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
48
(
108y + 12

√
96x3 + 81y2

) 2
3

+
36c1

(
108y + 12

√
96x3 + 81y2

) 2
3((

108y + 12
√
96x3 + 81y2

) 2
3 − 24x

)2
Verified OK.

x =
3
((√

3+i
)(

108y+12
√

96x3+81y2
) 2

3

24 + x
(
−i+

√
3
))2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
√
3
(
108y + 12

√
96x3 + 81y2

) 2
3 + 24i

√
3x−

(
108y + 12

√
96x3 + 81y2

) 2
3 + 24x

)2
Verified OK.

x =
3
((

108y+12
√

96x3+81y2
) 2

3
(
−i+

√
3
)

24 + x
(√

3 + i
))2

(
108y + 12

√
96x3 + 81y2

) 2
3

+
144c1

(
108y + 12

√
96x3 + 81y2

) 2
3(

i
√
3
(
108y + 12

√
96x3 + 81y2

) 2
3 + 24i

√
3x+

(
108y + 12

√
96x3 + 81y2

) 2
3 − 24x

)2
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

388



3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 141� �
dsolve(diff(y(x),x)^3+2*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) =
2
(
−2x+

√
x2 + 3c1

)√
−6

√
x2 + 3c1 − 6x

9

y(x) = −
2
(
−2x+

√
x2 + 3c1

)√
−6

√
x2 + 3c1 − 6x

9

y(x) = −
2
(
2x+

√
x2 + 3c1

)√
6
√
x2 + 3c1 − 6x

9

y(x) =
2
(
2x+

√
x2 + 3c1

)√
6
√
x2 + 3c1 − 6x

9

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y'[x])^3+2*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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3.20 problem 23
3.20.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 390

Internal problem ID [6814]
Internal file name [OUTPUT/6061_Thursday_July_28_2022_04_28_39_AM_98227792/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 23.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _dAlembert]

4xy′2 − 3yy′ = −3

3.20.1 Solving as dAlembert ode

Let p = y′ the ode becomes

4x p2 − 3yp = −3

Solving for y from the above results in

y = 4px
3 + 1

p
(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 4p
3

g = 1
p

Hence (2) becomes

−p

3 =
(
4x
3 − 1

p2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p

3 = 0

Solving for p from the above gives

p = 0

None of these values lead to defined solutions. Hence no singular solutions exist

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)
3
(

4x
3 − 1

p(x)2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −

3
(

4x(p)
3 − 1

p2

)
p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 4
p

q(p) = 3
p3
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Hence the ode is

d

dp
x(p) + 4x(p)

p
= 3

p3

The integrating factor µ is

µ = e
∫ 4

p
dp

= p4

The ode becomes

d
dp(µx) = (µ)

(
3
p3

)
d
dp
(
p4x
)
=
(
p4
)( 3

p3

)
d
(
p4x
)
= (3p) dp

Integrating gives

p4x =
∫

3p dp

p4x = 3p2
2 + c1

Dividing both sides by the integrating factor µ = p4 results in

x(p) = 3
2p2 + c1

p4

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = 3y +
√
9y2 − 48x
8x

p = −−3y +
√
9y2 − 48x
8x

Substituting the above in the solution for x found above gives

x =
64x2(64c1x2 + 9y

√
9y2 − 48x+ 27y2 − 72x

)(
3y +

√
9y2 − 48x

)4
x = −

64x2(−64c1x2 + 9y
√
9y2 − 48x− 27y2 + 72x

)(
−3y +

√
9y2 − 48x

)4
392



Summary
The solution(s) found are the following

(1)x =
64x2(64c1x2 + 9y

√
9y2 − 48x+ 27y2 − 72x

)(
3y +

√
9y2 − 48x

)4
(2)x = −

64x2(−64c1x2 + 9y
√
9y2 − 48x− 27y2 + 72x

)(
−3y +

√
9y2 − 48x

)4
Verification of solutions

x =
64x2(64c1x2 + 9y

√
9y2 − 48x+ 27y2 − 72x

)(
3y +

√
9y2 − 48x

)4
Verified OK.

x = −
64x2(−64c1x2 + 9y

√
9y2 − 48x− 27y2 + 72x

)(
−3y +

√
9y2 − 48x

)4
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 123� �
dsolve(4*x*diff(y(x),x)^2-3*y(x)*diff(y(x),x)+3=0,y(x), singsol=all)� �

y(x) = −
2x
(
6 +

√
16c1x+ 9

)
3
√

x
(
3 +

√
16c1x+ 9

)
y(x) =

2x
(
6 +

√
16c1x+ 9

)
3
√

x
(
3 +

√
16c1x+ 9

)
y(x) =

2x
(
−6 +

√
16c1x+ 9

)
3
√

−x
(
−3 +

√
16c1x+ 9

)
y(x) = −

2x
(
−6 +

√
16c1x+ 9

)
3
√

−x
(
−3 +

√
16c1x+ 9

)
3 Solution by Mathematica
Time used: 23.695 (sec). Leaf size: 187� �
DSolve[4*x*(y'[x])^2-3*y[x]*y'[x]+3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
432x− e−

c1
2 (−144x+ ec1) 3/2 + ec1

6
√
3

y(x) →

√
432x− e−

c1
2 (−144x+ ec1) 3/2 + ec1

6
√
3

y(x) → −

√
432x+ e−

c1
2 (−144x+ ec1) 3/2 + ec1

6
√
3

y(x) →

√
432x+ e−

c1
2 (−144x+ ec1) 3/2 + ec1

6
√
3
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3.21 problem 24
3.21.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 395

Internal problem ID [6815]
Internal file name [OUTPUT/6062_Thursday_July_28_2022_04_28_41_AM_47236068/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 24.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
3 − xy′ + 2y = 0

3.21.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p3 − xp+ 2y = 0

Solving for y from the above results in

y = −1
2p

3 + 1
2xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p

2

g = −p3

2
Hence (2) becomes

p

2 =
(
x

2 − 3p2
2

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives
p

2 = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)
x− 3p (x)2

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = x(p)− 3p2

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = −1
p

q(p) = −3p
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Hence the ode is
d

dp
x(p)− x(p)

p
= −3p

The integrating factor µ is

µ = e
∫
− 1

p
dp

= 1
p

The ode becomes
d
dp(µx) = (µ) (−3p)

d
dp

(
x

p

)
=
(
1
p

)
(−3p)

d
(
x

p

)
= −3 dp

Integrating gives

x

p
=
∫

−3 dp
x

p
= −3p+ c1

Dividing both sides by the integrating factor µ = 1
p
results in

x(p) = c1p− 3p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
(
−27y + 3

√
−3x3 + 81y2

) 1
3

3 + x(
−27y + 3

√
−3x3 + 81y2

) 1
3

p = −
(
−27y + 3

√
−3x3 + 81y2

) 1
3

6 − x

2
(
−27y + 3

√
−3x3 + 81y2

) 1
3
+

i
√
3
((

−27y+3
√

−3x3+81y2
) 1

3

3 − x(
−27y+3

√
−3x3+81y2

) 1
3

)
2

p = −
(
−27y + 3

√
−3x3 + 81y2

) 1
3

6 − x

2
(
−27y + 3

√
−3x3 + 81y2

) 1
3
−

i
√
3
((

−27y+3
√

−3x3+81y2
) 1

3

3 − x(
−27y+3

√
−3x3+81y2

) 1
3

)
2
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Substituting the above in the solution for x found above gives

x =

−

((
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)((
−27y + 3

√
−3x3 + 81y2

) 2
3 − c1

(
−27y + 3

√
−3x3 + 81y2

) 1
3 + 3x

)
3
(
−27y + 3

√
−3x3 + 81y2

) 2
3

x =

−

(
−i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3 + 3i

√
3x+

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)(
−i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3 + 3i

√
3x+ 2c1

(
−27y + 3

√
−3x3 + 81y2

) 1
3 +

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)
12
(
−27y + 3

√
−3x3 + 81y2

) 2
3

x =

−

(
i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3− 3i

√
3x+

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)(
i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3− 3i

√
3x+

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 2c1

(
−27y + 3

√
−3x3 + 81y2

) 1
3 + 3x

)
12
(
−27y + 3

√
−3x3 + 81y2

) 2
3

Summary
The solution(s) found are the following

(1)y = 0
(2)x =

−

((
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)((
−27y + 3

√
−3x3 + 81y2

) 2
3 − c1

(
−27y + 3

√
−3x3 + 81y2

) 1
3 + 3x

)
3
(
−27y + 3

√
−3x3 + 81y2

) 2
3

(3)x =

−

(
−i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3 + 3i

√
3x+

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)(
−i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3 + 3i

√
3x+ 2c1

(
−27y + 3

√
−3x3 + 81y2

) 1
3 +

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)
12
(
−27y + 3

√
−3x3 + 81y2

) 2
3

(4)x =

−

(
i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3− 3i

√
3x+

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)(
i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3− 3i

√
3x+

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 2c1

(
−27y + 3

√
−3x3 + 81y2

) 1
3 + 3x

)
12
(
−27y + 3

√
−3x3 + 81y2

) 2
3
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Verification of solutions

y = 0

Verified OK.
x =

−

((
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)((
−27y + 3

√
−3x3 + 81y2

) 2
3 − c1

(
−27y + 3

√
−3x3 + 81y2

) 1
3 + 3x

)
3
(
−27y + 3

√
−3x3 + 81y2

) 2
3

Verified OK.
x =

−

(
−i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3 + 3i

√
3x+

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)(
−i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3 + 3i

√
3x+ 2c1

(
−27y + 3

√
−3x3 + 81y2

) 1
3 +

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)
12
(
−27y + 3

√
−3x3 + 81y2

) 2
3

Warning, solution could not be verified
x =

−

(
i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3− 3i

√
3x+

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 3x

)(
i
(
−27y + 3

√
−3x3 + 81y2

) 2
3
√
3− 3i

√
3x+

(
−27y + 3

√
−3x3 + 81y2

) 2
3 + 2c1

(
−27y + 3

√
−3x3 + 81y2

) 1
3 + 3x

)
12
(
−27y + 3

√
−3x3 + 81y2

) 2
3

Warning, solution could not be verified

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 58� �
dsolve(diff(y(x),x)^3-x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)� �

y(x) = (c21 − 12x)
3
2

108 − c31
108 + c1x

6

y(x) = (−c21 + 12x)
√

c21 − 12x
108 − c31

108 + c1x

6

3 Solution by Mathematica
Time used: 29.375 (sec). Leaf size: 10134� �
DSolve[(y'[x])^3-x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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3.22 problem 25
3.22.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 401

Internal problem ID [6816]
Internal file name [OUTPUT/6063_Thursday_July_28_2022_04_28_51_AM_64077138/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 25.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

5y′2 + 6xy′ − 2y = 0

3.22.1 Solving as dAlembert ode

Let p = y′ the ode becomes

5p2 + 6xp− 2y = 0

Solving for y from the above results in

y = 5
2p

2 + 3xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 3p

g = 5p2
2

Hence (2) becomes

−2p = (3x+ 5p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−2p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − 2p(x)
3x+ 5p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −3x(p) + 5p

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 3
2p

q(p) = −5
2
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Hence the ode is
d

dp
x(p) + 3x(p)

2p = −5
2

The integrating factor µ is

µ = e
∫ 3

2pdp

= p
3
2

The ode becomes

d
dp(µx) = (µ)

(
−5
2

)
d
dp

(
p

3
2x
)
=
(
p

3
2

)(
−5
2

)
d
(
p

3
2x
)
=
(
−5p 3

2

2

)
dp

Integrating gives

p
3
2x =

∫
−5p 3

2

2 dp

p
3
2x = −p

5
2 + c1

Dividing both sides by the integrating factor µ = p
3
2 results in

x(p) = −p+ c1

p
3
2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −3x
5 +

√
9x2 + 10y

5

p = −3x
5 −

√
9x2 + 10y

5
Substituting the above in the solution for x found above gives

x = 3x
5 −

√
9x2 + 10y

5 + 125c1(
−15x+ 5

√
9x2 + 10y

) 3
2

x = 3x
5 +

√
9x2 + 10y

5 + 125c1(
−15x− 5

√
9x2 + 10y

) 3
2
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = 3x
5 −

√
9x2 + 10y

5 + 125c1(
−15x+ 5

√
9x2 + 10y

) 3
2

(3)x = 3x
5 +

√
9x2 + 10y

5 + 125c1(
−15x− 5

√
9x2 + 10y

) 3
2

Verification of solutions

y = 0

Verified OK.

x = 3x
5 −

√
9x2 + 10y

5 + 125c1(
−15x+ 5

√
9x2 + 10y

) 3
2

Verified OK.

x = 3x
5 +

√
9x2 + 10y

5 + 125c1(
−15x− 5

√
9x2 + 10y

) 3
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 85� �
dsolve(5*diff(y(x),x)^2+6*x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)� �

c1(
−15x− 5

√
9x2 + 10y (x)

) 3
2
+ 2x

5 −
√

9x2 + 10y (x)
5 = 0

c1(
−15x+ 5

√
9x2 + 10y (x)

) 3
2
+ 2x

5 +
√

9x2 + 10y (x)
5 = 0
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3 Solution by Mathematica
Time used: 14.31 (sec). Leaf size: 771� �
DSolve[5*(y'[x])^2+6*x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → Root

[
4#15 + 4#14x2 +#13x4 + 1000#12e5c1x+ 900#1e5c1x3 + 216e5c1x5

− 25000e10c1&, 1
]

y(x) → Root
[
4#15 + 4#14x2 +#13x4 + 1000#12e5c1x+ 900#1e5c1x3 + 216e5c1x5

− 25000e10c1&, 2
]

y(x) → Root
[
4#15 + 4#14x2 +#13x4 + 1000#12e5c1x+ 900#1e5c1x3 + 216e5c1x5

− 25000e10c1&, 3
]

y(x) → Root
[
4#15 + 4#14x2 +#13x4 + 1000#12e5c1x+ 900#1e5c1x3 + 216e5c1x5

− 25000e10c1&, 4
]

y(x) → Root
[
4#15 + 4#14x2 +#13x4 + 1000#12e5c1x+ 900#1e5c1x3 + 216e5c1x5

− 25000e10c1&, 5
]

y(x) → Root
[
100000#15 + 100000#14x2 + 25000#13x4 − 1000#12e5c1x

− 900#1e5c1x3 − 216e5c1x5 − e10c1&, 1
]

y(x) → Root
[
100000#15 + 100000#14x2 + 25000#13x4 − 1000#12e5c1x

− 900#1e5c1x3 − 216e5c1x5 − e10c1&, 2
]

y(x) → Root
[
100000#15 + 100000#14x2 + 25000#13x4 − 1000#12e5c1x

− 900#1e5c1x3 − 216e5c1x5 − e10c1&, 3
]

y(x) → Root
[
100000#15 + 100000#14x2 + 25000#13x4 − 1000#12e5c1x

− 900#1e5c1x3 − 216e5c1x5 − e10c1&, 4
]

y(x) → Root
[
100000#15 + 100000#14x2 + 25000#13x4 − 1000#12e5c1x

− 900#1e5c1x3 − 216e5c1x5 − e10c1&, 5
]

y(x) → 0
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3.23 problem 26
3.23.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 407

Internal problem ID [6817]
Internal file name [OUTPUT/6064_Thursday_July_28_2022_04_28_53_AM_25660040/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 26.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[_rational , _dAlembert]

2xy′2 + (2x− y) y′ − y = −1

3.23.1 Solving as dAlembert ode

Let p = y′ the ode becomes

2x p2 + (2x− y) p− y = −1

Solving for y from the above results in

y = (2p2 + 2p)x
p+ 1 + 1

p+ 1 (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p

g = 1
p+ 1

Hence (2) becomes

−p =
(
2x− 1

(p+ 1)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 1

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)
2x− 1

(p(x)+1)2
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −

2x(p)− 1
(p+1)2

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p

q(p) = 1
p (p+ 1)2
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Hence the ode is

d

dp
x(p) + 2x(p)

p
= 1

p (p+ 1)2

The integrating factor µ is

µ = e
∫ 2

p
dp

= p2

The ode becomes

d
dp(µx) = (µ)

(
1

p (p+ 1)2
)

d
dp
(
x p2

)
=
(
p2
)( 1

p (p+ 1)2
)

d
(
x p2

)
=
(

p

(p+ 1)2
)

dp

Integrating gives

x p2 =
∫

p

(p+ 1)2
dp

x p2 = ln (p+ 1) + 1
p+ 1 + c1

Dividing both sides by the integrating factor µ = p2 results in

x(p) =
ln (p+ 1) + 1

p+1

p2
+ c1

p2

which simplifies to

x(p) =
ln (p+ 1) + 1

p+1 + c1

p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −2x+ y +
√
y2 + 4yx+ 4x2 − 8x
4x

p = −2x− y +
√
y2 + 4yx+ 4x2 − 8x

4x
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Substituting the above in the solution for x found above gives

x

=
32
((

x+ y
2 +

√
4x2+(4y−8)x+y2

2

)
ln
(

2x+y+
√

4x2+(4y−8)x+y2

x

)
+
(
c1
2 − ln (2)

)√
4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (c1 + 2)x+ c1y

2

)
x2(

2x+ y +
√
4x2 + (4y − 8)x+ y2

)(
2x− y −

√
4x2 + (4y − 8)x+ y2

)2
x

=
32x2

((
x+ y

2 −
√

4x2+(4y−8)x+y2

2

)
ln
(

2x+y−
√

4x2+(4y−8)x+y2

x

)
+
(
− c1

2 + ln (2)
)√

4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (c1 + 2)x+ c1y
2

)
(
2x+ y −

√
4x2 + (4y − 8)x+ y2

)(
2x− y +

√
4x2 + (4y − 8)x+ y2

)2
Summary
The solution(s) found are the following

(1)y = 1
(2)x

=
32
((

x+ y
2 +

√
4x2+(4y−8)x+y2

2

)
ln
(

2x+y+
√

4x2+(4y−8)x+y2

x

)
+
(
c1
2 − ln (2)

)√
4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (c1 + 2)x+ c1y

2

)
x2(

2x+ y +
√
4x2 + (4y − 8)x+ y2

)(
2x− y −

√
4x2 + (4y − 8)x+ y2

)2
(3)x

=
32x2

((
x+ y

2 −
√

4x2+(4y−8)x+y2

2

)
ln
(

2x+y−
√

4x2+(4y−8)x+y2

x

)
+
(
− c1

2 + ln (2)
)√

4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (c1 + 2)x+ c1y
2

)
(
2x+ y −

√
4x2 + (4y − 8)x+ y2

)(
2x− y +

√
4x2 + (4y − 8)x+ y2

)2
Verification of solutions

y = 1

Verified OK.
x

=
32
((

x+ y
2 +

√
4x2+(4y−8)x+y2

2

)
ln
(

2x+y+
√

4x2+(4y−8)x+y2

x

)
+
(
c1
2 − ln (2)

)√
4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (c1 + 2)x+ c1y

2

)
x2(

2x+ y +
√
4x2 + (4y − 8)x+ y2

)(
2x− y −

√
4x2 + (4y − 8)x+ y2

)2
Verified OK.
x

=
32x2

((
x+ y

2 −
√

4x2+(4y−8)x+y2

2

)
ln
(

2x+y−
√

4x2+(4y−8)x+y2

x

)
+
(
− c1

2 + ln (2)
)√

4x2 + (4y − 8)x+ y2 + (−2x− y) ln (2) + (c1 + 2)x+ c1y
2

)
(
2x+ y −

√
4x2 + (4y − 8)x+ y2

)(
2x− y +

√
4x2 + (4y − 8)x+ y2

)2
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 110� �
dsolve(2*x*diff(y(x),x)^2+(2*x-y(x))*diff(y(x),x)+1-y(x)=0,y(x), singsol=all)� �

y(x) = −2
(
x eRootOf

(
−e3_Zx+2x e2_Z+c1e_Z+e_Z_Z−x e_Z+1

)

− e2RootOf
(
−e3_Zx+2x e2_Z+c1e_Z+e_Z_Z−x e_Z+1

)
x

− 1
2

)
e−RootOf

(
−e3_Zx+2x e2_Z+c1e_Z+e_Z_Z−x e_Z+1

)

3 Solution by Mathematica
Time used: 1.438 (sec). Leaf size: 49� �
DSolve[2*x*(y'[x])^2+(2*x-y[x])*y'[x]+1-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Solve

[{
x=

1
K[1]+1 + log(K[1] + 1)

K[1]2 + c1
K[1]2 , y(x) = 2xK[1]+ 1

K[1] + 1

}
, {y(x), K[1]}

]
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3.24 problem 27
3.24.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 412

Internal problem ID [6818]
Internal file name [OUTPUT/6065_Thursday_July_28_2022_04_28_56_AM_97945755/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 27.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

5y′2 + 3xy′ − y = 0

3.24.1 Solving as dAlembert ode

Let p = y′ the ode becomes

5p2 + 3xp− y = 0

Solving for y from the above results in

y = 5p2 + 3xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 3p
g = 5p2

Hence (2) becomes

−2p = (3x+ 10p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−2p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − 2p(x)
3x+ 10p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −3x(p) + 10p

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 3
2p

q(p) = −5
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Hence the ode is

d

dp
x(p) + 3x(p)

2p = −5

The integrating factor µ is

µ = e
∫ 3

2pdp

= p
3
2

The ode becomes
d
dp(µx) = (µ) (−5)

d
dp

(
p

3
2x
)
=
(
p

3
2

)
(−5)

d
(
p

3
2x
)
=
(
−5p 3

2

)
dp

Integrating gives

p
3
2x =

∫
−5p 3

2 dp

p
3
2x = −2p 5

2 + c1

Dividing both sides by the integrating factor µ = p
3
2 results in

x(p) = −2p+ c1

p
3
2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −3x
10 +

√
9x2 + 20y

10

p = −3x
10 −

√
9x2 + 20y

10

Substituting the above in the solution for x found above gives

x = 3x
5 −

√
9x2 + 20y

5 + 1000c1(
−30x+ 10

√
9x2 + 20y

) 3
2

x = 3x
5 +

√
9x2 + 20y

5 + 1000c1(
−30x− 10

√
9x2 + 20y

) 3
2
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = 3x
5 −

√
9x2 + 20y

5 + 1000c1(
−30x+ 10

√
9x2 + 20y

) 3
2

(3)x = 3x
5 +

√
9x2 + 20y

5 + 1000c1(
−30x− 10

√
9x2 + 20y

) 3
2

Verification of solutions

y = 0

Verified OK.

x = 3x
5 −

√
9x2 + 20y

5 + 1000c1(
−30x+ 10

√
9x2 + 20y

) 3
2

Verified OK.

x = 3x
5 +

√
9x2 + 20y

5 + 1000c1(
−30x− 10

√
9x2 + 20y

) 3
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

415



3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 85� �
dsolve(5*diff(y(x),x)^2+3*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

c1(
−30x− 10

√
9x2 + 20y (x)

) 3
2
+ 2x

5 −
√

9x2 + 20y (x)
5 = 0

c1(
−30x+ 10

√
9x2 + 20y (x)

) 3
2
+ 2x

5 +
√

9x2 + 20y (x)
5 = 0
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3 Solution by Mathematica
Time used: 14.529 (sec). Leaf size: 771� �
DSolve[5*(y'[x])^2+3*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → Root

[
16#15 + 8#14x2 +#13x4 + 4000#12e5c1x+ 1800#1e5c1x3 + 216e5c1x5

− 200000e10c1&, 1
]

y(x) → Root
[
16#15 + 8#14x2 +#13x4 + 4000#12e5c1x+ 1800#1e5c1x3 + 216e5c1x5

− 200000e10c1&, 2
]

y(x) → Root
[
16#15 + 8#14x2 +#13x4 + 4000#12e5c1x+ 1800#1e5c1x3 + 216e5c1x5

− 200000e10c1&, 3
]

y(x) → Root
[
16#15 + 8#14x2 +#13x4 + 4000#12e5c1x+ 1800#1e5c1x3 + 216e5c1x5

− 200000e10c1&, 4
]

y(x) → Root
[
16#15 + 8#14x2 +#13x4 + 4000#12e5c1x+ 1800#1e5c1x3 + 216e5c1x5

− 200000e10c1&, 5
]

y(x) → Root
[
3200000#15 + 1600000#14x2 + 200000#13x4 − 4000#12e5c1x

− 1800#1e5c1x3 − 216e5c1x5 − e10c1&, 1
]

y(x) → Root
[
3200000#15 + 1600000#14x2 + 200000#13x4 − 4000#12e5c1x

− 1800#1e5c1x3 − 216e5c1x5 − e10c1&, 2
]

y(x) → Root
[
3200000#15 + 1600000#14x2 + 200000#13x4 − 4000#12e5c1x

− 1800#1e5c1x3 − 216e5c1x5 − e10c1&, 3
]

y(x) → Root
[
3200000#15 + 1600000#14x2 + 200000#13x4 − 4000#12e5c1x

− 1800#1e5c1x3 − 216e5c1x5 − e10c1&, 4
]

y(x) → Root
[
3200000#15 + 1600000#14x2 + 200000#13x4 − 4000#12e5c1x

− 1800#1e5c1x3 − 216e5c1x5 − e10c1&, 5
]

y(x) → 0
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3.25 problem 28
3.25.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 418

Internal problem ID [6819]
Internal file name [OUTPUT/6066_Thursday_July_28_2022_04_28_58_AM_71850312/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 28.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

y′
2 + 3xy′ − y = 0

3.25.1 Solving as dAlembert ode

Let p = y′ the ode becomes

p2 + 3xp− y = 0

Solving for y from the above results in

y = p2 + 3xp (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 3p
g = p2

Hence (2) becomes

−2p = (3x+ 2p) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−2p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − 2p(x)
3x+ 2p (x) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −3x(p) + 2p

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 3
2p

q(p) = −1
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Hence the ode is
d

dp
x(p) + 3x(p)

2p = −1

The integrating factor µ is

µ = e
∫ 3

2pdp

= p
3
2

The ode becomes
d
dp(µx) = (µ) (−1)

d
dp

(
p

3
2x
)
=
(
p

3
2

)
(−1)

d
(
p

3
2x
)
=
(
−p

3
2

)
dp

Integrating gives

p
3
2x =

∫
−p

3
2 dp

p
3
2x = −2p 5

2

5 + c1

Dividing both sides by the integrating factor µ = p
3
2 results in

x(p) = −2p
5 + c1

p
3
2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = −3x
2 +

√
9x2 + 4y

2

p = −3x
2 −

√
9x2 + 4y

2
Substituting the above in the solution for x found above gives

x = 3x
5 −

√
9x2 + 4y

5 + 8c1(
−6x+ 2

√
9x2 + 4y

) 3
2

x = 3x
5 +

√
9x2 + 4y

5 + 8c1(
−6x− 2

√
9x2 + 4y

) 3
2
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Summary
The solution(s) found are the following

(1)y = 0

(2)x = 3x
5 −

√
9x2 + 4y

5 + 8c1(
−6x+ 2

√
9x2 + 4y

) 3
2

(3)x = 3x
5 +

√
9x2 + 4y

5 + 8c1(
−6x− 2

√
9x2 + 4y

) 3
2

Verification of solutions

y = 0

Verified OK.

x = 3x
5 −

√
9x2 + 4y

5 + 8c1(
−6x+ 2

√
9x2 + 4y

) 3
2

Verified OK.

x = 3x
5 +

√
9x2 + 4y

5 + 8c1(
−6x− 2

√
9x2 + 4y

) 3
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 85� �
dsolve(diff(y(x),x)^2+3*x*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

c1(
−6x− 2

√
9x2 + 4y (x)

) 3
2
+ 2x

5 −
√
9x2 + 4y (x)

5 = 0

c1(
−6x+ 2

√
9x2 + 4y (x)

) 3
2
+ 2x

5 +
√
9x2 + 4y (x)

5 = 0
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3 Solution by Mathematica
Time used: 14.495 (sec). Leaf size: 776� �
DSolve[(y'[x])^2+3*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → Root

[
16#15 + 40#14x2 + 25#13x4 + 160#12e5c1x+ 360#1e5c1x3 + 216e5c1x5

− 64e10c1&, 1
]

y(x) → Root
[
16#15 + 40#14x2 + 25#13x4 + 160#12e5c1x+ 360#1e5c1x3 + 216e5c1x5

− 64e10c1&, 2
]

y(x) → Root
[
16#15 + 40#14x2 + 25#13x4 + 160#12e5c1x+ 360#1e5c1x3 + 216e5c1x5

− 64e10c1&, 3
]

y(x) → Root
[
16#15 + 40#14x2 + 25#13x4 + 160#12e5c1x+ 360#1e5c1x3 + 216e5c1x5

− 64e10c1&, 4
]

y(x) → Root
[
16#15 + 40#14x2 + 25#13x4 + 160#12e5c1x+ 360#1e5c1x3 + 216e5c1x5

− 64e10c1&, 5
]

y(x) → Root
[
1024#15 + 2560#14x2 + 1600#13x4 − 160#12e5c1x− 360#1e5c1x3

− 216e5c1x5 − e10c1&, 1
]

y(x) → Root
[
1024#15 + 2560#14x2 + 1600#13x4 − 160#12e5c1x− 360#1e5c1x3

− 216e5c1x5 − e10c1&, 2
]

y(x) → Root
[
1024#15 + 2560#14x2 + 1600#13x4 − 160#12e5c1x− 360#1e5c1x3

− 216e5c1x5 − e10c1&, 3
]

y(x) → Root
[
1024#15 + 2560#14x2 + 1600#13x4 − 160#12e5c1x− 360#1e5c1x3

− 216e5c1x5 − e10c1&, 4
]

y(x) → Root
[
1024#15 + 2560#14x2 + 1600#13x4 − 160#12e5c1x− 360#1e5c1x3

− 216e5c1x5 − e10c1&, 5
]

y(x) → 0
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3.26 problem 29
Internal problem ID [6820]
Internal file name [OUTPUT/6067_Thursday_July_28_2022_04_29_00_AM_25586871/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut’s equation. EXERCISES
Page 320
Problem number: 29.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

y − xy′ − x3y′
2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −1 +
√
1 + 4yx

2x2 (1)

y′ = −1 +
√
1 + 4yx
2x2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = −1 +
√
4xy + 1

2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
−1 +

√
4xy + 1

)
(b3 − a2)

2x2 −
(
−1 +

√
4xy + 1

)2
a3

4x4

−
(
−−1 +

√
4xy + 1

x3 + y

x2√4xy + 1

)
(xa2+ ya3+a1)−

xb2 + yb3 + b1
x
√
4xy + 1

= 0

Putting the above in normal form gives

−−4b2x4√4xy + 1 + 4x4b2 − 4x3ya2 − 4x3yb3 − 12x2y2a3 + (4xy + 1)
3
2 a3 + 2

√
4xy + 1x2a2 + 2

√
4xy + 1x2b3 + 4

√
4xy + 1xya3 + 4x3b1 − 12x2ya1 + 4

√
4xy + 1xa1 − 2x2a2 − 2x2b3 − 12xya3 + a3

√
4xy + 1− 4xa1 − 2a3

4x4√4xy + 1
= 0

Setting the numerator to zero gives

(6E)4b2x4√4xy + 1− 4x4b2 + 4x3ya2 + 4x3yb3 + 12x2y2a3 − (4xy + 1)
3
2 a3

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 − 4
√

4xy + 1xya3 − 4x3b1 +12x2ya1

−4
√

4xy + 1xa1+2x2a2+2x2b3+12xya3−a3
√
4xy + 1+4xa1+2a3 = 0

Simplifying the above gives

(6E)
4b2x4√4xy + 1 + 2(4xy + 1)x2a2 + 2(4xy + 1)x2b3 + 4(4xy + 1)xya3
− 4x4b2 − 4x3ya2 − 4x3yb3 − 4x2y2a3 − (4xy + 1)

3
2 a3 + 4(4xy + 1)xa1

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 − 4
√
4xy + 1xya3 − 4x3b1

− 4x2ya1 + 2(4xy + 1) a3 − 4
√
4xy + 1xa1 − a3

√
4xy + 1 = 0
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Since the PDE has radicals, simplifying gives

4b2x4√4xy + 1− 4x4b2 + 4x3ya2 + 4x3yb3 + 12x2y2a3 − 4x3b1

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 + 12x2ya1 − 8
√

4xy + 1xya3 + 2x2a2

+ 2x2b3 − 4
√

4xy + 1xa1 + 12xya3 + 4xa1 − 2a3
√
4xy + 1 + 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
4xy + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4xy + 1 = v3

}
The above PDE (6E) now becomes

(7E)4b2v41v3 + 4v31v2a2 + 12v21v22a3 − 4v41b2 + 4v31v2b3 + 12v21v2a1 − 2v3v21a2
− 8v3v1v2a3 − 4v31b1 − 2v3v21b3 − 4v3v1a1 + 2v21a2 + 12v1v2a3 + 2v21b3 + 4v1a1
− 2a3v3 + 2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)4b2v41v3 − 4v41b2 + (4a2 + 4b3) v31v2 − 4v31b1 + 12v21v22a3
+ 12v21v2a1 + (−2a2 − 2b3) v21v3 + (2a2 + 2b3) v21 − 8v3v1v2a3
+ 12v1v2a3 − 4v3v1a1 + 4v1a1 − 2a3v3 + 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
4a1 = 0
12a1 = 0
−8a3 = 0
−2a3 = 0
2a3 = 0
12a3 = 0
−4b1 = 0
−4b2 = 0
4b2 = 0

−2a2 − 2b3 = 0
2a2 + 2b3 = 0
4a2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−1 +

√
4xy + 1

2x2

)
(−x)

= 2xy +
√
4xy + 1− 1
2x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2xy+
√
4xy+1−1
2x

dy

Which results in

S = 3 ln (xy − 2)
4 + ln (y)

4 −
3 ln

(√
4xy + 1− 3

)
4 −

ln
(√

4xy + 1 + 1
)

4 +
ln
(
−1 +

√
4xy + 1

)
4 +

3 ln
(√

4xy + 1 + 3
)

4
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −1 +
√
4xy + 1

2x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −−3xy + 2
√
4xy + 1

(4xy − 8)x

Sy = −
2
(
−2xy +

√
4xy + 1 + 1

)
(4xy − 8) y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3

4x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3

4R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3 ln (R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (yx− 2)
4 + ln (y)

4 −
3 ln

(√
1 + 4yx− 3

)
4 −

ln
(
1 +

√
1 + 4yx

)
4 +

ln
(
−1 +

√
1 + 4yx

)
4 +

3 ln
(√

1 + 4yx+ 3
)

4 = 3 ln (x)
4 + c1

Which simplifies to

3 ln (yx− 2)
4 + ln (y)

4 −
3 ln

(√
1 + 4yx− 3

)
4 −

ln
(
1 +

√
1 + 4yx

)
4 +

ln
(
−1 +

√
1 + 4yx

)
4 +

3 ln
(√

1 + 4yx+ 3
)

4 = 3 ln (x)
4 + c1

Summary
The solution(s) found are the following

(1)
3 ln (yx− 2)

4 + ln (y)
4 −

3 ln
(√

1 + 4yx− 3
)

4 −
ln
(
1 +

√
1 + 4yx

)
4

+
ln
(
−1 +

√
1 + 4yx

)
4 +

3 ln
(√

1 + 4yx+ 3
)

4 = 3 ln (x)
4 + c1

Verification of solutions

3 ln (yx− 2)
4 + ln (y)

4 −
3 ln

(√
1 + 4yx− 3

)
4 −

ln
(
1 +

√
1 + 4yx

)
4

+
ln
(
−1 +

√
1 + 4yx

)
4 +

3 ln
(√

1 + 4yx+ 3
)

4 = 3 ln (x)
4 + c1

Verified OK.
Solving equation (2)
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Writing the ode as

y′ = −
√
4xy + 1 + 1

2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
(√

4xy + 1 + 1
)
(b3 − a2)

2x2 −
(√

4xy + 1 + 1
)2

a3

4x4

−
(
− y

x2√4xy + 1
+

√
4xy + 1 + 1

x3

)
(xa2 + ya3 + a1) +

xb2 + yb3 + b1
x
√
4xy + 1

= 0

Putting the above in normal form gives

−−4b2x4√4xy + 1− 4x4b2 + 4x3ya2 + 4x3yb3 + 12x2y2a3 + (4xy + 1)
3
2 a3 + 2

√
4xy + 1x2a2 + 2

√
4xy + 1x2b3 + 4

√
4xy + 1xya3 − 4x3b1 + 12x2ya1 + 4

√
4xy + 1xa1 + 2x2a2 + 2x2b3 + 12xya3 + a3

√
4xy + 1 + 4xa1 + 2a3

4x4√4xy + 1
= 0

Setting the numerator to zero gives

(6E)4b2x4√4xy + 1 + 4x4b2 − 4x3ya2 − 4x3yb3 − 12x2y2a3 − (4xy + 1)
3
2 a3

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 − 4
√

4xy + 1xya3 +4x3b1 − 12x2ya1

−4
√

4xy + 1xa1−2x2a2−2x2b3−12xya3−a3
√

4xy + 1−4xa1−2a3 = 0
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Simplifying the above gives

(6E)
4b2x4√4xy + 1− 2(4xy + 1)x2a2 − 2(4xy + 1)x2b3 − 4(4xy + 1)xya3
+ 4x4b2 + 4x3ya2 + 4x3yb3 + 4x2y2a3 − (4xy + 1)

3
2 a3 − 4(4xy + 1)xa1

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 − 4
√
4xy + 1xya3 + 4x3b1

+ 4x2ya1 − 2(4xy + 1) a3 − 4
√

4xy + 1xa1 − a3
√

4xy + 1 = 0

Since the PDE has radicals, simplifying gives

4b2x4√4xy + 1 + 4x4b2 − 4x3ya2 − 4x3yb3 − 12x2y2a3 + 4x3b1

− 2
√

4xy + 1x2a2 − 2
√

4xy + 1x2b3 − 12x2ya1 − 8
√

4xy + 1xya3 − 2x2a2

− 2x2b3 − 4
√

4xy + 1xa1 − 12xya3 − 4xa1 − 2a3
√
4xy + 1− 2a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
4xy + 1

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
4xy + 1 = v3

}
The above PDE (6E) now becomes

(7E)4b2v41v3 − 4v31v2a2 − 12v21v22a3 + 4v41b2 − 4v31v2b3 − 12v21v2a1 − 2v3v21a2
− 8v3v1v2a3 + 4v31b1 − 2v3v21b3 − 4v3v1a1 − 2v21a2 − 12v1v2a3 − 2v21b3 − 4v1a1
− 2a3v3 − 2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)4b2v41v3 + 4v41b2 + (−4a2 − 4b3) v31v2 + 4v31b1 − 12v21v22a3
− 12v21v2a1 + (−2a2 − 2b3) v21v3 + (−2a2 − 2b3) v21
− 8v3v1v2a3 − 12v1v2a3 − 4v3v1a1 − 4v1a1 − 2a3v3 − 2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−12a1 = 0
−4a1 = 0
−12a3 = 0
−8a3 = 0
−2a3 = 0
4b1 = 0
4b2 = 0

−4a2 − 4b3 = 0
−2a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−
√
4xy + 1 + 1

2x2

)
(−x)

= 2xy −
√
4xy + 1− 1
2x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2xy−
√
4xy+1−1
2x

dy

Which results in

S = 3 ln (xy − 2)
4 + ln (y)

4 +
3 ln

(√
4xy + 1− 3

)
4 +

ln
(√

4xy + 1 + 1
)

4 −
ln
(
−1 +

√
4xy + 1

)
4 −

3 ln
(√

4xy + 1 + 3
)

4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
√
4xy + 1 + 1

2x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3xy + 2
√
4xy + 1

(4xy − 8)x

Sy =
4xy + 2

√
4xy + 1− 2

(4xy − 8) y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3

4x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3

4R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3 ln (R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (yx− 2)
4 + ln (y)

4 +
3 ln

(√
1 + 4yx− 3

)
4 +

ln
(
1 +

√
1 + 4yx

)
4 −

ln
(
−1 +

√
1 + 4yx

)
4 −

3 ln
(√

1 + 4yx+ 3
)

4 = 3 ln (x)
4 + c1

Which simplifies to

3 ln (yx− 2)
4 + ln (y)

4 +
3 ln

(√
1 + 4yx− 3

)
4 +

ln
(
1 +

√
1 + 4yx

)
4 −

ln
(
−1 +

√
1 + 4yx

)
4 −

3 ln
(√

1 + 4yx+ 3
)

4 = 3 ln (x)
4 + c1

Summary
The solution(s) found are the following

(1)
3 ln (yx− 2)

4 + ln (y)
4 +

3 ln
(√

1 + 4yx− 3
)

4 +
ln
(
1 +

√
1 + 4yx

)
4

−
ln
(
−1 +

√
1 + 4yx

)
4 −

3 ln
(√

1 + 4yx+ 3
)

4 = 3 ln (x)
4 + c1

Verification of solutions

3 ln (yx− 2)
4 + ln (y)

4 +
3 ln

(√
1 + 4yx− 3

)
4 +

ln
(
1 +

√
1 + 4yx

)
4

−
ln
(
−1 +

√
1 + 4yx

)
4 −

3 ln
(√

1 + 4yx+ 3
)

4 = 3 ln (x)
4 + c1

Verified OK.
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7 Solution by Maple� �
dsolve(y(x)=x*diff(y(x),x)+x^3*diff(y(x),x)^2,y(x), singsol=all)� �

No solution found

3 Solution by Mathematica
Time used: 105.562 (sec). Leaf size: 7052� �
DSolve[y[x]==x*y'[x]+x^3*(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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4.1 problem 1
4.1.1 Solving as second order ode missing y ode . . . . . . . . . . . . 438
4.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 440

Internal problem ID [6821]
Internal file name [OUTPUT/6068_Thursday_July_28_2022_04_29_02_AM_22805052/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y], [_2nd_order , _reducible , _mu_y_y1 ]]

y′′ − xy′
3 = 0

4.1.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)− xp(x)3 = 0

Which is now solve for p(x) as first order ode. In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)
= x p3
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Where f(x) = x and g(p) = p3. Integrating both sides gives

1
p3

dp = x dx∫ 1
p3

dp =
∫

x dx

− 1
2p2 = x2

2 + c1

The solution is

− 1
2p (x)2

− x2

2 − c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− 1
2y′2

− x2

2 − c1 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = − 1√
−x2 − 2c1

(1)

y′ = 1√
−x2 − 2c1

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

− 1√
−x2 − 2c1

dx

= − arctan
(

x√
−x2 − 2c1

)
+ c2

Solving equation (2)

Integrating both sides gives

y =
∫ 1√

−x2 − 2c1
dx

= arctan
(

x√
−x2 − 2c1

)
+ c3

439



Summary
The solution(s) found are the following

(1)y = − arctan
(

x√
−x2 − 2c1

)
+ c2

(2)y = arctan
(

x√
−x2 − 2c1

)
+ c3

Verification of solutions

y = − arctan
(

x√
−x2 − 2c1

)
+ c2

Verified OK.

y = arctan
(

x√
−x2 − 2c1

)
+ c3

Verified OK.

4.1.2 Maple step by step solution

Let’s solve
y′′ − xy′3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
u′(x)− xu(x)3 = 0

• Separate variables
u′(x)
u(x)3 = x

• Integrate both sides with respect to x∫ u′(x)
u(x)3dx =

∫
xdx+ c1

• Evaluate integral
− 1

2u(x)2 = x2

2 + c1

• Solve for u(x){
u(x) = 1√

−x2−2c1
, u(x) = − 1√

−x2−2c1

}
• Solve 1st ODE for u(x)
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u(x) = 1√
−x2−2c1

• Make substitution u = y′

y′ = 1√
−x2−2c1

• Integrate both sides to solve for y∫
y′dx =

∫ 1√
−x2−2c1

dx+ c2

• Compute integrals

y = arctan
(

x√
−x2−2c1

)
+ c2

• Solve 2nd ODE for u(x)
u(x) = − 1√

−x2−2c1

• Make substitution u = y′

y′ = − 1√
−x2−2c1

• Integrate both sides to solve for y∫
y′dx =

∫
− 1√

−x2−2c1
dx+ c2

• Compute integrals

y = − arctan
(

x√
−x2−2c1

)
+ c2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = _a*_b(_a)^3, _b(_a), HINT = [[_a, -_b]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, -_b]� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 37� �
dsolve(diff(y(x),x$2)=x*(diff(y(x),x))^3,y(x), singsol=all)� �

y(x) = arctan
(

x√
−x2 + c1

)
+ c2

y(x) = − arctan
(

x√
−x2 + c1

)
+ c2

3 Solution by Mathematica
Time used: 10.922 (sec). Leaf size: 57� �
DSolve[y''[x]==x*(y'[x])^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 − arctan
(

x√
−x2 − 2c1

)
y(x) → arctan

(
x√

−x2 − 2c1

)
+ c2

y(x) → c2
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4.2 problem 2
4.2.1 Solving as second order ode missing y ode . . . . . . . . . . . . 443

Internal problem ID [6822]
Internal file name [OUTPUT/6069_Thursday_July_28_2022_04_29_03_AM_89762227/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

x2y′′ + y′
2 − 2xy′ = 0

With initial conditions

[y(2) = 5, y′(2) = −4]

4.2.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

x2p′(x) + (p(x)− 2x) p(x) = 0

Which is now solve for p(x) as first order ode. Using the change of variables p(x) = u(x)x
on the above ode results in new ode in u(x)

x2(u′(x)x+ u(x)) + (u(x)x− 2x)u(x)x = 0
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In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(u− 1)
x

Where f(x) = − 1
x
and g(u) = u(u− 1). Integrating both sides gives

1
u (u− 1) du = −1

x
dx∫ 1

u (u− 1) du =
∫

−1
x
dx

− ln (u) + ln (u− 1) = − ln (x) + c2

Raising both side to exponential gives

e− ln(u)+ln(u−1) = e− ln(x)+c2

Which simplifies to

u− 1
u

= c3
x

Therefore the solution p(x) is

p(x) = ux

= − x2

c3 − x

Initial conditions are used to solve for c3. Substituting x = 2 and p = −4 in the above
solution gives an equation to solve for the constant of integration.

−4 = − 4
c3 − 2

c3 = 3

Substituting c3 found above in the general solution gives

p(x) = x2

−3 + x
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Since p = y′ then the new first order ode to solve is

y′ = x2

−3 + x

Integrating both sides gives

y =
∫

x2

−3 + x
dx

= x2

2 + 3x+ 9 ln (−3 + x) + c4

Initial conditions are used to solve for c4. Substituting x = 2 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = 9iπ + c4 + 8

c4 = −9iπ − 3

Substituting c4 found above in the general solution gives

y = x2

2 + 3x+ 9 ln (−3 + x)− 9iπ − 3

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)y = x2

2 + 3x+ 9 ln (−3 + x)− 9iπ − 3

Verification of solutions

y = x2

2 + 3x+ 9 ln (−3 + x)− 9iπ − 3

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)*(_b(_a)-2*_a)/_a^2, _b(_a), HINT = [[_a, _b]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, _b]� �
3 Solution by Maple
Time used: 0.109 (sec). Leaf size: 24� �
dsolve([x^2*diff(y(x),x$2)+diff(y(x),x)^2-2*x*diff(y(x),x)=0,y(2) = 5, D(y)(2) = -4],y(x), singsol=all)� �

y(x) = x2

2 + 3x+ 9 ln (x− 3)− 3− 9iπ

3 Solution by Mathematica
Time used: 0.478 (sec). Leaf size: 28� �
DSolve[{x^2*y''[x]+(y'[x])^2-2*x*y'[x]==0,{y[2]==5,y'[2]==-4}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 + 3x+ 9 log(x− 3)− 9iπ − 3
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4.3 problem 3
4.3.1 Solving as second order ode missing y ode . . . . . . . . . . . . 447

Internal problem ID [6823]
Internal file name [OUTPUT/6070_Thursday_July_28_2022_04_29_06_AM_15447379/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

x2y′′ + y′
2 − 2xy′ = 0

With initial conditions

[y(2) = 5, y′(2) = 2]

4.3.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

x2p′(x) + (p(x)− 2x) p(x) = 0

Which is now solve for p(x) as first order ode. Using the change of variables p(x) = u(x)x
on the above ode results in new ode in u(x)

x2(u′(x)x+ u(x)) + (u(x)x− 2x)u(x)x = 0
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In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(u− 1)
x

Where f(x) = − 1
x
and g(u) = u(u− 1). Integrating both sides gives

1
u (u− 1) du = −1

x
dx∫ 1

u (u− 1) du =
∫

−1
x
dx

− ln (u) + ln (u− 1) = − ln (x) + c2

Raising both side to exponential gives

e− ln(u)+ln(u−1) = e− ln(x)+c2

Which simplifies to

u− 1
u

= c3
x

Therefore the solution p(x) is

p(x) = ux

= − x2

c3 − x

Initial conditions are used to solve for c3. Substituting x = 2 and p = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = − 4
c3 − 2

c3 = 0

Substituting c3 found above in the general solution gives

p(x) = x
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Since p = y′ then the new first order ode to solve is

y′ = x

Integrating both sides gives

y =
∫

x dx

= x2

2 + c4

Initial conditions are used to solve for c4. Substituting x = 2 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = 2 + c4

c4 = 3

Substituting c4 found above in the general solution gives

y = x2

2 + 3

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)y = x2

2 + 3

Figure 1: Solution plot

449



Verification of solutions

y = x2

2 + 3

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)*(_b(_a)-2*_a)/_a^2, _b(_a), HINT = [[_a, _b]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, _b]� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 11� �
dsolve([x^2*diff(y(x),x$2)+diff(y(x),x)^2-2*x*diff(y(x),x)=0,y(2) = 5, D(y)(2) = 2],y(x), singsol=all)� �

y(x) = x2

2 + 3

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 14� �
DSolve[{x^2*y''[x]+(y'[x])^2-2*x*y'[x]==0,{y[2]==5,y'[2]==2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
x2 + 6

)
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4.4 problem 4
4.4.1 Solving as second order integrable as is ode . . . . . . . . . . . 451
4.4.2 Solving as second order ode missing x ode . . . . . . . . . . . . 452
4.4.3 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
4.4.4 Solving as exact nonlinear second order ode ode . . . . . . . . . 455
4.4.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 456

Internal problem ID [6824]
Internal file name [OUTPUT/6071_Thursday_July_28_2022_04_29_09_AM_95148677/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_integrable_as_is",
"second_order_ode_missing_x", "exact nonlinear second order ode"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _exact , _nonlinear],

_Liouville , [_2nd_order , _reducible , _mu_x_y1], [_2nd_order ,
_reducible , _mu_xy ]]

yy′′ + y′
2 = 0

4.4.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ (
yy′′ + y′

2
)
dx = 0

yy′ = c1
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Which is now solved for y. Integrating both sides gives∫
y

c1
dy = x+ c2

y2

2c1
= x+ c2

Solving for y gives these solutions

y1 =
√
2c1c2 + 2c1x

y2 = −
√
2c1c2 + 2c1x

Summary
The solution(s) found are the following

(1)y =
√
2c1c2 + 2c1x

(2)y = −
√
2c1c2 + 2c1x

Verification of solutions

y =
√
2c1c2 + 2c1x

Verified OK.

y = −
√
2c1c2 + 2c1x

Verified OK.

4.4.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

yp(y)
(

d

dy
p(y)

)
+ p(y)2 = 0
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Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= −p

y

Where f(y) = − 1
y
and g(p) = p. Integrating both sides gives

1
p
dp = −1

y
dy∫ 1

p
dp =

∫
−1
y
dy

ln (p) = − ln (y) + c1

p = e− ln(y)+c1

= c1
y

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c1
y

Integrating both sides gives ∫
y

c1
dy = x+ c2

y2

2c1
= x+ c2

Solving for y gives these solutions

y1 =
√
2c1c2 + 2c1x

y2 = −
√
2c1c2 + 2c1x

Summary
The solution(s) found are the following

(1)y =
√
2c1c2 + 2c1x

(2)y = −
√
2c1c2 + 2c1x

453



Verification of solutions

y =
√
2c1c2 + 2c1x

Verified OK.

y = −
√
2c1c2 + 2c1x

Verified OK.

4.4.3 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as

yy′′ + y′
2 = 0

Integrating both sides of the ODE w.r.t x gives∫ (
yy′′ + y′

2
)
dx = 0

yy′ = c1

Which is now solved for y. Integrating both sides gives∫
y

c1
dy = x+ c2

y2

2c1
= x+ c2

Solving for y gives these solutions

y1 =
√
2c1c2 + 2c1x

y2 = −
√
2c1c2 + 2c1x

Summary
The solution(s) found are the following

(1)y =
√
2c1c2 + 2c1x

(2)y = −
√
2c1c2 + 2c1x

Verification of solutions

y =
√
2c1c2 + 2c1x

Verified OK.

y = −
√
2c1c2 + 2c1x

Verified OK.
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4.4.4 Solving as exact nonlinear second order ode ode

An exact non-linear second order ode has the form

a2(x, y, y′) y′′ + a1(x, y, y′) y′ + a0(x, y, y′) = 0

Where the following conditions are satisfied

∂a2
∂y

= ∂a1
∂y′

∂a2
∂x

= ∂a0
∂y′

∂a1
∂x

= ∂a0
∂y

Looking at the the ode given we see that

a2 = y

a1 = y′

a0 = 0

Applying the conditions to the above shows this is a nonlinear exact second order ode.
Therefore it can be reduced to first order ode given by∫

a2 dy
′ +
∫

a1 dy +
∫

a0 dx = c1∫
y dy′ +

∫
y′ dy +

∫
0 dx = c1

Which results in

2yy′ = c1

Which is now solved Integrating both sides gives∫ 2y
c1

dy = x+ c2

y2

c1
= x+ c2

Solving for y gives these solutions

y1 =
√
c1c2 + c1x

y2 = −
√
c1c2 + c1x
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Summary
The solution(s) found are the following

(1)y =
√
c1c2 + c1x

(2)y = −
√
c1c2 + c1x

Verification of solutions

y =
√
c1c2 + c1x

Verified OK.

y = −
√
c1c2 + c1x

Verified OK.

4.4.5 Maple step by step solution

Let’s solve
yy′′ + y′2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Define new dependent variable u
u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs

y′
(

d
dy
u(y)

)
= y′′

• Substitute in the definition of u

u(y)
(

d
dy
u(y)

)
= y′′

• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

yu(y)
(

d
dy
u(y)

)
+ u(y)2 = 0

• Separate variables
d
dy

u(y)
u(y) = − 1

y

• Integrate both sides with respect to y

456



∫ d
dy

u(y)
u(y) dy =

∫
− 1

y
dy + c1

• Evaluate integral
ln (u(y)) = − ln (y) + c1

• Solve for u(y)
u(y) = ec1

y

• Solve 1st ODE for u(y)
u(y) = ec1

y

• Revert to original variables with substitution u(y) = y′, y = y

y′ = ec1
y

• Separate variables
yy′ = ec1

• Integrate both sides with respect to x∫
yy′dx =

∫
ec1dx+ c2

• Evaluate integral
y2

2 = ec1x+ c2

• Solve for y{
y =

√
2 ec1x+ 2c2, y = −

√
2 ec1x+ 2c2

}
Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 33� �
dsolve(y(x)*diff(y(x),x$2)+diff(y(x),x)^2=0,y(x), singsol=all)� �

y(x) = 0
y(x) =

√
2c1x+ 2c2

y(x) = −
√
2c1x+ 2c2

3 Solution by Mathematica
Time used: 0.172 (sec). Leaf size: 20� �
DSolve[y[x]*y''[x]+(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2
√
2x− c1
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4.5 problem 5
4.5.1 Solving as second order ode missing x ode . . . . . . . . . . . . 459
4.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 461

Internal problem ID [6825]
Internal file name [OUTPUT/6072_Thursday_July_28_2022_04_29_13_AM_10730317/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1],

[_2nd_order , _reducible , _mu_y_y1 ]]

y2y′′ + y′
3 = 0

4.5.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy
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Hence the ode becomes

y2p(y)
(

d

dy
p(y)

)
+ p(y)3 = 0

Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= −p2

y2

Where f(y) = − 1
y2

and g(p) = p2. Integrating both sides gives

1
p2

dp = − 1
y2

dy∫ 1
p2

dp =
∫

− 1
y2

dy

−1
p
= 1

y
+ c1

The solution is

− 1
p (y) −

1
y
− c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− 1
y′

− 1
y
− c1 = 0

Integrating both sides gives ∫
−c1y + 1

y
dy = x+ c2

−c1y − ln (y) = x+ c2

Solving for y gives these solutions

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
c1e−x−c2

)
−x−c2
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Verification of solutions

y = e−LambertW
(
c1e−x−c2

)
−x−c2

Verified OK.

4.5.2 Maple step by step solution

Let’s solve
y2y′′ + y′3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Define new dependent variable u
u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs

y′
(

d
dy
u(y)

)
= y′′

• Substitute in the definition of u

u(y)
(

d
dy
u(y)

)
= y′′

• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

y2u(y)
(

d
dy
u(y)

)
+ u(y)3 = 0

• Separate variables
d
dy

u(y)
u(y)2 = − 1

y2

• Integrate both sides with respect to y∫ d
dy

u(y)
u(y)2 dy =

∫
− 1

y2
dy + c1

• Evaluate integral
− 1

u(y) =
1
y
+ c1

• Solve for u(y)
u(y) = − y

c1y+1
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• Solve 1st ODE for u(y)
u(y) = − y

c1y+1

• Revert to original variables with substitution u(y) = y′, y = y

y′ = − y
1+c1y

• Separate variables
y′(1+c1y)

y
= −1

• Integrate both sides with respect to x∫ y′(1+c1y)
y

dx =
∫
(−1) dx+ c2

• Evaluate integral
c1y + ln (y) = −x+ c2

• Solve for y
y = e−LambertW

(
c1e−x+c2

)
−x+c2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)^3/_a^2 = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 29� �
dsolve(y(x)^2*diff(y(x),x$2)+diff(y(x),x)^3=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

y(x) = −LambertW (−c1e−x−c2)
c1

3 Solution by Mathematica
Time used: 0.609 (sec). Leaf size: 37� �
DSolve[y[x]^2*y''[x]+(y'[x])^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2

1 + 1
InverseFunction

[
− 1
#1 − log(#1) + log(#1+ 1)&

]
[−x+ c1]
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4.6 problem 6
4.6.1 Solving as second order ode missing x ode . . . . . . . . . . . . 464
4.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 466

Internal problem ID [6826]
Internal file name [OUTPUT/6073_Thursday_July_28_2022_04_29_16_AM_33134786/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], _Liouville , [_2nd_order , _reducible ,

_mu_x_y1], [_2nd_order , _reducible , _mu_xy ]]

(y + 1) y′′ − y′
2 = 0

4.6.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy
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Hence the ode becomes

(y + 1) p(y)
(

d

dy
p(y)

)
− p(y)2 = 0

Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= p

y + 1

Where f(y) = 1
y+1 and g(p) = p. Integrating both sides gives

1
p
dp = 1

y + 1 dy∫ 1
p
dp =

∫ 1
y + 1 dy

ln (p) = ln (y + 1) + c1

p = eln(y+1)+c1

= c1(y + 1)

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c1(y + 1)

Integrating both sides gives ∫ 1
c1 (y + 1)dy =

∫
dx

ln (y + 1)
c1

= x+ c2

Raising both side to exponential gives

e
ln(y+1)

c1 = ex+c2

Which simplifies to

(y + 1)
1
c1 = c3ex

Summary
The solution(s) found are the following

(1)y = (c3ex)c1 − 1
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Verification of solutions

y = (c3ex)c1 − 1

Verified OK.

4.6.2 Maple step by step solution

Let’s solve
(y + 1) y′′ − y′2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Define new dependent variable u
u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs

y′
(

d
dy
u(y)

)
= y′′

• Substitute in the definition of u

u(y)
(

d
dy
u(y)

)
= y′′

• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

(y + 1)u(y)
(

d
dy
u(y)

)
− u(y)2 = 0

• Separate variables
d
dy

u(y)
u(y) = 1

y+1

• Integrate both sides with respect to y∫ d
dy

u(y)
u(y) dy =

∫ 1
y+1dy + c1

• Evaluate integral
ln (u(y)) = ln (y + 1) + c1

• Solve for u(y)
u(y) = ec1(y + 1)

• Solve 1st ODE for u(y)
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u(y) = ec1(y + 1)
• Revert to original variables with substitution u(y) = y′, y = y

y′ = ec1(y + 1)
• Separate variables

y′

y+1 = ec1

• Integrate both sides with respect to x∫
y′

y+1dx =
∫
ec1dx+ c2

• Evaluate integral
ln (y + 1) = ec1x+ c2

• Solve for y
y = eec1x+c2 − 1

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 16� �
dsolve((y(x)+1)*diff(y(x),x$2)=diff(y(x),x)^2,y(x), singsol=all)� �

y(x) = −1
y(x) = ec1xc2 − 1

3 Solution by Mathematica
Time used: 1.193 (sec). Leaf size: 26� �
DSolve[(y[x]+1)*y''[x]==(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1 + ec1(x+c2)

c1
y(x) → Indeterminate
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4.7 problem 7
4.7.1 Solving as second order ode missing y ode . . . . . . . . . . . . 468
4.7.2 Solving as second order ode missing x ode . . . . . . . . . . . . 470
4.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 471

Internal problem ID [6827]
Internal file name [OUTPUT/6074_Thursday_July_28_2022_04_29_17_AM_48951552/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_y_y1 ]]

2ay′′ + y′
3 = 0

4.7.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

2ap′(x) + p(x)3 = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives∫
−2a
p3

dp = x+ c1

a

p2
= x+ c1

468



Solving for p gives these solutions

p1 =
√
(x+ c1) a
x+ c1

p2 = −
√

(x+ c1) a
x+ c1

For solution (1) found earlier, since p = y′ then the new first order ode to solve is

y′ =
√
(x+ c1) a
x+ c1

Integrating both sides gives

y =
∫ √

(x+ c1) a
x+ c1

dx

= 2
√
(x+ c1) a+ c2

Since p = y′ then the new first order ode to solve is

y′ = −
√
(x+ c1) a
x+ c1

Integrating both sides gives

y =
∫

−
√

(x+ c1) a
x+ c1

dx

= −2
√

(x+ c1) a+ c3

Summary
The solution(s) found are the following

(1)y = 2
√
(x+ c1) a+ c2

(2)y = −2
√

(x+ c1) a+ c3

Verification of solutions

y = 2
√

(x+ c1) a+ c2

Verified OK.

y = −2
√

(x+ c1) a+ c3

Verified OK.
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4.7.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

2ap(y)
(

d

dy
p(y)

)
+ p(y)3 = 0

Which is now solved as first order ode for p(y). Integrating both sides gives∫
−2a
p2

dp = y + c1

2a
p

= y + c1

Solving for p gives these solutions

p1 =
2a

y + c1

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = 2a
y + c1

Integrating both sides gives ∫
y + c1
2a dy = x+ c2

1
2y

2 + c1y

2a = x+ c2
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Solving for y gives these solutions

y1 = −c1 −
√

4ac2 + 4xa+ c21

y2 = −c1 +
√
4ac2 + 4xa+ c21

Summary
The solution(s) found are the following

(1)y = −c1 −
√

4ac2 + 4xa+ c21

(2)y = −c1 +
√

4ac2 + 4xa+ c21

Verification of solutions

y = −c1 −
√

4ac2 + 4xa+ c21

Verified OK.

y = −c1 +
√
4ac2 + 4xa+ c21

Verified OK.

4.7.3 Maple step by step solution

Let’s solve
2ay′′ + y′3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
2au′(x) + u(x)3 = 0

• Separate variables
u′(x)
u(x)3 = − 1

2a

• Integrate both sides with respect to x∫ u′(x)
u(x)3dx =

∫
− 1

2adx+ c1

• Evaluate integral
− 1

2u(x)2 = − x
2a + c1
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• Solve for u(x){
u(x) =

√
−(2c1a−x)a
2c1a−x

, u(x) = −
√

−(2c1a−x)a
2c1a−x

}
• Solve 1st ODE for u(x)

u(x) =
√

−(2c1a−x)a
2c1a−x

• Make substitution u = y′

y′ =
√

−(2c1a−x)a
2c1a−x

• Integrate both sides to solve for y∫
y′dx =

∫ √
−(2c1a−x)a
2c1a−x

dx+ c2

• Compute integrals
y = −2

√
− (2c1a− x) a+ c2

• Solve 2nd ODE for u(x)

u(x) = −
√

−(2c1a−x)a
2c1a−x

• Make substitution u = y′

y′ = −
√

−(2c1a−x)a
2c1a−x

• Integrate both sides to solve for y∫
y′dx =

∫
−
√

−(2c1a−x)a
2c1a−x

dx+ c2

• Compute integrals
y = 2

√
− (2c1a− x) a+ c2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(1/2)*_b(_a)^3/a, _b(_a), HINT = [[1, 0], [y, -_b^2], [_a, -(1/2)*_b]]` ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 0], [y, -_b^2], [_a, -1/2*_b]� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 29� �
dsolve(2*a*diff(y(x),x$2)+diff(y(x),x)^3=0,y(x), singsol=all)� �

y(x) = 2
√

(x+ c1) a+ c2

y(x) = −2
√
(x+ c1) a+ c2

3 Solution by Mathematica
Time used: 0.33 (sec). Leaf size: 51� �
DSolve[2*a*y''[x]+(y'[x])^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 − 2
√
a
√
x− 2ac1

y(x) → 2
√
a
√
x− 2ac1 + c2
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4.8 problem 9
4.8.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 475
4.8.2 Solving as second order integrable as is ode . . . . . . . . . . . 475
4.8.3 Solving as second order ode missing y ode . . . . . . . . . . . . 478
4.8.4 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
4.8.5 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
4.8.6 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 488
4.8.7 Solving as exact linear second order ode ode . . . . . . . . . . . 497
4.8.8 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 500

Internal problem ID [6828]
Internal file name [OUTPUT/6075_Thursday_July_28_2022_04_29_19_AM_15098074/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

xy′′ − y′ = x5

With initial conditions [
y(1) = 1

2 , y
′(1) = 1

]
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4.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −1
x

q(x) = 0
F = x4

Hence the ode is

y′′ − y′

x
= x4

The domain of p(x) = − 1
x
is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The domain of F = x4 is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

4.8.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(xy′′ − y′) dx =

∫
x5dx

xy′ − 2y = x6

6 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2
x

q(x) = x6 + 6c1
6x
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Hence the ode is

y′ − 2y
x

= x6 + 6c1
6x

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes
d
dx(µy) = (µ)

(
x6 + 6c1

6x

)
d
dx

( y

x2

)
=
(

1
x2

)(
x6 + 6c1

6x

)
d
( y

x2

)
=
(
x6 + 6c1

6x3

)
dx

Integrating gives

y

x2 =
∫

x6 + 6c1
6x3 dx

y

x2 = x4

24 − c1
2x2 + c2

Dividing both sides by the integrating factor µ = 1
x2 results in

y = x2
(
x4

24 − c1
2x2

)
+ c2x

2

which simplifies to

y = 1
24x

6 − 1
2c1 + c2x

2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = 1
24x

6 − 1
2c1 + c2x

2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1

2 and x = 1
in the above gives

1
2 = 1

24 − c1
2 + c2 (1A)
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Taking derivative of the solution gives

y′ = 1
4x

5 + 2c2x

substituting y′ = 1 and x = 1 in the above gives

1 = 1
4 + 2c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
6

c2 =
3
8

Substituting these values back in above solution results in

y = 1
24x

6 + 1
12 + 3

8x
2

Summary
The solution(s) found are the following

(1)y = 1
24x

6 + 1
12 + 3

8x
2

Figure 2: Solution plot

Verification of solutions

y = 1
24x

6 + 1
12 + 3

8x
2

Verified OK.
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4.8.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

xp′(x)− p(x)− x5 = 0

Which is now solve for p(x) as first order ode.

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes
d
dx(µp) = (µ)

(
x4)

d
dx

(p
x

)
=
(
1
x

)(
x4)

d
(p
x

)
= x3 dx

Integrating gives

p

x
=
∫

x3 dx

p

x
= x4

4 + c1

Dividing both sides by the integrating factor µ = 1
x
results in

p(x) = 1
4x

5 + c1x

Initial conditions are used to solve for c1. Substituting x = 1 and p = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 1
4 + c1
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c1 =
3
4

Substituting c1 found above in the general solution gives

p(x) = 1
4x

5 + 3
4x

Since p = y′ then the new first order ode to solve is

y′ = 1
4x

5 + 3
4x

Integrating both sides gives

y =
∫ 1

4x
5 + 3

4x dx

= 1
24x

6 + 3
8x

2 + c2

Initial conditions are used to solve for c2. Substituting x = 1 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.

1
2 = 5

12 + c2

c2 =
1
12

Substituting c2 found above in the general solution gives

y = 1
24x

6 + 1
12 + 3

8x
2

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)y = 1
24x

6 + 1
12 + 3

8x
2
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Figure 3: Solution plot

Verification of solutions

y = 1
24x

6 + 1
12 + 3

8x
2

Verified OK.

4.8.4 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)
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If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x

B = −1
C = 0
F = x5

The above shows that for this ode

AB′′ +BB′ + CB = (x) (0) + (−1) (0) + (0) (−1)
= 0

Hence the ode in v given in (1) now simplifies to

−xv′′ + (1) v′ = 0

Now by applying v′ = u the above becomes

−xu′(x) + u(x) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

x

Where f(x) = 1
x
and g(u) = u. Integrating both sides gives

1
u
du = 1

x
dx∫ 1

u
du =

∫ 1
x
dx

ln (u) = ln (x) + c1

u = eln(x)+c1

= c1x

481



The ode for v now becomes

v′ = u

= c1x

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1x dx

= c1x
2

2 + c2

Therefore the homogeneous solution is

yh(x) = Bv

= (−1)
(
c1x

2

2 + c2

)
= −c1x

2

2 − c2

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = −1

y2 = x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ −1 x2

d
dx
(−1) d

dx
(x2)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣−1 x2

0 2x

∣∣∣∣∣∣
Therefore

W = (−1) (2x)−
(
x2) (0)

Which simplifies to
W = −2x

Which simplifies to
W = −2x

Therefore Eq. (2) becomes

u1 = −
∫

x7

−2x2 dx

Which simplifies to

u1 = −
∫

−x5

2 dx

Hence

u1 =
x6

12

And Eq. (3) becomes

u2 =
∫

−x5

−2x2 dx

Which simplifies to

u2 =
∫

x3

2 dx
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Hence

u2 =
x4

8

Therefore the particular solution, from equation (1) is

yp(x) =
x6

24

Hence the complete solution is

y(x) = yh + yp

=
(
−c1x

2

2 − c2

)
+
(
x6

24

)
= −1

2c1x
2 − c2 +

1
24x

6

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = −1
2c1x

2 − c2 +
1
24x

6 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1

2 and x = 1
in the above gives

1
2 = −c1

2 − c2 +
1
24 (1A)

Taking derivative of the solution gives

y′ = −c1x+ 1
4x

5

substituting y′ = 1 and x = 1 in the above gives

1 = −c1 +
1
4 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −3
4

c2 = − 1
12
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Substituting these values back in above solution results in

y = 1
24x

6 + 1
12 + 3

8x
2

Summary
The solution(s) found are the following

(1)y = 1
24x

6 + 1
12 + 3

8x
2

Figure 4: Solution plot

Verification of solutions

y = 1
24x

6 + 1
12 + 3

8x
2

Verified OK.

4.8.5 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
xy′′ − y′ = x5
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Integrating both sides of the ODE w.r.t x gives∫
(xy′′ − y′) dx =

∫
x5dx

xy′ − 2y = x6

6 + c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2
x

q(x) = x6 + 6c1
6x

Hence the ode is

y′ − 2y
x

= x6 + 6c1
6x

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µy) = (µ)

(
x6 + 6c1

6x

)
d
dx

( y

x2

)
=
(

1
x2

)(
x6 + 6c1

6x

)
d
( y

x2

)
=
(
x6 + 6c1

6x3

)
dx

Integrating gives

y

x2 =
∫

x6 + 6c1
6x3 dx

y

x2 = x4

24 − c1
2x2 + c2
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Dividing both sides by the integrating factor µ = 1
x2 results in

y = x2
(
x4

24 − c1
2x2

)
+ c2x

2

which simplifies to

y = 1
24x

6 − 1
2c1 + c2x

2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = 1
24x

6 − 1
2c1 + c2x

2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1

2 and x = 1
in the above gives

1
2 = 1

24 − c1
2 + c2 (1A)

Taking derivative of the solution gives

y′ = 1
4x

5 + 2c2x

substituting y′ = 1 and x = 1 in the above gives

1 = 1
4 + 2c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
6

c2 =
3
8

Substituting these values back in above solution results in

y = 1
24x

6 + 1
12 + 3

8x
2

Summary
The solution(s) found are the following

(1)y = 1
24x

6 + 1
12 + 3

8x
2
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Figure 5: Solution plot

Verification of solutions

y = 1
24x

6 + 1
12 + 3

8x
2

Verified OK.

4.8.6 Solving using Kovacic algorithm

Writing the ode as

xy′′ − y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = −1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)

Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 20: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3

4x2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −1
2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
x

dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 = 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−1

x
dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
x2

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(1) + c2

(
1
(
x2

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

xy′′ − y′ = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 +
c2x

2

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = 1

y2 =
x2

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
1 x2

2

d
dx
(1) d

dx

(
x2

2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣1
x2

2

0 x

∣∣∣∣∣∣
Therefore

W = (1) (x)−
(
x2

2

)
(0)

Which simplifies to
W = x

Which simplifies to
W = x

Therefore Eq. (2) becomes

u1 = −
∫ x7

2
x2 dx
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Which simplifies to

u1 = −
∫

x5

2 dx

Hence

u1 = −x6

12

And Eq. (3) becomes

u2 =
∫

x5

x2 dx

Which simplifies to

u2 =
∫

x3dx

Hence

u2 =
x4

4

Therefore the particular solution, from equation (1) is

yp(x) =
x6

24

Therefore the general solution is

y = yh + yp

=
(
c1 +

c2x
2

2

)
+
(
x6

24

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1 +
1
2c2x

2 + 1
24x

6 (1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1

2 and x = 1
in the above gives

1
2 = c1 +

c2
2 + 1

24 (1A)

Taking derivative of the solution gives

y′ = c2x+ 1
4x

5

substituting y′ = 1 and x = 1 in the above gives

1 = c2 +
1
4 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
12

c2 =
3
4

Substituting these values back in above solution results in

y = 1
24x

6 + 1
12 + 3

8x
2

Summary
The solution(s) found are the following

(1)y = 1
24x

6 + 1
12 + 3

8x
2

Figure 6: Solution plot
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Verification of solutions

y = 1
24x

6 + 1
12 + 3

8x
2

Verified OK.

4.8.7 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x

q(x) = −1
r(x) = 0
s(x) = x5

Hence

p′′(x) = 0
q′(x) = 0

Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

xy′ − 2y =
∫

x5 dx
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We now have a first order ode to solve which is

xy′ − 2y = x6

6 + c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2
x

q(x) = x6 + 6c1
6x

Hence the ode is

y′ − 2y
x

= x6 + 6c1
6x

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µy) = (µ)

(
x6 + 6c1

6x

)
d
dx

( y

x2

)
=
(

1
x2

)(
x6 + 6c1

6x

)
d
( y

x2

)
=
(
x6 + 6c1

6x3

)
dx

Integrating gives

y

x2 =
∫

x6 + 6c1
6x3 dx

y

x2 = x4

24 − c1
2x2 + c2

Dividing both sides by the integrating factor µ = 1
x2 results in

y = x2
(
x4

24 − c1
2x2

)
+ c2x

2
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which simplifies to

y = 1
24x

6 − 1
2c1 + c2x

2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = 1
24x

6 − 1
2c1 + c2x

2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1

2 and x = 1
in the above gives

1
2 = 1

24 − c1
2 + c2 (1A)

Taking derivative of the solution gives

y′ = 1
4x

5 + 2c2x

substituting y′ = 1 and x = 1 in the above gives

1 = 1
4 + 2c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
6

c2 =
3
8

Substituting these values back in above solution results in

y = 1
24x

6 + 1
12 + 3

8x
2

Summary
The solution(s) found are the following

(1)y = 1
24x

6 + 1
12 + 3

8x
2
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Figure 7: Solution plot

Verification of solutions

y = 1
24x

6 + 1
12 + 3

8x
2

Verified OK.

4.8.8 Maple step by step solution

Let’s solve[
xy′′ − y′ = x5, y(1) = 1

2 , y
′∣∣∣{x=1}

= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
xu′(x)− u(x) = x5

• Isolate the derivative
u′(x) = u(x)

x
+ x4

• Group terms with u(x) on the lhs of the ODE and the rest on the rhs of the ODE
u′(x)− u(x)

x
= x4

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
u′(x)− u(x)

x

)
= µ(x)x4

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x)u(x))

µ(x)
(
u′(x)− u(x)

x

)
= µ′(x)u(x) + µ(x)u′(x)

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x)u(x))

)
dx =

∫
µ(x)x4dx+ c1

• Evaluate the integral on the lhs
µ(x)u(x) =

∫
µ(x)x4dx+ c1

• Solve for u(x)

u(x) =
∫
µ(x)x4dx+c1

µ(x)

• Substitute µ(x) = 1
x

u(x) = x
(∫

x3dx+ c1
)

• Evaluate the integrals on the rhs

u(x) = x
(

x4

4 + c1
)

• Simplify

u(x) = x
(
x4+4c1

)
4

• Solve 1st ODE for u(x)

u(x) = x
(
x4+4c1

)
4

• Make substitution u = y′

y′ = x
(
x4+4c1

)
4

• Integrate both sides to solve for y∫
y′dx =

∫ x
(
x4+4c1

)
4 dx+ c2

• Compute integrals
y = 1

24x
6 + 1

2c1x
2 + c2

� Check validity of solution y = 1
24x

6 + 1
2c1x

2 + c2
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◦ Use initial condition y(1) = 1
2

1
2 = 1

24 +
c1
2 + c2

◦ Compute derivative of the solution
y′ = 1

4x
5 + c1x

◦ Use the initial condition y′
∣∣∣{x=1}

= 1

1 = 1
4 + c1

◦ Solve for c1 and c2{
c1 = 3

4 , c2 =
1
12

}
◦ Substitute constant values into general solution and simplify

y = 1
24x

6 + 1
12 +

3
8x

2

• Solution to the IVP
y = 1

24x
6 + 1

12 +
3
8x

2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (_a^5+_b(_a))/_a, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 16� �
dsolve([x*diff(y(x),x$2)=diff(y(x),x)+x^5,y(1) = 1/2, D(y)(1) = 1],y(x), singsol=all)� �

y(x) = 1
24x

6 + 3
8x

2 + 1
12
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3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 19� �
DSolve[{x*y''[x]==y'[x]+x^5,{y[1]==1/2,y'[1]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
24
(
x6 + 9x2 + 2

)

503



4.9 problem 10
4.9.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 505
4.9.2 Solving as second order integrable as is ode . . . . . . . . . . . 505
4.9.3 Solving as second order ode missing y ode . . . . . . . . . . . . 507
4.9.4 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
4.9.5 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
4.9.6 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 517
4.9.7 Solving as exact linear second order ode ode . . . . . . . . . . . 526
4.9.8 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 529

Internal problem ID [6829]
Internal file name [OUTPUT/6076_Thursday_July_28_2022_04_29_21_AM_8781136/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_ode_missing_y",
"second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

xy′′ + y′ = −x

With initial conditions [
y(2) = −1, y′(2) = −1

2

]
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4.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 1
x

q(x) = 0
F = −1

Hence the ode is

y′′ + y′

x
= −1

The domain of p(x) = 1
x
is

{x < 0∨ 0 < x}

And the point x0 = 2 is inside this domain. The domain of F = −1 is

{−∞ < x < ∞}

And the point x0 = 2 is also inside this domain. Hence solution exists and is unique.

4.9.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫
(xy′′ + y′) dx =

∫
−xdx

xy′ = −x2

2 + c1

Which is now solved for y. Integrating both sides gives

y =
∫

−x2 + 2c1
2x dx

= −x2

4 + c1 ln (x) + c2

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

y = −x2

4 + c1 ln (x) + c2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −1 and
x = 2 in the above gives

−1 = −1 + c1 ln (2) + c2 (1A)

Taking derivative of the solution gives

y′ = −x

2 + c1
x

substituting y′ = −1
2 and x = 2 in the above gives

−1
2 = c1

2 − 1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = − ln (2)

Substituting these values back in above solution results in

y = −x2

4 + ln (x)− ln (2)

Summary
The solution(s) found are the following

(1)y = −x2

4 + ln (x)− ln (2)
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Figure 8: Solution plot

Verification of solutions

y = −x2

4 + ln (x)− ln (2)

Verified OK.

4.9.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

xp′(x) + p(x) + x = 0

Which is now solve for p(x) as first order ode.

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 1

x
dx

= x
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The ode becomes
d
dx(µp) = (µ) (−1)
d
dx(xp) = (x) (−1)

d(xp) = (−x) dx

Integrating gives

xp =
∫

−x dx

xp = −x2

2 + c1

Dividing both sides by the integrating factor µ = x results in

p(x) = −x

2 + c1
x

Initial conditions are used to solve for c1. Substituting x = 2 and p = −1
2 in the above

solution gives an equation to solve for the constant of integration.

−1
2 = c1

2 − 1

c1 = 1

Substituting c1 found above in the general solution gives

p(x) = −x2 − 2
2x

Since p = y′ then the new first order ode to solve is

y′ = −x2 − 2
2x

Integrating both sides gives

y =
∫

−x2 − 2
2x dx

= −x2

4 + ln (x) + c2

Initial conditions are used to solve for c2. Substituting x = 2 and y = −1 in the above
solution gives an equation to solve for the constant of integration.

−1 = −1 + ln (2) + c2
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c2 = − ln (2)

Substituting c2 found above in the general solution gives

y = −x2

4 + ln (x)− ln (2)

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)y = −x2

4 + ln (x)− ln (2)

Figure 9: Solution plot

Verification of solutions

y = −x2

4 + ln (x)− ln (2)

Verified OK.
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4.9.4 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x

B = 1
C = 0
F = −x

The above shows that for this ode

AB′′ +BB′ + CB = (x) (0) + (1) (0) + (0) (1)
= 0
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Hence the ode in v given in (1) now simplifies to

xv′′ + (1) v′ = 0

Now by applying v′ = u the above becomes

xu′(x) + u(x) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u

x

Where f(x) = − 1
x
and g(u) = u. Integrating both sides gives

1
u
du = −1

x
dx∫ 1

u
du =

∫
−1
x
dx

ln (u) = − ln (x) + c1

u = e− ln(x)+c1

= c1
x

The ode for v now becomes

v′ = u

= c1
x

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1
x

dx

= c1 ln (x) + c2

Therefore the homogeneous solution is

yh(x) = Bv

= (1) (c1 ln (x) + c2)
= c1 ln (x) + c2
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And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = 1

y2 = ln (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ 1 ln (x)
d
dx
(1) d

dx
(ln (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣1 ln (x)
0 1

x

∣∣∣∣∣∣
Therefore

W = (1)
(
1
x

)
− (ln (x)) (0)

Which simplifies to

W = 1
x
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Which simplifies to

W = 1
x

Therefore Eq. (2) becomes

u1 = −
∫

− ln (x)x
1 dx

Which simplifies to

u1 = −
∫

− ln (x)xdx

Hence

u1 =
ln (x)x2

2 − x2

4

And Eq. (3) becomes

u2 =
∫

−x

1 dx

Which simplifies to

u2 =
∫

−xdx

Hence

u2 = −x2

2

Which simplifies to

u1 =
x2(−1 + 2 ln (x))

4

u2 = −x2

2

Therefore the particular solution, from equation (1) is

yp(x) =
x2(−1 + 2 ln (x))

4 − ln (x)x2

2
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Which simplifies to

yp(x) = −x2

4

Hence the complete solution is

y(x) = yh + yp

= (c1 ln (x) + c2) +
(
−x2

4

)
= −x2

4 + c1 ln (x) + c2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = −x2

4 + c1 ln (x) + c2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −1 and
x = 2 in the above gives

−1 = −1 + c1 ln (2) + c2 (1A)

Taking derivative of the solution gives

y′ = −x

2 + c1
x

substituting y′ = −1
2 and x = 2 in the above gives

−1
2 = c1

2 − 1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = − ln (2)

Substituting these values back in above solution results in

y = −x2

4 + ln (x)− ln (2)
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Summary
The solution(s) found are the following

(1)y = −x2

4 + ln (x)− ln (2)

Figure 10: Solution plot

Verification of solutions

y = −x2

4 + ln (x)− ln (2)

Verified OK.

4.9.5 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as
xy′′ + y′ = −x

Integrating both sides of the ODE w.r.t x gives∫
(xy′′ + y′) dx =

∫
−xdx

xy′ = −x2

2 + c1
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Which is now solved for y. Integrating both sides gives

y =
∫

−x2 + 2c1
2x dx

= −x2

4 + c1 ln (x) + c2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = −x2

4 + c1 ln (x) + c2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −1 and
x = 2 in the above gives

−1 = −1 + c1 ln (2) + c2 (1A)

Taking derivative of the solution gives

y′ = −x

2 + c1
x

substituting y′ = −1
2 and x = 2 in the above gives

−1
2 = c1

2 − 1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = − ln (2)

Substituting these values back in above solution results in

y = −x2

4 + ln (x)− ln (2)

Summary
The solution(s) found are the following

(1)y = −x2

4 + ln (x)− ln (2)
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Figure 11: Solution plot

Verification of solutions

y = −x2

4 + ln (x)− ln (2)

Verified OK.

4.9.6 Solving using Kovacic algorithm

Writing the ode as

xy′′ + y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 1 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 22: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

4x2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
x
dx

= z1e
− ln(x)

2

= z1

(
1√
x

)

Which simplifies to
y1 = 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− 1

x
dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(1) + c2(1(ln (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

xy′′ + y′ = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 + c2 ln (x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = 1

y2 = ln (x)
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ 1 ln (x)
d
dx
(1) d

dx
(ln (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣1 ln (x)
0 1

x

∣∣∣∣∣∣
Therefore

W = (1)
(
1
x

)
− (ln (x)) (0)

Which simplifies to

W = 1
x

Which simplifies to

W = 1
x

Therefore Eq. (2) becomes

u1 = −
∫

− ln (x)x
1 dx

Which simplifies to

u1 = −
∫

− ln (x)xdx
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Hence

u1 =
ln (x)x2

2 − x2

4

And Eq. (3) becomes

u2 =
∫

−x

1 dx

Which simplifies to

u2 =
∫

−xdx

Hence

u2 = −x2

2

Which simplifies to

u1 =
x2(−1 + 2 ln (x))

4

u2 = −x2

2

Therefore the particular solution, from equation (1) is

yp(x) =
x2(−1 + 2 ln (x))

4 − ln (x)x2

2

Which simplifies to

yp(x) = −x2

4

Therefore the general solution is

y = yh + yp

= (c1 + c2 ln (x)) +
(
−x2

4

)

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

y = c1 + c2 ln (x)−
x2

4 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −1 and
x = 2 in the above gives

−1 = c1 + c2 ln (2)− 1 (1A)

Taking derivative of the solution gives

y′ = c2
x

− x

2

substituting y′ = −1
2 and x = 2 in the above gives

−1
2 = c2

2 − 1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = − ln (2)
c2 = 1

Substituting these values back in above solution results in

y = −x2

4 + ln (x)− ln (2)

Summary
The solution(s) found are the following

(1)y = −x2

4 + ln (x)− ln (2)
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Figure 12: Solution plot

Verification of solutions

y = −x2

4 + ln (x)− ln (2)

Verified OK.

4.9.7 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = x

q(x) = 1
r(x) = 0
s(x) = −x

Hence

p′′(x) = 0
q′(x) = 0
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Therefore (1) becomes

0− (0) + (0) = 0

Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives

xy′ =
∫

−x dx

We now have a first order ode to solve which is

xy′ = −x2

2 + c1

Integrating both sides gives

y =
∫

−x2 + 2c1
2x dx

= −x2

4 + c1 ln (x) + c2

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = −x2

4 + c1 ln (x) + c2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −1 and
x = 2 in the above gives

−1 = −1 + c1 ln (2) + c2 (1A)

Taking derivative of the solution gives

y′ = −x

2 + c1
x
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substituting y′ = −1
2 and x = 2 in the above gives

−1
2 = c1

2 − 1 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = − ln (2)

Substituting these values back in above solution results in

y = −x2

4 + ln (x)− ln (2)

Summary
The solution(s) found are the following

(1)y = −x2

4 + ln (x)− ln (2)

Figure 13: Solution plot

Verification of solutions

y = −x2

4 + ln (x)− ln (2)

Verified OK.
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4.9.8 Maple step by step solution

Let’s solve[
xy′′ + y′ = −x, y(2) = −1, y′

∣∣∣{x=2}
= −1

2

]
• Highest derivative means the order of the ODE is 2

y′′

• Make substitution u = y′ to reduce order of ODE
xu′(x) + u(x) = −x

• Isolate the derivative
u′(x) = −1− u(x)

x

• Group terms with u(x) on the lhs of the ODE and the rest on the rhs of the ODE
u′(x) + u(x)

x
= −1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
u′(x) + u(x)

x

)
= −µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x)u(x))

µ(x)
(
u′(x) + u(x)

x

)
= µ′(x)u(x) + µ(x)u′(x)

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x)u(x))

)
dx =

∫
−µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x)u(x) =

∫
−µ(x) dx+ c1

• Solve for u(x)

u(x) =
∫
−µ(x)dx+c1

µ(x)

• Substitute µ(x) = x

u(x) =
∫
−xdx+c1

x
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• Evaluate the integrals on the rhs

u(x) = −x2
2 +c1
x

• Solve 1st ODE for u(x)

u(x) = −x2
2 +c1
x

• Make substitution u = y′

y′ = −x2
2 +c1
x

• Integrate both sides to solve for y∫
y′dx =

∫ −x2
2 +c1
x

dx+ c2

• Compute integrals
y = −x2

4 + c1 ln (x) + c2

� Check validity of solution y = −x2

4 + c1 ln (x) + c2

◦ Use initial condition y(2) = −1
−1 = −1 + c1 ln (2) + c2

◦ Compute derivative of the solution
y′ = −x

2 +
c1
x

◦ Use the initial condition y′
∣∣∣{x=2}

= −1
2

−1
2 = c1

2 − 1

◦ Solve for c1 and c2

{c1 = 1, c2 = − ln (2)}
◦ Substitute constant values into general solution and simplify

y = −x2

4 + ln (x)− ln (2)

• Solution to the IVP
y = −x2

4 + ln (x)− ln (2)
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(_b(_a)+_a)/_a, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 16� �
dsolve([x*diff(y(x),x$2)+diff(y(x),x)+x=0,y(2) = -1, D(y)(2) = -1/2],y(x), singsol=all)� �

y(x) = −x2

4 + ln (x)− ln (2)

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 19� �
DSolve[{x*y''[x]+y'[x]+x==0,{y[2]==-1,y'[2]==-1/2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log
(x
2

)
− x2

4
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4.10 problem 11
4.10.1 Solving as second order ode missing x ode . . . . . . . . . . . . 532
4.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 536

Internal problem ID [6830]
Internal file name [OUTPUT/6077_Thursday_July_28_2022_04_29_23_AM_4198183/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1],

[_2nd_order , _reducible , _mu_y_y1 ]]

y′′ − 2yy′3 = 0

4.10.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy
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Hence the ode becomes

p(y)
(

d

dy
p(y)

)
− 2yp(y)3 = 0

Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)
= 2p2y

Where f(y) = 2y and g(p) = p2. Integrating both sides gives

1
p2

dp = 2y dy∫ 1
p2

dp =
∫

2y dy

−1
p
= y2 + c1

The solution is

− 1
p (y) − y2 − c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− 1
y′

− y2 − c1 = 0

Integrating both sides gives ∫ (
−y2 − c1

)
dy = x+ c2

−1
3y

3 − c1y = x+ c2
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Solving for y gives these solutions

y1 =

(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3

2 − 2c1(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3

y2 = −

(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3

4 + c1(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3
−

i
√
3

(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3

2 + 2c1(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3


2

y3 = −

(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3

4 + c1(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3
+

i
√
3

(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3

2 + 2c1(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3


2
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Summary
The solution(s) found are the following

(1)
y =

(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3

2
− 2c1(

−12c2 − 12x+ 4
√

4c31 + 9c22 + 18c2x+ 9x2
) 1

3

y = −

(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3

4
+ c1(

−12c2 − 12x+ 4
√

4c31 + 9c22 + 18c2x+ 9x2
) 1

3

−

i
√
3

(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3

2 + 2c1(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3


2

(2)

y = −

(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3

4
+ c1(

−12c2 − 12x+ 4
√

4c31 + 9c22 + 18c2x+ 9x2
) 1

3

+

i
√
3

(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3

2 + 2c1(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3


2

(3)
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Verification of solutions

y =

(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3

2
− 2c1(

−12c2 − 12x+ 4
√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3

Verified OK.

y = −

(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3

4
+ c1(

−12c2 − 12x+ 4
√

4c31 + 9c22 + 18c2x+ 9x2
) 1

3

−

i
√
3

(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3

2 + 2c1(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3


2

Verified OK.

y = −

(
−12c2 − 12x+ 4

√
4c31 + 9c22 + 18c2x+ 9x2

) 1
3

4
+ c1(

−12c2 − 12x+ 4
√

4c31 + 9c22 + 18c2x+ 9x2
) 1

3

+

i
√
3

(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3

2 + 2c1(
−12c2−12x+4

√
4c31+9c22+18c2x+9x2

) 1
3


2

Verified OK.

4.10.2 Maple step by step solution

Let’s solve
y′′ − 2yy′3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Define new dependent variable u
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u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs

y′
(

d
dy
u(y)

)
= y′′

• Substitute in the definition of u

u(y)
(

d
dy
u(y)

)
= y′′

• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

u(y)
(

d
dy
u(y)

)
− 2yu(y)3 = 0

• Separate variables
d
dy

u(y)
u(y)2 = 2y

• Integrate both sides with respect to y∫ d
dy

u(y)
u(y)2 dy =

∫
2ydy + c1

• Evaluate integral
− 1

u(y) = y2 + c1

• Solve for u(y)
u(y) = − 1

y2+c1

• Solve 1st ODE for u(y)
u(y) = − 1

y2+c1

• Revert to original variables with substitution u(y) = y′, y = y

y′ = − 1
y2+c1

• Separate variables
y′(y2 + c1) = −1

• Integrate both sides with respect to x∫
y′(y2 + c1) dx =

∫
(−1) dx+ c2

• Evaluate integral
y3

3 + c1y = −x+ c2
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• Solve for y

y =

(
12c2−12x+4

√
4c31+9c22−18c2x+9x2

) 1
3

2 − 2c1(
12c2−12x+4

√
4c31+9c22−18c2x+9x2

) 1
3

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-2*_a*_b(_a)^3 = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 324� �
dsolve(diff(y(x),x$2)=2*y(x)*diff(y(x),x)^3,y(x), singsol=all)� �
y(x) = c1

y(x) =

(
−12c2 − 12x+ 4

√
−4c31 + 9c22 + 18c2x+ 9x2

) 2
3 + 4c1

2
(
−12c2 − 12x+ 4

√
−4c31 + 9c22 + 18c2x+ 9x2

) 1
3

y(x)

=
−i

√
3
(
−12c2 − 12x+ 4

√
−4c31 + 9c22 + 18c2x+ 9x2

) 2
3 + 4i

√
3 c1 −

(
−12c2 − 12x+ 4

√
−4c31 + 9c22 + 18c2x+ 9x2

) 2
3 − 4c1

4
(
−12c2 − 12x+ 4

√
−4c31 + 9c22 + 18c2x+ 9x2

) 1
3

y(x) =

−
−i

√
3
(
−12c2 − 12x+ 4

√
−4c31 + 9c22 + 18c2x+ 9x2

) 2
3 + 4i

√
3 c1 +

(
−12c2 − 12x+ 4

√
−4c31 + 9c22 + 18c2x+ 9x2

) 2
3 + 4c1

4
(
−12c2 − 12x+ 4

√
−4c31 + 9c22 + 18c2x+ 9x2

) 1
3

3 Solution by Mathematica
Time used: 7.768 (sec). Leaf size: 351� �
DSolve[y''[x]==2*y[x]*(y'[x])^3,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

3
√
2c1

3
√√

9x2 + 18c2x+ 4c13 + 9c22 + 3x+ 3c2

−
3
√√

9x2 + 18c2x+ 4c13 + 9c22 + 3x+ 3c2
3
√
2

y(x)

→
22/3

(
1− i

√
3
) (√

9x2 + 18c2x+ 4c13 + 9c22 + 3x+ 3c2
) 2/3 + 3

√
2
(
−2− 2i

√
3
)
c1

4 3
√√

9x2 + 18c2x+ 4c13 + 9c22 + 3x+ 3c2

y(x) →
22/3

(
1 + i

√
3
) (√

9x2 + 18c2x+ 4c13 + 9c22 + 3x+ 3c2
) 2/3 + 2i 3

√
2
(√

3 + i
)
c1

4 3
√√

9x2 + 18c2x+ 4c13 + 9c22 + 3x+ 3c2
y(x) → 0
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4.11 problem 12
4.11.1 Solving as second order ode missing x ode . . . . . . . . . . . . 540
4.11.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 542

Internal problem ID [6831]
Internal file name [OUTPUT/6078_Thursday_July_28_2022_04_29_27_AM_20246841/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1],

[_2nd_order , _reducible , _mu_y_y1 ]]

yy′′ + y′
3 − y′

2 = 0

4.11.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy
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Hence the ode becomes

yp(y)
(

d

dy
p(y)

)
+
(
p(y)2 − p(y)

)
p(y) = 0

Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= −p(p− 1)
y

Where f(y) = − 1
y
and g(p) = p(p− 1). Integrating both sides gives

1
p (p− 1) dp = −1

y
dy∫ 1

p (p− 1) dp =
∫

−1
y
dy

− ln (p) + ln (p− 1) = − ln (y) + c1

Raising both side to exponential gives

e− ln(p)+ln(p−1) = e− ln(y)+c1

Which simplifies to

p− 1
p

= c2
y

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = − y

c2 − y

Integrating both sides gives ∫
−c2 + y

y
dy = x+ c3

y − c2 ln (y) = x+ c3

Solving for y gives these solutions
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Summary
The solution(s) found are the following

(1)y = e−
c2 LambertW

− e
−x+c3

c2
c2

+c3+x

c2

Verification of solutions

y = e−
c2 LambertW

− e
−x+c3

c2
c2

+c3+x

c2

Verified OK.

4.11.2 Maple step by step solution

Let’s solve
yy′′ +

(
y′2 − y′

)
y′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Define new dependent variable u
u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs

y′
(

d
dy
u(y)

)
= y′′

• Substitute in the definition of u

u(y)
(

d
dy
u(y)

)
= y′′

• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

yu(y)
(

d
dy
u(y)

)
+
(
u(y)2 − u(y)

)
u(y) = 0

• Separate variables
d
dy

u(y)
u(y)2−u(y) = − 1

y

• Integrate both sides with respect to y
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∫ d
dy

u(y)
u(y)2−u(y)dy =

∫
− 1

y
dy + c1

• Evaluate integral
− ln (u(y)) + ln (u(y)− 1) = − ln (y) + c1

• Solve for u(y)
u(y) = − y

ec1−y

• Solve 1st ODE for u(y)
u(y) = − y

ec1−y

• Revert to original variables with substitution u(y) = y′, y = y

y′ = − y
ec1−y

• Separate variables
y′(ec1−y)

y
= −1

• Integrate both sides with respect to x∫ y′(ec1−y)
y

dx =
∫
(−1) dx+ c2

• Evaluate integral
−y + ec1 ln (y) = −x+ c2

• Solve for y

y = e−
LambertW

−e
− c1e

c1−c2+x

ec1

ec1−c2+x

ec1
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)^2*(_b(_a)-1)/_a = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 36� �
dsolve(y(x)*diff(y(x),x$2)+diff(y(x),x)^3-diff(y(x),x)^2=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

y(x) = e
−c1 LambertW

 e
x+c2
c1
c1

+c2+x

c1
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3 Solution by Mathematica
Time used: 22.067 (sec). Leaf size: 32� �
DSolve[y[x]*y''[x]+(y'[x])^3-(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ec1W
(
ee

−c1 (x−ec1c1+c2)
)

545



4.12 problem 13
4.12.1 Solving as second order linear constant coeff ode . . . . . . . . 546
4.12.2 Solving as second order ode can be made integrable ode . . . . 548
4.12.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 549
4.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 552

Internal problem ID [6832]
Internal file name [OUTPUT/6079_Thursday_July_28_2022_04_29_28_AM_82848687/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + β2y = 0

4.12.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 0, C = β2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx + β2eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

β2 + λ2 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = β2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (β2)

= ±
√
−β2

Hence
λ1 = +

√
−β2

λ2 = −
√
−β2

Which simplifies to

λ1 =
√

−β2

λ2 = −
√
−β2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e

(√
−β2

)
x + c2e

(
−
√

−β2
)
x

Or
y = c1e

√
−β2 x + c2e−

√
−β2 x

Summary
The solution(s) found are the following

(1)y = c1e
√

−β2 x + c2e−
√

−β2 x

Verification of solutions

y = c1e
√

−β2 x + c2e−
√

−β2 x

Verified OK.
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4.12.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y′ gives

y′y′′ + β2y′y = 0

Integrating the above w.r.t x gives∫ (
y′y′′ + β2y′y

)
dx = 0

y′2

2 + β2y2

2 = c2

Which is now solved for y. Solving the given ode for y′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y′ =
√

−β2y2 + 2c1 (1)
y′ = −

√
−β2y2 + 2c1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
−β2y2 + 2c1

dy =
∫

dx

arctan
( √

β2 y√
−β2y2+2c1

)
√
β2 = x+ c2

Solving equation (2)

Integrating both sides gives ∫
− 1√

−β2y2 + 2c1
dy =

∫
dx

−
arctan

( √
β2 y√

−β2y2+2c1

)
√
β2 = x+ c3
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Summary
The solution(s) found are the following

(1)
arctan

( √
β2 y√

−β2y2+2c1

)
√
β2 = x+ c2

(2)−
arctan

( √
β2 y√

−β2y2+2c1

)
√
β2 = x+ c3

Verification of solutions

arctan
( √

β2 y√
−β2y2+2c1

)
√
β2 = x+ c2

Verified OK.

−
arctan

( √
β2 y√

−β2y2+2c1

)
√
β2 = x+ c3

Verified OK.

4.12.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + β2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = β2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −β2

1 (6)

Comparing the above to (5) shows that

s = −β2

t = 1

Therefore eq. (4) becomes

z′′(x) =
(
−β2) z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 26: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0
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There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −β2 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e
√

−β2 x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= e
√

−β2 x

Which simplifies to

y1 = e
√

−β2 x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= e
√

−β2 x

∫ 1
e2
√

−β2 x
dx

= e
√

−β2 x

(√
−β2 e−2

√
−β2 x

2β2

)

Therefore the solution is
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y = c1y1 + c2y2

= c1
(
e
√

−β2 x
)
+ c2

(
e
√

−β2 x

(√
−β2 e−2

√
−β2 x

2β2

))

Summary
The solution(s) found are the following

(1)y = c1e
√

−β2 x + c2
√
−β2 e−

√
−β2 x

2β2

Verification of solutions

y = c1e
√

−β2 x + c2
√
−β2 e−

√
−β2 x

2β2

Verified OK.

4.12.4 Maple step by step solution

Let’s solve
y′′ + β2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
β2 + r2 = 0

• Use quadratic formula to solve for r

r =
0±
(√

−4β2
)

2

• Roots of the characteristic polynomial
r =

(√
−β2,−

√
−β2

)
• 1st solution of the ODE

y1(x) = e
√

−β2 x

• 2nd solution of the ODE

y2(x) = e−
√

−β2 x

• General solution of the ODE
y = c1y1(x) + c2y2(x)
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• Substitute in solutions

y = c1e
√

−β2 x + c2e−
√

−β2 x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$2)+beta^2*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin (βx) + c2 cos (βx)

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20� �
DSolve[y''[x]+\[Beta]^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos(βx) + c2 sin(βx)
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4.13 problem 14
4.13.1 Solving as second order ode missing x ode . . . . . . . . . . . . 554
4.13.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 556

Internal problem ID [6833]
Internal file name [OUTPUT/6080_Thursday_July_28_2022_04_29_29_AM_353270/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1],

[_2nd_order , _reducible , _mu_y_y1 ]]

yy′′ + y′
3 = 0

4.13.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy
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Hence the ode becomes

yp(y)
(

d

dy
p(y)

)
+ p(y)3 = 0

Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= −p2

y

Where f(y) = − 1
y
and g(p) = p2. Integrating both sides gives

1
p2

dp = −1
y
dy∫ 1

p2
dp =

∫
−1
y
dy

−1
p
= − ln (y) + c1

The solution is

− 1
p (y) + ln (y)− c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− 1
y′

+ ln (y)− c1 = 0

Integrating both sides gives ∫
(ln (y)− c1) dy = x+ c2

−c1y + y ln (y)− y = x+ c2

Solving for y gives these solutions

Summary
The solution(s) found are the following

(1)y = eLambertW
(
(x+c2)e−c1−1)+c1+1
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Verification of solutions

y = eLambertW
(
(x+c2)e−c1−1)+c1+1

Verified OK.

4.13.2 Maple step by step solution

Let’s solve
yy′′ + y′3 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Define new dependent variable u
u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs

y′
(

d
dy
u(y)

)
= y′′

• Substitute in the definition of u

u(y)
(

d
dy
u(y)

)
= y′′

• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

yu(y)
(

d
dy
u(y)

)
+ u(y)3 = 0

• Separate variables
d
dy

u(y)
u(y)2 = − 1

y

• Integrate both sides with respect to y∫ d
dy

u(y)
u(y)2 dy =

∫
− 1

y
dy + c1

• Evaluate integral
− 1

u(y) = − ln (y) + c1

• Solve for u(y)
u(y) = 1

ln(y)−c1
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• Solve 1st ODE for u(y)
u(y) = 1

ln(y)−c1

• Revert to original variables with substitution u(y) = y′, y = y

y′ = 1
ln(y)−c1

• Separate variables
y′(ln (y)− c1) = 1

• Integrate both sides with respect to x∫
y′(ln (y)− c1) dx =

∫
1dx+ c2

• Evaluate integral
−c1y + y ln (y)− y = x+ c2

• Solve for y
y = eLambertW

(
(x+c2)e−c1−1)+c1+1

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 27� �
dsolve(y(x)*diff(y(x),x$2)+diff(y(x),x)^3=0,y(x), singsol=all)� �

y(x) = 0
y(x) = c1

y(x) = x+ c2
LambertW ((x+ c2) ec1−1)

3 Solution by Mathematica
Time used: 60.095 (sec). Leaf size: 26� �
DSolve[y[x]*y''[x]+(y'[x])^3==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c2
W (e−1−c1(x+ c2))
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4.14 problem 15
4.14.1 Solving as second order ode missing y ode . . . . . . . . . . . . 559
4.14.2 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
4.14.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 563

Internal problem ID [6834]
Internal file name [OUTPUT/6081_Thursday_July_28_2022_04_29_32_AM_67325963/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y",
"second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′ cos (x)− y′ = 0

4.14.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) cos (x)− p(x) = 0
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Which is now solve for p(x) as first order ode. In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= p

cos (x)

Where f(x) = 1
cos(x) and g(p) = p. Integrating both sides gives

1
p
dp = 1

cos (x) dx∫ 1
p
dp =

∫ 1
cos (x) dx

ln (p) = ln (sec (x) + tan (x)) + c1

p = eln(sec(x)+tan(x))+c1

= c1(sec (x) + tan (x))

Since p = y′ then the new first order ode to solve is

y′ = c1(sec (x) + tan (x))

Integrating both sides gives

y =
∫

c1(sec (x) + tan (x)) dx

= c1(ln (sec (x) + tan (x))− ln (cos (x))) + c2

Summary
The solution(s) found are the following

(1)y = c1(ln (sec (x) + tan (x))− ln (cos (x))) + c2

Verification of solutions

y = c1(ln (sec (x) + tan (x))− ln (cos (x))) + c2

Verified OK.
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4.14.2 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)

If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = cos (x)
B = −1
C = 0
F = 0

The above shows that for this ode

AB′′ +BB′ + CB = (cos (x)) (0) + (−1) (0) + (0) (−1)
= 0
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Hence the ode in v given in (1) now simplifies to

− cos (x) v′′ + (1) v′ = 0

Now by applying v′ = u the above becomes

− cos (x)u′(x) + u(x) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

cos (x)

Where f(x) = 1
cos(x) and g(u) = u. Integrating both sides gives

1
u
du = 1

cos (x) dx∫ 1
u
du =

∫ 1
cos (x) dx

ln (u) = ln (sec (x) + tan (x)) + c1

u = eln(sec(x)+tan(x))+c1

= c1(sec (x) + tan (x))

The ode for v now becomes

v′ = u

= c1(sec (x) + tan (x))

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1(sec (x) + tan (x)) dx

= c1(ln (sec (x) + tan (x))− ln (cos (x))) + c2

Therefore the solution is

y(x) = Bv

= (−1) (c1(ln (sec (x) + tan (x))− ln (cos (x))) + c2)
= c1(− ln (sec (x) + tan (x)) + ln (cos (x)))− c2
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Summary
The solution(s) found are the following

(1)y = c1(− ln (sec (x) + tan (x)) + ln (cos (x)))− c2

Verification of solutions

y = c1(− ln (sec (x) + tan (x)) + ln (cos (x)))− c2

Verified OK.

4.14.3 Maple step by step solution

Let’s solve
y′′ cos (x)− y′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
u′(x) cos (x)− u(x) = 0

• Separate variables
u′(x)
u(x) = 1

cos(x)

• Integrate both sides with respect to x∫ u′(x)
u(x) dx =

∫ 1
cos(x)dx+ c1

• Evaluate integral
ln (u(x)) = ln (sec (x) + tan (x)) + c1

• Solve for u(x)
u(x) = − ec1 cos(x)

sin(x)−1

• Solve 1st ODE for u(x)
u(x) = − ec1 cos(x)

sin(x)−1

• Make substitution u = y′

y′ = − ec1 cos(x)
sin(x)−1

• Integrate both sides to solve for y∫
y′dx =

∫
− ec1 cos(x)

sin(x)−1 dx+ c2

• Compute integrals
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y = −ec1 ln (sin (x)− 1) + c2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
<- LODE missing y successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)*cos(x)=diff(y(x),x),y(x), singsol=all)� �

y(x) = c1 + (ln (sec (x) + tan (x))− ln (cos (x))) c2

3 Solution by Mathematica
Time used: 0.181 (sec). Leaf size: 25� �
DSolve[y''[x]*Cos[x]==y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 log
(
e4arctanh

(
tan
(
x
2
))
+ 1
)
+ c2
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4.15 problem 16
4.15.1 Solving as second order ode missing y ode . . . . . . . . . . . . 565
4.15.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 568

Internal problem ID [6835]
Internal file name [OUTPUT/6082_Thursday_July_28_2022_04_29_34_AM_6396199/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y], [_2nd_order , _reducible , _mu_y_y1 ]]

y′′ − xy′
2 = 0

With initial conditions [
y(2) = π

4 , y
′(2) = −1

4

]

4.15.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)− xp(x)2 = 0
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Which is now solve for p(x) as first order ode. In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)
= x p2

Where f(x) = x and g(p) = p2. Integrating both sides gives

1
p2

dp = x dx∫ 1
p2

dp =
∫

x dx

−1
p
= x2

2 + c1

The solution is

− 1
p (x) −

x2

2 − c1 = 0

Initial conditions are used to solve for c1. Substituting x = 2 and p = −1
4 in the above

solution gives an equation to solve for the constant of integration.

2− c1 = 0

c1 = 2

Substituting c1 found above in the general solution gives

−x2p+ 4p+ 2
2p = 0

The above simplifies to

−x2p− 4p− 2 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−x2y′ − 4y′ − 2 = 0
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Integrating both sides gives

y =
∫

− 2
x2 + 4 dx

= − arctan
(x
2

)
+ c2

Initial conditions are used to solve for c2. Substituting x = 2 and y = π
4 in the above

solution gives an equation to solve for the constant of integration.
π

4 = −π

4 + c2

c2 =
π

2

Substituting c2 found above in the general solution gives

y = − arctan
(x
2

)
+ π

2

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)y = − arctan
(x
2

)
+ π

2

Figure 14: Solution plot
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Verification of solutions

y = − arctan
(x
2

)
+ π

2

Verified OK.

4.15.2 Maple step by step solution

Let’s solve[
y′′ − xy′2 = 0, y(2) = π

4 , y
′∣∣∣{x=2}

= −1
4

]
• Highest derivative means the order of the ODE is 2

y′′

• Make substitution u = y′ to reduce order of ODE
u′(x)− xu(x)2 = 0

• Separate variables
u′(x)
u(x)2 = x

• Integrate both sides with respect to x∫ u′(x)
u(x)2dx =

∫
xdx+ c1

• Evaluate integral
− 1

u(x) =
x2

2 + c1

• Solve for u(x)
u(x) = − 2

x2+2c1

• Solve 1st ODE for u(x)
u(x) = − 2

x2+2c1

• Make substitution u = y′

y′ = − 2
x2+2c1

• Integrate both sides to solve for y∫
y′dx =

∫
− 2

x2+2c1dx+ c2

• Compute integrals

y = −
√
2 arctan

(
x
√
2

2√c1

)
√
c1

+ c2
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� Check validity of solution y = −
√
2 arctan

(
x
√
2

2√c1

)
√
c1

+ c2

◦ Use initial condition y(2) = π
4

π
4 = −

√
2 arctan

( √
2√
c1

)
√
c1

+ c2

◦ Compute derivative of the solution
y′ = − 1

c1
(

x2
2c1

+1
)

◦ Use the initial condition y′
∣∣∣{x=2}

= −1
4

−1
4 = − 1

c1
(

2
c1

+1
)

◦ Solve for c1 and c2{
c1 = 2, c2 = π

2

}
◦ Substitute constant values into general solution and simplify

y = arccot
(
x
2

)
• Solution to the IVP

y = arccot
(
x
2

)
Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = _a*_b(_a)^2, _b(_a), HINT = [[_a, -2*_b]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, -2*_b]� �
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3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 8� �
dsolve([diff(y(x),x$2)=x*diff(y(x),x)^2,y(2) = 1/4*Pi, D(y)(2) = -1/4],y(x), singsol=all)� �

y(x) = arccot
(x
2

)
3 Solution by Mathematica
Time used: 1.241 (sec). Leaf size: 19� �
DSolve[{y''[x]==x*(y'[x])^2,{y[2]==1/4*Pi,y'[2]==-1/4}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
π − 2 arctan

(x
2

))

570



4.16 problem 17
4.16.1 Solving as second order ode missing y ode . . . . . . . . . . . . 571
4.16.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 573

Internal problem ID [6836]
Internal file name [OUTPUT/6083_Thursday_July_28_2022_04_29_37_AM_72415050/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y], [_2nd_order , _reducible , _mu_y_y1 ]]

y′′ − xy′
2 = 0

With initial conditions [
y(0) = 1, y′(0) = 1

2

]

4.16.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)− xp(x)2 = 0
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Which is now solve for p(x) as first order ode. In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)
= x p2

Where f(x) = x and g(p) = p2. Integrating both sides gives

1
p2

dp = x dx∫ 1
p2

dp =
∫

x dx

−1
p
= x2

2 + c1

The solution is

− 1
p (x) −

x2

2 − c1 = 0

Initial conditions are used to solve for c1. Substituting x = 0 and p = 1
2 in the above

solution gives an equation to solve for the constant of integration.

−2− c1 = 0

c1 = −2

Substituting c1 found above in the general solution gives

−x2p− 4p+ 2
2p = 0

The above simplifies to

−x2p+ 4p− 2 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

−x2y′ + 4y′ − 2 = 0

572



Integrating both sides gives

y =
∫

− 2
x2 − 4 dx

= ln (x+ 2)
2 − ln (x− 2)

2 + c2

Initial conditions are used to solve for c2. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −iπ

2 + c2

c2 =
iπ

2 + 1

Substituting c2 found above in the general solution gives

y = ln (x+ 2)
2 − ln (x− 2)

2 + iπ

2 + 1

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)y = ln (x+ 2)
2 − ln (x− 2)

2 + iπ

2 + 1

Verification of solutions

y = ln (x+ 2)
2 − ln (x− 2)

2 + iπ

2 + 1

Verified OK.

4.16.2 Maple step by step solution

Let’s solve[
y′′ − xy′2 = 0, y(0) = 1, y′

∣∣∣{x=0}
= 1

2

]
• Highest derivative means the order of the ODE is 2

y′′

• Make substitution u = y′ to reduce order of ODE
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u′(x)− xu(x)2 = 0
• Separate variables

u′(x)
u(x)2 = x

• Integrate both sides with respect to x∫ u′(x)
u(x)2dx =

∫
xdx+ c1

• Evaluate integral
− 1

u(x) =
x2

2 + c1

• Solve for u(x)
u(x) = − 2

x2+2c1

• Solve 1st ODE for u(x)
u(x) = − 2

x2+2c1

• Make substitution u = y′

y′ = − 2
x2+2c1

• Integrate both sides to solve for y∫
y′dx =

∫
− 2

x2+2c1dx+ c2

• Compute integrals

y = −
√
2 arctan

(
x
√
2

2√c1

)
√
c1

+ c2

� Check validity of solution y = −
√
2 arctan

(
x
√
2

2√c1

)
√
c1

+ c2

◦ Use initial condition y(0) = 1
1 = c2

◦ Compute derivative of the solution
y′ = − 1

c1
(

x2
2c1

+1
)

◦ Use the initial condition y′
∣∣∣{x=0}

= 1
2

1
2 = − 1

c1

◦ Solve for c1 and c2

{c1 = −2, c2 = 1}
◦ Substitute constant values into general solution and simplify
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y = arctanh
(
x
2

)
+ 1

• Solution to the IVP
y = arctanh

(
x
2

)
+ 1

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = _a*_b(_a)^2, _b(_a), HINT = [[_a, -2*_b]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, -2*_b]� �
3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 10� �
dsolve([diff(y(x),x$2)=x*diff(y(x),x)^2,y(0) = 1, D(y)(0) = 1/2],y(x), singsol=all)� �

y(x) = arctanh
(x
2

)
+ 1

3 Solution by Mathematica
Time used: 0.229 (sec). Leaf size: 13� �
DSolve[{y''[x]==x*(y'[x])^2,{y[0]==1,y'[0]==1/2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arctanh
(x
2

)
+ 1
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4.17 problem 18
4.17.1 Solving as second order ode can be made integrable ode . . . . 576
4.17.2 Solving as second order ode missing x ode . . . . . . . . . . . . 578
4.17.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 581

Internal problem ID [6837]
Internal file name [OUTPUT/6084_Thursday_July_28_2022_04_29_39_AM_54278317/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

y′′ + e−2y = 0

With initial conditions

[y(3) = 0, y′(3) = 1]

4.17.1 Solving as second order ode can be made integrable ode

Multiplying the ode by y′ gives

y′y′′ + y′e−2y = 0

Integrating the above w.r.t x gives∫ (
y′y′′ + y′e−2y) dx = 0

y′2

2 − e−2y

2 = c2
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Which is now solved for y. Solving the given ode for y′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y′ =
√
e−2y + 2c1 (1)

y′ = −
√

e−2y + 2c1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
e−2y + 2c1

dy =
∫

dx

√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= x+ c2

Solving equation (2)

Integrating both sides gives ∫
− 1√

e−2y + 2c1
dy =

∫
dx

−

√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= x+ c3

Initial conditions are used to solve for the constants of integration.

Looking at the First solution
√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= x+ c2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 3
in the above gives

arctanh
(√

1+2c1
√
2

2√c1

)√
2

2√c1
= 3 + c2 (1A)

Taking derivative of the solution gives

y′ = −
2 tanh

(√
c1 (x+ c2)

√
2
)
c

3
2
1
√
2
(
1− tanh

(√
c1 (x+ c2)

√
2
)2)

2 tanh
(√

c1 (x+ c2)
√
2
)2

c1 − 2c1

577



substituting y′ = 1 and x = 3 in the above gives

1 =

(
e2(3+c2)

√
c1

√
2 − 1

)√
c1
√
2

e2(3+c2)
√
c1

√
2 + 1

(2A)

Equations {1A,2A} are now solved for {c1, c2}. There is no solution for the constants
of integrations. This solution is removed.

Looking at the Second solution

−

√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= x+ c3 (2)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 3
in the above gives

−
arctanh

(√
1+2c1

√
2

2√c1

)√
2

2√c1
= 3 + c3 (1A)

Taking derivative of the solution gives

y′ = −
2 tanh

(√
c1 (x+ c3)

√
2
)
c

3
2
1
√
2
(
1− tanh

(√
c1 (x+ c3)

√
2
)2)

2 tanh
(√

c1 (x+ c3)
√
2
)2

c1 − 2c1

substituting y′ = 1 and x = 3 in the above gives

1 =

(
e2(3+c3)

√
c1

√
2 − 1

)√
c1
√
2

e2(3+c3)
√
c1

√
2 + 1

(2A)

Equations {1A,2A} are now solved for {c1, c3}. There is no solution for the constants
of integrations. This solution is removed.

Verification of solutions N/A

4.17.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)
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Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)
(

d

dy
p(y)

)
= −e−2y

Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= −e−2y

p

Where f(y) = −e−2y and g(p) = 1
p
. Integrating both sides gives

1
1
p

dp = −e−2y dy

∫ 1
1
p

dp =
∫

−e−2y dy

p2

2 = e−2y

2 + c1

The solution is
p(y)2

2 − e−2y

2 − c1 = 0

Initial conditions are used to solve for c1. Substituting y = 0 and p = 1 in the above
solution gives an equation to solve for the constant of integration.

−c1 = 0

c1 = 0
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Substituting c1 found above in the general solution gives

p2

2 − e−2y

2 = 0

Solving for p(y) from the above gives

p(y) = e−y

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = e−y

Integrating both sides gives ∫
eydy = x+ c2

ey = x+ c2

Solving for y gives these solutions

y1 = ln (x+ c2)

Initial conditions are used to solve for c2. Substituting x = 3 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (3 + c2)

c2 = −2

Substituting c2 found above in the general solution gives

y = ln (x− 2)

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)y = ln (x− 2)
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Figure 15: Solution plot

Verification of solutions

y = ln (x− 2)

Verified OK.

4.17.3 Maple step by step solution

Let’s solve[
y′′ = −e−2y, y(3) = 0, y′

∣∣∣{x=3}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Define new dependent variable u
u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs

y′
(

d
dy
u(y)

)
= y′′

• Substitute in the definition of u
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u(y)
(

d
dy
u(y)

)
= y′′

• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

u(y)
(

d
dy
u(y)

)
= −e−2y

• Integrate both sides with respect to y∫
u(y)

(
d
dy
u(y)

)
dy =

∫
−e−2ydy + c1

• Evaluate integral
u(y)2
2 = e−2y

2 + c1

• Solve for u(y){
u(y) =

√
e−2y + 2c1, u(y) = −

√
e−2y + 2c1

}
• Solve 1st ODE for u(y)

u(y) =
√
e−2y + 2c1

• Revert to original variables with substitution u(y) = y′, y = y

y′ =
√
e−2y + 2c1

• Separate variables
y′√

e−2y+2c1
= 1

• Integrate both sides with respect to x∫
y′√

e−2y+2c1
dx =

∫
1dx+ c2

• Evaluate integral
√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= x+ c2

• Solve for y

y = −
ln
(
2 tanh

(√
c1 (x+c2)

√
2
)2

c1−2c1
)

2

• Solve 2nd ODE for u(y)
u(y) = −

√
e−2y + 2c1

• Revert to original variables with substitution u(y) = y′, y = y

y′ = −
√
e−2y + 2c1

• Separate variables
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y′√
e−2y+2c1

= −1

• Integrate both sides with respect to x∫
y′√

e−2y+2c1
dx =

∫
(−1) dx+ c2

• Evaluate integral
√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= −x+ c2

• Solve for y

y = −
ln
(
2 tanh

(√
c1 (−x+c2)

√
2
)2

c1−2c1
)

2

� Check validity of solution y = −
ln
(
2 tanh

(√
c1 (−x+c2)

√
2
)2

c1−2c1
)

2

◦ Use initial condition y(3) = 0

0 = −
ln
(
2 tanh

(√
c1 (−3+c2)

√
2
)2

c1−2c1
)

2

◦ Compute derivative of the solution

y′ =
2 tanh

(√
c1 (−x+c2)

√
2
)
c
3
2
1
√
2
(
1−tanh

(√
c1 (−x+c2)

√
2
)2)

2 tanh
(√

c1 (−x+c2)
√
2
)2

c1−2c1

◦ Use the initial condition y′
∣∣∣{x=3}

= 1

1 =
2 tanh

(√
c1 (−3+c2)

√
2
)
c
3
2
1
√
2
(
1−tanh

(√
c1 (−3+c2)

√
2
)2)

2 tanh
(√

c1 (−3+c2)
√
2
)2

c1−2c1

◦ Solve for c1 and c2

◦ The solution does not satisfy the initial conditions

� Check validity of solution y = −
ln
(
2 tanh

(√
c1 (x+c2)

√
2
)2

c1−2c1
)

2

◦ Use initial condition y(3) = 0

0 = −
ln
(
2 tanh

(
(3+c2)

√
c1

√
2
)2

c1−2c1
)

2

◦ Compute derivative of the solution

y′ = −
2 tanh

(√
c1 (x+c2)

√
2
)
c
3
2
1
√
2
(
1−tanh

(√
c1 (x+c2)

√
2
)2)

2 tanh
(√

c1 (x+c2)
√
2
)2

c1−2c1
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◦ Use the initial condition y′
∣∣∣{x=3}

= 1

1 = −
2 tanh

(
(3+c2)

√
c1

√
2
)
c
3
2
1
√
2
(
1−tanh

(
(3+c2)

√
c1

√
2
)2)

2 tanh
(
(3+c2)

√
c1

√
2
)2

c1−2c1

◦ Solve for c1 and c2

◦ The solution does not satisfy the initial conditions

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+exp(-2*_a) = 0, _b(_a), HINT = [[1, -_b]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, -_b]� �
3 Solution by Maple
Time used: 0.093 (sec). Leaf size: 12� �
dsolve([diff(y(x),x$2)=-exp(-2*y(x)),y(3) = 0, D(y)(3) = 1],y(x), singsol=all)� �

y(x) =
ln
(
(−2 + x)2

)
2

3 Solution by Mathematica
Time used: 0.157 (sec). Leaf size: 9� �
DSolve[{y''[x]==-Exp[-2*y[x]],{y[3]==0,y'[3]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(x− 2)
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4.18 problem 19
4.18.1 Solving as second order ode can be made integrable ode . . . . 585
4.18.2 Solving as second order ode missing x ode . . . . . . . . . . . . 587
4.18.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 590

Internal problem ID [6838]
Internal file name [OUTPUT/6085_Thursday_July_28_2022_04_29_41_AM_88428700/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

y′′ + e−2y = 0

With initial conditions

[y(3) = 0, y′(3) = −1]

4.18.1 Solving as second order ode can be made integrable ode

Multiplying the ode by y′ gives

y′y′′ + y′e−2y = 0

Integrating the above w.r.t x gives∫ (
y′y′′ + y′e−2y) dx = 0

y′2

2 − e−2y

2 = c2
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Which is now solved for y. Solving the given ode for y′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y′ =
√
e−2y + 2c1 (1)

y′ = −
√

e−2y + 2c1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
e−2y + 2c1

dy =
∫

dx

√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= x+ c2

Solving equation (2)

Integrating both sides gives ∫
− 1√

e−2y + 2c1
dy =

∫
dx

−

√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= x+ c3

Initial conditions are used to solve for the constants of integration.

Looking at the First solution
√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= x+ c2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 3
in the above gives

arctanh
(√

1+2c1
√
2

2√c1

)√
2

2√c1
= 3 + c2 (1A)

Taking derivative of the solution gives

y′ = −
2 tanh

(√
c1 (x+ c2)

√
2
)
c

3
2
1
√
2
(
1− tanh

(√
c1 (x+ c2)

√
2
)2)

2 tanh
(√

c1 (x+ c2)
√
2
)2

c1 − 2c1
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substituting y′ = −1 and x = 3 in the above gives

−1 =

(
e2(3+c2)

√
c1

√
2 − 1

)√
c1
√
2

e2(3+c2)
√
c1

√
2 + 1

(2A)

Equations {1A,2A} are now solved for {c1, c2}. There is no solution for the constants
of integrations. This solution is removed.

Looking at the Second solution

−

√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= x+ c3 (2)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 3
in the above gives

−
arctanh

(√
1+2c1

√
2

2√c1

)√
2

2√c1
= 3 + c3 (1A)

Taking derivative of the solution gives

y′ = −
2 tanh

(√
c1 (x+ c3)

√
2
)
c

3
2
1
√
2
(
1− tanh

(√
c1 (x+ c3)

√
2
)2)

2 tanh
(√

c1 (x+ c3)
√
2
)2

c1 − 2c1

substituting y′ = −1 and x = 3 in the above gives

−1 =

(
e2(3+c3)

√
c1

√
2 − 1

)√
c1
√
2

e2(3+c3)
√
c1

√
2 + 1

(2A)

Equations {1A,2A} are now solved for {c1, c3}. There is no solution for the constants
of integrations. This solution is removed.

Verification of solutions N/A

4.18.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)
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Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)
(

d

dy
p(y)

)
= −e−2y

Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= −e−2y

p

Where f(y) = −e−2y and g(p) = 1
p
. Integrating both sides gives

1
1
p

dp = −e−2y dy

∫ 1
1
p

dp =
∫

−e−2y dy

p2

2 = e−2y

2 + c1

The solution is
p(y)2

2 − e−2y

2 − c1 = 0

Initial conditions are used to solve for c1. Substituting y = 0 and p = −1 in the above
solution gives an equation to solve for the constant of integration.

−c1 = 0

c1 = 0
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Substituting c1 found above in the general solution gives

p2

2 − e−2y

2 = 0

Solving for p(y) from the above gives

p(y) = −e−y

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = −e−y

Integrating both sides gives ∫
−eydy = x+ c2

−ey = x+ c2

Solving for y gives these solutions

y1 = − ln
(
− 1
x+ c2

)
Initial conditions are used to solve for c2. Substituting x = 3 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = − ln
(
− 1
3 + c2

)

c2 = −4

Substituting c2 found above in the general solution gives

y = − ln
(
− 1
x− 4

)
Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)y = − ln
(
− 1
x− 4

)
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Figure 16: Solution plot

Verification of solutions

y = − ln
(
− 1
x− 4

)
Verified OK.

4.18.3 Maple step by step solution

Let’s solve[
y′′ = −e−2y, y(3) = 0, y′

∣∣∣{x=3}
= −1

]
• Highest derivative means the order of the ODE is 2

y′′

• Define new dependent variable u
u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs

y′
(

d
dy
u(y)

)
= y′′
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• Substitute in the definition of u

u(y)
(

d
dy
u(y)

)
= y′′

• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

u(y)
(

d
dy
u(y)

)
= −e−2y

• Integrate both sides with respect to y∫
u(y)

(
d
dy
u(y)

)
dy =

∫
−e−2ydy + c1

• Evaluate integral
u(y)2
2 = e−2y

2 + c1

• Solve for u(y){
u(y) =

√
e−2y + 2c1, u(y) = −

√
e−2y + 2c1

}
• Solve 1st ODE for u(y)

u(y) =
√
e−2y + 2c1

• Revert to original variables with substitution u(y) = y′, y = y

y′ =
√
e−2y + 2c1

• Separate variables
y′√

e−2y+2c1
= 1

• Integrate both sides with respect to x∫
y′√

e−2y+2c1
dx =

∫
1dx+ c2

• Evaluate integral
√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= x+ c2

• Solve for y

y = −
ln
(
2 tanh

(√
c1 (x+c2)

√
2
)2

c1−2c1
)

2

• Solve 2nd ODE for u(y)
u(y) = −

√
e−2y + 2c1

• Revert to original variables with substitution u(y) = y′, y = y

y′ = −
√
e−2y + 2c1

591



• Separate variables
y′√

e−2y+2c1
= −1

• Integrate both sides with respect to x∫
y′√

e−2y+2c1
dx =

∫
(−1) dx+ c2

• Evaluate integral
√
2 arctanh

(√
e−2y+2c1

√
2

2√c1

)
2√c1

= −x+ c2

• Solve for y

y = −
ln
(
2 tanh

(√
c1 (−x+c2)

√
2
)2

c1−2c1
)

2

� Check validity of solution y = −
ln
(
2 tanh

(√
c1 (−x+c2)

√
2
)2

c1−2c1
)

2

◦ Use initial condition y(3) = 0

0 = −
ln
(
2 tanh

(√
c1 (−3+c2)

√
2
)2

c1−2c1
)

2

◦ Compute derivative of the solution

y′ =
2 tanh

(√
c1 (−x+c2)

√
2
)
c
3
2
1
√
2
(
1−tanh

(√
c1 (−x+c2)

√
2
)2)

2 tanh
(√

c1 (−x+c2)
√
2
)2

c1−2c1

◦ Use the initial condition y′
∣∣∣{x=3}

= −1

−1 =
2 tanh

(√
c1 (−3+c2)

√
2
)
c
3
2
1
√
2
(
1−tanh

(√
c1 (−3+c2)

√
2
)2)

2 tanh
(√

c1 (−3+c2)
√
2
)2

c1−2c1

◦ Solve for c1 and c2

◦ The solution does not satisfy the initial conditions

� Check validity of solution y = −
ln
(
2 tanh

(√
c1 (x+c2)

√
2
)2

c1−2c1
)

2

◦ Use initial condition y(3) = 0

0 = −
ln
(
2 tanh

(
(3+c2)

√
c1

√
2
)2

c1−2c1
)

2

◦ Compute derivative of the solution

y′ = −
2 tanh

(√
c1 (x+c2)

√
2
)
c
3
2
1
√
2
(
1−tanh

(√
c1 (x+c2)

√
2
)2)

2 tanh
(√

c1 (x+c2)
√
2
)2

c1−2c1
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◦ Use the initial condition y′
∣∣∣{x=3}

= −1

−1 = −
2 tanh

(
(3+c2)

√
c1

√
2
)
c
3
2
1
√
2
(
1−tanh

(
(3+c2)

√
c1

√
2
)2)

2 tanh
(
(3+c2)

√
c1

√
2
)2

c1−2c1

◦ Solve for c1 and c2

◦ The solution does not satisfy the initial conditions

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve([diff(y(x),x$2)=-exp(-2*y(x)),y(3) = 0, D(y)(3) = -1],y(x), singsol=all)� �

y(x) =
ln
(
(x− 4)2

)
2

3 Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 11� �
DSolve[{y''[x]==-Exp[-2*y[x]],{y[3]==0,y'[3]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(4− x)
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4.19 problem 20
4.19.1 Solving as second order ode can be made integrable ode . . . . 594
4.19.2 Solving as second order ode missing x ode . . . . . . . . . . . . 596

Internal problem ID [6839]
Internal file name [OUTPUT/6086_Thursday_July_28_2022_04_29_43_AM_89875315/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

2y′′ − sin (2y) = 0

With initial conditions [
y(0) = π

2 , y
′(0) = 1

]
4.19.1 Solving as second order ode can be made integrable ode

Multiplying the ode by y′ gives

2y′y′′ − y′ sin (2y) = 0

Integrating the above w.r.t x gives∫
(2y′y′′ − y′ sin (2y)) dx = 0

y′
2 + cos (2y)

2 = c2
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Which is now solved for y. Solving the given ode for y′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y′ =
√

−2 cos (2y) + 4c1
2 (1)

y′ = −
√

−2 cos (2y) + 4c1
2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 2√
−2 cos (2y) + 4c1

dy =
∫

dx

2
√
− cos(2y)−2c1

2c1−1 InverseJacobiAM
(
y,
√
2
√
− 1

2c1−1

)
√

−2 cos (2y) + 4c1
= x+ c2

Solving equation (2)

Integrating both sides gives ∫
− 2√

−2 cos (2y) + 4c1
dy =

∫
dx

−
2
√

− cos(2y)−2c1
2c1−1 InverseJacobiAM

(
y,
√
2
√

− 1
2c1−1

)
√

−2 cos (2y) + 4c1
= x+ c3

Initial conditions are used to solve for the constants of integration.

Looking at the First solution

2
√

− cos(2y)−2c1
2c1−1 InverseJacobiAM

(
y,
√
2
√
− 1

2c1−1

)
√

−2 cos (2y) + 4c1
= x+ c2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = π

2 and x = 0
in the above gives

2
√

1+2c1
2c1−1 EllipticK

(√
2
√

− 1
2c1−1

)
√
2 + 4c1

= c2 (1A)
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Unable to solve for y to solve for constant of integration

Looking at the Second solution

−
2
√

− cos(2y)−2c1
2c1−1 InverseJacobiAM

(
y,
√
2
√

− 1
2c1−1

)
√
−2 cos (2y) + 4c1

= x+ c3 (2)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = π

2 and x = 0
in the above gives

−
2
√

1+2c1
2c1−1 EllipticK

(√
2
√

− 1
2c1−1

)
√
2 + 4c1

= c3 (1A)

Unable to solve for y to solve for constant of integration

Verification of solutions N/A

4.19.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

2p(y)
(

d

dy
p(y)

)
= sin (2y)

Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= sin (2y)
2p
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Where f(y) = sin(2y)
2 and g(p) = 1

p
. Integrating both sides gives

1
1
p

dp = sin (2y)
2 dy

∫ 1
1
p

dp =
∫ sin (2y)

2 dy

p2

2 = −cos (2y)
4 + c1

The solution is
p(y)2

2 + cos (2y)
4 − c1 = 0

Initial conditions are used to solve for c1. Substituting y = π
2 and p = 1 in the above

solution gives an equation to solve for the constant of integration.
1
4 − c1 = 0

c1 =
1
4

Substituting c1 found above in the general solution gives
p2

2 + cos (2y)
4 − 1

4 = 0

Solving for p(y) from the above gives

p(y) =
√
2− 2 cos (2y)

2

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ =
√

2− 2 cos (2y)
2

Integrating both sides gives ∫ 2√
2− 2 cos (2y)

dy =
∫

dx

−sin (y) arctanh (cos (y))√
1
2 −

cos(2y)
2

= x+ c2

597



Initial conditions are used to solve for c2. Substituting x = 0 and y = π
2 in the above

solution gives an equation to solve for the constant of integration.

0 = c2

c2 = 0

Substituting c2 found above in the general solution gives

−2 sin (y) arctanh (cos (y))√
2− 2 cos (2y)

= x

The above simplifies to

− sin (y) arctanh (cos (y))− x

√
1
2 − cos (2y)

2 = 0

Simplifying the solution sin (y) (− arctanh (cos (y))− csgn (sin (y))x) = 0 to sin (y) (− arctanh (cos (y))− x) =
0 Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)sin (y) (− arctanh (cos (y))− x) = 0
Verification of solutions

sin (y) (− arctanh (cos (y))− x) = 0

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(1/2)*sin(2*_a) = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
3 Solution by Maple
Time used: 140.984 (sec). Leaf size: 1495� �
dsolve([2*diff(y(x),x$2)=sin(2*y(x)),y(0) = 1/2*Pi, D(y)(0) = 1],y(x), singsol=all)� �

Expression too large to display

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{2*y''[x]==Sin[2*y[x]],{y[0]==Pi/2,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �
{}
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4.20 problem 21
4.20.1 Solving as second order ode can be made integrable ode . . . . 600
4.20.2 Solving as second order ode missing x ode . . . . . . . . . . . . 602

Internal problem ID [6840]
Internal file name [OUTPUT/6087_Thursday_July_28_2022_04_29_58_AM_68133921/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

2y′′ − sin (2y) = 0

With initial conditions [
y(0) = −π

2 , y
′(0) = 1

]
4.20.1 Solving as second order ode can be made integrable ode

Multiplying the ode by y′ gives

2y′y′′ − y′ sin (2y) = 0

Integrating the above w.r.t x gives∫
(2y′y′′ − y′ sin (2y)) dx = 0

y′
2 + cos (2y)

2 = c2
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Which is now solved for y. Solving the given ode for y′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

y′ =
√

−2 cos (2y) + 4c1
2 (1)

y′ = −
√

−2 cos (2y) + 4c1
2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 2√
−2 cos (2y) + 4c1

dy =
∫

dx

2
√
− cos(2y)−2c1

2c1−1 InverseJacobiAM
(
y,
√
2
√
− 1

2c1−1

)
√

−2 cos (2y) + 4c1
= x+ c2

Solving equation (2)

Integrating both sides gives ∫
− 2√

−2 cos (2y) + 4c1
dy =

∫
dx

−
2
√

− cos(2y)−2c1
2c1−1 InverseJacobiAM

(
y,
√
2
√

− 1
2c1−1

)
√

−2 cos (2y) + 4c1
= x+ c3

Initial conditions are used to solve for the constants of integration.

Looking at the First solution

2
√

− cos(2y)−2c1
2c1−1 InverseJacobiAM

(
y,
√
2
√
− 1

2c1−1

)
√

−2 cos (2y) + 4c1
= x+ c2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −π

2 and
x = 0 in the above gives

−
2
√

1+2c1
2c1−1 EllipticK

(√
2
√

− 1
2c1−1

)
√
2 + 4c1

= c2 (1A)
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Unable to solve for y to solve for constant of integration

Looking at the Second solution

−
2
√

− cos(2y)−2c1
2c1−1 InverseJacobiAM

(
y,
√
2
√

− 1
2c1−1

)
√
−2 cos (2y) + 4c1

= x+ c3 (2)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = −π

2 and
x = 0 in the above gives

2
√

1+2c1
2c1−1 EllipticK

(√
2
√

− 1
2c1−1

)
√
2 + 4c1

= c3 (1A)

Unable to solve for y to solve for constant of integration

Verification of solutions N/A

4.20.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

2p(y)
(

d

dy
p(y)

)
= sin (2y)

Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= sin (2y)
2p
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Where f(y) = sin(2y)
2 and g(p) = 1

p
. Integrating both sides gives

1
1
p

dp = sin (2y)
2 dy

∫ 1
1
p

dp =
∫ sin (2y)

2 dy

p2

2 = −cos (2y)
4 + c1

The solution is
p(y)2

2 + cos (2y)
4 − c1 = 0

Initial conditions are used to solve for c1. Substituting y = −π
2 and p = 1 in the above

solution gives an equation to solve for the constant of integration.
1
4 − c1 = 0

c1 =
1
4

Substituting c1 found above in the general solution gives
p2

2 + cos (2y)
4 − 1

4 = 0

Solving for p(y) from the above gives

p(y) =
√
2− 2 cos (2y)

2

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ =
√

2− 2 cos (2y)
2

Integrating both sides gives ∫ 2√
2− 2 cos (2y)

dy =
∫

dx

−sin (y) arctanh (cos (y))√
1
2 −

cos(2y)
2

= x+ c2
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Initial conditions are used to solve for c2. Substituting x = 0 and y = −π
2 in the above

solution gives an equation to solve for the constant of integration.

0 = c2

c2 = 0

Substituting c2 found above in the general solution gives

−2 sin (y) arctanh (cos (y))√
2− 2 cos (2y)

= x

The above simplifies to

− sin (y) arctanh (cos (y))− x

√
1
2 − cos (2y)

2 = 0

Simplifying the solution sin (y) (− arctanh (cos (y))− csgn (sin (y))x) = 0 to sin (y) (− arctanh (cos (y))− x) =
0 Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)sin (y) (− arctanh (cos (y))− x) = 0
Verification of solutions

sin (y) (− arctanh (cos (y))− x) = 0

Warning, solution could not be verified
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(1/2)*sin(2*_a) = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
3 Solution by Maple
Time used: 107.406 (sec). Leaf size: 1490� �
dsolve([2*diff(y(x),x$2)=sin(2*y(x)),y(0) = -1/2*Pi, D(y)(0) = 1],y(x), singsol=all)� �

Expression too large to display

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{2*y''[x]==Sin[2*y[x]],{y[0]==-Pi/2,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �
{}
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4.21 problem 23
4.21.1 Solving as second order ode missing y ode . . . . . . . . . . . . 606
4.21.2 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
4.21.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 613
4.21.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 620

Internal problem ID [6841]
Internal file name [OUTPUT/6088_Thursday_July_28_2022_04_30_05_AM_46510715/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_ode_miss-
ing_y", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

x3y′′ − x2y′ = −x2 + 3

4.21.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

x3p′(x)− p(x)x2 + x2 − 3 = 0

606



Which is now solve for p(x) as first order ode.

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = −1
x

q(x) = −x2 + 3
x3

Hence the ode is

p′(x)− p(x)
x

= −x2 + 3
x3

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µp) = (µ)

(
−x2 + 3

x3

)
d
dx

(p
x

)
=
(
1
x

)(
−x2 + 3

x3

)
d
(p
x

)
=
(
−x2 + 3

x4

)
dx

Integrating gives

p

x
=
∫

−x2 + 3
x4 dx

p

x
= 1

x
− 1

x3 + c1

Dividing both sides by the integrating factor µ = 1
x
results in

p(x) = x

(
1
x
− 1

x3

)
+ c1x

which simplifies to

p(x) = c1x
3 + x2 − 1
x2
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Since p = y′ then the new first order ode to solve is

y′ = c1x
3 + x2 − 1
x2

Integrating both sides gives

y =
∫

c1x
3 + x2 − 1
x2 dx

= c1x
2

2 + x+ 1
x
+ c2

Summary
The solution(s) found are the following

(1)y = c1x
2

2 + x+ 1
x
+ c2

Verification of solutions

y = c1x
2

2 + x+ 1
x
+ c2

Verified OK.

4.21.2 Solving as second order ode non constant coeff transformation on
B ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)
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If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x3

B = −x2

C = 0
F = −x2 + 3

The above shows that for this ode

AB′′ +BB′ + CB =
(
x3) (−2) +

(
−x2) (−2x) + (0)

(
−x2)

= 0

Hence the ode in v given in (1) now simplifies to

−x5v′′ +
(
−3x4) v′ = 0

Now by applying v′ = u the above becomes

−x4(u′(x)x+ 3u(x)) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x

Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c1

u = e−3 ln(x)+c1

= c1
x3
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The ode for v now becomes

v′ = u

= c1
x3

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1
x3 dx

= − c1
2x2 + c2

Therefore the homogeneous solution is

yh(x) = Bv

=
(
−x2) (− c1

2x2 + c2
)

= −c2x
2 + c1

2

And now the particular solution yp(x) will be found. The particular solution yp can be
found using either the method of undetermined coefficients, or the method of variation
of parameters. The method of variation of parameters will be used as it is more general
and can be used when the coefficients of the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 =
1
2

y2 = x2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣
1
2 x2

d
dx

(1
2

)
d
dx
(x2)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣
1
2 x2

0 2x

∣∣∣∣∣∣
Therefore

W =
(
1
2

)
(2x)−

(
x2) (0)

Which simplifies to
W = x

Which simplifies to
W = x

Therefore Eq. (2) becomes

u1 = −
∫

x2(−x2 + 3)
x4 dx

Which simplifies to

u1 = −
∫

−x2 + 3
x2 dx

Hence

u1 = x+ 3
x

And Eq. (3) becomes

u2 =
∫ −x2

2 + 3
2

x4 dx
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Which simplifies to

u2 =
∫

−x2 + 3
2x4 dx

Hence

u2 =
1
2x − 1

2x3

Which simplifies to

u1 = x+ 3
x

u2 =
x2 − 1
2x3

Therefore the particular solution, from equation (1) is

yp(x) =
x

2 + 3
2x + x2 − 1

2x

Which simplifies to

yp(x) =
x2 + 1

x

Hence the complete solution is

y(x) = yh + yp

=
(
−c2x

2 + c1
2

)
+
(
x2 + 1

x

)
= −c2x

2 + c1
2 + x2 + 1

x

Summary
The solution(s) found are the following

(1)y = −c2x
2 + c1

2 + x2 + 1
x

Verification of solutions

y = −c2x
2 + c1

2 + x2 + 1
x

Verified OK.
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4.21.3 Solving using Kovacic algorithm

Writing the ode as

x3y′′ − x2y′ = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x3

B = −x2 (3)
C = 0

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 3
4x2 (6)

Comparing the above to (5) shows that

s = 3
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

3
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 34: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 3
4x2
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For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 3
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 3

2
α−
c = 1

2 −
√
1 + 4b = −1

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 3

4x2

Since the gcd(s, t) = 1. This gives b = 3
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 3

2
α−
∞ = 1

2 −
√
1 + 4b = −1

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 3
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 3
2 −1

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 3
2 −1

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
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Trying α−
∞ = −1

2 then

d = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 1
2x + (−) (0)

= − 1
2x

= − 1
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 1
2x

)
(0) +

((
1
2x2

)
+
(
− 1
2x

)2

−
(

3
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 1

2xdx

= 1√
x
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2
x3 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 = 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−x2

x3 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1

(
x2

2

)
Therefore the solution is

y = c1y1 + c2y2

= c1(1) + c2

(
1
(
x2

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

x3y′′ − x2y′ = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 +
c2x

2

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = 1

y2 =
x2

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
1 x2

2

d
dx
(1) d

dx

(
x2

2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣1
x2

2

0 x

∣∣∣∣∣∣
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Therefore

W = (1) (x)−
(
x2

2

)
(0)

Which simplifies to
W = x

Which simplifies to
W = x

Therefore Eq. (2) becomes

u1 = −
∫ x2(−x2+3

)
2
x4 dx

Which simplifies to

u1 = −
∫

−x2 + 3
2x2 dx

Hence

u1 =
x

2 + 3
2x

And Eq. (3) becomes

u2 =
∫

−x2 + 3
x4 dx

Which simplifies to

u2 =
∫

−x2 + 3
x4 dx

Hence

u2 =
1
x
− 1

x3

Which simplifies to

u1 =
x

2 + 3
2x

u2 =
x2 − 1
x3
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Therefore the particular solution, from equation (1) is

yp(x) =
x

2 + 3
2x + x2 − 1

2x

Which simplifies to

yp(x) =
x2 + 1

x

Therefore the general solution is

y = yh + yp

=
(
c1 +

c2x
2

2

)
+
(
x2 + 1

x

)

Summary
The solution(s) found are the following

(1)y = c1 +
c2x

2

2 + x2 + 1
x

Verification of solutions

y = c1 +
c2x

2

2 + x2 + 1
x

Verified OK.

4.21.4 Maple step by step solution

Let’s solve
x3y′′ − x2y′ = −x2 + 3

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
x3u′(x)− x2u(x) = −x2 + 3

• Isolate the derivative
u′(x) = u(x)

x
− x2−3

x3

• Group terms with u(x) on the lhs of the ODE and the rest on the rhs of the ODE
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u′(x)− u(x)
x

= −x2−3
x3

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
u′(x)− u(x)

x

)
= −µ(x)

(
x2−3

)
x3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x)u(x))

µ(x)
(
u′(x)− u(x)

x

)
= µ′(x)u(x) + µ(x)u′(x)

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x)u(x))

)
dx =

∫
−µ(x)

(
x2−3

)
x3 dx+ c1

• Evaluate the integral on the lhs

µ(x)u(x) =
∫
−µ(x)

(
x2−3

)
x3 dx+ c1

• Solve for u(x)

u(x) =
∫
−

µ(x)
(
x2−3

)
x3 dx+c1

µ(x)

• Substitute µ(x) = 1
x

u(x) = x
(∫

−x2−3
x4 dx+ c1

)
• Evaluate the integrals on the rhs

u(x) = x
( 1
x
− 1

x3 + c1
)

• Solve 1st ODE for u(x)
u(x) = x

( 1
x
− 1

x3 + c1
)

• Make substitution u = y′

y′ = x
( 1
x
− 1

x3 + c1
)

• Integrate both sides to solve for y∫
y′dx =

∫
x
( 1
x
− 1

x3 + c1
)
dx+ c2

• Compute integrals
y = c1x2

2 + x+ 1
x
+ c2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (_a^2*_b(_a)-_a^2+3)/_a^3, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- high order exact linear fully integrable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x^3*diff(y(x),x$2)-x^2*diff(y(x),x)=3-x^2,y(x), singsol=all)� �

y(x) = c1x
2

2 + 1
x
+ x+ c2

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 21� �
DSolve[x^3*y''[x]-x^2*y'[x]==3-x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
2

2 + x+ 1
x
+ c2
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4.22 problem 24
4.22.1 Solving as second order ode missing y ode . . . . . . . . . . . . 623
4.22.2 Solving as second order ode missing x ode . . . . . . . . . . . . 624
4.22.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 626

Internal problem ID [6842]
Internal file name [OUTPUT/6089_Thursday_July_28_2022_04_30_08_AM_81941235/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], _Liouville , [_2nd_order , _reducible ,

_mu_xy ]]

y′′ − y′
2 = 0

4.22.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)− p(x)2 = 0
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Which is now solve for p(x) as first order ode. Integrating both sides gives∫ 1
p2
dp = x+ c1

−1
p
= x+ c1

Solving for p gives these solutions

p1 = − 1
x+ c1

Since p = y′ then the new first order ode to solve is

y′ = − 1
x+ c1

Integrating both sides gives

y =
∫

− 1
x+ c1

dx

= − ln (x+ c1) + c2

Summary
The solution(s) found are the following

(1)y = − ln (x+ c1) + c2

Verification of solutions

y = − ln (x+ c1) + c2

Verified OK.

4.22.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy
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Hence the ode becomes

p(y)
(

d

dy
p(y)

)
− p(y)2 = 0

Which is now solved as first order ode for p(y). Integrating both sides gives∫ 1
p
dp = y + c1

ln (p) = y + c1

p = ey+c1

p = c1ey

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = c1ey

Integrating both sides gives ∫ e−y

c1
dy = x+ c2

−e−y

c1
= x+ c2

Solving for y gives these solutions

y1 = ln
(
− 1
c1 (x+ c2)

)
Summary
The solution(s) found are the following

(1)y = ln
(
− 1
c1 (x+ c2)

)
Verification of solutions

y = ln
(
− 1
c1 (x+ c2)

)
Verified OK.
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4.22.3 Maple step by step solution

Let’s solve
y′′ − y′2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
u′(x)− u(x)2 = 0

• Separate variables
u′(x)
u(x)2 = 1

• Integrate both sides with respect to x∫ u′(x)
u(x)2dx =

∫
1dx+ c1

• Evaluate integral
− 1

u(x) = x+ c1

• Solve for u(x)
u(x) = − 1

x+c1

• Solve 1st ODE for u(x)
u(x) = − 1

x+c1

• Make substitution u = y′

y′ = − 1
x+c1

• Integrate both sides to solve for y∫
y′dx =

∫
− 1

x+c1
dx+ c2

• Compute integrals
y = − ln (x+ c1) + c2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 15� �
dsolve(diff(y(x),x$2)=diff(y(x),x)^2,y(x), singsol=all)� �

y(x) = − ln (−c1x− c2)

3 Solution by Mathematica
Time used: 0.197 (sec). Leaf size: 15� �
DSolve[y''[x]==(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 − log(x+ c1)
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4.23 problem 25
4.23.1 Solving as second order ode missing y ode . . . . . . . . . . . . 628
4.23.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 630

Internal problem ID [6843]
Internal file name [OUTPUT/6090_Thursday_July_28_2022_04_30_10_AM_70078846/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′ − exy′2 = 0

4.23.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)− exp(x)2 = 0

Which is now solve for p(x) as first order ode. In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)
= exp2
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Where f(x) = ex and g(p) = p2. Integrating both sides gives

1
p2

dp = ex dx∫ 1
p2

dp =
∫

ex dx

−1
p
= ex + c1

The solution is

− 1
p (x) − ex − c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− 1
y′

− ex − c1 = 0

Integrating both sides gives

y =
∫

− 1
ex + c1

dx

= − ln (ex)
c1

+ ln (ex + c1)
c1

+ c2

Summary
The solution(s) found are the following

(1)y = − ln (ex)
c1

+ ln (ex + c1)
c1

+ c2

Verification of solutions

y = − ln (ex)
c1

+ ln (ex + c1)
c1

+ c2

Verified OK.
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4.23.2 Maple step by step solution

Let’s solve
y′′ − exy′2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
u′(x)− exu(x)2 = 0

• Separate variables
u′(x)
u(x)2 = ex

• Integrate both sides with respect to x∫ u′(x)
u(x)2dx =

∫
exdx+ c1

• Evaluate integral
− 1

u(x) = ex + c1

• Solve for u(x)
u(x) = − 1

ex+c1

• Solve 1st ODE for u(x)
u(x) = − 1

ex+c1

• Make substitution u = y′

y′ = − 1
ex+c1

• Integrate both sides to solve for y∫
y′dx =

∫
− 1

ex+c1
dx+ c2

• Compute integrals
y = − ln(ex)

c1
+ ln(ex+c1)

c1
+ c2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = exp(_a)*_b(_a)^2, _b(_a), HINT = [[1, -_b]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, -_b]� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$2)=exp(x)*diff(y(x),x)^2,y(x), singsol=all)� �

y(x) = c2c1 − ln (ex − c1) + ln (ex)
c1

3 Solution by Mathematica
Time used: 0.985 (sec). Leaf size: 37� �
DSolve[y''[x]==Exp[x](y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ log (ex + c1) + c1c2
c1

y(x) → Indeterminate
y(x) → c2
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4.24 problem 26
4.24.1 Solving as second order ode missing y ode . . . . . . . . . . . . 632
4.24.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 634

Internal problem ID [6844]
Internal file name [OUTPUT/6091_Thursday_July_28_2022_04_30_12_AM_80846733/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y], [_2nd_order , _reducible , _mu_y_y1 ]]

2y′′ − y′
3 sin (2x) = 0

4.24.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

2p′(x)− p(x)3 sin (2x) = 0

Which is now solve for p(x) as first order ode. In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= p3 sin (2x)
2
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Where f(x) = sin(2x)
2 and g(p) = p3. Integrating both sides gives

1
p3

dp = sin (2x)
2 dx∫ 1

p3
dp =

∫ sin (2x)
2 dx

− 1
2p2 = −cos (2x)

4 + c1

The solution is

− 1
2p (x)2

+ cos (2x)
4 − c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− 1
2y′2

+ cos (2x)
4 − c1 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = − 2√
−8c1 + 2 cos (2x)

(1)

y′ = 2√
−8c1 + 2 cos (2x)

(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

− 2√
−8c1 + 2 cos (2x)

dx

= −
2
√

−−4c1+cos(2x)
4c1−1 InverseJacobiAM

(
x,
√
2
√

− 1
4c1−1

)
√
−8c1 + 2 cos (2x)

+ c2

Solving equation (2)
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Integrating both sides gives

y =
∫ 2√

−8c1 + 2 cos (2x)
dx

=
2
√

−−4c1+cos(2x)
4c1−1 InverseJacobiAM

(
x,
√
2
√

− 1
4c1−1

)
√

−8c1 + 2 cos (2x)
+ c3

Summary
The solution(s) found are the following

(1)y = −
2
√

−−4c1+cos(2x)
4c1−1 InverseJacobiAM

(
x,
√
2
√

− 1
4c1−1

)
√
−8c1 + 2 cos (2x)

+ c2

(2)y =
2
√

−−4c1+cos(2x)
4c1−1 InverseJacobiAM

(
x,
√
2
√
− 1

4c1−1

)
√

−8c1 + 2 cos (2x)
+ c3

Verification of solutions

y = −
2
√

−−4c1+cos(2x)
4c1−1 InverseJacobiAM

(
x,
√
2
√

− 1
4c1−1

)
√
−8c1 + 2 cos (2x)

+ c2

Verified OK.

y =
2
√

−−4c1+cos(2x)
4c1−1 InverseJacobiAM

(
x,
√
2
√

− 1
4c1−1

)
√

−8c1 + 2 cos (2x)
+ c3

Verified OK.

4.24.2 Maple step by step solution

Let’s solve
2y′′ − y′3 sin (2x) = 0

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
2u′(x)− u(x)3 sin (2x) = 0

• Separate variables
u′(x)
u(x)3 = sin(2x)

2
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• Integrate both sides with respect to x∫ u′(x)
u(x)3dx =

∫ sin(2x)
2 dx+ c1

• Evaluate integral
− 1

2u(x)2 = − cos(2x)
4 + c1

• Solve for u(x){
u(x) = − 2√

−8c1+2 cos(2x) , u(x) =
2√

−8c1+2 cos(2x)

}
• Solve 1st ODE for u(x)

u(x) = − 2√
−8c1+2 cos(2x)

• Make substitution u = y′

y′ = − 2√
−8c1+2 cos(2x)

• Integrate both sides to solve for y∫
y′dx =

∫
− 2√

−8c1+2 cos(2x)dx+ c2

• Compute integrals

y = −
2
√

−−4c1+cos(2x)
4c1−1 InverseJacobiAM

(
x,
√
2
√

− 1
4c1−1

)
√

−8c1+2 cos(2x) + c2

• Solve 2nd ODE for u(x)
u(x) = 2√

−8c1+2 cos(2x)

• Make substitution u = y′

y′ = 2√
−8c1+2 cos(2x)

• Integrate both sides to solve for y∫
y′dx =

∫ 2√
−8c1+2 cos(2x)dx+ c2

• Compute integrals

y =
2
√

−−4c1+cos(2x)
4c1−1 InverseJacobiAM

(
x,
√
2
√

− 1
4c1−1

)
√

−8c1+2 cos(2x) + c2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (1/2)*_b(_a)^3*sin(2*_a), _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 80� �
dsolve(2*diff(y(x),x$2)=diff(y(x),x)^3*sin(2*x),y(x), singsol=all)� �

y(x) =

√
− sin (x)2 c21 + 1 InverseJacobiAM(x, c1)√

− sin(x)2c21+1
c21

+ c2

y(x) = −

√
− sin (x)2 c21 + 1 InverseJacobiAM(x, c1)√

− sin(x)2c21+1
c21

+ c2
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3 Solution by Mathematica
Time used: 6.102 (sec). Leaf size: 120� �
DSolve[2*y''[x]==(y'[x])^3*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 −

√
− cos(2x)+1−4c1

−1+2c1 EllipticF
(
x, 1

1−2c1

)
√

cos(2x) + 1− 4c1

y(x) →

√
− cos(2x)+1−4c1

−1+2c1 EllipticF
(
x, 1

1−2c1

)
√

cos(2x) + 1− 4c1
+ c2

y(x) → c2
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4.25 problem 27
4.25.1 Solving as second order ode missing y ode . . . . . . . . . . . . 638
4.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 640

Internal problem ID [6845]
Internal file name [OUTPUT/6092_Thursday_July_28_2022_04_30_14_AM_58312407/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 27.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y], [_2nd_order , _reducible , _mu_y_y1 ]]

x2y′′ + y′
2 = 0

4.25.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

x2p′(x) + p(x)2 = 0

Which is now solve for p(x) as first order ode. In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= −p2

x2
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Where f(x) = − 1
x2 and g(p) = p2. Integrating both sides gives

1
p2

dp = − 1
x2 dx∫ 1

p2
dp =

∫
− 1
x2 dx

−1
p
= 1

x
+ c1

The solution is

− 1
p (x) −

1
x
− c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− 1
y′

− 1
x
− c1 = 0

Integrating both sides gives

y =
∫

− x

c1x+ 1 dx

= − x

c1
+ ln (c1x+ 1)

c21
+ c2

Summary
The solution(s) found are the following

(1)y = − x

c1
+ ln (c1x+ 1)

c21
+ c2

Verification of solutions

y = − x

c1
+ ln (c1x+ 1)

c21
+ c2

Verified OK.
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4.25.2 Maple step by step solution

Let’s solve
x2y′′ + y′2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
x2u′(x) + u(x)2 = 0

• Separate variables
u′(x)
u(x)2 = − 1

x2

• Integrate both sides with respect to x∫ u′(x)
u(x)2dx =

∫
− 1

x2dx+ c1

• Evaluate integral
− 1

u(x) =
1
x
+ c1

• Solve for u(x)
u(x) = − x

c1x+1

• Solve 1st ODE for u(x)
u(x) = − x

c1x+1

• Make substitution u = y′

y′ = − x
c1x+1

• Integrate both sides to solve for y∫
y′dx =

∫
− x

c1x+1dx+ c2

• Compute integrals
y = − x

c1
+ ln(c1x+1)

c21
+ c2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)^2/_a^2, _b(_a), HINT = [[_a, _b]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, _b]� �
3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 21� �
dsolve(x^2*diff(y(x),x$2)+diff(y(x),x)^2=0,y(x), singsol=all)� �

y(x) = x

c1
+ ln (c1x− 1)

c21
+ c2

3 Solution by Mathematica
Time used: 0.57 (sec). Leaf size: 47� �
DSolve[x^2*y''[x]+(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x

c1
+ log(1 + c1x)

c12
+ c2

y(x) → c2

y(x) → −x2

2 + c2
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4.26 problem 28
4.26.1 Solving as second order ode missing y ode . . . . . . . . . . . . 642
4.26.2 Solving as second order ode missing x ode . . . . . . . . . . . . 643
4.26.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 645

Internal problem ID [6846]
Internal file name [OUTPUT/6093_Thursday_July_28_2022_04_30_16_AM_7866207/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_xy ]]

y′′ − y′
2 = 1

4.26.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)− 1− p(x)2 = 0

Which is now solve for p(x) as first order ode. Integrating both sides gives∫ 1
p2 + 1dp = x+ c1

arctan (p) = x+ c1
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Solving for p gives these solutions

p1 = tan (x+ c1)

Since p = y′ then the new first order ode to solve is

y′ = tan (x+ c1)

Integrating both sides gives

y =
∫

tan (x+ c1) dx

=
ln
(
1 + tan (x+ c1)2

)
2 + c2

Summary
The solution(s) found are the following

(1)y =
ln
(
1 + tan (x+ c1)2

)
2 + c2

Verification of solutions

y =
ln
(
1 + tan (x+ c1)2

)
2 + c2

Verified OK.

4.26.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)
(

d

dy
p(y)

)
− p(y)2 = 1
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Which is now solved as first order ode for p(y). Integrating both sides gives∫
p

p2 + 1dp =
∫

dy

ln (p2 + 1)
2 = y + c1

Raising both side to exponential gives√
p2 + 1 = ey+c1

Which simplifies to √
p2 + 1 = c2ey

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′ = RootOf
(
_Z2 − c22e2y + 1

)
Integrating both sides gives∫ 1

RootOf
(
_Z2 − c22e2y + 1

)dy =
∫

dx∫ y 1
RootOf

(
_Z2 − c22e2_a + 1

)d_a = x+ c3

Summary
The solution(s) found are the following

(1)
∫ y 1

RootOf
(
_Z2 − c22e2_a + 1

)d_a = x+ c3

Verification of solutions∫ y 1
RootOf

(
_Z2 − c22e2_a + 1

)d_a = x+ c3

Verified OK.
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4.26.3 Maple step by step solution

Let’s solve
y′′ − y′2 = 1

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE
u′(x)− u(x)2 = 1

• Separate variables
u′(x)

u(x)2+1 = 1

• Integrate both sides with respect to x∫ u′(x)
u(x)2+1dx =

∫
1dx+ c1

• Evaluate integral
arctan (u(x)) = x+ c1

• Solve for u(x)
u(x) = tan (x+ c1)

• Solve 1st ODE for u(x)
u(x) = tan (x+ c1)

• Make substitution u = y′

y′ = tan (x+ c1)
• Integrate both sides to solve for y∫

y′dx =
∫
tan (x+ c1) dx+ c2

• Compute integrals

y =
ln
(
1+tan(x+c1)2

)
2 + c2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$2)=1+diff(y(x),x)^2,y(x), singsol=all)� �

y(x) = − ln (− cos (x) c2 + c1 sin (x))

3 Solution by Mathematica
Time used: 1.97 (sec). Leaf size: 16� �
DSolve[y''[x]==1+(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 − log(cos(x+ c1))
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4.27 problem 30
4.27.1 Solving as second order ode missing y ode . . . . . . . . . . . . 647
4.27.2 Solving as second order ode missing x ode . . . . . . . . . . . . 648
4.27.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 650

Internal problem ID [6847]
Internal file name [OUTPUT/6094_Thursday_July_28_2022_04_30_18_AM_11524310/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 30.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_x",
"second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ −
(
1 + y′

2
) 3

2 = 0

4.27.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x)−
(
1 + p(x)2

) 3
2 = 0
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Which is now solve for p(x) as first order ode. Integrating both sides gives∫ 1
(p2 + 1)

3
2
dp =

∫
dx

p(x)√
1 + p (x)2

= x+ c1

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

y′√
1 + y′2

= x+ c1

Integrating both sides gives

y =
∫

c1

√
− 1
c21 + 2c1x+ x2 − 1 + x

√
− 1
c21 + 2c1x+ x2 − 1 dx

=
√

− 1
c21 + 2c1x+ x2 − 1 (c1 + x+ 1) (c1 + x− 1) + c2

Summary
The solution(s) found are the following

(1)y =
√

− 1
c21 + 2c1x+ x2 − 1 (c1 + x+ 1) (c1 + x− 1) + c2

Verification of solutions

y =
√

− 1
c21 + 2c1x+ x2 − 1 (c1 + x+ 1) (c1 + x− 1) + c2

Verified OK.

4.27.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)
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Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

p(y)
(

d

dy
p(y)

)
=
(
1 + p(y)2

) 3
2

Which is now solved as first order ode for p(y). Integrating both sides gives∫
p

(p2 + 1)
3
2
dp =

∫
dy

− 1√
1 + p (y)2

= y + c1

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− 1√
1 + y′2

= y + c1

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

−y2 − 2c1y − c21 + 1
y + c1

(1)

y′ = −
√
−y2 − 2c1y − c21 + 1

y + c1
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫
y + c1√

−c21 − 2c1y − y2 + 1
dy =

∫
dx

(y + c1 + 1) (y + c1 − 1)√
−y2 − 2c1y − c21 + 1

= x+ c2
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Solving equation (2)

Integrating both sides gives∫
− y + c1√

−c21 − 2c1y − y2 + 1
dy =

∫
dx

−(y + c1 + 1) (y + c1 − 1)√
−y2 − 2c1y − c21 + 1

= x+ c3

Summary
The solution(s) found are the following

(1)(y + c1 + 1) (y + c1 − 1)√
−y2 − 2c1y − c21 + 1

= x+ c2

(2)−(y + c1 + 1) (y + c1 − 1)√
−y2 − 2c1y − c21 + 1

= x+ c3

Verification of solutions

(y + c1 + 1) (y + c1 − 1)√
−y2 − 2c1y − c21 + 1

= x+ c2

Verified OK.

−(y + c1 + 1) (y + c1 − 1)√
−y2 − 2c1y − c21 + 1

= x+ c3

Verified OK.

4.27.3 Maple step by step solution

Let’s solve

y′′ =
(
1 + y′2

) 3
2

• Highest derivative means the order of the ODE is 2
y′′

• Make substitution u = y′ to reduce order of ODE

u′(x) =
(
u(x)2 + 1

) 3
2

• Separate variables
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u′(x)(
u(x)2+1

) 3
2
= 1

• Integrate both sides with respect to x∫ u′(x)(
u(x)2+1

) 3
2
dx =

∫
1dx+ c1

• Evaluate integral
u(x)√
u(x)2+1

= x+ c1

• Solve for u(x)

u(x) = c1
√

− 1
c21+2c1x+x2−1 + x

√
− 1

c21+2c1x+x2−1

• Solve 1st ODE for u(x)

u(x) = c1
√

− 1
c21+2c1x+x2−1 + x

√
− 1

c21+2c1x+x2−1

• Make substitution u = y′

y′ = c1
√

− 1
c21+2c1x+x2−1 + x

√
− 1

c21+2c1x+x2−1

• Integrate both sides to solve for y∫
y′dx =

∫ (
c1
√

− 1
c21+2c1x+x2−1 + x

√
− 1

c21+2c1x+x2−1

)
dx+ c2

• Compute integrals

y =
√

− 1
c21+2c1x+x2−1 (c1 + x+ 1) (c1 + x− 1) + c2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (1+_b(_a)^2)^(3/2), _b(_a), HINT = [[1, 0], [y, -_b^2-1]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 0], [y, -_b^2-1]� �
3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 49� �
dsolve(diff(y(x),x$2)=(1+diff(y(x),x)^2)^(3/2),y(x), singsol=all)� �

y(x) = −ix+ c1
y(x) = ix+ c1

y(x) = (c1 + x+ 1) (x− 1 + c1)
√
− 1
(c1 + x+ 1) (x− 1 + c1)

+ c2

3 Solution by Mathematica
Time used: 0.269 (sec). Leaf size: 59� �
DSolve[y''[x]==(1+(y'[x])^2)^(3/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2 − i
√
x2 + 2c1x− 1 + c12

y(x) → i
√

x2 + 2c1x− 1 + c12 + c2
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4.28 problem 31
4.28.1 Solving as second order ode missing x ode . . . . . . . . . . . . 653

Internal problem ID [6848]
Internal file name [OUTPUT/6095_Thursday_July_28_2022_04_30_21_AM_39831181/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_y_y1 ]]

yy′′ − y′
2(1− y′ sin (y)− yy′ cos (y)) = 0

4.28.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

yp(y)
(

d

dy
p(y)

)
+
(
cos (y) yp(y)2 + sin (y) p(y)2 − p(y)

)
p(y) = 0
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Which is now solved as first order ode for p(y). Using the change of variables p(y) =
u(y) y on the above ode results in new ode in u(y)

y2u(y)
((

d

dy
u(y)

)
y + u(y)

)
+
(
cos (y) y3u(y)2 + sin (y)u(y)2 y2 − u(y) y

)
u(y) y = 0

In canonical form the ODE is

u′ = F (y, u)
= f(y)g(u)
= u2(− cos (y) y − sin (y))

Where f(y) = − cos (y) y − sin (y) and g(u) = u2. Integrating both sides gives

1
u2 du = − cos (y) y − sin (y) dy∫ 1
u2 du =

∫
− cos (y) y − sin (y) dy

−1
u
= − sin (y) y + c2

The solution is

− 1
u (y) + sin (y) y − c2 = 0

Replacing u(y) in the above solution by p(y)
y

results in the solution for p(y) in implicit
form

− y

p (y) + sin (y) y − c2 = 0

− y

p (y) + sin (y) y − c2 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− y

y′
+ y sin (y)− c2 = 0

Integrating both sides gives ∫ sin (y) y − c2
y

dy =
∫

dx∫ y sin (_a)_a− c2
_a d_a = x+ c3
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Summary
The solution(s) found are the following

(1)
∫ y sin (_a)_a− c2

_a d_a = x+ c3

Verification of solutions ∫ y sin (_a)_a− c2
_a d_a = x+ c3

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)^2*(_b(_a)*cos(_a)*_a+_b(_a)*sin(_a)-1)/_a = 0, _b(_a)` *** Subl

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
3 Solution by Maple
Time used: 0.14 (sec). Leaf size: 24� �
dsolve(y(x)*diff(y(x),x$2)=diff(y(x),x)^2*(1-diff(y(x),x)*sin(y(x))-y(x)*diff(y(x),x)*cos(y(x)) ),y(x), singsol=all)� �

y(x) = c1
− cos (y(x)) + c1 ln (y(x))− x− c2 = 0
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3 Solution by Mathematica
Time used: 0.489 (sec). Leaf size: 69� �
DSolve[y[x]*y''[x]==(y'[x])^2*(1-y'[x]*Sin[y[x]]-y[x]*y'[x]*Cos[y[x]] ),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction[− cos(#1) + c1 log(#1)&][x+ c2]
y(x) → InverseFunction[− cos(#1)− c1 log(#1)&][x+ c2]
y(x) → InverseFunction[− cos(#1) + c1 log(#1)&][x+ c2]
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4.29 problem 32
4.29.1 Solving as second order ode missing x ode . . . . . . . . . . . . 657

Internal problem ID [6849]
Internal file name [OUTPUT/6096_Thursday_July_28_2022_04_30_22_AM_21244975/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 32.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

(
1 + y2

)
y′′ + y′

3 + y′ = 0

4.29.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes(
y2 + 1

)
p(y)

(
d

dy
p(y)

)
+
(
1 + p(y)2

)
p(y) = 0
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Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= −p2 − 1
y2 + 1

Where f(y) = 1
y2+1 and g(p) = −p2 − 1. Integrating both sides gives

1
−p2 − 1 dp = 1

y2 + 1 dy∫ 1
−p2 − 1 dp =

∫ 1
y2 + 1 dy

− arctan (p) = arctan (y) + c1

The solution is
− arctan (p(y))− arctan (y)− c1 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− arctan (y′)− arctan (y)− c1 = 0

Integrating both sides gives∫
− 1
tan (arctan (y) + c1)

dy =
∫

dx∫ y

− 1
tan (arctan (_a) + c1)

d_a = x+ c2

Summary
The solution(s) found are the following

(1)
∫ y

− 1
tan (arctan (_a) + c1)

d_a = x+ c2

Verification of solutions∫ y

− 1
tan (arctan (_a) + c1)

d_a = x+ c2

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)*(1+_b(_a)^2)/(_a^2+1) = 0, _b(_a)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful

<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
3 Solution by Maple
Time used: 0.187 (sec). Leaf size: 118� �
dsolve((1+y(x)^2)*diff(y(x),x$2)+diff(y(x),x)^3+diff(y(x),x)=0,y(x), singsol=all)� �
y(x) = −i
y(x) = i
y(x) = c1
y(x)

= ic1 − i− e

−4 LambertW

− ie
(−c2−x+1)c21+(−2c2−2x−2)c1−x−c2+1

4c1 (c1−1)
4c1

c1+(−c2−x+1)c21+(−2c2−2x−2)c1−x−c2+1

4c1

c1 + 1
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3 Solution by Mathematica
Time used: 57.998 (sec). Leaf size: 56� �
DSolve[(1+y[x]^2)*y''[x]+(y'[x])^3+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → csc(c1) sec(c1)W
(
sin(c1)e−

(
(x+c2) cos2(c1)

)
−sin2(c1)

)
+ tan(c1)

y(x) → e−x−c2
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4.30 problem 33
4.30.1 Solving as second order ode missing x ode . . . . . . . . . . . . 661

Internal problem ID [6850]
Internal file name [OUTPUT/6097_Thursday_July_28_2022_04_30_22_AM_28511657/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 33.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

(
yy′′ + 1 + y′

2
)2

−
(
1 + y′

2
)3

= 0

4.30.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes(
y2p(y)

(
d

dy
p(y)

)
+ 2yp(y)2 + 2y

)
p(y)

(
d

dy
p(y)

)
+
(
−p(y)5 − 2p(y)3 − p(y)

)
p(y) = 0
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Which is now solved as first order ode for p(y). Solving the given ode for d
dy
p(y) results

in 2 differential equations to solve. Each one of these will generate a solution. The
equations generated are

d

dy
p(y) =

(
−1 +

√
p (y)2 + 1

)(
p(y)2 + 1

)
p (y) y (1)

d

dy
p(y) = −

(
1 +

√
p (y)2 + 1

)(
p(y)2 + 1

)
p (y) y (2)

Now each one of the above ODE is solved.

Solving equation (1)

In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

=
(
−1 +

√
p2 + 1

)
(p2 + 1)

py

Where f(y) = 1
y
and g(p) =

(
−1+

√
p2+1

)(
p2+1

)
p

. Integrating both sides gives

1(
−1+

√
p2+1

)
(p2+1)

p

dp = 1
y
dy

∫ 1(
−1+

√
p2+1

)
(p2+1)

p

dp =
∫ 1

y
dy

− arctanh
(

1√
p2 + 1

)
+ ln (p)− ln (p2 + 1)

2 = ln (y) + c1

The solution is

− arctanh

 1√
p (y)2 + 1

+ ln (p(y))−
ln
(
p(y)2 + 1

)
2 − ln (y)− c1 = 0

Solving equation (2)
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In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= −
(√

p2 + 1 + 1
)
(p2 + 1)

py

Where f(y) = − 1
y
and g(p) =

(√
p2+1+1

)(
p2+1

)
p

. Integrating both sides gives

1(√
p2+1+1

)
(p2+1)

p

dp = −1
y
dy

∫ 1(√
p2+1+1

)
(p2+1)

p

dp =
∫

−1
y
dy

− arctanh
(

1√
p2 + 1

)
− ln (p) + ln (p2 + 1)

2 = − ln (y) + c2

The solution is

− arctanh

 1√
p (y)2 + 1

− ln (p(y)) +
ln
(
p(y)2 + 1

)
2 + ln (y)− c2 = 0

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− arctanh
(

1√
1 + y′2

)
+ ln (y′)−

ln
(
1 + y′2

)
2 − ln (y)− c1 = 0

Integrating both sides gives∫ 1√√√√
−1 + e

RootOf

e_Ztanh

_Z
2 +c1−

ln
(

e_Z−1
y2

)
2

2

−1


dy =

∫
dx

∫ y 1√√√√
−1 + e

RootOf

e_Ztanh

_Z
2 +c1−

ln
(

e_Z−1
_a2

)
2

2

−1


d_a = x+ c3
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For solution (2) found earlier, since p = y′ then we now have a new first order ode to
solve which is

− arctanh
(

1√
1 + y′2

)
− ln (y′) +

ln
(
1 + y′2

)
2 + ln (y)− c2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =

√
e
RootOf

(
−_Z+2 arctanh

(
e−

_Z
2

)
+2c2−ln

(
y2

e_Z−1

))
− 1 (1)

y′ =

√
e
RootOf

(
−_Z−2 arctanh

(
e−

_Z
2

)
+2c2−ln

(
y2

e_Z−1

))
− 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives∫ 1√
e
RootOf

(
−_Z+2 arctanh

(
e−

_Z
2

)
+2c2−ln

(
y2

e_Z−1

))
− 1

dy =
∫

dx

∫ y 1√
e
RootOf

(
−_Z+2 arctanh

(
e−

_Z
2

)
+2c2−ln

( _a2
e_Z−1

))
− 1

d_a = x+ c4

Solving equation (2)

Integrating both sides gives∫ 1√
e
RootOf

(
−_Z−2 arctanh

(
e−

_Z
2

)
+2c2−ln

(
y2

e_Z−1

))
− 1

dy =
∫

dx

∫ y 1√
e
RootOf

(
−_Z−2 arctanh

(
e−

_Z
2

)
+2c2−ln

( _a2
e_Z−1

))
− 1

d_a = x+ c5
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Summary
The solution(s) found are the following

(1)
∫ y 1√√√√

−1 + e
RootOf

e_Ztanh

_Z
2 +c1−

ln
(

e_Z−1
_a2

)
2

2

−1


d_a = x+ c3

(2)
∫ y 1√

e
RootOf

(
−_Z+2 arctanh

(
e−

_Z
2

)
+2c2−ln

( _a2
e_Z−1

))
− 1

d_a = x+ c4

(3)
∫ y 1√

e
RootOf

(
−_Z−2 arctanh

(
e−

_Z
2

)
+2c2−ln

( _a2
e_Z−1

))
− 1

d_a = x+ c5

Verification of solutions∫ y 1√√√√
−1 + e

RootOf

e_Ztanh

_Z
2 +c1−

ln
(

e_Z−1
_a2

)
2

2

−1


d_a = x+ c3

Verified OK.∫ y 1√
e
RootOf

(
−_Z+2 arctanh

(
e−

_Z
2

)
+2c2−ln

( _a2
e_Z−1

))
− 1

d_a = x+ c4

Verified OK.∫ y 1√
e
RootOf

(
−_Z−2 arctanh

(
e−

_Z
2

)
+2c2−ln

( _a2
e_Z−1

))
− 1

d_a = x+ c5

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+(1+(1+_b(_a)^2)^(1/2))*(1+_b(_a)^2)/_a = 0, _b(_a), HINT = [[_a, 0

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 0]� �

3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 107� �
dsolve((y(x)*diff(y(x),x$2)+1+diff(y(x),x)^2)^2=(1+diff(y(x),x)^2)^3,y(x), singsol=all)� �

y(x) = −ix+ c1
y(x) = ix+ c1
y(x) = 0
y(x) = −c1 −

√
− (x+ c1 + c2) (x− c1 + c2)

y(x) = −c1 +
√

− (x+ c1 + c2) (x− c1 + c2)
y(x) = c1 −

√
− (x+ c1 + c2) (x− c1 + c2)

y(x) = c1 +
√

− (x+ c1 + c2) (x− c1 + c2)
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3 Solution by Mathematica
Time used: 45.659 (sec). Leaf size: 155� �
DSolve[(y[x]*y''[x]+1+(y'[x])^2)^2==(1+(y'[x])^2)^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
e2c1 − (x+ c2)2 − ec1

y(x) → ec1 −
√
e2c1 − (x+ c2)2

y(x) →
√
e2c1 − (x+ c2)2 − ec1

y(x) →
√
e2c1 − (x+ c2)2 + ec1

y(x) → −
√
−(x+ c2)2

y(x) →
√
−(x+ c2)2
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4.31 problem 34
4.31.1 Solving as second order ode missing y ode . . . . . . . . . . . . 668

Internal problem ID [6851]
Internal file name [OUTPUT/6098_Friday_July_29_2022_02_05_35_AM_9550685/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 34.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

x2y′′ − y′(2x− y′) = 0

With initial conditions

[y(−1) = 5, y′(−1) = 1]

4.31.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

x2p′(x) + (p(x)− 2x) p(x) = 0

Which is now solve for p(x) as first order ode. Using the change of variables p(x) = u(x)x
on the above ode results in new ode in u(x)

x2(u′(x)x+ u(x)) + (u(x)x− 2x)u(x)x = 0
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In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(u− 1)
x

Where f(x) = − 1
x
and g(u) = u(u− 1). Integrating both sides gives

1
u (u− 1) du = −1

x
dx∫ 1

u (u− 1) du =
∫

−1
x
dx

− ln (u) + ln (u− 1) = − ln (x) + c2

Raising both side to exponential gives

e− ln(u)+ln(u−1) = e− ln(x)+c2

Which simplifies to

u− 1
u

= c3
x

Therefore the solution p(x) is

p(x) = ux

= − x2

c3 − x

Initial conditions are used to solve for c3. Substituting x = −1 and p = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = − 1
c3 + 1

c3 = −2

Substituting c3 found above in the general solution gives

p(x) = x2

x+ 2
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Since p = y′ then the new first order ode to solve is

y′ = x2

x+ 2
Integrating both sides gives

y =
∫

x2

x+ 2 dx

= x2

2 − 2x+ 4 ln (x+ 2) + c4

Initial conditions are used to solve for c4. Substituting x = −1 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5 = 5
2 + c4

c4 =
5
2

Substituting c4 found above in the general solution gives

y = x2

2 − 2x+ 4 ln (x+ 2) + 5
2

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)y = x2

2 − 2x+ 4 ln (x+ 2) + 5
2

Figure 17: Solution plot
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Verification of solutions

y = x2

2 − 2x+ 4 ln (x+ 2) + 5
2

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`� �
3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 20� �
dsolve([x^2*diff(y(x),x$2)=diff(y(x),x)*(2*x-diff(y(x),x)),y(-1) = 5, D(y)(-1) = 1],y(x), singsol=all)� �

y(x) = x2

2 − 2x+ 4 ln (x+ 2) + 5
2

3 Solution by Mathematica
Time used: 0.52 (sec). Leaf size: 23� �
DSolve[{x^2*y''[x]==y'[x]*(2*x-y'[x]),{y[-1]==5,y'[-1]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
x2 − 4x+ 8 log(x+ 2) + 5

)
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4.32 problem 35
4.32.1 Solving as second order ode missing y ode . . . . . . . . . . . . 672

Internal problem ID [6852]
Internal file name [OUTPUT/6099_Friday_July_29_2022_03_09_12_AM_9550685/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

x2y′′ − y′(3x− 2y′) = 0

4.32.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

x2p′(x) + (2p(x)− 3x) p(x) = 0

Which is now solve for p(x) as first order ode. Using the change of variables p(x) = u(x)x
on the above ode results in new ode in u(x)

x2(u′(x)x+ u(x)) + (2u(x)x− 3x)u(x)x = 0
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In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u(u− 1)
x

Where f(x) = − 2
x
and g(u) = u(u− 1). Integrating both sides gives

1
u (u− 1) du = −2

x
dx∫ 1

u (u− 1) du =
∫

−2
x
dx

− ln (u) + ln (u− 1) = −2 ln (x) + c2

Raising both side to exponential gives

e− ln(u)+ln(u−1) = e−2 ln(x)+c2

Which simplifies to

u− 1
u

= c3
x2

Therefore the solution p(x) is

p(x) = xu

= − x3

−x2 + c3

Since p = y′ then the new first order ode to solve is

y′ = − x3

−x2 + c3

Integrating both sides gives

y =
∫

− x3

−x2 + c3
dx

= x2

2 + c3 ln (x2 − c3)
2 + c4
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Summary
The solution(s) found are the following

(1)y = x2

2 + c3 ln (x2 − c3)
2 + c4

Verification of solutions

y = x2

2 + c3 ln (x2 − c3)
2 + c4

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)*(-3*_a+2*_b(_a))/_a^2, _b(_a), HINT = [[_a, _b]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, _b]� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 22� �
dsolve(x^2*diff(y(x),x$2)=diff(y(x),x)*(3*x-2*diff(y(x),x)),y(x), singsol=all)� �

y(x) = x2

2 + c1 ln (x2 − c1)
2 + c2
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3 Solution by Mathematica
Time used: 0.333 (sec). Leaf size: 28� �
DSolve[x^2*y''[x]==y'[x]*(3*x-2*y'[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
x2 − c1 log

(
x2 + c1

)
+ 2c2

)
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4.33 problem 36
4.33.1 Solving as second order ode missing y ode . . . . . . . . . . . . 676
4.33.2 Solving as second order nonlinear solved by mainardi lioville

method ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680

Internal problem ID [6853]
Internal file name [OUTPUT/6100_Friday_July_29_2022_03_09_14_AM_38707999/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 36.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y",
"second_order_nonlinear_solved_by_mainardi_lioville_method"

Maple gives the following as the ode type
[[_2nd_order , _missing_y], _Liouville , [_2nd_order , _reducible ,

_mu_xy ]]

xy′′ − y′(2− 3xy′) = 0

4.33.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

xp′(x) + (3p(x)x− 2) p(x) = 0
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Which is now solve for p(x) as first order ode. Writing the ode as

p′(x) = −(3px− 2) p
x

p′(x) = ω(x, p)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηp − ξx)− ω2ξp − ωxξ − ωpη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 42: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, p) = 0

η(x, p) = p2

x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂p

)
S(x, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

p2

x2

dy

Which results in

S = −x2

p

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, p)Sp

Rx + ω(x, p)Rp
(2)

Where in the above Rx, Rp, Sx, Sp are all partial derivatives and ω(x, p) is the right
hand side of the original ode given by

ω(x, p) = −(3px− 2) p
x
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Evaluating all the partial derivatives gives

Rx = 1
Rp = 0

Sx = −2x
p

Sp =
x2

p2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −3x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −3R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, p coordinates. This
results in

− x2

p (x) = −x3 + c1

Which simplifies to

− x2

p (x) = −x3 + c1

Which gives

p(x) = − x2

−x3 + c1

Since p = y′ then the new first order ode to solve is

y′ = − x2

−x3 + c1
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Integrating both sides gives

y =
∫

− x2

−x3 + c1
dx

= ln (x3 − c1)
3 + c2

Summary
The solution(s) found are the following

(1)y = ln (x3 − c1)
3 + c2

Verification of solutions

y = ln (x3 − c1)
3 + c2

Verified OK.

4.33.2 Solving as second order nonlinear solved by mainardi lioville
method ode

The ode has the Liouville form given by

y′′ + f(x)y′ + g(y)y′2 = 0 (1A)

Where in this problem

f(x) = −2
x

g(y) = 3

Dividing through by y′ then Eq (1A) becomes

y′′

y′
+ f + gy′ = 0 (2A)

But the first term in Eq (2A) can be written as

y′′

y′
= d

dx
ln (y′) (3A)

And the last term in Eq (2A) can be written as

g
dy

dx
=
(

d

dy

∫
gdy

)
dy

dx

= d

dx

∫
gdy (4A)
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Substituting (3A,4A) back into (2A) gives

d

dx
ln (y′) + d

dx

∫
gdy = −f (5A)

Integrating the above w.r.t. x gives

ln (y′) +
∫

gdy = −
∫

fdx+ c1

Where c1 is arbitrary constant. Taking the exponential of the above gives

y′ = c2e
∫
−gdy e

∫
−fdx (6A)

Where c2 is a new arbitrary constant. But since g = 3 and f = − 2
x
, then∫

−gdy =
∫

(−3) dy

= −3y∫
−fdx =

∫ 2
x
dx

= 2 ln (x)

Substituting the above into Eq(6A) gives

y′ = c2e−3yx2

Which is now solved as first order separable ode. In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= c2e−3yx2

Where f(x) = c2x
2 and g(y) = e−3y. Integrating both sides gives

1
e−3y dy = c2x

2 dx∫ 1
e−3y dy =

∫
c2x

2 dx

e3y
3 = c2x

3

3 + c3
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The solution is
e3y
3 − c2x

3

3 − c3 = 0

Summary
The solution(s) found are the following

(1)e3y
3 − c2x

3

3 − c3 = 0

Verification of solutions

e3y
3 − c2x

3

3 − c3 = 0

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x$2)=diff(y(x),x)*(2-3*x*diff(y(x),x)),y(x), singsol=all)� �

y(x) = ln (c1x3 + 3c2)
3

3 Solution by Mathematica
Time used: 0.267 (sec). Leaf size: 19� �
DSolve[x*y''[x]==y'[x]*(2-3*x*y'[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3 log

(
x3 + c1

)
+ c2
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4.34 problem 37
4.34.1 Solving as second order ode missing y ode . . . . . . . . . . . . 683

Internal problem ID [6854]
Internal file name [OUTPUT/6101_Friday_July_29_2022_03_09_17_AM_29950073/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 37.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

x4y′′ − y′
(
y′ + x3) = 0

With initial conditions

[y(1) = 2, y′(1) = 1]

4.34.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

x4p′(x) +
(
−x3 − p(x)

)
p(x) = 0
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Which is now solve for p(x) as first order ode. Using the change of variables p(x) = u(x)x
on the above ode results in new ode in u(x)

x4(u′(x)x+ u(x)) +
(
−x3 − u(x)x

)
u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2

x3

Where f(x) = 1
x3 and g(u) = u2. Integrating both sides gives

1
u2 du = 1

x3 dx∫ 1
u2 du =

∫ 1
x3 dx

−1
u
= − 1

2x2 + c2

The solution is

− 1
u (x) +

1
2x2 − c2 = 0

Replacing u(x) in the above solution by p(x)
x

results in the solution for p(x) in implicit
form

− x

p (x) +
1
2x2 − c2 = 0

− x

p (x) +
1
2x2 − c2 = 0

Substituting initial conditions and solving for c2 gives c2 = −1
2 . Hence the solution

becomes Solving for p(x) from the above gives

p(x) = 2x3

x2 + 1

Since p = y′ then the new first order ode to solve is

y′ = 2x3

x2 + 1
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Integrating both sides gives

y =
∫ 2x3

x2 + 1 dx

= x2 − ln
(
x2 + 1

)
+ c3

Initial conditions are used to solve for c3. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = 1− ln (2) + c3

c3 = 1 + ln (2)

Substituting c3 found above in the general solution gives

y = x2 − ln
(
x2 + 1

)
+ 1 + ln (2)

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)y = x2 − ln
(
x2 + 1

)
+ 1 + ln (2)

Figure 18: Solution plot

Verification of solutions

y = x2 − ln
(
x2 + 1

)
+ 1 + ln (2)

Verified OK.

685



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = _b(_a)*(_a^3+_b(_a))/_a^4, _b(_a), HINT = [[_a, 3*_b]]` *** Sublevel 2 ***

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 3*_b]� �
3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 25� �
dsolve([x^4*diff(y(x),x$2)=diff(y(x),x)*(diff(y(x),x)+x^3),y(1) = 2, D(y)(1) = 1],y(x), singsol=all)� �

y(x) = x2 − ln
(
−x2 − 1

)
+ 1 + ln (2) + iπ

3 Solution by Mathematica
Time used: 0.929 (sec). Leaf size: 20� �
DSolve[{x^4*y''[x]==y'[x]*(y'[x]+x^3),{y[1]==2,y'[1]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 − log
(
x2 + 1

)
+ 1 + log(2)
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4.35 problem 38
4.35.1 Solving as second order ode missing y ode . . . . . . . . . . . . 687

Internal problem ID [6855]
Internal file name [OUTPUT/6102_Friday_July_29_2022_03_09_20_AM_12648957/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y], [_2nd_order , _reducible , _mu_xy ]]

y′′ −
(
x2 − y′

)2 = 2x

4.35.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

p′(x) +
(
2x2 − p(x)

)
p(x)− x4 − 2x = 0

Which is now solve for p(x) as first order ode. Writing the ode as

p′(x) = x4 − 2p x2 + p2 + 2x
p′(x) = ω(x, p)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηp − ξx)− ω2ξp − ωxξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + xa2 + a1

(2E)η = pb3 + xb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
x4 − 2p x2 + p2 + 2x

)
(b3 − a2)−

(
x4 − 2p x2 + p2 + 2x

)2
a3

−
(
4x3 − 4xp+ 2

)
(pa3 + xa2 + a1)−

(
−2x2 + 2p

)
(pb3 + xb2 + b1) = 0

Putting the above in normal form gives

−x8a3 + 4p x6a3 − 6p2x4a3 + 4p3x2a3 − 4x5a3 − p4a3 + 4p x3a3
− 5x4a2 + x4b3 + 6p x2a2 − 4x3a1 + 2x3b2 − p2a2 − p2b3 + 4pxa1
− 2pxb2 − 4x2a3 + 2x2b1 − 2pa3 − 2pb1 − 4xa2 + 2xb3 − 2a1 + b2 = 0

Setting the numerator to zero gives

(6E)−x8a3 + 4p x6a3 − 6p2x4a3 + 4p3x2a3 − 4x5a3 − p4a3 + 4p x3a3
− 5x4a2 + x4b3 + 6p x2a2 − 4x3a1 + 2x3b2 − p2a2 − p2b3 + 4pxa1
− 2pxb2 − 4x2a3 + 2x2b1 − 2pa3 − 2pb1 − 4xa2 + 2xb3 − 2a1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {p, x} in them.

{p, x}

The following substitution is now made to be able to collect on all terms with {p, x}
in them

{p = v1, x = v2}
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The above PDE (6E) now becomes

(7E)−a3v
8
2 + 4a3v1v62 − 6a3v21v42 + 4a3v31v22 − 4a3v52 − 5a2v42 − a3v

4
1 + 4a3v1v32

+ b3v
4
2 − 4a1v32 + 6a2v1v22 + 2b2v32 + 4a1v1v2 − a2v

2
1 − 4a3v22 + 2b1v22

− 2b2v1v2 − b3v
2
1 − 4a2v2 − 2a3v1 − 2b1v1 + 2b3v2 − 2a1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−a3v
4
1 + 4a3v31v22 − 6a3v21v42 + (−a2 − b3) v21 + 4a3v1v62 + 4a3v1v32 + 6a2v1v22

+ (4a1 − 2b2) v1v2 + (−2a3 − 2b1) v1 − a3v
8
2 − 4a3v52 + (−5a2 + b3) v42

+ (−4a1 + 2b2) v32 + (−4a3 + 2b1) v22 + (−4a2 + 2b3) v2 − 2a1 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

6a2 = 0
−6a3 = 0
−4a3 = 0
−a3 = 0
4a3 = 0

−4a1 + 2b2 = 0
−2a1 + b2 = 0
4a1 − 2b2 = 0
−5a2 + b3 = 0
−4a2 + 2b3 = 0
−a2 − b3 = 0

−4a3 + 2b1 = 0
−2a3 − 2b1 = 0
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Solving the above equations for the unknowns gives

a1 = a1

a2 = 0
a3 = 0
b1 = 0
b2 = 2a1
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 2x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, p) ξ
= 2x−

(
x4 − 2p x2 + p2 + 2x

)
(1)

= −x4 + 2p x2 − p2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂p

)
S(x, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x4 + 2p x2 − p2
dy
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Which results in

S = 1
−x2 + p

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, p)Sp

Rx + ω(x, p)Rp
(2)

Where in the above Rx, Rp, Sx, Sp are all partial derivatives and ω(x, p) is the right
hand side of the original ode given by

ω(x, p) = x4 − 2p x2 + p2 + 2x

Evaluating all the partial derivatives gives

Rx = 1
Rp = 0

Sx = 2x
(−x2 + p)2

Sp = − 1
(−x2 + p)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, p coordinates. This
results in

1
−x2 + p (x) = −x+ c1
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Which simplifies to

1
−x2 + p (x) = −x+ c1

Which gives

p(x) = c1x
2 − x3 + 1
−x+ c1

Since p = y′ then the new first order ode to solve is

y′ = c1x
2 − x3 + 1
−x+ c1

Integrating both sides gives

y =
∫

c1x
2 − x3 + 1
−x+ c1

dx

= x3

3 − ln (−c1 + x) + c2

Summary
The solution(s) found are the following

(1)y = x3

3 − ln (−c1 + x) + c2

Verification of solutions

y = x3

3 − ln (−c1 + x) + c2

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 20� �
dsolve(diff(y(x),x$2)=2*x+(x^2-diff(y(x),x))^2,y(x), singsol=all)� �

y(x) = x3

3 − ln (c2x− c1)

3 Solution by Mathematica
Time used: 0.298 (sec). Leaf size: 24� �
DSolve[y''[x]==2*x+(x^2-y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

3 − log(−x+ c1) + c2
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4.36 problem 39
4.36.1 Solving as second order ode missing y ode . . . . . . . . . . . . 694

Internal problem ID [6856]
Internal file name [OUTPUT/6103_Friday_July_29_2022_03_09_22_AM_41838316/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 39.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′
2 − 2y′′ + y′

2 − 2xy′ = −x2

With initial conditions [
y(0) = 1

2 , y
′(0) = 1

]

4.36.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

(p′(x)− 2) p′(x) + (p(x)− 2x) p(x) + x2 = 0
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Which is now solve for p(x) as first order ode. Let p = p′(x) the ode becomes

(p− 2) p+ (p− 2x) p = −x2

Solving for p(x) from the above results in

p(x) = x+
√

−p2 + 2p (1A)
p(x) = x−

√
−p2 + 2p (2A)

This has the form

p = xf(p) + g(p) (*)

Where f, g are functions of p = p′(x). Each of the above ode’s is dAlembert ode which
is now solved. Solving ode 1A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form p(x) = xf + g to (1A) shows that

f = 1
g =

√
− (p− 2) p

Hence (2) becomes

p− 1 = (−2p+ 2) p′(x)
2
√
− (p− 2) p

(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving for p from the above gives

p = 1

Substituting these in (1A) gives

p(x) = x+ 1
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The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 2(p(x)− 1)
√
− (p (x)− 2) p (x)

−2p (x) + 2 (3)

This ODE is now solved for p(x). Integrating both sides gives∫
− 1√

− (p− 2) p
dp = x+ c1

− arcsin (p− 1) = x+ c1

Solving for p gives these solutions

p1 = 1− sin (x+ c1)

Substituing the above solution for p in (2A) gives

p(x) = x+
√

− (−1− sin (x+ c1)) (1− sin (x+ c1))

Solving ode 2A Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form p(x) = xf + g to (1A) shows that

f = 1
g = −

√
− (p− 2) p

Hence (2) becomes

p− 1 = −(−2p+ 2) p′(x)
2
√

− (p− 2) p
(2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− 1 = 0

Solving for p from the above gives

p = 1
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Substituting these in (1A) gives

p(x) = x− 1

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = −
2(p(x)− 1)

√
− (p (x)− 2) p (x)

−2p (x) + 2 (3)

This ODE is now solved for p(x). Integrating both sides gives∫ 1√
− (p− 2) p

dp = x+ c2

arcsin (p− 1) = x+ c2

Solving for p gives these solutions

p1 = 1 + sin (x+ c2)

Substituing the above solution for p in (2A) gives

p(x) = x−
√

− (−1 + sin (x+ c2)) (1 + sin (x+ c2))

Initial conditions are used to solve for c2. Substituting x = 0 and p = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = −
√

− (−1 + sin (c2)) (1 + sin (c2))

c2 = π

Substituting c2 found above in the general solution gives

p(x) = x−
√

− (1 + sin (x)) (sin (x)− 1)

But this does not satisfy the initial conditions. Hence no solution can be found. Initial
conditions are used to solve for c1. Substituting x = 0 and p = 1 in the above solution
gives an equation to solve for the constant of integration.

1 =
√

− (1 + sin (c1)) (−1 + sin (c1))

c1 = 0
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Substituting c1 found above in the general solution gives

p(x) = x+
√

− (1 + sin (x)) (sin (x)− 1)

For solution (1) found earlier, since p = y′ then the new first order ode to solve is

y′ = x+ 1

Integrating both sides gives

y =
∫

x+ 1 dx

= 1
2x

2 + x+ c3

Initial conditions are used to solve for c3. Substituting x = 0 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.

1
2 = c3

c3 =
1
2

Substituting c3 found above in the general solution gives

y = 1
2x

2 + x+ 1
2

Since p = y′ then the new first order ode to solve is

y′ = x+
√

− (1 + sin (x)) (sin (x)− 1)

Integrating both sides gives

y =
∫

x+
√

− (1 + sin (x)) (sin (x)− 1) dx

= x2

2 − 2(sin (x)− 1)2 (1 + sin (x))
3 cos (x)

√
− (1 + sin (x)) (sin (x)− 1)

+ c4

Initial conditions are used to solve for c4. Substituting x = 0 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.

1
2 = c4 −

2
3
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c4 =
7
6

Substituting c4 found above in the general solution gives

y = 2 sin (x)
3 + x2

2 + 1
2

Since p = y′ then the new first order ode to solve is

y′ = x− 1

Integrating both sides gives

y =
∫

x− 1 dx

= 1
2x

2 − x+ c5

Initial conditions are used to solve for c5. Substituting x = 0 and y = 1
2 in the above

solution gives an equation to solve for the constant of integration.

1
2 = c5

c5 =
1
2

Substituting c5 found above in the general solution gives

y = 1
2x

2 − x+ 1
2

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

(1)y = 1
2x

2 + x+ 1
2

(2)y = 2 sin (x)
3 + x2

2 + 1
2

(3)y = 1
2x

2 − x+ 1
2
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Figure 19: Solution plot

Verification of solutions

y = 1
2x

2 + x+ 1
2

Verified OK.

y = 2 sin (x)
3 + x2

2 + 1
2

Warning, solution could not be verified

y = 1
2x

2 − x+ 1
2

Warning, solution could not be verified
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, diff(diff(diff(y(x), x), x), x)+diff(y(x), x)-x, y(x)` *** Sublevel 4 ***

Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = -_b(_a)+_a, _b(_a)` *** Sublevel 5 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful

<- 2nd order ODE linearizable_by_differentiation successful
-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
<- 2nd order ODE linearizable_by_differentiation successful

-> Calling odsolve with the ODE`, diff(y(x), x) = x+1, y(x), singsol = none` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful

-> Calling odsolve with the ODE`, diff(y(x), x) = -1+x, y(x), singsol = none` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
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3 Solution by Maple
Time used: 0.391 (sec). Leaf size: 23� �
dsolve([diff(y(x),x$2)^2-2*diff(y(x),x$2)+diff(y(x),x)^2-2*x*diff(y(x),x)+x^2=0,y(0) = 1/2, D(y)(0) = 1],y(x), singsol=all)� �

y(x) = (x+ 1)2

2
y(x) = x2

2 + sin (x) + 1
2

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{(y''[x])^2-2*y''[x]+(y'[x])^2-2*x*y'[x]+x^2==0,{y[0]==1/2,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.37 problem 40
4.37.1 Solving as second order ode missing y ode . . . . . . . . . . . . 703

Internal problem ID [6857]
Internal file name [OUTPUT/6104_Friday_July_29_2022_03_09_36_AM_52345976/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 40.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′
2 − xy′′ + y′ = 0

4.37.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes

(p′(x)− x) p′(x) + p(x) = 0

Which is now solve for p(x) as first order ode. This is Clairaut ODE. It has the form

p = p′(x)x+ g(p′(x))

Where g is function of p′(x). Let p = p′(x) the ode becomes

(p− x) p+ p = 0
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Solving for p(x) from the above results in

p(x) = −(p− x) p (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing p′(x) by p

which gives

p(x) = −p2 + px

= −p2 + px

Writing the ode as

p(x) = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

p = px+ g (1)

Then we see that

g = −p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

p(x) = −c21 + c1x
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The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = −p2, then the
above equation becomes

x+ g′(p) = x− 2p
= 0

Solving the above for p results in

p1 =
x

2
Substituting the above back in (1) results in

p(x)1 =
x2

4
For solution (1) found earlier, since p = y′ then the new first order ode to solve is

y′ = −c21 + c1x

Integrating both sides gives

y =
∫

−c21 + c1x dx

= c1

(
1
2x

2 − c1x

)
+ c2

Since p = y′ then the new first order ode to solve is

y′ = x2

4
Integrating both sides gives

y =
∫

x2

4 dx

= x3

12 + c3

Summary
The solution(s) found are the following

(1)y = c1

(
1
2x

2 − c1x

)
+ c2

(2)y = x3

12 + c3
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Verification of solutions

y = c1

(
1
2x

2 − c1x

)
+ c2

Verified OK.

y = x3

12 + c3

Verified OK.

Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
<- 2nd order ODE linearizable_by_differentiation successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
<- 2nd order ODE linearizable_by_differentiation successful

-> Calling odsolve with the ODE`, diff(y(x), x) = (1/4)*x^2, y(x), singsol = none` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
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3 Solution by Maple
Time used: 0.219 (sec). Leaf size: 28� �
dsolve(diff(y(x),x$2)^2-x*diff(y(x),x$2)+diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x3

12 + c1

y(x) = 1
2c1x

2 − c21x+ c2

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 24� �
DSolve[(y''[x])^2-x*y''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
2

2 − c1
2x+ c2
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4.38 problem 41
4.38.1 Solving as second order ode missing y ode . . . . . . . . . . . . 708

Internal problem ID [6858]
Internal file name [OUTPUT/6105_Friday_July_29_2022_03_09_39_AM_93402856/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 41.
ODE order: 2.
ODE degree: 3.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order , _missing_y ]]

y′′
3 − 12y′(xy′′ − 2y′) = 0

4.38.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

p(x) = y′

Then

p′(x) = y′′

Hence the ode becomes(
p′(x)2 − 12p(x)x

)
p′(x) + 24p(x)2 = 0

Which is now solve for p(x) as first order ode. Solving the given ode for p′(x) results
in 3 differential equations to solve. Each one of these will generate a solution. The

708



equations generated are

p′(x) =
(
−12p(x)2 + 4

√
−4p (x)3 x3 + 9p (x)4

) 1
3

+ 4p(x)x(
−12p (x)2 + 4

√
−4p (x)3 x3 + 9p (x)4

) 1
3

(1)

p′(x) = −

(
−12p(x)2 + 4

√
−4p (x)3 x3 + 9p (x)4

) 1
3

2 − 2p(x)x(
−12p (x)2 + 4

√
−4p (x)3 x3 + 9p (x)4

) 1
3
+ i

√
3


(
−12p(x)2 + 4

√
−4p (x)3 x3 + 9p (x)4

) 1
3

2 − 2p(x)x(
−12p (x)2 + 4

√
−4p (x)3 x3 + 9p (x)4

) 1
3


(2)

p′(x) = −

(
−12p(x)2 + 4

√
−4p (x)3 x3 + 9p (x)4

) 1
3

2 − 2p(x)x(
−12p (x)2 + 4

√
−4p (x)3 x3 + 9p (x)4

) 1
3
− i

√
3


(
−12p(x)2 + 4

√
−4p (x)3 x3 + 9p (x)4

) 1
3

2 − 2p(x)x(
−12p (x)2 + 4

√
−4p (x)3 x3 + 9p (x)4

) 1
3


(3)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

p′(x) =
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 + 4px(

−12p2 + 4
√
−4p3x3 + 9p4

) 1
3

p′(x) = ω(x, p)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηp − ξx)− ω2ξp − ωxξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + xa2 + a1

(2E)η = pb3 + xb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +

((
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 + 4px

)
(b3 − a2)(

−12p2 + 4
√
−4p3x3 + 9p4

) 1
3

−

((
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 + 4px

)2
a3(

−12p2 + 4
√
−4p3x3 + 9p4

) 2
3

−


− 16p3x2(

−12p2+4
√

−4p3x3+9p4
) 1

3√−4p3x3+9p4
+ 4p

(
−12p2 + 4

√
−4p3x3 + 9p4

) 1
3

+
8
((

−12p2 + 4
√
−4p3x3 + 9p4

) 2
3 + 4px

)
p3x2(

−12p2 + 4
√
−4p3x3 + 9p4

) 4
3
√
−4p3x3 + 9p4

 (pa3 + xa2 + a1)

−


−16p+

2
(
−24p2x3+72p3

)
3
√

−4p3x3+9p4(
−12p2+4

√
−4p3x3+9p4

) 1
3
+ 4x

(
−12p2 + 4

√
−4p3x3 + 9p4

) 1
3

−

((
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 + 4px

)(
−24p+ −24p2x3+72p3√

−4p3x3+9p4

)
3
(
−12p2 + 4

√
−4p3x3 + 9p4

) 4
3

 (pb3

+ xb2 + b1) = 0

Putting the above in normal form gives

−
8
√
−4p3x3 + 9p4

(
−12p2 + 4

√
−4p3x3 + 9p4

) 4
3 pxa3 + 16

√
−4p3x3 + 9p4

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 p2x2a3 − 8

√
−4p3x3 + 9p4

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 pxb2 + 16(−4p3x3 + 9p4)

3
2 a3 − 720p6a3 + 144p5a1 + 352p5x3a3 − 96p4x4a2 + 32p4x4b3 − 32p3x5b2 − 32p4x3a1 − 32p3x4b1 − 96p5xb3 + 48p4x2b2 + 48p4xb1 +

√
−4p3x3 + 9p4

(
−12p2 + 4

√
−4p3x3 + 9p4

) 5
3 a2 −

√
−4p3x3 + 9p4

(
−12p2 + 4

√
−4p3x3 + 9p4

) 5
3 b3 + 24

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 p4b3 − b2

(
−12p2 + 4

√
−4p3x3 + 9p4

) 4
3
√
−4p3x3 + 9p4 + 24

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 p3b1 + 96

√
−4p3x3 + 9p4 p4a3 − 48

√
−4p3x3 + 9p4 p3a1 − 8

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 p4x2a3 − 8

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 p3x3a2 − 8

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 p3x3b3 − 8

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 p2x4b2 − 8

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 p3x2a1 − 8

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 p2x3b1 + 24

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 p3xb2 − 8

√
−4p3x3 + 9p4

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 p2b3 + 32

√
−4p3x3 + 9p4 p3xb3 − 16

√
−4p3x3 + 9p4 p2x2b2 − 8

√
−4p3x3 + 9p4

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 pb1 − 16

√
−4p3x3 + 9p4 p2xb1 − 96

√
−4p3x3 + 9p4 p3xa2 + 288p5xa2(

−12p2 + 4
√
−4p3x3 + 9p4

) 4
3
√
−4p3x3 + 9p4

= 0
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Setting the numerator to zero gives

(6E)

−8
√

−4p3x3 + 9p4
(
−12p2 + 4

√
−4p3x3 + 9p4

) 4
3
pxa3

− 16
√

−4p3x3 + 9p4
(
−12p2

+ 4
√

−4p3x3 + 9p4
) 2

3
p2x2a3

+ 8
√

−4p3x3 + 9p4
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
pxb2

− 16
(
−4p3x3 + 9p4

) 3
2 a3 + 720p6a3 − 144p5a1

− 352p5x3a3 + 96p4x4a2 − 32p4x4b3 + 32p3x5b2
+ 32p4x3a1 + 32p3x4b1 + 96p5xb3 − 48p4x2b2 − 48p4xb1

−
√

−4p3x3 + 9p4
(
−12p2 + 4

√
−4p3x3 + 9p4

) 5
3
a2

+
√

−4p3x3 + 9p4
(
−12p2 + 4

√
−4p3x3 + 9p4

) 5
3
b3

− 24
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
p4b3

+ b2
(
−12p2 + 4

√
−4p3x3 + 9p4

) 4
3 √−4p3x3 + 9p4

− 24
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
p3b1

− 96
√

−4p3x3 + 9p4 p4a3 + 48
√
−4p3x3 + 9p4 p3a1

+ 8
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
p4x2a3

+ 8
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
p3x3a2

+ 8
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
p3x3b3

+ 8
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
p2x4b2

+ 8
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
p3x2a1

+ 8
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
p2x3b1

− 24
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
p3xb2

+ 8
√

−4p3x3 + 9p4
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
p2b3

− 32
√

−4p3x3 + 9p4 p3xb3 + 16
√
−4p3x3 + 9p4 p2x2b2

+ 8
√

−4p3x3 + 9p4
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
pb1

+ 16
√

−4p3x3 + 9p4 p2xb1
+ 96

√
−4p3x3 + 9p4 p3xa2 − 288p5xa2 = 0
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {p, x} in them.

{
p, x,

√
p3 (−4x3 + 9p),

(
−12p2+4

√
p3 (−4x3 + 9p)

) 1
3
,
(
−12p2+4

√
p3 (−4x3 + 9p)

) 2
3
}

The following substitution is now made to be able to collect on all terms with {p, x}
in them {

p = v1, x = v2,
√
p3 (−4x3 + 9p) = v3,

(
−12p2

+ 4
√

p3 (−4x3 + 9p)
) 1

3 = v4,
(
−12p2 + 4

√
p3 (−4x3 + 9p)

) 2
3 = v5

}

The above PDE (6E) now becomes

(7E)

−4v1
(
−32v4v31v42a3 − 24v31v42a2 + 88v41v32a3 − 8v21v52b2 + 8v31v42b3

−8v31v32a1−6v5v21v32a2+72v4v41v2a3−2v5v31v22a3−16v3v21v32a3−8v21v42b1
+ 4v4v21v32b2 − 2v5v1v42b2 + 2v5v21v32b3 − 2v5v21v22a1 + 72v41v2a2 − 180v51a3
− 24v4v3v21v2a3 + 4v5v3v1v22a3 − 2v5v1v32b1 + 12v31v22b2 − 24v41v2b3
+ 36v41a1 + 9v5v31a2 − 24v3v21v2a2 + 60v3v31a3 + 12v31v2b1 − 9v4v31b2
+ 6v5v21v2b2 − 4v3v1v22b2 − 3v5v31b3 + 8v3v21v2b3 − 12v3v21a1 − 3v5v3v1a2
+6v5v21b1−4v3v1v2b1+3v4v3v1b2−2v5v3v2b2+v5v3v1b3−2v5v3b1

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

720a3v61 − 144a1v51 − 288a3v2v4v51 + 128a3v42v4v41 + 8a3v22v5v41
+ 64a3v32v3v31 − 16b2v32v4v31 + (24a2 − 8b3) v32v5v31 + 8a1v22v5v31
+ (96a2 − 32b3) v2v3v31 − 24b2v2v5v31 + 8b2v42v5v21 + 8b1v32v5v21
+ 16b2v22v3v21 + 16b1v2v3v21 − 12b2v3v4v21 + (12a2 − 4b3) v3v5v21
+ 8b1v3v5v1 + 96a3v2v3v4v31 − 16a3v22v3v5v21 + 8b2v2v3v5v1
− 352a3v32v51 + (−288a2 + 96b3) v2v51 + (96a2 − 32b3) v42v41
+ 32a1v32v41 − 48b2v22v41 − 48b1v2v41 − 240a3v3v41 + 36b2v4v41
+(−36a2+12b3) v5v41 +32b2v52v31 +32b1v42v31 +48a1v3v31 − 24b1v5v31 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−144a1 = 0
8a1 = 0
32a1 = 0
48a1 = 0

−352a3 = 0
−288a3 = 0
−240a3 = 0
−16a3 = 0

8a3 = 0
64a3 = 0
96a3 = 0
128a3 = 0
720a3 = 0
−48b1 = 0
−24b1 = 0

8b1 = 0
16b1 = 0
32b1 = 0

−48b2 = 0
−24b2 = 0
−16b2 = 0
−12b2 = 0

8b2 = 0
16b2 = 0
32b2 = 0
36b2 = 0

−288a2 + 96b3 = 0
−36a2 + 12b3 = 0

12a2 − 4b3 = 0
24a2 − 8b3 = 0
96a2 − 32b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3p

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂p

)
S(x, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dp

dx
= η

ξ

= 3p
x

= 3p
x

This is easily solved to give

p(x) = c1x
3

Where now the coordinate R is taken as the constant of integration. Hence

R = p

x3
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And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, p)Sp

Rx + ω(x, p)Rp
(2)

Where in the above Rx, Rp, Sx, Sp are all partial derivatives and ω(x, p) is the right
hand side of the original ode given by

ω(x, p) =
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 + 4px(

−12p2 + 4
√
−4p3x3 + 9p4

) 1
3

Evaluating all the partial derivatives gives

Rx = −3p
x4

Rp =
1
x3

Sx = 1
x

Sp = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

x3(−12p2 + 4
√
−4p3x3 + 9p4

) 1
3

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 x+ 4

(
x2 −

3
(
−12p2+4

√
−4p3x3+9p4

) 1
3

4

)
p

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, p
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

(
1 + i

√
3
)
2 2

3

(
−
√
9R− 4 + 3

√
R
) 1

3

√
R

(
8 + 2

(
i
√
3− 1

)
2 1

3

(
−
√
9R− 4 + 3

√
R
) 2

3 + 3
(
−i

√
3− 1

)√
R 2 2

3

(
−
√
9R− 4 + 3

√
R
) 1

3
)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ (

1 + i
√
3
) (

−4
√
9R− 4 + 12

√
R
) 1

3(
−3i

√
R
√
3
(
−4

√
9R− 4 + 12

√
R
) 1

3 + 2i
√
3 2 1

3

((
−
√
9R− 4 + 3

√
R
)2) 1

3

− 3
√
R
(
−4

√
9R− 4 + 12

√
R
) 1

3 − 2 2 1
3

((
−
√
9R− 4 + 3

√
R
)2) 1

3

+ 8
)
√
R

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, p coordinates. This
results in

ln (x) =
∫ p(x)

x3
(
1 + i

√
3
) (

−4
√
9_a− 4 + 12√_a

) 1
3(

−3i√_a
√
3
(
−4

√
9_a− 4 + 12√_a

) 1
3 + 2i

√
3 2 1

3

((
−
√
9_a− 4 + 3√_a

)2) 1
3 − 3√_a

(
−4

√
9_a− 4 + 12√_a

) 1
3 − 2 2 1

3

((
−
√
9_a− 4 + 3√_a

)2) 1
3 + 8

)
√_a

d_a+ c1

Which simplifies to

2 2
3

(
1 + i

√
3
)∫ p(x)

x3

−
(
−
√
9_a− 4 + 3√_a

) 1
3

√_a
((

2i
√
3− 2

)
2 1

3
(√

9_a− 4− 3√_a
) 2

3 + 8− 3√_a
(
1 + i

√
3
)
2 2

3
(
−
√
9_a− 4 + 3√_a

) 1
3
)d_a

− c1 + ln (x) = 0

Solving equation (2)

Writing the ode as

p′(x) =
i
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
√
3− 4i

√
3 px−

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 − 4px

2
(
−12p2 + 4

√
−4p3x3 + 9p4

) 1
3

p′(x) = ω(x, p)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηp − ξx)− ω2ξp − ωxξ − ωpη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + xa2 + a1

(2E)η = pb3 + xb2 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

+

(
i
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
√
3− 4i

√
3 px−

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 − 4px

)
(b3 − a2)

2
(
−12p2 + 4

√
−4p3x3 + 9p4

) 1
3

−

(
i
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
√
3− 4i

√
3 px−

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 − 4px

)2
a3

4
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3

−


− 16i

√
3 p3x2(

−12p2+4
√

−4p3x3+9p4
) 1

3√−4p3x3+9p4
− 4i

√
3 p+ 16p3x2(

−12p2+4
√

−4p3x3+9p4
) 1

3√−4p3x3+9p4
− 4p

2
(
−12p2 + 4

√
−4p3x3 + 9p4

) 1
3

+
4
(
i
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
√
3− 4i

√
3 px−

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 − 4px

)
p3x2(

−12p2 + 4
√
−4p3x3 + 9p4

) 4
3
√
−4p3x3 + 9p4

 (pa3

+ xa2 + a1)−


2i
√
3
(
−24p+−24p2x3+72p3√

−4p3x3+9p4

)

3
(
−12p2+4

√
−4p3x3+9p4

) 1
3
− 4i

√
3x−

2
(
−24p+−24p2x3+72p3√

−4p3x3+9p4

)

3
(
−12p2+4

√
−4p3x3+9p4

) 1
3
− 4x

2
(
−12p2 + 4

√
−4p3x3 + 9p4

) 1
3

−

(
i
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
√
3− 4i

√
3 px−

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 − 4px

)(
−24p+ −24p2x3+72p3√

−4p3x3+9p4

)
6
(
−12p2 + 4

√
−4p3x3 + 9p4

) 4
3

 (pb3

+ xb2 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {p, x} in them.

{
p, x,

√
p3 (−4x3 + 9p),

(
−12p2+4

√
p3 (−4x3 + 9p)

) 1
3
,
(
−12p2+4

√
p3 (−4x3 + 9p)

) 2
3
}

The following substitution is now made to be able to collect on all terms with {p, x}
in them {

p = v1, x = v2,
√
p3 (−4x3 + 9p) = v3,

(
−12p2

+ 4
√

p3 (−4x3 + 9p)
) 1

3 = v4,
(
−12p2 + 4

√
p3 (−4x3 + 9p)

) 2
3 = v5

}
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The above PDE (6E) now becomes

(7E)

−8v1
(
−36v41a1 + 180v51a3 + 2v5v31v22a3 + 6v5v21v32a2

− 2v5v21v32b3 + 2v5v1v42b2 + 2v5v21v22a1 − 8i
√
3 v31v42b3

+ 8i
√
3 v21v52b2 + 8i

√
3 v31v32a1 + 8i

√
3 v21v42b1 + 9i

√
3 v5v31a2

− 3i
√
3 v5v31b3 − 72i

√
3 v41v2a2 + 24i

√
3 v41v2b3

− 12i
√
3 v31v22b2 + 6i

√
3 v5v21b1 − 60i

√
3 v3v31a3

−12i
√
3 v31v2b1−2i

√
3 v5v3b1+12i

√
3 v3v21a1−4v5v3v1v22a3

− 48v4v3v21v2a3 − 88i
√
3 v41v32a3 + 24i

√
3 v31v42a2 + 2v5v1v32b1

+ 144v4v41v2a3 + 8v4v21v32b2 + 16v3v21v32a3 − 6v5v21v2b2
+3v5v3v1a2−v5v3v1b3+2v5v3v2b2+24v3v21v2a2−8v3v21v2b3
+ 4v3v1v22b2 + 6v4v3v1b2 + 4v3v1v2b1 + 180i

√
3 v51a3

− 36i
√
3 v41a1 − 88v41v32a3 + 24v31v42a2 − 8v31v42b3 + 8v21v52b2

+8v31v32a1+8v21v42b1+24v41v2b3−9v5v31a2+3v5v31b3−6v5v21b1
− 18v4v31b2 − 60v3v31a3 + 2v5v3b1 + 12v3v21a1 − 72v41v2a2
− 12v31v22b2 − 12v31v2b1 + 4i

√
3 v5v3v1v22a3 − 64v4v31v42a3

+ i
√
3 v5v3v1b3 − 2i

√
3 v5v31v22a3 − 6i

√
3 v5v21v32a2

+ 2i
√
3 v5v21v32b3 − 2i

√
3 v5v1v42b2 − 2i

√
3 v5v21v22a1

− 2i
√
3 v5v1v32b1 + 16i

√
3 v3v21v32a3 + 6i

√
3 v5v21v2b2

− 3i
√
3 v5v3v1a2 − 2i

√
3 v5v3v2b2 + 24i

√
3 v3v21v2a2

− 8i
√
3 v3v21v2b3 + 4i

√
3 v3v1v22b2 + 4i

√
3 v3v1v2b1

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−64b2v32v4v31 − 48b2v3v4v21 − 1152a3v2v4v51
+
(
−128i

√
3 a3 − 128a3

)
v32v3v

3
1

+
(
48i

√
3 a2 − 16i

√
3 b3 − 48a2 + 16b3

)
v32v5v

3
1

+
(
16i

√
3 a1 − 16a1

)
v22v5v

3
1

+
(
−192i

√
3 a2 + 64i

√
3 b3 − 192a2 + 64b3

)
v2v3v

3
1

+
(
−48i

√
3 b2 + 48b2

)
v2v5v

3
1

+
(
16i

√
3 b2 − 16b2

)
v42v5v

2
1 +

(
16i

√
3 b1 − 16b1

)
v32v5v

2
1

+
(
−32i

√
3 b2 − 32b2

)
v22v3v

2
1 +

(
−32i

√
3 b1 − 32b1

)
v2v3v

2
1

+
(
24i

√
3 a2 − 8i

√
3 b3 − 24a2 + 8b3

)
v3v5v

2
1

+
(
16i

√
3 b1 − 16b1

)
v3v5v1

+
(
16i

√
3 a3 − 16a3

)
v22v5v

4
1 + 384a3v2v3v4v31

+ 512a3v42v4v41 +
(
−1440i

√
3 a3 − 1440a3

)
v61

+
(
288i

√
3 a1 + 288a1

)
v51 +

(
−32i

√
3 a3 + 32a3

)
v22v3v5v

2
1

+
(
16i

√
3 b2 − 16b2

)
v2v3v5v1 +

(
704i

√
3 a3 + 704a3

)
v32v

5
1

+
(
576i

√
3 a2 − 192i

√
3 b3 + 576a2 − 192b3

)
v2v

5
1

+
(
−192i

√
3 a2 + 64i

√
3 b3 − 192a2 + 64b3

)
v42v

4
1

+
(
−64i

√
3 a1 − 64a1

)
v32v

4
1 +

(
96i

√
3 b2 + 96b2

)
v22v

4
1

+
(
96i

√
3 b1 + 96b1

)
v2v

4
1 +

(
480i

√
3 a3 + 480a3

)
v3v

4
1

+
(
−72i

√
3 a2 + 24i

√
3 b3 + 72a2 − 24b3

)
v5v

4
1

+
(
−64i

√
3 b2 − 64b2

)
v52v

3
1 +

(
−64i

√
3 b1 − 64b1

)
v42v

3
1

+
(
−96i

√
3 a1 − 96a1

)
v3v

3
1

+
(
−48i

√
3 b1 + 48b1

)
v5v

3
1 + 144b2v4v41 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−1152a3 = 0

384a3 = 0
512a3 = 0
−64b2 = 0
−48b2 = 0
144b2 = 0

−1440i
√
3 a3 − 1440a3 = 0

−128i
√
3 a3 − 128a3 = 0

−96i
√
3 a1 − 96a1 = 0

−64i
√
3 a1 − 64a1 = 0

−64i
√
3 b1 − 64b1 = 0

−64i
√
3 b2 − 64b2 = 0

−48i
√
3 b1 + 48b1 = 0

−48i
√
3 b2 + 48b2 = 0

−32i
√
3 a3 + 32a3 = 0

−32i
√
3 b1 − 32b1 = 0

−32i
√
3 b2 − 32b2 = 0

16i
√
3 a1 − 16a1 = 0

16i
√
3 a3 − 16a3 = 0

16i
√
3 b1 − 16b1 = 0

16i
√
3 b2 − 16b2 = 0

96i
√
3 b1 + 96b1 = 0

96i
√
3 b2 + 96b2 = 0

288i
√
3 a1 + 288a1 = 0

480i
√
3 a3 + 480a3 = 0

704i
√
3 a3 + 704a3 = 0

−192i
√
3 a2 + 64i

√
3 b3 − 192a2 + 64b3 = 0

−72i
√
3 a2 + 24i

√
3 b3 + 72a2 − 24b3 = 0

24i
√
3 a2 − 8i

√
3 b3 − 24a2 + 8b3 = 0

48i
√
3 a2 − 16i

√
3 b3 − 48a2 + 16b3 = 0

576i
√
3 a2 − 192i

√
3 b3 + 576a2 − 192b3 = 0

722



Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3p

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂p

)
S(x, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

p′(x) = −
i
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
√
3− 4i

√
3 px+

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 + 4px

2
(
−12p2 + 4

√
−4p3x3 + 9p4

) 1
3

p′(x) = ω(x, p)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηp − ξx)− ω2ξp − ωxξ − ωpη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = pa3 + xa2 + a1

(2E)η = pb3 + xb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

−

(
i
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
√
3− 4i

√
3 px+

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 + 4px

)
(b3 − a2)

2
(
−12p2 + 4

√
−4p3x3 + 9p4

) 1
3

−

(
i
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
√
3− 4i

√
3 px+

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 + 4px

)2
a3

4
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3

−

−

− 16i
√
3 p3x2(

−12p2+4
√

−4p3x3+9p4
) 1

3√−4p3x3+9p4
− 4i

√
3 p− 16p3x2(

−12p2+4
√

−4p3x3+9p4
) 1

3√−4p3x3+9p4
+ 4p

2
(
−12p2 + 4

√
−4p3x3 + 9p4

) 1
3

−
4
(
i
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
√
3− 4i

√
3 px+

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 + 4px

)
p3x2(

−12p2 + 4
√
−4p3x3 + 9p4

) 4
3
√
−4p3x3 + 9p4

 (pa3

+ xa2 + a1)−

−

2i
√
3
(
−24p+−24p2x3+72p3√

−4p3x3+9p4

)

3
(
−12p2+4

√
−4p3x3+9p4

) 1
3
− 4i

√
3x+

−16p+
2
(
−24p2x3+72p3

)
3
√

−4p3x3+9p4(
−12p2+4

√
−4p3x3+9p4

) 1
3
+ 4x

2
(
−12p2 + 4

√
−4p3x3 + 9p4

) 1
3

+

(
i
(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3
√
3− 4i

√
3 px+

(
−12p2 + 4

√
−4p3x3 + 9p4

) 2
3 + 4px

)(
−24p+ −24p2x3+72p3√

−4p3x3+9p4

)
6
(
−12p2 + 4

√
−4p3x3 + 9p4

) 4
3

 (pb3

+ xb2 + b1) = 0
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Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {p, x} in them.

{
p, x,

√
p3 (−4x3 + 9p),

(
−12p2+4

√
p3 (−4x3 + 9p)

) 1
3
,
(
−12p2+4

√
p3 (−4x3 + 9p)

) 2
3
}

The following substitution is now made to be able to collect on all terms with {p, x}
in them {

p = v1, x = v2,
√
p3 (−4x3 + 9p) = v3,

(
−12p2

+ 4
√

p3 (−4x3 + 9p)
) 1

3 = v4,
(
−12p2 + 4

√
p3 (−4x3 + 9p)

) 2
3 = v5

}
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The above PDE (6E) now becomes

(7E)

8v1
(
−8i

√
3 v3v21v2b3 + 4i

√
3 v3v1v22b2 + 4i

√
3 v3v1v2b1

+ 8i
√
3 v31v32a1 + 8i

√
3 v21v42b1 + 4v5v3v1v22a3 + 48v4v3v21v2a3

+9i
√
3 v5v31a2− 3i

√
3 v5v31b3− 72i

√
3 v41v2a2+24i

√
3 v41v2b3

− 12i
√
3 v31v22b2 + 6i

√
3 v5v21b1 − 60i

√
3 v3v31a3

− 12i
√
3 v31v2b1 − 2i

√
3 v5v3b1 + 12i

√
3 v3v21a1

−88i
√
3 v41v32a3+24i

√
3 v31v42a2−8i

√
3 v31v42b3+8i

√
3 v21v52b2

− 2v5v31v22a3 − 6v5v21v32a2 + 2v5v21v32b3 − 2v5v1v42b2
− 2v5v21v22a1 − 2v5v1v32b1 − 144v4v41v2a3 − 8v4v21v32b2
−16v3v21v32a3+6v5v21v2b2−3v5v3v1a2+v5v3v1b3−2v5v3v2b2
− 24v3v21v2a2 + 8v3v21v2b3 − 4v3v1v22b2 − 6v4v3v1b2
− 4v3v1v2b1 + 180i

√
3 v51a3 − 180v51a3 + 36v41a1 + 8v31v42b3

− 24v31v42a2 + 88v41v32a3 − 8v21v52b2 − 8v31v32a1 − 8v21v42b1
− 24v41v2b3 + 9v5v31a2 − 3v5v31b3 + 6v5v21b1 + 18v4v31b2
+ 60v3v31a3 − 2v5v3b1 − 12v3v21a1 + 72v41v2a2 + 12v31v22b2
+12v31v2b1 + i

√
3 v5v3v1b3 − 2i

√
3 v5v31v22a3 − 6i

√
3 v5v21v32a2

+ 2i
√
3 v5v21v32b3 − 2i

√
3 v5v1v42b2 − 2i

√
3 v5v21v22a1

− 2i
√
3 v5v1v32b1 + 16i

√
3 v3v21v32a3 + 6i

√
3 v5v21v2b2

− 3i
√
3 v5v3v1a2 − 2i

√
3 v5v3v2b2 + 24i

√
3 v3v21v2a2

+ 4i
√
3 v5v3v1v22a3 + 64v4v31v42a3 − 36i

√
3 v41a1

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

384a3v2v3v4v31 +
(
32i

√
3 a3 + 32a3

)
v22v3v5v

2
1

+
(
−16i

√
3 b2 − 16b2

)
v2v3v5v1

+ 144b2v4v41 +
(
−704i

√
3 a3 + 704a3

)
v32v

5
1

+
(
−576i

√
3 a2 + 192i

√
3 b3 + 576a2 − 192b3

)
v2v

5
1

+
(
192i

√
3 a2 − 64i

√
3 b3 − 192a2 + 64b3

)
v42v

4
1

+
(
64i

√
3 a1 − 64a1

)
v32v

4
1 +

(
−96i

√
3 b2 + 96b2

)
v22v

4
1

+
(
−96i

√
3 b1 + 96b1

)
v2v

4
1 +

(
−480i

√
3 a3 + 480a3

)
v3v

4
1

+
(
72i

√
3 a2 − 24i

√
3 b3 + 72a2 − 24b3

)
v5v

4
1

+
(
64i

√
3 b2 − 64b2

)
v52v

3
1 +

(
64i

√
3 b1 − 64b1

)
v42v

3
1

+
(
96i

√
3 a1 − 96a1

)
v3v

3
1 +

(
48i

√
3 b1 + 48b1

)
v5v

3
1

+
(
1440i

√
3 a3 − 1440a3

)
v61 +

(
−288i

√
3 a1 + 288a1

)
v51

+
(
128i

√
3 a3 − 128a3

)
v32v3v

3
1

+
(
−48i

√
3 a2 + 16i

√
3 b3 − 48a2 + 16b3

)
v32v5v

3
1

+
(
−16i

√
3 a1 − 16a1

)
v22v5v

3
1

+
(
192i

√
3 a2 − 64i

√
3 b3 − 192a2 + 64b3

)
v2v3v

3
1

+
(
48i

√
3 b2 + 48b2

)
v2v5v

3
1 +

(
−16i

√
3 b2 − 16b2

)
v42v5v

2
1

+
(
−16i

√
3 b1 − 16b1

)
v32v5v

2
1

+
(
32i

√
3 b2 − 32b2

)
v22v3v

2
1 +

(
32i

√
3 b1 − 32b1

)
v2v3v

2
1

+
(
−24i

√
3 a2 + 8i

√
3 b3 − 24a2 + 8b3

)
v3v5v

2
1

+
(
−16i

√
3 b1 − 16b1

)
v3v5v1 +

(
−16i

√
3 a3 − 16a3

)
v22v5v

4
1

−64b2v32v4v31−48b2v3v4v21−1152a3v2v4v51+512a3v42v4v41 =0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−1152a3 = 0

384a3 = 0
512a3 = 0
−64b2 = 0
−48b2 = 0
144b2 = 0

−704i
√
3 a3 + 704a3 = 0

−480i
√
3 a3 + 480a3 = 0

−288i
√
3 a1 + 288a1 = 0

−96i
√
3 b1 + 96b1 = 0

−96i
√
3 b2 + 96b2 = 0

−16i
√
3 a1 − 16a1 = 0

−16i
√
3 a3 − 16a3 = 0

−16i
√
3 b1 − 16b1 = 0

−16i
√
3 b2 − 16b2 = 0

32i
√
3 a3 + 32a3 = 0

32i
√
3 b1 − 32b1 = 0

32i
√
3 b2 − 32b2 = 0

48i
√
3 b1 + 48b1 = 0

48i
√
3 b2 + 48b2 = 0

64i
√
3 a1 − 64a1 = 0

64i
√
3 b1 − 64b1 = 0

64i
√
3 b2 − 64b2 = 0

96i
√
3 a1 − 96a1 = 0

128i
√
3 a3 − 128a3 = 0

1440i
√
3 a3 − 1440a3 = 0

−576i
√
3 a2 + 192i

√
3 b3 + 576a2 − 192b3 = 0

−48i
√
3 a2 + 16i

√
3 b3 − 48a2 + 16b3 = 0

−24i
√
3 a2 + 8i

√
3 b3 − 24a2 + 8b3 = 0

72i
√
3 a2 − 24i

√
3 b3 + 72a2 − 24b3 = 0

192i
√
3 a2 − 64i

√
3 b3 − 192a2 + 64b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3p

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, p) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dp

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂p

)
S(x, p) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is

2 2
3

(
1 + i

√
3
)∫ y′

x3

−
(
−
√
9_a− 4 + 3√_a

) 1
3

√_a
((

2i
√
3− 2

)
2 1

3
(√

9_a− 4− 3√_a
) 2

3 + 8− 3√_a
(
1 + i

√
3
)
2 2

3
(
−
√
9_a− 4 + 3√_a

) 1
3
)d_a

− c1 + ln (x) = 0

Integrating both sides gives

y =
∫

RootOf

i
√
3 2 2

3

∫ _Z
x3

(
−
√
9_a− 4 + 3√_a

) 1
3

√_a
(
−2i

√
3 2 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3i√_a
√
3 2 2

3
(
−
√
9_a− 4 + 3√_a

) 1
3 + 22 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3√_a 2 2
3
(
−
√
9_a− 4 + 3√_a

) 1
3 − 8

)d_a
+ 2 2

3

∫ _Z
x3

(
−
√
9_a− 4 + 3√_a

) 1
3

√_a
(
−2i

√
3 2 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3i√_a
√
3 2 2

3
(
−
√
9_a− 4 + 3√_a

) 1
3 + 22 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3√_a 2 2
3
(
−
√
9_a− 4 + 3√_a

) 1
3 − 8

)d_a
+ ln (x)− c1

 dx

=
∫

RootOf

i
√
3 2 2

3

∫ _Z
x3

(
−
√
9_a− 4 + 3√_a

) 1
3

√_a
(
−2i

√
3 2 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3i√_a
√
3 2 2

3
(
−
√
9_a− 4 + 3√_a

) 1
3 + 22 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3√_a 2 2
3
(
−
√
9_a− 4 + 3√_a

) 1
3 − 8

)d_a
+ 2 2

3

∫ _Z
x3

(
−
√
9_a− 4 + 3√_a

) 1
3

√_a
(
−2i

√
3 2 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3i√_a
√
3 2 2

3
(
−
√
9_a− 4 + 3√_a

) 1
3 + 22 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3√_a 2 2
3
(
−
√
9_a− 4 + 3√_a

) 1
3 − 8

)d_a
+ ln (x)− c1

 dx+ c4
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Summary
The solution(s) found are the following

(1)y

=
∫

RootOf

i
√
3 2 2

3

∫ _Z
x3

(
−
√
9_a− 4 + 3√_a

) 1
3

√_a
(
−2i

√
3 2 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3i√_a
√
3 2 2

3
(
−
√
9_a− 4 + 3√_a

) 1
3 + 22 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3√_a 2 2
3
(
−
√
9_a− 4 + 3√_a

) 1
3 − 8

)d_a


+2 2
3

∫ _Z
x3

(
−
√
9_a− 4 + 3√_a

) 1
3

√_a
(
−2i

√
3 2 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3i√_a
√
3 2 2

3
(
−
√
9_a− 4 + 3√_a

) 1
3 + 22 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3√_a 2 2
3
(
−
√
9_a− 4 + 3√_a

) 1
3 − 8

)d_a


+ ln (x)− c1

 dx+ c4

Verification of solutions
y

=
∫

RootOf

i
√
3 2 2

3

∫ _Z
x3

(
−
√
9_a− 4 + 3√_a

) 1
3

√_a
(
−2i

√
3 2 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3i√_a
√
3 2 2

3
(
−
√
9_a− 4 + 3√_a

) 1
3 + 22 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3√_a 2 2
3
(
−
√
9_a− 4 + 3√_a

) 1
3 − 8

)d_a


+2 2
3

∫ _Z
x3

(
−
√
9_a− 4 + 3√_a

) 1
3

√_a
(
−2i

√
3 2 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3i√_a
√
3 2 2

3
(
−
√
9_a− 4 + 3√_a

) 1
3 + 22 1

3
(√

9_a− 4− 3√_a
) 2

3 + 3√_a 2 2
3
(
−
√
9_a− 4 + 3√_a

) 1
3 − 8

)d_a


+ ln (x)− c1

 dx+ c4

Warning, solution could not be verified
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Maple trace

� �
`Methods for second order ODEs:

*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (4*_b(_a)*_a+(-12*_b(_a)^2+4*(_b(_a)^3*(-4*_a^3+9*_b(_a)))^(1/2))^(2/3))/

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 3*_b]� �
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3 Solution by Maple
Time used: 0.5 (sec). Leaf size: 174� �
dsolve(diff(y(x),x$2)^3=12*diff(y(x),x)*(x*diff(y(x),x$2)-2*diff(y(x),x)),y(x), singsol=all)� �
y(x) = x4

9 + c1

y(x) = c1

y(x) =
∫

RootOf


−6 ln (x)

−


∫ _Z

3_f
√

1
_f
(
9_f−4

) 2 1
3

(3√ 1
_f
(
9_f−4

) _f+ 1
)2

(9_f− 4)4
 1

3

− 2 2 2
3

((
3
√

1
_f
(
9_f−4

) _f+ 1
)
(9_f− 4)2

) 1
3

− 2 1
3

(3√ 1
_f
(
9_f−4

) _f+ 1
)2

(9_f− 4)4
 1

3

+ 18_f− 8

_f (9_f− 4) d_f



+ 6c1


x3dx+ c2

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y''[x])^3==12*y'[x]*(x*y''[x]-2*y'[x]),y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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4.39 problem 42
4.39.1 Solving as second order ode missing x ode . . . . . . . . . . . . 733
4.39.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 736

Internal problem ID [6859]
Internal file name [OUTPUT/6106_Friday_July_29_2022_03_09_42_AM_61425486/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 42.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

3yy′y′′ − y′
3 = −1

4.39.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

3yp(y)2
(

d

dy
p(y)

)
− p(y)3 = −1
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Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= p3 − 1
3y p2

Where f(y) = 1
3y and g(p) = p3−1

p2
. Integrating both sides gives

1
p3−1
p2

dp = 1
3y dy

∫ 1
p3−1
p2

dp =
∫ 1

3y dy

ln (p3 − 1)
3 = ln (y)

3 + c1

Raising both side to exponential gives(
p3 − 1

) 1
3 = e

ln(y)
3 +c1

Which simplifies to (
p3 − 1

) 1
3 = c2y

1
3

Which simplifies to (
p(y)3 − 1

) 1
3 = c2y

1
3 ec1

The solution is (
p(y)3 − 1

) 1
3 = c2y

1
3 ec1

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is (

y′
3 − 1

) 1
3 = c2y

1
3 ec1
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Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
y e3c1c32 + 1

) 1
3 (1)

y′ = −(y e3c1c32 + 1)
1
3

2 + i
√
3 (y e3c1c32 + 1)

1
3

2 (2)

y′ = −(y e3c1c32 + 1)
1
3

2 − i
√
3 (y e3c1c32 + 1)

1
3

2 (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
(y e3c1c32 + 1)

1
3
dy =

∫
dx

3(y e3c1c32 + 1)
2
3 e−3c1

2c32
= x+ c3

Solving equation (2)

Integrating both sides gives∫ 1

−
(
y e3c1c32+1

) 1
3

2 + i
√
3
(
y e3c1c32+1

) 1
3

2

dy =
∫

dx

3(y e3c1c32 + 1)
2
3 e−3c1(

i
√
3− 1

)
c32

= x+ c4

Solving equation (3)

Integrating both sides gives∫ 1

−
(
y e3c1c32+1

) 1
3

2 − i
√
3
(
y e3c1c32+1

) 1
3

2

dy =
∫

dx

−3(y e3c1c32 + 1)
2
3 e−3c1(

1 + i
√
3
)
c32

= x+ c5
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Summary
The solution(s) found are the following

(1)y = −

(
−4(e3c1c32(x+ c3))

3
2 + 3

√
6
)
e−3c1

√
6

18c32

(2)y =

((
3i
√
3 e3c1c32c4 + 3i

√
3 e3c1c32x− 3c4e3c1c32 − 3 e3c1c32x

) 3
2 − 27

)
e−3c1

27c32

(3)y =

((
−3i

√
3 e3c1c32c5 − 3i

√
3 e3c1c32x− 3c5e3c1c32 − 3 e3c1c32x

) 3
2 − 27

)
e−3c1

27c32
Verification of solutions

y = −

(
−4(e3c1c32(x+ c3))

3
2 + 3

√
6
)
e−3c1

√
6

18c32

Verified OK.

y =

((
3i
√
3 e3c1c32c4 + 3i

√
3 e3c1c32x− 3c4e3c1c32 − 3 e3c1c32x

) 3
2 − 27

)
e−3c1

27c32

Verified OK.

y =

((
−3i

√
3 e3c1c32c5 − 3i

√
3 e3c1c32x− 3c5e3c1c32 − 3 e3c1c32x

) 3
2 − 27

)
e−3c1

27c32

Verified OK.

4.39.2 Maple step by step solution

Let’s solve
3yy′y′′ − y′3 = −1

• Highest derivative means the order of the ODE is 2
y′′

• Define new dependent variable u
u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs
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y′
(

d
dy
u(y)

)
= y′′

• Substitute in the definition of u

u(y)
(

d
dy
u(y)

)
= y′′

• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

3yu(y)2
(

d
dy
u(y)

)
− u(y)3 = −1

• Separate variables(
d
dy

u(y)
)
u(y)2

u(y)3−1 = 1
3y

• Integrate both sides with respect to y∫ (
d
dy

u(y)
)
u(y)2

u(y)3−1 dy =
∫ 1

3ydy + c1

• Evaluate integral
ln
(
u(y)3−1

)
3 = ln(y)

3 + c1

• Solve for u(y)

u(y) =
((

e−3c1+y
)(
e−3c1

)2) 1
3

e−3c1

• Solve 1st ODE for u(y)

u(y) =
((

e−3c1+y
)(
e−3c1

)2) 1
3

e−3c1

• Revert to original variables with substitution u(y) = y′, y = y

y′ =
((

e−3c1+y
)(
e−3c1

)2) 1
3

e−3c1

• Separate variables
y′((

e−3c1+y
)(
e−3c1

)2) 1
3
= 1

e−3c1

• Integrate both sides with respect to x∫
y′((

e−3c1+y
)(
e−3c1

)2) 1
3
dx =

∫ 1
e−3c1 dx+ c2

• Evaluate integral

3
((

e−3c1
)2

y+
(
e−3c1

)3) 2
3

2
(
e−3c1

)2 = x
e−3c1 + c2
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• Solve for y{
RootOf

(
2c2(e−3c1)2 + 2x e−3c1 − 3

(
(e−3c1)2_Z+ (e−3c1)3

) 2
3
)}

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(1/3)*(_b(_a)^3-1)/(_b(_a)*_a) = 0, _b(_a), HINT = [[_a, 0]]` *** Subl

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 0]� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 119� �
dsolve(3*y(x)*diff(y(x),x)*diff(y(x),x$2)=diff(y(x),x)^3-1,y(x), singsol=all)� �

3(c1y(x) + 1)
2
3 + (−2x− 2c2) c1
2c1

= 0

−i(x+ c2) c1
√
3 + (−x− c2) c1 − 3(c1y(x) + 1)

2
3

c1
(
1 + i

√
3
) = 0

−3i(c1y(x) + 1)
2
3 + (−x− c2) c1

√
3− i(x+ c2) c1

c1
(√

3 + i
) = 0
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3 Solution by Mathematica
Time used: 45.036 (sec). Leaf size: 126� �
DSolve[3*y[x]*y'[x]*y''[x]==(y'[x])^3-1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
9e

−3c1
(
−9 + 2

√
6
(
e3c1(x+ c2)

) 3/2
)

y(x) → 1
9e

−3c1
(
−9 + 2

√
6
(
− 3
√
−1e3c1(x+ c2)

) 3/2
)

y(x) → 1
9e

−3c1
(
−9 + 2

√
6
(
(−1)2/3e3c1(x+ c2)

) 3/2
)
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4.40 problem 43
4.40.1 Solving as second order ode missing x ode . . . . . . . . . . . . 740
4.40.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 744

Internal problem ID [6860]
Internal file name [OUTPUT/6107_Friday_July_29_2022_03_09_43_AM_35066495/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmil-
liam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing.
EXERCISES Page 324
Problem number: 43.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"

Maple gives the following as the ode type
[[_2nd_order , _missing_x], [_2nd_order , _reducible , _mu_x_y1 ]]

4yy′2y′′ − y′
4 = 3

4.40.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order
by using substitution which makes the dependent variable y an independent variable.
Using

y′ = p(y)

Then

y′′ = dp

dx

= dy

dx

dp

dy

= p
dp

dy

Hence the ode becomes

4yp(y)3
(

d

dy
p(y)

)
− p(y)4 = 3
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Which is now solved as first order ode for p(y). In canonical form the ODE is

p′ = F (y, p)
= f(y)g(p)

= p4 + 3
4y p3

Where f(y) = 1
4y and g(p) = p4+3

p3
. Integrating both sides gives

1
p4+3
p3

dp = 1
4y dy

∫ 1
p4+3
p3

dp =
∫ 1

4y dy

ln (p4 + 3)
4 = ln (y)

4 + c1

Raising both side to exponential gives(
p4 + 3

) 1
4 = e

ln(y)
4 +c1

Which simplifies to (
p4 + 3

) 1
4 = c2y

1
4

Which simplifies to (
p(y)4 + 3

) 1
4 = c2y

1
4 ec1

The solution is (
p(y)4 + 3

) 1
4 = c2y

1
4 ec1

For solution (1) found earlier, since p = y′ then we now have a new first order ode to
solve which is (

y′
4 + 3

) 1
4 = c2y

1
4 ec1
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Solving the given ode for y′ results in 4 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
c42y e4c1 − 3

) 1
4 (1)

y′ = i
(
c42y e4c1 − 3

) 1
4 (2)

y′ = −
(
c42y e4c1 − 3

) 1
4 (3)

y′ = −i
(
c42y e4c1 − 3

) 1
4 (4)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
(c42y e4c1 − 3)

1
4
dy =

∫
dx

4(c42y e4c1 − 3)
3
4 e−4c1

3c42
= x+ c3

Solving equation (2)

Integrating both sides gives ∫
− i

(c42y e4c1 − 3)
1
4
dy =

∫
dx

−4i(c42y e4c1 − 3)
3
4 e−4c1

3c42
= x+ c4

Solving equation (3)

Integrating both sides gives ∫
− 1
(c42y e4c1 − 3)

1
4
dy =

∫
dx

−4(c42y e4c1 − 3)
3
4 e−4c1

3c42
= x+ c5

Solving equation (4)
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Integrating both sides gives ∫
i

(c42y e4c1 − 3)
1
4
dy =

∫
dx

4i(c42y e4c1 − 3)
3
4 e−4c1

3c42
= x+ c6

Summary
The solution(s) found are the following

(1)y =

(
3(e4c1c42(x+ c3))

4
3 + 46 2

3

)
6 1

3 e−4c1

8c42

(2)y =

(
3 3

1
3 4

2
3
(
ie4c1c42(x+c4)

) 4
3

16 + 3
)
e−4c1

c42

(3)y =

((
−3c5e4c1c42

4 − 3 e4c1c42x
4

) 4
3 + 3

)
e−4c1

c42

(4)y =

((
−3ie4c1c42(x+c6)

4

) 4
3 + 3

)
e−4c1

c42
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Verification of solutions

y =

(
3(e4c1c42(x+ c3))

4
3 + 46 2

3

)
6 1

3 e−4c1

8c42

Verified OK.

y =

(
3 3

1
3 4

2
3
(
ie4c1c42(x+c4)

) 4
3

16 + 3
)
e−4c1

c42

Verified OK.

y =

((
−3c5e4c1c42

4 − 3 e4c1c42x
4

) 4
3 + 3

)
e−4c1

c42

Verified OK.

y =

((
−3ie4c1c42(x+c6)

4

) 4
3 + 3

)
e−4c1

c42

Verified OK.

4.40.2 Maple step by step solution

Let’s solve
4yy′′y′2 − y′4 = 3

• Highest derivative means the order of the ODE is 2
y′′

• Define new dependent variable u
u(x) = y′

• Compute y′′

u′(x) = y′′

• Use chain rule on the lhs

y′
(

d
dy
u(y)

)
= y′′

• Substitute in the definition of u

u(y)
(

d
dy
u(y)

)
= y′′
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• Make substitutions y′ = u(y) , y′′ = u(y)
(

d
dy
u(y)

)
to reduce order of ODE

4yu(y)3
(

d
dy
u(y)

)
− u(y)4 = 3

• Separate variables(
d
dy

u(y)
)
u(y)3

u(y)4+3 = 1
4y

• Integrate both sides with respect to y∫ (
d
dy

u(y)
)
u(y)3

u(y)4+3 dy =
∫ 1

4ydy + c1

• Evaluate integral
ln
(
u(y)4+3

)
4 = ln(y)

4 + c1

• Solve for u(y){
u(y) =

(
y(ec1)4 − 3

) 1
4 , u(y) = −

(
y(ec1)4 − 3

) 1
4
}

• Solve 1st ODE for u(y)

u(y) =
(
y(ec1)4 − 3

) 1
4

• Revert to original variables with substitution u(y) = y′, y = y

y′ =
(
(ec1)4 y − 3

) 1
4

• Separate variables
y′(

(ec1 )4y−3
) 1

4
= 1

• Integrate both sides with respect to x∫
y′(

(ec1 )4y−3
) 1

4
dx =

∫
1dx+ c2

• Evaluate integral

4
(
(ec1 )4y−3

) 3
4

3(ec1 )4 = x+ c2

• Solve for y

y =

(
3
(
(ec1 )4(x+c2)

) 4
3+46

2
3

)
6
1
3

8(ec1 )4

• Solve 2nd ODE for u(y)

u(y) = −
(
y(ec1)4 − 3

) 1
4
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• Revert to original variables with substitution u(y) = y′, y = y

y′ = −
(
(ec1)4 y − 3

) 1
4

• Separate variables
y′(

(ec1 )4y−3
) 1

4
= −1

• Integrate both sides with respect to x∫
y′(

(ec1 )4y−3
) 1

4
dx =

∫
(−1) dx+ c2

• Evaluate integral

4
(
(ec1 )4y−3

) 3
4

3(ec1 )4 = −x+ c2

• Solve for y

y =

(
3
(
(ec1 )4(−x+c2)

) 4
3+46

2
3

)
6
1
3

8(ec1 )4

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(1/4)*(_b(_a)^4+3)/(_a*_b(_a)^2) = 0, _b(_a), HINT = [[_a, 0]]` *** Su

symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 0]� �
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3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 111� �
dsolve(4*y(x)*diff(y(x),x)^2*diff(y(x),x$2)=diff(y(x),x)^4+3,y(x), singsol=all)� �

−4(c1y(x)− 3)
3
4 + (−3x− 3c2) c1
3c1

= 0

4(c1y(x)− 3)
3
4 + (−3x− 3c2) c1
3c1

= 0

−4i(c1y(x)− 3)
3
4 + (−3x− 3c2) c1
3c1

= 0

4i(c1y(x)− 3)
3
4 + (−3x− 3c2) c1
3c1

= 0

3 Solution by Mathematica
Time used: 60.242 (sec). Leaf size: 156� �
DSolve[4*y[x]*(y'[x])^2*y''[x]==(y'[x])^4+3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
8e

−4c1
(
8 + 3

√
6
(
−e4c1(x+ c2)

) 4/3
)

y(x) → 3
8e

−4c1
(
8 + 3

√
6
(
−ie4c1(x+ c2)

) 4/3
)

y(x) → 3
8e

−4c1
(
8 + 3

√
6
(
ie4c1(x+ c2)

) 4/3
)

y(x) → 3
8e

−4c1
(
8 + 3

√
6
(
e4c1(x+ c2)

) 4/3
)
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