A Solution Manual For

Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.

Nasser M. Abbasi

May 15, 2024

Contents

1 CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309

2 CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314

3 CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320

4 CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
1 CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309
1.1 problem 1 3
1.2 problem 2 7
1.3 problem 3 10
1.4 problem 4 14
1.5 problem 5 18
1.6 problem 6 22
1.7 problem 7 25
1.8 problem 8 [28
1.9 problem 9 32
1.10 problem 10 40
1.11 problem 11 44
1.12 problem 12 48
1.13 problem 13 53
1.14 problem 14 61
1.15 problem 15 65
1.16 problem 16 79
1.17 problem 17 88
1.18 problem 18 101
1.19 problem 19 105

1.1 problem 1

1.1.1 Solving as first order nonlinear p but separable ode 3
1.1.2 Maple step by step solution . 5

Internal problem ID [6767]
Internal file name [OUTPUT/6014_Monday_July_25_2022_01_59_32_AM_9550685/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309
Problem number: 1.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p_but__separable"

Maple gives the following as the ode type
[_separable]

$$
x^{2} y^{\prime 2}-y^{2}=0
$$

1.1.1 Solving as first order nonlinear p but separable ode

The ode has the form

$$
\begin{equation*}
\left(y^{\prime}\right)^{\frac{n}{m}}=f(x) g(y) \tag{1}
\end{equation*}
$$

Where $n=2, m=1, f=\frac{1}{x^{2}}, g=y^{2}$. Hence the ode is

$$
\left(y^{\prime}\right)^{2}=\frac{y^{2}}{x^{2}}
$$

Solving for y^{\prime} from (1) gives

$$
\begin{aligned}
& y^{\prime}=\sqrt{f g} \\
& y^{\prime}=-\sqrt{f g}
\end{aligned}
$$

To be able to solve as separable ode, we have to now assume that $f>0, g>0$.

$$
\begin{aligned}
\frac{1}{x^{2}} & >0 \\
y^{2} & >0
\end{aligned}
$$

Under the above assumption the differential equations become separable and can be written as

$$
\begin{aligned}
& y^{\prime}=\sqrt{f} \sqrt{g} \\
& y^{\prime}=-\sqrt{f} \sqrt{g}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{1}{\sqrt{g}} d y & =(\sqrt{f}) d x \\
-\frac{1}{\sqrt{g}} d y & =(\sqrt{f}) d x
\end{aligned}
$$

Replacing $f(x), g(y)$ by their values gives

$$
\begin{aligned}
\frac{1}{\sqrt{y^{2}}} d y & =\left(\sqrt{\frac{1}{x^{2}}}\right) d x \\
-\frac{1}{\sqrt{y^{2}}} d y & =\left(\sqrt{\frac{1}{x^{2}}}\right) d x
\end{aligned}
$$

Integrating now gives the solutions.

$$
\begin{aligned}
\int \frac{1}{\sqrt{y^{2}}} d y & =\int \sqrt{\frac{1}{x^{2}}} d x+c_{1} \\
\int-\frac{1}{\sqrt{y^{2}}} d y & =\int \sqrt{\frac{1}{x^{2}}} d x+c_{1}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y \ln (y)}{\sqrt{y^{2}}} & =\sqrt{\frac{1}{x^{2}}} x \ln (x)+c_{1} \\
-\frac{y \ln (y)}{\sqrt{y^{2}}} & =\sqrt{\frac{1}{x^{2}}} x \ln (x)+c_{1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{y \ln (y)}{\sqrt{y^{2}}} & =\sqrt{\frac{1}{x^{2}}} x \ln (x)+c_{1} \\
-\frac{y \ln (y)}{\sqrt{y^{2}}} & =\sqrt{\frac{1}{x^{2}}} x \ln (x)+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{y \ln (y)}{\sqrt{y^{2}}} & =\sqrt{\frac{1}{x^{2}}} x \ln (x)+c_{1} \tag{1}\\
-\frac{y \ln (y)}{\sqrt{y^{2}}} & =\sqrt{\frac{1}{x^{2}}} x \ln (x)+c_{1} \tag{2}
\end{align*}
$$

Verification of solutions

$$
\frac{y \ln (y)}{\sqrt{y^{2}}}=\sqrt{\frac{1}{x^{2}}} x \ln (x)+c_{1}
$$

Verified OK. $\left\{0<1 / x^{\wedge} 2,0<y^{\wedge} 2\right\}$

$$
-\frac{y \ln (y)}{\sqrt{y^{2}}}=\sqrt{\frac{1}{x^{2}}} x \ln (x)+c_{1}
$$

Verified OK. $\left\{0<1 / x^{\wedge} 2,0<y^{\wedge} 2\right\}$

1.1.2 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime 2}-y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=x \mathrm{e}^{c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(x^2*diff(y(x),x)^2-y(x)^2=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=c_{1} x \\
& y(x)=\frac{c_{1}}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 24
DSolve[x^2*(y'[x])^2-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{c_{1}}{x} \\
& y(x) \rightarrow c_{1} x \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.2 problem 2

1.2.1 Maple step by step solution . 8

Internal problem ID [6768]
Internal file name [OUTPUT/6015_Monday_July_25_2022_01_59_33_AM_45017633/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 2.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

[_quadrature]

$$
x y^{\prime 2}-(3 y+2 x) y^{\prime}+6 y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =2 \tag{1}\\
y^{\prime} & =\frac{3 y}{x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int 2 \mathrm{~d} x \\
& =c_{1}+2 x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+2 x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+2 x
$$

Verified OK.
Solving equation (2)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{3 y}{x}
\end{aligned}
$$

Where $f(x)=\frac{3}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{3}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{3}{x} d x \\
\ln (y) & =3 \ln (x)+c_{2} \\
y & =\mathrm{e}^{3 \ln (x)+c_{2}} \\
& =c_{2} x^{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x^{3}
$$

Verified OK.

1.2.1 Maple step by step solution

Let's solve

$$
x y^{\prime 2}-(3 y+2 x) y^{\prime}+6 y=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- Integrate both sides with respect to x

$$
\int\left(x y^{\prime 2}-(3 y+2 x) y^{\prime}+6 y\right) d x=\int 0 d x+c_{1}
$$

- Cannot compute integral

$$
\int\left(x y^{\prime 2}-(3 y+2 x) y^{\prime}+6 y\right) d x=c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`

Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(x*diff(y(x),x)^2-(2*x+3*y(x))*diff (y (x),x)+6*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=c_{1} x^{3} \\
& y(x)=c_{1}+2 x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 26
DSolve $[x *(y '[x]) \sim 2-(2 * x+3 * y[x]) * y '[x]+6 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x^{3} \\
& y(x) \rightarrow 2 x+c_{1} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.3 problem 3

1.3.1 Maple step by step solution . 12

Internal problem ID [6769]
Internal file name [OUTPUT/6016_Monday_July_25_2022_01_59_35_AM_69854974/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 3 .
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x^{2} y^{\prime 2}-5 x y y^{\prime}+6 y^{2}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{2 y}{x} \tag{1}\\
y^{\prime} & =\frac{3 y}{x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2 y}{x}
\end{aligned}
$$

Where $f(x)=\frac{2}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{2}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{2}{x} d x \\
\ln (y) & =2 \ln (x)+c_{1} \\
y & =\mathrm{e}^{2 \ln (x)+c_{1}} \\
& =c_{1} x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.
Solving equation (2)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{3 y}{x}
\end{aligned}
$$

Where $f(x)=\frac{3}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{3}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{3}{x} d x \\
\ln (y) & =3 \ln (x)+c_{2} \\
y & =\mathrm{e}^{3 \ln (x)+c_{2}} \\
& =c_{2} x^{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x^{3}
$$

Verified OK.

1.3.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime 2}-5 x y y^{\prime}+6 y^{2}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=\frac{3}{x}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{3}{x} d x+c_{1}$
- Evaluate integral
$\ln (y)=3 \ln (x)+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{c_{1}} x^{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x) \wedge 2-5 * x * y(x) * \operatorname{diff}(y(x), x)+6 * y(x) \wedge 2=0, y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=c_{1} x^{3} \\
& y(x)=c_{1} x^{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 26
DSolve $\left[x^{\wedge} 2 *\left(y^{\prime}[x]\right) \wedge 2-5 * x * y[x] * y '[x]+6 * y[x] \sim 2==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x^{2} \\
& y(x) \rightarrow c_{1} x^{3} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.4 problem 4

1.4.1 Maple step by step solution . 16

Internal problem ID [6770]
Internal file name [OUTPUT/6017_Monday_July_25_2022_01_59_37_AM_73862004/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 4.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "differentialType", "homogeneousTypeD2", "homogeneousTypeMapleC", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x^{2} y^{\prime 2}+x y^{\prime}-y^{2}-y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{y}{x} \tag{1}\\
y^{\prime} & =-\frac{1+y}{x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{1} \\
y & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x
$$

Verified OK.

Solving equation (2)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{-y-1}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=-y-1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-y-1} d y & =\frac{1}{x} d x \\
\int \frac{1}{-y-1} d y & =\int \frac{1}{x} d x \\
-\ln (1+y) & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{1+y}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{1+y}=c_{3} x
$$

Which simplifies to

$$
y=-\frac{\left(c_{3} x \mathrm{e}^{c_{2}}-1\right) \mathrm{e}^{-c_{2}}}{c_{3} x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(c_{3} x \mathrm{e}^{c_{2}}-1\right) \mathrm{e}^{-c_{2}}}{c_{3} x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(c_{3} x \mathrm{e}^{c_{2}}-1\right) \mathrm{e}^{-c_{2}}}{c_{3} x}
$$

Verified OK.

1.4.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime 2}+x y^{\prime}-y^{2}-y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral
$\ln (y)=\ln (x)+c_{1}$
- \quad Solve for y

$$
y=x \mathrm{e}^{c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(x^2*diff(y(x),x)^2+x*diff(y(x),x)-y(x)^2-y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=c_{1} x \\
& y(x)=\frac{-x+c_{1}}{x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 31
DSolve $\left[x^{\wedge} 2 *\left(y^{\prime}[x]\right) \wedge 2+x * y{ }^{\prime}[x]-y[x] \sim 2-y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x \\
& y(x) \rightarrow-1+\frac{c_{1}}{x} \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.5 problem 5

1.5.1 Maple step by step solution . 20

Internal problem ID [6771]
Internal file name [OUTPUT/6018_Monday_July_25_2022_01_59_38_AM_27299389/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 5.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

$$
x y^{\prime 2}+\left(1-y x^{2}\right) y^{\prime}-x y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =x y \tag{1}\\
y^{\prime} & =-\frac{1}{x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x y
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =x d x \\
\int \frac{1}{y} d y & =\int x d x \\
\ln (y) & =\frac{x^{2}}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{x^{2}}{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{1}{x} \mathrm{~d} x \\
& =-\ln (x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\ln (x)+c_{2}
$$

Verified OK.

1.5.1 Maple step by step solution

Let's solve

$$
x y^{\prime 2}+\left(1-y x^{2}\right) y^{\prime}-x y=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x

$$
\int\left(x y^{\prime 2}+\left(1-y x^{2}\right) y^{\prime}-x y\right) d x=\int 0 d x+c_{1}
$$

- Cannot compute integral

$$
\int\left(x y^{\prime 2}+\left(1-y x^{2}\right) y^{\prime}-x y\right) d x=c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(x*diff (y (x),x)~2+(1-x^2*y(x))*diff (y (x),x)-x*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\ln (x)+c_{1} \\
& y(x)=\mathrm{e}^{\frac{x^{2}}{2}} c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 28
DSolve $\left[x *(y '[x]) \wedge 2+\left(1-x^{\wedge} 2 * y[x]\right) * y^{\prime}[x]-x * y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{\frac{x^{2}}{2}} \\
& y(x) \rightarrow-\log (x)+c_{1}
\end{aligned}
$$

1.6 problem 6

$$
\text { 1.6.1 Maple step by step solution . } 23
$$

Internal problem ID [6772]
Internal file name [OUTPUT/6019_Monday_July_25_2022_01_59_42_AM_10893776/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 6.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime 2}-\left(y x^{2}+3\right) y^{\prime}+3 y x^{2}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=3 \tag{1}\\
& y^{\prime}=y x^{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int 3 \mathrm{~d} x \\
& =3 x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=3 x+c_{1}
$$

Verified OK.
Solving equation (2)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =y x^{2}
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =x^{2} d x \\
\int \frac{1}{y} d y & =\int x^{2} d x \\
\ln (y) & =\frac{x^{3}}{3}+c_{2} \\
y & =\mathrm{e}^{\frac{x^{3}}{3}+c_{2}} \\
& =c_{2} \mathrm{e}^{\frac{x^{3}}{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\frac{x^{3}}{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Verified OK.

1.6.1 Maple step by step solution

Let's solve

$$
y^{\prime 2}-\left(y x^{2}+3\right) y^{\prime}+3 y x^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int\left(y^{\prime 2}-\left(y x^{2}+3\right) y^{\prime}+3 y x^{2}\right) d x=\int 0 d x+c_{1}
$$

- Cannot compute integral

$$
\int\left(y^{\prime 2}-\left(y x^{2}+3\right) y^{\prime}+3 y x^{2}\right) d x=c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(x),x)^2-(x^2*y(x)+3)*diff (y (x),x)+3*x^2*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=c_{1} \mathrm{e}^{x^{3}} \\
& y(x)=3 x+c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 27
DSolve $\left[\left(y^{\prime}[x]\right)^{\wedge} 2-\left(x^{\wedge} 2 * y[x]+3\right) * y^{\prime}[x]+3 * x^{\wedge} 2 * y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{\frac{x^{3}}{3}} \\
& y(x) \rightarrow 3 x+c_{1}
\end{aligned}
$$

1.7 problem 7

$$
\text { 1.7.1 Maple step by step solution . } 26
$$

Internal problem ID [6773]
Internal file name [OUTPUT/6020_Monday_July_25_2022_01_59_43_AM_41766277/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 7.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
x y^{\prime 2}-(x y+1) y^{\prime}+y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =y \tag{1}\\
y^{\prime} & =\frac{1}{x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y} d y & =x+c_{1} \\
\ln (y) & =x+c_{1} \\
y & =\mathrm{e}^{x+c_{1}} \\
y & =c_{1} \mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x} \mathrm{~d} x \\
& =\ln (x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x)+c_{2}
$$

Verified OK.

1.7.1 Maple step by step solution

Let's solve

$$
x y^{\prime 2}-(x y+1) y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x

$$
\int\left(x y^{\prime 2}-(x y+1) y^{\prime}+y\right) d x=\int 0 d x+c_{1}
$$

- Cannot compute integral

$$
\int\left(x y^{\prime 2}-(x y+1) y^{\prime}+y\right) d x=c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(x*diff(y(x),x)^2-(1+x*y(x))*diff(y(x),x)+y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\ln (x)+c_{1} \\
& y(x)=\mathrm{e}^{x} c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 20
DSolve[x*(y'[x])~2-(1+x*y[x])*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{x} \\
& y(x) \rightarrow \log (x)+c_{1}
\end{aligned}
$$

1.8 problem 8

1.8.1 Solving as first order nonlinear p but separable ode 28
1.8.2 Maple step by step solution . 30

Internal problem ID [6774]
Internal file name [OUTPUT/6021_Monday_July_25_2022_01_59_46_AM_52332013/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309
Problem number: 8.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_nonlinear_p__but__separable"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime 2}-y^{2} x^{2}=0
$$

1.8.1 Solving as first order nonlinear p but separable ode

The ode has the form

$$
\begin{equation*}
\left(y^{\prime}\right)^{\frac{n}{m}}=f(x) g(y) \tag{1}
\end{equation*}
$$

Where $n=2, m=1, f=x^{2}, g=y^{2}$. Hence the ode is

$$
\left(y^{\prime}\right)^{2}=y^{2} x^{2}
$$

Solving for y^{\prime} from (1) gives

$$
\begin{aligned}
& y^{\prime}=\sqrt{f g} \\
& y^{\prime}=-\sqrt{f g}
\end{aligned}
$$

To be able to solve as separable ode, we have to now assume that $f>0, g>0$.

$$
\begin{aligned}
x^{2} & >0 \\
y^{2} & >0
\end{aligned}
$$

Under the above assumption the differential equations become separable and can be written as

$$
\begin{aligned}
y^{\prime} & =\sqrt{f} \sqrt{g} \\
y^{\prime} & =-\sqrt{f} \sqrt{g}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{1}{\sqrt{g}} d y & =(\sqrt{f}) d x \\
-\frac{1}{\sqrt{g}} d y & =(\sqrt{f}) d x
\end{aligned}
$$

Replacing $f(x), g(y)$ by their values gives

$$
\begin{aligned}
\frac{1}{\sqrt{y^{2}}} d y & =\left(\sqrt{x^{2}}\right) d x \\
-\frac{1}{\sqrt{y^{2}}} d y & =\left(\sqrt{x^{2}}\right) d x
\end{aligned}
$$

Integrating now gives the solutions.

$$
\begin{aligned}
\int \frac{1}{\sqrt{y^{2}}} d y & =\int \sqrt{x^{2}} d x+c_{1} \\
\int-\frac{1}{\sqrt{y^{2}}} d y & =\int \sqrt{x^{2}} d x+c_{1}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y \ln (y)}{\sqrt{y^{2}}} & =\frac{x \sqrt{x^{2}}}{2}+c_{1} \\
-\frac{y \ln (y)}{\sqrt{y^{2}}} & =\frac{x \sqrt{x^{2}}}{2}+c_{1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{y \ln (y)}{\sqrt{y^{2}}} & =\frac{x \sqrt{x^{2}}}{2}+c_{1} \\
-\frac{y \ln (y)}{\sqrt{y^{2}}} & =\frac{x \sqrt{x^{2}}}{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{y \ln (y)}{\sqrt{y^{2}}} & =\frac{x \sqrt{x^{2}}}{2}+c_{1} \tag{1}\\
-\frac{y \ln (y)}{\sqrt{y^{2}}} & =\frac{x \sqrt{x^{2}}}{2}+c_{1} \tag{2}
\end{align*}
$$

Verification of solutions

$$
\frac{y \ln (y)}{\sqrt{y^{2}}}=\frac{x \sqrt{x^{2}}}{2}+c_{1}
$$

Verified OK. $\left\{0<x^{\wedge} 2,0<y^{\wedge} 2\right\}$

$$
-\frac{y \ln (y)}{\sqrt{y^{2}}}=\frac{x \sqrt{x^{2}}}{2}+c_{1}
$$

Verified OK. $\left\{0<x^{\wedge} 2,0<y^{\wedge} 2\right\}$

1.8.2 Maple step by step solution

Let's solve

$$
y^{\prime 2}-y^{2} x^{2}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{y}=x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x)^2-x^2*y(x)^2=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\mathrm{e}^{-\frac{x^{2}}{2}} c_{1} \\
& y(x)=\mathrm{e}^{\frac{x^{2}}{2}} c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 38
DSolve[($\left.y^{\prime}[x]\right)^{\wedge} 2-x^{\wedge} 2 * y[x] \sim 2==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-\frac{x^{2}}{2}} \\
& y(x) \rightarrow c_{1} e^{\frac{x^{2}}{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.9 problem 9

$$
\text { 1.9.1 Solving as dAlembert ode . } 32
$$

Internal problem ID [6775]
Internal file name [OUTPUT/6022_Monday_July_25_2022_01_59_47_AM_53691888/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 9 .
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
(x+y)^{2} y^{\prime 2}-y^{2}=0
$$

1.9.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
(x+y)^{2} p^{2}-y^{2}=0
$$

Solving for y from the above results in

$$
\begin{align*}
& y=-\frac{p x}{1+p} \tag{1~A}\\
& y=-\frac{p x}{-1+p} \tag{2~A}
\end{align*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. Each of the above ode's is dAlembert ode which is now solved. Solving ode 1A Taking derivative of $\left(^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=-\frac{p}{1+p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p+\frac{p}{1+p}=x\left(-\frac{1}{1+p}+\frac{p}{(1+p)^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p+\frac{p}{1+p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=-2 \\
& p=0
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-2 x \\
& y=0
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)+\frac{p(x)}{1+p(x)}}{x\left(-\frac{1}{1+p(x)}+\frac{p(x)}{(1+p(x))^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(-\frac{1}{1+p}+\frac{p}{(1+p)^{2}}\right)}{p+\frac{p}{1+p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{1}{(2+p) p(1+p)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{x(p)}{(2+p) p(1+p)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{(2+p) p(1+p)} d p} \\
& =\mathrm{e}^{-\ln (1+p)+\frac{\ln (p)}{2}+\frac{\ln (2+p)}{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\sqrt{p} \sqrt{2+p}}{1+p}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{\sqrt{p} \sqrt{2+p} x}{1+p}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{\sqrt{p} \sqrt{2+p} x}{1+p}=c_{3}
$$

Dividing both sides by the integrating factor $\mu=\frac{\sqrt{p} \sqrt{2+p}}{1+p}$ results in

$$
x(p)=\frac{c_{3}(1+p)}{\sqrt{p} \sqrt{2+p}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=-\frac{y}{x+y}
$$

Substituting the above in the solution for x found above gives

$$
x=\frac{c_{3} x}{(x+y) \sqrt{-\frac{y}{x+y}} \sqrt{\frac{2 x+y}{x+y}}}
$$

Solving ode 2A Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=-\frac{p}{-1+p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p+\frac{p}{-1+p}=x\left(-\frac{1}{-1+p}+\frac{p}{(-1+p)^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p+\frac{p}{-1+p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=0 \\
& p=0
\end{aligned}
$$

Removing solutions for p which leads to undefined results and substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)+\frac{p(x)}{-1+p(x)}}{x\left(-\frac{1}{-1+p(x)}+\frac{p(x)}{(-1+p(x))^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(-\frac{1}{-1+p}+\frac{p}{(-1+p)^{2}}\right)}{p+\frac{p}{-1+p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{1}{p^{2}(-1+p)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{x(p)}{p^{2}(-1+p)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{p^{2}(-1+p)} d p} \\
& =\mathrm{e}^{-\ln (-1+p)+\ln (p)-\frac{1}{p}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{p \mathrm{e}^{-\frac{1}{p}}}{-1+p}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{p \mathrm{e}^{-\frac{1}{p}} x}{-1+p}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{p \mathrm{e}^{-\frac{1}{p}} x}{-1+p}=c_{5}
$$

Dividing both sides by the integrating factor $\mu=\frac{p \mathrm{e}^{-\frac{1}{p}}}{-1+p}$ results in

$$
x(p)=\frac{c_{5}(-1+p) \mathrm{e}^{\frac{1}{p}}}{p}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=\frac{y}{x+y}
$$

Substituting the above in the solution for x found above gives

$$
x=-\frac{c_{5} x \mathrm{e}^{\frac{x+y}{y}}}{y}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-2 x \tag{1}\\
& y=0 \tag{2}\\
& x=\frac{c_{3} x}{(x+y) \sqrt{-\frac{y}{x+y}} \sqrt{\frac{2 x+y}{x+y}}} \tag{3}\\
& y=0 \tag{4}\\
& x=-\frac{c_{5} x \mathrm{e}^{\frac{x+y}{y}}}{y} \tag{5}
\end{align*}
$$

Verification of solutions

$$
y=-2 x
$$

Verified OK.

$$
y=0
$$

Verified OK.

$$
x=\frac{c_{3} x}{(x+y) \sqrt{-\frac{y}{x+y}} \sqrt{\frac{2 x+y}{x+y}}}
$$

Verified OK.

$$
y=0
$$

Verified OK.

$$
x=-\frac{c_{5} x \mathrm{e}^{\frac{x+y}{y}}}{y}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 47
dsolve($(x+y(x))^{\wedge} 2 * \operatorname{diff}(y(x), x)^{\wedge} 2=y(x) \sim 2, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{x}{\text { LambertW }\left(x \mathrm{e}^{c_{1}}\right)} \\
& y(x)=-x-\sqrt{x^{2}+2 c_{1}} \\
& y(x)=-x+\sqrt{x^{2}+2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 4.023 (sec). Leaf size: 101
DSolve $[(x+y[x]) \sim 2 *(y '[x]) \wedge 2==y[x] \sim 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-x-\sqrt{x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-x+\sqrt{x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow \frac{x}{W\left(e^{-c_{1}} x\right)} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-\sqrt{x^{2}}-x \\
& y(x) \rightarrow \sqrt{x^{2}}-x
\end{aligned}
$$

1.10 problem 10

$$
\text { 1.10.1 Maple step by step solution . } 42
$$

Internal problem ID [6776]
Internal file name [OUTPUT/6023_Monday_July_25_2022_01_59_50_AM_35329907/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309
Problem number: 10.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "exact", "quadrature", "separable", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

$$
y y^{\prime 2}+\left(x-y^{2}\right) y^{\prime}-x y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=y \tag{1}\\
& y^{\prime}=-\frac{x}{y} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y} d y & =x+c_{1} \\
\ln (y) & =x+c_{1} \\
y & =\mathrm{e}^{x+c_{1}} \\
y & =c_{1} \mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}
$$

Verified OK.
Solving equation (2)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x}{y}
\end{aligned}
$$

Where $f(x)=-x$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =-x d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int-x d x \\
\frac{y^{2}}{2} & =-\frac{x^{2}}{2}+c_{2}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{-x^{2}+2 c_{2}} \\
& y=-\sqrt{-x^{2}+2 c_{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-x^{2}+2 c_{2}} \tag{1}\\
& y=-\sqrt{-x^{2}+2 c_{2}} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\sqrt{-x^{2}+2 c_{2}}
$$

Verified OK.

$$
y=-\sqrt{-x^{2}+2 c_{2}}
$$

Verified OK.

1.10.1 Maple step by step solution

Let's solve
$y y^{\prime 2}+\left(x-y^{2}\right) y^{\prime}-x y=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int 1 d x+c_{1}
$$

- Evaluate integral
$\ln (y)=x+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{x+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 34
dsolve $(y(x) * \operatorname{diff}(y(x), x) \wedge 2+(x-y(x) \wedge 2) * \operatorname{diff}(y(x), x)-x * y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\sqrt{-x^{2}+c_{1}} \\
& y(x)=-\sqrt{-x^{2}+c_{1}} \\
& y(x)=\mathrm{e}^{x} c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.134 (sec). Leaf size: 54
DSolve $\left[y[x] *\left(y^{\prime}[x]\right) \sim 2+(x-y[x] \sim 2) * y '[x]-x * y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{x} \\
& y(x) \rightarrow-\sqrt{-x^{2}+2 c_{1}} \\
& y(x) \rightarrow \sqrt{-x^{2}+2 c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.11 problem 11

1.11.1 Maple step by step solution . 46

Internal problem ID [6777]
Internal file name [OUTPUT/6024_Monday_July_25_2022_01_59_51_AM_43122919/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 11.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "exact", "linear", "riccati", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime 2}-x y(x+y) y^{\prime}+x^{3} y^{3}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=x y^{2} \tag{1}\\
& y^{\prime}=y x^{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =y^{2} x
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =x d x \\
\int \frac{1}{y^{2}} d y & =\int x d x \\
-\frac{1}{y} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{2}{x^{2}+2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{x^{2}+2 c_{1}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{2}{x^{2}+2 c_{1}}
$$

Verified OK.
Solving equation (2)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =y x^{2}
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =x^{2} d x \\
\int \frac{1}{y} d y & =\int x^{2} d x \\
\ln (y) & =\frac{x^{3}}{3}+c_{2} \\
y & =\mathrm{e}^{\frac{x^{3}}{3}}+c_{2} \\
& =c_{2} \mathrm{e}^{\frac{x^{3}}{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\frac{x^{3}}{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Verified OK.

1.11.1 Maple step by step solution

Let's solve
$y^{\prime 2}-x y(x+y) y^{\prime}+x^{3} y^{3}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=x^{2}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int x^{2} d x+c_{1}$
- Evaluate integral

$$
\ln (y)=\frac{x^{3}}{3}+c_{1}
$$

- \quad Solve for y
$y=\mathrm{e}^{\frac{x^{3}}{3}+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff (y (x), x)^2-x*y(x)*(x+y(x))*diff(y(x), x)+x^3*y(x)^3=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{2}{x^{2}-2 c_{1}} \\
& y(x)=c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.122 (sec). Leaf size: 38
DSolve $\left[\left(y^{\prime}[x]\right)^{\wedge} 2-x * y[x] *(x+y[x]) * y^{\prime}[x]+x^{\wedge} 3 * y[x] \sim 3==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{\frac{x^{3}}{3}} \\
& y(x) \rightarrow-\frac{2}{x^{2}+2 c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.12 problem 12

1.12.1 Solving as dAlembert ode . 48
1.12.2 Maple step by step solution . 51

Internal problem ID [6778]
Internal file name [OUTPUT/6025_Monday_July_25_2022_01_59_52_AM_16739784/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309
Problem number: 12.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[_quadrature]

$$
(4 x-y) y^{\prime 2}+6(x-y) y^{\prime}-5 y=-2 x
$$

1.12.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
(-y+4 x) p^{2}+6(x-y) p-5 y=-2 x
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{2(2 p+1) x}{p+5} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{4 p+2}{p+5} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{4 p+2}{p+5}=x\left(\frac{4}{p+5}-\frac{4 p+2}{(p+5)^{2}}\right) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{4 p+2}{p+5}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=1 \\
& p=-2
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-2 x \\
& y=x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{4 p(x)+2}{p(x)+5}}{x\left(\frac{4}{p(x)+5}-\frac{4 p(x)+2}{(p(x)+5)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(\frac{4}{p+5}-\frac{4 p+2}{(p+5)^{2}}\right)}{p-\frac{4 p+2}{p+5}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{18}{p^{3}+6 p^{2}+3 p-10} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{18 x(p)}{p^{3}+6 p^{2}+3 p-10}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{18}{p^{3}+6 p^{2}+3 p-10}} d p \\
& =\mathrm{e}^{-\ln (p-1)+2 \ln (p+2)-\ln (p+5)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{(p+2)^{2}}{(p-1)(p+5)}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{(p+2)^{2} x}{(p-1)(p+5)}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{(p+2)^{2} x}{(p-1)(p+5)}=c_{3}
$$

Dividing both sides by the integrating factor $\mu=\frac{(p+2)^{2}}{(p-1)(p+5)}$ results in

$$
x(p)=\frac{c_{3}(p-1)(p+5)}{(p+2)^{2}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=-\frac{2 x-5 y}{4 x-y}
$$

Substituting the above in the solution for x found above gives

$$
x=-\frac{12 x(x-y) c_{3}}{(2 x+y)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-2 x \tag{1}\\
& y=x \tag{2}\\
& x=-\frac{12 x(x-y) c_{3}}{(2 x+y)^{2}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=-2 x
$$

Verified OK.

$$
y=x
$$

Verified OK.

$$
x=-\frac{12 x(x-y) c_{3}}{(2 x+y)^{2}}
$$

Verified OK.

1.12.2 Maple step by step solution

Let's solve

$$
(4 x-y) y^{\prime 2}+6(x-y) y^{\prime}-5 y=-2 x
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x

$$
\int\left((4 x-y) y^{\prime 2}+6(x-y) y^{\prime}-5 y\right) d x=\int-2 x d x+c_{1}
$$

- Cannot compute integral

$$
\int\left((4 x-y) y^{\prime 2}+6(x-y) y^{\prime}-5 y\right) d x=-x^{2}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 55

```
dsolve((4*x-y(x))*diff(y(x),x)^2+6*(x-y(x))*diff (y (x),x)+2*x-5*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-x+c_{1} \\
& y(x)=\frac{-4 c_{1} x+\sqrt{-12 c_{1} x+1}+1}{2 c_{1}} \\
& y(x)=\frac{-4 c_{1} x-\sqrt{-12 c_{1} x+1}+1}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.077 (sec). Leaf size: 90
DSolve $[(4 * x-y[x]) *(y '[x]) \sim 2+6 *(x-y[x]) * y '[x]+2 * x-5 * y[x]==0, y[x], x$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(-4 x-e^{\frac{c_{1}}{2}} \sqrt{12 x+e^{c_{1}}}-e^{c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(-4 x+e^{\frac{c_{1}}{2}} \sqrt{12 x+e^{c_{1}}}-e^{c_{1}}\right) \\
& y(x) \rightarrow-x+c_{1}
\end{aligned}
$$

1.13 problem 13

$$
\text { 1.13.1 Solving as dAlembert ode . } 53
$$

Internal problem ID [6779]
Internal file name [OUTPUT/6026_Monday_July_25_2022_01_59_56_AM_71060998/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 13.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
(x-y)^{2} y^{\prime 2}-y^{2}=0
$$

1.13.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
(x-y)^{2} p^{2}-y^{2}=0
$$

Solving for y from the above results in

$$
\begin{align*}
& y=\frac{p x}{-1+p} \tag{1~A}\\
& y=\frac{p x}{1+p} \tag{2~A}
\end{align*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. Each of the above ode's is dAlembert ode which is now solved. Solving ode 1A Taking derivative of $\left(^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p}{-1+p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{p}{-1+p}=x\left(\frac{1}{-1+p}-\frac{p}{(-1+p)^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{p}{-1+p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=0 \\
& p=2
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=0 \\
& y=2 x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{p(x)}{-1+p(x)}}{x\left(\frac{1}{-1+p(x)}-\frac{p(x)}{(-1+p(x))^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(\frac{1}{-1+p}-\frac{p}{(-1+p)^{2}}\right)}{p-\frac{p}{-1+p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{1}{(-2+p) p(-1+p)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{x(p)}{(-2+p) p(-1+p)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{(-2+p) p(-1+p)} d p} \\
& =\mathrm{e}^{-\ln (-1+p)+\frac{\ln (p)}{2}+\frac{\ln (-2+p)}{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\sqrt{p} \sqrt{-2+p}}{-1+p}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{\sqrt{p} \sqrt{-2+p} x}{-1+p}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{\sqrt{p} \sqrt{-2+p} x}{-1+p}=c_{3}
$$

Dividing both sides by the integrating factor $\mu=\frac{\sqrt{p} \sqrt{-2+p}}{-1+p}$ results in

$$
x(p)=\frac{c_{3}(-1+p)}{\sqrt{p} \sqrt{-2+p}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=-\frac{y}{x-y}
$$

Substituting the above in the solution for x found above gives

$$
x=-\frac{c_{3} x}{(x-y) \sqrt{-\frac{y}{x-y}} \sqrt{\frac{-2 x+y}{x-y}}}
$$

Solving ode 2A Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p}{1+p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{p}{1+p}=x\left(\frac{1}{1+p}-\frac{p}{(1+p)^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{p}{1+p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=0 \\
& p=0
\end{aligned}
$$

Removing solutions for p which leads to undefined results and substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{p(x)}{1+p(x)}}{x\left(\frac{1}{1+p(x)}-\frac{p(x)}{(1+p(x))^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(\frac{1}{1+p}-\frac{p}{(1+p)^{2}}\right)}{p-\frac{p}{1+p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{1}{p^{2}(1+p)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{x(p)}{p^{2}(1+p)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{p^{2}(1+p)} d p} \\
& =\mathrm{e}^{-\ln (1+p)+\frac{1}{p}+\ln (p)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{p \mathrm{e}^{\frac{1}{p}}}{1+p}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{p \mathrm{e}^{\frac{1}{p}} x}{1+p}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{p \mathrm{e}^{\frac{1}{p}} x}{1+p}=c_{5}
$$

Dividing both sides by the integrating factor $\mu=\frac{p \mathrm{e}^{\frac{1}{p}}}{1+p}$ results in

$$
x(p)=\frac{c_{5}(1+p) \mathrm{e}^{-\frac{1}{p}}}{p}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=\frac{y}{x-y}
$$

Substituting the above in the solution for x found above gives

$$
x=\frac{c_{5} x \mathrm{e}^{\frac{-x+y}{y}}}{y}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& y=2 x \tag{2}\\
& x=-\frac{c_{3} x}{(x-y) \sqrt{-\frac{y}{x-y}} \sqrt{\frac{-2 x+y}{x-y}}} \tag{3}\\
& y=0 \tag{4}\\
& x=\frac{c_{5} x \mathrm{e}^{\frac{-x+y}{y}}}{y} \tag{5}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
y=2 x
$$

Verified OK.

$$
x=-\frac{c_{3} x}{(x-y) \sqrt{-\frac{y}{x-y}} \sqrt{\frac{-2 x+y}{x-y}}}
$$

Verified OK.

$$
y=0
$$

Verified OK.

$$
x=\frac{c_{5} x \mathrm{e}^{\frac{-x+y}{y}}}{y}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 47
dsolve($(x-y(x))^{\wedge} 2 * \operatorname{diff}(y(x), x)^{\wedge} 2=y(x) \sim 2, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=x-\sqrt{x^{2}-2 c_{1}} \\
& y(x)=x+\sqrt{x^{2}-2 c_{1}} \\
& y(x)=-\frac{x}{\text { LambertW }\left(-x \mathrm{e}^{-c_{1}}\right)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 4.446 (sec). Leaf size: 99
DSolve $[(x-y[x]) \sim 2 *(y '[x]) \wedge 2==y[x] \sim 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow x-\sqrt{x^{2}-e^{2 c_{1}}} \\
& y(x) \rightarrow x+\sqrt{x^{2}-e^{2 c_{1}}} \\
& y(x) \rightarrow-\frac{x}{W\left(-e^{-c_{1}} x\right)} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow x-\sqrt{x^{2}} \\
& y(x) \rightarrow \sqrt{x^{2}}+x
\end{aligned}
$$

1.14 problem 14

$$
\text { 1.14.1 Maple step by step solution . } 63
$$

Internal problem ID [6780]
Internal file name [OUTPUT/6027_Monday_July_25_2022_01_59_58_AM_88349000/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 14.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "exact", "quadrature", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_quadrature]
```

$$
x y y^{\prime 2}+\left(x y^{2}-1\right) y^{\prime}-y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=-y \tag{1}\\
& y^{\prime}=\frac{1}{x y} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{y} d y & =\int d x \\
-\ln (y) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{y}=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-x}}{c_{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{-x}}{c_{2}}
$$

Verified OK.
Solving equation (2)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{1}{y x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =\frac{1}{x} d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int \frac{1}{x} d x \\
\frac{y^{2}}{2} & =\ln (x)+c_{3}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{2 \ln (x)+2 c_{3}} \\
& y=-\sqrt{2 \ln (x)+2 c_{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{2 \ln (x)+2 c_{3}} \tag{1}\\
& y=-\sqrt{2 \ln (x)+2 c_{3}} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\sqrt{2 \ln (x)+2 c_{3}}
$$

Verified OK.

$$
y=-\sqrt{2 \ln (x)+2 c_{3}}
$$

Verified OK.

1.14.1 Maple step by step solution

Let's solve
$x y y^{2}+\left(x y^{2}-1\right) y^{\prime}-y=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=-1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int(-1) d x+c_{1}$
- Evaluate integral
$\ln (y)=-x+c_{1}$
- \quad Solve for y

$$
y=\mathrm{e}^{-x+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

```
dsolve(x*y(x)*diff (y(x), x)^2+(x*y(x)^2-1)*diff(y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{2 \ln (x)+c_{1}} \\
& y(x)=-\sqrt{2 \ln (x)+c_{1}} \\
& y(x)=c_{1} \mathrm{e}^{-x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 57
DSolve $[x * y[x] *(y \prime[x]) \wedge 2+(x * y[x] \sim 2-1) * y '[x]-y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-x} \\
& y(x) \rightarrow-\sqrt{2} \sqrt{\log (x)+c_{1}} \\
& y(x) \rightarrow \sqrt{2} \sqrt{\log (x)+c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.15 problem 15

$$
\text { 1.15.1 Solving as dAlembert ode . } 65
$$

Internal problem ID [6781]
Internal file name [OUTPUT/6028_Tuesday_July_26_2022_05_04_37_AM_9550685/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 15 .
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
\left(x^{2}+y^{2}\right)^{2} y^{\prime 2}-4 y^{2} x^{2}=0
$$

1.15.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
\left(x^{2}+y^{2}\right)^{2} p^{2}-4 y^{2} x^{2}=0
$$

Solving for y from the above results in

$$
\begin{align*}
& y=\frac{\left(1+\sqrt{-p^{2}+1}\right) x}{p} \tag{1~A}\\
& y=-\frac{\left(-1+\sqrt{-p^{2}+1}\right) x}{p} \tag{2~A}\\
& y=\frac{\left(-1+\sqrt{-p^{2}+1}\right) x}{p} \tag{3~A}\\
& y=-\frac{\left(1+\sqrt{-p^{2}+1}\right) x}{p} \tag{4~A}
\end{align*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. Each of the above ode's is dAlembert ode which is now solved. Solving ode 1A Taking derivative of $\left(^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{1+\sqrt{-p^{2}+1}}{p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{1+\sqrt{-p^{2}+1}}{p}=x\left(-\frac{1}{\sqrt{-p^{2}+1}}-\frac{1+\sqrt{-p^{2}+1}}{p^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{1+\sqrt{-p^{2}+1}}{p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=1 \\
& p=-1
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-x \\
& y=x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{1+\sqrt{-p(x)^{2}+1}}{p(x)}}{x\left(-\frac{1}{\sqrt{-p(x)^{2}+1}}-\frac{1+\sqrt{-p(x)^{2}+1}}{p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.

Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(-\frac{1}{\sqrt{-p^{2}+1}}-\frac{1+\sqrt{-p^{2}+1}}{p^{2}}\right)}{p-\frac{1+\sqrt{-p^{2}+1}}{p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{1+\sqrt{-p^{2}+1}}{\sqrt{-p^{2}+1} p\left(-p^{2}+\sqrt{-p^{2}+1}+1\right)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{x(p)\left(1+\sqrt{-p^{2}+1}\right)}{p \sqrt{-p^{2}+1}\left(-p^{2}+\sqrt{-p^{2}+1}+1\right)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\left.\int-\frac{1+\sqrt{-p^{2}+1}}{\sqrt{-p^{2}+1} p\left(-p^{2}+\sqrt{-p^{2}+1}+1\right.}\right)} d p \\
& =\mathrm{e}^{\frac{\ln (p+1)}{2}+\frac{\ln (p-1)}{2}-\ln (p)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\sqrt{p+1} \sqrt{p-1}}{p}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{\sqrt{p+1} \sqrt{p-1} x}{p}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{\sqrt{p+1} \sqrt{p-1} x}{p}=c_{3}
$$

Dividing both sides by the integrating factor $\mu=\frac{\sqrt{p+1} \sqrt{p-1}}{p}$ results in

$$
x(p)=\frac{c_{3} p}{\sqrt{p+1} \sqrt{p-1}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=\frac{2 x y}{x^{2}+y^{2}}
$$

Substituting the above in the solution for x found above gives

$$
x=\frac{2 c_{3} x y}{\sqrt{\frac{(x+y)^{2}}{x^{2}+y^{2}}} \sqrt{-\frac{(x-y)^{2}}{x^{2}+y^{2}}}\left(x^{2}+y^{2}\right)}
$$

Solving ode 2A Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{1-\sqrt{-p^{2}+1}}{p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{1-\sqrt{-p^{2}+1}}{p}=x\left(\frac{1}{\sqrt{-p^{2}+1}}-\frac{1-\sqrt{-p^{2}+1}}{p^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{1-\sqrt{-p^{2}+1}}{p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=1 \\
& p=-1
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-x \\
& y=x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{1-\sqrt{-p(x)^{2}+1}}{p(x)}}{x\left(\frac{1}{\sqrt{-p(x)^{2}+1}}-\frac{1-\sqrt{-p(x)^{2}+1}}{p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(\frac{1}{\sqrt{-p^{2}+1}}-\frac{1-\sqrt{-p^{2}+1}}{p^{2}}\right)}{p-\frac{1-\sqrt{-p^{2}+1}}{p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{-1+\sqrt{-p^{2}+1}}{\sqrt{-p^{2}+1} p\left(p^{2}+\sqrt{-p^{2}+1}-1\right)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{x(p)\left(-1+\sqrt{-p^{2}+1}\right)}{\sqrt{-p^{2}+1} p\left(p^{2}+\sqrt{-p^{2}+1}-1\right)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\left.\int \frac{-1+\sqrt{-p^{2}+1}}{\sqrt{-p^{2}+1} p\left(p^{2}+\sqrt{-p^{2}+1}-1\right.}\right)} d p \\
& =\mathrm{e}^{\frac{\ln (p+1)}{2}+\frac{\ln (p-1)}{2}-\ln (p)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\sqrt{p+1} \sqrt{p-1}}{p}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{\sqrt{p+1} \sqrt{p-1} x}{p}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{\sqrt{p+1} \sqrt{p-1} x}{p}=c_{6}
$$

Dividing both sides by the integrating factor $\mu=\frac{\sqrt{p+1} \sqrt{p-1}}{p}$ results in

$$
x(p)=\frac{c_{6} p}{\sqrt{p+1} \sqrt{p-1}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=\frac{2 x y}{x^{2}+y^{2}}
$$

Substituting the above in the solution for x found above gives

$$
x=\frac{2 c_{6} x y}{\sqrt{\frac{(x+y)^{2}}{x^{2}+y^{2}}} \sqrt{-\frac{(x-y)^{2}}{x^{2}+y^{2}}}\left(x^{2}+y^{2}\right)}
$$

Solving ode 3A Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{-1+\sqrt{-p^{2}+1}}{p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{-1+\sqrt{-p^{2}+1}}{p}=x\left(-\frac{1}{\sqrt{-p^{2}+1}}-\frac{-1+\sqrt{-p^{2}+1}}{p^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{-1+\sqrt{-p^{2}+1}}{p}=0
$$

No singular solution are found
The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{-1+\sqrt{-p(x)^{2}+1}}{p(x)}}{x\left(-\frac{1}{\sqrt{-p(x)^{2}+1}}-\frac{-1+\sqrt{-p(x)^{2}+1}}{p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(-\frac{1}{\sqrt{-p^{2}+1}}-\frac{-1+\sqrt{-p^{2}+1}}{p^{2}}\right)}{p-\frac{-1+\sqrt{-p^{2}+1}}{p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{-1+\sqrt{-p^{2}+1}}{\left(p^{2}-\sqrt{-p^{2}+1}+1\right) \sqrt{-p^{2}+1} p} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{\left(-1+\sqrt{-p^{2}+1}\right) x(p)}{\left(p^{2}-\sqrt{-p^{2}+1}+1\right) \sqrt{-p^{2}+1} p}=0
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\int-\frac{-1+\sqrt{-p^{2}+1}}{\left(p^{2}-\sqrt{-p^{2}+1}+1\right) \sqrt{-p^{2}+1} p}} d p
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\mathrm{e}^{\left.\int-\frac{-1+\sqrt{-p^{2}+1}}{\left(p^{2}-\sqrt{-p^{2}+1}+1\right.}\right) \sqrt{-p^{2}+1} p}\right. & x \\
& =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{\int-\frac{-1+\sqrt{-p^{2}+1}}{\left(p^{2}-\sqrt{-p^{2}+1}+1\right) \sqrt{-p^{2}+1} p}} d p x=c_{8}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\int-\frac{-1+\sqrt{-p^{2}+1}}{\left(p^{2}-\sqrt{-p^{2}+1}+1\right) \sqrt{-p^{2}+1} p} d p}$ results in

$$
\left.x(p)=c_{8} \mathrm{e}^{-\left(\int \frac{-1+\sqrt{-p^{2}+1}}{\sqrt{-p^{2}+1} p\left(-p^{2}+\sqrt{-p^{2}+1}-1\right.}\right)} d p\right)
$$

Since the solution $x(p)$ has unresolved integral, unable to continue.
Solving ode 4A Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{-1-\sqrt{-p^{2}+1}}{p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{-1-\sqrt{-p^{2}+1}}{p}=x\left(\frac{1}{\sqrt{-p^{2}+1}}-\frac{-1-\sqrt{-p^{2}+1}}{p^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{-1-\sqrt{-p^{2}+1}}{p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=i \sqrt{3} \\
& p=-i \sqrt{3}
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-i \sqrt{3} x \\
& y=i \sqrt{3} x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{-1-\sqrt{-p(x)^{2}+1}}{p(x)}}{x\left(\frac{1}{\sqrt{-p(x)^{2}+1}}-\frac{-1-\sqrt{-p(x)^{2}+1}}{p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(\frac{1}{\sqrt{-p^{2}+1}}-\frac{-1-\sqrt{-p^{2}+1}}{p^{2}}\right)}{p-\frac{-1-\sqrt{-p^{2}+1}}{p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{1+\sqrt{-p^{2}+1}}{\sqrt{-p^{2}+1} p\left(p^{2}+\sqrt{-p^{2}+1}+1\right)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{x(p)\left(1+\sqrt{-p^{2}+1}\right)}{p \sqrt{-p^{2}+1}\left(p^{2}+\sqrt{-p^{2}+1}+1\right)}=0
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\left.\int-\frac{1+\sqrt{-p^{2}+1}}{\sqrt{-p^{2}+1} p\left(p^{2}+\sqrt{-p^{2}+1}+1\right.}\right)} d p
$$

The ode becomes

$$
\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\mathrm{e}^{\left.\int-\frac{1+\sqrt{-p^{2}+1}}{\sqrt{-p^{2}+1} p\left(p^{2}+\sqrt{-p^{2}+1}+1\right.}\right)}\right. & d p \\
x
\end{array}\right)=0
$$

Integrating gives

$$
\mathrm{e}^{\left.\int-\frac{1+\sqrt{-p^{2}+1}}{\sqrt{-p^{2}+1} p\left(p^{2}+\sqrt{-p^{2}+1}+1\right.}\right)} d p x=\text { C10 }
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\left.\int-\frac{1+\sqrt{-p^{2}+1}}{\sqrt{-p^{2}+1 p}\left(p^{2}+\sqrt{-p^{2}+1}+1\right.}\right)} d p$ results in

$$
x(p)=-C 10 \mathrm{e}^{\left.\int \frac{1+\sqrt{-p^{2}+1}}{\sqrt{-p^{2}+1} p\left(p^{2}+\sqrt{-p^{2}+1}+1\right.}\right)} d p
$$

Since the solution $x(p)$ has unresolved integral, unable to continue.
Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-x \tag{1}\\
& y=x \tag{2}\\
& x=\frac{2 c_{3} x y}{\sqrt{\frac{(x+y)^{2}}{x^{2}+y^{2}}} \sqrt{-\frac{(x-y)^{2}}{x^{2}+y^{2}}}\left(x^{2}+y^{2}\right)} \tag{3}\\
& y=-x \tag{4}\\
& y=x \tag{5}\\
& x=\frac{2 c_{6} x y}{\sqrt{\frac{(x+y)^{2}}{x^{2}+y^{2}}} \sqrt{-\frac{(x-y)^{2}}{x^{2}+y^{2}}}\left(x^{2}+y^{2}\right)} \tag{6}\\
& y=-i \sqrt{3} x \tag{7}\\
& y=i \sqrt{3} x \tag{8}
\end{align*}
$$

Verification of solutions

$$
y=-x
$$

Verified OK.

$$
y=x
$$

Verified OK.

$$
x=\frac{2 c_{3} x y}{\sqrt{\frac{(x+y)^{2}}{x^{2}+y^{2}}} \sqrt{-\frac{(x-y)^{2}}{x^{2}+y^{2}}}\left(x^{2}+y^{2}\right)}
$$

Verified OK.

$$
y=-x
$$

Verified OK.

$$
y=x
$$

Verified OK.

$$
x=\frac{2 c_{6} x y}{\sqrt{\frac{(x+y)^{2}}{x^{2}+y^{2}}} \sqrt{-\frac{(x-y)^{2}}{x^{2}+y^{2}}}\left(x^{2}+y^{2}\right)}
$$

Verified OK.

$$
y=-i \sqrt{3} x
$$

Verified OK.

$$
y=i \sqrt{3} x
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.141 (sec). Leaf size: 255

```
dsolve(( x^2+y(x)^2)^ 2*diff(y(x),x)^2=4*x^2*y(x)^2,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{1-\sqrt{4 x^{2} c_{1}^{2}+1}}{2 c_{1}} \\
& y(x)=\frac{1+\sqrt{4 x^{2} c_{1}^{2}+1}}{2 c_{1}} \\
& y(x)=-\frac{2\left(c_{1} x^{2}-\frac{\left(4+4 \sqrt{4 c_{1}^{3} x^{6}+1}\right)^{\frac{2}{3}}}{4}\right)}{\sqrt{c_{1}}\left(4+4 \sqrt{4 c_{1}^{3} x^{6}+1}\right)^{\frac{1}{3}}} \\
& y(x)=-\frac{(1+i \sqrt{3})\left(4+4 \sqrt{4 c_{1}^{3} x^{6}+1}\right)^{\frac{1}{3}}}{4 \sqrt{c_{1}}}-\frac{(i \sqrt{3}-1) x^{2} \sqrt{c_{1}}}{\left(4+4 \sqrt{4 c_{1}^{3} x^{6}+1}\right)^{\frac{1}{3}}} \\
& y(x)=\frac{4 i \sqrt{3} c_{1} x^{2}+i \sqrt{3}\left(4+4 \sqrt{4 c_{1}^{3} x^{6}+1}\right)^{\frac{2}{3}}+4 c_{1} x^{2}-\left(4+4 \sqrt{4 c_{1}^{3} x^{6}+1}\right)^{\frac{2}{3}}}{4\left(4+4 \sqrt{4 c_{1}^{3} x^{6}+1}\right)^{\frac{1}{3}} \sqrt{c_{1}}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 15.845 (sec). Leaf size: 345
DSolve $\left[\left(x^{\wedge} 2+y[x] \wedge 2\right) \wedge 2 *(y '[x]) \wedge 2==4 * x^{\wedge} 2 * y[x] \wedge 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(-\sqrt{4 x^{2}+e^{2 c_{1}}}-e^{c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(\sqrt{4 x^{2}+e^{2 c_{1}}}-e^{c_{1}}\right) \\
& y(x) \rightarrow \frac{\sqrt[3]{\sqrt{4 x^{6}+e^{6 c_{1}}}+e^{3 c_{1}}}-\frac{\sqrt[3]{2} x^{2}}{\sqrt[3]{2}}}{\sqrt[3]{\sqrt{4 x^{6}+e^{6 c_{1}}}+e^{3 c_{1}}}} \\
& y(x) \rightarrow \frac{i 2^{2 / 3}(\sqrt{3}+i)\left(\sqrt{4 x^{6}+e^{6 c_{1}}}+e^{3 c_{1}}\right){ }^{2 / 3}+\sqrt[3]{2}(2+2 i \sqrt{3}) x^{2}}{4 \sqrt[3]{\sqrt{4 x^{6}+e^{6 c_{1}}}+e^{3 c_{1}}}} \\
& y(x) \rightarrow \frac{(1-i \sqrt{3}) x^{2}}{2^{2 / 3} \sqrt[3]{\sqrt{4 x^{6}+e^{6 c_{1}}}+e^{3 c_{1}}}}-\frac{(1+i \sqrt{3}) \sqrt[3]{\sqrt{4 x^{6}+e^{6 c_{1}}}+e^{3 c_{1}}}}{2 \sqrt[3]{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.16 problem 16

$$
\text { 1.16.1 Solving as dAlembert ode . } 79
$$

Internal problem ID [6782]
Internal file name [OUTPUT/6029_Tuesday_July_26_2022_05_04_40_AM_96206336/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 16.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
(x+y)^{2} y^{\prime 2}+\left(2 y^{2}+x y-x^{2}\right) y^{\prime}+y(-x+y)=0
$$

1.16.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
(x+y)^{2} p^{2}+\left(-x^{2}+x y+2 y^{2}\right) p+y(-x+y)=0
$$

Solving for y from the above results in

$$
\begin{align*}
& y=-\frac{(p-1) x}{1+p} \tag{1~A}\\
& y=-\frac{x p}{1+p} \tag{2~A}
\end{align*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. Each of the above ode's is dAlembert ode which is now solved. Solving ode 1A Taking derivative of $\left(^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{-p+1}{1+p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{-p+1}{1+p}=x\left(-\frac{1}{1+p}-\frac{-p+1}{(1+p)^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{-p+1}{1+p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=\sqrt{2}-1 \\
& p=-1-\sqrt{2}
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-x-x \sqrt{2} \\
& y=-x+x \sqrt{2}
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{-p(x)+1}{1+p(x)}}{x\left(-\frac{1}{1+p(x)}-\frac{-p(x)+1}{(1+p(x))^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(-\frac{1}{1+p}-\frac{-p+1}{(1+p)^{2}}\right)}{p-\frac{-p+1}{1+p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
p(p) & =\frac{2}{\left(p^{2}+2 p-1\right)(1+p)} \\
q(p) & =0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{2 x(p)}{\left(p^{2}+2 p-1\right)(1+p)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{\left(p^{2}+2 p-1\right)(1+p)} d p} \\
& =\mathrm{e}^{-\ln (1+p)+\frac{\ln \left(p^{2}+2 p-1\right)}{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\sqrt{p^{2}+2 p-1}}{1+p}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{\sqrt{p^{2}+2 p-1} x}{1+p}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{\sqrt{p^{2}+2 p-1} x}{1+p}=c_{3}
$$

Dividing both sides by the integrating factor $\mu=\frac{\sqrt{p^{2}+2 p-1}}{1+p}$ results in

$$
x(p)=\frac{c_{3}(1+p)}{\sqrt{p^{2}+2 p-1}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=\frac{x-y}{x+y}
$$

Substituting the above in the solution for x found above gives

$$
x=\frac{c_{3} x \sqrt{2}}{(x+y) \sqrt{\frac{x^{2}-2 x y-y^{2}}{(x+y)^{2}}}}
$$

$\underline{\text { Solving ode 2A Taking derivative of }(*) \text { w.r.t. } x \text { gives }}$

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=-\frac{p}{1+p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p+\frac{p}{1+p}=x\left(-\frac{1}{1+p}+\frac{p}{(1+p)^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p+\frac{p}{1+p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=-2 \\
& p=0
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-2 x \\
& y=0
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)+\frac{p(x)}{1+p(x)}}{x\left(-\frac{1}{1+p(x)}+\frac{p(x)}{(1+p(x))^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(-\frac{1}{1+p}+\frac{p}{(1+p)^{2}}\right)}{p+\frac{p}{1+p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{1}{(2+p) p(1+p)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{x(p)}{(2+p) p(1+p)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{(2+p) p(1+p)} d p} \\
& =\mathrm{e}^{-\ln (1+p)+\frac{\ln (p)}{2}+\frac{\ln (2+p)}{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\sqrt{p} \sqrt{2+p}}{1+p}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\frac{\sqrt{p} \sqrt{2+p} x}{1+p}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{\sqrt{p} \sqrt{2+p} x}{1+p}=c_{6}
$$

Dividing both sides by the integrating factor $\mu=\frac{\sqrt{p} \sqrt{2+p}}{1+p}$ results in

$$
x(p)=\frac{c_{6}(1+p)}{\sqrt{p} \sqrt{2+p}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=-\frac{y}{x+y}
$$

Substituting the above in the solution for x found above gives

$$
x=\frac{c_{6} x}{(x+y) \sqrt{-\frac{y}{x+y}} \sqrt{\frac{2 x+y}{x+y}}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-x-x \sqrt{2} \tag{1}\\
& y=-x+x \sqrt{2} \tag{2}\\
& x=\frac{c_{3} x \sqrt{2}}{(x+y) \sqrt{\frac{x^{2}-2 x y-y^{2}}{(x+y)^{2}}}} \tag{3}\\
& y=-2 x \tag{4}\\
& y=0 \tag{5}\\
& x=\frac{c_{6} x}{(x+y) \sqrt{-\frac{y}{x+y}} \sqrt{\frac{2 x+y}{x+y}}} \tag{6}
\end{align*}
$$

Verification of solutions

$$
y=-x-x \sqrt{2}
$$

Verified OK.

$$
y=-x+x \sqrt{2}
$$

Verified OK.

$$
x=\frac{c_{3} x \sqrt{2}}{(x+y) \sqrt{\frac{x^{2}-2 x y-y^{2}}{(x+y)^{2}}}}
$$

Verified OK.

$$
y=-2 x
$$

Verified OK.

$$
y=0
$$

Verified OK.

$$
x=\frac{c_{6} x}{(x+y) \sqrt{-\frac{y}{x+y}} \sqrt{\frac{2 x+y}{x+y}}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

Solution by Maple
Time used: 0.078 (sec). Leaf size: 85

```
dsolve((y(x)+x)^2*diff (y(x),x)^2+(2*y(x)^2+x*y(x)-x^2)*\operatorname{diff}(y(x),x)+y(x)*(y(x)-x)=0,y(x),
```

$$
\begin{aligned}
& y(x)=-x-\sqrt{x^{2}+2 c_{1}} \\
& y(x)=-x+\sqrt{x^{2}+2 c_{1}} \\
& y(x)=\frac{-c_{1} x-\sqrt{2 x^{2} c_{1}^{2}+1}}{c_{1}} \\
& y(x)=\frac{-c_{1} x+\sqrt{2 x^{2} c_{1}^{2}+1}}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.492 (sec). Leaf size: 172
DSolve $\left[(y[x]+x)^{\wedge} 2 *(y '[x])^{\wedge} 2+\left(2 * y[x] \sim 2+x * y[x]-x^{\wedge} 2\right) * y '[x]+y[x] *(y[x]-x)==0, y[x], x\right.$, IncludeSingu

$$
\begin{aligned}
& y(x) \rightarrow-x-\sqrt{x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-x+\sqrt{x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-x-\sqrt{2 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-x+\sqrt{2 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-\sqrt{x^{2}}-x \\
& y(x) \rightarrow \sqrt{x^{2}}-x \\
& y(x) \rightarrow-\sqrt{2} \sqrt{x^{2}}-x \\
& y(x) \rightarrow \sqrt{2} \sqrt{x^{2}}-x
\end{aligned}
$$

1.17 problem 17

$$
\text { 1.17.1 Solving as dAlembert ode . } 88
$$

Internal problem ID [6783]
Internal file name [OUTPUT/6030_Tuesday_July_26_2022_05_04_42_AM_73131458/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 17.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
x y\left(x^{2}+y^{2}\right)\left(y^{\prime 2}-1\right)-y^{\prime}\left(x^{4}+y^{2} x^{2}+y^{4}\right)=0
$$

1.17.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
x y\left(x^{2}+y^{2}\right)\left(p^{2}-1\right)-p\left(x^{4}+y^{2} x^{2}+y^{4}\right)=0
$$

Solving for y from the above results in

$$
\begin{align*}
& y=\frac{\left(-1+\sqrt{-4 p^{2}+1}\right) x}{2 p} \tag{1~A}\\
& y=-\frac{\left(1+\sqrt{-4 p^{2}+1}\right) x}{2 p} \tag{2~A}\\
& y=\left(\frac{p}{2}+\frac{\sqrt{p^{2}-4}}{2}\right) x \tag{3~A}\\
& y=\left(\frac{p}{2}-\frac{\sqrt{p^{2}-4}}{2}\right) x \tag{4~A}
\end{align*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. Each of the above ode's is dAlembert ode which is now solved. Solving ode 1A Taking derivative of $\left(^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{-1+\sqrt{-4 p^{2}+1}}{2 p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{-1+\sqrt{-4 p^{2}+1}}{2 p}=x\left(-\frac{-1+\sqrt{-4 p^{2}+1}}{2 p^{2}}-\frac{2}{\sqrt{-4 p^{2}+1}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{-1+\sqrt{-4 p^{2}+1}}{2 p}=0
$$

No singular solution are found
The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{-1+\sqrt{-4 p(x)^{2}+1}}{2 p(x)}}{x\left(-\frac{-1+\sqrt{-4 p(x)^{2}+1}}{2 p(x)^{2}}-\frac{2}{\sqrt{-4 p(x)^{2}+1}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(-\frac{-1+\sqrt{-4 p^{2}+1}}{2 p^{2}}-\frac{2}{\sqrt{-4 p^{2}+1}}\right)}{p-\frac{-1+\sqrt{-4 p^{2}+1}}{2 p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{1-\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(-2 p^{2}+\sqrt{-4 p^{2}+1}-1\right)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{x(p)\left(1-\sqrt{-4 p^{2}+1}\right)}{p \sqrt{-4 p^{2}+1}\left(-2 p^{2}+\sqrt{-4 p^{2}+1}-1\right)}=0
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\left.\int-\frac{1-\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(-2 p^{2}+\sqrt{-4 p^{2}+1}-1\right.}\right)} d p
$$

The ode becomes

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x=0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\mathrm{e}^{\left.\int-\frac{1-\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(-2 p^{2}+\sqrt{-4 p^{2}+1}-1\right.}\right)} \mathrm{dp}\right. \\
x)=0
\end{array}
$$

Integrating gives

$$
\mathrm{e}^{\left.\int-\frac{1-\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(-2 p^{2}+\sqrt{-4 p^{2}+1}-1\right.}\right)} d p x=c_{2}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\left.\int-\frac{1-\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(-2 p^{2}+\sqrt{-4 p^{2}+1}-1\right.}\right)}$ results in

$$
\left.x(p)=c_{2} \mathrm{e}^{-\left(\int \frac{-1+\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(-2 p^{2}+\sqrt{-4 p^{2}+1}-1\right.}\right)} d p\right)
$$

Since the solution $x(p)$ has unresolved integral, unable to continue.
$\underline{\text { Solving ode 2A Taking derivative of }(*) \text { w.r.t. } x \text { gives }}$

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{-1-\sqrt{-4 p^{2}+1}}{2 p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{-1-\sqrt{-4 p^{2}+1}}{2 p}=x\left(-\frac{-1-\sqrt{-4 p^{2}+1}}{2 p^{2}}+\frac{2}{\sqrt{-4 p^{2}+1}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{-1-\sqrt{-4 p^{2}+1}}{2 p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=i \sqrt{2} \\
& p=-i \sqrt{2}
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-i \sqrt{2} x \\
& y=i \sqrt{2} x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{-1-\sqrt{-4 p(x)^{2}+1}}{2 p(x)}}{x\left(-\frac{-1-\sqrt{-4 p(x)^{2}+1}}{2 p(x)^{2}}+\frac{2}{\sqrt{-4 p(x)^{2}+1}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(-\frac{-1-\sqrt{-4 p^{2}+1}}{2 p^{2}}+\frac{2}{\sqrt{-4 p^{2}+1}}\right)}{p-\frac{-1-\sqrt{-4 p^{2}+1}}{2 p}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{1+\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(2 p^{2}+\sqrt{-4 p^{2}+1}+1\right)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{x(p)\left(1+\sqrt{-4 p^{2}+1}\right)}{p \sqrt{-4 p^{2}+1}\left(2 p^{2}+\sqrt{-4 p^{2}+1}+1\right)}=0
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\left.\int-\frac{1+\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(2 p^{2}+\sqrt{-4 p^{2}+1}+1\right.}\right)} d p
$$

The ode becomes

$$
\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\mathrm{e}^{\left.\int-\frac{1+\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(2 p^{2}+\sqrt{-4 p^{2}+1}+1\right.}\right)} d p\right. \\
x
\end{array}\right)=0
$$

Integrating gives

$$
\mathrm{e}^{\int-\frac{1+\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(2 p^{2}+\sqrt{-4 p^{2}+1}+1\right)}} d p x=c_{4}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\left.\int-\frac{1+\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(2 p^{2}+\sqrt{-4 p^{2}+1}+1\right.}\right)} d p$ results in

$$
x(p)=c_{4} \mathrm{e}^{\left.\int \frac{1+\sqrt{-4 p^{2}+1}}{p \sqrt{-4 p^{2}+1}\left(2 p^{2}+\sqrt{-4 p^{2}+1}+1\right.}\right)} d p
$$

Since the solution $x(p)$ has unresolved integral, unable to continue.
$\underline{\text { Solving ode 3A Taking derivative of }\left({ }^{*}\right) \text { w.r.t. } x \text { gives } ~}$

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p}{2}+\frac{\sqrt{p^{2}-4}}{2} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
\frac{p}{2}-\frac{\sqrt{p^{2}-4}}{2}=x\left(\frac{1}{2}+\frac{p}{2 \sqrt{p^{2}-4}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
\frac{p}{2}-\frac{\sqrt{p^{2}-4}}{2}=0
$$

No singular solution are found
The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{\frac{p(x)}{2}-\frac{\sqrt{p(x)^{2}-4}}{2}}{x\left(\frac{1}{2}+\frac{p(x)}{2 \sqrt{p(x)^{2}-4}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(\frac{1}{2}+\frac{p}{2 \sqrt{p^{2}-4}}\right)}{\frac{p}{2}-\frac{\sqrt{p^{2}-4}}{2}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{p+\sqrt{p^{2}-4}}{\sqrt{p^{2}-4}\left(p-\sqrt{p^{2}-4}\right)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{\left(p+\sqrt{p^{2}-4}\right) x(p)}{\sqrt{p^{2}-4}\left(p-\sqrt{p^{2}-4}\right)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{p+\sqrt{p^{2}-4}}{\sqrt{p^{2}-4}\left(p-\sqrt{p^{2}-4}\right)} d p} \\
& =\mathrm{e}^{-\frac{\sqrt{p^{2}-4} p}{4}-\frac{p^{2}}{4}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\mathrm{e}^{-\frac{\sqrt{p^{2}-4} p}{4}-\frac{p^{2}}{4}} x\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-\frac{\sqrt{p^{2}-4} p}{4}-\frac{p^{2}}{4}} x=c_{6}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{\sqrt{p^{2}-4} p}{4}-\frac{p^{2}}{4}}$ results in

$$
x(p)=c_{6} \mathrm{e}^{\frac{\left(p+\sqrt{p^{2}-4}\right) p}{4}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=\frac{x^{2}+y^{2}}{x y}
$$

Substituting the above in the solution for x found above gives

Solving ode 4A Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p}{2}-\frac{\sqrt{p^{2}-4}}{2} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
\frac{p}{2}+\frac{\sqrt{p^{2}-4}}{2}=x\left(\frac{1}{2}-\frac{p}{2 \sqrt{p^{2}-4}}\right) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
\frac{p}{2}+\frac{\sqrt{p^{2}-4}}{2}=0
$$

No singular solution are found
The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{\frac{p(x)}{2}+\frac{\sqrt{p(x)^{2}-4}}{2}}{x\left(\frac{1}{2}-\frac{p(x)}{2 \sqrt{p(x)^{2}-4}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)\left(\frac{1}{2}-\frac{p}{2 \sqrt{p^{2}-4}}\right)}{\frac{p}{2}+\frac{\sqrt{p^{2}-4}}{2}} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{-p+\sqrt{p^{2}-4}}{\sqrt{p^{2}-4}\left(p+\sqrt{p^{2}-4}\right)} \\
& q(p)=0
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{x(p)\left(-p+\sqrt{p^{2}-4}\right)}{\sqrt{p^{2}-4}\left(p+\sqrt{p^{2}-4}\right)}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-p+\sqrt{p^{2}-4}}{\sqrt{p^{2}-4}\left(p+\sqrt{p^{2}-4}\right)} d p} \\
& =\mathrm{e}^{\frac{\sqrt{p^{2}-4} p}{4}-\frac{p^{2}}{4}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} p}\left(\mathrm{e}^{\frac{\sqrt{p^{2}-4} p}{4}-\frac{p^{2}}{4}} x\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{\frac{\sqrt{p^{2}-4} p}{4}-\frac{p^{2}}{4}} x=c_{8}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{\sqrt{p^{2}-4} p}{4}-\frac{p^{2}}{4}}$ results in

$$
x(p)=c_{8} \mathrm{e}^{-\frac{\left(-p+\sqrt{p^{2}-4}\right) p}{4}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=\frac{x^{2}+y^{2}}{x y}
$$

Substituting the above in the solution for x found above gives

$$
x=c_{8} \mathrm{e}^{\left(-\sqrt{\frac{\left(x^{2}-y^{2}\right)^{2}}{y^{2} x^{2}}} x y+x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)}{4 y^{2} x^{2}}^{\left(y^{2}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=-i \sqrt{2} x \tag{1}\\
& y=i \sqrt{2} x \tag{2}\\
& x=c_{6} \mathrm{e}^{\frac{\left(\sqrt{\frac{\left(x^{2}-y^{2}\right)^{2}}{y^{2} x^{2}} x y+x^{2}+y^{2}}\right)\left(x^{2}+y^{2}\right)}{4 y^{2} x^{2}}} \tag{3}\\
& x=c_{8} \mathrm{e}^{\frac{\left(-\sqrt{\frac{\left(x^{2}-y^{2}\right)^{2}}{y^{2} x^{2}}} x y+x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)}{4 y^{2} x^{2}}} \tag{4}
\end{align*}
$$

Verification of solutions

$$
y=-i \sqrt{2} x
$$

Verified OK.

$$
y=i \sqrt{2} x
$$

Verified OK.

$$
x=c_{6} \mathrm{e}^{\left(\sqrt{\frac{\left(x^{2}-y^{2}\right)^{2}}{y^{2} x^{2}}} x y+x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)}{4 y^{2} x^{2}}^{\left(y^{2}\right)}
$$

Verified OK.

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 1.015 (sec). Leaf size: 248
dsolve $\left(x * y(x) *\left(x^{\wedge} 2+y(x) \wedge 2\right) *\left(\operatorname{diff}(y(x), x)^{\wedge}-1\right)=\operatorname{diff}(y(x), x) *\left(x^{\wedge} 4+x^{\wedge} 2 * y(x) \wedge 2+y(x) \wedge 4\right), y(x), \quad \sin \right.$

$$
\begin{aligned}
& y(x)=\frac{\sqrt{x^{2} c_{1}\left(c_{1} x^{2}-\sqrt{c_{1}^{2} x^{4}+1}\right)}}{x\left(c_{1} x^{2}-\sqrt{c_{1}^{2} x^{4}+1}\right) c_{1}} \\
& y(x)=\frac{\sqrt{x^{2} c_{1}\left(c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}\right)}}{x\left(c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}\right) c_{1}} \\
& y(x)=\frac{\sqrt{x^{2} c_{1}\left(c_{1} x^{2}-\sqrt{c_{1}^{2} x^{4}+1}\right)}}{x\left(-c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}\right) c_{1}} \\
& y(x)=-\frac{\sqrt{x^{2} c_{1}\left(c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}\right)}}{x\left(c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}\right) c_{1}} \\
& y(x)=\sqrt{2 \ln (x)+c_{1} x} \\
& y(x)=-\sqrt{2 \ln (x)+c_{1} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 9.298 (sec). Leaf size: 248
DSolve $\left[x * y[x] *\left(x^{\wedge} 2+y[x] \wedge 2\right) *((y '[x]) \wedge 2-1)==y \prime[x] *\left(x^{\wedge} 4+x^{\wedge} 2 * y[x] \wedge 2+y[x] \wedge 4\right), y[x], x\right.$, IncludeSingul

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-x^{2}-\sqrt{x^{4}+e^{4 c_{1}}}} \\
& y(x) \rightarrow \sqrt{-x^{2}-\sqrt{x^{4}+e^{4 c_{1}}}} \\
& y(x) \rightarrow-\sqrt{-x^{2}+\sqrt{x^{4}+e^{4 c_{1}}}} \\
& y(x) \rightarrow \sqrt{-x^{2}+\sqrt{x^{4}+e^{4 c_{1}}}} \\
& y(x) \rightarrow-x \sqrt{2 \log (x)+c_{1}} \\
& y(x) \rightarrow x \sqrt{2 \log (x)+c_{1}} \\
& y(x) \rightarrow-\sqrt{-\sqrt{x^{4}}-x^{2}} \\
& y(x) \rightarrow \sqrt{-\sqrt{x^{4}}-x^{2}} \\
& y(x) \rightarrow-\sqrt{\sqrt{x^{4}}-x^{2}} \\
& y(x) \rightarrow \sqrt{\sqrt{x^{4}}-x^{2}}
\end{aligned}
$$

1.18 problem 18

$$
\text { 1.18.1 Maple step by step solution . } 103
$$

Internal problem ID [6784]
Internal file name [OUTPUT/6031_Tuesday_July_26_2022_05_04_44_AM_84731963/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 18.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "exact", "linear", "quadrature", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_quadrature]

$$
x y^{\prime 3}-\left(x^{2}+x+y\right) y^{\prime 2}+\left(x^{2}+x y+y\right) y^{\prime}-x y=0
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =1 \tag{1}\\
y^{\prime} & =x \tag{2}\\
y^{\prime} & =\frac{y}{x} \tag{3}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int 1 \mathrm{~d} x \\
& =x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x+c_{1}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{~d} x \\
& =\frac{x^{2}}{2}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{2}}{2}+c_{2}
$$

Verified OK.
Solving equation (3)
In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{3} \\
y & =\mathrm{e}^{\ln (x)+c_{3}} \\
& =c_{3} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{3} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{3} x
$$

Verified OK.

1.18.1 Maple step by step solution

Let's solve

$$
x y^{\prime 3}-\left(x^{2}+x+y\right) y^{\prime 2}+\left(x^{2}+x y+y\right) y^{\prime}-x y=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Integrate both sides with respect to x

$$
\int\left(x y^{\prime 3}-\left(x^{2}+x+y\right) y^{\prime 2}+\left(x^{2}+x y+y\right) y^{\prime}-x y\right) d x=\int 0 d x+c_{1}
$$

- Cannot compute integral

$$
\int\left(x y^{\prime 3}-\left(x^{2}+x+y\right) y^{\prime 2}+\left(x^{2}+x y+y\right) y^{\prime}-x y\right) d x=c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve $\left(x * \operatorname{diff}(y(x), x)^{\wedge} 3-\left(x^{\wedge} 2+x+y(x)\right) * \operatorname{diff}(y(x), x) \wedge 2+\left(x^{\wedge} 2+x * y(x)+y(x)\right) * \operatorname{diff}(y(x), x)-x * y(x)=0\right.$,

$$
\begin{aligned}
& y(x)=c_{1} x \\
& y(x)=x+c_{1} \\
& y(x)=\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 36
DSolve $\left[x *\left(y^{\prime}[x]\right) \wedge 3-\left(x^{\wedge} 2+x+y[x]\right) *\left(y^{\prime}[x]\right)^{\wedge} 2+\left(x^{\wedge} 2+x * y[x]+y[x]\right) * y '[x]-x * y[x]==0, y[x], x\right.$, IncludeSi

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x \\
& y(x) \rightarrow x+c_{1} \\
& y(x) \rightarrow \frac{x^{2}}{2}+c_{1} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.19 problem 19

$$
\text { 1.19.1 Maple step by step solution . } 106
$$

Internal problem ID [6785]
Internal file name [OUTPUT/6032_Tuesday_July_26_2022_05_04_44_AM_54275792/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EX-
ERCISES Page 309
Problem number: 19.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
x y y^{\prime 2}+(x+y) y^{\prime}=-1
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =-\frac{1}{y} \tag{1}\\
y^{\prime} & =-\frac{1}{x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int-y d y & =x+c_{1} \\
-\frac{y^{2}}{2} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\sqrt{-2 c_{1}-2 x} \\
& y_{2}=-\sqrt{-2 c_{1}-2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-2 c_{1}-2 x} \tag{1}\\
& y=-\sqrt{-2 c_{1}-2 x} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\sqrt{-2 c_{1}-2 x}
$$

Verified OK.

$$
y=-\sqrt{-2 c_{1}-2 x}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{1}{x} \mathrm{~d} x \\
& =-\ln (x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\ln (x)+c_{2}
$$

Verified OK.

1.19.1 Maple step by step solution

Let's solve

$$
x y y^{\prime 2}+(x+y) y^{\prime}=-1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int\left(x y y^{\prime 2}+(x+y) y^{\prime}\right) d x=\int(-1) d x+c_{1}
$$

- Cannot compute integral

$$
\int\left(x y y^{\prime 2}+(x+y) y^{\prime}\right) d x=-x+c_{1}
$$

Maple trace

-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 32
dsolve $\left(x * y(x) * \operatorname{diff}(y(x), x)^{\wedge} 2+(x+y(x)) * \operatorname{diff}(y(x), x)+1=0, y(x), \quad\right.$ singsol=all)

$$
\begin{aligned}
& y(x)=-\ln (x)+c_{1} \\
& y(x)=\sqrt{c_{1}-2 x} \\
& y(x)=-\sqrt{c_{1}-2 x}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.062 (sec). Leaf size: 53
DSolve $[x * y[x] *(y \prime[x]) \sim 2+(x+y[x]) * y '[x]+1==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{2} \sqrt{-x+c_{1}} \\
& y(x) \rightarrow \sqrt{2} \sqrt{-x+c_{1}} \\
& y(x) \rightarrow-\log (x)+c_{1}
\end{aligned}
$$

2 CHAPTER 16. Nonlinear equations. Section 97.The p-discriminant equation. EXERCISES Page314
2.1 problem 8 109
2.2 problem 9 114
2.3 problem 10 127
2.4 problem 11 133
2.5 problem 12 137]
2.6 problem 13 150
2.7 problem 14 163
2.8 problem 15 175
2.9 problem 16 182

2.1 problem 8

2.1.1 Solving as dAlembert ode . 109

Internal problem ID [6786]
Internal file name [OUTPUT/6033_Tuesday_July_26_2022_05_04_45_AM_33678810/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 8 .
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
x y^{\prime 2}-2 y^{\prime} y=-4 x
$$

2.1.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
x p^{2}-2 p y=-4 x
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{x\left(p^{2}+4\right)}{2 p} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p^{2}+4}{2 p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{p^{2}+4}{2 p}=x\left(1-\frac{p^{2}+4}{2 p^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{p^{2}+4}{2 p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=2 \\
& p=-2
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-2 x \\
& y=2 x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{p(x)^{2}+4}{2 p(x)}}{x\left(1-\frac{p(x)^{2}+4}{2 p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)-\frac{p(x)}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu p & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{p}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{p}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
p(x)=c_{1} x
$$

Substituing the above solution for p in (2A) gives

$$
y=\frac{c_{1}^{2} x^{2}+4}{2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-2 x \tag{1}\\
& y=2 x \tag{2}\\
& y=\frac{c_{1}^{2} x^{2}+4}{2 c_{1}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=-2 x
$$

Verified OK.

$$
y=2 x
$$

Verified OK.

$$
y=\frac{c_{1}^{2} x^{2}+4}{2 c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 30

```
dsolve(x*diff(y(x),x)^2-2*y(x)*diff(y(x),x)+4*x=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-2 x \\
& y(x)=2 x \\
& y(x)=\frac{4 c_{1}^{2}+x^{2}}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.294 (sec). Leaf size: 43
DSolve[x*(y'[x])~2-2*y[x]*y'[x]+4*x==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-2 x \cosh \left(-\log (x)+c_{1}\right) \\
& y(x) \rightarrow-2 x \cosh \left(\log (x)+c_{1}\right) \\
& y(x) \rightarrow-2 x \\
& y(x) \rightarrow 2 x
\end{aligned}
$$

2.2 problem 9

Internal problem ID [6787]
Internal file name [OUTPUT/6034_Tuesday_July_26_2022_05_04_47_AM_71368481/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314
Problem number: 9.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
3 x^{4} y^{\prime 2}-x y^{\prime}-y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{1+\sqrt{1+12 y x^{2}}}{6 x^{3}} \tag{1}\\
y^{\prime} & =-\frac{-1+\sqrt{1+12 y x^{2}}}{6 x^{3}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{1+\sqrt{12 y x^{2}+1}}{6 x^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(1+\sqrt{12 y x^{2}+1}\right)\left(b_{3}-a_{2}\right)}{6 x^{3}}-\frac{\left(1+\sqrt{12 y x^{2}+1}\right)^{2} a_{3}}{36 x^{6}} \tag{5E}\\
& -\left(-\frac{1+\sqrt{12 y x^{2}+1}}{2 x^{4}}+\frac{2 y}{x^{2} \sqrt{12 y x^{2}+1}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& -\frac{x b_{2}+y b_{3}+b_{1}}{x \sqrt{12 y x^{2}+1}}=0
\end{align*}
$$

Putting the above in normal form gives
$-\underline{-36 b_{2} x^{6} \sqrt{12 y x^{2}+1}+36 x^{6} b_{2}-72 x^{5} y a_{2}-36 x^{5} y b_{3}-144 x^{4} y^{2} a_{3}+36 x^{5} b_{1}-144 x^{4} y a_{1}-12 \sqrt{12 y x^{2}+}}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}-36 x^{6} b_{2}+72 x^{5} y a_{2}+36 x^{5} y b_{3}+144 x^{4} y^{2} a_{3} \\
& \quad-36 x^{5} b_{1}+144 x^{4} y a_{1}+12 \sqrt{12 y x^{2}+1} x^{3} a_{2}+6 \sqrt{12 y x^{2}+1} x^{3} b_{3} \tag{6E}\\
& +18 \sqrt{12 y x^{2}+1} x^{2} y a_{3}-\left(12 y x^{2}+1\right)^{\frac{3}{2}} a_{3}+18 \sqrt{12 y x^{2}+1} x^{2} a_{1} \\
& +12 x^{3} a_{2}+6 x^{3} b_{3}-6 x^{2} y a_{3}+18 x^{2} a_{1}-a_{3} \sqrt{12 y x^{2}+1}-2 a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}-36 x^{6} b_{2}-72 x^{5} y a_{2}-36 x^{5} y b_{3}-72 x^{4} y^{2} a_{3} \\
& +12\left(12 y x^{2}+1\right) x^{3} a_{2}+6\left(12 y x^{2}+1\right) x^{3} b_{3}+18\left(12 y x^{2}+1\right) x^{2} y a_{3} \\
& -36 x^{5} b_{1}-72 x^{4} y a_{1}+18\left(12 y x^{2}+1\right) x^{2} a_{1}+12 \sqrt{12 y x^{2}+1} x^{3} a_{2} \tag{6E}\\
& +6 \sqrt{12 y x^{2}+1} x^{3} b_{3}+18 \sqrt{12 y x^{2}+1} x^{2} y a_{3}-\left(12 y x^{2}+1\right)^{\frac{3}{2}} a_{3} \\
& +18 \sqrt{12 y x^{2}+1} x^{2} a_{1}-2\left(12 y x^{2}+1\right) a_{3}-a_{3} \sqrt{12 y x^{2}+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}-36 x^{6} b_{2}+72 x^{5} y a_{2}+36 x^{5} y b_{3}+144 x^{4} y^{2} a_{3}-36 x^{5} b_{1}+144 x^{4} y a_{1} \\
& +12 \sqrt{12 y x^{2}+1} x^{3} a_{2}+6 \sqrt{12 y x^{2}+1} x^{3} b_{3}+6 \sqrt{12 y x^{2}+1} x^{2} y a_{3}+12 x^{3} a_{2} \\
& +6 x^{3} b_{3}+18 \sqrt{12 y x^{2}+1} x^{2} a_{1}-6 x^{2} y a_{3}+18 x^{2} a_{1}-2 a_{3} \sqrt{12 y x^{2}+1}-2 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{12 y x^{2}+1}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{12 y x^{2}+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 36 b_{2} v_{1}^{6} v_{3}+72 v_{1}^{5} v_{2} a_{2}+144 v_{1}^{4} v_{2}^{2} a_{3}-36 v_{1}^{6} b_{2}+36 v_{1}^{5} v_{2} b_{3}+144 v_{1}^{4} v_{2} a_{1} \tag{7E}\\
& \quad-36 v_{1}^{5} b_{1}+12 v_{3} v_{1}^{3} a_{2}+6 v_{3} v_{1}^{2} v_{2} a_{3}+6 v_{3} v_{1}^{3} b_{3}+18 v_{3} v_{1}^{2} a_{1} \\
& +12 v_{1}^{3} a_{2}-6 v_{1}^{2} v_{2} a_{3}+6 v_{1}^{3} b_{3}+18 v_{1}^{2} a_{1}-2 a_{3} v_{3}-2 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 36 b_{2} v_{1}^{6} v_{3}-36 v_{1}^{6} b_{2}+\left(72 a_{2}+36 b_{3}\right) v_{1}^{5} v_{2}-36 v_{1}^{5} b_{1}+144 v_{1}^{4} v_{2}^{2} a_{3} \tag{8E}\\
& +144 v_{1}^{4} v_{2} a_{1}+\left(12 a_{2}+6 b_{3}\right) v_{1}^{3} v_{3}+\left(12 a_{2}+6 b_{3}\right) v_{1}^{3}+6 v_{3} v_{1}^{2} v_{2} a_{3} \\
& \quad-6 v_{1}^{2} v_{2} a_{3}+18 v_{3} v_{1}^{2} a_{1}+18 v_{1}^{2} a_{1}-2 a_{3} v_{3}-2 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
18 a_{1} & =0 \\
144 a_{1} & =0 \\
-6 a_{3} & =0 \\
-2 a_{3} & =0 \\
6 a_{3} & =0 \\
144 a_{3} & =0 \\
-36 b_{1} & =0 \\
-36 b_{2} & =0 \\
36 b_{2} & =0 \\
12 a_{2}+6 b_{3} & =0 \\
72 a_{2}+36 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(\frac{1+\sqrt{12 y x^{2}+1}}{6 x^{3}}\right)(x) \\
& =\frac{-12 y x^{2}-\sqrt{12 y x^{2}+1}-1}{6 x^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-12 y x^{2}-\sqrt{12 y x^{2}+1}-1}{6 x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{12 y x^{2}+1}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{1+\sqrt{12 y x^{2}+1}}{6 x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x \sqrt{12 y x^{2}+1}} \\
S_{y} & =\frac{-1+\frac{1}{\sqrt{12 y x^{2}+1}}}{2 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+12 y x^{2}}\right)=c_{1}
$$

Which simplifies to

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+12 y x^{2}}\right)=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+12 y x^{2}}\right)=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+12 y x^{2}}\right)=c_{1}
$$

Verified OK.
Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-1+\sqrt{12 y x^{2}+1}}{6 x^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(-1+\sqrt{12 y x^{2}+1}\right)\left(b_{3}-a_{2}\right)}{6 x^{3}}-\frac{\left(-1+\sqrt{12 y x^{2}+1}\right)^{2} a_{3}}{36 x^{6}} \\
& -\left(-\frac{2 y}{x^{2} \sqrt{12 y x^{2}+1}}+\frac{-1+\sqrt{12 y x^{2}+1}}{2 x^{4}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& +\frac{x b_{2}+y b_{3}+b_{1}}{x \sqrt{12 y x^{2}+1}}=0
\end{align*}
$$

Putting the above in normal form gives
$--36 b_{2} x^{6} \sqrt{12 y x^{2}+1}-36 x^{6} b_{2}+72 x^{5} y a_{2}+36 x^{5} y b_{3}+144 x^{4} y^{2} a_{3}-36 x^{5} b_{1}+144 x^{4} y a_{1}-12 \sqrt{12 y x^{2}+}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}+36 x^{6} b_{2}-72 x^{5} y a_{2}-36 x^{5} y b_{3}-144 x^{4} y^{2} a_{3} \\
& +36 x^{5} b_{1}-144 x^{4} y a_{1}+12 \sqrt{12 y x^{2}+1} x^{3} a_{2}+6 \sqrt{12 y x^{2}+1} x^{3} b_{3} \tag{6E}\\
& +18 \sqrt{12 y x^{2}+1} x^{2} y a_{3}-\left(12 y x^{2}+1\right)^{\frac{3}{2}} a_{3}+18 \sqrt{12 y x^{2}+1} x^{2} a_{1} \\
& -12 x^{3} a_{2}-6 x^{3} b_{3}+6 x^{2} y a_{3}-18 x^{2} a_{1}-a_{3} \sqrt{12 y x^{2}+1}+2 a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}+36 x^{6} b_{2}+72 x^{5} y a_{2}+36 x^{5} y b_{3}+72 x^{4} y^{2} a_{3} \\
& \quad-12\left(12 y x^{2}+1\right) x^{3} a_{2}-6\left(12 y x^{2}+1\right) x^{3} b_{3}-18\left(12 y x^{2}+1\right) x^{2} y a_{3} \\
& +36 x^{5} b_{1}+72 x^{4} y a_{1}-18\left(12 y x^{2}+1\right) x^{2} a_{1}+12 \sqrt{12 y x^{2}+1} x^{3} a_{2} \tag{6E}\\
& +6 \sqrt{12 y x^{2}+1} x^{3} b_{3}+18 \sqrt{12 y x^{2}+1} x^{2} y a_{3}-\left(12 y x^{2}+1\right)^{\frac{3}{2}} a_{3} \\
& +18 \sqrt{12 y x^{2}+1} x^{2} a_{1}+2\left(12 y x^{2}+1\right) a_{3}-a_{3} \sqrt{12 y x^{2}+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}+36 x^{6} b_{2}-72 x^{5} y a_{2}-36 x^{5} y b_{3}-144 x^{4} y^{2} a_{3}+36 x^{5} b_{1}-144 x^{4} y a_{1} \\
& +12 \sqrt{12 y x^{2}+1} x^{3} a_{2}+6 \sqrt{12 y x^{2}+1} x^{3} b_{3}+6 \sqrt{12 y x^{2}+1} x^{2} y a_{3}-12 x^{3} a_{2} \\
& -6 x^{3} b_{3}+18 \sqrt{12 y x^{2}+1} x^{2} a_{1}+6 x^{2} y a_{3}-18 x^{2} a_{1}-2 a_{3} \sqrt{12 y x^{2}+1}+2 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{12 y x^{2}+1}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{12 y x^{2}+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 36 b_{2} v_{1}^{6} v_{3}-72 v_{1}^{5} v_{2} a_{2}-144 v_{1}^{4} v_{2}^{2} a_{3}+36 v_{1}^{6} b_{2}-36 v_{1}^{5} v_{2} b_{3}-144 v_{1}^{4} v_{2} a_{1} \tag{7E}\\
& \quad+36 v_{1}^{5} b_{1}+12 v_{3} v_{1}^{3} a_{2}+6 v_{3} v_{1}^{2} v_{2} a_{3}+6 v_{3} v_{1}^{3} b_{3}+18 v_{3} v_{1}^{2} a_{1} \\
& \quad-12 v_{1}^{3} a_{2}+6 v_{1}^{2} v_{2} a_{3}-6 v_{1}^{3} b_{3}-18 v_{1}^{2} a_{1}-2 a_{3} v_{3}+2 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 36 b_{2} v_{1}^{6} v_{3}+36 v_{1}^{6} b_{2}+\left(-72 a_{2}-36 b_{3}\right) v_{1}^{5} v_{2}+36 v_{1}^{5} b_{1}-144 v_{1}^{4} v_{2}^{2} a_{3} \tag{8E}\\
& \quad-144 v_{1}^{4} v_{2} a_{1}+\left(12 a_{2}+6 b_{3}\right) v_{1}^{3} v_{3}+\left(-12 a_{2}-6 b_{3}\right) v_{1}^{3} \\
& \quad+6 v_{3} v_{1}^{2} v_{2} a_{3}+6 v_{1}^{2} v_{2} a_{3}+18 v_{3} v_{1}^{2} a_{1}-18 v_{1}^{2} a_{1}-2 a_{3} v_{3}+2 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-144 a_{1} & =0 \\
-18 a_{1} & =0 \\
18 a_{1} & =0 \\
-144 a_{3} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
6 a_{3} & =0 \\
36 b_{1} & =0 \\
36 b_{2} & =0 \\
-72 a_{2}-36 b_{3} & =0 \\
-12 a_{2}-6 b_{3} & =0 \\
12 a_{2}+6 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(-\frac{-1+\sqrt{12 y x^{2}+1}}{6 x^{3}}\right)(x) \\
& =\frac{-12 y x^{2}+\sqrt{12 y x^{2}+1}-1}{6 x^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-12 y x^{2}+\sqrt{12 y x^{2}+1}-1}{6 x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{12 y x^{2}+1}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-1+\sqrt{12 y x^{2}+1}}{6 x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{1}{x \sqrt{12 y x^{2}+1}} \\
& S_{y}=\frac{-\frac{1}{\sqrt{12 y x^{2}+1}}-1}{2 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+12 y x^{2}}\right)=c_{1}
$$

Which simplifies to

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+12 y x^{2}}\right)=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+12 y x^{2}}\right)=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+12 y x^{2}}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    trying simple symmetries for implicit equations
    Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful
    * Tackling next ODE.
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 97
dsolve ($3 * x^{\wedge} 4 * \operatorname{diff}(y(x), x) \wedge 2-x * \operatorname{diff}(y(x), x)-y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{1}{12 x^{2}} \\
& y(x)=\frac{-i \sqrt{3} c_{1}-3 x}{3 c_{1}^{2} x} \\
& y(x)=\frac{i \sqrt{3} c_{1}-3 x}{3 x c_{1}^{2}} \\
& y(x)=\frac{i \sqrt{3} c_{1}-3 x}{3 x c_{1}^{2}} \\
& y(x)=\frac{-i \sqrt{3} c_{1}-3 x}{3 c_{1}^{2} x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.518 (sec). Leaf size: 123
DSolve [3*x~4*(y'[x])~2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& \text { Solve }\left[-\frac{x \sqrt{12 x^{2} y(x)+1} \operatorname{arctanh}\left(\sqrt{12 x^{2} y(x)+1}\right)}{\sqrt{12 x^{4} y(x)+x^{2}}}-\frac{1}{2} \log (y(x))=c_{1}, y(x)\right] \\
& \text { Solve }\left[\frac{x \sqrt{12 x^{2} y(x)+1} \operatorname{arctanh}\left(\sqrt{12 x^{2} y(x)+1}\right)}{\sqrt{12 x^{4} y(x)+x^{2}}}-\frac{1}{2} \log (y(x))=c_{1}, y(x)\right] \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.3 problem 10

$$
\text { 2.3.1 Solving as dAlembert ode . } 127
$$

Internal problem ID [6788]
Internal file name [OUTPUT/6035_Tuesday_July_26_2022_05_04_48_AM_61588331/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 10.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
y^{\prime 2}-x y^{\prime}-y=0
$$

2.3.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
p^{2}-x p-y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=p^{2}-x p \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=-p \\
& g=p^{2}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
2 p=(-x+2 p) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
2 p=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{2 p(x)}{-x+2 p(x)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{-x(p)+2 p}{2 p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
p(p) & =\frac{1}{2 p} \\
q(p) & =1
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{x(p)}{2 p}=1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 p} d p} \\
& =\sqrt{p}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} p}(\sqrt{p} x) & =\sqrt{p} \\
\mathrm{~d}(\sqrt{p} x) & =\sqrt{p} \mathrm{~d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{p} x=\int \sqrt{p} \mathrm{~d} p \\
& \sqrt{p} x=\frac{2 p^{\frac{3}{2}}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{p}$ results in

$$
x(p)=\frac{2 p}{3}+\frac{c_{1}}{\sqrt{p}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2} \\
& p=\frac{x}{2}-\frac{\sqrt{x^{2}+4 y}}{2}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x=\frac{x}{3}+\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x+2 \sqrt{x^{2}+4 y}}} \\
& x=\frac{x}{3}-\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x-2 \sqrt{x^{2}+4 y}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& x=\frac{x}{3}+\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x+2 \sqrt{x^{2}+4 y}}} \tag{2}\\
& x=\frac{x}{3}-\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x-2 \sqrt{x^{2}+4 y}}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
x=\frac{x}{3}+\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x+2 \sqrt{x^{2}+4 y}}}
$$

Verified OK.

$$
x=\frac{x}{3}-\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x-2 \sqrt{x^{2}+4 y}}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 77
dsolve(diff $(y(x), x) \wedge 2-x * \operatorname{diff}(y(x), x)-y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& \frac{c_{1}}{\sqrt{2 x-2 \sqrt{x^{2}+4 y(x)}}}+\frac{2 x}{3}+\frac{\sqrt{x^{2}+4 y(x)}}{3}=0 \\
& \frac{c_{1}}{\sqrt{2 x+2 \sqrt{x^{2}+4 y(x)}}}+\frac{2 x}{3}-\frac{\sqrt{x^{2}+4 y(x)}}{3}=0
\end{aligned}
$$

Solution by Mathematica

Time used: 60.178 (sec). Leaf size: 1003

```
DSolve[(y'[x])^2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{\left(x^{2}+\sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}\right)^{2}+8 e^{3 c_{1}} x}{4 \sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}} \\
& y(x) \rightarrow \frac{1}{8}\left(4 x^{2}-\frac{i(\sqrt{3}-i) x\left(x^{3}+8 e^{3 c_{1}}\right)}{\sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{\left.3 c_{1}\right)^{3}}+8 e^{6 c_{1}}\right.}}}\right. \\
& \left.+i(\sqrt{3}+i) \sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{\left.3 c_{1}\right)^{3}}+8 e^{6 c_{1}}\right.}}\right) \\
& y(x) \rightarrow \frac{1}{8}\left(4 x^{2}+\frac{i(\sqrt{3}+i) x\left(x^{3}+8 e^{3 c_{1}}\right)}{\sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{\left.3 c_{1}\right)^{3}}+8 e^{6 c_{1}}\right.}}}\right. \\
& \left.-(1+i \sqrt{3}) \sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{\left.3 c_{1}\right)^{3}}+8 e^{6 c_{1}}\right.}}\right)
\end{aligned}
$$

$y(x)$

$$
\begin{gathered}
\rightarrow \frac{\left.2 \sqrt[3]{2} x^{4}+2^{2 / 3}\left(-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}\right)\right)^{2 / 3}+4 x^{2} \sqrt[3]{-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}(4 x}}}{\begin{aligned}
\sqrt[3]{-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}} \\
y(x) \rightarrow \frac{1}{16}\left(8 x^{2}+\frac{2 \sqrt[3]{2}(1+i \sqrt{3}) x\left(-x^{3}+2 e^{3 c_{1}}\right)}{\sqrt[3]{-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}}}\right. \\
\left.+i 2^{2 / 3}(\sqrt{3}+i) \sqrt[3]{-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}}\right)
\end{aligned}}
\end{gathered}
$$

$$
y(x) \rightarrow \frac{1}{16}\left(8 x^{2}+\frac{2 i \sqrt[3]{2}(\sqrt{3}+i) x\left(x^{3}-2 e^{3 c_{1}}\right)}{\sqrt[3]{-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}}}\right.
$$

$$
\left.-2^{2 / 3}(1+i \sqrt{3}) \sqrt[3]{-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}}\right)
$$

2.4 problem 11

2.4.1 Solving as clairaut ode . 133

Internal problem ID [6789]
Internal file name [OUTPUT/6036_Tuesday_July_26_2022_05_04_51_AM_70143130/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 11.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
y^{\prime 2}-x y^{\prime}+y=0
$$

2.4.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=x y^{\prime}+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
p^{2}-x p+y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=-p^{2}+x p \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =-p^{2}+x p \\
& =-p^{2}+x p
\end{aligned}
$$

Writing the ode as

$$
y=x p+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=x p+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=-p^{2}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=-c_{1}^{2}+c_{1} x
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=-p^{2}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-2 p \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=\frac{x}{2}
$$

Substituting the above back in (1) results in

$$
y_{1}=\frac{x^{2}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-c_{1}^{2}+c_{1} x \tag{1}\\
& y=\frac{x^{2}}{4} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-c_{1}^{2}+c_{1} x
$$

Verified OK.

$$
y=\frac{x^{2}}{4}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 19
dsolve(diff($y(x), x)^{\wedge} 2-x * \operatorname{diff}(y(x), x)+y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{x^{2}}{4} \\
& y(x)=c_{1}\left(x-c_{1}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 25
DSolve[(y' $[x]$)~ $2-x * y^{\prime}[x]+y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1}\left(x-c_{1}\right) \\
& y(x) \rightarrow \frac{x^{2}}{4}
\end{aligned}
$$

2.5 problem 12

Internal problem ID [6790]
Internal file name [OUTPUT/6037_Tuesday_July_26_2022_05_04_52_AM_5469299/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314
Problem number: 12.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y^{\prime 2}+4 y^{\prime} x^{5}-12 y x^{4}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=2\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x^{2} \tag{1}\\
& y^{\prime}=2\left(-x^{3}-\sqrt{x^{6}+3 y}\right) x^{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +2\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x^{2}\left(b_{3}-a_{2}\right)-4\left(-x^{3}+\sqrt{x^{6}+3 y}\right)^{2} x^{4} a_{3} \\
& -\left(2\left(-3 x^{2}+\frac{3 x^{5}}{\sqrt{x^{6}+3 y}}\right) x^{2}+4\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{3 x^{2}\left(x b_{2}+y b_{3}+b_{1}\right)}{\sqrt{x^{6}+3 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-8 x^{13} a_{3}+4 \sqrt{x^{6}+3 y} x^{10} a_{3}+12 x^{8} a_{2}-2 x^{8} b_{3}-14 x^{7} y a_{3}+4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3}+10 x^{7} a_{1}-12 \sqrt{x^{6}+3 y} x^{5}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 8 x^{13} a_{3}-4 \sqrt{x^{6}+3 y} x^{10} a_{3}-12 x^{8} a_{2}+2 x^{8} b_{3}+14 x^{7} y a_{3} \\
& \quad-4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3}-10 x^{7} a_{1}+12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3} \tag{6E}\\
& +10 \sqrt{x^{6}+3 y} x^{4} y a_{3}+10 \sqrt{x^{6}+3 y} x^{4} a_{1}-3 x^{3} b_{2}-18 x^{2} y a_{2} \\
& +3 x^{2} y b_{3}-12 x y^{2} a_{3}-3 x^{2} b_{1}-12 x y a_{1}+b_{2} \sqrt{x^{6}+3 y}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -4 \sqrt{x^{6}+3 y} x^{10} a_{3}+8\left(x^{6}+3 y\right) x^{7} a_{3}-6 x^{8} a_{2}-6 x^{7} y a_{3}-4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3} \\
& -6 x^{7} a_{1}+12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3}+10 \sqrt{x^{6}+3 y} x^{4} y a_{3} \tag{6E}\\
& +10 \sqrt{x^{6}+3 y} x^{4} a_{1}-6\left(x^{6}+3 y\right) x^{2} a_{2}+2\left(x^{6}+3 y\right) x^{2} b_{3}-4\left(x^{6}+3 y\right) x y a_{3} \\
& -4\left(x^{6}+3 y\right) x a_{1}-3 x^{3} b_{2}-3 x^{2} y b_{3}-3 x^{2} b_{1}+b_{2} \sqrt{x^{6}+3 y}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 8 x^{13} a_{3}-8 \sqrt{x^{6}+3 y} x^{10} a_{3}-12 x^{8} a_{2}+2 x^{8} b_{3}+14 x^{7} y a_{3}-10 x^{7} a_{1} \\
& \quad+12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3}-2 \sqrt{x^{6}+3 y} x^{4} y a_{3}+10 \sqrt{x^{6}+3 y} x^{4} a_{1} \\
& \quad-3 x^{3} b_{2}-18 x^{2} y a_{2}+3 x^{2} y b_{3}-12 x y^{2} a_{3}-3 x^{2} b_{1}-12 x y a_{1}+b_{2} \sqrt{x^{6}+3 y}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{6}+3 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{6}+3 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 8 v_{1}^{13} a_{3}-8 v_{3} v_{1}^{10} a_{3}-12 v_{1}^{8} a_{2}+14 v_{1}^{7} v_{2} a_{3}+2 v_{1}^{8} b_{3}-10 v_{1}^{7} a_{1} \tag{7E}\\
& \quad+12 v_{3} v_{1}^{5} a_{2}-2 v_{3} v_{1}^{4} v_{2} a_{3}-2 v_{3} v_{1}^{5} b_{3}+10 v_{3} v_{1}^{4} a_{1}-18 v_{1}^{2} v_{2} a_{2} \\
& \quad-12 v_{1} v_{2}^{2} a_{3}-3 v_{1}^{3} b_{2}+3 v_{1}^{2} v_{2} b_{3}-12 v_{1} v_{2} a_{1}-3 v_{1}^{2} b_{1}+b_{2} v_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 8 v_{1}^{13} a_{3}-8 v_{3} v_{1}^{10} a_{3}+\left(-12 a_{2}+2 b_{3}\right) v_{1}^{8}+14 v_{1}^{7} v_{2} a_{3}-10 v_{1}^{7} a_{1} \tag{8E}\\
& \quad+\left(12 a_{2}-2 b_{3}\right) v_{1}^{5} v_{3}-2 v_{3} v_{1}^{4} v_{2} a_{3}+10 v_{3} v_{1}^{4} a_{1}-3 v_{1}^{3} b_{2} \\
& \quad+\left(-18 a_{2}+3 b_{3}\right) v_{1}^{2} v_{2}-3 v_{1}^{2} b_{1}-12 v_{1} v_{2}^{2} a_{3}-12 v_{1} v_{2} a_{1}+b_{2} v_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
-12 a_{1} & =0 \\
-10 a_{1} & =0 \\
10 a_{1} & =0 \\
-12 a_{3} & =0 \\
-8 a_{3} & =0 \\
-2 a_{3} & =0 \\
8 a_{3} & =0 \\
14 a_{3} & =0 \\
-3 b_{1} & =0 \\
-3 b_{2} & =0 \\
-18 a_{2}+3 b_{3} & =0 \\
-12 a_{2}+2 b_{3} & =0 \\
12 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =6 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=6 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =6 y-\left(2\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x^{2}\right)(x) \\
& =2 x^{6}-2 \sqrt{x^{6}+3 y} x^{3}+6 y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{2 x^{6}-2 \sqrt{x^{6}+3 y} x^{3}+6 y} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y)}{6}+\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}-\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x^{2}}{\sqrt{x^{6}+3 y}} \\
S_{y} & =\frac{1}{\sqrt{x^{6}+3 y}\left(-2 x^{3}+2 \sqrt{x^{6}+3 y}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{6}+\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}-\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{6}+\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}-\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{6}+\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}-\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (y)}{6}+\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}-\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Verified OK.
Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 x^{2}\left(x^{3}+\sqrt{x^{6}+3 y}\right) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& b_{2}-2 x^{2}\left(x^{3}+\sqrt{x^{6}+3 y}\right)\left(b_{3}-a_{2}\right)-4 x^{4}\left(x^{3}+\sqrt{x^{6}+3 y}\right)^{2} a_{3} \\
& \quad-\left(-4 x\left(x^{3}+\sqrt{x^{6}+3 y}\right)-2 x^{2}\left(3 x^{2}+\frac{3 x^{5}}{\sqrt{x^{6}+3 y}}\right)\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& +\frac{3 x^{2}\left(x b_{2}+y b_{3}+b_{1}\right)}{\sqrt{x^{6}+3 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\underline{8 x^{13} a_{3}+4 \sqrt{x^{6}+3 y} x^{10} a_{3}-12 x^{8} a_{2}+2 x^{8} b_{3}+14 x^{7} y a_{3}+4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3}-10 x^{7} a_{1}-12 \sqrt{x^{6}+3 y} x^{5} a,}
$$

$$
=0
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -8 x^{13} a_{3}-4 \sqrt{x^{6}+3 y} x^{10} a_{3}+12 x^{8} a_{2}-2 x^{8} b_{3}-14 x^{7} y a_{3} \\
& -4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3}+10 x^{7} a_{1}+12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3} \tag{6E}\\
& +10 \sqrt{x^{6}+3 y} x^{4} y a_{3}+10 \sqrt{x^{6}+3 y} x^{4} a_{1}+3 x^{3} b_{2}+18 x^{2} a_{2} y \\
& -3 x^{2} y b_{3}+12 x y^{2} a_{3}+3 x^{2} b_{1}+12 x a_{1} y+b_{2} \sqrt{x^{6}+3 y}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -4 \sqrt{x^{6}+3 y} x^{10} a_{3}-8\left(x^{6}+3 y\right) x^{7} a_{3}+6 x^{8} a_{2}+6 x^{7} y a_{3}-4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3} \\
& +6 x^{7} a_{1}+12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3}+10 \sqrt{x^{6}+3 y} x^{4} y a_{3} \tag{6E}\\
& +10 \sqrt{x^{6}+3 y} x^{4} a_{1}+6\left(x^{6}+3 y\right) x^{2} a_{2}-2\left(x^{6}+3 y\right) x^{2} b_{3}+4\left(x^{6}+3 y\right) x y a_{3} \\
& +4\left(x^{6}+3 y\right) x a_{1}+3 x^{3} b_{2}+3 x^{2} y b_{3}+3 x^{2} b_{1}+b_{2} \sqrt{x^{6}+3 y}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -8 x^{13} a_{3}-8 \sqrt{x^{6}+3 y} x^{10} a_{3}+12 x^{8} a_{2}-2 x^{8} b_{3}-14 x^{7} y a_{3}+10 x^{7} a_{1} \\
& +12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3}-2 \sqrt{x^{6}+3 y} x^{4} y a_{3}+10 \sqrt{x^{6}+3 y} x^{4} a_{1} \\
& +3 x^{3} b_{2}+18 x^{2} a_{2} y-3 x^{2} y b_{3}+12 x y^{2} a_{3}+3 x^{2} b_{1}+12 x a_{1} y+b_{2} \sqrt{x^{6}+3 y}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{6}+3 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{6}+3 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -8 v_{1}^{13} a_{3}-8 v_{3} v_{1}^{10} a_{3}+12 v_{1}^{8} a_{2}-14 v_{1}^{7} v_{2} a_{3}-2 v_{1}^{8} b_{3}+10 v_{1}^{7} a_{1} \tag{7E}\\
& +12 v_{3} v_{1}^{5} a_{2}-2 v_{3} v_{1}^{4} v_{2} a_{3}-2 v_{3} v_{1}^{5} b_{3}+10 v_{3} v_{1}^{4} a_{1}+18 v_{1}^{2} a_{2} v_{2} \\
& +12 v_{1} v_{2}^{2} a_{3}+3 v_{1}^{3} b_{2}-3 v_{1}^{2} v_{2} b_{3}+12 v_{1} a_{1} v_{2}+3 v_{1}^{2} b_{1}+b_{2} v_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -8 v_{1}^{13} a_{3}-8 v_{3} v_{1}^{10} a_{3}+\left(12 a_{2}-2 b_{3}\right) v_{1}^{8}-14 v_{1}^{7} v_{2} a_{3}+10 v_{1}^{7} a_{1} \tag{8E}\\
& +\left(12 a_{2}-2 b_{3}\right) v_{1}^{5} v_{3}-2 v_{3} v_{1}^{4} v_{2} a_{3}+10 v_{3} v_{1}^{4} a_{1}+3 v_{1}^{3} b_{2} \\
& +\left(18 a_{2}-3 b_{3}\right) v_{1}^{2} v_{2}+3 v_{1}^{2} b_{1}+12 v_{1} v_{2}^{2} a_{3}+12 v_{1} a_{1} v_{2}+b_{2} v_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
10 a_{1} & =0 \\
12 a_{1} & =0 \\
-14 a_{3} & =0 \\
-8 a_{3} & =0 \\
-2 a_{3} & =0 \\
12 a_{3} & =0 \\
3 b_{1} & =0 \\
3 b_{2} & =0 \\
12 a_{2}-2 b_{3} & =0 \\
18 a_{2}-3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =6 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=6 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =6 y-\left(-2 x^{2}\left(x^{3}+\sqrt{x^{6}+3 y}\right)\right)(x) \\
& =2 x^{6}+2 \sqrt{x^{6}+3 y} x^{3}+6 y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{2 x^{6}+2 \sqrt{x^{6}+3 y} x^{3}+6 y} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y)}{6}-\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}+\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-2 x^{2}\left(x^{3}+\sqrt{x^{6}+3 y}\right)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x^{2}}{\sqrt{x^{6}+3 y}} \\
S_{y} & =\frac{1}{\sqrt{x^{6}+3 y}\left(2 x^{3}+2 \sqrt{x^{6}+3 y}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{6}-\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}+\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{6}-\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}+\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{6}-\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}+\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (y)}{6}-\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}+\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Verified OK.

Maple trace
'Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of $d y / d x$: 2 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(y(x), x), x)-2 *(\operatorname{diff}(y(x), x)) / x, y(x)$
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
<- 1st order ODE linearizable_by_differentiation successful

* Tackling next ODE.
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation <- 1st order ODE linearizable_by_differentiation successful
\checkmark Solution by Maple
Time used: 0.359 (sec). Leaf size: 23
dsolve(diff $(y(x), x) \wedge 2+4 * x^{\wedge} 5 * \operatorname{diff}(y(x), x)-12 * x^{\wedge} 4 * y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{x^{6}}{3} \\
& y(x)=c_{1} x^{3}+\frac{3}{4} c_{1}^{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.361 (sec). Leaf size: 217
DSolve[($\left.\mathrm{y}^{\prime}[\mathrm{x}]\right)^{\wedge} 2+4 * \mathrm{x}^{\wedge} 5 * \mathrm{y}^{\prime}[\mathrm{x}]-12 * \mathrm{x}^{\wedge} 4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& \text { Solve }\left[\frac{1}{6}\left(\log (y(x))-\frac{x^{2} \sqrt{x^{6}+3 y(x)} \log (y(x))}{\sqrt{x^{4}\left(x^{6}+3 y(x)\right)}}\right)\right. \\
& \left.+\frac{x^{2} \sqrt{x^{6}+3 y(x)} \log \left(\sqrt{x^{6}+3 y(x)}+x^{3}\right)}{3 \sqrt{x^{4}\left(x^{6}+3 y(x)\right)}}=c_{1}, y(x)\right]
\end{aligned}
$$

Solve $\left[\frac{1}{6}\left(\frac{x^{2} \sqrt{x^{6}+3 y(x)} \log (y(x))}{\sqrt{x^{4}\left(x^{6}+3 y(x)\right)}}+\log (y(x))\right)\right.$

$$
\left.-\frac{x^{2} \sqrt{x^{6}+3 y(x)} \log \left(\sqrt{x^{6}+3 y(x)}+x^{3}\right)}{3 \sqrt{x^{4}\left(x^{6}+3 y(x)\right)}}=c_{1}, y(x)\right]
$$

$$
y(x) \rightarrow-\frac{x^{6}}{3}
$$

2.6 problem 13

Internal problem ID [6791]
Internal file name [OUTPUT/6038_Tuesday_July_26_2022_05_04_55_AM_15542793/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314
Problem number: 13.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _rational]

$$
4 y^{3} y^{\prime 2}-4 x y^{\prime}+y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{x+\sqrt{x^{2}-y^{4}}}{2 y^{3}} \tag{1}\\
& y^{\prime}=-\frac{-x+\sqrt{x^{2}-y^{4}}}{2 y^{3}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x+\sqrt{-y^{4}+x^{2}}}{2 y^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(x+\sqrt{-y^{4}+x^{2}}\right)\left(b_{3}-a_{2}\right)}{2 y^{3}}-\frac{\left(x+\sqrt{-y^{4}+x^{2}}\right)^{2} a_{3}}{4 y^{6}} \\
& -\frac{\left(1+\frac{x}{\sqrt{-y^{4}+x^{2}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)}{2 y^{3}} \tag{5E}\\
& -\left(-\frac{1}{\sqrt{-y^{4}+x^{2}}}-\frac{3\left(x+\sqrt{-y^{4}+x^{2}}\right)}{2 y^{4}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$-\underline{-4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}+2 x y^{6} b_{2}-2 y^{7} a_{2}+4 y^{7} b_{3}+2 y^{6} b_{1}-6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2}+4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}-8 \sqrt{ }}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}-2 x y^{6} b_{2}+2 y^{7} a_{2}-4 y^{7} b_{3}-2 y^{6} b_{1}+6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2} \\
& \quad-4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}+8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3}-2 \sqrt{-y^{4}+x^{2}} y^{4} a_{3} \tag{6E}\\
& +6 x^{3} y^{2} b_{2}-4 x^{2} y^{3} a_{2}+8 x^{2} y^{3} b_{3}+6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1}-2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1} \\
& +6 x^{2} y^{2} b_{1}-2 x y^{3} a_{1}-\left(-y^{4}+x^{2}\right)^{\frac{3}{2}} a_{3}-\sqrt{-y^{4}+x^{2}} x^{2} a_{3}-2 x^{3} a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}+4 x y^{6} b_{2}+4 y^{7} b_{3}+4 y^{6} b_{1}+6\left(-y^{4}+x^{2}\right) x y^{2} b_{2} \\
& \quad-2\left(-y^{4}+x^{2}\right) y^{3} a_{2}+8\left(-y^{4}+x^{2}\right) y^{3} b_{3}+6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2} \tag{6E}\\
& -4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}+8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3} \\
& -2 \sqrt{-y^{4}+x^{2}} y^{4} a_{3}-2 x^{2} y^{3} a_{2}-2 x y^{4} a_{3}+6\left(-y^{4}+x^{2}\right) y^{2} b_{1} \\
& +6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1}-2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1}-2 x y^{3} a_{1} \\
& -\left(-y^{4}+x^{2}\right)^{\frac{3}{2}} a_{3}-2\left(-y^{4}+x^{2}\right) x a_{3}-\sqrt{-y^{4}+x^{2}} x^{2} a_{3}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -2 x y^{6} b_{2}+4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}+2 y^{7} a_{2}-4 y^{7} b_{3}-2 y^{6} b_{1}+6 x^{3} y^{2} b_{2} \\
& +6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2}-4 x^{2} y^{3} a_{2}+8 x^{2} y^{3} b_{3}-4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2} \\
& +8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3}-\sqrt{-y^{4}+x^{2}} y^{4} a_{3}+6 x^{2} y^{2} b_{1}+6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1} \\
& -2 x y^{3} a_{1}-2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1}-2 x^{3} a_{3}-2 \sqrt{-y^{4}+x^{2}} x^{2} a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{-y^{4}+x^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{-y^{4}+x^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{2}^{7} a_{2}-2 v_{1} v_{2}^{6} b_{2}+4 b_{2} v_{3} v_{2}^{6}-4 v_{2}^{7} b_{3}-2 v_{2}^{6} b_{1}-4 v_{1}^{2} v_{2}^{3} a_{2}-4 v_{3} v_{1} v_{2}^{3} a_{2} \tag{7E}\\
& \quad-v_{3} v_{2}^{4} a_{3}+6 v_{1}^{3} v_{2}^{2} b_{2}+6 v_{3} v_{1}^{2} v_{2}^{2} b_{2}+8 v_{1}^{2} v_{2}^{3} b_{3}+8 v_{3} v_{1} v_{2}^{3} b_{3}-2 v_{1} v_{2}^{3} a_{1} \\
& \quad-2 v_{3} v_{2}^{3} a_{1}+6 v_{1}^{2} v_{2}^{2} b_{1}+6 v_{3} v_{1} v_{2}^{2} b_{1}-2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 6 v_{1}^{3} v_{2}^{2} b_{2}-2 v_{1}^{3} a_{3}+\left(-4 a_{2}+8 b_{3}\right) v_{1}^{2} v_{2}^{3}+6 v_{3} v_{1}^{2} v_{2}^{2} b_{2}+6 v_{1}^{2} v_{2}^{2} b_{1} \tag{8E}\\
& \quad-2 v_{3} v_{1}^{2} a_{3}-2 v_{1} v_{2}^{6} b_{2}+\left(-4 a_{2}+8 b_{3}\right) v_{1} v_{2}^{3} v_{3}-2 v_{1} v_{2}^{3} a_{1}+6 v_{3} v_{1} v_{2}^{2} b_{1} \\
& \quad+\left(2 a_{2}-4 b_{3}\right) v_{2}^{7}+4 b_{2} v_{3} v_{2}^{6}-2 v_{2}^{6} b_{1}-v_{3} v_{2}^{4} a_{3}-2 v_{3} v_{2}^{3} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
-2 a_{3} & =0 \\
-a_{3} & =0 \\
-2 b_{1} & =0 \\
6 b_{1} & =0 \\
-2 b_{2} & =0 \\
4 b_{2} & =0 \\
6 b_{2} & =0 \\
-4 a_{2}+8 b_{3} & =0 \\
2 a_{2}-4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=2 b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=2 x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{align*}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x+\sqrt{-y^{4}+x^{2}}}{2 y^{3}}\right) \tag{2x}\\
& =\frac{y^{4}-\sqrt{-y^{4}+x^{2}} x-x^{2}}{y^{3}} \\
\xi & =0
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{4}-\sqrt{-y^{4}+x^{2} x-x^{2}}}{y^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln \left(y^{2}-x\right)}{4}+\ln (y)-\frac{\ln \left(y^{2}+x\right)}{4}+\frac{\ln \left(y^{4}-x^{2}\right)}{4}+\frac{x \ln \left(\frac{2 x^{2}+2 \sqrt{x^{2}} \sqrt{-y^{4}+x^{2}}}{y^{2}}\right)}{2 \sqrt{x^{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x+\sqrt{-y^{4}+x^{2}}}{2 y^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+\sqrt{-y^{4}+x^{2}}}{2 \sqrt{-y^{4}+x^{2}} x} \\
S_{y} & =-\frac{y^{3}}{\sqrt{-y^{4}+x^{2}}\left(x+\sqrt{-y^{4}+x^{2}}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (2)}{2}+\frac{\ln (x)}{2}+\frac{\ln \left(x+\sqrt{x^{2}-y^{4}}\right)}{2}=\frac{\ln (x)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (2)}{2}+\frac{\ln (x)}{2}+\frac{\ln \left(x+\sqrt{x^{2}-y^{4}}\right)}{2}=\frac{\ln (x)}{2}+c_{1}
$$

Verified OK.

Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\sqrt{-y^{4}+x^{2}}-x}{2 y^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}-\frac{\left(\sqrt{-y^{4}+x^{2}}-x\right)\left(b_{3}-a_{2}\right)}{2 y^{3}}-\frac{\left(\sqrt{-y^{4}+x^{2}}-x\right)^{2} a_{3}}{4 y^{6}} \\
& +\frac{\left(-1+\frac{x}{\sqrt{-y^{4}+x^{2}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)}{2 y^{3}} \tag{5E}\\
& \quad-\left(\frac{1}{\sqrt{-y^{4}+x^{2}}}+\frac{\frac{3 \sqrt{-y^{4}+x^{2}}}{2}-\frac{3 x}{2}}{y^{4}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}-2 x y^{6} b_{2}+2 y^{7} a_{2}-4 y^{7} b_{3}-2 y^{6} b_{1}-6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2}+4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}-8 \sqrt{2}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}+2 x y^{6} b_{2}-2 y^{7} a_{2}+4 y^{7} b_{3}+2 y^{6} b_{1}+6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2} \\
& \quad-4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}+8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3}-2 \sqrt{-y^{4}+x^{2}} y^{4} a_{3} \tag{6E}\\
& -6 x^{3} y^{2} b_{2}+4 x^{2} y^{3} a_{2}-8 x^{2} y^{3} b_{3}+6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1}-2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1} \\
& -6 x^{2} y^{2} b_{1}+2 x y^{3} a_{1}-\left(-y^{4}+x^{2}\right)^{\frac{3}{2}} a_{3}-\sqrt{-y^{4}+x^{2}} x^{2} a_{3}+2 x^{3} a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}-4 x y^{6} b_{2}-4 y^{7} b_{3}-4 y^{6} b_{1}-6\left(-y^{4}+x^{2}\right) x y^{2} b_{2} \\
& +2\left(-y^{4}+x^{2}\right) y^{3} a_{2}-8\left(-y^{4}+x^{2}\right) y^{3} b_{3}+6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2} \tag{6E}\\
& \quad-4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}+8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3} \\
& -2 \sqrt{-y^{4}+x^{2}} y^{4} a_{3}+2 x^{2} y^{3} a_{2}+2 x y^{4} a_{3}-6\left(-y^{4}+x^{2}\right) y^{2} b_{1} \\
& +6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1}-2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1}+2 x y^{3} a_{1} \\
& -\left(-y^{4}+x^{2}\right)^{\frac{3}{2}} a_{3}+2\left(-y^{4}+x^{2}\right) x a_{3}-\sqrt{-y^{4}+x^{2}} x^{2} a_{3}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x y^{6} b_{2}+4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}-2 y^{7} a_{2}+4 y^{7} b_{3}+2 y^{6} b_{1}-6 x^{3} y^{2} b_{2} \\
& +6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2}+4 x^{2} y^{3} a_{2}-8 x^{2} y^{3} b_{3}-4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2} \\
& +8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3}-\sqrt{-y^{4}+x^{2}} y^{4} a_{3}-6 x^{2} y^{2} b_{1}+6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1} \\
& +2 x y^{3} a_{1}-2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1}+2 x^{3} a_{3}-2 \sqrt{-y^{4}+x^{2}} x^{2} a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{-y^{4}+x^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{-y^{4}+x^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 v_{2}^{7} a_{2}+2 v_{1} v_{2}^{6} b_{2}+4 b_{2} v_{3} v_{2}^{6}+4 v_{2}^{7} b_{3}+2 v_{2}^{6} b_{1}+4 v_{1}^{2} v_{2}^{3} a_{2}-4 v_{3} v_{1} v_{2}^{3} a_{2} \tag{7E}\\
& \quad-v_{3} v_{2}^{4} a_{3}-6 v_{1}^{3} v_{2}^{2} b_{2}+6 v_{3} v_{1}^{2} v_{2}^{2} b_{2}-8 v_{1}^{2} v_{2}^{3} b_{3}+8 v_{3} v_{1} v_{2}^{3} b_{3}+2 v_{1} v_{2}^{3} a_{1} \\
& -2 v_{3} v_{2}^{3} a_{1}-6 v_{1}^{2} v_{2}^{2} b_{1}+6 v_{3} v_{1} v_{2}^{2} b_{1}+2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -6 v_{1}^{3} v_{2}^{2} b_{2}+2 v_{1}^{3} a_{3}+\left(4 a_{2}-8 b_{3}\right) v_{1}^{2} v_{2}^{3}+6 v_{3} v_{1}^{2} v_{2}^{2} b_{2}-6 v_{1}^{2} v_{2}^{2} b_{1} \tag{8E}\\
& -2 v_{3} v_{1}^{2} a_{3}+2 v_{1} v_{2}^{6} b_{2}+\left(-4 a_{2}+8 b_{3}\right) v_{1} v_{2}^{3} v_{3}+2 v_{1} v_{2}^{3} a_{1}+6 v_{3} v_{1} v_{2}^{2} b_{1} \\
& +\left(-2 a_{2}+4 b_{3}\right) v_{2}^{7}+4 b_{2} v_{3} v_{2}^{6}+2 v_{2}^{6} b_{1}-v_{3} v_{2}^{4} a_{3}-2 v_{3} v_{2}^{3} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
2 a_{1} & =0 \\
-2 a_{3} & =0 \\
-a_{3} & =0 \\
2 a_{3} & =0 \\
-6 b_{1} & =0 \\
2 b_{1} & =0 \\
6 b_{1} & =0 \\
-6 b_{2} & =0 \\
2 b_{2} & =0 \\
4 b_{2} & =0 \\
6 b_{2} & =0 \\
-4 a_{2}+8 b_{3} & =0 \\
-2 a_{2}+4 b_{3} & =0 \\
4 a_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=2 b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =2 x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{align*}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{\sqrt{-y^{4}+x^{2}}-x}{2 y^{3}}\right) \tag{2x}\\
& =\frac{y^{4}+\sqrt{-y^{4}+x^{2}} x-x^{2}}{y^{3}} \\
\xi & =0
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{4}+\sqrt{-y^{4}+x^{2}} x-x^{2}}{y^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(y^{4}-x^{2}\right)}{4}-\frac{\ln \left(y^{2}-x\right)}{4}+\ln (y)-\frac{\ln \left(y^{2}+x\right)}{4}-\frac{x \ln \left(\frac{2 x^{2}+2 \sqrt{x^{2}} \sqrt{-y^{4}+x^{2}}}{y^{2}}\right)}{2 \sqrt{x^{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\sqrt{-y^{4}+x^{2}}-x}{2 y^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x+\sqrt{-y^{4}+x^{2}}}{2 \sqrt{-y^{4}+x^{2}} x} \\
S_{y} & =\frac{-y^{4}+2 x^{2}+2 \sqrt{-y^{4}+x^{2}} x}{y \sqrt{-y^{4}+x^{2}}\left(x+\sqrt{-y^{4}+x^{2}}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{-y^{4}+\sqrt{-y^{4}+x^{2}} x+x^{2}}{2 \sqrt{-y^{4}+x^{2}} x\left(x+\sqrt{-y^{4}+x^{2}}\right)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

Which gives

$$
y=\mathrm{e}^{\frac{\ln (2)}{4}+\frac{\ln \left(-2 \mathrm{e}^{4 c_{1}} \mathrm{e}^{-2 c_{1}+2}+\mathrm{e}^{2 c_{1}} \mathrm{e}^{\left.-2 c_{1} x\right)}\right.}{4}+\frac{c_{1}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\ln (2)}{4}+\frac{\ln \left(-2 \mathrm{e}^{4 c_{1}} \mathrm{e}^{-2 c_{1}}+2 \mathrm{e}^{2 c_{1}} \mathrm{e}^{\left.-2 c_{1} x\right)}\right.}{4}+\frac{c_{1}}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{\ln (2)}{4}+\frac{\ln \left(-2 \mathrm{e}^{4 c_{1}} \mathrm{e}^{-2 c_{1}}+2 \mathrm{e}^{2 c_{1}} \mathrm{e}^{\left.-2 c_{1} x\right)}\right.}{4}+\frac{c_{1}}{2}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
```

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of $d y / d x$: 2 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3` [2*x, y]
\checkmark Solution by Maple
Time used: 0.281 (sec). Leaf size: 85
dsolve($4 * y(x) \wedge 3 * \operatorname{diff}(y(x), x) \wedge 2-4 * x * \operatorname{diff}(y(x), x)+y(x)=0, y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=\sqrt{-x} \\
& y(x)=-\sqrt{-x} \\
& y(x)=\sqrt{x} \\
& y(x)=-\sqrt{x} \\
& y(x)=0 \\
& y(x)=\operatorname{RootOf}\left(-\ln (x)+2\left(\int^{-Z}-\frac{a^{4}-\sqrt{-a^{4}+1}-1}{\square^{a\left(-a^{4}-1\right)}} d _a\right)+c_{1}\right) \sqrt{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.587 (sec). Leaf size: 282
DSolve $\left[4 * y[x] \sim 3 *\left(y^{\prime}[x]\right) \sim 2-4 * x * y^{\prime}[x]+y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow-e^{\frac{c_{1}}{4}} \sqrt[4]{e^{c_{1}}-2 i x} \\
& y(x) \rightarrow-i e^{\frac{c_{1}}{4}} \sqrt[4]{e^{c_{1}}-2 i x} \\
& y(x) \rightarrow i e^{c_{1}} 4 \sqrt[4]{e^{c_{1}}-2 i x} \\
& y(x) \rightarrow e^{\frac{c_{1}}{4}} \sqrt[4]{e^{c_{1}}-2 i x} \\
& y(x) \rightarrow-e^{\frac{c_{1}}{4}} \sqrt[4]{2 i x+e^{c_{1}}} \\
& y(x) \rightarrow-i e^{\frac{c_{1}}{4}} \sqrt[4]{2 i x+e^{c_{1}}} \\
& y(x) \rightarrow i e^{\frac{c_{1}}{4}} \sqrt[4]{2 i x+e^{c_{1}}} \\
& y(x) \rightarrow e^{\frac{c_{1}}{4}} \sqrt[4]{2 i x+e^{c_{1}}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-\sqrt{x} \\
& y(x) \rightarrow-i \sqrt{x} \\
& y(x) \rightarrow i \sqrt{x} \\
& y(x) \rightarrow \sqrt{x}
\end{aligned}
$$

2.7 problem 14

Internal problem ID [6792]
Internal file name [OUTPUT/6039_Tuesday_July_26_2022_05_04_58_AM_75081633/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314
Problem number: 14.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _rational]

$$
4 y^{3} y^{\prime 2}+4 x y^{\prime}+y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{-x+\sqrt{x^{2}-y^{4}}}{2 y^{3}} \tag{1}\\
y^{\prime} & =-\frac{x+\sqrt{x^{2}-y^{4}}}{2 y^{3}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\sqrt{-y^{4}+x^{2}}-x}{2 y^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(\sqrt{-y^{4}+x^{2}}-x\right)\left(b_{3}-a_{2}\right)}{2 y^{3}}-\frac{\left(\sqrt{-y^{4}+x^{2}}-x\right)^{2} a_{3}}{4 y^{6}} \\
& -\frac{\left(-1+\frac{x}{\sqrt{-y^{4}+x^{2}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)}{2 y^{3}} \tag{5E}\\
& -\left(-\frac{1}{\sqrt{-y^{4}+x^{2}}}-\frac{3\left(\sqrt{-y^{4}+x^{2}}-x\right)}{2 y^{4}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$-\underline{-4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}+2 x y^{6} b_{2}-2 y^{7} a_{2}+4 y^{7} b_{3}+2 y^{6} b_{1}+6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2}-4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}+8 \sqrt{ }}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}-2 x y^{6} b_{2}+2 y^{7} a_{2}-4 y^{7} b_{3}-2 y^{6} b_{1}-6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2} \\
& +4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}-8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3}+2 \sqrt{-y^{4}+x^{2}} y^{4} a_{3}+6 x^{3} y^{2} b_{2} \tag{6E}\\
& -4 x^{2} y^{3} a_{2}+8 x^{2} y^{3} b_{3}-4 x y^{4} a_{3}-6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1}+2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1} \\
& +6 x^{2} y^{2} b_{1}-2 x y^{3} a_{1}-\left(-y^{4}+x^{2}\right)^{\frac{3}{2}} a_{3}-\sqrt{-y^{4}+x^{2}} x^{2} a_{3}+2 x^{3} a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}+4 x y^{6} b_{2}+4 y^{7} b_{3}+4 y^{6} b_{1}+6\left(-y^{4}+x^{2}\right) x y^{2} b_{2} \\
& \quad-2\left(-y^{4}+x^{2}\right) y^{3} a_{2}+8\left(-y^{4}+x^{2}\right) y^{3} b_{3}-6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2} \tag{6E}\\
& +4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}-8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3}+2 \sqrt{-y^{4}+x^{2}} y^{4} a_{3}-2 x^{2} y^{3} a_{2} \\
& -2 x y^{4} a_{3}+6\left(-y^{4}+x^{2}\right) y^{2} b_{1}-6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1}+2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1} \\
& -2 x y^{3} a_{1}-\left(-y^{4}+x^{2}\right)^{\frac{3}{2}} a_{3}+2\left(-y^{4}+x^{2}\right) x a_{3}-\sqrt{-y^{4}+x^{2}} x^{2} a_{3}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -2 x y^{6} b_{2}+4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}+2 y^{7} a_{2}-4 y^{7} b_{3}-2 y^{6} b_{1} \\
& +6 x^{3} y^{2} b_{2}-6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2}-4 x^{2} y^{3} a_{2}+8 x^{2} y^{3} b_{3} \\
& +4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}-8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3}-4 x y^{4} a_{3} \\
& +3 \sqrt{-y^{4}+x^{2}} y^{4} a_{3}+6 x^{2} y^{2} b_{1}-6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1}-2 x y^{3} a_{1} \\
& +2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1}+2 x^{3} a_{3}-2 \sqrt{-y^{4}+x^{2}} x^{2} a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{-y^{4}+x^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{-y^{4}+x^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{2}^{7} a_{2}-2 v_{1} v_{2}^{6} b_{2}+4 b_{2} v_{3} v_{2}^{6}-4 v_{2}^{7} b_{3}-2 v_{2}^{6} b_{1}-4 v_{1}^{2} v_{2}^{3} a_{2}+4 v_{3} v_{1} v_{2}^{3} a_{2} \tag{7E}\\
& \quad-4 v_{1} v_{2}^{4} a_{3}+3 v_{3} v_{2}^{4} a_{3}+6 v_{1}^{3} v_{2}^{2} b_{2}-6 v_{3} v_{1}^{2} v_{2}^{2} b_{2}+8 v_{1}^{2} v_{2}^{3} b_{3}-8 v_{3} v_{1} v_{2}^{3} b_{3} \\
& \quad-2 v_{1} v_{2}^{3} a_{1}+2 v_{3} v_{2}^{3} a_{1}+6 v_{1}^{2} v_{2}^{2} b_{1}-6 v_{3} v_{1} v_{2}^{2} b_{1}+2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 6 v_{1}^{3} v_{2}^{2} b_{2}+2 v_{1}^{3} a_{3}+\left(-4 a_{2}+8 b_{3}\right) v_{1}^{2} v_{2}^{3}-6 v_{3} v_{1}^{2} v_{2}^{2} b_{2}+6 v_{1}^{2} v_{2}^{2} b_{1}-2 v_{3} v_{1}^{2} a_{3} \tag{8E}\\
& \quad-2 v_{1} v_{2}^{6} b_{2}-4 v_{1} v_{2}^{4} a_{3}+\left(4 a_{2}-8 b_{3}\right) v_{1} v_{2}^{3} v_{3}-2 v_{1} v_{2}^{3} a_{1}-6 v_{3} v_{1} v_{2}^{2} b_{1} \\
& \quad+\left(2 a_{2}-4 b_{3}\right) v_{2}^{7}+4 b_{2} v_{3} v_{2}^{6}-2 v_{2}^{6} b_{1}+3 v_{3} v_{2}^{4} a_{3}+2 v_{3} v_{2}^{3} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
2 a_{1} & =0 \\
-4 a_{3} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
3 a_{3} & =0 \\
-6 b_{1} & =0 \\
-2 b_{1} & =0 \\
6 b_{1} & =0 \\
-6 b_{2} & =0 \\
-2 b_{2} & =0 \\
4 b_{2} & =0 \\
6 b_{2} & =0 \\
-4 a_{2}+8 b_{3} & =0 \\
2 a_{2}-4 b_{3} & =0 \\
4 a_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =2 x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{align*}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{\sqrt{-y^{4}+x^{2}}-x}{2 y^{3}}\right) \tag{2x}\\
& =\frac{y^{4}+x^{2}-\sqrt{-y^{4}+x^{2}} x}{y^{3}} \\
\xi & =0
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{4}+x^{2}-\sqrt{-y^{4}+x^{2} x}}{y^{3}}} d y
\end{aligned}
$$

Which results in
$S=\frac{\ln \left(y^{4}+3 x^{2}\right)}{6}+\frac{\ln (y)}{3}-\frac{x \ln \left(\frac{2 x^{2}+2 \sqrt{x^{2}} \sqrt{-y^{4}+x^{2}}}{y^{2}}\right)}{6 \sqrt{x^{2}}}+\frac{x \ln \left(\frac{8 x^{2}-2 \sqrt{-3 x^{2}}\left(y^{2}-\sqrt{-3 x^{2}}\right)+4 \sqrt{x^{2}} \sqrt{-\left(y^{2}-\sqrt{-3 x^{2}}\right)^{2}-}}{y^{2}-\sqrt{-3 x^{2}}}\right.}{6 \sqrt{x^{2}}}$
Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sqrt{-y^{4}+x^{2}}-x}{2 y^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{-\sqrt{-y^{4}+x^{2}} y^{4}-7 y^{4} x+11 \sqrt{-y^{4}+x^{2}} x^{2}+7 x^{3}}{6\left(x+i \sqrt{3} y^{2}+2 \sqrt{-y^{4}+x^{2}}\right)\left(x-i \sqrt{3} y^{2}+2 \sqrt{-y^{4}+x^{2}}\right) \sqrt{-y^{4}+x^{2} x}} \\
& S_{y}=\frac{y^{8}-4 x y^{4} \sqrt{-y^{4}+x^{2}}-7 y^{4} x^{2}+6 \sqrt{-y^{4}+x^{2}} x^{3}+6 x^{4}}{\left(x+i \sqrt{3} y^{2}+2 \sqrt{-y^{4}+x^{2}}\right)\left(x-i \sqrt{3} y^{2}+2 \sqrt{-y^{4}+x^{2}}\right)\left(x+\sqrt{-y^{4}+x^{2}}\right) \sqrt{-y^{4}+x^{2}} y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y^{8}-5 x y^{4} \sqrt{-y^{4}+x^{2}}-10 y^{4} x^{2}+9 \sqrt{-y^{4}+x^{2}} x^{3}+9 x^{4}}{6\left(x+i \sqrt{3} y^{2}+2 \sqrt{-y^{4}+x^{2}}\right)\left(x-i \sqrt{3} y^{2}+2 \sqrt{-y^{4}+x^{2}}\right) \sqrt{-y^{4}+x^{2}} x\left(x+\sqrt{-y^{4}+x^{2}}\right)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{6 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R)}{6}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{4}+3 x^{2}\right)}{6}+\frac{2 \ln (y)}{3}+\frac{\ln (2)}{6}+\frac{\ln (x)}{6}-\frac{\ln \left(x+\sqrt{x^{2}-y^{4}}\right)}{6}+\frac{\ln \left(i x+\sqrt{3} y^{2}+2 i \sqrt{x^{2}-y^{4}}\right)}{6}-\frac{\ln (\sqrt{3}}{6}
$$

Which simplifies to

$$
\frac{\ln \left(y^{4}+3 x^{2}\right)}{6}+\frac{2 \ln (y)}{3}+\frac{\ln (2)}{6}-\frac{\ln \left(x+\sqrt{x^{2}-y^{4}}\right)}{6}+\frac{\ln \left(i x+\sqrt{3} y^{2}+2 i \sqrt{x^{2}-y^{4}}\right)}{6}+\frac{\ln (3)}{6}-\frac{\ln (i \sqrt{3}}{}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \frac{\ln \left(y^{4}+3 x^{2}\right)}{6}+\frac{2 \ln (y)}{3}+\frac{\ln (2)}{6}-\frac{\ln \left(x+\sqrt{x^{2}-y^{4}}\right)}{6} \\
& +\frac{\ln \left(i x+\sqrt{3} y^{2}+2 i \sqrt{x^{2}-y^{4}}\right)}{6}+\frac{\ln (3)}{6}-\frac{\ln \left(i \sqrt{3} y^{2}+3 x\right)}{6} \tag{1}\\
& +\frac{\ln \left(i x-\sqrt{3} y^{2}+2 i \sqrt{x^{2}-y^{4}}\right)}{6}-\frac{\ln \left(i \sqrt{3} y^{2}-3 x\right)}{6}-c_{1}=0
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& \frac{\ln \left(y^{4}+3 x^{2}\right)}{6}+\frac{2 \ln (y)}{3}+\frac{\ln (2)}{6}-\frac{\ln \left(x+\sqrt{x^{2}-y^{4}}\right)}{6} \\
& +\frac{\ln \left(i x+\sqrt{3} y^{2}+2 i \sqrt{x^{2}-y^{4}}\right)}{6}+\frac{\ln (3)}{6}-\frac{\ln \left(i \sqrt{3} y^{2}+3 x\right)}{6} \\
& +\frac{\ln \left(i x-\sqrt{3} y^{2}+2 i \sqrt{x^{2}-y^{4}}\right)}{6}-\frac{\ln \left(i \sqrt{3} y^{2}-3 x\right)}{6}-c_{1}=0
\end{aligned}
$$

Verified OK.
Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x+\sqrt{-y^{4}+x^{2}}}{2 y^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(x+\sqrt{-y^{4}+x^{2}}\right)\left(b_{3}-a_{2}\right)}{2 y^{3}}-\frac{\left(x+\sqrt{-y^{4}+x^{2}}\right)^{2} a_{3}}{4 y^{6}} \\
+ & \frac{\left(1+\frac{x}{\sqrt{-y^{4}+x^{2}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)}{2 y^{3}} \tag{5E}\\
& -\left(\frac{1}{\sqrt{-y^{4}+x^{2}}}+\frac{\frac{3 x}{2}+\frac{3 \sqrt{-y^{4}+x^{2}}}{2}}{y^{4}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}-2 x y^{6} b_{2}+2 y^{7} a_{2}-4 y^{7} b_{3}-2 y^{6} b_{1}+6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2}-4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}+8 \sqrt{ }}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}+2 x y^{6} b_{2}-2 y^{7} a_{2}+4 y^{7} b_{3}+2 y^{6} b_{1}-6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2} \\
& +4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}-8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3}+2 \sqrt{-y^{4}+x^{2}} y^{4} a_{3}-6 x^{3} y^{2} b_{2} \tag{6E}\\
& +4 x^{2} y^{3} a_{2}-8 y^{3} b_{3} x^{2}+4 x y^{4} a_{3}-6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1}+2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1} \\
& -6 y^{2} b_{1} x^{2}+2 x y^{3} a_{1}-\left(-y^{4}+x^{2}\right)^{\frac{3}{2}} a_{3}-\sqrt{-y^{4}+x^{2}} x^{2} a_{3}-2 x^{3} a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}-4 x y^{6} b_{2}-4 y^{7} b_{3}-4 y^{6} b_{1}-6\left(-y^{4}+x^{2}\right) x y^{2} b_{2} \\
& +2\left(-y^{4}+x^{2}\right) y^{3} a_{2}-8\left(-y^{4}+x^{2}\right) y^{3} b_{3}-6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2} \\
& +4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}-8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3}+2 \sqrt{-y^{4}+x^{2}} y^{4} a_{3}+2 x^{2} y^{3} a_{2} \tag{6E}\\
& +2 x y^{4} a_{3}-6\left(-y^{4}+x^{2}\right) y^{2} b_{1}-6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1}+2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1} \\
& +2 x y^{3} a_{1}-\left(-y^{4}+x^{2}\right)^{\frac{3}{2}} a_{3}-2\left(-y^{4}+x^{2}\right) x a_{3}-\sqrt{-y^{4}+x^{2}} x^{2} a_{3}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x y^{6} b_{2}+4 b_{2} \sqrt{-y^{4}+x^{2}} y^{6}-2 y^{7} a_{2}+4 y^{7} b_{3}+2 y^{6} b_{1} \\
& \quad-6 x^{3} y^{2} b_{2}-6 \sqrt{-y^{4}+x^{2}} x^{2} y^{2} b_{2}+4 x^{2} y^{3} a_{2}-8 y^{3} b_{3} x^{2} \\
& +4 \sqrt{-y^{4}+x^{2}} x y^{3} a_{2}-8 \sqrt{-y^{4}+x^{2}} x y^{3} b_{3}+4 x y^{4} a_{3} \\
& +3 \sqrt{-y^{4}+x^{2}} y^{4} a_{3}-6 y^{2} b_{1} x^{2}-6 \sqrt{-y^{4}+x^{2}} x y^{2} b_{1}+2 x y^{3} a_{1} \\
& +2 \sqrt{-y^{4}+x^{2}} y^{3} a_{1}-2 x^{3} a_{3}-2 \sqrt{-y^{4}+x^{2}} x^{2} a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{-y^{4}+x^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{-y^{4}+x^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 v_{2}^{7} a_{2}+2 v_{1} v_{2}^{6} b_{2}+4 b_{2} v_{3} v_{2}^{6}+4 v_{2}^{7} b_{3}+2 v_{2}^{6} b_{1}+4 v_{1}^{2} v_{2}^{3} a_{2}+4 v_{3} v_{1} v_{2}^{3} a_{2} \tag{7E}\\
& +4 v_{1} v_{2}^{4} a_{3}+3 v_{3} v_{2}^{4} a_{3}-6 v_{1}^{3} v_{2}^{2} b_{2}-6 v_{3} v_{1}^{2} v_{2}^{2} b_{2}-8 v_{2}^{3} b_{3} v_{1}^{2}-8 v_{3} v_{1} v_{2}^{3} b_{3} \\
& +2 v_{1} v_{2}^{3} a_{1}+2 v_{3} v_{2}^{3} a_{1}-6 v_{2}^{2} b_{1} v_{1}^{2}-6 v_{3} v_{1} v_{2}^{2} b_{1}-2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -6 v_{1}^{3} v_{2}^{2} b_{2}-2 v_{1}^{3} a_{3}+\left(4 a_{2}-8 b_{3}\right) v_{1}^{2} v_{2}^{3}-6 v_{3} v_{1}^{2} v_{2}^{2} b_{2}-6 v_{2}^{2} b_{1} v_{1}^{2}-2 v_{3} v_{1}^{2} a_{3} \tag{8E}\\
& +2 v_{1} v_{2}^{6} b_{2}+4 v_{1} v_{2}^{4} a_{3}+\left(4 a_{2}-8 b_{3}\right) v_{1} v_{2}^{3} v_{3}+2 v_{1} v_{2}^{3} a_{1}-6 v_{3} v_{1} v_{2}^{2} b_{1} \\
& +\left(-2 a_{2}+4 b_{3}\right) v_{2}^{7}+4 b_{2} v_{3} v_{2}^{6}+2 v_{2}^{6} b_{1}+3 v_{3} v_{2}^{4} a_{3}+2 v_{3} v_{2}^{3} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 a_{1} & =0 \\
-2 a_{3} & =0 \\
3 a_{3} & =0 \\
4 a_{3} & =0 \\
-6 b_{1} & =0 \\
2 b_{1} & =0 \\
-6 b_{2} & =0 \\
2 b_{2} & =0 \\
4 b_{2} & =0 \\
-2 a_{2}+4 b_{3} & =0 \\
4 a_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =2 x \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.
    *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying homogeneous types:
    trying exact
    Looking for potential symmetries
    trying an equivalence to an Abel ODE
    trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[2*x, y]
```

\checkmark Solution by Maple
Time used: 0.313 (sec). Leaf size: 307

```
dsolve(4*y(x)^3*diff(y(x),x)^2+4*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)
```

$y(x)=0$
$\frac{\left(\int_{-b}^{x} \frac{-2 _a+\sqrt{-y(x)^{4}+_a^{2}}}{y(x)^{4}+3 _a^{2}} d _a\right)}{2}$
$-\left(\int^{y(x)} \frac{\left(1+\left(f^{4}-\sqrt{-f^{4}+x^{2}} x+x^{2}\right)\left(\int_{-b}^{x} \frac{f^{4}+4 \sqrt{-f^{4}+\ldots a^{2}} _a-5 _a^{2}}{\sqrt{-f^{4}+\ldots a^{2}}\left(-f^{4}+3 _a^{2}\right)^{2}} d _a\right)\right) f^{3}}{-f^{4}-\sqrt{-f^{4}+x^{2}} x+x^{2}} d _f\right)$
$+c_{1}=0$
$-\frac{\left(\int_{-}^{x} b \frac{2 _a+\sqrt{-y(x)^{4}+_a^{2}}}{y(x)^{4}+3 _a^{2}} d _a\right)}{2}$
$-\left(\int^{y(x)} \frac{\left(1+\left(f^{4}+\sqrt{-f^{4}+x^{2}} x+x^{2}\right)\left(\int_{-b}^{x} \frac{-f^{4}+5 _a^{2}+4 \sqrt{-f^{4}+\ldots a^{2}}}{\sqrt{-f^{4}+\ldots a^{2}}\left(-f^{4}+3 _a^{2}\right)^{2}} d _a\right)\right) f^{3}}{f^{4}+\sqrt{-f^{4}+x^{2}} x+x^{2}} d _f\right)$
$+c_{1}=0$
Solution by Mathematica
Time used: 60.284 (sec). Leaf size: 2815
DSolve $\left[4 * y[x] \sim 3 *(y '[x]) \sim 2+4 * x * y{ }^{\prime}[x]+y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$
Too large to display

2.8 problem 15

$$
\text { 2.8.1 Solving as dAlembert ode . } 175
$$

Internal problem ID [6793]
Internal file name [OUTPUT/6040_Tuesday_July_26_2022_05_05_00_AM_657202/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EX-
ERCISES Page 314
Problem number: 15.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type

```
[_dAlembert]
```

$$
y^{\prime 3}+x y^{\prime 2}-y=0
$$

2.8.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
p^{3}+x p^{2}-y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=p^{3}+x p^{2} \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left(^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=p^{2} \\
& g=p^{3}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-p^{2}+p=\left(3 p^{2}+2 x p\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-p^{2}+p=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=0 \\
& p=1
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=0 \\
& y=1+x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{-p(x)^{2}+p(x)}{3 p(x)^{2}+2 p(x) x} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{3 p^{2}+2 x(p) p}{-p^{2}+p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
p(p) & =\frac{2}{p-1} \\
q(p) & =-\frac{3 p}{p-1}
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{2 x(p)}{p-1}=-\frac{3 p}{p-1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{p-1} d p} \\
& =(p-1)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)\left(-\frac{3 p}{p-1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left((p-1)^{2} x\right) & =\left((p-1)^{2}\right)\left(-\frac{3 p}{p-1}\right) \\
\mathrm{d}\left((p-1)^{2} x\right) & =(-3 p(p-1)) \mathrm{d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (p-1)^{2} x=\int-3 p(p-1) \mathrm{d} p \\
& (p-1)^{2} x=-p^{3}+\frac{3}{2} p^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=(p-1)^{2}$ results in

$$
x(p)=\frac{-p^{3}+\frac{3}{2} p^{2}}{(p-1)^{2}}+\frac{c_{1}}{(p-1)^{2}}
$$

which simplifies to

$$
x(p)=\frac{-2 p^{3}+3 p^{2}+2 c_{1}}{2(p-1)^{2}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=\frac{\left(108 y-8 x^{3}+12 \sqrt{81 y^{2}-12 y x^{3}}\right)^{\frac{1}{3}}}{6}+\frac{2 x^{2}}{3\left(108 y-8 x^{3}+12 \sqrt{81 y^{2}-12 y x^{3}}\right)^{\frac{1}{3}}}-\frac{x}{3}
$$

$$
p=-\frac{\left(108 y-8 x^{3}+12 \sqrt{81 y^{2}-12 y x^{3}}\right)^{\frac{1}{3}}}{12}-\frac{x^{2}}{3\left(108 y-8 x^{3}+12 \sqrt{81 y^{2}-12 y x^{3}}\right)^{\frac{1}{3}}}-\frac{x}{3}+\frac{i \sqrt{3}\left(\frac{\left(108 y-8 x^{3}-\right.}{}\right)}{}
$$

$$
p=-\frac{\left(108 y-8 x^{3}+12 \sqrt{81 y^{2}-12 y x^{3}}\right)^{\frac{1}{3}}}{12}-\frac{x^{2}}{3\left(108 y-8 x^{3}+12 \sqrt{81 y^{2}-12 y x^{3}}\right)^{\frac{1}{3}}}-\frac{x}{3}-\frac{i \sqrt{3}\left(\frac{\left(108 y-8 x^{3}-\right.}{}\right.}{}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x \\
& =\frac{24\left(x^{3}+\frac{3 x^{2}}{2}-3 y+3 c_{1}\right)\left(x^{3}-\frac{3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}}{2}-\frac{27 y}{2}\right)\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}+96((}{\left(2 x^{3}-3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}-27 y\right)\left(\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{ }\right.\right.} \\
& x \\
& =\frac{96\left(x^{3}+\frac{3 x^{2}}{2}-3 y+3 c_{1}\right)\left(x^{3}-\frac{3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}}{2}-\frac{27 y}{2}\right)\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}+192(x}{\left(2 x^{3}-3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}-27 y\right)\left(4 i \sqrt{3} x^{2}-i \sqrt{3}\left(108 y-8 x^{3}+12 \sqrt{ }\right.\right.} \\
& x \\
& =\frac{96\left(x^{3}+\frac{3 x^{2}}{2}-3 y+3 c_{1}\right)\left(x^{3}-\frac{3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}}{2}-\frac{27 y}{2}\right)\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}-192(x}{\left(2 x^{3}-3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}-27 y\right)\left(4 i \sqrt{3} x^{2}-i \sqrt{3}\left(108 y-8 x^{3}+12 \sqrt{ }\right.\right.}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& y=1+x \tag{2}\\
& x \tag{3}
\end{align*}
$$

$=\frac{24\left(x^{3}+\frac{3 x^{2}}{2}-3 y+3 c_{1}\right)\left(x^{3}-\frac{3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}}{2}-\frac{27 y}{2}\right)\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}+96((}{\left(2 x^{3}-3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}-27 y\right)\left(\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{ }\right.\right.}$
x
$=\frac{96\left(x^{3}+\frac{3 x^{2}}{2}-3 y+3 c_{1}\right)\left(x^{3}-\frac{3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}}{2}-\frac{27 y}{2}\right)\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}+192(x}{\left(2 x^{3}-3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}-27 y\right)\left(4 i \sqrt{3} x^{2}-i \sqrt{3}\left(108 y-8 x^{3}+12 \sqrt{ }\right.\right.}$
x
$=\frac{96\left(x^{3}+\frac{3 x^{2}}{2}-3 y+3 c_{1}\right)\left(x^{3}-\frac{3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}}{2}-\frac{27 y}{2}\right)\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}-192(x}{\left(2 x^{3}-3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}-27 y\right)\left(4 i \sqrt{3} x^{2}-i \sqrt{3}\left(108 y-8 x^{3}+12 \sqrt{ }\right.\right.}$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
y=1+x
$$

Verified OK.
x
$=\frac{24\left(x^{3}+\frac{3 x^{2}}{2}-3 y+3 c_{1}\right)\left(x^{3}-\frac{3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}}{2}-\frac{27 y}{2}\right)\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}+96((}{\left(2 x^{3}-3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}-27 y\right)\left(\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{ }\right.\right.}$
Warning, solution could not be verified
x

$$
=\frac{96\left(x^{3}+\frac{3 x^{2}}{2}-3 y+3 c_{1}\right)\left(x^{3}-\frac{3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}}{2}-\frac{27 y}{2}\right)\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}+192(x}{\left(2 x^{3}-3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}-27 y\right)\left(4 i \sqrt{3} x^{2}-i \sqrt{3}\left(108 y-8 x^{3}+12 \sqrt{ }\right.\right.}
$$

Warning, solution could not be verified
x

$$
=\frac{96\left(x^{3}+\frac{3 x^{2}}{2}-3 y+3 c_{1}\right)\left(x^{3}-\frac{3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}}{2}-\frac{27 y}{2}\right)\left(108 y-8 x^{3}+12 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}\right)^{\frac{2}{3}}-192(x}{\left(2 x^{3}-3 \sqrt{3} \sqrt{-4 y x^{3}+27 y^{2}}-27 y\right)\left(4 i \sqrt{3} x^{2}-i \sqrt{3}\left(108 y-8 x^{3}+12 \sqrt{ }\right.\right.}
$$

Warning, solution could not be verified

Maple trace
-Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful

Solution by Maple

Time used: 0.078 (sec). Leaf size: 994

```
dsolve(diff(y(x),x)^ `+x*diff(y(x),x)^2-y(x)=0,y(x), singsol=all)
```

$y(x)=0$
$y(x)$
$\left.=\underline{\left(4 x^{2}-2 x\left(-36 x^{2}-54 x+108 c_{1}-8 x^{3}+27+6 \sqrt{-6\left(1+2 c_{1}\right)\left(4 x^{3}+18 x^{2}-27 c_{1}+27 x\right.}\right)\right.}\right)^{\frac{1}{3}}+12 x+$
$y(x)$
$=\frac{\left(\frac{(-i \sqrt{3}-1)\left(-36 x^{2}-54 x+108 c_{1}-8 x^{3}+27+6 \sqrt{-6\left(1+2 c_{1}\right)\left(4 x^{3}+18 x^{2}-27 c_{1}+27 x\right)}\right)^{\frac{2}{3}}}{4}+\left(2 x+\frac{3}{2}\right)\left(-36 x^{2}-54 x+108 c_{1}-\delta\right.\right.}{}$
$y(x)$
$=\underline{\left(\frac{(i \sqrt{3}-1)\left(-36 x^{2}-54 x+108 c_{1}-8 x^{3}+27+6 \sqrt{-6\left(1+2 c_{1}\right)\left(4 x^{3}+18 x^{2}-27 c_{1}+27 x\right)}\right)^{\frac{2}{3}}}{4}-\left(-2 x-\frac{3}{2}\right)\left(-36 x^{2}-54 x+108 c_{1}-\right.\right.}$

Solution by Mathematica

Time used: 84.497 (sec). Leaf size: 1516

```
DSolve[(y'[x])^3+x*(y'[x])^2-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$y(x)$
$\rightarrow \xrightarrow{-16 x^{4}+8\left(\sqrt[3]{-8 x^{3}-36 x^{2}-54 x+108 c_{1}+6 \sqrt{6} \sqrt{-\left(\left(4 x^{3}+18 x^{2}+27 x-27 c_{1}\right)\left(2 c_{1}+1\right)\right)}+27}-12\right.}$
$y(x)$

$$
\rightarrow \frac{1}{6}\left(-\frac{i(\sqrt{3}-i) x(2 x+3)^{2}}{\sqrt[3]{-8 x^{3}-36 x^{2}+6 \sqrt{6} \sqrt{-\left(\left(1+2 c_{1}\right)\left(4 x^{3}+18 x^{2}+27 x-27 c_{1}\right)\right)}-54 x+27+108 c_{1}}}\right.
$$

$$
+\frac{1}{16}\left(-\frac{i(\sqrt{3}-i)(2 x+3)^{2}}{\sqrt[3]{-8 x^{3}-36 x^{2}+6 \sqrt{6} \sqrt{-\left(\left(1+2 c_{1}\right)\left(4 x^{3}+18 x^{2}+27 x-27 c_{1}\right)\right)}-54 x+27+108 c_{1}}}\right.
$$

$$
+i(\sqrt{3}+i) \sqrt[3]{-8 x^{3}-36 x^{2}+6 \sqrt{6} \sqrt{-\left(\left(1+2 c_{1}\right)\left(4 x^{3}+18 x^{2}+27 x-27 c_{1}\right)\right)}-54 x+27+108 c_{1}}
$$

$$
-4 x+6)^{2}+i(\sqrt{3}
$$

$$
+i) x \sqrt[3]{-8 x^{3}-36 x^{2}+6 \sqrt{6} \sqrt{-\left(\left(1+2 c_{1}\right)\left(4 x^{3}+18 x^{2}+27 x-27 c_{1}\right)\right)}-54 x+27+108 c_{1}}
$$

$$
\left.+2(3-2 x) x-6 x+6 c_{1}\right)
$$

$$
\begin{aligned}
& y(x) \\
& \rightarrow \frac{1}{6}\left(\frac{i(\sqrt{3}+i) x(2 x+3)^{2}}{\sqrt[3]{-8 x^{3}-36 x^{2}+6 \sqrt{6} \sqrt{-\left(\left(1+2 c_{1}\right)\left(4 x^{3}+18 x^{2}+27 x-27 c_{1}\right)\right)}-54 x+27+108 c_{1}}}\right. \\
& +\frac{1}{16}\left(\frac{(1-i \sqrt{3})(2 x+3)^{2}}{\sqrt[3]{-8 x^{3}-36 x^{2}+6 \sqrt{6} \sqrt{-\left(\left(1+2 c_{1}\right)\left(4 x^{3}+18 x^{2}+27 x-27 c_{1}\right)\right)}-54 x+27+108 c_{1}}}\right. \\
& +(1+i \sqrt{3}) \sqrt[3]{-8 x^{3}-36 x^{2}+6 \sqrt{6} \sqrt{-\left(\left(1+2 c_{1}\right)\left(4 x^{3}+18 x^{2}+27 x-27 c_{1}\right)\right)}-54 x+27+108 c_{1}} \\
& +4 x-6)^{2}-(1
\end{aligned}
$$

2.9 problem 16

Internal problem ID [6794]
Internal file name [OUTPUT/6041_Tuesday_July_26_2022_05_07_04_AM_18042897/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 97. The p-discriminant equation. EXERCISES Page 314
Problem number: 16.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "first_order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y^{4} y^{\prime 3}-6 x y^{\prime}+2 y=0
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}{y^{2}}+\frac{2 x}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=-\frac{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}{2 y^{2}}-\frac{x}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}{y^{2}}-\frac{2 x}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}\right)}{2} \tag{2}\\
& y^{\prime}=-\frac{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}{2 y^{2}}-\frac{x}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}{y^{2}}-\frac{2 x}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}\right)}{2} \tag{3}
\end{align*}
$$

Now each one of the above ODE is solved.

Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x\right)\left(b_{3}-a_{2}\right)}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x\right)^{2} a_{3}}{y^{4}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}}-\left(\frac{-\frac{8 x^{2}}{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}} \sqrt{y^{6}-8 x^{3}}}+2}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}\right. \\
& \left.+\frac{4\left(\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x\right) x^{2}}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{4}{3}} \sqrt{y^{6}-8 x^{3}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{-2 y^{2}+\frac{2 y^{5}}{\sqrt{y^{6}-8 x^{3}}}}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}}-\frac{2\left(\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x\right)}{y^{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}\right. \\
& -\frac{\left(\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x\right)\left(-3 y^{2}+\frac{3 y^{5}}{\sqrt{y^{6}-8 x^{3}}}\right)}{\left.3 y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{4}{3}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0}
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-4 \sqrt{y^{6}-8 x^{3}} x y^{5} a_{2}-\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{5} b_{3}-2 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{5}{3}} y b_{1}-v}{} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 \sqrt{y^{6}-8 x^{3}} x y^{5} a_{2}+\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{5} b_{3} \\
& +2 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{5}{3}} y b_{1} \\
& +\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{4} b_{1}-6 \sqrt{y^{6}-8 x^{3}} x^{2} y^{4} b_{2} \\
& -8 \sqrt{y^{6}-8 x^{3}} x y^{5} b_{3}+4\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{3} y^{2} a_{2} \\
& \\
& +4\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{2} y^{3} a_{3} \\
& -4 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{4}{3}} x a_{3} \\
& \\
& -6 \sqrt{y^{6}-8 x^{3}} x y^{4} b_{1}+4\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{2} y^{2} a_{1} \tag{6E}\\
& \\
& -4 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{2} a_{3} \\
& +2 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{5}{3}} x y b_{2} \\
& +\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x y^{4} b_{2} \\
& -\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x y^{7} b_{2} \\
& +b_{2} y^{4}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{4}{3}} \sqrt{y^{6}-8 x^{3}} \\
& -\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{5}{3}} y^{2} a_{2} \\
& +3 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{5}{3}} y^{2} b_{3} \\
& -\left(y^{6}-8 x^{3}\right)^{\frac{3}{2}} a_{3}-2 y^{8} a_{1}+6 x^{2} y^{7} b_{2}+8 x y^{8} b_{3} \\
& +6 x y^{7} b_{1}+24 x^{4} y^{2} a_{2}-8 x^{3} y^{3} a_{3}+8 x^{3} y^{2} a_{1} \\
& -\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{8} b_{3}-\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{7} b_{1} \\
& +\sqrt{y^{6}-8 x^{3}} y^{6} a_{3}+2 \sqrt{y^{6}-8 x^{3}} y^{5} a_{1}-4 x y^{8} a_{2} \\
& -32 x^{5} y b_{2}-48 x^{4} y^{2} b_{3}-32 x^{4} y b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{5} b_{3}+2 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{5}{3}} y b_{1} \\
& -2 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right) y^{3} a_{3}+\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{4} b_{1} \\
& -2 \sqrt{y^{6}-8 x^{3}} x^{2} y^{4} b_{2}-2 \sqrt{y^{6}-8 x^{3}} x y^{5} b_{3}+4\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{3} y^{2} a_{2} \\
& +4\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{2} y^{3} a_{3}-4 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{4}{3}} x a_{3} \\
& -2 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right) y^{2} a_{1}-2 \sqrt{y^{6}-8 x^{3}} x y^{4} b_{1} \\
& +4\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{2} y^{2} a_{1}-4 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{2} a_{3} \\
& +2 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{5}{3}} x y b_{2}+\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x y^{4} b_{2} \\
& +4 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right) x^{2} y b_{2}-4 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right) x y^{2} a_{2} \\
& +6 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right) x y^{2} b_{3}+4 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right) x y b_{1} \\
& -\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x y^{7} b_{2}+b_{2} y^{4}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{4}{3}} \sqrt{y^{6}-8 x^{3}} \\
& -\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{5}{3}} y^{2} a_{2}+3 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{5}{3}} y^{2} b_{3} \\
& +2 x^{2} y^{7} b_{2}+2 x y^{8} b_{3}+2 x y^{7} b_{1}-8 x^{4} y^{2} a_{2}-8 x^{3} y^{3} a_{3}-8 x^{3} y^{2} a_{1}-\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{8} b_{3} \\
& -\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{7} b_{1}-\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{2} a_{3}=0 \tag{6E}
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 4 \sqrt{y^{6}-8 x^{3}} x y^{5} a_{2}-2 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{5} b_{3} \\
&-\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{4} b_{1} \\
&-6 \sqrt{y^{6}-8 x^{3}} x^{2} y^{4} b_{2}-8 \sqrt{y^{6}-8 x^{3}} x y^{5} b_{3} \\
&+12\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{3} y^{2} a_{2}+4\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{2} y^{3} a_{3} \\
&-6 \sqrt{y^{6}-8 x^{3}} x y^{4} b_{1}+4\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{2} y^{2} a_{1} \\
&-4 \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x^{2} a_{3} \\
&+32 x^{4}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}} a_{3}+8 x^{3} \sqrt{y^{6}-8 x^{3}} a_{3} \\
&+\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}} y^{10} b_{2}-\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{8} a_{2} \\
&-\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}} y^{7} b_{2} \\
&+\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{5} a_{2} \\
&-24 x^{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{2} b_{3} \\
&-16 x^{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y b_{1}-8 x^{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}} y^{4} b_{2} \\
&-4 x\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}} y^{6} a_{3}-16 x^{4}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y b_{2} \\
&-\sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x y^{4} b_{2} \\
&+4 x \sqrt{y^{6}-8 x^{3}}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}} y^{3} a_{3} \\
&+\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x y^{7} b_{2}-2 y^{8} a_{1}+6 x^{2} y^{7} b_{2} \\
&+8 x y^{8} b_{3}+6 x y^{7} b_{1}+24 x^{4} y^{2} a_{2}-8 x^{3} y^{3} a_{3}+8 x^{3} y^{2} a_{1} \\
&+2\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{8} b_{3}+\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} y^{7} b_{1} \\
&+2 \sqrt{y^{6}-8 x^{3}} y^{5} a_{1}-4 x y^{8} a_{2}-32 x^{5} y b_{2}-48 x^{4} y^{2} b_{3}-32 x^{4} y{b_{1}}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}},\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}, \sqrt{y^{6}-8 x^{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2},\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}=v_{3},\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}=v_{4}, \sqrt{y^{6}-8 x^{3}}=v_{5}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& v_{3} v_{2}^{10} b_{2}-4 v_{1} v_{2}^{8} a_{2}-v_{4} v_{2}^{8} a_{2}+6 v_{1}^{2} v_{2}^{7} b_{2}+v_{4} v_{1} v_{2}^{7} b_{2}-v_{5} v_{3} v_{2}^{7} b_{2} \\
& \quad+8 v_{1} v_{2}^{8} b_{3}+2 v_{4} v_{2}^{8} b_{3}-2 v_{2}^{8} a_{1}-4 v_{1} v_{3} v_{2}^{6} a_{3}+6 v_{1} v_{2}^{7} b_{1}+v_{4} v_{2}^{7} b_{1} \\
& \quad-8 v_{1}^{3} v_{3} v_{2}^{4} b_{2}+4 v_{5} v_{1} v_{2}^{5} a_{2}+v_{5} v_{4} v_{2}^{5} a_{2}-6 v_{5} v_{1}^{2} v_{2}^{4} b_{2}-v_{5} v_{4} v_{1} v_{2}^{4} b_{2} \tag{7E}\\
& -8 v_{5} v_{1} v_{2}^{5} b_{3}-2 v_{5} v_{4} v_{2}^{5} b_{3}+2 v_{5} v_{2}^{5} a_{1}+24 v_{1}^{4} v_{2}^{2} a_{2}+12 v_{4} v_{1}^{3} v_{2}^{2} a_{2}-8 v_{1}^{3} v_{2}^{3} a_{3} \\
& +4 v_{4} v_{1}^{2} v_{2}^{3} a_{3}+4 v_{1} v_{5} v_{3} v_{2}^{3} a_{3}-6 v_{5} v_{1} v_{2}^{4} b_{1}-v_{5} v_{4} v_{2}^{4} b_{1}-32 v_{1}^{5} v_{2} b_{2} \\
& -16 v_{1}^{4} v_{4} v_{2} b_{2}-48 v_{1}^{4} v_{2}^{2} b_{3}-24 v_{1}^{3} v_{4} v_{2}^{2} b_{3}+8 v_{1}^{3} v_{2}^{2} a_{1}+4 v_{4} v_{1}^{2} v_{2}^{2} a_{1} \\
& +32 v_{1}^{4} v_{3} a_{3}-32 v_{1}^{4} v_{2} b_{1}-16 v_{1}^{3} v_{4} v_{2} b_{1}+8 v_{1}^{3} v_{5} a_{3}-4 v_{5} v_{4} v_{1}^{2} a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 32 v_{1}^{4} v_{3} a_{3}+8 v_{1}^{3} v_{5} a_{3}+v_{3} v_{2}^{10} b_{2}+6 v_{1}^{2} v_{2}^{7} b_{2}+6 v_{1} v_{2}^{7} b_{1}-8 v_{1}^{3} v_{2}^{3} a_{3} \\
& +8 v_{1}^{3} v_{2}^{2} a_{1}+v_{4} v_{2}^{7} b_{1}+2 v_{5} v_{2}^{5} a_{1}-32 v_{1}^{5} v_{2} b_{2}-32 v_{1}^{4} v_{2} b_{1}-v_{5} v_{4} v_{2}^{4} b_{1} \\
& \quad-6 v_{5} v_{1}^{2} v_{2}^{4} b_{2}+4 v_{4} v_{1}^{2} v_{2}^{3} a_{3}-6 v_{5} v_{1} v_{2}^{4} b_{1}+4 v_{4} v_{1}^{2} v_{2}^{2} a_{1}-4 v_{5} v_{4} v_{1}^{2} a_{3} \tag{8E}\\
& \quad-v_{5} v_{3} v_{2}^{7} b_{2}-16 v_{1}^{3} v_{4} v_{2} b_{1}-8 v_{1}^{3} v_{3} v_{2}^{4} b_{2}-4 v_{1} v_{3} v_{2}^{6} a_{3}-16 v_{1}^{4} v_{4} v_{2} b_{2} \\
& +v_{4} v_{1} v_{2}^{7} b_{2}-2 v_{2}^{8} a_{1}+\left(-4 a_{2}+8 b_{3}\right) v_{1} v_{2}^{8}+\left(-a_{2}+2 b_{3}\right) v_{2}^{8} v_{4} \\
& +\left(12 a_{2}-24 b_{3}\right) v_{1}^{3} v_{2}^{2} v_{4}+\left(4 a_{2}-8 b_{3}\right) v_{1} v_{2}^{5} v_{5}+\left(a_{2}-2 b_{3}\right) v_{2}^{5} v_{4} v_{5} \\
& +\left(24 a_{2}-48 b_{3}\right) v_{1}^{4} v_{2}^{2}-v_{5} v_{4} v_{1} v_{2}^{4} b_{2}+4 v_{1} v_{5} v_{3} v_{2}^{3} a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
b_{2} & =0 \\
-2 a_{1} & =0 \\
2 a_{1} & =0 \\
4 a_{1} & =0 \\
8 a_{1} & =0 \\
-8 a_{3} & =0 \\
-4 a_{3} & =0 \\
4 a_{3} & =0 \\
8 a_{3} & =0 \\
32 a_{3} & =0 \\
-32 b_{1} & =0 \\
-16 b_{1} & =0 \\
-6 b_{1} & =0 \\
-b_{1} & =0 \\
6 b_{1} & =0 \\
-32 b_{2} & =0 \\
-16 b_{2} & =0 \\
-8 b_{2} & =0 \\
-6 b_{2} & =0 \\
-b_{2} & =0 \\
6 b_{2} & =0 \\
-4 a_{2}+8 b_{3} & =0 \\
-a_{2}+2 b_{3} & =0 \\
a_{2}-2 b_{3} & =0 \\
4 a_{2}-8 b_{3} & =0 \\
12 a_{2}-24 b_{3} & =0 \\
24 a_{2}-48 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=2 x \\
& \eta=y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{2 x} \\
& =\frac{y}{2 x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} \sqrt{x}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{\sqrt{x}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{2 x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\frac{\ln (x)}{2}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{2 x^{\frac{3}{2}}} \\
R_{y} & =\frac{1}{\sqrt{x}} \\
S_{x} & =\frac{1}{2 x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\sqrt{x} y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}{-y^{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}+2\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}} x+4 x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{R^{2}\left(-R^{3}+\sqrt{R^{6}-8}\right)^{\frac{1}{3}}}{\left(-R^{3}+\sqrt{R^{6}-8}\right)^{\frac{1}{3}} R^{3}-2\left(-R^{3}+\sqrt{R^{6}-8}\right)^{\frac{2}{3}}-4}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{R^{2}\left(-R^{3}+\sqrt{R^{6}-8}\right)^{\frac{1}{3}}}{-\left(-R^{3}+\sqrt{R^{6}-8}\right)^{\frac{1}{3}} R^{3}+2\left(-R^{3}+\sqrt{R^{6}-8}\right)^{\frac{2}{3}}+4} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (x)}{2}=\int^{\frac{y}{\sqrt{x}}} \frac{-a^{2}\left(-_a^{3}+\sqrt{-a^{6}-8}\right)^{\frac{1}{3}}}{-\left(-_a^{3}+\sqrt{-^{6}-8}\right)^{\frac{1}{3}}-a^{3}+2\left(-_a^{3}+\sqrt{-^{6}-8}\right)^{\frac{2}{3}}+4} d _a+c_{1}
$$

Which simplifies to

$$
\frac{\ln (x)}{2}=\int^{\frac{y}{\sqrt{x}}} \frac{\not a^{2}\left(-_a^{3}+\sqrt{_a^{6}-8}\right)^{\frac{1}{3}}}{-\left(-_a^{3}+\sqrt{_^{6}-8}\right)^{\frac{1}{3}} _a^{3}+2\left(-_a^{3}+\sqrt{_^{6}-8}\right)^{\frac{2}{3}}+4} d _a+c_{1}
$$

Summary
The solution(s) found are the following

$$
\frac{\ln (x)}{2}=\int^{\frac{y}{\sqrt{x}}} \frac{-a^{2}\left(-_a^{3}+\sqrt{-a^{6}-8}\right)^{\frac{1}{3}}}{-\left(-_a^{3}+\sqrt{-a^{6}-8}\right)^{\frac{1}{3}}-a^{3}+2\left(-_a^{3}+\sqrt{-^{6}-8}\right)^{\frac{2}{3}}+4} d _a+c(1)
$$

Verification of solutions

$$
\frac{\ln (x)}{2}=\int^{\frac{y}{\sqrt{x}}} \frac{\not a^{2}\left(-_a^{3}+\sqrt{_^{6}-8}\right)^{\frac{1}{3}}}{-\left(-_a^{3}+\sqrt{_^{6}-8}\right)^{\frac{1}{3}}-a^{3}+2\left(-_a^{3}+\sqrt{_^{6}-8}\right)^{\frac{2}{3}}+4} d _a+c_{1}
$$

Verified OK.
Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{i \sqrt{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 i \sqrt{3} x-\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 x}{2 y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\left.-\frac{\left(i \sqrt{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 i \sqrt{3} x-\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 x\right)\left(-3 y^{2}+\frac{3 y^{5}}{\sqrt{y^{6}-8 x^{3}}}\right)}{6 y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{4}{3}}}\right)
$$

$\left.+y b_{3}+b_{1}\right)=0$

$$
\begin{aligned}
& b_{2}+\frac{\left(i \sqrt{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 i \sqrt{3} x-\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 x\right)\left(b_{3}-a_{2}\right)}{2 y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(i \sqrt{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 i \sqrt{3} x-\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 x\right)^{2} a_{3}}{4 y^{4}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}} \\
& -\left(\frac{-\frac{8 i \sqrt{3} x^{2}}{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}} \sqrt{y^{6}-8 x^{3}}}-2 i \sqrt{3}+\frac{8 x^{2}}{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}} \sqrt{y^{6}-8 x^{3}}}-2}{2 y^{2}\left(-y^{3}+\sqrt{\left.y^{6}-8 x^{3}\right)^{\frac{1}{3}}}\right.}\right. \\
& \left.+\frac{2\left(i \sqrt{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 i \sqrt{3} x-\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 x\right) x^{2}}{y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{4}{3}} \sqrt{y^{6}-8 x^{3}}}\right)\left(x a_{2}\right. \\
& \left.+y a_{3}+a_{1}\right)-\left(\frac{\frac{2 i \sqrt{3}\left(-3 y^{2}+\frac{3 y^{5}}{\sqrt{y^{6}-8 x^{3}}}\right)}{3\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}-\frac{2\left(-3 y^{2}+\frac{3 y^{5}}{\sqrt{y^{6}-8 x^{3}}}\right)}{2\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}}{2 y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}\right. \\
& -\frac{i \sqrt{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 i \sqrt{3} x-\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 x}{y^{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}
\end{aligned}
$$

Putting the above in normal form gives

> Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives

> Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}},\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}, \sqrt{y^{6}-8 x^{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them
$\left\{x=v_{1}, y=v_{2},\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}=v_{3},\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}=v_{4}, \sqrt{y^{6}-8 x^{3}}=v_{5}\right\}$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 v_{2}^{8} a_{1}-4 v_{5} v_{3} v_{2}^{7} b_{2}-2 v_{5} v_{4} v_{2}^{5} a_{2}-32 v_{1}^{3} v_{3} v_{2}^{4} b_{2}-16 v_{1} v_{3} v_{2}^{6} a_{3} \\
& +32 v_{1}^{4} v_{4} v_{2} b_{2}+48 v_{1}^{3} v_{4} v_{2}^{2} b_{3}+32 v_{1}^{3} v_{4} v_{2} b_{1}-2 v_{4} v_{1} v_{2}^{7} b_{2} \\
& +8 v_{5} v_{4} v_{1}^{2} a_{3}+4 v_{5} v_{4} v_{2}^{5} b_{3}+2 v_{5} v_{4} v_{2}^{4} b_{1}+12 v_{5} v_{1}^{2} v_{2}^{4} b_{2} \\
& +16 v_{5} v_{1} v_{2}^{5} b_{3}-24 v_{4} v_{1}^{3} v_{2}^{2} a_{2}-8 v_{4} v_{1}^{2} v_{2}^{3} a_{3}+2 v_{5} v_{4} v_{1} v_{2}^{4} b_{2} \\
& +16 v_{1} v_{5} v_{3} v_{2}^{3} a_{3}-2 i \sqrt{3} v_{5} v_{4} v_{1} v_{2}^{4} b_{2}+16 i \sqrt{3} v_{1}^{3} v_{2}^{3} a_{3} \\
& \quad-4 i \sqrt{3} v_{5} v_{2}^{5} a_{1}-12 i \sqrt{3} v_{1}^{2} v_{2}^{7} b_{2}+8 i \sqrt{3} v_{1} v_{2}^{8} a_{2}-16 i \sqrt{3} v_{1} v_{2}^{8} b_{3} \\
& +2 i \sqrt{3} v_{4} v_{2}^{7} b_{1}-16 i \sqrt{3} v_{1}^{3} v_{5} a_{3}-2 i \sqrt{3} v_{4} v_{2}^{8} a_{2}+4 i \sqrt{3} v_{4} v_{2}^{8} b_{3} \\
& \quad-16 i \sqrt{3} v_{1}^{3} v_{2}^{2} a_{1}-12 i \sqrt{3} v_{1} v_{2}^{7} b_{1}+64 i \sqrt{3} v_{1}^{5} v_{2} b_{2} \tag{7E}\\
& \quad-48 i \sqrt{3} v_{1}^{4} v_{2}^{2} a_{2}+96 i \sqrt{3} v_{1}^{4} v_{2}^{2} b_{3}+64 i \sqrt{3} v_{1}^{4} v_{2} b_{1}+12 v_{5} v_{1} v_{2}^{4} b_{1} \\
& \quad-8 v_{4} v_{1}^{2} v_{2}^{2} a_{1}-8 v_{5} v_{1} v_{2}^{5} a_{2}+4 i \sqrt{3} v_{2}^{8} a_{1}-4 v_{5} v_{2}^{5} a_{1}-16 v_{1}^{3} v_{5} a_{3} \\
& +8 v_{1} v_{2}^{8} a_{2}+64 v_{1}^{5} v_{2} b_{2}+96 v_{1}^{4} v_{2}^{2} b_{3}+64 v_{1}^{4} v_{2} b_{1}-48 v_{1}^{4} v_{2}^{2} a_{2} \\
& +16 v_{1}^{3} v_{2}^{3} a_{3}-16 v_{1}^{3} v_{2}^{2} a_{1}-12 v_{1}^{2} v_{2}^{7} b_{2}-16 v_{1} v_{2}^{8} b_{3}-12 v_{1} v_{2}^{7} b_{1} \\
& \quad-4 v_{4} v_{2}^{8} b_{3}-2 v_{4} v_{2}^{7} b_{1}+4 v_{3} v_{2}^{10} b_{2}+2 v_{4} v_{2}^{8} a_{2}+128 v_{1}^{4} v_{3} a_{3} \\
& +2 i \sqrt{3} v_{4} v_{1} v_{2}^{7} b_{2}+8 i \sqrt{3} v_{4} v_{1}^{2} v_{2}^{3} a_{3}+8 i \sqrt{3} v_{4} v_{1}^{2} v_{2}^{2} a_{1} \\
& \quad-8 i \sqrt{3} v_{5} v_{4} v_{1}^{2} a_{3}+12 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{4} b_{2}-8 i \sqrt{3} v_{5} v_{1} v_{2}^{5} a_{2} \\
& +16 i \sqrt{3} v_{5} v_{1} v_{2}^{5} b_{3}+12 i \sqrt{3} v_{5} v_{1} v_{2}^{4} b_{1}+2 i \sqrt{3} v_{5} v_{4} v_{2}^{5} a_{2} \\
& \quad-4 i \sqrt{3} v_{5} v_{4} v_{2}^{5} b_{3}-2 i \sqrt{3} v_{5} v_{4} v_{2}^{4} b_{1}-32 i \sqrt{3} v_{1}^{4} v_{4} v_{2} b_{2} \\
& +24 i \sqrt{3} v_{4} v_{1}^{3} v_{2}^{2} a_{2}-48 i \sqrt{3} v_{1}^{3} v_{4} v_{2}^{2} b_{3}-32 i \sqrt{3} v_{1}^{3} v_{4} v_{2} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -4 v_{5} v_{3} v_{2}^{7} b_{2}+\left(4 i \sqrt{3} a_{1}+4 a_{1}\right) v_{2}^{8}-32 v_{1}^{3} v_{3} v_{2}^{4} b_{2} \\
& -16 v_{1} v_{3} v_{2}^{6} a_{3}+\left(-32 i \sqrt{3} b_{2}+32 b_{2}\right) v_{1}^{4} v_{2} v_{4} \\
& +\left(24 i \sqrt{3} a_{2}-48 i \sqrt{3} b_{3}-24 a_{2}+48 b_{3}\right) v_{1}^{3} v_{2}^{2} v_{4} \\
& +\left(-32 i \sqrt{3} b_{1}+32 b_{1}\right) v_{1}^{3} v_{2} v_{4}+\left(12 i \sqrt{3} b_{2}+12 b_{2}\right) v_{1}^{2} v_{2}^{4} v_{5} \\
& +\left(8 i \sqrt{3} a_{3}-8 a_{3}\right) v_{1}^{2} v_{2}^{3} v_{4}+\left(8 i \sqrt{3} a_{1}-8 a_{1}\right) v_{1}^{2} v_{2}^{2} v_{4} \\
& +\left(-8 i \sqrt{3} a_{3}+8 a_{3}\right) v_{1}^{2} v_{4} v_{5}+\left(2 i \sqrt{3} b_{2}-2 b_{2}\right) v_{1} v_{2}^{7} v_{4} \\
& +\left(-8 i \sqrt{3} a_{2}+16 i \sqrt{3} b_{3}-8 a_{2}+16 b_{3}\right) v_{1} v_{2}^{5} v_{5} \\
& +\left(12 i \sqrt{3} b_{1}+12 b_{1}\right) v_{1} v_{2}^{4} v_{5} \\
& +\left(2 i \sqrt{3} a_{2}-4 i \sqrt{3} b_{3}-2 a_{2}+4 b_{3}\right) v_{2}^{5} v_{4} v_{5} \\
& +\left(-2 i \sqrt{3} b_{1}+2 b_{1}\right) v_{2}^{4} v_{4} v_{5}+16 v_{1} v_{5} v_{3} v_{2}^{3} a_{3} \tag{8E}\\
& +\left(-48 i \sqrt{3} a_{2}+96 i \sqrt{3} b_{3}-48 a_{2}+96 b_{3}\right) v_{1}^{4} v_{2}^{2} \\
& +\left(64 i \sqrt{3} b_{1}+64 b_{1}\right) v_{1}^{4} v_{2}+\left(16 i \sqrt{3} a_{3}+16 a_{3}\right) v_{1}^{3} v_{2}^{3} \\
& +\left(-16 i \sqrt{3} a_{1}-16 a_{1}\right) v_{1}^{3} v_{2}^{2} \\
& +\left(-16 i \sqrt{3} a_{3}-16 a_{3}\right) v_{1}^{3} v_{5}+\left(-12 i \sqrt{3} b_{2}-12 b_{2}\right) v_{1}^{2} v_{2}^{7} \\
& +\left(8 i \sqrt{3} a_{2}-16 i \sqrt{3} b_{3}+8 a_{2}-16 b_{3}\right) v_{1} v_{2}^{8} \\
& +\left(-12 i \sqrt{3} b_{1}-12 b_{1}\right) v_{1} v_{2}^{7} \\
& +\left(-2 i \sqrt{3} a_{2}+4 i \sqrt{3} b_{3}+2 a_{2}-4 b_{3}\right) v_{2}^{8} v_{4}+\left(2 i \sqrt{3} b_{1}-2 b_{1}\right) v_{2}^{7} v_{4} \\
& +\left(-4 i \sqrt{3} a_{1}-4 a_{1}\right) v_{2}^{5} v_{5}+4 v_{3} v_{2}^{10} b_{2}+128 v_{1}^{4} v_{3} a_{3} \\
& +\left(64 i \sqrt{3} b_{2}+64 b_{2}\right) v_{1}^{5} v_{2}+\left(-2 i \sqrt{3} b_{2}+2 b_{2}\right) v_{1} v_{2}^{4} v_{4} v_{5}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-16 a_{3} & =0 \\
16 a_{3} & =0 \\
128 a_{3} & =0 \\
-32 b_{2} & =0 \\
-4 b_{2} & =0 \\
4 b_{2} & =0 \\
-32 i \sqrt{3} b_{1}+32 b_{1} & =0 \\
-32 i \sqrt{3} b_{2}+32 b_{2} & =0 \\
-16 i \sqrt{3} a_{1}-16 a_{1} & =0 \\
-16 i \sqrt{3} a_{3}-16 a_{3} & =0 \\
-12 i \sqrt{3} b_{1}-12 b_{1} & =0 \\
-12 i \sqrt{3} b_{2}-12 b_{2} & =0 \\
-8 i \sqrt{3} a_{3}+8 a_{3} & =0 \\
-4 i \sqrt{3} a_{1}-4 a_{1} & =0 \\
-2 i \sqrt{3} b_{1}+2 b_{1} & =0 \\
-2 i \sqrt{3} b_{2}+2 b_{2} & =0 \\
2 i \sqrt{3} b_{1}-2 b_{1} & =0 \\
2 i \sqrt{3} b_{2}-2 b_{2} & =0 \\
4 i \sqrt{3} a_{1}+4 a_{1} & =0 \\
8 i \sqrt{3} a_{1}-8 a_{1} & =0 \\
8 i \sqrt{3} a_{3}-8 a_{3} & =0 \\
24 i \sqrt{3} a_{2}-48 i \sqrt{3} b_{3}-24 a_{2}+48 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =2 x \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
Solving equation (3)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{i \sqrt{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 i \sqrt{3} x+\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x}{2 y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives
$b_{2}-\frac{\left(i \sqrt{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 i \sqrt{3} x+\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x\right)\left(b_{3}-a_{2}\right)}{2 y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}$
$-\frac{\left(i \sqrt{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 i \sqrt{3} x+\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x\right)^{2} a_{3}}{4 y^{4}\left(-y^{3}+\sqrt{\left.y^{6}-8 x^{3}\right)^{\frac{2}{3}}}\right.}$
$-\left(-\frac{8 x^{2}}{8 i \sqrt{3} x^{2}}+2\right.$
$\left.-\frac{-\frac{\left.1-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}} \sqrt{y^{6}-8 x^{3}}}{}-2 i \sqrt{3}-\frac{y^{3}+\sqrt{\left.y^{6}-8 x^{3}\right)^{\frac{1}{3}}}}{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}} \sqrt{y^{6}-8 x^{3}}}+2}{y^{2}\left(-y^{3}+\sqrt{\left.y^{6}-8 x^{3}\right)^{\frac{4}{3}} \sqrt{y^{6}-8 x^{3}}}\right.}\right)\left(x a_{2}\right.$
$\left.+y a_{3}+a_{1}\right)-\left(-\frac{\frac{2 i \sqrt{3}\left(-3 y^{2}+\frac{3 y^{5}}{\sqrt{y^{6}-8 x^{3}}}\right)}{3\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}+\frac{-2 y^{2}+\frac{2 y^{5}}{\sqrt{y^{6}-8 x^{3}}}}{\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}}{2 y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}\right.$
$+\frac{i \sqrt{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 i \sqrt{3} x+\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x}{y^{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}}$
$\left.+\frac{\left(i \sqrt{3}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}-2 i \sqrt{3} x+\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}+2 x\right)\left(-3 y^{2}+\frac{3 y^{5}}{\sqrt{y^{6}-8 x^{3}}}\right)}{6 y^{2}\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{4}{3}}}\right)$
$\left.+y b_{3}+b_{1}\right)=0$

Putting the above in normal form gives

> Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives

> Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}},\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}, \sqrt{y^{6}-8 x^{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them
$\left\{x=v_{1}, y=v_{2},\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{1}{3}}=v_{3},\left(-y^{3}+\sqrt{y^{6}-8 x^{3}}\right)^{\frac{2}{3}}=v_{4}, \sqrt{y^{6}-8 x^{3}}=v_{5}\right\}$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 v_{2}^{8} a_{1}-2 i v_{4} \sqrt{3} v_{1} v_{2}^{7} b_{2}+2 i v_{5} v_{4} \sqrt{3} v_{2}^{4} b_{1}-8 i v_{4} \sqrt{3} v_{1}^{2} v_{2}^{3} a_{3} \\
& \quad-8 i v_{4} \sqrt{3} v_{1}^{2} v_{2}^{2} a_{1}+8 i v_{5} v_{4} \sqrt{3} v_{1}^{2} a_{3}-2 i \sqrt{3} v_{5} v_{4} v_{2}^{5} a_{2} \\
& +32 i \sqrt{3} v_{1}^{4} v_{4} v_{2} b_{2}+16 i \sqrt{3} v_{1}^{3} v_{5} a_{3}+12 i \sqrt{3} v_{1}^{2} v_{2}^{7} b_{2} \\
& \quad-8 i \sqrt{3} v_{1} v_{2}^{8} a_{2}+16 i \sqrt{3} v_{1} v_{2}^{8} b_{3}+12 i \sqrt{3} v_{1} v_{2}^{7} b_{1}-64 i \sqrt{3} v_{1}^{5} v_{2} b_{2} \\
& +48 i \sqrt{3} v_{1}^{4} v_{2}^{2} a_{2}-96 i \sqrt{3} v_{1}^{4} v_{2}^{2} b_{3}-24 i v_{4} \sqrt{3} v_{1}^{3} v_{2}^{2} a_{2} \\
& +48 i \sqrt{3} v_{1}^{3} v_{4} v_{2}^{2} b_{3}+32 i \sqrt{3} v_{1}^{3} v_{4} v_{2} b_{1}+4 i v_{5} v_{4} \sqrt{3} v_{2}^{5} b_{3} \\
& \quad-12 i v_{5} \sqrt{3} v_{1}^{2} v_{2}^{4} b_{2}+8 i v_{5} \sqrt{3} v_{1} v_{2}^{5} a_{2}-16 i v_{5} \sqrt{3} v_{1} v_{2}^{5} b_{3} \\
& \quad-12 i v_{5} \sqrt{3} v_{1} v_{2}^{4} b_{1}+2 i v_{5} v_{4} \sqrt{3} v_{1} v_{2}^{4} b_{2}+2 v_{5} v_{4} v_{1} v_{2}^{4} b_{2} \tag{7E}\\
& +16 v_{1} v_{5} v_{3} v_{2}^{3} a_{3}-64 i \sqrt{3} v_{1}^{4} v_{2} b_{1}-2 i v_{4} \sqrt{3} v_{2}^{7} b_{1}+16 i \sqrt{3} v_{1}^{3} v_{2}^{2} a_{1} \\
& +4 i v_{5} \sqrt{3} v_{2}^{5} a_{1}-16 i \sqrt{3} v_{1}^{3} v_{2}^{3} a_{3}+2 i \sqrt{3} v_{4} v_{2}^{8} a_{2}-4 i v_{4} \sqrt{3} v_{2}^{8} b_{3} \\
& \quad-4 i \sqrt{3} v_{2}^{8} a_{1}-8 v_{4} v_{1}^{2} v_{2}^{3} a_{3}+12 v_{5} v_{1} v_{2}^{4} b_{1}-8 v_{4} v_{1}^{2} v_{2}^{2} a_{1} \\
& -4 v_{5} v_{3} v_{2}^{7} b_{2}-2 v_{5} v_{4} v_{2}^{5} a_{2}+32 v_{1}^{3} v_{4} v_{2} b_{1}-32 v_{1}^{3} v_{3} v_{2}^{4} b_{2} \\
& \quad-16 v_{1} v_{3} v_{2}^{6} a_{3}+32 v_{1}^{4} v_{4} v_{2} b_{2}+48 v_{1}^{3} v_{4} v_{2}^{2} b_{3}-2 v_{4} v_{1} v_{2}^{7} b_{2} \\
& +8 v_{5} v_{4} v_{1}^{2} a_{3}+4 v_{5} v_{4} v_{2}^{5} b_{3}+2 v_{4}^{4} v_{2}^{2} b_{1}+12 v_{5} v_{1}^{2} v_{2}^{4} b_{2} \\
& +16 v_{5} v_{1} v_{2}^{5} b_{3}-8 v_{5} v_{1} v_{2}^{5} a_{2}-24 v_{4} v_{1}^{3} v_{2}^{2} a_{2}+8 v_{1} v_{2}^{8} a_{2}+64 v_{1}^{5} v_{2} b_{2} \\
& +96 v_{1}^{4} v_{2}^{2} b_{3}+64 v_{1}^{4} v_{2} b_{1}-48 v_{1}^{4} v_{2}^{2} a_{2}+16 v_{1}^{3} v_{2}^{3} a_{3}-16 v_{1}^{3} v_{2}^{2} a_{1} \\
& \quad-12 v_{1}^{2} v_{2}^{7} b_{2}-16 v_{1} v_{2}^{8} b_{3}-12 v_{1} v_{2}^{7} b_{1}-4 v_{4} v_{2}^{8} b_{3}-2 v_{4} v_{2}^{7} b_{1} \\
& +2 v_{4} v_{2}^{8} a_{2}+128 v_{1}^{4} v_{3} a_{3}-16 v_{1}^{3} v_{5} a_{3}-4 v_{5} v_{2}^{5} a_{1}+4 v_{3} v_{2}^{10} b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-4 i \sqrt{3} a_{1}+4 a_{1}\right) v_{2}^{8}+\left(-64 i \sqrt{3} b_{2}+64 b_{2}\right) v_{1}^{5} v_{2} \\
& +\left(48 i \sqrt{3} a_{2}-96 i \sqrt{3} b_{3}-48 a_{2}+96 b_{3}\right) v_{1}^{4} v_{2}^{2} \\
& +\left(-64 i \sqrt{3} b_{1}+64 b_{1}\right) v_{1}^{4} v_{2} \\
& +\left(-16 i \sqrt{3} a_{3}+16 a_{3}\right) v_{1}^{3} v_{2}^{3}+\left(16 i \sqrt{3} a_{1}-16 a_{1}\right) v_{1}^{3} v_{2}^{2} \\
& +\left(16 i \sqrt{3} a_{3}-16 a_{3}\right) v_{1}^{3} v_{5}+\left(12 i \sqrt{3} b_{2}-12 b_{2}\right) v_{1}^{2} v_{2}^{7} \\
& +\left(-8 i \sqrt{3} a_{2}+16 i \sqrt{3} b_{3}+8 a_{2}-16 b_{3}\right) v_{1} v_{2}^{8} \\
& +\left(12 i \sqrt{3} b_{1}-12 b_{1}\right) v_{1} v_{2}^{7}+\left(2 i \sqrt{3} a_{2}-4 i \sqrt{3} b_{3}+2 a_{2}-4 b_{3}\right) v_{2}^{8} v_{4} \\
& +\left(32 i \sqrt{3} b_{2}+32 b_{2}\right) v_{1}^{4} v_{2} v_{4} \\
& +\left(-24 i \sqrt{3} a_{2}+48 i \sqrt{3} b_{3}-24 a_{2}+48 b_{3}\right) v_{1}^{3} v_{2}^{2} v_{4} \tag{8E}\\
& +\left(32 i \sqrt{3} b_{1}+32 b_{1}\right) v_{1}^{3} v_{2} v_{4}+\left(-12 i \sqrt{3} b_{2}+12 b_{2}\right) v_{1}^{2} v_{2}^{4} v_{5} \\
& +\left(-8 i \sqrt{3} a_{3}-8 a_{3}\right) v_{1}^{2} v_{2}^{3} v_{4}+\left(-8 i \sqrt{3} a_{1}-8 a_{1}\right) v_{1}^{2} v_{2}^{2} v_{4} \\
& +\left(8 i \sqrt{3} a_{3}+8 a_{3}\right) v_{1}^{2} v_{4} v_{5}+\left(-2 i \sqrt{3} b_{2}-2 b_{2}\right) v_{1} v_{2}^{7} v_{4} \\
& +16 v_{1} v_{5} v_{3} v_{2}^{3} a_{3}-4 v_{5} v_{3} v_{2}^{7} b_{2}-32 v_{1}^{3} v_{3} v_{2}^{4} b_{2}-16 v_{1} v_{3} v_{2}^{6} a_{3} \\
& +\left(-2 i \sqrt{3} b_{1}-2 b_{1}\right) v_{2}^{7} v_{4}+\left(4 i \sqrt{3} a_{1}-4 a_{1}\right) v_{2}^{5} v_{5} \\
& +\left(8 i \sqrt{3} a_{2}-16 i \sqrt{3} b_{3}-8 a_{2}+16 b_{3}\right) v_{1} v_{2}^{5} v_{5} \\
& +\left(-12 i \sqrt{3} b_{1}+12 b_{1}\right) v_{1} v_{2}^{4} v_{5} \\
& +\left(-2 i \sqrt{3} a_{2}+4 i \sqrt{3} b_{3}-2 a_{2}+4 b_{3}\right) v_{2}^{5} v_{4} v_{5} \\
& +\left(2 i \sqrt{3} b_{1}+2 b_{1}\right) v_{2}^{4} v_{4} v_{5}+128 v_{1}^{4} v_{3} a_{3} \\
& +4 v_{3} v_{2}^{10} b_{2}+\left(2 i \sqrt{3} b_{2}+2 b_{2}\right) v_{1} v_{2}^{4} v_{4} v_{5}=0 \\
& +
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
&-16 a_{3}=0 \\
& 16 a_{3}=0 \\
& 128 a_{3}=0 \\
&-32 b_{2}=0 \\
&-4 b_{2}=0 \\
& 4 b_{2}=0 \\
&-64 i \sqrt{3} b_{1}+64 b_{1}=0 \\
&-64 i \sqrt{3} b_{2}+64 b_{2}=0 \\
&-16 i \sqrt{3} a_{3}+16 a_{3}=0 \\
&-12 i \sqrt{3} b_{1}+12 b_{1}=0 \\
&-12 i \sqrt{3} b_{2}+12 b_{2}=0 \\
&-8 i \sqrt{3} a_{1}-8 a_{1}=0 \\
&-8 i \sqrt{3} a_{3}-8 a_{3}=0 \\
&-4 i \sqrt{3} a_{1}+4 a_{1}=0 \\
&-2 i \sqrt{3} b_{1}-2 b_{1}=0 \\
&-2 i \sqrt{3} b_{2}-2 b_{2}=0 \\
& 2 i \sqrt{3} b_{1}+2 b_{1}=0 \\
& 2 i \sqrt{3} b_{2}+2 b_{2}=0 \\
& 4 i \sqrt{3} a_{1}-4 a_{1}=0 \\
& 8 i \sqrt{3} a_{3}+8 a_{3}=0 \\
& 48 i \sqrt{3} a_{2}-96 i \sqrt{3} b_{3}-48 a_{2}+96 b_{3}=0 \\
& 202=0 \\
& 12 i \sqrt{3} b_{1}-12 b_{1}=0 \\
& 12 i \sqrt{3} b_{2}-12 b_{2}=0 \\
& 16 i \sqrt{3} a_{1}-16 a_{1}=0 \\
& 16 i \sqrt{3} a_{3}-16 a_{3}=0 \\
& 32 i \sqrt{3} b_{1}+32 b_{1}=0 \\
& 32 i \sqrt{3} b_{2}+32 b_{2}=0 \\
&-24 i \sqrt{3} a_{2}+48 i \sqrt{3} b_{3}-24 a_{2}+48 b_{3}=0 \\
&-8 i \sqrt{3} a_{2}+16 i \sqrt{3} b_{3}+8 a_{2}-16 b_{3}=0 \\
&-2 i \sqrt{3} a_{2}+4 i \sqrt{3} b_{3}-2 a_{2}+4 b_{3}=0 \\
& a_{2}-4 i \sqrt{3} b_{3}+2 a_{2}-4 b_{3}=0 \\
& 5 i \sqrt{3} b_{3}-8 a_{2}+16 b_{3}=0 \\
& 0=0 \\
& 2
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=2 x \\
& \eta=y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
-, --> Computing symmetries using: way $=2$
-, --> Computing symmetries using: way $=2$
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
\rightarrow Calling odsolve with the ODE`, \(\operatorname{diff}(y(x), x)=\left(-y(x)^{\wedge} 4 * x^{\wedge} 3+y(x)\right) /\left(2 * y(x) \wedge 3 * x^{\wedge} 4-2 * x\right)\), Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful <- 1st order, parametric methods successful`
\checkmark Solution by Maple
Time used: 0.266 (sec). Leaf size: 167
dsolve $(y(x) \wedge 4 * \operatorname{diff}(y(x), x) \wedge 3-6 * x * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\sqrt{x(-i \sqrt{3}-1)} \\
& y(x)=\sqrt{(i \sqrt{3}-1) x} \\
& y(x)=-\sqrt{-(1+i \sqrt{3}) x} \\
& y(x)=-\sqrt{(i \sqrt{3}-1) x} \\
& y(x)=\sqrt{x} \sqrt{2} \\
& y(x)=-\sqrt{x} \sqrt{2} \\
& y(x)=0 \\
& y(x)=\frac{2^{\frac{2}{3}}\left(-c_{1}^{3}+6 c_{1} x\right)^{\frac{1}{3}}}{2} \\
& y(x)=-\frac{2^{\frac{2}{3}}\left(-c_{1}^{3}+6 c_{1} x\right)^{\frac{1}{3}}(1+i \sqrt{3})}{4} \\
& y(x)=\frac{2^{\frac{2}{3}}\left(-c_{1}^{3}+6 c_{1} x\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 70.054 (sec). Leaf size: 22649
DSolve $\left[y[x] \sim 4 *(y '[x]) \sim 3-6 * x * y y^{\prime}[x]+2 * y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]
Too large to display
3 CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES Page 320
3.1 problem 3 207
3.2 problem 4 220
3.3 problem 5 233
3.4 problem 6 254
3.5 problem 7 258
3.6 problem 8 262
3.7 problem 9 275
3.8 problem 10 288
3.9 problem 11 293
3.10 problem 12 306
3.11 problem 13 310
3.12 problem 14 314
3.13 problem 15 336
3.14 problem 16 358
3.15 problem 17 361
3.16 problem 19 366
3.17 problem 20 372
3.18 problem 21 378
3.19 problem 22 383
3.20 problem 23 390
3.21 problem 24 395
3.22 problem 25 401
3.23 problem 26 407
3.24 problem 27 412
3.25 problem 28 418
3.26 problem 29 424

3.1 problem 3

Internal problem ID [6795]
Internal file name [OUTPUT/6042_Tuesday_July_26_2022_11_23_37_PM_9550685/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 3 .
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y^{\prime 2}+x^{3} y^{\prime}-2 x^{2} y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\left(-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}+8 y}}{2}\right) x \tag{1}\\
& y^{\prime}=\left(-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+8 y}}{2}\right) x \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\left(-x^{2}+\sqrt{x^{4}+8 y}\right) x}{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\frac{\left(-x^{2}+\sqrt{x^{4}+8 y}\right) x\left(b_{3}-a_{2}\right)}{2}-\frac{\left(-x^{2}+\sqrt{x^{4}+8 y}\right)^{2} x^{2} a_{3}}{4} \\
& \tag{5E}\\
& -\left(\frac{\left(-2 x+\frac{2 x^{3}}{\sqrt{x^{4}+8 y}}\right) x}{2}-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}+8 y}}{2}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& \\
& -\frac{2 x\left(x b_{2}+y b_{3}+b_{1}\right)}{\sqrt{x^{4}+8 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-2 x^{8} a_{3}+\sqrt{x^{4}+8 y} x^{6} a_{3}+\left(x^{4}+8 y\right)^{\frac{3}{2}} x^{2} a_{3}+8 x^{5} a_{2}-2 x^{5} b_{3}-10 x^{4} y a_{3}-8 \sqrt{x^{4}+8 y} x^{3} a_{2}+2 \sqrt{x^{4}+8 y}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{8} a_{3}-\sqrt{x^{4}+8 y} x^{6} a_{3}-\left(x^{4}+8 y\right)^{\frac{3}{2}} x^{2} a_{3}-8 x^{5} a_{2} \\
& \quad+2 x^{5} b_{3}+10 x^{4} y a_{3}+8 \sqrt{x^{4}+8 y} x^{3} a_{2}-2 \sqrt{x^{4}+8 y} x^{3} b_{3} \tag{6E}\\
& +6 \sqrt{x^{4}+8 y} x^{2} y a_{3}-6 x^{4} a_{1}+6 \sqrt{x^{4}+8 y} x^{2} a_{1}-8 x^{2} b_{2} \\
& \quad-32 x y a_{2}+8 x y b_{3}-16 y^{2} a_{3}+4 b_{2} \sqrt{x^{4}+8 y}-8 x b_{1}-16 y a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\sqrt{x^{4}+8 y} x^{6} a_{3}+2\left(x^{4}+8 y\right) x^{4} a_{3}-\left(x^{4}+8 y\right)^{\frac{3}{2}} x^{2} a_{3}-4 x^{5} a_{2}-4 x^{4} y a_{3} \\
& +8 \sqrt{x^{4}+8 y} x^{3} a_{2}-2 \sqrt{x^{4}+8 y} x^{3} b_{3}+6 \sqrt{x^{4}+8 y} x^{2} y a_{3}-4 x^{4} a_{1} \tag{6E}\\
& -4\left(x^{4}+8 y\right) x a_{2}+2\left(x^{4}+8 y\right) x b_{3}-2\left(x^{4}+8 y\right) y a_{3}+6 \sqrt{x^{4}+8 y} x^{2} a_{1} \\
& -2\left(x^{4}+8 y\right) a_{1}-8 x^{2} b_{2}-8 x y b_{3}+4 b_{2} \sqrt{x^{4}+8 y}-8 x b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 x^{8} a_{3}-2 \sqrt{x^{4}+8 y} x^{6} a_{3}-8 x^{5} a_{2}+2 x^{5} b_{3}+10 x^{4} y a_{3}-6 x^{4} a_{1}+8 \sqrt{x^{4}+8 y} x^{3} a_{2} \\
& \quad-2 \sqrt{x^{4}+8 y} x^{3} b_{3}-2 \sqrt{x^{4}+8 y} x^{2} y a_{3}+6 \sqrt{x^{4}+8 y} x^{2} a_{1}-8 x^{2} b_{2} \\
& \quad-32 x y a_{2}+8 x y b_{3}-16 y^{2} a_{3}-8 x b_{1}+4 b_{2} \sqrt{x^{4}+8 y}-16 y a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{4}+8 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{4}+8 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{1}^{8} a_{3}-2 v_{3} v_{1}^{6} a_{3}-8 v_{1}^{5} a_{2}+10 v_{1}^{4} v_{2} a_{3}+2 v_{1}^{5} b_{3}-6 v_{1}^{4} a_{1} \tag{7E}\\
& \quad+8 v_{3} v_{1}^{3} a_{2}-2 v_{3} v_{1}^{2} v_{2} a_{3}-2 v_{3} v_{1}^{3} b_{3}+6 v_{3} v_{1}^{2} a_{1}-32 v_{1} v_{2} a_{2} \\
& \quad-16 v_{2}^{2} a_{3}-8 v_{1}^{2} b_{2}+8 v_{1} v_{2} b_{3}-16 v_{2} a_{1}-8 v_{1} b_{1}+4 b_{2} v_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 v_{1}^{8} a_{3}-2 v_{3} v_{1}^{6} a_{3}+\left(-8 a_{2}+2 b_{3}\right) v_{1}^{5}+10 v_{1}^{4} v_{2} a_{3}-6 v_{1}^{4} a_{1} \tag{8E}\\
& \quad+\left(8 a_{2}-2 b_{3}\right) v_{1}^{3} v_{3}-2 v_{3} v_{1}^{2} v_{2} a_{3}+6 v_{3} v_{1}^{2} a_{1}-8 v_{1}^{2} b_{2} \\
& \quad+\left(-32 a_{2}+8 b_{3}\right) v_{1} v_{2}-8 v_{1} b_{1}-16 v_{2}^{2} a_{3}-16 v_{2} a_{1}+4 b_{2} v_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-16 a_{1} & =0 \\
-6 a_{1} & =0 \\
6 a_{1} & =0 \\
-16 a_{3} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
10 a_{3} & =0 \\
-8 b_{1} & =0 \\
-8 b_{2} & =0 \\
4 b_{2} & =0 \\
-32 a_{2}+8 b_{3} & =0 \\
-8 a_{2}+2 b_{3} & =0 \\
8 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=a_{2} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=4 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =4 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =4 y-\left(\frac{\left(-x^{2}+\sqrt{x^{4}+8 y}\right) x}{2}\right)(x) \\
& =\frac{x^{4}}{2}-\frac{\sqrt{x^{4}+8 y} x^{2}}{2}+4 y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{4}}{2}-\frac{\sqrt{x^{4}+8 y} x^{2}}{2}+4 y} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y)}{4}-\frac{\ln \left(x^{2}+\sqrt{x^{4}+8 y}\right)}{4}+\frac{\ln \left(-x^{2}+\sqrt{x^{4}+8 y}\right)}{4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\left(-x^{2}+\sqrt{x^{4}+8 y}\right) x}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x}{\sqrt{x^{4}+8 y}} \\
S_{y} & =\frac{2}{\left(-x^{2}+\sqrt{x^{4}+8 y}\right) \sqrt{x^{4}+8 y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{4}-\frac{\ln \left(x^{2}+\sqrt{x^{4}+8 y}\right)}{4}+\frac{\ln \left(-x^{2}+\sqrt{x^{4}+8 y}\right)}{4}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{4}-\frac{\ln \left(x^{2}+\sqrt{x^{4}+8 y}\right)}{4}+\frac{\ln \left(-x^{2}+\sqrt{x^{4}+8 y}\right)}{4}=c_{1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{4}-\frac{\ln \left(x^{2}+\sqrt{x^{4}+8 y}\right)}{4}+\frac{\ln \left(-x^{2}+\sqrt{x^{4}+8 y}\right)}{4}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (y)}{4}-\frac{\ln \left(x^{2}+\sqrt{x^{4}+8 y}\right)}{4}+\frac{\ln \left(-x^{2}+\sqrt{x^{4}+8 y}\right)}{4}=c_{1}
$$

Verified OK.
Solving equation (2)
Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x\left(x^{2}+\sqrt{x^{4}+8 y}\right)}{2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{x\left(x^{2}+\sqrt{x^{4}+8 y}\right)\left(b_{3}-a_{2}\right)}{2}-\frac{x^{2}\left(x^{2}+\sqrt{x^{4}+8 y}\right)^{2} a_{3}}{4} \\
& -\left(-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+8 y}}{2}-\frac{x\left(2 x+\frac{2 x^{3}}{\sqrt{x^{4}+8 y}}\right)}{2}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& +\frac{2 x\left(x b_{2}+y b_{3}+b_{1}\right)}{\sqrt{x^{4}+8 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{2 x^{8} a_{3}+\sqrt{x^{4}+8 y} x^{6} a_{3}+\left(x^{4}+8 y\right)^{\frac{3}{2}} x^{2} a_{3}-8 x^{5} a_{2}+2 x^{5} b_{3}+10 x^{4} y a_{3}-8 \sqrt{x^{4}+8 y} x^{3} a_{2}+2 \sqrt{x^{4}+8 y} x}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{8} a_{3}-\sqrt{x^{4}+8 y} x^{6} a_{3}-\left(x^{4}+8 y\right)^{\frac{3}{2}} x^{2} a_{3}+8 x^{5} a_{2} \\
& -2 x^{5} b_{3}-10 x^{4} y a_{3}+8 \sqrt{x^{4}+8 y} x^{3} a_{2}-2 \sqrt{x^{4}+8 y} x^{3} b_{3} \tag{6E}\\
& +6 \sqrt{x^{4}+8 y} x^{2} y a_{3}+6 x^{4} a_{1}+6 \sqrt{x^{4}+8 y} x^{2} a_{1}+8 x^{2} b_{2} \\
& +32 x a_{2} y-8 x y b_{3}+16 y^{2} a_{3}+4 b_{2} \sqrt{x^{4}+8 y}+8 x b_{1}+16 a_{1} y=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\sqrt{x^{4}+8 y} x^{6} a_{3}-2\left(x^{4}+8 y\right) x^{4} a_{3}-\left(x^{4}+8 y\right)^{\frac{3}{2}} x^{2} a_{3}+4 x^{5} a_{2}+4 x^{4} y a_{3} \\
& +8 \sqrt{x^{4}+8 y} x^{3} a_{2}-2 \sqrt{x^{4}+8 y} x^{3} b_{3}+6 \sqrt{x^{4}+8 y} x^{2} y a_{3}+4 x^{4} a_{1} \tag{6E}\\
& +4\left(x^{4}+8 y\right) x a_{2}-2\left(x^{4}+8 y\right) x b_{3}+2\left(x^{4}+8 y\right) y a_{3}+6 \sqrt{x^{4}+8 y} x^{2} a_{1} \\
& +2\left(x^{4}+8 y\right) a_{1}+8 x^{2} b_{2}+8 x y b_{3}+4 b_{2} \sqrt{x^{4}+8 y}+8 x b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -2 x^{8} a_{3}-2 \sqrt{x^{4}+8 y} x^{6} a_{3}+8 x^{5} a_{2}-2 x^{5} b_{3}-10 x^{4} y a_{3}+6 x^{4} a_{1} \\
& +8 \sqrt{x^{4}+8 y} x^{3} a_{2}-2 \sqrt{x^{4}+8 y} x^{3} b_{3}-2 \sqrt{x^{4}+8 y} x^{2} y a_{3}+6 \sqrt{x^{4}+8 y} x^{2} a_{1} \\
& +8 x^{2} b_{2}+32 x a_{2} y-8 x y b_{3}+16 y^{2} a_{3}+8 x b_{1}+4 b_{2} \sqrt{x^{4}+8 y}+16 a_{1} y=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{4}+8 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{4}+8 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 v_{1}^{8} a_{3}-2 v_{3} v_{1}^{6} a_{3}+8 v_{1}^{5} a_{2}-10 v_{1}^{4} v_{2} a_{3}-2 v_{1}^{5} b_{3}+6 v_{1}^{4} a_{1} \tag{7E}\\
& +8 v_{3} v_{1}^{3} a_{2}-2 v_{3} v_{1}^{2} v_{2} a_{3}-2 v_{3} v_{1}^{3} b_{3}+6 v_{3} v_{1}^{2} a_{1}+32 v_{1} a_{2} v_{2} \\
& +16 v_{2}^{2} a_{3}+8 v_{1}^{2} b_{2}-8 v_{1} v_{2} b_{3}+16 a_{1} v_{2}+8 v_{1} b_{1}+4 b_{2} v_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 v_{1}^{8} a_{3}-2 v_{3} v_{1}^{6} a_{3}+\left(8 a_{2}-2 b_{3}\right) v_{1}^{5}-10 v_{1}^{4} v_{2} a_{3}+6 v_{1}^{4} a_{1} \tag{8E}\\
& +\left(8 a_{2}-2 b_{3}\right) v_{1}^{3} v_{3}-2 v_{3} v_{1}^{2} v_{2} a_{3}+6 v_{3} v_{1}^{2} a_{1}+8 v_{1}^{2} b_{2} \\
& +\left(32 a_{2}-8 b_{3}\right) v_{1} v_{2}+8 v_{1} b_{1}+16 v_{2}^{2} a_{3}+16 a_{1} v_{2}+4 b_{2} v_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
6 a_{1} & =0 \\
16 a_{1} & =0 \\
-10 a_{3} & =0 \\
-2 a_{3} & =0 \\
16 a_{3} & =0 \\
8 b_{1} & =0 \\
4 b_{2} & =0 \\
8 b_{2} & =0 \\
8 a_{2}-2 b_{3} & =0 \\
32 a_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =4 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=4 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =4 y-\left(-\frac{x\left(x^{2}+\sqrt{x^{4}+8 y}\right)}{2}\right)(x) \\
& =\frac{x^{4}}{2}+\frac{\sqrt{x^{4}+8 y} x^{2}}{2}+4 y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{4}}{2}+\frac{\sqrt{x^{4}+8 y} x^{2}}{2}+4 y} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y)}{4}+\frac{\ln \left(x^{2}+\sqrt{x^{4}+8 y}\right)}{4}-\frac{\ln \left(-x^{2}+\sqrt{x^{4}+8 y}\right)}{4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x\left(x^{2}+\sqrt{x^{4}+8 y}\right)}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{\sqrt{x^{4}+8 y}} \\
S_{y} & =\frac{2}{\sqrt{x^{4}+8 y}\left(x^{2}+\sqrt{x^{4}+8 y}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{4}+\frac{\ln \left(x^{2}+\sqrt{x^{4}+8 y}\right)}{4}-\frac{\ln \left(-x^{2}+\sqrt{x^{4}+8 y}\right)}{4}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{4}+\frac{\ln \left(x^{2}+\sqrt{x^{4}+8 y}\right)}{4}-\frac{\ln \left(-x^{2}+\sqrt{x^{4}+8 y}\right)}{4}=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{4}+\frac{\ln \left(x^{2}+\sqrt{x^{4}+8 y}\right)}{4}-\frac{\ln \left(-x^{2}+\sqrt{x^{4}+8 y}\right)}{4}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (y)}{4}+\frac{\ln \left(x^{2}+\sqrt{x^{4}+8 y}\right)}{4}-\frac{\ln \left(-x^{2}+\sqrt{x^{4}+8 y}\right)}{4}=c_{1}
$$

Verified OK.

Maple trace
'Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of $d y / d x$: 2 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, $\operatorname{diff}(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x}), \mathrm{x})-(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})) / \mathrm{x}, \mathrm{y}(\mathrm{x})$
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
<- 1st order ODE linearizable_by_differentiation successful

* Tackling next ODE.
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful
\checkmark Solution by Maple
Time used: 0.375 (sec). Leaf size: 21
dsolve($\operatorname{diff}(y(x), x)^{\wedge} 2+x^{\wedge} 3 * \operatorname{diff}(y(x), x)-2 * x^{\wedge} 2 * y(x)=0, y(x), \quad$ singsol $\left.=a l l\right)$

$$
\begin{aligned}
& y(x)=-\frac{x^{4}}{8} \\
& y(x)=c_{1}\left(x^{2}+2 c_{1}\right)
\end{aligned}
$$

Solution by Mathematica
Time used: 1.255 (sec). Leaf size: 209
DSolve[($\left.y^{\prime}[x]\right)^{\wedge} 2+x^{\wedge} 3 * y^{\prime}[x]-2 * x^{\wedge} 2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& \text { Solve }\left[\frac{\sqrt{x^{6}+8 x^{2} y(x)} \log \left(\sqrt{x^{4}+8 y(x)}+x^{2}\right)}{2 x \sqrt{x^{4}+8 y(x)}}\right. \\
& \left.+\frac{1}{4}\left(1-\frac{\sqrt{x^{6}+8 x^{2} y(x)}}{x \sqrt{x^{4}+8 y(x)}}\right) \log (y(x))=c_{1}, y(x)\right] \\
& \text { Solve }\left[\frac{1}{4}\left(\frac{\sqrt{x^{6}+8 x^{2} y(x)}}{x \sqrt{x^{4}+8 y(x)}}+1\right) \log (y(x))\right. \\
& \left.-\frac{\sqrt{x^{6}+8 x^{2} y(x)} \log \left(\sqrt{x^{4}+8 y(x)}+x^{2}\right)}{2 x \sqrt{x^{4}+8 y(x)}}=c_{1}, y(x)\right] \\
& y(x) \rightarrow-\frac{x^{4}}{8}
\end{aligned}
$$

3.2 problem 4

Internal problem ID [6796]
Internal file name [OUTPUT/6043_Tuesday_July_26_2022_11_23_40_PM_37504089/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 4.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y^{\prime 2}+4 x^{5} y^{\prime}-12 y x^{4}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=2\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x^{2} \tag{1}\\
& y^{\prime}=2\left(-x^{3}-\sqrt{x^{6}+3 y}\right) x^{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +2\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x^{2}\left(b_{3}-a_{2}\right)-4\left(-x^{3}+\sqrt{x^{6}+3 y}\right)^{2} x^{4} a_{3} \\
& -\left(2\left(-3 x^{2}+\frac{3 x^{5}}{\sqrt{x^{6}+3 y}}\right) x^{2}+4\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{3 x^{2}\left(x b_{2}+y b_{3}+b_{1}\right)}{\sqrt{x^{6}+3 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-8 x^{13} a_{3}+4 \sqrt{x^{6}+3 y} x^{10} a_{3}+12 x^{8} a_{2}-2 x^{8} b_{3}-14 x^{7} y a_{3}+4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3}+10 x^{7} a_{1}-12 \sqrt{x^{6}+3 y} x^{5}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 8 x^{13} a_{3}-4 \sqrt{x^{6}+3 y} x^{10} a_{3}-12 x^{8} a_{2}+2 x^{8} b_{3}+14 x^{7} y a_{3} \\
& \quad-4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3}-10 x^{7} a_{1}+12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3} \tag{6E}\\
& +10 \sqrt{x^{6}+3 y} x^{4} y a_{3}+10 \sqrt{x^{6}+3 y} x^{4} a_{1}-3 x^{3} b_{2}-18 x^{2} y a_{2} \\
& +3 x^{2} y b_{3}-12 x y^{2} a_{3}-3 x^{2} b_{1}-12 x y a_{1}+b_{2} \sqrt{x^{6}+3 y}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -4 \sqrt{x^{6}+3 y} x^{10} a_{3}+8\left(x^{6}+3 y\right) x^{7} a_{3}-6 x^{8} a_{2}-6 x^{7} y a_{3}-4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3} \\
& -6 x^{7} a_{1}+12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3}+10 \sqrt{x^{6}+3 y} x^{4} y a_{3} \tag{6E}\\
& +10 \sqrt{x^{6}+3 y} x^{4} a_{1}-6\left(x^{6}+3 y\right) x^{2} a_{2}+2\left(x^{6}+3 y\right) x^{2} b_{3}-4\left(x^{6}+3 y\right) x y a_{3} \\
& -4\left(x^{6}+3 y\right) x a_{1}-3 x^{3} b_{2}-3 x^{2} y b_{3}-3 x^{2} b_{1}+b_{2} \sqrt{x^{6}+3 y}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 8 x^{13} a_{3}-8 \sqrt{x^{6}+3 y} x^{10} a_{3}-12 x^{8} a_{2}+2 x^{8} b_{3}+14 x^{7} y a_{3}-10 x^{7} a_{1} \\
& \quad+12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3}-2 \sqrt{x^{6}+3 y} x^{4} y a_{3}+10 \sqrt{x^{6}+3 y} x^{4} a_{1} \\
& \quad-3 x^{3} b_{2}-18 x^{2} y a_{2}+3 x^{2} y b_{3}-12 x y^{2} a_{3}-3 x^{2} b_{1}-12 x y a_{1}+b_{2} \sqrt{x^{6}+3 y}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{6}+3 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{6}+3 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 8 v_{1}^{13} a_{3}-8 v_{3} v_{1}^{10} a_{3}-12 v_{1}^{8} a_{2}+14 v_{1}^{7} v_{2} a_{3}+2 v_{1}^{8} b_{3}-10 v_{1}^{7} a_{1} \tag{7E}\\
& \quad+12 v_{3} v_{1}^{5} a_{2}-2 v_{3} v_{1}^{4} v_{2} a_{3}-2 v_{3} v_{1}^{5} b_{3}+10 v_{3} v_{1}^{4} a_{1}-18 v_{1}^{2} v_{2} a_{2} \\
& \quad-12 v_{1} v_{2}^{2} a_{3}-3 v_{1}^{3} b_{2}+3 v_{1}^{2} v_{2} b_{3}-12 v_{1} v_{2} a_{1}-3 v_{1}^{2} b_{1}+b_{2} v_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 8 v_{1}^{13} a_{3}-8 v_{3} v_{1}^{10} a_{3}+\left(-12 a_{2}+2 b_{3}\right) v_{1}^{8}+14 v_{1}^{7} v_{2} a_{3}-10 v_{1}^{7} a_{1} \tag{8E}\\
& \quad+\left(12 a_{2}-2 b_{3}\right) v_{1}^{5} v_{3}-2 v_{3} v_{1}^{4} v_{2} a_{3}+10 v_{3} v_{1}^{4} a_{1}-3 v_{1}^{3} b_{2} \\
& \quad+\left(-18 a_{2}+3 b_{3}\right) v_{1}^{2} v_{2}-3 v_{1}^{2} b_{1}-12 v_{1} v_{2}^{2} a_{3}-12 v_{1} v_{2} a_{1}+b_{2} v_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
-12 a_{1} & =0 \\
-10 a_{1} & =0 \\
10 a_{1} & =0 \\
-12 a_{3} & =0 \\
-8 a_{3} & =0 \\
-2 a_{3} & =0 \\
8 a_{3} & =0 \\
14 a_{3} & =0 \\
-3 b_{1} & =0 \\
-3 b_{2} & =0 \\
-18 a_{2}+3 b_{3} & =0 \\
-12 a_{2}+2 b_{3} & =0 \\
12 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=a_{2} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=6 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=6 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =6 y-\left(2\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x^{2}\right)(x) \\
& =2 x^{6}-2 \sqrt{x^{6}+3 y} x^{3}+6 y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{2 x^{6}-2 \sqrt{x^{6}+3 y} x^{3}+6 y} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y)}{6}-\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}+\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2\left(-x^{3}+\sqrt{x^{6}+3 y}\right) x^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x^{2}}{\sqrt{x^{6}+3 y}} \\
S_{y} & =\frac{1}{\sqrt{x^{6}+3 y}\left(-2 x^{3}+2 \sqrt{x^{6}+3 y}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{6}-\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}+\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{6}-\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}+\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{6}-\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}+\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (y)}{6}-\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}+\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Verified OK.
Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 x^{2}\left(x^{3}+\sqrt{x^{6}+3 y}\right) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& b_{2}-2 x^{2}\left(x^{3}+\sqrt{x^{6}+3 y}\right)\left(b_{3}-a_{2}\right)-4 x^{4}\left(x^{3}+\sqrt{x^{6}+3 y}\right)^{2} a_{3} \\
& \quad-\left(-4 x\left(x^{3}+\sqrt{x^{6}+3 y}\right)-2 x^{2}\left(3 x^{2}+\frac{3 x^{5}}{\sqrt{x^{6}+3 y}}\right)\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& +\frac{3 x^{2}\left(x b_{2}+y b_{3}+b_{1}\right)}{\sqrt{x^{6}+3 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\underline{8 x^{13} a_{3}+4 \sqrt{x^{6}+3 y} x^{10} a_{3}-12 x^{8} a_{2}+2 x^{8} b_{3}+14 x^{7} y a_{3}+4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3}-10 x^{7} a_{1}-12 \sqrt{x^{6}+3 y} x^{5} a}
$$

$$
=0
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -8 x^{13} a_{3}-4 \sqrt{x^{6}+3 y} x^{10} a_{3}+12 x^{8} a_{2}-2 x^{8} b_{3}-14 x^{7} y a_{3} \\
& -4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3}+10 x^{7} a_{1}+12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3} \tag{6E}\\
& +10 \sqrt{x^{6}+3 y} x^{4} y a_{3}+10 \sqrt{x^{6}+3 y} x^{4} a_{1}+3 x^{3} b_{2}+18 x^{2} a_{2} y \\
& -3 x^{2} y b_{3}+12 x y^{2} a_{3}+3 x^{2} b_{1}+12 x a_{1} y+b_{2} \sqrt{x^{6}+3 y}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -4 \sqrt{x^{6}+3 y} x^{10} a_{3}-8\left(x^{6}+3 y\right) x^{7} a_{3}+6 x^{8} a_{2}+6 x^{7} y a_{3}-4\left(x^{6}+3 y\right)^{\frac{3}{2}} x^{4} a_{3} \\
& +6 x^{7} a_{1}+12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3}+10 \sqrt{x^{6}+3 y} x^{4} y a_{3} \tag{6E}\\
& +10 \sqrt{x^{6}+3 y} x^{4} a_{1}+6\left(x^{6}+3 y\right) x^{2} a_{2}-2\left(x^{6}+3 y\right) x^{2} b_{3}+4\left(x^{6}+3 y\right) x y a_{3} \\
& +4\left(x^{6}+3 y\right) x a_{1}+3 x^{3} b_{2}+3 x^{2} y b_{3}+3 x^{2} b_{1}+b_{2} \sqrt{x^{6}+3 y}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -8 x^{13} a_{3}-8 \sqrt{x^{6}+3 y} x^{10} a_{3}+12 x^{8} a_{2}-2 x^{8} b_{3}-14 x^{7} y a_{3}+10 x^{7} a_{1} \\
& +12 \sqrt{x^{6}+3 y} x^{5} a_{2}-2 \sqrt{x^{6}+3 y} x^{5} b_{3}-2 \sqrt{x^{6}+3 y} x^{4} y a_{3}+10 \sqrt{x^{6}+3 y} x^{4} a_{1} \\
& +3 x^{3} b_{2}+18 x^{2} a_{2} y-3 x^{2} y b_{3}+12 x y^{2} a_{3}+3 x^{2} b_{1}+12 x a_{1} y+b_{2} \sqrt{x^{6}+3 y}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{6}+3 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{6}+3 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -8 v_{1}^{13} a_{3}-8 v_{3} v_{1}^{10} a_{3}+12 v_{1}^{8} a_{2}-14 v_{1}^{7} v_{2} a_{3}-2 v_{1}^{8} b_{3}+10 v_{1}^{7} a_{1} \tag{7E}\\
& +12 v_{3} v_{1}^{5} a_{2}-2 v_{3} v_{1}^{4} v_{2} a_{3}-2 v_{3} v_{1}^{5} b_{3}+10 v_{3} v_{1}^{4} a_{1}+18 v_{1}^{2} a_{2} v_{2} \\
& +12 v_{1} v_{2}^{2} a_{3}+3 v_{1}^{3} b_{2}-3 v_{1}^{2} v_{2} b_{3}+12 v_{1} a_{1} v_{2}+3 v_{1}^{2} b_{1}+b_{2} v_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -8 v_{1}^{13} a_{3}-8 v_{3} v_{1}^{10} a_{3}+\left(12 a_{2}-2 b_{3}\right) v_{1}^{8}-14 v_{1}^{7} v_{2} a_{3}+10 v_{1}^{7} a_{1} \tag{8E}\\
& +\left(12 a_{2}-2 b_{3}\right) v_{1}^{5} v_{3}-2 v_{3} v_{1}^{4} v_{2} a_{3}+10 v_{3} v_{1}^{4} a_{1}+3 v_{1}^{3} b_{2} \\
& +\left(18 a_{2}-3 b_{3}\right) v_{1}^{2} v_{2}+3 v_{1}^{2} b_{1}+12 v_{1} v_{2}^{2} a_{3}+12 v_{1} a_{1} v_{2}+b_{2} v_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
10 a_{1} & =0 \\
12 a_{1} & =0 \\
-14 a_{3} & =0 \\
-8 a_{3} & =0 \\
-2 a_{3} & =0 \\
12 a_{3} & =0 \\
3 b_{1} & =0 \\
3 b_{2} & =0 \\
12 a_{2}-2 b_{3} & =0 \\
18 a_{2}-3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =6 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=6 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =6 y-\left(-2 x^{2}\left(x^{3}+\sqrt{x^{6}+3 y}\right)\right)(x) \\
& =2 x^{6}+2 \sqrt{x^{6}+3 y} x^{3}+6 y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{2 x^{6}+2 \sqrt{x^{6}+3 y} x^{3}+6 y} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y)}{6}+\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}-\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-2 x^{2}\left(x^{3}+\sqrt{x^{6}+3 y}\right)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x^{2}}{\sqrt{x^{6}+3 y}} \\
S_{y} & =\frac{1}{\sqrt{x^{6}+3 y}\left(2 x^{3}+2 \sqrt{x^{6}+3 y}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{6}+\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}-\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{6}+\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}-\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{6}+\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}-\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln (y)}{6}+\frac{\ln \left(x^{3}+\sqrt{x^{6}+3 y}\right)}{6}-\frac{\ln \left(-x^{3}+\sqrt{x^{6}+3 y}\right)}{6}=c_{1}
$$

Verified OK.

Maple trace
-Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of $d y / d x$: 2 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful

* Tackling next ODE.
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
<- 1st order ODE linearizable_by_differentiation successful`
\checkmark Solution by Maple
Time used: 0.359 (sec). Leaf size: 23
dsolve(diff $(y(x), x) \wedge 2+4 * x^{\wedge} 5 * \operatorname{diff}(y(x), x)-12 * x^{\wedge} 4 * y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{x^{6}}{3} \\
& y(x)=c_{1} x^{3}+\frac{3}{4} c_{1}^{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.603 (sec). Leaf size: 217
DSolve[($\left.\mathrm{y}^{\prime}[\mathrm{x}]\right)^{\wedge} 2+4 * \mathrm{x}^{\wedge} 5 * \mathrm{y}^{\prime}[\mathrm{x}]-12 * \mathrm{x}^{\wedge} 4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& \text { Solve }\left[\frac{1}{6}\left(\log (y(x))-\frac{x^{2} \sqrt{x^{6}+3 y(x)} \log (y(x))}{\sqrt{x^{4}\left(x^{6}+3 y(x)\right)}}\right)\right. \\
& \left.+\frac{x^{2} \sqrt{x^{6}+3 y(x)} \log \left(\sqrt{x^{6}+3 y(x)}+x^{3}\right)}{3 \sqrt{x^{4}\left(x^{6}+3 y(x)\right)}}=c_{1}, y(x)\right]
\end{aligned}
$$

Solve $\left[\frac{1}{6}\left(\frac{x^{2} \sqrt{x^{6}+3 y(x)} \log (y(x))}{\sqrt{x^{4}\left(x^{6}+3 y(x)\right)}}+\log (y(x))\right)\right.$

$$
\left.-\frac{x^{2} \sqrt{x^{6}+3 y(x)} \log \left(\sqrt{x^{6}+3 y(x)}+x^{3}\right)}{3 \sqrt{x^{4}\left(x^{6}+3 y(x)\right)}}=c_{1}, y(x)\right]
$$

$$
y(x) \rightarrow-\frac{x^{6}}{3}
$$

3.3 problem 5

Internal problem ID [6797]
Internal file name [OUTPUT/6044_Tuesday_July_26_2022_11_23_43_PM_92405610/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 5.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
2 x y^{\prime 3}-6 y y^{\prime 2}=-x^{4}
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}{2 x}+\frac{2 y^{2}}{x\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}+\frac{y}{x} \\
& y^{\prime}=-\frac{\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}{4 x}-\frac{y^{2}}{x\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}+\frac{y}{x}+\frac{i \sqrt{3}\left(\frac{\left(-2 x^{6}+2 \sqrt{x^{6}-8 y}\right.}{2 x}\right.}{} \tag{2}
\end{align*}
$$

$$
\begin{equation*}
y^{\prime}=-\frac{\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}{4 x}-\frac{y^{2}}{x\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}+\frac{y}{x}-\frac{i \sqrt{3}\left(\frac{\left(-2 x^{6}+2 \sqrt{x^{6}-8 y}\right.}{2 x}\right.}{} \tag{3}
\end{equation*}
$$

Now each one of the above ODE is solved.

Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}+2 y\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}+4 y^{2}}{2 x\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{aligned}
& b_{2} \\
& +\frac{\left(\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}+2 y\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}+4 y^{2}\right)\left(b_{3}-a_{2}\right)}{2 x\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}} \\
& -\frac{\left(\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}+2 y\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}+4 y^{2}\right)^{2} a_{3}}{4 x^{2}\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}} \\
& -\left(\frac{\frac{-8 x^{5}+\frac{4 x^{8}}{\sqrt{x^{6}-8 y^{3}}}+4 \sqrt{x^{6}-8 y^{3}} x^{2}}{\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}+\frac{2 y\left(-12 x^{5}+\frac{6 x^{8}}{\sqrt{x^{6}-8 y^{3}}}+6 \sqrt{x^{6}-8 y^{3}} x^{2}\right.}{3\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}}}{2 x\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}\right. \\
& -\frac{\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}+2 y\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}+4 y^{2}}{2 x^{2}\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}} \\
& -\frac{\left(\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}+2 y\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}+4 y^{2}\right)\left(-12 x^{5}+\frac{6 x^{8}}{\sqrt{x^{6}-8 y^{3}}}+6\right.}{6 x\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{4}{3}}} \\
& \left.+y a_{3}+a_{1}\right) \\
& -\left(\frac{\frac{-\frac{16 x^{3} y^{2}}{\sqrt{x^{6}-8 y^{3}}}+16 y^{2}}{\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}+2\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}+\frac{2 y\left(-\frac{24 x^{3} y^{2}}{\sqrt{x^{6}-8 y^{3}}}+24 y^{2}\right)}{3\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}}+8 y}{2 x\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}\right. \\
& \left.+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}},\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}, \sqrt{x^{6}-8 y^{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}=v_{3},\left(-2 x^{6}\right.\right. \\
& \left.\left.+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}=v_{4}, \sqrt{x^{6}-8 y^{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 8 v_{1}^{15} a_{3}-8 v_{5} v_{1}^{12} a_{3}+32 v_{1}^{10} v_{2}^{2} a_{2}-80 v_{1}^{9} v_{2}^{3} a_{3}-16 v_{1}^{9} v_{3} v_{2}^{2} a_{3} \\
& \quad-32 v_{1}^{11} v_{2} b_{2}-16 v_{1}^{10} v_{2}^{2} b_{3}+48 v_{1}^{9} v_{2}^{2} a_{1}+8 v_{1}^{9} v_{3} v_{2} a_{1}-8 v_{4} v_{1}^{10} a_{2} \\
& \quad-12 v_{4} v_{1}^{9} v_{2} a_{3}-32 v_{1}^{10} v_{2} b_{1}-8 v_{1}^{10} v_{3} b_{1}+4 v_{1}^{10} v_{4} b_{3}-4 v_{4} v_{1}^{9} a_{1} \\
& \quad-32 v_{5} v_{1}^{7} v_{2}^{2} a_{2}+48 v_{5} v_{1}^{6} v_{2}^{3} a_{3}+16 v_{1}^{6} v_{5} v_{3} v_{2}^{2} a_{3}+32 v_{5} v_{1}^{8} v_{2} b_{2} \\
& +16 v_{5} v_{1}^{7} v_{2}^{2} b_{3}-48 v_{5} v_{1}^{6} v_{2}^{2} a_{1}-8 v_{1}^{6} v_{5} v_{3} v_{2} a_{1}+8 v_{5} v_{4} v_{1}^{7} a_{2}-128 v_{1}^{4} v_{2}^{5} a_{2} \tag{7E}\\
& +12 v_{5} v_{4} v_{1}^{6} v_{2} a_{3}+256 v_{1}^{3} v_{2}^{6} a_{3}+128 v_{1}^{3} v_{3} v_{2}^{5} a_{3}+32 v_{5} v_{1}^{7} v_{2} b_{1}+8 v_{1}^{7} v_{5} v_{3} b_{1} \\
& +192 v_{1}^{5} v_{2}^{4} b_{2}-4 v_{1}^{7} v_{5} v_{4} b_{3}+64 v_{1}^{4} v_{2}^{5} b_{3}+4 v_{5} v_{4} v_{1}^{6} a_{1}-256 v_{1}^{3} v_{2}^{5} a_{1} \\
& \quad-64 v_{1}^{3} v_{3} v_{2}^{4} a_{1}+32 v_{4} v_{1}^{4} v_{2}^{3} a_{2}+64 v_{4} v_{1}^{3} v_{2}^{4} a_{3}+192 v_{1}^{4} v_{2}^{4} b_{1}+64 v_{1}^{4} v_{3} v_{2}^{3} b_{1} \\
& +16 v_{4} v_{1}^{5} v_{2}^{2} b_{2}-16 v_{4} v_{1}^{4} v_{2}^{3} b_{3}-128 v_{5} v_{2}^{6} a_{3}-64 v_{5} v_{3} v_{2}^{5} a_{3}+16 v_{4} v_{1}^{4} v_{2}^{2} b_{1} \\
& \quad-64 v_{5} v_{1}^{2} v_{2}^{4} b_{2}+64 v_{5} v_{2}^{5} a_{1}+32 v_{5} v_{3} v_{2}^{4} a_{1}-32 v_{5} v_{4} v_{2}^{4} a_{3}-64 v_{5} v_{1} v_{2}^{4} b_{1} \\
& \quad-32 v_{1} v_{5} v_{3} v_{2}^{3} b_{1}-16 v_{5} v_{4} v_{1}^{2} v_{2}^{2} b_{2}+16 v_{5} v_{4} v_{2}^{3} a_{1}-16 v_{5} v_{4} v_{1} v_{2}^{2} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{aligned}
& 8 v_{1}^{15} a_{3}+16 v_{5} v_{4} v_{2}^{3} a_{1}+32 v_{5} v_{3} v_{2}^{4} a_{1}+32 v_{5} v_{1}^{8} v_{2} b_{2}+32 v_{5} v_{1}^{7} v_{2} b_{1} \\
& +64 v_{4} v_{1}^{3} v_{2}^{4} a_{3}+\left(-32 a_{2}+16 b_{3}\right) v_{1}^{7} v_{2}^{2} v_{5}+\left(8 a_{2}-4 b_{3}\right) v_{1}^{7} v_{4} v_{5} \\
& +\left(32 a_{2}-16 b_{3}\right) v_{1}^{4} v_{2}^{3} v_{4}+12 v_{5} v_{4} v_{1}^{6} v_{2} a_{3}-16 v_{5} v_{4} v_{1}^{2} v_{2}^{2} b_{2} \\
& \quad-16 v_{5} v_{4} v_{1} v_{2}^{2} b_{1}+16 v_{1}^{6} v_{5} v_{3} v_{2}^{2} a_{3}-8 v_{1}^{6} v_{5} v_{3} v_{2} a_{1}-32 v_{1} v_{5} v_{3} v_{2}^{3} b_{1} \\
& -16 v_{1}^{9} v_{3} v_{2}^{2} a_{3}+8 v_{1}^{9} v_{3} v_{2} a_{1}+128 v_{1}^{3} v_{3} v_{2}^{5} a_{3}+64 v_{1}^{4} v_{3} v_{2}^{3} b_{1}-64 v_{1}^{3} v_{3} v_{2}^{4} a_{1} \\
& +8 v_{1}^{7} v_{5} v_{3} b_{1}-12 v_{4} v_{1}^{9} v_{2} a_{3} v_{1}^{6} v_{2}^{3} a_{3}+4 v_{5} v_{4} v_{1}^{6} a_{1}-48 v_{5} v_{1}^{6} v_{2}^{2} a_{1} \\
& +16 v_{4} v_{1}^{5} v_{2}^{2} b_{2}+16 v_{4} v_{1}^{4} v_{2}^{2} b_{1}-32 v_{5} v_{4} v_{2}^{4} a_{3}-64 v_{5} v_{1}^{2} v_{2}^{4} b_{2}-64 v_{5} v_{1} v_{2}^{4} b_{1} \\
& +\left(32 a_{2}-16 b_{3}\right) v_{1}^{10} v_{2}^{2}+\left(-8 a_{2}+4 b_{3}\right) v_{1}^{10} v_{4}+\left(-128 a_{2}+64 b_{3}\right) v_{1}^{4} v_{2}^{5} \\
& \quad-8 v_{1}^{10} v_{3} b_{1}-80 v_{1}^{9} v_{2}^{3} a_{3}+48 v_{1}^{9} v_{2}^{2} a_{1}+192 v_{1}^{5} v_{2}^{4} b_{2}+192 v_{1}^{4} v_{2}^{4} b_{1} \\
& -4 v_{4} v_{1}^{9} a_{1}+2 v_{1}^{3} v_{2}^{6} a_{3}-25 v_{1}^{3} v_{2}^{5} a_{1}-8 v_{5} v_{1}^{12} a_{3}-128 v_{5} v_{2}^{6} a_{3} \\
& +64 v_{5} v_{2}^{5} a_{1}-32 v_{1}^{11} v_{2} b_{2}-32 v_{1}^{10} v_{2} b_{1}-64 v_{5} v_{3} v_{2}^{5} a_{3}=0
\end{aligned}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{rl}
-256 a_{1} & =0 \\
-64 a_{1} & =0 \\
-48 a_{1} & =0 \\
-8 a_{1} & =0 \\
-4 a_{1} & =0 \\
4 a_{1} & =0 \\
8 a_{1} & =0 \\
16 a_{1} & =0 \\
32 a_{1} & =0 \\
48 a_{1} & =0 \\
64 a_{1} & =0 \\
-128 a_{3} & =0 \\
-80 a_{3} & =0 \\
-64 a_{3} & =0 \\
-32 a_{3} & =0 \\
-16 a_{3} & =0 \\
-12 a_{3} & =0 \\
-8 a_{3} & =0 \\
8 a_{3} & =0 \\
12 a_{3} & =0 \\
16 a_{3} & =0 \\
48 a_{3} & =0 \\
64 a_{3} & =0 \\
128 a_{3} & =0 \\
256 a_{3} & =0 \\
-64 b_{1} & =0 \\
-32 b_{1} & =0 \\
-32 b_{1} & =0 \\
-16 b_{1} & =0 \\
-8 b_{1} & =0 \\
8 b_{1} & =0 \\
16 b_{1} & =0 \\
=0 & 0 \\
\hline
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=2 y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{2 y}{x} \\
& =\frac{2 y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x^{2}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x^{2}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\ln (x)
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}+2 y\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}+4 y^{2}}{2 x\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{2 y}{x^{3}} \\
R_{y} & =\frac{1}{x^{2}} \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2 x^{2}\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}}{\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}-2 y\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}+4 y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{22^{\frac{1}{3}}\left(4 R^{3}+\sqrt{-8 R^{3}+1}-1\right)^{\frac{1}{3}}}{2^{\frac{2}{3}}\left(4 R^{3}+\sqrt{-8 R^{3}+1}-1\right)^{\frac{2}{3}}-22^{\frac{1}{3}}\left(4 R^{3}+\sqrt{-8 R^{3}+1}-1\right)^{\frac{1}{3}} R+4 R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{2\left(8 R^{3}+2 \sqrt{-8 R^{3}+1}-2\right)^{\frac{1}{3}}}{4^{\frac{1}{3}}\left(\left(4 R^{3}+\sqrt{-8 R^{3}+1}-1\right)^{2}\right)^{\frac{1}{3}}-2 R\left(8 R^{3}+2 \sqrt{-8 R^{3}+1}-2\right)^{\frac{1}{3}}+4 R^{2}} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in
$\ln (x)=\int^{\frac{y}{x^{2}}} \frac{2\left(8 _a^{3}+2 \sqrt{-8 _a^{3}+1}-2\right)^{\frac{1}{3}}}{4^{\frac{1}{3}}\left(\left(4 _a^{3}+\sqrt{-8 _a^{3}+1}-1\right)^{2}\right)^{\frac{1}{3}}-2 _a\left(8 _a^{3}+2 \sqrt{-8 _a^{3}+1}-2\right)^{\frac{1}{3}}+4 _a^{2}} d _a+c_{1}$
Which simplifies to

$$
\ln (x)=\int^{\frac{y}{x^{2}}} \frac{2\left(8 _a^{3}+2 \sqrt{-8 _a^{3}+1}-2\right)^{\frac{1}{3}}}{4^{\frac{1}{3}}\left(\left(4 _a^{3}+\sqrt{-8 _a^{3}+1}-1\right)^{2}\right)^{\frac{1}{3}}-2 _a\left(8 _a^{3}+2 \sqrt{-8 _a^{3}+1}-2\right)^{\frac{1}{3}}+4 _a^{2}} d _a+c_{1}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \ln (x) \tag{1}\\
& =\int^{\frac{y}{x^{2}}} \frac{}{4^{\frac{1}{3}}\left(\left(4-a^{3}+\sqrt{-8}\right.\right.} \\
& \quad+c_{1} \\
& \text { Verification of solutions }
\end{align*}
$$

$\begin{aligned}= & \int^{\frac{y}{x^{2}}} \frac{2\left(8 _a^{3}+2 \sqrt{-8 _a^{3}+1}-2\right)^{\frac{1}{3}}}{4^{\frac{1}{3}}\left(\left(4 _a^{3}+\sqrt{-8 _a^{3}+1}-1\right)^{2}\right)^{\frac{1}{3}}-2 _a\left(8 _a^{3}+2 \sqrt{-8 _a^{3}+1}-2\right)^{\frac{1}{3}}+4 _a^{2}} d _a \\ & +c_{1}\end{aligned}$

$$
\begin{aligned}
& \ln (x) \\
& =\int^{\frac{y}{x^{2}}} \frac{2\left(8 _a^{3}+2 \sqrt{-8 _a^{3}+1}-2\right)^{\frac{1}{3}}}{4^{\frac{1}{3}}\left(\left(4 _a^{3}+\sqrt{-8 _a^{3}+1}-1\right)^{2}\right)^{\frac{1}{3}}-2 _a\left(8 _a^{3}+2 \sqrt{-8 _a^{3}+1}-2\right)^{\frac{1}{3}}+4 _a^{2}} d _a \\
& \quad+c_{1}
\end{aligned}
$$

Verified OK.
Solving equation (2)

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{i\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}} \sqrt{3}-\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}+4 y\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x\right.}{4 x\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

> Expression too large to display

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}},\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}, \sqrt{x^{6}-8 y^{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}=v_{3},\left(-2 x^{6}\right.\right. \\
& \left.\left.+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}=v_{4}, \sqrt{x^{6}-8 y^{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes
Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(16 i \sqrt{3} a_{3}+16 a_{3}\right) v_{1}^{12} v_{5}+\left(64 i \sqrt{3} b_{2}+64 b_{2}\right) v_{1}^{11} v_{2} \\
& +\left(-64 i \sqrt{3} a_{2}+32 i \sqrt{3} b_{3}-64 a_{2}+32 b_{3}\right) v_{1}^{10} v_{2}^{2} \\
& +\left(64 i \sqrt{3} b_{1}+64 b_{1}\right) v_{1}^{10} v_{2} \\
& +\left(-16 i \sqrt{3} a_{2}+8 i \sqrt{3} b_{3}+16 a_{2}-8 b_{3}\right) v_{1}^{10} v_{4} \\
& +\left(160 i \sqrt{3} a_{3}+160 a_{3}\right) v_{1}^{9} v_{2}^{3}+\left(-96 i \sqrt{3} a_{1}-96 a_{1}\right) v_{1}^{9} v_{2}^{2} \\
& -32 v_{1}^{10} v_{3} b_{1}+\left(-16 i \sqrt{3} a_{3}-16 a_{3}\right) v_{1}^{15}+32 v_{1}^{7} v_{3} v_{5} b_{1} \\
& -256 v_{3} v_{5} v_{2}^{5} a_{3}+128 v_{3} v_{5} v_{2}^{4} a_{1}-64 v_{1}^{9} v_{3} v_{2}^{2} a_{3} \\
& +32 v_{1}^{9} v_{3} v_{2} a_{1}+512 v_{1}^{3} v_{3}^{5} v_{2}^{5} a_{3}+256 v_{1}^{4} v_{3}^{3} v_{2}^{3} b_{1} \\
& -256 v_{1}^{3} v_{3} v_{2}^{4} a_{1}+64 v_{1}^{6} v_{3} v_{5} v_{2}^{2} a_{3}-32 v_{1}^{6} v_{3} v_{5} v_{2} a_{1} \\
& -128 v_{1} v_{3} v_{5} v_{2}^{3} b_{1}+\left(24 i \sqrt{3} a_{3}-24 a_{3}\right) v_{1}^{6} v_{2} v_{4} v_{5} \\
& +\left(-32 i \sqrt{3} b_{2}+32 b_{2}\right) v_{1}^{2} v_{2}^{2} v_{4} v_{5} \\
& +\left(-32 i \sqrt{3} b_{1}+32 b_{1}\right) v_{1} v_{2}^{2} v_{4} v_{5} \\
& +\left(-64 i \sqrt{3} b_{2}-64 b_{2}\right) v_{1}^{8} v_{2} v_{5} \\
& +\left(64 i \sqrt{3} a_{2}-32 i \sqrt{3} b_{3}+64 a_{2}-32 b_{3}\right) v_{1}^{7} v_{2}^{2} v_{5} \\
& +\left(-64 i \sqrt{3} b_{1}-64 b_{1}\right) v_{1}^{7} v_{2} v_{5} \\
& +\left(16 i \sqrt{3} a_{2}-8 i \sqrt{3} b_{3}-16 a_{2}+8 b_{3}\right) v_{1}^{7} v_{4} v_{5} \\
& +\left(-96 i \sqrt{3} a_{3}-96 a_{3}\right) v_{1}^{6} v_{2}^{3} v_{5} \tag{8E}\\
& +\left(-8 i \sqrt{3} a_{1}+8 a_{1}\right) v_{1}^{9} v_{4}+\left(-384 i \sqrt{3} b_{2}-384 b_{2}\right) v_{1}^{5} v_{2}^{4} \\
& +\left(96 i \sqrt{3} a_{1}+96 a_{1}\right) v_{1}^{6} v_{2}^{2} v_{5} \\
& +\left(8 i \sqrt{3} a_{1}-8 a_{1}\right) v_{1}^{6} v_{4} v_{5}+\left(32 i \sqrt{3} b_{2}-32 b_{2}\right) v_{1}^{5} v_{2}^{2} v_{4} \\
& +\left(64 i \sqrt{3} a_{2}-32 i \sqrt{3} b_{3}-64 a_{2}+32 b_{3}\right) v_{1}^{4} v_{2}^{3} v_{4} \\
& +\left(32 i \sqrt{3} a_{1}-32 a_{1}\right) v_{2}^{3} v_{4} v_{5} \\
& +\left(32 i \sqrt{3} b_{1}-32 b_{1}\right) v_{1}^{4} v_{2}^{2} v_{4} \\
& +\left(128 i \sqrt{3} a_{3}-128 a_{3}\right) v_{1}^{3} v_{2}^{4} v_{4} \\
& +\left(128 i \sqrt{3} b_{2}+128 b_{2}\right) v_{1}^{2} v_{2}^{4} v_{5} \\
& +\left(128 i \sqrt{3} b_{1}+128 b_{1}\right) v_{1} v_{2}^{4} v_{5} \\
& +\left(-64 i \sqrt{3} a_{3}+64 a_{3}\right) v_{2}^{4} v_{4} v_{5} \\
& +
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{rl}
-256 a_{1} & =0 \\
-32 a_{1} & =0 \\
32 a_{1} & =0 \\
128 a_{1} & =0 \\
-256 a_{3} & =0 \\
-64 a_{3} & =0 \\
64 a_{3} & =0 \\
512 a_{3} & =0 \\
-128 b_{1} & =0 \\
-32 b_{1} & =0 \\
32 b_{1} & =0 \\
256 b_{1} & =0 \\
-512 i \sqrt{3} a_{3}-512 a_{3} & =0 \\
-384 i \sqrt{3} b_{1}-384 b_{1} & =0 \\
-384 i \sqrt{3} b_{2}-384 b_{2} & =0 \\
-128 i \sqrt{3} a_{1}-128 a_{1} & =0 \\
-96 i \sqrt{3} a_{1}-96 a_{1} & =0 \\
-96 i \sqrt{3} a_{3}-96 a_{3} & =0 \\
-64 i \sqrt{3} a_{3}+64 a_{3} & =0 \\
-64 i \sqrt{3} b_{1}-64 b_{1} & =0 \\
-64 i \sqrt{3} b_{2}-64 b_{2} & =0 \\
64 i \sqrt{3} b_{1}+64 b_{2}+64 b_{2} & =0 \\
96 i \sqrt{3} a_{1}+96 a_{1} & =0 \\
-32 i \sqrt{3} b_{1}+32 b_{1} & =0 \\
-32 i \sqrt{3} b_{2}+32 b_{2} & =0 \\
-24 i \sqrt{3} a_{3}+24 a_{3} & =0 \\
-16 i \sqrt{3} a_{3}-16 a_{3} & =0 \\
-8 i \sqrt{3} a_{1}+8 a_{1} & =0 \\
8 i \sqrt{3} a_{1}-8 a_{1} & =0 \\
16 i \sqrt{3} a_{3}+16 a_{3} & =0 \\
24 i \sqrt{3} a_{3}-24 a_{3} & =0 \\
32 i \sqrt{3} a_{1}-32 a_{1} & =0 \\
32 b_{1} & =0 \\
3 & =0 \\
-32 b_{2} & 0 \\
-64 & =0 \\
-64
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=2 y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
Solving equation (3)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{i\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}} \sqrt{3}+\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}-4 y\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}}\right.}{4 x\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

> Expression too large to display

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display
Simplifying the above gives

> Expression too large to display

Since the PDE has radicals, simplifying gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.
$\left\{x, y,\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}},\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}, \sqrt{x^{6}-8 y^{3}}\right\}$
The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(-2 x^{6}+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{1}{3}}=v_{3},\left(-2 x^{6}\right.\right. \\
& \left.\left.+2 \sqrt{x^{6}-8 y^{3}} x^{3}+8 y^{3}\right)^{\frac{2}{3}}=v_{4}, \sqrt{x^{6}-8 y^{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-24 i \sqrt{3} a_{3}-24 a_{3}\right) v_{1}^{6} v_{2} v_{4} v_{5} \\
& +\left(32 i \sqrt{3} b_{2}+32 b_{2}\right) v_{1}^{2} v_{2}^{2} v_{4} v_{5} \\
& -32 v_{1}^{10} v_{3} b_{1}+\left(32 i \sqrt{3} b_{1}+32 b_{1}\right) v_{1} v_{2}^{2} v_{4} v_{5} \\
& -64 v_{1}^{9} v_{3} v_{2}^{2} a_{3}+\left(128 i \sqrt{3} a_{1}-128 a_{1}\right) v_{2}^{5} v_{5} \\
& +\left(-16 i \sqrt{3} a_{3}+16 a_{3}\right) v_{1}^{12} v_{5} \\
& +\left(-64 i \sqrt{3} b_{2}+64 b_{2}\right) v_{1}^{11} v_{2} \\
& +\left(64 i \sqrt{3} a_{2}-32 i \sqrt{3} b_{3}-64 a_{2}+32 b_{3}\right) v_{1}^{10} v_{2}^{2} \\
& +\left(-64 i \sqrt{3} b_{1}+64 b_{1}\right) v_{1}^{10} v_{2} \\
& +\left(16 i \sqrt{3} a_{2}-8 i \sqrt{3} b_{3}+16 a_{2}-8 b_{3}\right) v_{1}^{10} v_{4} \\
& +\left(-160 i \sqrt{3} a_{3}+160 a_{3}\right) v_{1}^{9} v_{2}^{3}+\left(96 i \sqrt{3} a_{1}-96 a_{1}\right) v_{1}^{9} v_{2}^{2} \\
& +\left(8 i \sqrt{3} a_{1}+8 a_{1}\right) v_{1}^{9} v_{4}+\left(384 i \sqrt{3} b_{2}-384 b_{2}\right) v_{1}^{5} v_{2}^{4} \\
& +\left(-256 i \sqrt{3} a_{2}+128 i \sqrt{3} b_{3}+256 a_{2}-128 b_{3}\right) v_{1}^{4} v_{2}^{5} \\
& +\left(384 i \sqrt{3} b_{1}-384 b_{1}\right) v_{1}^{4} v_{2}^{4}+\left(512 i \sqrt{3} a_{3}-512 a_{3}\right) v_{1}^{3} v_{2}^{6} \\
& +\left(-512 i \sqrt{3} a_{1}+512 a_{1}\right) v_{1}^{3} v_{2}^{5} \\
& +\left(-256 i \sqrt{3} a_{3}+256 a_{3}\right) v_{2}^{6} v_{5}+32 v_{1}^{9} v_{3} v_{2} a_{1} \\
& +\left(-32 i \sqrt{3} b_{1}-32 b_{1}\right) v_{1}^{4} v_{2}^{2} v_{4} \tag{8E}\\
& +512 v_{1}^{3} v_{3} v_{2}^{5} a_{3}+256 v_{1}^{4} v_{3} v_{2}^{3} b_{1}-256 v_{1}^{3} v_{3} v_{2}^{4} a_{1} \\
& +128 v_{3} v_{5} v_{2}^{4} a_{1}+32 v_{1}^{7} v_{3} v_{5} b_{1}-256 v_{3} v_{5} v_{2}^{5} a_{3} \\
& +\left(16 i \sqrt{3} a_{3}-16 a_{3}\right) v_{1}^{15}+\left(24 i \sqrt{3} a_{3}+24 a_{3}\right) v_{1}^{9} v_{2} v_{4} \\
& +\left(64 i \sqrt{3} b_{2}-64 b_{2}\right) v_{1}^{8} v_{2} v_{5} \\
& +\left(-64 i \sqrt{3} a_{2}+32 i \sqrt{3} b_{3}+64 a_{2}-32 b_{3}\right) v_{1}^{7} v_{2}^{2} v_{5} \\
& +\left(-32 i \sqrt{3} b_{2}-32 b_{2}\right) v_{1}^{5} v_{2}^{2} v_{4} \\
& +\left(64 i \sqrt{3} b_{1}-64 b_{1}\right) v_{1}^{7} v_{2} v_{5} \\
& +\left(-16 i \sqrt{3} a_{2}+8 i \sqrt{3} b_{3}-16 a_{2}+8 b_{3}\right) v_{1}^{7} v_{4} v_{5} \\
& +\left(96 i \sqrt{3} a_{3}-96 a_{3}\right) v_{1}^{6} v_{2}^{3} v_{5} \\
& +\left(-96 i \sqrt{3} a_{1}+96 a_{1}\right) v_{1}^{6} v_{2}^{2} v_{5} \\
& +\left(-8 i \sqrt{3} a_{1}-8 a_{1}\right) v_{1}^{6} v_{4} v_{5} \\
& +\left(-32 i \sqrt{3} b_{2} 4964 a_{2}+32 b_{3}\right) v_{1}^{4} v_{2}^{3} v_{4} \\
& +(-103
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
&-256 a_{1}=0 \\
&-32 a_{1}=0 \\
& 32 a_{1}=0 \\
& 128 a_{1}=0 \\
&-256 a_{3}=0 \\
&-64 a_{3}=0 \\
& 64 a_{3}=0 \\
& 512 a_{3}=0 \\
&-128 b_{1}=0 \\
&-32 b_{1}=0 \\
& 32 b_{1}=0 \\
& 256 b_{1}=0 \\
&-512 i \sqrt{3} a_{1}+512 a_{1}=0 \\
&-256 i \sqrt{3} a_{3}+256 a_{3}=0 \\
&-160 i \sqrt{3} a_{3}+160 a_{3}=0 \\
&-128 i \sqrt{3} a_{3}-128 a_{3}=0 \\
&-128 i \sqrt{3} b_{1}+128 b_{1}=0 \\
&-128 i \sqrt{3} b_{2}+128 b_{2}=0 \\
&-96 i \sqrt{3} a_{1}+96 a_{1}=0 \\
&-64 i \sqrt{3} b_{1}+64 b_{1}=0 \\
&-64 i \sqrt{3} b_{2}+64 b_{2}=0 \\
&-32 i \sqrt{3} a_{1}-32 a_{1}=0 \\
&-32 i \sqrt{3} b_{1}-32 b_{1}=0 \\
&-32 i \sqrt{3} b_{2}-32 b_{2}=0 \\
&-24 i \sqrt{3} a_{3}-24 a_{3}=0 \\
&-16 i \sqrt{3} a_{3}+16 a_{3}=0 \\
& 64 i \sqrt{3} a_{3}+64 a_{3}-64 b_{1}=0 \\
&-8 i \sqrt{3} a_{1}-8 a_{1}=0 \\
& 8 i \sqrt{3} a_{1}+8 a_{1}=0 \\
& 16 i \sqrt{3} a_{3}-16 a_{3}=0 \\
& 24 i \sqrt{3} a_{3}+24 a_{3}=0 \\
& 32 i \sqrt{3} b_{1}+32 b_{1}=0 \\
& 32 i \sqrt{3} b_{2}=0 \\
&-32 b_{2}=0 \\
&-1
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=2 y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating Unable to determine ODE type.

```
`Methods for first order ODEs:
```

 *** Sublevel 2 ***
 Methods for first order ODEs:
 -> Solving 1st order ODE of high degree, 1st attempt
 trying 1st order WeierstrassP solution for high degree ODE
 trying 1st order WeierstrassPPrime solution for high degree ODE
 trying 1st order JacobiSN solution for high degree ODE
 trying 1st order ODE linearizable_by_differentiation
 trying differential order: 1; missing variables
 trying dAlembert
 trying simple symmetries for implicit equations
 Successful isolation of \(d y / d x\) : 3 solutions were found. Trying to solve each resulting ODE
 *** Sublevel 3 ***
 Methods for first order ODEs:
 --- Trying classification methods ---
 trying homogeneous types:
 trying exact
 Looking for potential symmetries
 trying an equivalence to an Abel ODE
 trying 1st order ODE linearizable_by_differentiation
 -> Solving 1st order ODE of high degree, Lie methods, 1st trial
 -, --> Computing symmetries using: way \(=2\)
 , , -> Computing symmetries using: way \(=2\)
 -> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
 \(\rightarrow\) Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\left(\left(2 * \mathrm{x}^{\wedge} 3+\mathrm{y}(\mathrm{x})^{\wedge} 3\right) * y(\mathrm{x}) / \mathrm{x}-3 * \mathrm{y}(\mathrm{x}) * \mathrm{x}^{\wedge} 2\right) /(2 * y\)
 Methods for first order ODEs:
 --- Trying classification methods ---
 trying a quadrature
 trying 1st order linear
 <- 1st order linear successful
 <- 1st order, parametric methods successful`
 \checkmark Solution by Maple
Time used: 0.328 (sec). Leaf size: 56
dsolve($2 * x * \operatorname{diff}(y(x), x)^{\wedge} 3-6 * y(x) * \operatorname{diff}(y(x), x)^{\wedge} 2+x^{\wedge} 4=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{(1+i \sqrt{3}) x^{2}}{4} \\
& y(x)=\frac{(i \sqrt{3}-1) x^{2}}{4} \\
& y(x)=\frac{x^{2}}{2} \\
& y(x)=\frac{1}{6 c_{1}^{2}}+\frac{c_{1} x^{3}}{3}
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[2 * x *\left(y^{\prime}[x]\right)^{\wedge} 3-6 * y[x] *\left(y^{\prime}[x]\right)^{\wedge} 2+x^{\wedge} 4==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]
Timed out

3.4 problem 6

3.4.1 Solving as clairaut ode

254
Internal problem ID [6798]
Internal file name [OUTPUT/6045_Tuesday_July_26_2022_11_23_48_PM_44109262/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 6.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
y^{\prime 2}-x y^{\prime}+y=0
$$

3.4.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=x y^{\prime}+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
p^{2}-x p+y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=-p^{2}+x p \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =-p^{2}+x p \\
& =-p^{2}+x p
\end{aligned}
$$

Writing the ode as

$$
y=x p+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=x p+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=-p^{2}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=-c_{1}^{2}+c_{1} x
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=-p^{2}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-2 p \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=\frac{x}{2}
$$

Substituting the above back in (1) results in

$$
y_{1}=\frac{x^{2}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-c_{1}^{2}+c_{1} x \tag{1}\\
& y=\frac{x^{2}}{4} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-c_{1}^{2}+c_{1} x
$$

Verified OK.

$$
y=\frac{x^{2}}{4}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 19
dsolve(diff $(y(x), x) \sim 2-x * \operatorname{diff}(y(x), x)+y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{x^{2}}{4} \\
& y(x)=c_{1}\left(x-c_{1}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 25
DSolve[($\left.y^{\prime}[x]\right)^{\wedge} 2-x * y$ ' $[x]+y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1}\left(x-c_{1}\right) \\
& y(x) \rightarrow \frac{x^{2}}{4}
\end{aligned}
$$

3.5 problem 7

$$
\text { 3.5.1 Solving as clairaut ode . } 258
$$

Internal problem ID [6799]
Internal file name [OUTPUT/6046_Tuesday_July_26_2022_11_23_49_PM_95069466/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 7.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
y-x y^{\prime}-k y^{\prime 2}=0
$$

3.5.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=x y^{\prime}+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
-k p^{2}-x p+y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=k p^{2}+x p \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =k p^{2}+x p \\
& =k p^{2}+x p
\end{aligned}
$$

Writing the ode as

$$
y=x p+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=x p+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=k p^{2}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1}^{2} k+c_{1} x
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=k p^{2}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =2 k p+x \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=-\frac{x}{2 k}
$$

Substituting the above back in (1) results in

$$
y_{1}=-\frac{x^{2}}{4 k}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1}^{2} k+c_{1} x \tag{1}\\
& y=-\frac{x^{2}}{4 k} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=c_{1}^{2} k+c_{1} x
$$

Verified OK.

$$
y=-\frac{x^{2}}{4 k}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 22
dsolve $\left(y(x)=\operatorname{diff}(y(x), x) * x+k * \operatorname{diff}(y(x), x)^{\wedge} 2, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{x^{2}}{4 k} \\
& y(x)=c_{1}\left(c_{1} k+x\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 28
DSolve[y[x]==y'[x]*x+k*(y'[x])~2,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1}\left(x+c_{1} k\right) \\
& y(x) \rightarrow-\frac{x^{2}}{4 k}
\end{aligned}
$$

3.6 problem 8

Internal problem ID [6800]
Internal file name [OUTPUT/6047_Tuesday_July_26_2022_11_23_50_PM_50530793/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 8.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`]]

$$
x^{8} y^{\prime 2}+3 x y^{\prime}+9 y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{-\frac{3}{2}+\frac{3 \sqrt{1-4 y x^{6}}}{2}}{x^{7}} \tag{1}\\
& y^{\prime}=-\frac{3\left(1+\sqrt{1-4 y x^{6}}\right)}{2 x^{7}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-\frac{3}{2}+\frac{3 \sqrt{-4 x^{6} y+1}}{2}}{x^{7}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{3\left(-1+\sqrt{-4 x^{6} y+1}\right)\left(b_{3}-a_{2}\right)}{2 x^{7}}-\frac{9\left(-1+\sqrt{-4 x^{6} y+1}\right)^{2} a_{3}}{4 x^{14}} \\
& -\left(-\frac{21\left(-1+\sqrt{-4 x^{6} y+1}\right)}{2 x^{8}}-\frac{18 y}{x^{2} \sqrt{-4 x^{6} y+1}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& +\frac{3 x b_{2}+3 y b_{3}+3 b_{1}}{\sqrt{-4 x^{6} y+1} x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-4 b_{2} x^{14} \sqrt{-4 x^{6} y+1}-12 x^{14} b_{2}+72 x^{13} y a_{2}+12 x^{13} y b_{3}+96 x^{12} y^{2} a_{3}-12 x^{13} b_{1}+96 x^{12} y a_{1}+36 \sqrt{-4 x^{6} y}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 b_{2} x^{14} \sqrt{-4 x^{6} y+1}+12 x^{14} b_{2}-72 x^{13} y a_{2}-12 x^{13} y b_{3}-96 x^{12} y^{2} a_{3} \\
& \quad+12 x^{13} b_{1}-96 x^{12} y a_{1}-36 \sqrt{-4 x^{6} y+1} x^{7} a_{2}-6 \sqrt{-4 x^{6} y+1} x^{7} b_{3} \tag{6E}\\
& \quad-42 \sqrt{-4 x^{6} y+1} x^{6} y a_{3}-42 \sqrt{-4 x^{6} y+1} x^{6} a_{1}+36 x^{7} a_{2}+6 x^{7} b_{3} \\
& \quad-30 x^{6} y a_{3}+42 x^{6} a_{1}-9\left(-4 x^{6} y+1\right)^{\frac{3}{2}} a_{3}-9 a_{3} \sqrt{-4 x^{6} y+1}+18 a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} x^{14} \sqrt{-4 x^{6} y+1}+12 x^{14} b_{2}+72 x^{13} y a_{2}+12 x^{13} y b_{3}+72 x^{12} y^{2} a_{3} \\
& +12 x^{13} b_{1}+72 x^{12} y a_{1}+36\left(-4 x^{6} y+1\right) x^{7} a_{2}+6\left(-4 x^{6} y+1\right) x^{7} b_{3} \\
& +42\left(-4 x^{6} y+1\right) x^{6} y a_{3}+42\left(-4 x^{6} y+1\right) x^{6} a_{1}-36 \sqrt{-4 x^{6} y+1} x^{7} a_{2} \tag{6E}\\
& -6 \sqrt{-4 x^{6} y+1} x^{7} b_{3}-42 \sqrt{-4 x^{6} y+1} x^{6} y a_{3}-42 \sqrt{-4 x^{6} y+1} x^{6} a_{1} \\
& -9\left(-4 x^{6} y+1\right)^{\frac{3}{2}} a_{3}+18\left(-4 x^{6} y+1\right) a_{3}-9 a_{3} \sqrt{-4 x^{6} y+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 4 b_{2} x^{14} \sqrt{-4 x^{6} y+1}+12 x^{14} b_{2}-72 x^{13} y a_{2}-12 x^{13} y b_{3}-96 x^{12} y^{2} a_{3} \\
& \quad+12 x^{13} b_{1}-96 x^{12} y a_{1}-36 \sqrt{-4 x^{6} y+1} x^{7} a_{2}-6 \sqrt{-4 x^{6} y+1} x^{7} b_{3} \\
& \quad-6 \sqrt{-4 x^{6} y+1} x^{6} y a_{3}+36 x^{7} a_{2}+6 x^{7} b_{3}-42 \sqrt{-4 x^{6} y+1} x^{6} a_{1} \\
& \quad-30 x^{6} y a_{3}+42 x^{6} a_{1}-18 a_{3} \sqrt{-4 x^{6} y+1}+18 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{-4 x^{6} y+1}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{-4 x^{6} y+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{14} v_{3}-72 v_{1}^{13} v_{2} a_{2}-96 v_{1}^{12} v_{2}^{2} a_{3}+12 v_{1}^{14} b_{2}-12 v_{1}^{13} v_{2} b_{3}-96 v_{1}^{12} v_{2} a_{1} \tag{7E}\\
& \quad+12 v_{1}^{13} b_{1}-36 v_{3} v_{1}^{7} a_{2}-6 v_{3} v_{1}^{6} v_{2} a_{3}-6 v_{3} v_{1}^{7} b_{3}-42 v_{3} v_{1}^{6} a_{1} \\
& \quad+36 v_{1}^{7} a_{2}-30 v_{1}^{6} v_{2} a_{3}+6 v_{1}^{7} b_{3}+42 v_{1}^{6} a_{1}-18 a_{3} v_{3}+18 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{14} v_{3}+12 v_{1}^{14} b_{2}+\left(-72 a_{2}-12 b_{3}\right) v_{1}^{13} v_{2}+12 v_{1}^{13} b_{1}-96 v_{1}^{12} v_{2}^{2} a_{3} \tag{8E}\\
& \quad-96 v_{1}^{12} v_{2} a_{1}+\left(-36 a_{2}-6 b_{3}\right) v_{1}^{7} v_{3}+\left(36 a_{2}+6 b_{3}\right) v_{1}^{7}-6 v_{3} v_{1}^{6} v_{2} a_{3} \\
& \quad-30 v_{1}^{6} v_{2} a_{3}-42 v_{3} v_{1}^{6} a_{1}+42 v_{1}^{6} a_{1}-18 a_{3} v_{3}+18 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-96 a_{1} & =0 \\
-42 a_{1} & =0 \\
42 a_{1} & =0 \\
-96 a_{3} & =0 \\
-30 a_{3} & =0 \\
-18 a_{3} & =0 \\
-6 a_{3} & =0 \\
18 a_{3} & =0 \\
12 b_{1} & =0 \\
4 b_{2} & =0 \\
12 b_{2} & =0 \\
-72 a_{2}-12 b_{3} & =0 \\
-36 a_{2}-6 b_{3} & =0 \\
36 a_{2}+6 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-6 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =-6 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-6 y-\left(\frac{-\frac{3}{2}+\frac{3 \sqrt{-4 x^{6} y+1}}{2}}{x^{7}}\right)(x) \\
& =\frac{-12 x^{6} y-3 \sqrt{-4 x^{6} y+1}+3}{2 x^{6}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-12 x^{6} y-3 \sqrt{-4 x^{6} y+1}+3}{2 x^{6}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (y)}{6}+\frac{\operatorname{arctanh}\left(\sqrt{-4 x^{6} y+1}\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-\frac{3}{2}+\frac{3 \sqrt{-4 x^{6} y+1}}{2}}{x^{7}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{x \sqrt{-4 x^{6} y+1}} \\
S_{y} & =\frac{-1-\frac{1}{\sqrt{-4 x^{6} y+1}}}{6 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (y)}{6}+\frac{\operatorname{arctanh}\left(\sqrt{1-4 y x^{6}}\right)}{3}=c_{1}
$$

Which simplifies to

$$
-\frac{\ln (y)}{6}+\frac{\operatorname{arctanh}\left(\sqrt{1-4 y x^{6}}\right)}{3}=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (y)}{6}+\frac{\operatorname{arctanh}\left(\sqrt{1-4 y x^{6}}\right)}{3}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln (y)}{6}+\frac{\operatorname{arctanh}\left(\sqrt{1-4 y x^{6}}\right)}{3}=c_{1}
$$

Verified OK.

Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3\left(\sqrt{-4 x^{6} y+1}+1\right)}{2 x^{7}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{3\left(\sqrt{-4 x^{6} y+1}+1\right)\left(b_{3}-a_{2}\right)}{2 x^{7}}-\frac{9\left(\sqrt{-4 x^{6} y+1}+1\right)^{2} a_{3}}{4 x^{14}} \\
& -\left(\frac{18 y}{x^{2} \sqrt{-4 x^{6} y+1}}+\frac{\frac{21 \sqrt{-4 x^{6} y+1}}{2}+\frac{21}{2}}{x^{8}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{3\left(x b_{2}+y b_{3}+b_{1}\right)}{x \sqrt{-4 x^{6} y+1}}=0
\end{align*}
$$

Putting the above in normal form gives
$-\underline{-4 b_{2} x^{14} \sqrt{-4 x^{6} y+1}+12 x^{14} b_{2}-72 x^{13} y a_{2}-12 x^{13} y b_{3}-96 x^{12} y^{2} a_{3}+12 x^{13} b_{1}-96 x^{12} y a_{1}+36 \sqrt{-4 x^{6} y}}$
$=0$
Setting the numerator to zero gives

$$
\begin{align*}
& 4 b_{2} x^{14} \sqrt{-4 x^{6} y+1}-12 x^{14} b_{2}+72 x^{13} y a_{2}+12 x^{13} y b_{3}+96 x^{12} y^{2} a_{3} \\
& \quad-12 x^{13} b_{1}+96 x^{12} y a_{1}-36 \sqrt{-4 x^{6} y+1} x^{7} a_{2}-6 \sqrt{-4 x^{6} y+1} x^{7} b_{3} \tag{6E}\\
& \quad-42 \sqrt{-4 x^{6} y+1} x^{6} y a_{3}-42 \sqrt{-4 x^{6} y+1} x^{6} a_{1}-36 x^{7} a_{2}-6 x^{7} b_{3} \\
& +30 x^{6} y a_{3}-42 x^{6} a_{1}-9\left(-4 x^{6} y+1\right)^{\frac{3}{2}} a_{3}-9 a_{3} \sqrt{-4 x^{6} y+1}-18 a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} x^{14} \sqrt{-4 x^{6} y+1}-12 x^{14} b_{2}-72 x^{13} y a_{2}-12 x^{13} y b_{3}-72 x^{12} y^{2} a_{3} \\
& \quad-12 x^{13} b_{1}-72 x^{12} y a_{1}-36\left(-4 x^{6} y+1\right) x^{7} a_{2}-6\left(-4 x^{6} y+1\right) x^{7} b_{3} \\
& \quad-42\left(-4 x^{6} y+1\right) x^{6} y a_{3}-42\left(-4 x^{6} y+1\right) x^{6} a_{1}-36 \sqrt{-4 x^{6} y+1} x^{7} a_{2} \tag{6E}\\
& -6 \sqrt{-4 x^{6} y+1} x^{7} b_{3}-42 \sqrt{-4 x^{6} y+1} x^{6} y a_{3}-42 \sqrt{-4 x^{6} y+1} x^{6} a_{1} \\
& -9\left(-4 x^{6} y+1\right)^{\frac{3}{2}} a_{3}-18\left(-4 x^{6} y+1\right) a_{3}-9 a_{3} \sqrt{-4 x^{6} y+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 4 b_{2} x^{14} \sqrt{-4 x^{6} y+1}-12 x^{14} b_{2}+72 x^{13} y a_{2}+12 x^{13} y b_{3}+96 x^{12} y^{2} a_{3} \\
& \quad-12 x^{13} b_{1}+96 x^{12} y a_{1}-36 \sqrt{-4 x^{6} y+1} x^{7} a_{2}-6 \sqrt{-4 x^{6} y+1} x^{7} b_{3} \\
& \quad-6 \sqrt{-4 x^{6} y+1} x^{6} y a_{3}-36 x^{7} a_{2}-6 x^{7} b_{3}-42 \sqrt{-4 x^{6} y+1} x^{6} a_{1} \\
& +30 x^{6} y a_{3}-42 x^{6} a_{1}-18 a_{3} \sqrt{-4 x^{6} y+1}-18 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{-4 x^{6} y+1}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{-4 x^{6} y+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{14} v_{3}+72 v_{1}^{13} v_{2} a_{2}+96 v_{1}^{12} v_{2}^{2} a_{3}-12 v_{1}^{14} b_{2}+12 v_{1}^{13} v_{2} b_{3}+96 v_{1}^{12} v_{2} a_{1} \tag{7E}\\
& \quad-12 v_{1}^{13} b_{1}-36 v_{3} v_{1}^{7} a_{2}-6 v_{3} v_{1}^{6} v_{2} a_{3}-6 v_{3} v_{1}^{7} b_{3}-42 v_{3} v_{1}^{6} a_{1} \\
& \quad-36 v_{1}^{7} a_{2}+30 v_{1}^{6} v_{2} a_{3}-6 v_{1}^{7} b_{3}-42 v_{1}^{6} a_{1}-18 a_{3} v_{3}-18 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{14} v_{3}-12 v_{1}^{14} b_{2}+\left(72 a_{2}+12 b_{3}\right) v_{1}^{13} v_{2}-12 v_{1}^{13} b_{1}+96 v_{1}^{12} v_{2}^{2} a_{3} \tag{8E}\\
& \quad+96 v_{1}^{12} v_{2} a_{1}+\left(-36 a_{2}-6 b_{3}\right) v_{1}^{7} v_{3}+\left(-36 a_{2}-6 b_{3}\right) v_{1}^{7}-6 v_{3} v_{1}^{6} v_{2} a_{3} \\
& \quad+30 v_{1}^{6} v_{2} a_{3}-42 v_{3} v_{1}^{6} a_{1}-42 v_{1}^{6} a_{1}-18 a_{3} v_{3}-18 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-42 a_{1} & =0 \\
96 a_{1} & =0 \\
-18 a_{3} & =0 \\
-6 a_{3} & =0 \\
30 a_{3} & =0 \\
96 a_{3} & =0 \\
-12 b_{1} & =0 \\
-12 b_{2} & =0 \\
4 b_{2} & =0 \\
-36 a_{2}-6 b_{3} & =0 \\
72 a_{2}+12 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-6 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-6 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-6 y-\left(-\frac{3\left(\sqrt{-4 x^{6} y+1}+1\right)}{2 x^{7}}\right)(x) \\
& =\frac{-12 x^{6} y+3 \sqrt{-4 x^{6} y+1}+3}{2 x^{6}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-12 x^{6} y+3 \sqrt{-4 x^{6} y+1}+3}{2 x^{6}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (y)}{6}-\frac{\operatorname{arctanh}\left(\sqrt{-4 x^{6} y+1}\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3\left(\sqrt{-4 x^{6} y+1}+1\right)}{2 x^{7}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x \sqrt{-4 x^{6} y+1}} \\
S_{y} & =\frac{-1+\frac{1}{\sqrt{-4 x^{6} y+1}}}{6 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (y)}{6}-\frac{\operatorname{arctanh}\left(\sqrt{1-4 y x^{6}}\right)}{3}=c_{1}
$$

Which simplifies to

$$
-\frac{\ln (y)}{6}-\frac{\operatorname{arctanh}\left(\sqrt{1-4 y x^{6}}\right)}{3}=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (y)}{6}-\frac{\operatorname{arctanh}\left(\sqrt{1-4 y x^{6}}\right)}{3}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln (y)}{6}-\frac{\operatorname{arctanh}\left(\sqrt{1-4 y x^{6}}\right)}{3}=c_{1}
$$

Verified OK.

Maple trace

- Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of $d y / d x$: 2 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful
* Tackling next ODE.
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`

Solution by Maple

Time used: 0.031 (sec). Leaf size: 45

```
dsolve(x^8*diff(y(x),x)^2+3*x*diff (y(x),x)+9*y (x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{1}{4 x^{6}} \\
& y(x)=\frac{-x^{3}+c_{1}}{x^{3} c_{1}^{2}} \\
& y(x)=\frac{-x^{3}-c_{1}}{x^{3} c_{1}^{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.583 (sec). Leaf size: 130
DSolve $\left[x^{\wedge} 8 *\left(y^{\prime}[x]\right) \wedge 2+3 * x * y{ }^{\prime}[x]+9 * y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& \text { Solve }\left[\frac{x \sqrt{4 x^{6} y(x)-1} \arctan \left(\sqrt{4 x^{6} y(x)-1}\right)}{3 \sqrt{x^{2}-4 x^{8} y(x)}}-\frac{1}{6} \log (y(x))=c_{1}, y(x)\right] \\
& \text { Solve }\left[\frac{\sqrt{x^{2}-4 x^{8} y(x)} \arctan \left(\sqrt{4 x^{6} y(x)-1}\right)}{3 x \sqrt{4 x^{6} y(x)-1}}-\frac{1}{6} \log (y(x))=c_{1}, y(x)\right] \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.7 problem 9

Internal problem ID [6801]
Internal file name [OUTPUT/6048_Tuesday_July_26_2022_11_23_52_PM_64795675/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 9 .
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
x^{4} y^{\prime 2}+2 y y^{\prime} x^{3}=4
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{-y x+\sqrt{y^{2} x^{2}+4}}{x^{2}} \tag{1}\\
y^{\prime} & =\frac{-y x-\sqrt{y^{2} x^{2}+4}}{x^{2}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x y-\sqrt{x^{2} y^{2}+4}}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(x y-\sqrt{x^{2} y^{2}+4}\right)\left(b_{3}-a_{2}\right)}{x^{2}}-\frac{\left(x y-\sqrt{x^{2} y^{2}+4}\right)^{2} a_{3}}{x^{4}} \\
& -\left(-\frac{y-\frac{x y^{2}}{\sqrt{x^{2} y^{2}+4}}}{x^{2}}+\frac{2 x y-2 \sqrt{x^{2} y^{2}+4}}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& +\frac{\left(x-\frac{y x^{2}}{\sqrt{x^{2} y^{2}+4}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{5} y b_{2}-3 x^{3} y^{3} a_{3}-2 b_{2} x^{4} \sqrt{x^{2} y^{2}+4}+2 \sqrt{x^{2} y^{2}+4} x^{2} y^{2} a_{3}+x^{4} y b_{1}-x^{3} y^{2} a_{1}-\sqrt{x^{2} y^{2}+4} x^{3} b_{1}+\sqrt{x^{2} y^{2}-}}{x^{4} \sqrt{x^{2} y^{2}+4}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{gather*}
-x^{5} y b_{2}+3 x^{3} y^{3} a_{3}+2 b_{2} x^{4} \sqrt{x^{2} y^{2}+4}-2 \sqrt{x^{2} y^{2}+4} x^{2} y^{2} a_{3} \tag{6E}\\
-x^{4} y b_{1}+x^{3} y^{2} a_{1}+\sqrt{x^{2} y^{2}+4} x^{3} b_{1}-\sqrt{x^{2} y^{2}+4} x^{2} y a_{1} \\
-\left(x^{2} y^{2}+4\right)^{\frac{3}{2}} a_{3}+4 x^{2} a_{2}+4 x^{2} b_{3}+16 x y a_{3}+8 x a_{1}=0
\end{gather*}
$$

Simplifying the above gives

$$
\begin{align*}
& -x^{5} y b_{2}-x^{4} y^{2} a_{2}-x^{4} y^{2} b_{3}-x^{3} y^{3} a_{3}+2 b_{2} x^{4} \sqrt{x^{2} y^{2}+4}-2 \sqrt{x^{2} y^{2}+4} x^{2} y^{2} a_{3} \\
& -x^{4} y b_{1}-x^{3} y^{2} a_{1}+\left(x^{2} y^{2}+4\right) x^{2} a_{2}+\left(x^{2} y^{2}+4\right) x^{2} b_{3}+4\left(x^{2} y^{2}+4\right) x y a_{3} \tag{6E}\\
& +\sqrt{x^{2} y^{2}+4} x^{3} b_{1}-\sqrt{x^{2} y^{2}+4} x^{2} y a_{1}-\left(x^{2} y^{2}+4\right)^{\frac{3}{2}} a_{3}+2\left(x^{2} y^{2}+4\right) x a_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -x^{5} y b_{2}+3 x^{3} y^{3} a_{3}+2 b_{2} x^{4} \sqrt{x^{2} y^{2}+4}-x^{4} y b_{1}+x^{3} y^{2} a_{1} \\
& \quad-3 \sqrt{x^{2} y^{2}+4} x^{2} y^{2} a_{3}+\sqrt{x^{2} y^{2}+4} x^{3} b_{1}-\sqrt{x^{2} y^{2}+4} x^{2} y a_{1} \\
& +4 x^{2} a_{2}+4 x^{2} b_{3}+16 x y a_{3}+8 x a_{1}-4 \sqrt{x^{2} y^{2}+4} a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2} y^{2}+4}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2} y^{2}+4}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 3 v_{1}^{3} v_{2}^{3} a_{3}-v_{1}^{5} v_{2} b_{2}+v_{1}^{3} v_{2}^{2} a_{1}-3 v_{3} v_{1}^{2} v_{2}^{2} a_{3}-v_{1}^{4} v_{2} b_{1}+2 b_{2} v_{1}^{4} v_{3}-v_{3} v_{1}^{2} v_{2} a_{1} \tag{7E}\\
& \quad+v_{3} v_{1}^{3} b_{1}+4 v_{1}^{2} a_{2}+16 v_{1} v_{2} a_{3}+4 v_{1}^{2} b_{3}+8 v_{1} a_{1}-4 v_{3} a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -v_{1}^{5} v_{2} b_{2}-v_{1}^{4} v_{2} b_{1}+2 b_{2} v_{1}^{4} v_{3}+3 v_{1}^{3} v_{2}^{3} a_{3}+v_{1}^{3} v_{2}^{2} a_{1}+v_{3} v_{1}^{3} b_{1}-3 v_{3} v_{1}^{2} v_{2}^{2} a_{3} \tag{8E}\\
& \quad-v_{3} v_{1}^{2} v_{2} a_{1}+\left(4 a_{2}+4 b_{3}\right) v_{1}^{2}+16 v_{1} v_{2} a_{3}+8 v_{1} a_{1}-4 v_{3} a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
8 a_{1} & =0 \\
-4 a_{3} & =0 \\
-3 a_{3} & =0 \\
3 a_{3} & =0 \\
16 a_{3} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
2 b_{2} & =0 \\
4 a_{2}+4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{x y-\sqrt{x^{2} y^{2}+4}}{x^{2}}\right)(-x) \\
& =\frac{\sqrt{x^{2} y^{2}+4}}{x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\sqrt{x^{2} y^{2}+4}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x \ln \left(\frac{x^{2} y}{\sqrt{x^{2}}}+\sqrt{x^{2} y^{2}+4}\right)}{\sqrt{x^{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y-\sqrt{x^{2} y^{2}+4}}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{\sqrt{x^{2} y^{2}+4}} \\
S_{y} & =\frac{x}{\sqrt{x^{2} y^{2}+4}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln \left(y x+\sqrt{y^{2} x^{2}+4}\right)=\ln (x)+c_{1}
$$

Which simplifies to

$$
\ln \left(y x+\sqrt{y^{2} x^{2}+4}\right)=\ln (x)+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{2 c_{1}} x^{2}-4\right) \mathrm{e}^{-c_{1}}}{2 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{2 c_{1}} x^{2}-4\right) \mathrm{e}^{-c_{1}}}{2 x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{2 c_{1}} x^{2}-4\right) \mathrm{e}^{-c_{1}}}{2 x^{2}}
$$

Verified OK.
Solving equation (2)

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x y+\sqrt{x^{2} y^{2}+4}}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(x y+\sqrt{x^{2} y^{2}+4}\right)\left(b_{3}-a_{2}\right)}{x^{2}}-\frac{\left(x y+\sqrt{x^{2} y^{2}+4}\right)^{2} a_{3}}{x^{4}} \\
& -\left(-\frac{y+\frac{x y^{2}}{\sqrt{x^{2} y^{2}+4}}}{x^{2}}+\frac{2 x y+2 \sqrt{x^{2} y^{2}+4}}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& +\frac{\left(x+\frac{y x^{2}}{\sqrt{x^{2} y^{2}+4}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\frac{-x^{5} y b_{2}+3 x^{3} y^{3} a_{3}-2 b_{2} x^{4} \sqrt{x^{2} y^{2}+4}+2 \sqrt{x^{2} y^{2}+4} x^{2} y^{2} a_{3}-x^{4} y b_{1}+x^{3} y^{2} a_{1}-\sqrt{x^{2} y^{2}+4} x^{3} b_{1}+\sqrt{x^{2} y^{2}}}{x^{4} \sqrt{x^{2} y^{2}+4}}
$$

$$
=0
$$

Setting the numerator to zero gives

$$
\begin{align*}
& x^{5} y b_{2}-3 x^{3} y^{3} a_{3}+2 b_{2} x^{4} \sqrt{x^{2} y^{2}+4}-2 \sqrt{x^{2} y^{2}+4} x^{2} y^{2} a_{3} \tag{6E}\\
& +x^{4} y b_{1}-x^{3} y^{2} a_{1}+\sqrt{x^{2} y^{2}+4} x^{3} b_{1}-\sqrt{x^{2} y^{2}+4} x^{2} y a_{1} \\
& -\left(x^{2} y^{2}+4\right)^{\frac{3}{2}} a_{3}-4 x^{2} a_{2}-4 x^{2} b_{3}-16 x y a_{3}-8 x a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& x^{5} y b_{2}+x^{4} y^{2} a_{2}+x^{4} y^{2} b_{3}+x^{3} y^{3} a_{3}+2 b_{2} x^{4} \sqrt{x^{2} y^{2}+4}-2 \sqrt{x^{2} y^{2}+4} x^{2} y^{2} a_{3} \\
& +x^{4} y b_{1}+x^{3} y^{2} a_{1}-\left(x^{2} y^{2}+4\right) x^{2} a_{2}-\left(x^{2} y^{2}+4\right) x^{2} b_{3}-4\left(x^{2} y^{2}+4\right) x y a_{3} \tag{6E}\\
& +\sqrt{x^{2} y^{2}+4} x^{3} b_{1}-\sqrt{x^{2} y^{2}+4} x^{2} y a_{1}-\left(x^{2} y^{2}+4\right)^{\frac{3}{2}} a_{3}-2\left(x^{2} y^{2}+4\right) x a_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& x^{5} y b_{2}-3 x^{3} y^{3} a_{3}+2 b_{2} x^{4} \sqrt{x^{2} y^{2}+4}+x^{4} y b_{1}-x^{3} y^{2} a_{1} \\
& \quad-3 \sqrt{x^{2} y^{2}+4} x^{2} y^{2} a_{3}+\sqrt{x^{2} y^{2}+4} x^{3} b_{1}-\sqrt{x^{2} y^{2}+4} x^{2} y a_{1} \\
& \quad-4 x^{2} a_{2}-4 x^{2} b_{3}-16 x y a_{3}-8 x a_{1}-4 \sqrt{x^{2} y^{2}+4} a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2} y^{2}+4}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2} y^{2}+4}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -3 v_{1}^{3} v_{2}^{3} a_{3}+v_{1}^{5} v_{2} b_{2}-v_{1}^{3} v_{2}^{2} a_{1}-3 v_{3} v_{1}^{2} v_{2}^{2} a_{3}+v_{1}^{4} v_{2} b_{1}+2 b_{2} v_{1}^{4} v_{3} \tag{7E}\\
& \quad-v_{3} v_{1}^{2} v_{2} a_{1}+v_{3} v_{1}^{3} b_{1}-4 v_{1}^{2} a_{2}-16 v_{1} v_{2} a_{3}-4 v_{1}^{2} b_{3}-8 v_{1} a_{1}-4 v_{3} a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& v_{1}^{5} v_{2} b_{2}+v_{1}^{4} v_{2} b_{1}+2 b_{2} v_{1}^{4} v_{3}-3 v_{1}^{3} v_{2}^{3} a_{3}-v_{1}^{3} v_{2}^{2} a_{1}+v_{3} v_{1}^{3} b_{1}-3 v_{3} v_{1}^{2} v_{2}^{2} a_{3} \tag{8E}\\
& -v_{3} v_{1}^{2} v_{2} a_{1}+\left(-4 a_{2}-4 b_{3}\right) v_{1}^{2}-16 v_{1} v_{2} a_{3}-8 v_{1} a_{1}-4 v_{3} a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
b_{2} & =0 \\
-8 a_{1} & =0 \\
-a_{1} & =0 \\
-16 a_{3} & =0 \\
-4 a_{3} & =0 \\
-3 a_{3} & =0 \\
2 b_{2} & =0 \\
-4 a_{2}-4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{x y+\sqrt{x^{2} y^{2}+4}}{x^{2}}\right)(-x) \\
& =-\frac{\sqrt{x^{2} y^{2}+4}}{x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{\sqrt{x^{2} y^{2}+4}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x \ln \left(\frac{x^{2} y}{\sqrt{x^{2}}}+\sqrt{x^{2} y^{2}+4}\right)}{\sqrt{x^{2}}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y+\sqrt{x^{2} y^{2}+4}}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{\sqrt{x^{2} y^{2}+4}} \\
S_{y} & =-\frac{x}{\sqrt{x^{2} y^{2}+4}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln \left(y x+\sqrt{y^{2} x^{2}+4}\right)=\ln (x)+c_{1}
$$

Which simplifies to

$$
-\ln \left(y x+\sqrt{y^{2} x^{2}+4}\right)=\ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{\left(4 \mathrm{e}^{2 c_{1}} x^{2}-1\right) \mathrm{e}^{-c_{1}}}{2 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(4 \mathrm{e}^{2 c_{1}} x^{2}-1\right) \mathrm{e}^{-c_{1}}}{2 x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(4 \mathrm{e}^{2 c_{1}} x^{2}-1\right) \mathrm{e}^{-c_{1}}}{2 x^{2}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    trying simple symmetries for implicit equations
    Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful
    * Tackling next ODE.
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 49
dsolve ($x^{\wedge} 4 * \operatorname{diff}(y(x), x)^{\wedge} 2+2 * x^{\wedge} 3 * y(x) * \operatorname{diff}(y(x), x)-4=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{2 i}{x} \\
& y(x)=\frac{2 i}{x} \\
& y(x)=\frac{2 \sinh \left(-\ln (x)+c_{1}\right)}{x} \\
& y(x)=-\frac{2 \sinh \left(-\ln (x)+c_{1}\right)}{x}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.688 (sec). Leaf size: 71
DSolve $\left[x^{\wedge} 4 *\left(y^{\prime}[x]\right) \wedge 2+2 * x^{\wedge} 3 * y[x] * y^{\prime}[x]-4==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{4 e^{c_{1}}}{x^{2}}-\frac{e^{-c_{1}}}{4} \\
& y(x) \rightarrow \frac{e^{-c_{1}}}{4}-\frac{4 e^{c_{1}}}{x^{2}} \\
& y(x) \rightarrow-\frac{2 i}{x} \\
& y(x) \rightarrow \frac{2 i}{x}
\end{aligned}
$$

3.8 problem 10

$$
\text { 3.8.1 Solving as dAlembert ode . } 288
$$

Internal problem ID [6802]
Internal file name [OUTPUT/6049_Tuesday_July_26_2022_11_23_53_PM_99466071/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 10.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
x y^{\prime 2}-2 y y^{\prime}=-4 x
$$

3.8.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
x p^{2}-2 y p=-4 x
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{x\left(p^{2}+4\right)}{2 p} \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p^{2}+4}{2 p} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{p^{2}+4}{2 p}=x\left(1-\frac{p^{2}+4}{2 p^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{p^{2}+4}{2 p}=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=2 \\
& p=-2
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-2 x \\
& y=2 x
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{p(x)^{2}+4}{2 p(x)}}{x\left(1-\frac{p(x)^{2}+4}{2 p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)-\frac{p(x)}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu p & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{p}{x}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{p}{x}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
p(x)=c_{1} x
$$

Substituing the above solution for p in (2A) gives

$$
y=\frac{c_{1}^{2} x^{2}+4}{2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-2 x \tag{1}\\
& y=2 x \tag{2}\\
& y=\frac{c_{1}^{2} x^{2}+4}{2 c_{1}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=-2 x
$$

Verified OK.

$$
y=2 x
$$

Verified OK.

$$
y=\frac{c_{1}^{2} x^{2}+4}{2 c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 30

```
dsolve(x*diff(y(x),x)~2-2*y(x)*diff(y(x),x)+4*x=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-2 x \\
& y(x)=2 x \\
& y(x)=\frac{4 c_{1}^{2}+x^{2}}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.202 (sec). Leaf size: 43
DSolve[x*(y'[x])~2-2*y[x]*y'[x]+4*x==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-2 x \cosh \left(-\log (x)+c_{1}\right) \\
& y(x) \rightarrow-2 x \cosh \left(\log (x)+c_{1}\right) \\
& y(x) \rightarrow-2 x \\
& y(x) \rightarrow 2 x
\end{aligned}
$$

3.9 problem 11

Internal problem ID [6803]
Internal file name [OUTPUT/6050_Tuesday_July_26_2022_11_23_55_PM_24219364/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 11.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
3 x^{4} y^{\prime 2}-x y^{\prime}-y=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{1+\sqrt{1+12 x^{2} y}}{6 x^{3}} \tag{1}\\
y^{\prime} & =-\frac{-1+\sqrt{1+12 x^{2} y}}{6 x^{3}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{1+\sqrt{12 y x^{2}+1}}{6 x^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(1+\sqrt{12 y x^{2}+1}\right)\left(b_{3}-a_{2}\right)}{6 x^{3}}-\frac{\left(1+\sqrt{12 y x^{2}+1}\right)^{2} a_{3}}{36 x^{6}} \tag{5E}\\
& -\left(-\frac{1+\sqrt{12 y x^{2}+1}}{2 x^{4}}+\frac{2 y}{x^{2} \sqrt{12 y x^{2}+1}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& -\frac{x b_{2}+y b_{3}+b_{1}}{x \sqrt{12 y x^{2}+1}}=0
\end{align*}
$$

Putting the above in normal form gives
$-\underline{-36 b_{2} x^{6} \sqrt{12 y x^{2}+1}+36 x^{6} b_{2}-72 x^{5} y a_{2}-36 x^{5} y b_{3}-144 x^{4} y^{2} a_{3}+36 x^{5} b_{1}-144 x^{4} y a_{1}-12 \sqrt{12 y x^{2}+}}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}-36 x^{6} b_{2}+72 x^{5} y a_{2}+36 x^{5} y b_{3}+144 x^{4} y^{2} a_{3} \\
& \quad-36 x^{5} b_{1}+144 x^{4} y a_{1}+12 \sqrt{12 y x^{2}+1} x^{3} a_{2}+6 \sqrt{12 y x^{2}+1} x^{3} b_{3} \tag{6E}\\
& +18 \sqrt{12 y x^{2}+1} x^{2} y a_{3}-\left(12 y x^{2}+1\right)^{\frac{3}{2}} a_{3}+18 \sqrt{12 y x^{2}+1} x^{2} a_{1} \\
& +12 x^{3} a_{2}+6 x^{3} b_{3}-6 x^{2} y a_{3}+18 x^{2} a_{1}-a_{3} \sqrt{12 y x^{2}+1}-2 a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}-36 x^{6} b_{2}-72 x^{5} y a_{2}-36 x^{5} y b_{3}-72 x^{4} y^{2} a_{3} \\
& +12\left(12 y x^{2}+1\right) x^{3} a_{2}+6\left(12 y x^{2}+1\right) x^{3} b_{3}+18\left(12 y x^{2}+1\right) x^{2} y a_{3} \\
& \quad-36 x^{5} b_{1}-72 x^{4} y a_{1}+18\left(12 y x^{2}+1\right) x^{2} a_{1}+12 \sqrt{12 y x^{2}+1} x^{3} a_{2} \tag{6E}\\
& +6 \sqrt{12 y x^{2}+1} x^{3} b_{3}+18 \sqrt{12 y x^{2}+1} x^{2} y a_{3}-\left(12 y x^{2}+1\right)^{\frac{3}{2}} a_{3} \\
& +18 \sqrt{12 y x^{2}+1} x^{2} a_{1}-2\left(12 y x^{2}+1\right) a_{3}-a_{3} \sqrt{12 y x^{2}+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}-36 x^{6} b_{2}+72 x^{5} y a_{2}+36 x^{5} y b_{3}+144 x^{4} y^{2} a_{3}-36 x^{5} b_{1}+144 x^{4} y a_{1} \\
& +12 \sqrt{12 y x^{2}+1} x^{3} a_{2}+6 \sqrt{12 y x^{2}+1} x^{3} b_{3}+6 \sqrt{12 y x^{2}+1} x^{2} y a_{3}+12 x^{3} a_{2} \\
& +6 x^{3} b_{3}+18 \sqrt{12 y x^{2}+1} x^{2} a_{1}-6 x^{2} y a_{3}+18 x^{2} a_{1}-2 a_{3} \sqrt{12 y x^{2}+1}-2 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{12 y x^{2}+1}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{12 y x^{2}+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 36 b_{2} v_{1}^{6} v_{3}+72 v_{1}^{5} v_{2} a_{2}+144 v_{1}^{4} v_{2}^{2} a_{3}-36 v_{1}^{6} b_{2}+36 v_{1}^{5} v_{2} b_{3}+144 v_{1}^{4} v_{2} a_{1} \tag{7E}\\
& \quad-36 v_{1}^{5} b_{1}+12 v_{3} v_{1}^{3} a_{2}+6 v_{3} v_{1}^{2} v_{2} a_{3}+6 v_{3} v_{1}^{3} b_{3}+18 v_{3} v_{1}^{2} a_{1} \\
& +12 v_{1}^{3} a_{2}-6 v_{1}^{2} v_{2} a_{3}+6 v_{1}^{3} b_{3}+18 v_{1}^{2} a_{1}-2 a_{3} v_{3}-2 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 36 b_{2} v_{1}^{6} v_{3}-36 v_{1}^{6} b_{2}+\left(72 a_{2}+36 b_{3}\right) v_{1}^{5} v_{2}-36 v_{1}^{5} b_{1}+144 v_{1}^{4} v_{2}^{2} a_{3} \tag{8E}\\
& +144 v_{1}^{4} v_{2} a_{1}+\left(12 a_{2}+6 b_{3}\right) v_{1}^{3} v_{3}+\left(12 a_{2}+6 b_{3}\right) v_{1}^{3}+6 v_{3} v_{1}^{2} v_{2} a_{3} \\
& \quad-6 v_{1}^{2} v_{2} a_{3}+18 v_{3} v_{1}^{2} a_{1}+18 v_{1}^{2} a_{1}-2 a_{3} v_{3}-2 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
18 a_{1} & =0 \\
144 a_{1} & =0 \\
-6 a_{3} & =0 \\
-2 a_{3} & =0 \\
6 a_{3} & =0 \\
144 a_{3} & =0 \\
-36 b_{1} & =0 \\
-36 b_{2} & =0 \\
36 b_{2} & =0 \\
12 a_{2}+6 b_{3} & =0 \\
72 a_{2}+36 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(\frac{1+\sqrt{12 y x^{2}+1}}{6 x^{3}}\right)(x) \\
& =\frac{-12 y x^{2}-\sqrt{12 y x^{2}+1}-1}{6 x^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-12 y x^{2}-\sqrt{12 y x^{2}+1}-1}{6 x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{12 y x^{2}+1}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{1+\sqrt{12 y x^{2}+1}}{6 x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x \sqrt{12 y x^{2}+1}} \\
S_{y} & =\frac{-1+\frac{1}{\sqrt{12 y x^{2}+1}}}{2 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+12 x^{2} y}\right)=c_{1}
$$

Which simplifies to

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+12 x^{2} y}\right)=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+12 x^{2} y}\right)=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+12 x^{2} y}\right)=c_{1}
$$

Verified OK.
Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-1+\sqrt{12 y x^{2}+1}}{6 x^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(-1+\sqrt{12 y x^{2}+1}\right)\left(b_{3}-a_{2}\right)}{6 x^{3}}-\frac{\left(-1+\sqrt{12 y x^{2}+1}\right)^{2} a_{3}}{36 x^{6}} \\
& -\left(-\frac{2 y}{x^{2} \sqrt{12 y x^{2}+1}}+\frac{-1+\sqrt{12 y x^{2}+1}}{2 x^{4}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& +\frac{x b_{2}+y b_{3}+b_{1}}{x \sqrt{12 y x^{2}+1}}=0
\end{align*}
$$

Putting the above in normal form gives
$--36 b_{2} x^{6} \sqrt{12 y x^{2}+1}-36 x^{6} b_{2}+72 x^{5} y a_{2}+36 x^{5} y b_{3}+144 x^{4} y^{2} a_{3}-36 x^{5} b_{1}+144 x^{4} y a_{1}-12 \sqrt{12 y x^{2}+}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}+36 x^{6} b_{2}-72 x^{5} y a_{2}-36 x^{5} y b_{3}-144 x^{4} y^{2} a_{3} \\
& +36 x^{5} b_{1}-144 x^{4} y a_{1}+12 \sqrt{12 y x^{2}+1} x^{3} a_{2}+6 \sqrt{12 y x^{2}+1} x^{3} b_{3} \tag{6E}\\
& +18 \sqrt{12 y x^{2}+1} x^{2} y a_{3}-\left(12 y x^{2}+1\right)^{\frac{3}{2}} a_{3}+18 \sqrt{12 y x^{2}+1} x^{2} a_{1} \\
& -12 x^{3} a_{2}-6 x^{3} b_{3}+6 x^{2} y a_{3}-18 x^{2} a_{1}-a_{3} \sqrt{12 y x^{2}+1}+2 a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}+36 x^{6} b_{2}+72 x^{5} y a_{2}+36 x^{5} y b_{3}+72 x^{4} y^{2} a_{3} \\
& \quad-12\left(12 y x^{2}+1\right) x^{3} a_{2}-6\left(12 y x^{2}+1\right) x^{3} b_{3}-18\left(12 y x^{2}+1\right) x^{2} y a_{3} \\
& +36 x^{5} b_{1}+72 x^{4} y a_{1}-18\left(12 y x^{2}+1\right) x^{2} a_{1}+12 \sqrt{12 y x^{2}+1} x^{3} a_{2} \tag{6E}\\
& +6 \sqrt{12 y x^{2}+1} x^{3} b_{3}+18 \sqrt{12 y x^{2}+1} x^{2} y a_{3}-\left(12 y x^{2}+1\right)^{\frac{3}{2}} a_{3} \\
& +18 \sqrt{12 y x^{2}+1} x^{2} a_{1}+2\left(12 y x^{2}+1\right) a_{3}-a_{3} \sqrt{12 y x^{2}+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 36 b_{2} x^{6} \sqrt{12 y x^{2}+1}+36 x^{6} b_{2}-72 x^{5} y a_{2}-36 x^{5} y b_{3}-144 x^{4} y^{2} a_{3}+36 x^{5} b_{1}-144 x^{4} y a_{1} \\
& +12 \sqrt{12 y x^{2}+1} x^{3} a_{2}+6 \sqrt{12 y x^{2}+1} x^{3} b_{3}+6 \sqrt{12 y x^{2}+1} x^{2} y a_{3}-12 x^{3} a_{2} \\
& -6 x^{3} b_{3}+18 \sqrt{12 y x^{2}+1} x^{2} a_{1}+6 x^{2} y a_{3}-18 x^{2} a_{1}-2 a_{3} \sqrt{12 y x^{2}+1}+2 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{12 y x^{2}+1}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{12 y x^{2}+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 36 b_{2} v_{1}^{6} v_{3}-72 v_{1}^{5} v_{2} a_{2}-144 v_{1}^{4} v_{2}^{2} a_{3}+36 v_{1}^{6} b_{2}-36 v_{1}^{5} v_{2} b_{3}-144 v_{1}^{4} v_{2} a_{1} \tag{7E}\\
& \quad+36 v_{1}^{5} b_{1}+12 v_{3} v_{1}^{3} a_{2}+6 v_{3} v_{1}^{2} v_{2} a_{3}+6 v_{3} v_{1}^{3} b_{3}+18 v_{3} v_{1}^{2} a_{1} \\
& \quad-12 v_{1}^{3} a_{2}+6 v_{1}^{2} v_{2} a_{3}-6 v_{1}^{3} b_{3}-18 v_{1}^{2} a_{1}-2 a_{3} v_{3}+2 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 36 b_{2} v_{1}^{6} v_{3}+36 v_{1}^{6} b_{2}+\left(-72 a_{2}-36 b_{3}\right) v_{1}^{5} v_{2}+36 v_{1}^{5} b_{1}-144 v_{1}^{4} v_{2}^{2} a_{3} \tag{8E}\\
& \quad-144 v_{1}^{4} v_{2} a_{1}+\left(12 a_{2}+6 b_{3}\right) v_{1}^{3} v_{3}+\left(-12 a_{2}-6 b_{3}\right) v_{1}^{3} \\
& \quad+6 v_{3} v_{1}^{2} v_{2} a_{3}+6 v_{1}^{2} v_{2} a_{3}+18 v_{3} v_{1}^{2} a_{1}-18 v_{1}^{2} a_{1}-2 a_{3} v_{3}+2 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-144 a_{1} & =0 \\
-18 a_{1} & =0 \\
18 a_{1} & =0 \\
-144 a_{3} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
6 a_{3} & =0 \\
36 b_{1} & =0 \\
36 b_{2} & =0 \\
-72 a_{2}-36 b_{3} & =0 \\
-12 a_{2}-6 b_{3} & =0 \\
12 a_{2}+6 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(-\frac{-1+\sqrt{12 y x^{2}+1}}{6 x^{3}}\right)(x) \\
& =\frac{-12 y x^{2}+\sqrt{12 y x^{2}+1}-1}{6 x^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-12 y x^{2}+\sqrt{12 y x^{2}+1}-1}{6 x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{12 y x^{2}+1}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-1+\sqrt{12 y x^{2}+1}}{6 x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{1}{x \sqrt{12 y x^{2}+1}} \\
& S_{y}=\frac{-\frac{1}{\sqrt{12 y x^{2}+1}}-1}{2 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+12 x^{2} y}\right)=c_{1}
$$

Which simplifies to

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+12 x^{2} y}\right)=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+12 x^{2} y}\right)=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+12 x^{2} y}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    trying simple symmetries for implicit equations
    Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful
    * Tackling next ODE.
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 97
dsolve ($3 * x^{\wedge} 4 * \operatorname{diff}(y(x), x) \wedge 2-x * \operatorname{diff}(y(x), x)-y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{1}{12 x^{2}} \\
& y(x)=\frac{-i \sqrt{3} c_{1}-3 x}{3 c_{1}^{2} x} \\
& y(x)=\frac{i \sqrt{3} c_{1}-3 x}{3 x c_{1}^{2}} \\
& y(x)=\frac{i \sqrt{3} c_{1}-3 x}{3 x c_{1}^{2}} \\
& y(x)=\frac{-i \sqrt{3} c_{1}-3 x}{3 c_{1}^{2} x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.512 (sec). Leaf size: 123
DSolve [3*x~4*(y'[x])~2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& \text { Solve }\left[-\frac{x \sqrt{12 x^{2} y(x)+1} \operatorname{arctanh}\left(\sqrt{12 x^{2} y(x)+1}\right)}{\sqrt{12 x^{4} y(x)+x^{2}}}-\frac{1}{2} \log (y(x))=c_{1}, y(x)\right] \\
& \text { Solve }\left[\frac{x \sqrt{12 x^{2} y(x)+1} \operatorname{arctanh}\left(\sqrt{12 x^{2} y(x)+1}\right)}{\sqrt{12 x^{4} y(x)+x^{2}}}-\frac{1}{2} \log (y(x))=c_{1}, y(x)\right] \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.10 problem 12

$$
\text { 3.10.1 Solving as clairaut ode . } 306
$$

Internal problem ID [6804]
Internal file name [OUTPUT/6051_Tuesday_July_26_2022_11_23_57_PM_14832249/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 12.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

$$
x y^{\prime 2}+(x-y) y^{\prime}-y=-1
$$

3.10.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=x y^{\prime}+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
x p^{2}+(x-y) p-y=-1
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{x p^{2}+x p+1}{p+1} \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =x p+\frac{1}{p+1} \\
& =x p+\frac{1}{p+1}
\end{aligned}
$$

Writing the ode as

$$
y=x p+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=x p+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=\frac{1}{p+1}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1} x+\frac{1}{c_{1}+1}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=\frac{1}{p+1}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-\frac{1}{(p+1)^{2}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
\begin{aligned}
& p_{1}=-\frac{\sqrt{x}-1}{\sqrt{x}} \\
& p_{2}=-\frac{\sqrt{x}+1}{\sqrt{x}}
\end{aligned}
$$

Substituting the above back in (1) results in

$$
\begin{aligned}
& y_{1}=2 \sqrt{x}-x \\
& y_{2}=-x-2 \sqrt{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x+\frac{1}{c_{1}+1} \tag{1}\\
& y=2 \sqrt{x}-x \tag{2}\\
& y=-x-2 \sqrt{x} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=c_{1} x+\frac{1}{c_{1}+1}
$$

Verified OK.

$$
y=2 \sqrt{x}-x
$$

Verified OK.

$$
y=-x-2 \sqrt{x}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful
```

Solution by Maple
Time used: 0.078 (sec). Leaf size: 44

```
dsolve(x*diff(y(x),x)^2+(x-y(x))*diff(y(x),x)+1-y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-x-2 \sqrt{x} \\
& y(x)=-x+2 \sqrt{x} \\
& y(x)=\frac{c_{1}^{2} x+c_{1} x+1}{c_{1}+1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 46
DSolve $\left[x *\left(y{ }^{\prime}[x]\right)^{\wedge} 2+(x-y[x]) * y y^{\prime}[x]+1-y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x+\frac{1}{1+c_{1}} \\
& y(x) \rightarrow-x-2 \sqrt{x} \\
& y(x) \rightarrow 2 \sqrt{x}-x
\end{aligned}
$$

3.11 problem 13

$$
\text { 3.11.1 Solving as clairaut ode . } 310
$$

Internal problem ID [6805]
Internal file name [OUTPUT/6052_Tuesday_July_26_2022_11_23_59_PM_12534222/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 13.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

$$
y^{\prime}\left(x y^{\prime}-y+k\right)=-a
$$

3.11.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=x y^{\prime}+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
p(x p+k-y)=-a
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{p^{2} x+k p+a}{p} \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =x p+\frac{k p+a}{p} \\
& =x p+\frac{k p+a}{p}
\end{aligned}
$$

Writing the ode as

$$
y=x p+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=x p+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=\frac{k p+a}{p}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1} x+\frac{c_{1} k+a}{c_{1}}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=\frac{k p+a}{p}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x+\frac{k}{p}-\frac{k p+a}{p^{2}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
\begin{aligned}
& p_{1}=\frac{\sqrt{x a}}{x} \\
& p_{2}=-\frac{\sqrt{x a}}{x}
\end{aligned}
$$

Substituting the above back in (1) results in

$$
\begin{aligned}
& y_{1}=\frac{2 x a+\sqrt{x a} k}{\sqrt{x a}} \\
& y_{2}=\frac{\sqrt{x a} k-2 x a}{\sqrt{x a}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x+\frac{c_{1} k+a}{c_{1}} \tag{1}\\
& y=\frac{2 x a+\sqrt{x a} k}{\sqrt{x a}} \tag{2}\\
& y=\frac{\sqrt{x a} k-2 x a}{\sqrt{x a}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=c_{1} x+\frac{c_{1} k+a}{c_{1}}
$$

Verified OK.

$$
y=\frac{2 x a+\sqrt{x a} k}{\sqrt{x a}}
$$

Verified OK.

$$
y=\frac{\sqrt{x a} k-2 x a}{\sqrt{x a}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful
```

Solution by Maple
Time used: 0.078 (sec). Leaf size: 42

```
dsolve(diff (y (x),x)*( x*diff (y(x),x)-y(x)+k )+a=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=k-2 \sqrt{a x} \\
& y(x)=k+2 \sqrt{a x} \\
& y(x)=\frac{c_{1}^{2} x+c_{1} k+a}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 58
DSolve[y'[x]*($x * y$ '[x]-y[x]+k)+a==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{a}{c_{1}}+k+c_{1} x \\
& y(x) \rightarrow \text { Indeterminate } \\
& y(x) \rightarrow k-2 \sqrt{a} \sqrt{x} \\
& y(x) \rightarrow 2 \sqrt{a} \sqrt{x}+k
\end{aligned}
$$

3.12 problem 14

Internal problem ID [6806]
Internal file name [OUTPUT/6053_Tuesday_July_26_2022_11_24_01_PM_41120136/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 14.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
x^{6} y^{\prime 3}-3 x y^{\prime}-3 y=0
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

$$
\begin{array}{rl}
y^{\prime}= & \frac{\left(\left(12 y x+4 \sqrt{\frac{9 y^{2} x^{3}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}{2 x^{2}}+\frac{2}{x\left(\left(12 y x+4 \sqrt{\frac{9 y^{2} x^{3}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}} \\
x & i \sqrt{3} \\
& -\frac{\left(\left(12 y x+4 \sqrt{\frac{9 y^{2} x^{3}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}{4 x^{2}}-\frac{1}{x\left(\left(12 y x+4 \sqrt{\frac{9 y^{2} x^{3}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}+\frac{\left.\left(12 y x+4 \sqrt{\frac{9 y^{2} x^{3}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}{2 x^{2}}-\frac{2}{x\left(\left(12 y x+4 \sqrt{\frac{9 y^{2} x^{3}-4}{x}}\right) x^{2}\right)} \tag{2}\\
y^{\prime}= & x
\end{array}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+4 x}{2 x^{3}\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\left.+y a_{3}+a_{1}\right)-\left(\frac{12 x+\frac{36 y x^{2}}{\sqrt{\frac{9 x^{3} y^{2}-4}{x}}}}{3\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}} x}\right.
$$

$$
\left.-\frac{\left(\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+4 x\right)\left(12 x+\frac{36 y x^{2}}{\sqrt{\frac{9 x^{3} y^{2}-4}{x}}}\right)}{6 x\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)_{317}^{\frac{4}{3}}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
$$

$$
\begin{align*}
& b_{2}+\frac{\left(\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+4 x\right)\left(b_{3}-a_{2}\right)}{2 x^{3}\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}} \tag{5E}\\
& -\frac{\left(\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+4 x\right)^{2} a_{3}}{4 x^{6}\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}} \\
& -\left(\frac{2\left(12 y+\frac{54 x y^{2}-\frac{2\left(9 x^{3} y^{2}-4\right.}{x^{2}}}{\sqrt{\frac{9 x^{3} y^{2}-4}{x}}}\right)^{3}+x^{2}}{\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}} \frac{4\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x}{2 x^{3}\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}+4\right. \\
& -\frac{3\left(\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+4 x\right)}{2 x^{4}\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}} \\
& -\frac{\left(\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+4 x\right)\left(\left(12 y+\frac{54 x y^{2}-\frac{2\left(9 x^{3} y^{2}-4\right)}{x^{2}}}{\sqrt{\frac{9 x^{3} y^{2}-4}{x}}}\right) x^{2}+2\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x\right)}{6 x^{3}\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{4}{3}}}
\end{align*}
$$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display
Simplifying the above gives
Expression too large to display
Since the PDE has radicals, simplifying gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}},\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}, \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2},\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}=v_{3},\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}=v_{4}, \sqrt{\frac{9 x^{3} y^{2}-4}{x}}=\imath\right.
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -48 v_{1}^{2}\left(4 v_{3} 2^{\frac{2}{3}} v_{1}^{5} b_{2}-3 v_{5} v_{3} 2^{\frac{2}{3}} v_{1}^{7} v_{2} b_{2}-3 v_{5} v_{4} 2^{\frac{1}{3}} v_{1}^{4} v_{2} a_{2}-2 v_{5} v_{4} 2^{\frac{1}{3}} v_{1}^{4} v_{2} b_{3}\right. \\
& -6 v_{5} v_{4} 2^{\frac{1}{3}} v_{1}^{3} v_{2}^{2} a_{3}-6 v_{5} v_{4} 2^{\frac{1}{3}} v_{1}^{3} v_{2} a_{1}+6 v_{5} v_{3} 2^{\frac{2}{3}} v_{1}^{2} v_{2} a_{3}-12 v_{5} v_{1}^{5} v_{2} a_{2} \\
& -8 v_{5} v_{1}^{5} v_{2} b_{3}-18 v_{5} v_{1}^{4} v_{2} a_{1}+6 v_{4} 2^{\frac{1}{3}} v_{1}^{2} a_{2}+4 v_{4} 2^{\frac{1}{3}} v_{1}^{2} b_{3}+2 v_{5} v_{4} 2^{\frac{1}{3}} a_{3} \\
& +10 v_{4} 2^{\frac{1}{3}} v_{1} a_{1}-6 v_{1}^{7} v_{2} b_{2}-36 v_{1}^{6} v_{2}^{2} a_{2}-24 v_{1}^{6} v_{2}^{2} b_{3}-6 v_{1}^{6} v_{2} b_{1}-54 v_{1}^{5} v_{2}^{2} a_{1} \tag{7E}\\
& -4 v_{1}^{2} v_{2} a_{3}-2 v_{5} v_{1}^{6} b_{2}-2 v_{5} v_{1}^{5} b_{1}-8 v_{3} 2^{\frac{2}{3}} a_{3}-4 v_{5} v_{1} a_{3}-6 v_{4} 2^{\frac{1}{3}} v_{1}^{5} v_{2}^{2} b_{3} \\
& -18 v_{4} 2^{\frac{1}{3}} v_{1}^{4} v_{2}^{3} a_{3}+v_{5} 2^{\frac{1}{3}} v_{1}^{5} b_{2}+3 v_{4} 2^{\frac{1}{3}} v_{1}^{5} v_{2} b_{1}-18 v_{4} 2^{\frac{1}{3}} v_{1}^{4} v_{2}^{2} a_{1} \\
& +v_{5} v_{4} 2^{\frac{1}{3}} v_{1}^{4} b_{1}+12 v_{1}^{3} a_{2}+8 v_{1}^{3} b_{3}+20 v_{1}^{2} a_{1}+18 v_{3} 2^{\frac{2}{3}} v_{1}^{3} v_{2}^{2} a_{3} \\
& \left.+10 v_{4} 2^{\frac{1}{3}} v_{1} v_{2} a_{3}-9 v_{3} 2^{\frac{2}{8}} v_{1}^{8} v_{2}^{2} b_{2}+3 v_{4} 2^{\frac{1}{3}} v_{1}^{6} v_{2} b_{2}-9 v_{4} 2^{\frac{1}{3}} v_{1}^{5} v_{2}^{2} a_{2}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -4802^{\frac{1}{3}} a_{1} v_{4} v_{1}^{3}+3842^{\frac{2}{3}} a_{3} v_{3} v_{1}^{2}-960 a_{1} v_{1}^{4}+8642^{\frac{1}{3}} a_{3} v_{2}^{3} v_{4} v_{1}^{6} \\
& +8642^{\frac{1}{3}} a_{1} v_{2}^{2} v_{4} v_{1}^{6}+\left(1442^{\frac{1}{3}} a_{2}+962^{\frac{1}{3}} b_{3}\right) v_{2} v_{4} v_{5} v_{1}^{6}-482^{\frac{1}{3}} b_{1} v_{4} v_{5} v_{1}^{6} \\
& -8642^{\frac{2}{3}} a_{3} v_{2}^{2} v_{3} v_{1}^{5}-4802^{\frac{1}{3}} a_{3} v_{2} v_{4} v_{1}^{3}-962^{\frac{1}{3}} a_{3} v_{4} v_{5} v_{1}^{2} \\
& +4322^{\frac{2}{3}} b_{2} v_{2}^{2} v_{3} v_{1}^{10}-1442^{\frac{1}{3}} b_{2} v_{2} v_{4} v_{1}^{8}-1442^{\frac{1}{3}} b_{1} v_{2} v_{4} v_{1}^{7} \\
& -482^{\frac{1}{3}} b_{2} v_{4} v_{5} v_{1}^{7}+2882^{\frac{1}{3}} a_{1} v_{2} v_{4} v_{5} v_{1}^{5}-2882^{\frac{2}{3}} a_{3} v_{2} v_{3} v_{5} v_{1}^{4} \tag{8E}\\
& +\left(4322^{\frac{1}{3}} a_{2}+2882^{\frac{1}{3}} b_{3}\right) v_{2}^{2} v_{4} v_{1}^{7}+\left(576 a_{2}+384 b_{3}\right) v_{2} v_{5} v_{1}^{7} \\
& -1922^{\frac{2}{3}} b_{2} v_{3} v_{1}^{7}+864 a_{1} v_{2} v_{5} v_{1}^{6}+1442^{\frac{2}{3}} b_{2} v_{2} v_{3} v_{5} v_{1}^{9}+2882^{\frac{1}{3}} a_{3} v_{2}^{2} v_{4} v_{5} v_{1}^{5} \\
& +\left(-576 a_{2}-384 b_{3}\right) v_{1}^{5}+192 a_{3} v_{2} v_{1}^{4}+\left(-2882^{\frac{1}{3}} a_{2}-1922^{\frac{1}{3}} b_{3}\right) v_{4} v_{1}^{4} \\
& +192 a_{3} v_{5} v_{1}^{3}+288 b_{2} v_{2} v_{1}^{9}+\left(1728 a_{2}+1152 b_{3}\right) v_{2}^{2} v_{1}^{8} \\
& +288 b_{1} v_{2} v_{1}^{8}+96 b_{2} v_{5} v_{1}^{8}+2592 a_{1} v_{2}^{2} v_{1}^{7}+96 b_{1} v_{5} v_{1}^{7}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-960 a_{1} & =0 \\
864 a_{1} & =0 \\
2592 a_{1} & =0 \\
192 a_{3} & =0 \\
96 b_{1} & =0 \\
288 b_{1} & =0 \\
96 b_{2} & =0 \\
288 b_{2} & =0 \\
-4802^{\frac{1}{3}} a_{1} & =0 \\
2882^{\frac{1}{3}} a_{1} & =0 \\
8642^{\frac{1}{3}} a_{1} & =0 \\
-4802^{\frac{1}{3}} a_{3} & =0 \\
-962^{\frac{1}{3}} a_{3} & =0 \\
2882^{\frac{1}{3}} a_{3} & =0 \\
8642^{\frac{1}{3}} a_{3} & =0 \\
-1442^{\frac{1}{3}} b_{1} & =0 \\
-482^{\frac{1}{3}} b_{1} & =0 \\
-1442^{\frac{1}{3}} b_{2} & =0 \\
-482^{\frac{1}{3}} b_{2} & =0 \\
-8642^{\frac{2}{3}} a_{3} & =0 \\
-2882^{\frac{2}{3}} a_{3} & =0 \\
3842^{\frac{2}{3}} a_{3} & =0 \\
-1922^{\frac{2}{3}} b_{2} & =0 \\
1442^{\frac{2}{3}} b_{2} & =0 \\
4322^{\frac{2}{3}} b_{2} & =0 \\
4322^{\frac{1}{3}} a_{2}+2882^{\frac{1}{3}} b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-\frac{2 b_{3}}{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =-\frac{2 x}{3} \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{-\frac{2 x}{3}} \\
& =-\frac{3 y}{2 x}
\end{aligned}
$$

This is easily solved to give

$$
y=\frac{c_{1}}{x^{\frac{3}{2}}}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=y x^{\frac{3}{2}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{-\frac{2 x}{3}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{3 \ln (x)}{2}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+4 x}{2 x^{3}\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =\frac{3 y \sqrt{x}}{2} \\
R_{y} & =x^{\frac{3}{2}} \\
S_{x} & =-\frac{3}{2 x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{3 \sqrt{x}\left(3 y x^{3}+x^{2} \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right)^{\frac{1}{3}}}{3 y x^{2}\left(3 y x^{3}+x^{2} \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right)^{\frac{1}{3}}+22^{\frac{1}{3}} x+\left(3 y x^{3}+x^{2} \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right)^{\frac{2}{3}} 2^{\frac{2}{3}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{3\left(\sqrt{9 R^{2}-4}+3 R\right)^{\frac{1}{3}}}{\left(\sqrt{9 R^{2}-4}+3 R\right)^{\frac{2}{3}} 2^{\frac{2}{3}}+3\left(\sqrt{9 R^{2}-4}+3 R\right)^{\frac{1}{3}} R+22^{\frac{1}{3}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int-\frac{3\left(\sqrt{9 R^{2}-4}+3 R\right)^{\frac{1}{3}}}{\left(\sqrt{9 R^{2}-4}+3 R\right)^{\frac{2}{3}} 2^{\frac{2}{3}}+3\left(\sqrt{9 R^{2}-4}+3 R\right)^{\frac{1}{3}} R+22^{\frac{1}{3}}} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{3 \ln (x)}{2}=\int^{y x^{\frac{3}{2}}}-\frac{3\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{1}{3}}}{\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{2}{3}} 2^{\frac{2}{3}}+3\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{1}{3}} _a+22^{\frac{1}{3}}} d _a+c_{1}
$$

Which simplifies to

$$
-\frac{3 \ln (x)}{2}=\int^{y x^{\frac{3}{2}}}-\frac{3\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{1}{3}}}{\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{2}{3}} 2^{\frac{2}{3}}+3\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{1}{3}} _a+22^{\frac{1}{3}}} d _a+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
-\frac{3 \ln (x)}{2}= & \int^{y x^{\frac{3}{2}}} \\
& -\frac{3\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{1}{3}}}{\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{2}{3}} 2^{\frac{2}{3}}+3\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{1}{3}}-a+22^{\frac{1}{3}}} d _a \tag{1}\\
& +c_{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
-\frac{3 \ln (x)}{2}= & \int^{y x^{\frac{3}{2}}} \\
& -\frac{3\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{1}{3}}}{\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{2}{3}} 2^{\frac{2}{3}}+3\left(\sqrt{9 _a^{2}-4}+3 _a\right)^{\frac{1}{3}} _a+22^{\frac{1}{3}}} d _a+c_{1}
\end{aligned}
$$

Verified OK.

Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{i \sqrt{3}\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}-4 i \sqrt{3} x-\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}-4 x}{4 x^{3}\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

> Expression too large to display

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}},\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}, \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2},\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}=v_{3},\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}=v_{4}, \sqrt{\frac{9 x^{3} y^{2}-4}{x}}=2\right.
$$

The above PDE (6E) now becomes
Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 5762^{\frac{2}{3}} b_{2} v_{2} v_{3} v_{5} v_{1}^{9}+\left(1920 i \sqrt{3} a_{1}+1920 a_{1}\right) v_{1}^{4} \\
& +\left(1152 i \sqrt{3} a_{2}+768 i \sqrt{3} b_{3}+1152 a_{2}+768 b_{3}\right) v_{1}^{5} \\
& -11522^{\frac{2}{3}} a_{3} v_{2} v_{3} v_{5} v_{1}^{4}+17282^{\frac{2}{3}} b_{2} v_{2}^{2} v_{3} v_{1}^{10} \\
& -34562^{\frac{2}{3}} a_{3} v_{2}^{2} v_{3} v_{1}^{5}+\left(288 i 2^{\frac{1}{3}} \sqrt{3} a_{2}\right. \\
& \left.+192 i 2^{\frac{1}{3}} \sqrt{3} b_{3}-2882^{\frac{1}{3}} a_{2}-1922^{\frac{1}{3}} b_{3}\right) v_{2} v_{4} v_{5} v_{1}^{6} \\
& +\left(576 i 2^{\frac{1}{3}} \sqrt{3} a_{3}-5762^{\frac{1}{3}} a_{3}\right) v_{2}^{2} v_{4} v_{5} v_{1}^{5} \\
& +\left(576 i 2^{\frac{1}{3}} \sqrt{3} a_{1}-5762^{\frac{1}{3}} a_{1}\right) v_{2} v_{4} v_{5} v_{1}^{5} \\
& +\left(1728 i 2^{\frac{1}{3}} \sqrt{3} a_{3}-17282^{\frac{1}{3}} a_{3}\right) v_{2}^{3} v_{4} v_{1}^{6} \\
& +\left(1728 i 2^{\frac{1}{3}} \sqrt{3} a_{1}-17282^{\frac{1}{3}} a_{1}\right) v_{2}^{2} v_{4} v_{1}^{6} \\
& +\left(-1728 i \sqrt{3} a_{1}-1728 a_{1}\right) v_{2} v_{5} v_{1}^{6} \\
& +\left(-96 i 2^{\frac{1}{3}} \sqrt{3} b_{1}+962^{\frac{1}{3}} b_{1}\right) v_{4} v_{5} v_{1}^{6} \\
& +\left(-288 i 2^{\frac{1}{3}} \sqrt{3} b_{2}+2882^{\frac{1}{3}} b_{2}\right) v_{2} v_{4} v_{1}^{8} \\
& +\left(-960 i 2^{\frac{1}{3}} \sqrt{3} a_{3}+9602^{\frac{1}{3}} a_{3}\right) v_{2} v_{4} v_{1}^{3} \tag{8E}\\
& +\left(-192 i 2^{\frac{1}{3}} \sqrt{3} a_{3}+1922^{\frac{1}{3}} a_{3}\right) v_{4} v_{5} v_{1}^{2}+\left(864 i 2^{\frac{1}{3}} \sqrt{3} a_{2}\right. \\
& \left.+576 i 2^{\frac{1}{3}} \sqrt{3} b_{3}-8642^{\frac{1}{3}} a_{2}-5762^{\frac{1}{3}} b_{3}\right) v_{2}^{2} v_{4} v_{1}^{7} \\
& +\left(-288 i 2^{\frac{1}{3}} \sqrt{3} b_{1}+2882^{\frac{1}{3}} b_{1}\right) v_{2} v_{4} v_{1}^{7} \\
& +\left(-1152 i \sqrt{3} a_{2}-768 i \sqrt{3} b_{3}-1152 a_{2}-768 b_{3}\right) v_{2} v_{5} v_{1}^{7} \\
& +\left(-96 i 2^{\frac{1}{3}} \sqrt{3} b_{2}+962^{\frac{1}{3}} b_{2}\right) v_{4} v_{5} v_{1}^{7}+15362^{\frac{2}{3}} a_{3} v_{3} v_{1}^{2} \\
& -7682^{\frac{2}{3}} b_{2} v_{3} v_{1}^{7}+\left(-576 i \sqrt{3} b_{2}-576 b_{2}\right) v_{2} v_{1}^{9} \\
& +\left(-5184 i \sqrt{3} a_{1}-5184 a_{1}\right) v_{2}^{2} v_{1}^{7} \\
& +\left(-192 i \sqrt{3} b_{1}-192 b_{1}\right) v_{5} v_{1}^{7} \\
& +\left(-3456 i \sqrt{3} a_{2}-2304 i \sqrt{3} b_{3}-3456 a_{2}-2304 b_{3}\right) v_{2}^{2} v_{1}^{8} \\
& +\left(-576 i \sqrt{3} b_{1}-576 b_{1}\right) v_{2} v_{1}^{8}+\left(-192 i \sqrt{3} b_{2}-192 b_{2}\right) v_{5} v_{1}^{8} \\
& +\left(-384 i \sqrt{3} a_{3}-384 a_{3}\right) v_{2} v_{1}^{4}+\left(-576 i 2^{\frac{1}{3}} \sqrt{3} a_{2}\right. \\
& \left.-384 i 2^{\frac{1}{3}} \sqrt{3} b_{3}+5762^{\frac{1}{3}} a_{2}+3842^{\frac{1}{3}} b_{3}\right) v_{4} v_{1}^{4} \\
& +\left(-960 i 2^{\frac{1}{3}} \sqrt{3} a_{1}+9602^{\frac{1}{3}} a_{1}\right) v_{4} v_{1}^{3} \\
& +\left(-384 i \sqrt{3} a_{3}-384 a_{3}\right) v_{5} v_{1}^{32}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-34562^{\frac{2}{3}} a_{3} & =0 \\
-11522^{\frac{2}{3}} a_{3} & =0 \\
15362^{\frac{2}{3}} a_{3} & =0 \\
-7682^{\frac{2}{3}} b_{2} & =0 \\
5762^{\frac{2}{3}} b_{2} & =0 \\
17282^{\frac{2}{3}} b_{2} & =0 \\
-5184 i \sqrt{3} a_{1}-5184 a_{1} & =0 \\
-1728 i \sqrt{3} a_{1}-1728 a_{1} & =0 \\
-576 i \sqrt{3} b_{1}-576 b_{1} & =0 \\
-576 i \sqrt{3} b_{2}-576 b_{2} & =0 \\
-384 i \sqrt{3} a_{3}-384 a_{3} & =0 \\
-192 i \sqrt{3} b_{1}-192 b_{1} & =0 \\
-192 i \sqrt{3} b_{2}-192 b_{2} & =0 \\
1920 i \sqrt{3} a_{1}+1920 a_{1} & =0 \\
-960 i 2^{\frac{1}{3}} \sqrt{3} a_{1}+9602^{\frac{1}{3}} a_{1} & =0 \\
-960 i 2^{\frac{1}{3}} \sqrt{3} a_{3}+9602^{\frac{1}{3}} a_{3} & =0 \\
-288 i 2^{\frac{1}{3}} \sqrt{3} b_{1}+2882^{\frac{1}{3}} b_{1} & =0 \\
-288 i 2^{\frac{1}{3}} \sqrt{3} b_{2}+2882^{\frac{1}{3}} b_{2} & =0 \\
-192 i 2^{\frac{1}{3}} \sqrt{3} a_{3}+1922^{\frac{1}{3}} a_{3} & =0 \\
-96 i 2^{\frac{1}{3}} \sqrt{3} b_{1}+962^{\frac{1}{3}} b_{1} & =0 \\
-96 i 2^{\frac{1}{3}} \sqrt{3} b_{2}+962^{\frac{1}{3}} b_{2} & =0 \\
564 i 2^{\frac{1}{3}} \sqrt{3} a_{2}+576 i 2^{\frac{1}{3}} \sqrt{3} b_{3}-8642^{\frac{1}{3}} a_{2}-5762^{\frac{1}{3}} b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=a_{2} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=-\frac{3 a_{2}}{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-\frac{3 y}{2}
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
Solving equation (3)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{i \sqrt{3}\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}-4 i \sqrt{3} x+\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+4 x}{4 x^{3}\left(\left(12 x y+4 \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
\xi & =x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta & =x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

> Expression too large to display

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}},\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}, \sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2},\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}=v_{3},\left(\left(3 x y+\sqrt{\frac{9 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}=v_{4}, \sqrt{\frac{9 x^{3} y^{2}-4}{x}}=2\right.
$$

The above PDE (6E) now becomes

Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{aligned}
& -7682^{\frac{2}{3}} b_{2} v_{3} v_{1}^{7}+\left(96 i 2^{\frac{1}{3}} \sqrt{3} b_{2}+962^{\frac{1}{3}} b_{2}\right) v_{4} v_{5} v_{1}^{7} \\
& +\left(960 i 2^{\frac{1}{3}} \sqrt{3} a_{3}+9602^{\frac{1}{3}} a_{3}\right) v_{2} v_{4} v_{1}^{3} \\
& +\left(192 i 2^{\frac{1}{3}} \sqrt{3} a_{3}+1922^{\frac{1}{3}} a_{3}\right) v_{4} v_{5} v_{1}^{2} \\
& +\left(-1728 i 2^{\frac{1}{3}} \sqrt{3} a_{3}-17282^{\frac{1}{3}} a_{3}\right) v_{2}^{3} v_{4} v_{1}^{6} \\
& +\left(-1728 i 2^{\frac{1}{3}} \sqrt{3} a_{1}-17282^{\frac{1}{3}} a_{1}\right) v_{2}^{2} v_{4} v_{1}^{6} \\
& +\left(1728 i \sqrt{3} a_{1}-1728 a_{1}\right) v_{2} v_{5} v_{1}^{6} \\
& +\left(96 i 2^{\frac{1}{3}} \sqrt{3} b_{1}+962^{\frac{1}{3}} b_{1}\right) v_{4} v_{5} v_{1}^{6}+5762^{\frac{2}{3}} b_{2} v_{2} v_{3} v_{5} v_{1}^{9} \\
& +15362^{\frac{2}{3}} a_{3} v_{3} v_{1}^{2}+\left(288 i 2^{\frac{1}{3}} \sqrt{3} b_{2}+2882^{\frac{1}{3}} b_{2}\right) v_{2} v_{4} v_{1}^{8} \\
& +\left(-864 i 2^{\frac{1}{3}} \sqrt{3} a_{2}-576 i 2^{\frac{1}{3}} \sqrt{3} b_{3}-8642^{\frac{1}{3}} a_{2}\right. \\
& \left.-5762^{\frac{1}{3}} b_{3}\right) v_{2}^{2} v_{4} v_{1}^{7}+\left(288 i 2^{\frac{1}{3}} \sqrt{3} b_{1}+2882^{\frac{1}{3}} b_{1}\right) v_{2} v_{4} v_{1}^{7} \\
& +\left(1152 i \sqrt{3} a_{2}+768 i \sqrt{3} b_{3}-1152 a_{2}-768 b_{3}\right) v_{2} v_{5} v_{1}^{7} \\
& +\left(576 i \sqrt{3} b_{2}-576 b_{2}\right) v_{2} v_{1}^{9} \\
& +\left(3456 i \sqrt{3} a_{2}+2304 i \sqrt{3} b_{3}-3456 a_{2}-2304 b_{3}\right) v_{2}^{2} v_{1}^{8} \\
& +\left(576 i \sqrt{3} b_{1}-576 b_{1}\right) v_{2} v_{1}^{8}+\left(192 i \sqrt{3} b_{2}-192 b_{2}\right) v_{5} v_{1}^{8} \\
& +\left(5184 i \sqrt{3} a_{1}-5184 a_{1}\right) v_{2}^{2} v_{1}^{7} \\
& +\left(192 i \sqrt{3} b_{1}-192 b_{1}\right) v_{5} v_{1}^{7}+\left(384 i \sqrt{3} a_{3}-384 a_{3}\right) v_{2} v_{1}^{4} \\
& +\left(576 i 2^{\frac{1}{3}} \sqrt{3} a_{2}+384 i 2^{\frac{1}{3}} \sqrt{3} b_{3}+5762^{\frac{1}{3}} a_{2}+3842^{\frac{1}{3}} b_{3}\right) v_{4} v_{1}^{4} \\
& +\left(960 i 2^{\frac{1}{3}} \sqrt{3} a_{1}+9602^{\frac{1}{3}} a_{1}\right) v_{4} v_{1}^{3} \\
& +\left(384 i \sqrt{3} a_{3}-384 a_{3}\right) v_{5} v_{1}^{3} \\
& -34562^{\frac{2}{3}} a_{3} v_{2}^{2} v_{3} v_{1}^{5}-11522^{\frac{2}{3}} a_{3} v_{2} v_{3} v_{5} v_{1}^{4} \\
& +\left(-576 i 2^{\frac{1}{3}} \sqrt{3} a_{1}-5762^{\frac{1}{3}} a_{1}\right) v_{2} v_{4} v_{5} v_{1}^{5} \\
& +\left(-1152 i \sqrt{3} a_{2}-768 i \sqrt{3} b_{3}+1152 a_{2}+768 b_{3}\right) v_{1}^{5} \\
& +\left(-1920 i \sqrt{3} a_{1}+1920 a_{1}\right) v_{1}^{4}+\left(-288 i 2^{\frac{1}{3}} \sqrt{3} a_{2}\right. \\
& \left.-192 i 2^{\frac{1}{3}} \sqrt{3} b_{3}-2882^{\frac{1}{3}} a_{2}-1922^{\frac{1}{3}} b_{3}\right) v_{2} v_{4} v_{5} v_{1}^{6} \\
& +\left(-576 i 2^{\frac{1}{3}} \sqrt{3} a_{3}-5762^{\frac{1}{3}} a_{3}\right) v_{2}^{2} v_{4} v_{5} v_{1}^{5} \\
& +17282^{\frac{2}{3}} b_{2} v_{2}^{2} v_{3} v_{1}^{10}=0
\end{aligned}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-34562^{\frac{2}{3}} a_{3} & =0 \\
-11522^{\frac{2}{3}} a_{3} & =0 \\
15362^{\frac{2}{3}} a_{3} & =0 \\
-7682^{\frac{2}{3}} b_{2} & =0 \\
5762^{\frac{2}{3}} b_{2} & =0 \\
17282^{\frac{2}{3}} b_{2} & =0 \\
-1920 i \sqrt{3} a_{1}+1920 a_{1} & =0 \\
192 i \sqrt{3} b_{1}-192 b_{1} & =0 \\
192 i \sqrt{3} b_{2}-192 b_{2} & =0 \\
384 i \sqrt{3} a_{3}-384 a_{3} & =0 \\
576 i \sqrt{3} b_{1}-576 b_{1} & =0 \\
576 i \sqrt{3} b_{2}-576 b_{2} & =0 \\
1728 i \sqrt{3} a_{1}-1728 a_{1} & =0 \\
5184 i \sqrt{3} a_{1}-5184 a_{1} & =0 \\
-1728 i 2^{\frac{1}{3}} \sqrt{3} a_{1}-17282^{\frac{1}{3}} a_{1} & =0 \\
-1728 i 2^{\frac{1}{3}} \sqrt{3} a_{3}-17282^{\frac{1}{3}} a_{3} & =0 \\
-576 i 2^{\frac{1}{3}} \sqrt{3} a_{1}-5762^{\frac{1}{3}} a_{1} & =0 \\
-576 i 2^{\frac{1}{3}} \sqrt{3} a_{3}-5762^{\frac{1}{3}} a_{3} & =0 \\
96 i 2^{\frac{1}{3}} \sqrt{3} b_{1}+962^{\frac{1}{3}} b_{1} & =0 \\
96 i 2^{\frac{1}{3}} \sqrt{3} b_{2}+962^{\frac{1}{3}} b_{2} & =0 \\
192 i 2^{\frac{1}{3}} \sqrt{3} a_{3}+1922^{\frac{1}{3}} a_{3} & =0 \\
288 i 2^{\frac{1}{3}} \sqrt{3} b_{1}+2882^{\frac{1}{3}} b_{1} & =0 \\
288 i 2^{\frac{1}{3}} \sqrt{3} b_{2}+2882^{\frac{1}{3}} b_{2} & =0 \\
960 i 2^{\frac{1}{3}} \sqrt{3} a_{1}+9602^{\frac{1}{3}} a_{1} & =0 \\
960 i 2^{\frac{1}{3}} \sqrt{3} a_{3}+9602^{\frac{1}{3}} a_{3} & =0 \\
-842^{\frac{1}{3}} \sqrt{3} a_{2}+384 i 2^{\frac{1}{3}} \sqrt{3} b_{3}+5762^{\frac{1}{3}} a_{2}+3842^{\frac{1}{3}} b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=a_{2} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=-\frac{3 a_{2}}{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-\frac{3 y}{2}
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating Unable to determine ODE type.

```
`Methods for first order ODEs:
```

 *** Sublevel 2 ***
 Methods for first order ODEs:
 -> Solving 1st order ODE of high degree, 1st attempt
 trying 1st order WeierstrassP solution for high degree ODE
 trying 1st order WeierstrassPPrime solution for high degree ODE
 trying 1st order JacobiSN solution for high degree ODE
 trying 1st order ODE linearizable_by_differentiation
 trying differential order: 1; missing variables
 trying dAlembert
 trying simple symmetries for implicit equations
 Successful isolation of \(d y / d x\) : 3 solutions were found. Trying to solve each resulting ODE
 *** Sublevel 3 ***
 Methods for first order ODEs:
 --- Trying classification methods ---
 trying homogeneous types:
 trying exact
 Looking for potential symmetries
 trying an equivalence to an Abel ODE
 trying 1st order ODE linearizable_by_differentiation
 -> Solving 1st order ODE of high degree, Lie methods, 1st trial
 -, --> Computing symmetries using: way \(=2\)
 , , -> Computing symmetries using: way \(=2\)
 -> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
 \(\rightarrow\) Calling odsolve with the ODE`, \(\operatorname{diff}(y(x), x)=\left((1 / 3) *\left(x^{\wedge} 2 * y(x) \wedge 5-3\right) * y(x)+(2 / 3) * y(x)^{\wedge} 6\right.\)
 Methods for first order ODEs:
 --- Trying classification methods ---
 trying a quadrature
 trying 1st order linear
 <- 1st order linear successful
 <- 1st order, parametric methods successful`
 \checkmark Solution by Maple
Time used: 0.093 (sec). Leaf size: 32
dsolve($x^{\wedge} 6 * \operatorname{diff}(y(x), x)^{\wedge} 3-3 * x * \operatorname{diff}(y(x), x)-3 * y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{2}{3 x^{\frac{3}{2}}} \\
& y(x)=\frac{2}{3 x^{\frac{3}{2}}} \\
& y(x)=\frac{c_{1}^{3}}{3}-\frac{c_{1}}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 136.42 (sec). Leaf size: 24834
DSolve $\left[x^{\wedge} 6 *\left(y y^{\prime}[x]\right) \wedge 3-3 * x * y^{\prime}[x]-3 * y[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True]

Too large to display

3.13 problem 15

Internal problem ID [6807]
Internal file name [OUTPUT/6054_Tuesday_July_26_2022_11_24_06_PM_71082803/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 15.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y-x^{6} y^{\prime 3}+x y^{\prime}=0
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

$$
\begin{align*}
& \frac{\frac{\left(\left(108 y x+12 \sqrt{3} \sqrt{\frac{27 y^{2} x^{3}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}{6 x^{2}}+\frac{2}{x\left(\left(108 y x+12 \sqrt{3} \sqrt{\frac{27 y^{2} x^{3}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}}{x} \tag{1}\\
& =\frac{\left(\left(108 y x+12 \sqrt{3} \sqrt{\frac{27 y^{2} x^{3}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}{12 x^{2}}-\frac{1}{x\left(\left(108 y x+12 \sqrt{3} \sqrt{\frac{27 y^{2} x^{3}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{\left(\left(108 y x+12 \sqrt{3} \sqrt{\frac{27 y^{2} x^{3}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}{6 x^{2}}-\frac{x((108}{2}\right.}{x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+12 x}{6 x^{3}\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{aligned}
& b_{2}+\frac{\left(\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+12 x\right)\left(b_{3}-a_{2}\right)}{6 x^{3}\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}} \\
& -\frac{\left(\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+12 x\right)^{2} a_{3}}{2} \\
& 36 x^{6}\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}} \\
& -\left(\frac{2\left(\frac{\left.2\left(108 y+\frac{6 \sqrt{3}\left(81 x y^{2}-\frac{27 x^{3} y^{2}-4}{x^{2}}\right.}{\sqrt{\frac{27 x^{3} y^{2}-4}{x}}}\right)\right)^{x^{2}}}{\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}+\frac{4\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x}{x}+12\right.}{6 x^{3}\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}\right. \\
& -\frac{\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+12 x}{2 x^{4}\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}} \\
& -\frac{\left(\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+12 x\right)\left(\left(108 y+\frac{6 \sqrt{3}\left(81 x y^{2}-\frac{27 x^{3} y^{2}-4}{x^{2}}\right)}{\sqrt{\frac{27 x^{3} y^{2}-4}{x}}}\right) x^{2}+2(108 x y+12 \sqrt{3}\right.}{18 x^{3}\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{4}{3}}} \\
& \left.+y a_{3}+a_{1}\right)-\left(\frac{108 x+\frac{324 \sqrt{3} y x^{2}}{\sqrt{\frac{27 x^{3} y^{2}-4}{x}}}}{9\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}} x}\right. \\
& \left.-\frac{\left(\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+12 x\right)\left(108 x+\frac{324 \sqrt{3} y x^{2}}{\sqrt{\frac{27 x^{3} y^{2}-4}{x}}}\right)}{18 x\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{4}{3}}}\right)\left(x b_{2}\right. \\
& \left.+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives
Expression too large to display
Setting the numerator to zero gives
Expression too large to display
Simplifying the above gives
Expression too large to display
Since the PDE has radicals, simplifying gives
Expression too large to display
Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{1}{3}},\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{2}{3}}, \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2},\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{1}{3}}=v_{3},\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{2}{3}}=v_{4}, \sqrt{\frac{27 x}{2}}\right.
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -72 v_{1}^{2}\left(3 v_{5} 12^{\frac{2}{3}} v_{4} v_{1}^{5} b_{2}+3 v_{5} 12^{\frac{2}{3}} v_{4} v_{1}^{4} b_{1}+24 \sqrt{3} 12^{\frac{1}{3}} v_{3} v_{1}^{5} b_{2}\right. \\
& +6 \sqrt{3} 12^{\frac{2}{3}} v_{4} v_{1}^{2} a_{2}+4 \sqrt{3} 12^{\frac{2}{3}} v_{4} v_{1}^{2} b_{3}+10 \sqrt{3} 12^{\frac{2}{3}} v_{4} v_{1} a_{1}-36 v_{5} v_{1}^{5} b_{1} \\
& -36 v_{5} v_{1}^{6} b_{2}+72 \sqrt{3} v_{1}^{3} a_{2}+48 \sqrt{3} v_{1}^{3} b_{3}+120 \sqrt{3} v_{1}^{2} a_{1}-24 v_{5} v_{1} a_{3} \\
& -648 \sqrt{3} v_{1}^{6} v_{2}^{2} a_{2}-432 \sqrt{3} v_{1}^{6} v_{2}^{2} b_{3}-108 \sqrt{3} v_{1}^{6} v_{2} b_{1}-972 \sqrt{3} v_{1}^{5} v_{2}^{2} a_{1} \\
& -216 v_{5} v_{1}^{5} v_{2} a_{2}-144 v_{5} v_{1}^{5} v_{2} b_{3}-324 v_{5} v_{1}^{4} v_{2} a_{1}+2 v_{5} 12^{\frac{2}{3}} v_{4} a_{3} \\
& -24 \sqrt{3} v_{1}^{2} v_{2} a_{3}-16 \sqrt{3} 12^{\frac{1}{3}} v_{3} a_{3}-162 \sqrt{3} 12^{\frac{1}{3}} v_{3} v_{1}^{8} v_{2}^{2} b_{2} \tag{7E}\\
& +9 \sqrt{3} 12^{\frac{2}{3}} v_{4} v_{1}^{6} v_{2} b_{2}-27 \sqrt{3} 12^{\frac{2}{3}} v_{4} v_{1}^{5} v_{2}^{2} a_{2}-18 \sqrt{3} 12^{\frac{2}{3}} v_{4} v_{1}^{5} v_{2}^{2} b_{3} \\
& -54 \sqrt{3} 12^{\frac{2}{3}} v_{4} v_{1}^{4} v_{2}^{3} a_{3}+9 \sqrt{3} 12^{\frac{2}{3}} v_{4} v_{1}^{5} v_{2} b_{1}-54 \sqrt{3} 12^{\frac{2}{3}} v_{4} v_{1}^{4} v_{2}^{2} a_{1} \\
& -54 v_{5} 12^{\frac{1}{3}} v_{3} v_{1}^{7} v_{2} b_{2}-9 v_{5} 12^{\frac{2}{3}} v_{4} v_{1}^{4} v_{2} a_{2}-6 v_{5} 12^{\frac{2}{3}} v_{4} v_{1}^{4} v_{2} b_{3} \\
& -18 v_{5} 12^{\frac{2}{3}} v_{4} v_{1}^{3} v_{2}^{2} a_{3}-18 v_{5} 12^{\frac{2}{3}} v_{4} v_{1}^{3} v_{2} a_{1}+108 \sqrt{3} 12^{\frac{1}{3}} v_{3} v_{1}^{3} v_{2}^{2} a_{3} \\
& \left.+10 \sqrt{3} 12^{\frac{2}{3}} v_{4} v_{1} v_{2} a_{3}+362^{\frac{1}{3}} v_{3}^{2} v_{2}^{2} a_{3}-108 \sqrt{3} v_{1}^{7} v_{2} b_{2}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(46656 \sqrt{3} a_{2}+31104 \sqrt{3} b_{3}\right) v_{2}^{2} v_{1}^{8}+2592 b_{2} v_{5} v_{1}^{8} \\
& +2592 b_{1} v_{5} v_{1}^{7}+\left(-5184 \sqrt{3} a_{2}-3456 \sqrt{3} b_{3}\right) v_{1}^{5} \\
& +\left(-432 \sqrt{3} 12^{\frac{2}{3}} a_{2}-288 \sqrt{3} 12^{\frac{2}{3}} b_{3}\right) v_{4} v_{1}^{4} \\
& -8640 \sqrt{3} a_{1} v_{1}^{4}-1728 \sqrt{3} 12^{\frac{1}{3}} b_{2} v_{3} v_{1}^{7}-21612^{\frac{2}{3}} b_{2} v_{4} v_{5} v_{1}^{7} \\
& +\left(64812^{\frac{2}{3}} a_{2}+43212^{\frac{2}{3}} b_{3}\right) v_{2} v_{4} v_{5} v_{1}^{6}-21612^{\frac{2}{3}} b_{1} v_{4} v_{5} v_{1}^{6} \\
& -720 \sqrt{3} 12^{\frac{2}{3}} a_{1} v_{4} v_{1}^{3}+1152 \sqrt{3} 12^{\frac{1}{3}} a_{3} v_{3} v_{1}^{2}-14412^{\frac{2}{3}} a_{3} v_{4} v_{5} v_{1}^{2} \tag{8E}\\
& +23328 a_{1} v_{2} v_{5} v_{1}^{6}+1728 \sqrt{3} a_{3} v_{2} v_{1}^{4}+7776 \sqrt{3} b_{2} v_{2} v_{1}^{9} \\
& +7776 \sqrt{3} b_{1} v_{2} v_{1}^{8}+\left(1944 \sqrt{3} 12^{\frac{2}{3}} a_{2}+1296 \sqrt{3} 12^{\frac{2}{3}} b_{3}\right) v_{2}^{2} v_{4} v_{1}^{7} \\
& +69984 \sqrt{3} a_{1} v_{2}^{2} v_{1}^{7}+\left(15552 a_{2}+10368 b_{3}\right) v_{2} v_{5} v_{1}^{7} \\
& +1728 a_{3} v_{5} v_{1}^{3}+11664 \sqrt{3} 12^{\frac{1}{3}} b_{2} v_{2}^{2} v_{3} v_{1}^{10}+388812^{\frac{1}{3}} b_{2} v_{2} v_{3} v_{5} v_{1}^{9} \\
& -648 \sqrt{3} 12^{\frac{2}{3}} b_{2} v_{2} v_{4} v_{1}^{8}-648 \sqrt{3} 12^{\frac{2}{3}} b_{1} v_{2} v_{4} v_{1}^{7}+3888 \sqrt{3} 12^{\frac{2}{3}} a_{3} v_{2}^{3} v_{4} v_{1}^{6} \\
& +3888 \sqrt{3} 12^{\frac{2}{3}} a_{1} v_{2}^{2} v_{4} v_{1}^{6}-7776 \sqrt{3} 12^{\frac{1}{3}} a_{3} v_{2}^{2} v_{3} v_{1}^{5} \\
& +129612^{\frac{2}{3}} a_{3} v_{2}^{2} v_{4} v_{5} v_{1}^{5}+129612^{\frac{2}{3}} a_{1} v_{2} v_{4} v_{5} v_{1}^{5} \\
& -259212^{\frac{1}{3}} a_{3} v_{2} v_{3} v_{5} v_{1}^{4}-720 \sqrt{3} 12^{\frac{2}{3}} a_{3} v_{2} v_{4} v_{1}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& 23328 a_{1}=0 \\
& 1728 a_{3}=0 \\
& 2592 b_{1}=0 \\
& 2592 b_{2}=0 \\
& -8640 \sqrt{3} a_{1}=0 \\
& 69984 \sqrt{3} a_{1}=0 \\
& 1728 \sqrt{3} a_{3}=0 \\
& 7776 \sqrt{3} b_{1}=0 \\
& 7776 \sqrt{3} b_{2}=0 \\
& -259212^{\frac{1}{3}} a_{3}=0 \\
& 388812^{\frac{1}{3}} b_{2}=0 \\
& 129612^{\frac{2}{3}} a_{1}=0 \\
& -14412^{\frac{2}{3}} a_{3}=0 \\
& 129612^{\frac{2}{3}} a_{3}=0 \\
& -21612^{\frac{2}{3}} b_{1}=0 \\
& -21612^{\frac{2}{3}} b_{2}=0 \\
& -7776 \sqrt{3} 12^{\frac{1}{3}} a_{3}=0 \\
& 1152 \sqrt{3} 12^{\frac{1}{3}} a_{3}=0 \\
& -1728 \sqrt{3} 12^{\frac{1}{3}} b_{2}=0 \\
& 11664 \sqrt{3} 12^{\frac{1}{3}} b_{2}=0 \\
& -720 \sqrt{3} 12^{\frac{2}{3}} a_{1}=0 \\
& 3888 \sqrt{3} 12^{\frac{2}{3}} a_{1}=0 \\
& -720 \sqrt{3} 12^{\frac{2}{3}} a_{3}=0 \\
& 3888 \sqrt{3} 12^{\frac{2}{3}} a_{3}=0 \\
& -648 \sqrt{3} 12^{\frac{2}{3}} b_{1}=0 \\
& -648 \sqrt{3} 12^{\frac{2}{3}} b_{2}=0 \\
& 15552 a_{2}+10368 b_{3}=0 \\
& -5184 \sqrt{3} a_{2}-3456 \sqrt{3} b_{3}=0 \\
& 46656 \sqrt{3} a_{2}+31104 \sqrt{3} b_{3}=0 \\
& 64812^{\frac{2}{3}} a_{2}+43212^{\frac{2}{3}} b_{3}=0 \\
& -432 \sqrt{3} 12^{\frac{2}{3}} a_{2}-288 \sqrt{3} 12^{\frac{2}{3}} b_{3}=0 \\
& 1944 \sqrt{3} 12^{\frac{2}{3}} a_{2}+34296 \sqrt{3} 12^{\frac{2}{3}} b_{3}=0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-\frac{2 b_{3}}{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =-\frac{2 x}{3} \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{-\frac{2 x}{3}} \\
& =-\frac{3 y}{2 x}
\end{aligned}
$$

This is easily solved to give

$$
y=\frac{c_{1}}{x^{\frac{3}{2}}}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=y x^{\frac{3}{2}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{-\frac{2 x}{3}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{3 \ln (x)}{2}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+12 x}{6 x^{3}\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =\frac{3 y \sqrt{x}}{2} \\
R_{y} & =x^{\frac{3}{2}} \\
S_{x} & =-\frac{3}{2 x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{9 \sqrt{x}\left(x^{2} \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 y x^{3}\right)^{\frac{1}{3}}}{9 y x^{2}\left(x^{2} \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 y x^{3}\right)^{\frac{1}{3}}+12^{\frac{2}{3}} x+12^{\frac{1}{3}}\left(x^{2} \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 y x^{3}\right)^{\frac{2}{3}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{9\left(\sqrt{3} \sqrt{27 R^{2}-4}+9 R\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\sqrt{3} \sqrt{27 R^{2}-4}+9 R\right)^{\frac{2}{3}}+12^{\frac{2}{3}}+9\left(\sqrt{3} \sqrt{27 R^{2}-4}+9 R\right)^{\frac{1}{3}} R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int-\frac{9\left(\sqrt{81 R^{2}-12}+9 R\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\left(\sqrt{81 R^{2}-12}+9 R\right)^{2}\right)^{\frac{1}{3}}+12^{\frac{2}{3}}+9\left(\sqrt{81 R^{2}-12}+9 R\right)^{\frac{1}{3}} R} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{3 \ln (x)}{2}=\int^{y x^{\frac{3}{2}}}-\frac{9\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{2}\right)^{\frac{1}{3}}+12^{\frac{2}{3}}+9\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{\frac{1}{3}} _a} d _a+c_{1}
$$

Which simplifies to

$$
-\frac{3 \ln (x)}{2}=\int^{y x^{\frac{3}{2}}}-\frac{9\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{2}\right)^{\frac{1}{3}}+12^{\frac{2}{3}}+9\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{\frac{1}{3}}-a} d _a+c_{1}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
- & \frac{3 \ln (x)}{2} \\
= & \int^{y x^{\frac{3}{2}}} \tag{1}\\
& -\frac{9\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{2}\right)^{\frac{1}{3}}+12^{\frac{2}{3}}+9\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{\frac{1}{3}}-a} d _a \\
\quad & +c_{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
- & \frac{3 \ln (x)}{2} \\
= & \int^{y x^{\frac{3}{2}}} \\
& -\frac{9\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{2}\right)^{\frac{1}{3}}+12^{\frac{2}{3}}+9\left(\sqrt{81 _a^{2}-12}+9 _a\right)^{\frac{1}{3}}-a} d _a+c_{1}
\end{aligned}
$$

Verified OK.
Solving equation (2)
Writing the ode as
$y^{\prime}=\frac{i \sqrt{3}\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}-12 i \sqrt{3} x-\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}-12 x}{12 x^{3}\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}}$
$y^{\prime}=\omega(x, y)$
The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives
Expression too large to display

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

> Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{1}{3}},\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{2}{3}}, \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2},\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{1}{3}}=v_{3},\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{2}{3}}=v_{4}, \sqrt{\frac{27 x}{}}\right.
$$

The above PDE (6E) now becomes
Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 46656 \sqrt{3} 12^{\frac{1}{3}} b_{2} v_{2}^{2} v_{3} v_{1}^{10}+1555212^{\frac{1}{3}} b_{2} v_{2} v_{3} v_{5} v_{1}^{9} \\
& -31104 \sqrt{3} 12^{\frac{1}{3}} a_{3} v_{2}^{2} v_{3} v_{1}^{5}-1036812^{\frac{1}{3}} a_{3} v_{2} v_{3} v_{5} v_{1}^{4} \\
& +\left(-31104 i \sqrt{3} a_{2}-20736 i \sqrt{3} b_{3}\right. \\
& \left.-31104 a_{2}-20736 b_{3}\right) v_{2} v_{5} v_{1}^{7} \\
& +\left(-432 i \sqrt{3} 12^{\frac{2}{3}} b_{2}+43212^{\frac{2}{3}} b_{2}\right) v_{4} v_{5} v_{1}^{7} \\
& +\left(-4320 i 12^{\frac{2}{3}} a_{3}+1440 \sqrt{3} 12^{\frac{2}{3}} a_{3}\right) v_{2} v_{4} v_{1}^{3} \\
& +\left(-288 i \sqrt{3} 12^{\frac{2}{3}} a_{3}+28812^{\frac{2}{3}} a_{3}\right) v_{4} v_{5} v_{1}^{2} \\
& +\left(23328 i 12^{\frac{2}{3}} a_{3}-7776 \sqrt{3} 12^{\frac{2}{3}} a_{3}\right) v_{2}^{3} v_{4} v_{1}^{6} \\
& +\left(23328 i 12^{\frac{2}{3}} a_{1}-7776 \sqrt{3} 12^{\frac{2}{3}} a_{1}\right) v_{2}^{2} v_{4} v_{1}^{6} \\
& +\left(-46656 i \sqrt{3} a_{1}-46656 a_{1}\right) v_{2} v_{5} v_{1}^{6} \\
& +\left(-432 i \sqrt{3} 12^{\frac{2}{3}} b_{1}+43212^{\frac{2}{3}} b_{1}\right) v_{4} v_{5} v_{1}^{6} \\
& +\left(-3888 i 12^{\frac{2}{3}} b_{2}+1296 \sqrt{3} 12^{\frac{2}{3}} b_{2}\right) v_{2} v_{4} v_{1}^{8} \\
& +\left(11664 i 12^{\frac{2}{3}} a_{2}+7776 i 12^{\frac{2}{3}} b_{3}\right. \\
& \left.-3888 \sqrt{3} 12^{\frac{2}{3}} a_{2}-2592 \sqrt{3} 12^{\frac{2}{3}} b_{3}\right) v_{2}^{2} v_{4} v_{1}^{7} \\
& +\left(-3888 i 12^{\frac{2}{3}} b_{1}+1296 \sqrt{3} 12^{\frac{2}{3}} b_{1}\right) v_{2} v_{4} v_{1}^{7} \\
& +\left(-4320 i 12^{\frac{2}{3}} a_{1}+1440 \sqrt{3} 12^{\frac{2}{3}} a_{1}\right) v_{4} v_{1}^{3} \tag{8E}\\
& +\left(-3456 i \sqrt{3} a_{3}-3456 a_{3}\right) v_{5} v_{1}^{3} \\
& +\left(-419904 i a_{1}-139968 \sqrt{3} a_{1}\right) v_{2}^{2} v_{1}^{7} \\
& +\left(-5184 i \sqrt{3} b_{1}-5184 b_{1}\right) v_{5} v_{1}^{7} \\
& +\left(-10368 i a_{3}-3456 \sqrt{3} a_{3}\right) v_{2} v_{1}^{4}+\left(-2592 i 12^{\frac{2}{3}} a_{2}\right. \\
& \left.-1728 i 12^{\frac{2}{3}} b_{3}+864 \sqrt{3} 12^{\frac{2}{3}} a_{2}+576 \sqrt{3} 12^{\frac{2}{3}} b_{3}\right) v_{4} v_{1}^{4} \\
& +\left(-46656 i b_{2}-15552 \sqrt{3} b_{2}\right) v_{2} v_{1}^{9}+\left(-279936 i a_{2}\right. \\
& \left.-186624 i b_{3}-93312 \sqrt{3} a_{2}-62208 \sqrt{3} b_{3}\right) v_{2}^{2} v_{1}^{8} \\
& +\left(-46656 i b_{1}-15552 \sqrt{3} b_{1}\right) v_{2} v_{1}^{8} \\
& +\left(-5184 i \sqrt{3} b_{2}-5184 b_{2}\right) v_{5} v_{1}^{8}-6912 \sqrt{3} 12^{\frac{1}{3}} b_{2} v_{3} v_{1}^{7} \\
& +4608 \sqrt{3} 12^{\frac{1}{3}} a_{3} v_{3} v_{1}^{2}+\left(1296 i \sqrt{3} 12^{\frac{2}{3}} a_{2}\right. \\
& \left.+864 i \sqrt{3} 12^{\frac{2}{3}} b_{3}-1296132^{\text {圱 }} \varepsilon_{2}-86412^{\frac{2}{3}} b_{3}\right) v_{2} v_{4} v_{5} v_{1}^{6} \\
& +\left(2592 i \sqrt{3} 12^{\frac{2}{3}} a_{3}-259212^{\frac{2}{3}} a_{3}\right) v_{2}^{2} v_{4} v_{5} v_{1}^{5}
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-1036812^{\frac{1}{3}} a_{3} & =0 \\
1555212^{\frac{1}{3}} b_{2} & =0 \\
-31104 \sqrt{3} 12^{\frac{1}{3}} a_{3} & =0 \\
4608 \sqrt{3} 12^{\frac{1}{3}} a_{3} & =0 \\
-6912 \sqrt{3} 12^{\frac{1}{3}} b_{2} & =0 \\
46656 \sqrt{3} 12^{\frac{1}{3}} b_{2} & =0 \\
-419904 i a_{1}-139968 \sqrt{3} a_{1} & =0 \\
-46656 i b_{1}-15552 \sqrt{3} b_{1} & =0 \\
-46656 i b_{2}-15552 \sqrt{3} b_{2} & =0 \\
-10368 i a_{3}-3456 \sqrt{3} a_{3} & =0 \\
51840 i a_{1}+17280 \sqrt{3} a_{1} & =0 \\
-46656 i \sqrt{3} a_{1}-46656 a_{1} & =0 \\
-5184 i \sqrt{3} b_{1}-5184 b_{1} & =0 \\
-5184 i \sqrt{3} b_{2}-5184 b_{2} & =0 \\
-4320 i 12^{\frac{2}{3}} a_{1}+1440 \sqrt{3} 12^{\frac{2}{3}} a_{1} & =0 \\
-4320 i 12^{\frac{2}{3}} a_{3}+1440 \sqrt{3} 12^{\frac{2}{3}} a_{3} & =0 \\
-3888 i 12^{\frac{2}{3}} b_{1}+1296 \sqrt{3} 12^{\frac{2}{3}} b_{1} & =0 \\
-3888 i 12^{\frac{2}{3}} b_{2}+1296 \sqrt{3} 12^{\frac{2}{3}} b_{2} & =0 \\
-3456 i \sqrt{3} a_{3}-3456 a_{3} & =0 \\
11664 i 12^{\frac{2}{3}} a_{2}+7776 i 12^{\frac{2}{3}} b_{3}-3888 \sqrt{3} 12^{\frac{2}{3}} a_{2}-2592 \sqrt{3} 12^{\frac{2}{3}} b_{3} & =0 \\
-31104 i \sqrt{3} 12^{\frac{2}{3}} a_{2}+864 i \sqrt{3} 12 a_{2}^{3} 49-129612^{\frac{2}{3}} a_{2}-86412^{\frac{2}{3}} b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-\frac{2 b_{3}}{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =-\frac{2 x}{3} \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
Solving equation (3)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{i \sqrt{3}\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}-12 i \sqrt{3} x+\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{2}{3}}+12 x}{12 x^{3}\left(\left(108 x y+12 \sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right) x^{2}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
\xi & =x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta & =x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

> Expression too large to display

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives
Expression too large to display
Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{1}{3}},\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{2}{3}}, \sqrt{\frac{27 x^{3} y^{2}-4}{x}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2},\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{1}{3}}=v_{3},\left(\left(\sqrt{3} \sqrt{\frac{27 x^{3} y^{2}-4}{x}}+9 x y\right) x^{2}\right)^{\frac{2}{3}}=v_{4}, \sqrt{\frac{27 x}{2}}\right.
$$

The above PDE (6E) now becomes

Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(419904 i a_{1}-139968 \sqrt{3} a_{1}\right) v_{2}^{2} v_{1}^{7} \\
& +\left(5184 i \sqrt{3} b_{1}-5184 b_{1}\right) v_{5} v_{1}^{7} \\
& +\left(46656 i b_{2}-15552 \sqrt{3} b_{2}\right) v_{2} v_{1}^{9}+\left(279936 i a_{2}\right. \\
& \left.+186624 i b_{3}-93312 \sqrt{3} a_{2}-62208 \sqrt{3} b_{3}\right) v_{2}^{2} v_{1}^{8} \\
& +\left(46656 i b_{1}-15552 \sqrt{3} b_{1}\right) v_{2} v_{1}^{8} \\
& +\left(5184 i \sqrt{3} b_{2}-5184 b_{2}\right) v_{5} v_{1}^{8} \\
& +\left(10368 i a_{3}-3456 \sqrt{3} a_{3}\right) v_{2} v_{1}^{4} \\
& +46656 \sqrt{3} 12^{\frac{1}{3}} b_{2} v_{2}^{2} v_{3} v_{1}^{10}+1555212^{\frac{1}{3}} b_{2} v_{2} v_{3} v_{5} v_{1}^{9} \\
& -31104 \sqrt{3} 12^{\frac{1}{3}} a_{3} v_{2}^{2} v_{3} v_{1}^{5}-1036812^{\frac{1}{3}} a_{3} v_{2} v_{3} v_{5} v_{1}^{4} \\
& +\left(4320 i 12^{\frac{2}{3}} a_{3}+1440 \sqrt{3} 12^{\frac{2}{3}} a_{3}\right) v_{2} v_{4} v_{1}^{3} \\
& +\left(288 i \sqrt{3} 12^{\frac{2}{3}} a_{3}+28812^{\frac{2}{3}} a_{3}\right) v_{4} v_{5} v_{1}^{2} \\
& +\left(-23328 i 12^{\frac{2}{3}} a_{3}-7776 \sqrt{3} 12^{\frac{2}{3}} a_{3}\right) v_{2}^{3} v_{4} v_{1}^{6} \\
& +\left(-23328 i 12^{\frac{2}{3}} a_{1}-7776 \sqrt{3} 12^{\frac{2}{3}} a_{1}\right) v_{2}^{2} v_{4} v_{1}^{6} \\
& +\left(46656 i \sqrt{3} a_{1}-46656 a_{1}\right) v_{2} v_{5} v_{1}^{6} \\
& +\left(432 i \sqrt{3} 12^{\frac{2}{3}} b_{1}+43212^{\frac{2}{3}} b_{1}\right) v_{4} v_{5} v_{1}^{6} \tag{8E}\\
& +\left(3888 i 12^{\frac{2}{3}} b_{2}+1296 \sqrt{3} 12^{\frac{2}{3}} b_{2}\right) v_{2} v_{4} v_{1}^{8} \\
& +\left(-11664 i 12^{\frac{2}{3}} a_{2}-7776 i 12^{\frac{2}{3}} b_{3}\right. \\
& \left.-3888 \sqrt{3} 12^{\frac{2}{3}} a_{2}-2592 \sqrt{3} 12^{\frac{2}{3}} b_{3}\right) v_{2}^{2} v_{4} v_{1}^{7} \\
& +\left(3888 i 12^{\frac{2}{3}} b_{1}+1296 \sqrt{3} 12^{\frac{2}{3}} b_{1}\right) v_{2} v_{4} v_{1}^{7}+\left(31104 i \sqrt{3} a_{2}\right. \\
& \left.+20736 i \sqrt{3} b_{3}-31104 a_{2}-20736 b_{3}\right) v_{2} v_{5} v_{1}^{7} \\
& +\left(432 i \sqrt{3} 12^{\frac{2}{3}} b_{2}+43212^{\frac{2}{3}} b_{2}\right) v_{4} v_{5} v_{1}^{7}+\left(2592 i 12^{\frac{2}{3}} a_{2}\right. \\
& \left.+1728 i 12^{\frac{2}{3}} b_{3}+864 \sqrt{3} 12^{\frac{2}{3}} a_{2}+576 \sqrt{3} 12^{\frac{2}{3}} b_{3}\right) v_{4} v_{1}^{4} \\
& +\left(4320 i 12^{\frac{2}{3}} a_{1}+1440 \sqrt{3} 12^{\frac{2}{3}} a_{1}\right) v_{4} v_{1}^{3} \\
& +\left(3456 i \sqrt{3} a_{3}-3456 a_{3}\right) v_{5} v_{1}^{3}+\left(-31104 i a_{2}\right. \\
& \left.-20736 i b_{3}+10368 \sqrt{3} a_{2}+6912 \sqrt{3} b_{3}\right) v_{1}^{5} \\
& +\left(-51840 i a_{1}+17280 \sqrt{3} a_{1}\right) v_{1}^{4}+\left(-1296 i \sqrt{3} 12^{\frac{2}{3}} a_{2}\right. \\
& \left.-864 i \sqrt{3} 12^{\frac{2}{3}} b_{3}-1296132^{-3} a_{2}-86412^{\frac{2}{3}} b_{3}\right) v_{2} v_{4} v_{5} v_{1}^{6} \\
& +\left(-2592 i \sqrt{3} 12^{\frac{2}{3}} a_{3}-259212^{\frac{2}{3}} a_{3}\right) v_{2}^{2} v_{4} v_{5} v_{1}^{5}
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& -1036812^{\frac{1}{3}} a_{3}=0 \\
& 1555212^{\frac{1}{3}} b_{2}=0 \\
& -31104 \sqrt{3} 12^{\frac{1}{3}} a_{3}=0 \\
& 4608 \sqrt{3} 12^{\frac{1}{3}} a_{3}=0 \\
& -6912 \sqrt{3} 12^{\frac{1}{3}} b_{2}=0 \\
& 46656 \sqrt{3} 12^{\frac{1}{3}} b_{2}=0 \\
& -51840 i a_{1}+17280 \sqrt{3} a_{1}=0 \\
& 10368 i a_{3}-3456 \sqrt{3} a_{3}=0 \\
& 46656 i b_{1}-15552 \sqrt{3} b_{1}=0 \\
& 46656 i b_{2}-15552 \sqrt{3} b_{2}=0 \\
& 419904 i a_{1}-139968 \sqrt{3} a_{1}=0 \\
& -23328 i 12^{\frac{2}{3}} a_{1}-7776 \sqrt{3} 12^{\frac{2}{3}} a_{1}=0 \\
& -23328 i 12^{\frac{2}{3}} a_{3}-7776 \sqrt{3} 12^{\frac{2}{3}} a_{3}=0 \\
& 3456 i \sqrt{3} a_{3}-3456 a_{3}=0 \\
& 3888 i 12^{\frac{2}{3}} b_{1}+1296 \sqrt{3} 12^{\frac{2}{3}} b_{1}=0 \\
& 3888 i 12^{\frac{2}{3}} b_{2}+1296 \sqrt{3} 12^{\frac{2}{3}} b_{2}=0 \\
& 4320 i 12^{\frac{2}{3}} a_{1}+1440 \sqrt{3} 12^{\frac{2}{3}} a_{1}=0 \\
& 4320 i 12^{\frac{2}{3}} a_{3}+1440 \sqrt{3} 12^{\frac{2}{3}} a_{3}=0 \\
& 5184 i \sqrt{3} b_{1}-5184 b_{1}=0 \\
& 5184 i \sqrt{3} b_{2}-5184 b_{2}=0 \\
& 46656 i \sqrt{3} a_{1}-46656 a_{1}=0 \\
& -2592 i \sqrt{3} 12^{\frac{2}{3}} a_{1}-259212^{\frac{2}{3}} a_{1}=0 \\
& -2592 i \sqrt{3} 12^{\frac{2}{3}} a_{3}-259212^{\frac{2}{3}} a_{3}=0 \\
& 288 i \sqrt{3} 12^{\frac{2}{3}} a_{3}+28812^{\frac{2}{3}} a_{3}=0 \\
& 432 i \sqrt{3} 12^{\frac{2}{3}} b_{1}+43212^{\frac{2}{3}} b_{1}=0 \\
& 432 i \sqrt{3} 12^{\frac{2}{3}} b_{2}+43212^{\frac{2}{3}} b_{2}=0 \\
& -31104 i a_{2}-20736 i b_{3}+10368 \sqrt{3} a_{2}+6912 \sqrt{3} b_{3}=0 \\
& 279936 i a_{2}+186624 i b_{3}-93312 \sqrt{3} a_{2}-62208 \sqrt{3} b_{3}=0 \\
& -11664 i 12^{\frac{2}{3}} a_{2}-7776 i 12^{\frac{2}{3}} b_{3}-3888 \sqrt{3} 12^{\frac{2}{3}} a_{2}-2592 \sqrt{3} 12^{\frac{2}{3}} b_{3}=0 \\
& 2592 i 12^{\frac{2}{3}} a_{2}+1728 i 12^{\frac{2}{3}} b_{3}+864 \sqrt{3} 12^{\frac{2}{3}} a_{2}+576 \sqrt{3} 12^{\frac{2}{3}} b_{3}=0 \\
& 31104 i \sqrt{3} a_{2}+20736 i \sqrt{3} b_{3}-31104 a_{2}-20736 b_{3}=0 \\
& -1296 i \sqrt{3} 12^{\frac{2}{3}} a_{2}-864 i \sqrt{3} 12{ }^{2} A_{3}-129612^{\frac{2}{3}} a_{2}-86412^{\frac{2}{3}} b_{3}=0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-\frac{2 b_{3}}{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =-\frac{2 x}{3} \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating Unable to determine ODE type.

```
`Methods for first order ODEs:
```

 *** Sublevel 2 ***
 Methods for first order ODEs:
 -> Solving 1st order ODE of high degree, 1st attempt
 trying 1st order WeierstrassP solution for high degree ODE
 trying 1st order WeierstrassPPrime solution for high degree ODE
 trying 1st order JacobiSN solution for high degree ODE
 trying 1st order ODE linearizable_by_differentiation
 trying differential order: 1; missing variables
 trying dAlembert
 trying simple symmetries for implicit equations
 Successful isolation of \(d y / d x\) : 3 solutions were found. Trying to solve each resulting ODE
 *** Sublevel 3 ***
 Methods for first order ODEs:
 --- Trying classification methods ---
 trying homogeneous types:
 trying exact
 Looking for potential symmetries
 trying an equivalence to an Abel ODE
 trying 1st order ODE linearizable_by_differentiation
 -> Solving 1st order ODE of high degree, Lie methods, 1st trial
 -, --> Computing symmetries using: way \(=2\)
 , , -> Computing symmetries using: way \(=2\)
 -> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
 \(\rightarrow\) Calling odsolve with the ODE`, \(\operatorname{diff}(y(x), x)=\left(\left(x^{\wedge} 2 * y(x)^{\wedge} 5-1\right) * y(x)+2 * y(x)^{\wedge} 6 * x^{\wedge} 2\right) /(-6 *\)
 Methods for first order ODEs:
 --- Trying classification methods ---
 trying a quadrature
 trying 1st order linear
 <- 1st order linear successful
 <- 1st order, parametric methods successful`
 \checkmark Solution by Maple
Time used: 0.187 (sec). Leaf size: 36
dsolve ($y(x)=x^{\wedge} 6 * \operatorname{diff}(y(x), x) \wedge 3-x * \operatorname{diff}(y(x), x), y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{2 \sqrt{3}}{9 x^{\frac{3}{2}}} \\
& y(x)=\frac{2 \sqrt{3}}{9 x^{\frac{3}{2}}} \\
& y(x)=c_{1}^{3}-\frac{c_{1}}{x}
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[y[x]==x^6*(y'[x])^3-x*y'[x],y[x],x,IncludeSingularSolutions -> True]
```

Timed out

3.14 problem 16

Internal problem ID [6808]
Internal file name [OUTPUT/6055_Tuesday_July_26_2022_11_24_10_PM_54110075/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 16.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
x y^{\prime 4}-2 y y^{3}=-12 x^{3}
$$

Solving the given ode for y^{\prime} results in 1 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{equation*}
y^{\prime}=\operatorname{RootOf}\left(x _Z^{4}-2 y _Z^{3}+12 x^{3}\right) \tag{1}
\end{equation*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Unable to determine ODE type.
Unable to determine ODE type.

Maple trace

- Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
-, --> Computing symmetries using: way = 2
-, --> Computing symmetries using: way $=2$
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
\rightarrow Calling odsolve with the ODE`, diff \((y(x), x)=\left(\left(18 * y(x)+\left(x^{\wedge} 6+324 * y(x) \wedge 2\right) \wedge(1 / 2)\right)^{\wedge}(2 / 3)\right.\) Methods for first order ODEs: --- Trying classification methods --- trying homogeneous types: trying exact Looking for potential symmetries trying an equivalence to an Abel ODE trying 1st order ODE linearizable_by_differentiation \(\rightarrow\) Calling odsolve with the ODE`, diff $(y(x), x)=\left(3 *(x \wedge 4+12 * y(x) \wedge 2) * y(x) / x-4 * y(x) * x^{\wedge} 3\right) /($ Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, parametric methods successful-
\checkmark Solution by Maple
Time used: 0.203 (sec). Leaf size: 66
dsolve $\left(x * \operatorname{diff}(y(x), x)^{\wedge} 4-2 * y(x) * \operatorname{diff}(y(x), x)^{\wedge} 3+12 * x^{\wedge} 3=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{2 \sqrt{6}(-x)^{\frac{3}{2}}}{3} \\
& y(x)=-\frac{2 \sqrt{6}(-x)^{\frac{3}{2}}}{3} \\
& y(x)=-\frac{2 \sqrt{6} x^{\frac{3}{2}}}{3} \\
& y(x)=\frac{2 \sqrt{6} x^{\frac{3}{2}}}{3} \\
& y(x)=\frac{12 c_{1}^{4}+x^{2}}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 37.824 (sec). Leaf size: 30947
DSolve[x*(y'[x]) $4-2 * y[x] *\left(y^{\prime}[x]\right) \wedge 3+12 * x^{\wedge} 3==0, y[x], x$, IncludeSingularSolutions \rightarrow True]
Too large to display

3.15 problem 17

3.15.1 Solving as clairaut ode . 361

Internal problem ID [6809]
Internal file name [OUTPUT/6056_Tuesday_July_26_2022_11_39_14_PM_76761105/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 17.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
x y^{\prime 3}-y y^{\prime 2}=-1
$$

3.15.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=x y^{\prime}+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
x p^{3}-y p^{2}=-1
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{x p^{3}+1}{p^{2}} \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =p x+\frac{1}{p^{2}} \\
& =p x+\frac{1}{p^{2}}
\end{aligned}
$$

Writing the ode as

$$
y=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=\frac{1}{p^{2}}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1} x+\frac{1}{c_{1}^{2}}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=\frac{1}{p^{2}}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-\frac{2}{p^{3}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
\begin{aligned}
& p_{1}=\frac{2^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{x} \\
& p_{2}=-\frac{2^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{2 x}+\frac{i \sqrt{3} 2^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{2 x} \\
& p_{3}=-\frac{2^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{2 x}-\frac{i \sqrt{3} 2^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{2 x}
\end{aligned}
$$

Substituting the above back in (1) results in

$$
\begin{aligned}
& y_{1}=\frac{3 x^{2} 2^{\frac{1}{3}}}{2\left(x^{2}\right)^{\frac{2}{3}}} \\
& y_{2}=-\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(1+i \sqrt{3})} \\
& y_{3}=\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(i \sqrt{3}-1)}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x+\frac{1}{c_{1}^{2}} \tag{1}\\
& y=\frac{3 x^{2} 2^{\frac{1}{3}}}{2\left(x^{2}\right)^{\frac{2}{3}}} \tag{2}\\
& y=-\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(1+i \sqrt{3})} \tag{3}\\
& y=\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(i \sqrt{3}-1)} \tag{4}
\end{align*}
$$

Verification of solutions

$$
y=c_{1} x+\frac{1}{c_{1}^{2}}
$$

Verified OK.

$$
y=\frac{3 x^{2} 2^{\frac{1}{3}}}{2\left(x^{2}\right)^{\frac{2}{3}}}
$$

Verified OK.

$$
y=-\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(1+i \sqrt{3})}
$$

Verified OK.

$$
y=\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(i \sqrt{3}-1)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.11 (sec). Leaf size: 66
dsolve($x * \operatorname{diff}(y(x), x)^{\wedge}-3-y(x) * \operatorname{diff}(y(x), x)^{\wedge} 2+1=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{32^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{2} \\
& y(x)=-\frac{32^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{4} \\
& y(x)=\frac{32^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{4} \\
& y(x)=c_{1} x+\frac{1}{c_{1}^{2}}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 69
DSolve $\left[x *\left(y^{\prime}[x]\right)^{\wedge} 3-y[x] *\left(y^{\prime}[x]\right)^{\wedge} 2+1==0, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x+\frac{1}{c_{1}^{2}} \\
& y(x) \rightarrow 3\left(-\frac{1}{2}\right)^{2 / 3} x^{2 / 3} \\
& y(x) \rightarrow \frac{3 x^{2 / 3}}{2^{2 / 3}} \\
& y(x) \rightarrow-\frac{3 \sqrt[3]{-1} x^{2 / 3}}{2^{2 / 3}}
\end{aligned}
$$

3.16 problem 19

> 3.16.1 Solving as dAlembert ode

Internal problem ID [6810]
Internal file name [OUTPUT/6057_Tuesday_July_26_2022_11_39_17_PM_13635991/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 19.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
y^{\prime 2}-x y^{\prime}-y=0
$$

3.16.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
p^{2}-x p-y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=p^{2}-x p \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left(^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=-p \\
& g=p^{2}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
2 p=(-x+2 p) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
2 p=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{2 p(x)}{-x+2 p(x)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{-x(p)+2 p}{2 p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
p(p) & =\frac{1}{2 p} \\
q(p) & =1
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{x(p)}{2 p}=1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 p} d p} \\
& =\sqrt{p}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} p}(\sqrt{p} x) & =\sqrt{p} \\
\mathrm{~d}(\sqrt{p} x) & =\sqrt{p} \mathrm{~d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{p} x=\int \sqrt{p} \mathrm{~d} p \\
& \sqrt{p} x=\frac{2 p^{\frac{3}{2}}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{p}$ results in

$$
x(p)=\frac{2 p}{3}+\frac{c_{1}}{\sqrt{p}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=\frac{x}{2}+\frac{\sqrt{x^{2}+4 y}}{2} \\
& p=\frac{x}{2}-\frac{\sqrt{x^{2}+4 y}}{2}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x=\frac{x}{3}+\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x+2 \sqrt{x^{2}+4 y}}} \\
& x=\frac{x}{3}-\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x-2 \sqrt{x^{2}+4 y}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& x=\frac{x}{3}+\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x+2 \sqrt{x^{2}+4 y}}} \tag{2}\\
& x=\frac{x}{3}-\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x-2 \sqrt{x^{2}+4 y}}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
x=\frac{x}{3}+\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x+2 \sqrt{x^{2}+4 y}}}
$$

Verified OK.

$$
x=\frac{x}{3}-\frac{\sqrt{x^{2}+4 y}}{3}+\frac{2 c_{1}}{\sqrt{2 x-2 \sqrt{x^{2}+4 y}}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 77
dsolve(diff $(y(x), x) \wedge 2-x * \operatorname{diff}(y(x), x)-y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& \frac{c_{1}}{\sqrt{2 x-2 \sqrt{x^{2}+4 y(x)}}}+\frac{2 x}{3}+\frac{\sqrt{x^{2}+4 y(x)}}{3}=0 \\
& \frac{c_{1}}{\sqrt{2 x+2 \sqrt{x^{2}+4 y(x)}}}+\frac{2 x}{3}-\frac{\sqrt{x^{2}+4 y(x)}}{3}=0
\end{aligned}
$$

Solution by Mathematica

Time used: 60.129 (sec). Leaf size: 1003

```
DSolve[(y'[x])^2-x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{\left(x^{2}+\sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}\right)^{2}+8 e^{3 c_{1}} x}{4 \sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}} \\
& y(x) \rightarrow \frac{1}{8}\left(4 x^{2}-\frac{i(\sqrt{3}-i) x\left(x^{3}+8 e^{3 c_{1}}\right)}{\sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{3 c_{1}}\right)^{3}}+8 e^{6 c_{1}}}}\right. \\
& \left.+i(\sqrt{3}+i) \sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{\left.3 c_{1}\right)^{3}}+8 e^{6 c_{1}}\right.}}\right) \\
& y(x) \rightarrow \frac{1}{8}\left(4 x^{2}+\frac{i(\sqrt{3}+i) x\left(x^{3}+8 e^{3 c_{1}}\right)}{\sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{\left.3 c_{1}\right)^{3}}+8 e^{6 c_{1}}\right.}}}\right. \\
& \left.-(1+i \sqrt{3}) \sqrt[3]{-x^{6}+20 e^{3 c_{1}} x^{3}+8 \sqrt{e^{3 c_{1}}\left(-x^{3}+e^{\left.3 c_{1}\right)^{3}}+8 e^{6 c_{1}}\right.}}\right)
\end{aligned}
$$

$y(x)$

$$
\begin{gathered}
\rightarrow \frac{\left.2 \sqrt[3]{2} x^{4}+2^{2 / 3}\left(-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}\right)\right)^{2 / 3}+4 x^{2} \sqrt[3]{-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}(4 x}}}{y(x) \rightarrow \frac{1}{16}\left(8 x^{2}+\frac{2 \sqrt[3]{2}\left(1+i \sqrt{3}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}\right.}{\sqrt[3]{-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}}}\right.} \\
\left.+i 2^{2 / 3}(\sqrt{3}+i) \sqrt[3]{-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}}\right)
\end{gathered}
$$

$$
y(x) \rightarrow \frac{1}{16}\left(8 x^{2}+\frac{2 i \sqrt[3]{2}(\sqrt{3}+i) x\left(x^{3}-2 e^{3 c_{1}}\right)}{\sqrt[3]{-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}}}\right.
$$

$$
\left.-2^{2 / 3}(1+i \sqrt{3}) \sqrt[3]{-2 x^{6}-10 e^{3 c_{1}} x^{3}+\sqrt{e^{3 c_{1}}\left(4 x^{3}+e^{3 c_{1}}\right)^{3}}+e^{6 c_{1}}}\right)
$$

3.17 problem 20

$$
\text { 3.17.1 Solving as dAlembert ode . } 372
$$

Internal problem ID [6811]
Internal file name [OUTPUT/6058_Thursday_July_28_2022_04_28_20_AM_9550685/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 20.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
2 y^{\prime 3}+x y^{\prime}-2 y=0
$$

3.17.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
2 p^{3}+x p-2 y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=p^{3}+\frac{1}{2} x p \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p}{2} \\
& g=p^{3}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
\frac{p}{2}=\left(\frac{x}{2}+3 p^{2}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
\frac{p}{2}=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)}{x+6 p(x)^{2}} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)+6 p^{2}}{p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{1}{p} \\
& q(p)=6 p
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{x(p)}{p}=6 p
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{p} d p} \\
& =\frac{1}{p}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)(6 p) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(\frac{x}{p}\right) & =\left(\frac{1}{p}\right)(6 p) \\
\mathrm{d}\left(\frac{x}{p}\right) & =6 \mathrm{~d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{x}{p}=\int 6 \mathrm{~d} p \\
& \frac{x}{p}=6 p+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{p}$ results in

$$
x(p)=c_{1} p+6 p^{2}
$$

which simplifies to

$$
x(p)=p\left(c_{1}+6 p\right)
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in
$p=\frac{\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{1}{3}}}{6}-\frac{x}{\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{1}{3}}}$
$p=-\frac{\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{1}{3}}}{12}+\frac{x}{2\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{1}{3}}}{6}+\frac{}{(108 y+6 \sqrt{6}}\right.}{2}$
$p=-\frac{\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{1}{3}}}{12}+\frac{x}{2\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{1}{3}}}{6}+\frac{}{(108 y+6 \sqrt{6}}\right.}{2}$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x \\
& =\frac{\left(\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}-6 x\right)\left(\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}+c_{1}\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{1}{3}}-6 x\right)}{6\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}} \\
& x \\
& =\frac{\left(i\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}+6 i \sqrt{3} x-\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}+6 x\right)\left(i\left(108 y+6 \sqrt{6 x^{3}+324}\right)\right.}{24\left(108 y+6 \sqrt{6 x^{3}+32}\right.} \\
& x \\
& =\frac{\left(i\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}+6 i \sqrt{3} x+\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}-6 x\right)\left(i \left(108 y+6 \sqrt{6 x^{3}+324 l}\right.\right.}{24\left(108 y+6 \sqrt{6 x^{3}+32}\right.}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

x
$=\frac{\left(\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}-6 x\right)\left(\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}+c_{1}\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{1}{3}}-6 x\right)}{6\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}}$
x
$=\frac{\left(i\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}+6 i \sqrt{3} x-\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}+6 x\right)\left(i\left(108 y+6 \sqrt{6 x^{3}+324}\right.\right.}{24\left(108 y+6 \sqrt{6 x^{3}+32}\right.}$
$=\frac{\left(i\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}+6 i \sqrt{3} x+\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}-6 x\right)\left(i\left(108 y+6 \sqrt{6 x^{3}+324}\right.\right.}{24\left(108 y+6 \sqrt{6 x^{3}+32}\right.}$

Verification of solutions

$$
y=0
$$

Verified OK.
x

$$
=\frac{\left(\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}-6 x\right)\left(\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}+c_{1}\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{1}{3}}-6 x\right)}{6\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}}
$$

Verified OK.

$$
=\frac{\left(i\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}+6 i \sqrt{3} x-\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}+6 x\right)\left(i \left(108 y+6 \sqrt{6 x^{3}+324}\right.\right.}{24\left(108 y+6 \sqrt{6 x^{3}+32}\right.}
$$

Warning, solution could not be verified

$$
=\frac{\left(i\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}+6 i \sqrt{3} x+\left(108 y+6 \sqrt{6 x^{3}+324 y^{2}}\right)^{\frac{2}{3}}-6 x\right)\left(i \left(108 y+6 \sqrt{6 x^{3}+324}\right.\right.}{24\left(108 y+6 \sqrt{6 x^{3}+32}\right.}
$$

Warning, solution could not be verified
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 58
dsolve ($2 * \operatorname{diff}(y(x), x)^{\wedge} 3+x * \operatorname{diff}(y(x), x)-2 * y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\left(-c_{1}^{2}-24 x\right) \sqrt{c_{1}^{2}+24 x}}{432}-\frac{c_{1}^{3}}{432}-\frac{c_{1} x}{12} \\
& y(x)=\frac{\left(c_{1}^{2}+24 x\right)^{\frac{3}{2}}}{432}-\frac{c_{1}^{3}}{432}-\frac{c_{1} x}{12}
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[2*(y'[x]) $3+x * y$ ' $[x]-2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

Timed out

3.18 problem 21

$$
\text { 3.18.1 Solving as dAlembert ode . } 378
$$

Internal problem ID [6812]
Internal file name [OUTPUT/6059_Thursday_July_28_2022_04_28_33_AM_759705/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 21.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
2 y^{\prime 2}+x y^{\prime}-2 y=0
$$

3.18.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
2 p^{2}+x p-2 y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=p^{2}+\frac{1}{2} x p \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p}{2} \\
& g=p^{2}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
\frac{p}{2}=\left(\frac{x}{2}+2 p\right) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
\frac{p}{2}=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)}{x+4 p(x)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)+4 p}{p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{1}{p} \\
& q(p)=4
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{x(p)}{p}=4
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{p} d p} \\
& =\frac{1}{p}
\end{aligned}
$$

The ode becomes

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)(4) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(\frac{x}{p}\right) & =\left(\frac{1}{p}\right) \tag{4}\\
\mathrm{d}\left(\frac{x}{p}\right) & =\left(\frac{4}{p}\right) \mathrm{d} p
\end{align*}
$$

Integrating gives

$$
\begin{aligned}
& \frac{x}{p}=\int \frac{4}{p} \mathrm{~d} p \\
& \frac{x}{p}=4 \ln (p)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{p}$ results in

$$
x(p)=4 p \ln (p)+c_{1} p
$$

which simplifies to

$$
x(p)=p\left(4 \ln (p)+c_{1}\right)
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=-\frac{x}{4}+\frac{\sqrt{x^{2}+16 y}}{4} \\
& p=-\frac{x}{4}-\frac{\sqrt{x^{2}+16 y}}{4}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x=-\frac{\left(x-\sqrt{x^{2}+16 y}\right)\left(-8 \ln (2)+4 \ln \left(-x+\sqrt{x^{2}+16 y}\right)+c_{1}\right)}{4} \\
& x=-\frac{\left(x+\sqrt{x^{2}+16 y}\right)\left(-8 \ln (2)+4 \ln \left(-x-\sqrt{x^{2}+16 y}\right)+c_{1}\right)}{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& x=-\frac{\left(x-\sqrt{x^{2}+16 y}\right)\left(-8 \ln (2)+4 \ln \left(-x+\sqrt{x^{2}+16 y}\right)+c_{1}\right)}{4} \tag{2}\\
& x=-\frac{\left(x+\sqrt{x^{2}+16 y}\right)\left(-8 \ln (2)+4 \ln \left(-x-\sqrt{x^{2}+16 y}\right)+c_{1}\right)}{4} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
x=-\frac{\left(x-\sqrt{x^{2}+16 y}\right)\left(-8 \ln (2)+4 \ln \left(-x+\sqrt{x^{2}+16 y}\right)+c_{1}\right)}{4}
$$

Verified OK.

$$
x=-\frac{\left(x+\sqrt{x^{2}+16 y}\right)\left(-8 \ln (2)+4 \ln \left(-x-\sqrt{x^{2}+16 y}\right)+c_{1}\right)}{4}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 31
dsolve($2 * \operatorname{diff}(y(x), x)^{\wedge} 2+x * \operatorname{diff}(y(x), x)-2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{x^{2}\left(1+2 \operatorname{LambertW}\left(\frac{x \mathrm{e}^{\frac{c_{1}}{4}}}{4}\right)\right)}{16 \operatorname{LambertW}\left(\frac{x \mathrm{e}^{\frac{c_{1}}{4}}}{4}\right)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 1.194 (sec). Leaf size: 130
DSolve[2*(y' $[x])^{\wedge} 2+x * y$ ' $[x]-2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

Solve $\left[-\frac{\frac{1}{2} x \sqrt{x^{2}+16 y(x)}-8 y(x) \log \left(\sqrt{x^{2}+16 y(x)}-x\right)+\frac{x^{2}}{2}}{8 y(x)}=c_{1}, y(x)\right]$
Solve $\left[\frac{\frac{1}{2} x \sqrt{x^{2}+16 y(x)}-8 y(x) \log \left(\sqrt{x^{2}+16 y(x)}-x\right)-\frac{x^{2}}{2}}{8 y(x)}+\log (y(x))=c_{1}, y(x)\right]$ $y(x) \rightarrow 0$

3.19 problem 22

$$
\text { 3.19.1 Solving as dAlembert ode . } 383
$$

Internal problem ID [6813]
Internal file name [OUTPUT/6060_Thursday_July_28_2022_04_28_35_AM_13746180/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 22.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
y^{\prime 3}+2 x y^{\prime}-y=0
$$

3.19.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
p^{3}+2 x p-y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=p^{3}+2 x p \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left(^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=2 p \\
& g=p^{3}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-p=\left(3 p^{2}+2 x\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-p=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=-\frac{p(x)}{3 p(x)^{2}+2 x} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=-\frac{3 p^{2}+2 x(p)}{p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{2}{p} \\
& q(p)=-3 p
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{2 x(p)}{p}=-3 p
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{p} d p} \\
& =p^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)(-3 p) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(p^{2} x\right) & =\left(p^{2}\right)(-3 p) \\
\mathrm{d}\left(p^{2} x\right) & =\left(-3 p^{3}\right) \mathrm{d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& p^{2} x=\int-3 p^{3} \mathrm{~d} p \\
& p^{2} x=-\frac{3 p^{4}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=p^{2}$ results in

$$
x(p)=-\frac{3 p^{2}}{4}+\frac{c_{1}}{p^{2}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=\frac{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{6}-\frac{4 x}{\left(108 y+12 \sqrt{\left.96 x^{3}+81 y^{2}\right)^{\frac{1}{3}}}\right.} \\
& p=-\frac{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{12}+\frac{2 x}{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{6}+\frac{}{(108 y+12}\right.}{2} \\
& p=-\frac{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{12}+\frac{2 x}{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{6}+\frac{(108 y+12}{(12)}\right.}{2}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
x= & -\frac{\left(\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-24 x\right)^{2}}{48\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}+\frac{36 c_{1}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{\left(\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-24 x\right)^{2}} \\
x & =\frac{3\left(\frac{(\sqrt{3}+i)\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{24}+x(-i+\sqrt{3})\right)^{2}}{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}} \\
& +\frac{144 c_{1}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{\left(i \sqrt{3}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+24 x\right)^{2}} \\
x= & \frac{3\left(\frac{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}(-i+\sqrt{3})}{24}+x(\sqrt{3}+i)\right)^{2}}{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}} \\
& +\frac{144 c_{1}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{\left(i \sqrt{3}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-24 x\right)^{2}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & 0 \\
x= & -\frac{\left(\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-24 x\right)^{2}}{48\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}+\frac{36 c_{1}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{\left(\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-24 x\right)^{2}} \\
x= & \frac{3\left(\frac{(\sqrt{3}+i)\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{24}+x(-i+\sqrt{3})\right)^{2}}{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}} \\
& +\frac{144 c_{1}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{\left(i \sqrt{3}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+24 x\right)^{2}} \\
x= & \frac{3\left(\frac{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}(-i+\sqrt{3})}{24}+x(\sqrt{3}+i)\right)^{2}}{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}} \\
& +\frac{144 c_{1}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{\left(i \sqrt{3}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-24 x\right)^{2}}
\end{aligned}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
x=-\frac{\left(\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-24 x\right)^{2}}{48\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}+\frac{36 c_{1}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{\left(\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-24 x\right)^{2}}
$$

Verified OK.

$$
\begin{aligned}
x & =\frac{3\left(\frac{(\sqrt{3}+i)\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{24}+x(-i+\sqrt{3})\right)^{2}}{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}} \\
& +\frac{144 c_{1}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{\left(i \sqrt{3}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+24 x\right)^{2}}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
x & =\frac{3\left(\frac{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}(-i+\sqrt{3})}{24}+x(\sqrt{3}+i)\right)^{2}}{\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}} \\
& +\frac{144 c_{1}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}{\left(i \sqrt{3}\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y+12 \sqrt{96 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-24 x\right)^{2}}
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 141
dsolve(diff $(y(x), x) \wedge 3+2 * x * \operatorname{diff}(y(x), x)-y(x)=0, y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=\frac{2\left(-2 x+\sqrt{x^{2}+3 c_{1}}\right) \sqrt{-6 \sqrt{x^{2}+3 c_{1}}-6 x}}{9} \\
& y(x)=-\frac{2\left(-2 x+\sqrt{x^{2}+3 c_{1}}\right) \sqrt{-6 \sqrt{x^{2}+3 c_{1}}-6 x}}{9} \\
& y(x)=-\frac{2\left(2 x+\sqrt{x^{2}+3 c_{1}}\right) \sqrt{6 \sqrt{x^{2}+3 c_{1}}-6 x}}{9} \\
& y(x)=\frac{2\left(2 x+\sqrt{x^{2}+3 c_{1}}\right) \sqrt{6 \sqrt{x^{2}+3 c_{1}}-6 x}}{9}
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[(y' $[x]$) $3+2 * x * y$ ' $[x]-y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

Timed out

3.20 problem 23

$$
\text { 3.20.1 Solving as dAlembert ode . } 330
$$

Internal problem ID [6814]
Internal file name [OUTPUT/6061_Thursday_July_28_2022_04_28_39_AM_98227792/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 23.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _dAlembert]
```

$$
4 x y^{\prime 2}-3 y y^{\prime}=-3
$$

3.20.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
4 x p^{2}-3 y p=-3
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{4 p x}{3}+\frac{1}{p} \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{4 p}{3} \\
& g=\frac{1}{p}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-\frac{p}{3}=\left(\frac{4 x}{3}-\frac{1}{p^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-\frac{p}{3}=0
$$

Solving for p from the above gives

$$
p=0
$$

None of these values lead to defined solutions. Hence no singular solutions exist The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=-\frac{p(x)}{3\left(\frac{4 x}{3}-\frac{1}{p(x)^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=-\frac{3\left(\frac{4 x(p)}{3}-\frac{1}{p^{2}}\right)}{p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{4}{p} \\
& q(p)=\frac{3}{p^{3}}
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{4 x(p)}{p}=\frac{3}{p^{3}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{4}{p} d p} \\
& =p^{4}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)\left(\frac{3}{p^{3}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(p^{4} x\right) & =\left(p^{4}\right)\left(\frac{3}{p^{3}}\right) \\
\mathrm{d}\left(p^{4} x\right) & =(3 p) \mathrm{d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
p^{4} x & =\int 3 p \mathrm{~d} p \\
p^{4} x & =\frac{3 p^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=p^{4}$ results in

$$
x(p)=\frac{3}{2 p^{2}}+\frac{c_{1}}{p^{4}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=\frac{3 y+\sqrt{9 y^{2}-48 x}}{8 x} \\
& p=-\frac{-3 y+\sqrt{9 y^{2}-48 x}}{8 x}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x=\frac{64 x^{2}\left(64 c_{1} x^{2}+9 y \sqrt{9 y^{2}-48 x}+27 y^{2}-72 x\right)}{\left(3 y+\sqrt{9 y^{2}-48 x}\right)^{4}} \\
& x=-\frac{64 x^{2}\left(-64 c_{1} x^{2}+9 y \sqrt{9 y^{2}-48 x}-27 y^{2}+72 x\right)}{\left(-3 y+\sqrt{9 y^{2}-48 x}\right)^{4}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& x=\frac{64 x^{2}\left(64 c_{1} x^{2}+9 y \sqrt{9 y^{2}-48 x}+27 y^{2}-72 x\right)}{\left(3 y+\sqrt{9 y^{2}-48 x}\right)^{4}} \tag{1}\\
& x=-\frac{64 x^{2}\left(-64 c_{1} x^{2}+9 y \sqrt{9 y^{2}-48 x}-27 y^{2}+72 x\right)}{\left(-3 y+\sqrt{9 y^{2}-48 x}\right)^{4}} \tag{2}
\end{align*}
$$

Verification of solutions

$$
x=\frac{64 x^{2}\left(64 c_{1} x^{2}+9 y \sqrt{9 y^{2}-48 x}+27 y^{2}-72 x\right)}{\left(3 y+\sqrt{9 y^{2}-48 x}\right)^{4}}
$$

Verified OK.

$$
x=-\frac{64 x^{2}\left(-64 c_{1} x^{2}+9 y \sqrt{9 y^{2}-48 x}-27 y^{2}+72 x\right)}{\left(-3 y+\sqrt{9 y^{2}-48 x}\right)^{4}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.079 (sec). Leaf size: 123
dsolve($4 * x * \operatorname{diff}(y(x), x) \wedge 2-3 * y(x) * \operatorname{diff}(y(x), x)+3=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{2 x\left(6+\sqrt{16 c_{1} x+9}\right)}{3 \sqrt{x\left(3+\sqrt{16 c_{1} x+9}\right)}} \\
& y(x)=\frac{2 x\left(6+\sqrt{16 c_{1} x+9}\right)}{3 \sqrt{x\left(3+\sqrt{16 c_{1} x+9}\right)}} \\
& y(x)=\frac{2 x\left(-6+\sqrt{16 c_{1} x+9}\right)}{3 \sqrt{-x\left(-3+\sqrt{16 c_{1} x+9}\right)}} \\
& y(x)=-\frac{2 x\left(-6+\sqrt{16 c_{1} x+9}\right)}{3 \sqrt{-x\left(-3+\sqrt{16 c_{1} x+9}\right)}}
\end{aligned}
$$

Solution by Mathematica
Time used: 23.695 (sec). Leaf size: 187
DSolve[4*x*(y'[x])~2-3*y[x]*y'[x]+3==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{432 x-e^{-\frac{c_{1}}{2}}}\left(-144 x+e^{c_{1}}\right)^{3 / 2}+e^{c_{1}}}{6 \sqrt{3}} \\
& y(x) \rightarrow \frac{\sqrt{432 x-e^{-\frac{c_{1}}{2}}\left(-144 x+e^{c_{1}}\right)^{3 / 2}+e^{c_{1}}}}{6 \sqrt{3}} \\
& y(x) \rightarrow-\frac{\sqrt{432 x+e^{-\frac{c_{1}}{2}}}\left(-144 x+e^{c_{1}}\right)^{3 / 2}+e^{c_{1}}}{6 \sqrt{3}} \\
& y(x) \rightarrow \frac{\sqrt{432 x+e^{-\frac{c_{1}}{2}}}\left(-144 x+e^{c_{1}}\right)^{3 / 2}+e^{c_{1}}}{6 \sqrt{3}}
\end{aligned}
$$

3.21 problem 24

$$
\text { 3.21.1 Solving as dAlembert ode . } 395
$$

Internal problem ID [6815]
Internal file name [OUTPUT/6062_Thursday_July_28_2022_04_28_41_AM_47236068/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 24.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
y^{\prime 3}-x y^{\prime}+2 y=0
$$

3.21.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
p^{3}-x p+2 y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=-\frac{1}{2} p^{3}+\frac{1}{2} x p \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p}{2} \\
& g=-\frac{p^{3}}{2}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
\frac{p}{2}=\left(\frac{x}{2}-\frac{3 p^{2}}{2}\right) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
\frac{p}{2}=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)}{x-3 p(x)^{2}} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{x(p)-3 p^{2}}{p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=-\frac{1}{p} \\
& q(p)=-3 p
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)-\frac{x(p)}{p}=-3 p
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{p} d p} \\
& =\frac{1}{p}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)(-3 p) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(\frac{x}{p}\right) & =\left(\frac{1}{p}\right)(-3 p) \\
\mathrm{d}\left(\frac{x}{p}\right) & =-3 \mathrm{~d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{x}{p}=\int-3 \mathrm{~d} p \\
& \frac{x}{p}=-3 p+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{p}$ results in

$$
x(p)=c_{1} p-3 p^{2}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=\frac{\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{3}+\frac{x}{\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}} \\
& p=-\frac{\left(-27 y+3 \sqrt{\left.-3 x^{3}+81 y^{2}\right)^{\frac{1}{3}}}\right.}{6}-\frac{x}{2\left(-27 y+3 \sqrt{\left.-3 x^{3}+81 y^{2}\right)^{\frac{1}{3}}}\right.}+\frac{i \sqrt{3}\left(\frac{\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{3}-\frac{}{(-27 y-}\right.}{2} \\
& p=-\frac{\left(-27 y+3 \sqrt{\left.-3 x^{3}+81 y^{2}\right)^{\frac{1}{3}}}\right.}{6}-\frac{x}{2\left(-27 y+3 \sqrt{\left.-3 x^{3}+81 y^{2}\right)^{\frac{1}{3}}}\right.}-\frac{i \sqrt{3}\left(\frac{\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}}{3}-\frac{}{(-27 y-}\right.}{2}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
x= & -\frac{\left(\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+3 x\right)\left(\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-c_{1}\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}+\right.}{3\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}} \\
x & = \\
& -\frac{\left(-i\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}+3 i \sqrt{3} x+\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+3 x\right)(-i(-27 y+3 \sqrt{-}}{12(-27 y+3 \sqrt{-}} \\
x= & -\frac{\left(i\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}-3 i \sqrt{3} x+\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+3 x\right)(i(-27 y+3 \sqrt{-3 x}}{12(-27 y+3 \sqrt{-3}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& x= \tag{2}
\end{align*}
$$

$$
-\frac{\left(\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+3 x\right)\left(\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-c_{1}\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}-\right.}{3\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}
$$

$$
\begin{equation*}
x= \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& -\frac{\left(-i\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}+3 i \sqrt{3} x+\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+3 x\right)(-i(-27 y+3 \sqrt{-}}{12(-27 y+3 \sqrt{-}} \\
x & = \tag{4}\\
& -\frac{\left(i\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}-3 i \sqrt{3} x+\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+3 x\right)(i(-27 y+3 \sqrt{-3 x}}{12(-27 y+3 \sqrt{-3}}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
x=-\frac{\left(\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+3 x\right)\left(\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}-c_{1}\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{1}{3}}+\right.}{3\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}}
$$

Verified OK.

$$
x=-\frac{\left(-i\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}+3 i \sqrt{3} x+\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+3 x\right)(-i(-27 y+3 \sqrt{-}}{12(-27 y+3 \sqrt{-}}
$$

Warning, solution could not be verified
$x=$

$$
-\frac{\left(i\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}} \sqrt{3}-3 i \sqrt{3} x+\left(-27 y+3 \sqrt{-3 x^{3}+81 y^{2}}\right)^{\frac{2}{3}}+3 x\right)(i(-27 y+3 \sqrt{-3 x}}{12(-27 y+3 \sqrt{-3}}
$$

Warning, solution could not be verified
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 58
dsolve(diff $(y(x), x) \wedge 3-x * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\left(c_{1}^{2}-12 x\right)^{\frac{3}{2}}}{108}-\frac{c_{1}^{3}}{108}+\frac{c_{1} x}{6} \\
& y(x)=\frac{\left(-c_{1}^{2}+12 x\right) \sqrt{c_{1}^{2}-12 x}}{108}-\frac{c_{1}^{3}}{108}+\frac{c_{1} x}{6}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 29.375 (sec). Leaf size: 10134
DSolve[(y' $[x]$) $-3-x * y^{\prime}[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]
Too large to display

3.22 problem 25

3.22.1 Solving as dAlembert ode . 401

Internal problem ID [6816]
Internal file name [OUTPUT/6063_Thursday_July_28_2022_04_28_51_AM_64077138/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 25.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
5 y^{\prime 2}+6 x y^{\prime}-2 y=0
$$

3.22.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
5 p^{2}+6 x p-2 y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{5}{2} p^{2}+3 x p \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=3 p \\
& g=\frac{5 p^{2}}{2}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-2 p=(3 x+5 p) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-2 p=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=-\frac{2 p(x)}{3 x+5 p(x)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=-\frac{3 x(p)+5 p}{2 p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{3}{2 p} \\
& q(p)=-\frac{5}{2}
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{3 x(p)}{2 p}=-\frac{5}{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{2 p} d p} \\
& =p^{\frac{3}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)\left(-\frac{5}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(p^{\frac{3}{2}} x\right) & =\left(p^{\frac{3}{2}}\right)\left(-\frac{5}{2}\right) \\
\mathrm{d}\left(p^{\frac{3}{2}} x\right) & =\left(-\frac{5 p^{\frac{3}{2}}}{2}\right) \mathrm{d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
p^{\frac{3}{2}} x & =\int-\frac{5 p^{\frac{3}{2}}}{2} \mathrm{~d} p \\
p^{\frac{3}{2}} x & =-p^{\frac{5}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=p^{\frac{3}{2}}$ results in

$$
x(p)=-p+\frac{c_{1}}{p^{\frac{3}{2}}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=-\frac{3 x}{5}+\frac{\sqrt{9 x^{2}+10 y}}{5} \\
& p=-\frac{3 x}{5}-\frac{\sqrt{9 x^{2}+10 y}}{5}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x=\frac{3 x}{5}-\frac{\sqrt{9 x^{2}+10 y}}{5}+\frac{125 c_{1}}{\left(-15 x+5 \sqrt{9 x^{2}+10 y}\right)^{\frac{3}{2}}} \\
& x=\frac{3 x}{5}+\frac{\sqrt{9 x^{2}+10 y}}{5}+\frac{125 c_{1}}{\left(-15 x-5 \sqrt{9 x^{2}+10 y}\right)^{\frac{3}{2}}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& x=\frac{3 x}{5}-\frac{\sqrt{9 x^{2}+10 y}}{5}+\frac{125 c_{1}}{\left(-15 x+5 \sqrt{9 x^{2}+10 y}\right)^{\frac{3}{2}}} \tag{2}\\
& x=\frac{3 x}{5}+\frac{\sqrt{9 x^{2}+10 y}}{5}+\frac{125 c_{1}}{\left(-15 x-5 \sqrt{9 x^{2}+10 y}\right)^{\frac{3}{2}}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
x=\frac{3 x}{5}-\frac{\sqrt{9 x^{2}+10 y}}{5}+\frac{125 c_{1}}{\left(-15 x+5 \sqrt{9 x^{2}+10 y}\right)^{\frac{3}{2}}}
$$

Verified OK.

$$
x=\frac{3 x}{5}+\frac{\sqrt{9 x^{2}+10 y}}{5}+\frac{125 c_{1}}{\left(-15 x-5 \sqrt{9 x^{2}+10 y}\right)^{\frac{3}{2}}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 85
dsolve($5 * \operatorname{diff}(y(x), x) \wedge 2+6 * x * \operatorname{diff}(y(x), x)-2 * y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& \frac{c_{1}}{\left(-15 x-5 \sqrt{9 x^{2}+10 y(x)}\right)^{\frac{3}{2}}}+\frac{2 x}{5}-\frac{\sqrt{9 x^{2}+10 y(x)}}{5}=0 \\
& \frac{c_{1}}{\left(-15 x+5 \sqrt{9 x^{2}+10 y(x)}\right)^{\frac{3}{2}}}+\frac{2 x}{5}+\frac{\sqrt{9 x^{2}+10 y(x)}}{5}=0
\end{aligned}
$$

Solution by Mathematica

Time used: 14.31 (sec). Leaf size: 771

```
DSolve[5*(y'[x])~ 2+6*x*y'[x] -2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{gathered}
y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{5}+4 \# 1^{4} x^{2}+\# 1^{3} x^{4}+1000 \# 1^{2} e^{5 c_{1}} x+900 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right. \\
\left.-25000 e^{10 c_{1}} \&, 1\right] \\
y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{5}+4 \# 1^{4} x^{2}+\# 1^{3} x^{4}+1000 \# 1^{2} e^{5 c_{1}} x+900 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right. \\
\left.-25000 e^{10 c_{1}} \&, 2\right] \\
y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{5}+4 \# 1^{4} x^{2}+\# 1^{3} x^{4}+1000 \# 1^{2} e^{5 c_{1}} x+900 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right. \\
\left.-25000 e^{10 c_{1}} \&, 3\right] \\
y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{5}+4 \# 1^{4} x^{2}+\# 1^{3} x^{4}+1000 \# 1^{2} e^{5 c_{1}} x+900 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right. \\
\left.-25000 e^{10 c_{1}} \&, 4\right] \\
y(x) \rightarrow \operatorname{Root}\left[4 \# 1^{5}+4 \# 1^{4} x^{2}+\# 1^{3} x^{4}+1000 \# 1^{2} e^{5 c_{1}} x+900 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right. \\
\left.-25000 e^{10 c_{1}} \&, 5\right] \\
y(x) \rightarrow \operatorname{Root}\left[100000 \# 1^{5}+100000 \# 1^{4} x^{2}+25000 \# 1^{3} x^{4}-1000 \# 1^{2} e^{5 c_{1}} x\right. \\
\left.-900 \# 1 e^{5 c_{1}} x^{3}-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 1\right] \\
y(x) \rightarrow \operatorname{Root}\left[100000 \# 1^{5}+100000 \# 1^{4} x^{2}+25000 \# 1^{3} x^{4}-1000 \# 1^{2} e^{5 c_{1}} x\right. \\
\left.-900 \# 1 e^{5 c_{1}} x^{3}-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 2\right] \\
y(x) \rightarrow \operatorname{Root}\left[100000 \# 1^{5}+100000 \# 1^{4} x^{2}+25000 \# 1^{3} x^{4}-1000 \# 1^{2} e^{5 c_{1}} x\right. \\
\left.-900 \# 1 e^{5 c_{1}} x^{3}-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 3\right] \\
y(x) \rightarrow \operatorname{Root}\left[100000 \# 1^{5}+100000 \# 1^{4} x^{2}+25000 \# 1^{3} x^{4}-1000 \# 1^{2} e^{5 c_{1}} x\right. \\
\left.-900 \# 1 e^{5 c_{1}} x^{3}-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 4\right] \\
y(x) \rightarrow \operatorname{Root}\left[100000 \# 1^{5}+100000 \# 1^{4} x^{2}+25000 \# 1^{3} x^{4}-1000 \# 1^{2} e^{5 c_{1}} x\right. \\
\left.-900 \# 1 e^{5 c_{1}} x^{3}-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 5\right]
\end{gathered}
$$

3.23 problem 26

> 3.23.1 Solving as dAlembert ode

Internal problem ID [6817]
Internal file name [OUTPUT/6064_Thursday_July_28_2022_04_28_53_AM_25660040/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 26.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[_rational, _dAlembert]

$$
2 x y^{\prime 2}+(2 x-y) y^{\prime}-y=-1
$$

3.23.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
2 x p^{2}+(2 x-y) p-y=-1
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{\left(2 p^{2}+2 p\right) x}{p+1}+\frac{1}{p+1} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=2 p \\
& g=\frac{1}{p+1}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-p=\left(2 x-\frac{1}{(p+1)^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-p=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=1
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=-\frac{p(x)}{2 x-\frac{1}{(p(x)+1)^{2}}} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=-\frac{2 x(p)-\frac{1}{(p+1)^{2}}}{p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{2}{p} \\
& q(p)=\frac{1}{p(p+1)^{2}}
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{2 x(p)}{p}=\frac{1}{p(p+1)^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{p} d p} \\
& =p^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)\left(\frac{1}{p(p+1)^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(x p^{2}\right) & =\left(p^{2}\right)\left(\frac{1}{p(p+1)^{2}}\right) \\
\mathrm{d}\left(x p^{2}\right) & =\left(\frac{p}{(p+1)^{2}}\right) \mathrm{d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x p^{2}=\int \frac{p}{(p+1)^{2}} \mathrm{~d} p \\
& x p^{2}=\ln (p+1)+\frac{1}{p+1}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=p^{2}$ results in

$$
x(p)=\frac{\ln (p+1)+\frac{1}{p+1}}{p^{2}}+\frac{c_{1}}{p^{2}}
$$

which simplifies to

$$
x(p)=\frac{\ln (p+1)+\frac{1}{p+1}+c_{1}}{p^{2}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=\frac{-2 x+y+\sqrt{y^{2}+4 y x+4 x^{2}-8 x}}{4 x} \\
& p=-\frac{2 x-y+\sqrt{y^{2}+4 y x+4 x^{2}-8 x}}{4 x}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x \\
& =\frac{32\left(\left(x+\frac{y}{2}+\frac{\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{2}\right) \ln \left(\frac{2 x+y+\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{x}\right)+\left(\frac{c_{1}}{2}-\ln (2)\right) \sqrt{4 x^{2}+(4 y-8) x+y^{2}}+(-2\right.}{\left(2 x+y+\sqrt{4 x^{2}+(4 y-8) x+y^{2}}\right)\left(2 x-y-\sqrt{4 x^{2}+(4 y-8) x+y}\right.} \\
& x \\
& =\frac{32 x^{2}\left(\left(x+\frac{y}{2}-\frac{\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{2}\right) \ln \left(\frac{2 x+y-\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{x}\right)+\left(-\frac{c_{1}}{2}+\ln (2)\right) \sqrt{4 x^{2}+(4 y-8) x+y^{2}}+\right.}{\left(2 x+y-\sqrt{4 x^{2}+(4 y-8) x+y^{2}}\right)\left(2 x-y+\sqrt{4 x^{2}+(4 y-8) x+y}\right.}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=1 \tag{1}
\end{equation*}
$$

x
$=\frac{32\left(\left(x+\frac{y}{2}+\frac{\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{2}\right) \ln \left(\frac{2 x+y+\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{x}\right)+\left(\frac{c_{1}}{2}-\ln (2)\right) \sqrt{4 x^{2}+(4 y-8) x+y^{2}}+(-2\right.}{\left(2 x+y+\sqrt{4 x^{2}+(4 y-8) x+y^{2}}\right)\left(2 x-y-\sqrt{4 x^{2}+(4 y-8) x+y}\right.}$
x
$=\frac{32 x^{2}\left(\left(x+\frac{y}{2}-\frac{\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{2}\right) \ln \left(\frac{2 x+y-\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{x}\right)+\left(-\frac{c_{1}}{2}+\ln (2)\right) \sqrt{4 x^{2}+(4 y-8) x+y^{2}}+\right.}{\left(2 x+y-\sqrt{4 x^{2}+(4 y-8) x+y^{2}}\right)\left(2 x-y+\sqrt{4 x^{2}+(4 y-8) x+y}\right.}$
Verification of solutions

$$
y=1
$$

Verified OK.

$$
=\frac{32\left(\left(x+\frac{y}{2}+\frac{\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{2}\right) \ln \left(\frac{2 x+y+\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{x}\right)+\left(\frac{c_{1}}{2}-\ln (2)\right) \sqrt{4 x^{2}+(4 y-8) x+y^{2}}+(-2\right.}{\left(2 x+y+\sqrt{4 x^{2}+(4 y-8) x+y^{2}}\right)\left(2 x-y-\sqrt{4 x^{2}+(4 y-8) x+y}\right.}
$$

Verified OK.
$=\frac{32 x^{2}\left(\left(x+\frac{y}{2}-\frac{\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{2}\right) \ln \left(\frac{2 x+y-\sqrt{4 x^{2}+(4 y-8) x+y^{2}}}{x}\right)+\left(-\frac{c_{1}}{2}+\ln (2)\right) \sqrt{4 x^{2}+(4 y-8) x+y^{2}}+\right.}{\left(2 x+y-\sqrt{4 x^{2}+(4 y-8) x+y^{2}}\right)\left(2 x-y+\sqrt{4 x^{2}+(4 y-8) x+?}\right.}$
Verified OK.

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 110

```
dsolve(2*x*diff(y(x),x)^2+(2*x-y(x))*diff(y(x),x)+1-y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-2\left(x \mathrm{e}^{\mathrm{RootOf}\left(-\mathrm{e}^{3}-z_{x+2 x} \mathrm{e}^{2}-z_{+}+c_{1} \mathrm{e}^{z}+\mathrm{e}^{Z}-Z-x \mathrm{e}^{Z}+1\right)}\right. \\
& -\mathrm{e}^{2 \operatorname{RootOf}\left(-\mathrm{e}^{3}-z_{x+2 x} \mathrm{e}^{2 _}-z_{+1} c_{1} \mathrm{e}^{Z}+\mathrm{e}^{Z}-Z-x \mathrm{e}^{Z}+1\right)} x \\
& \left.-\frac{1}{2}\right) \mathrm{e}^{-\operatorname{RootOf}\left(-\mathrm{e}^{3}-z_{x+2} x \mathrm{e}^{2}-z_{+}+c_{1} \mathrm{e}^{z}+\mathrm{e}^{Z}-Z-x \mathrm{e}^{Z}+1\right)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.438 (sec). Leaf size: 49
DSolve[2*x*(y'[x]) $2+(2 * x-y[x]) * y^{\prime}[x]+1-y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

Solve $\left[\left\{x=\frac{\frac{1}{K[1]+1}+\log (K[1]+1)}{K[1]^{2}}+\frac{c_{1}}{K[1]^{2}}, y(x)=2 x K[1]+\frac{1}{K[1]+1}\right\},\{y(x), K[1]\}\right]$

3.24 problem 27

$$
\text { 3.24.1 Solving as dAlembert ode . } 412
$$

Internal problem ID [6818]
Internal file name [OUTPUT/6065_Thursday_July_28_2022_04_28_56_AM_97945755/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 27.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
5 y^{\prime 2}+3 x y^{\prime}-y=0
$$

3.24.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
5 p^{2}+3 x p-y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=5 p^{2}+3 x p \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=3 p \\
& g=5 p^{2}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-2 p=(3 x+10 p) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-2 p=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=-\frac{2 p(x)}{3 x+10 p(x)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=-\frac{3 x(p)+10 p}{2 p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{3}{2 p} \\
& q(p)=-5
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{3 x(p)}{2 p}=-5
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{2 p} d p} \\
& =p^{\frac{3}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)(-5) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(p^{\frac{3}{2}} x\right) & =\left(p^{\frac{3}{2}}\right)(-5) \\
\mathrm{d}\left(p^{\frac{3}{2}} x\right) & =\left(-5 p^{\frac{3}{2}}\right) \mathrm{d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& p^{\frac{3}{2}} x=\int-5 p^{\frac{3}{2}} \mathrm{~d} p \\
& p^{\frac{3}{2}} x=-2 p^{\frac{5}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=p^{\frac{3}{2}}$ results in

$$
x(p)=-2 p+\frac{c_{1}}{p^{\frac{3}{2}}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=-\frac{3 x}{10}+\frac{\sqrt{9 x^{2}+20 y}}{10} \\
& p=-\frac{3 x}{10}-\frac{\sqrt{9 x^{2}+20 y}}{10}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x=\frac{3 x}{5}-\frac{\sqrt{9 x^{2}+20 y}}{5}+\frac{1000 c_{1}}{\left(-30 x+10 \sqrt{9 x^{2}+20 y}\right)^{\frac{3}{2}}} \\
& x=\frac{3 x}{5}+\frac{\sqrt{9 x^{2}+20 y}}{5}+\frac{1000 c_{1}}{\left(-30 x-10 \sqrt{9 x^{2}+20 y}\right)^{\frac{3}{2}}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& x=\frac{3 x}{5}-\frac{\sqrt{9 x^{2}+20 y}}{5}+\frac{1000 c_{1}}{\left(-30 x+10 \sqrt{9 x^{2}+20 y}\right)^{\frac{3}{2}}} \tag{2}\\
& x=\frac{3 x}{5}+\frac{\sqrt{9 x^{2}+20 y}}{5}+\frac{1000 c_{1}}{\left(-30 x-10 \sqrt{9 x^{2}+20 y}\right)^{\frac{3}{2}}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
x=\frac{3 x}{5}-\frac{\sqrt{9 x^{2}+20 y}}{5}+\frac{1000 c_{1}}{\left(-30 x+10 \sqrt{9 x^{2}+20 y}\right)^{\frac{3}{2}}}
$$

Verified OK.

$$
x=\frac{3 x}{5}+\frac{\sqrt{9 x^{2}+20 y}}{5}+\frac{1000 c_{1}}{\left(-30 x-10 \sqrt{9 x^{2}+20 y}\right)^{\frac{3}{2}}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 85
dsolve(5*diff $(y(x), x) \sim 2+3 * x * \operatorname{diff}(y(x), x)-y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& \frac{c_{1}}{\left(-30 x-10 \sqrt{9 x^{2}+20 y(x)}\right)^{\frac{3}{2}}}+\frac{2 x}{5}-\frac{\sqrt{9 x^{2}+20 y(x)}}{5}=0 \\
& \frac{c_{1}}{\left(-30 x+10 \sqrt{9 x^{2}+20 y(x)}\right)^{\frac{3}{2}}}+\frac{2 x}{5}+\frac{\sqrt{9 x^{2}+20 y(x)}}{5}=0
\end{aligned}
$$

Solution by Mathematica

Time used: 14.529 (sec). Leaf size: 771

```
DSolve[5*(y'[x])^2+3*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{array}{r}
y(x) \rightarrow \operatorname{Root}\left[16 \# 1^{5}+8 \# 1^{4} x^{2}+\# 1^{3} x^{4}+4000 \# 1^{2} e^{5 c_{1}} x+1800 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right. \\
\left.-200000 e^{10 c_{1}} \&, 1\right]
\end{array}
$$

$$
y(x) \rightarrow \operatorname{Root}\left[16 \# 1^{5}+8 \# 1^{4} x^{2}+\# 1^{3} x^{4}+4000 \# 1^{2} e^{5 c_{1}} x+1800 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right.
$$

$$
\left.-200000 e^{10 c_{1}} \&, 2\right]
$$

$$
y(x) \rightarrow \operatorname{Root}\left[16 \# 1^{5}+8 \# 1^{4} x^{2}+\# 1^{3} x^{4}+4000 \# 1^{2} e^{5 c_{1}} x+1800 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right.
$$

$$
\left.-200000 e^{10 c_{1}} \&, 3\right]
$$

$$
y(x) \rightarrow \operatorname{Root}\left[16 \# 1^{5}+8 \# 1^{4} x^{2}+\# 1^{3} x^{4}+4000 \# 1^{2} e^{5 c_{1}} x+1800 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right.
$$

$$
\left.-200000 e^{10 c_{1}} \&, 4\right]
$$

$$
y(x) \rightarrow \operatorname{Root}\left[16 \# 1^{5}+8 \# 1^{4} x^{2}+\# 1^{3} x^{4}+4000 \# 1^{2} e^{5 c_{1}} x+1800 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right.
$$

$$
\left.-200000 e^{10 c_{1}} \&, 5\right]
$$

$$
y(x) \rightarrow \operatorname{Root}\left[3200000 \# 1^{5}+1600000 \# 1^{4} x^{2}+200000 \# 1^{3} x^{4}-4000 \# 1^{2} e^{5 c_{1}} x\right.
$$

$$
\left.-1800 \# 1 e^{5 c_{1}} x^{3}-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 1\right]
$$

$$
y(x) \rightarrow \operatorname{Root}\left[3200000 \# 1^{5}+1600000 \# 1^{4} x^{2}+200000 \# 1^{3} x^{4}-4000 \# 1^{2} e^{5 c_{1}} x\right.
$$

$$
\left.-1800 \# 1 e^{5 c_{1}} x^{3}-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 2\right]
$$

$$
y(x) \rightarrow \operatorname{Root}\left[3200000 \# 1^{5}+1600000 \# 1^{4} x^{2}+200000 \# 1^{3} x^{4}-4000 \# 1^{2} e^{5 c_{1}} x\right.
$$

$$
\left.-1800 \# 1 e^{5 c_{1}} x^{3}-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 3\right]
$$

$$
y(x) \rightarrow \operatorname{Root}\left[3200000 \# 1^{5}+1600000 \# 1^{4} x^{2}+200000 \# 1^{3} x^{4}-4000 \# 1^{2} e^{5 c_{1}} x\right.
$$

$$
\left.-1800 \# 1 e^{5 c_{1}} x^{3}-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 4\right]
$$

$$
y(x) \rightarrow \operatorname{Root}\left[3200000 \# 1^{5}+1600000 \# 1^{4} x^{2}+200000 \# 1^{3} x^{4}-4000 \# 1^{2} e^{5 c_{1}} x\right.
$$

$$
\left.-1800 \# 1 e^{5 c_{1}} x^{3}-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 5\right]
$$

$$
y(x) \rightarrow 0
$$

3.25 problem 28

$$
\text { 3.25.1 Solving as dAlembert ode . } 418
$$

Internal problem ID [6819]
Internal file name [OUTPUT/6066_Thursday_July_28_2022_04_28_58_AM_71850312/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 28.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
y^{\prime 2}+3 x y^{\prime}-y=0
$$

3.25.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
p^{2}+3 x p-y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=p^{2}+3 x p \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=3 p \\
& g=p^{2}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-2 p=(3 x+2 p) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-2 p=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=-\frac{2 p(x)}{3 x+2 p(x)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=-\frac{3 x(p)+2 p}{2 p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{3}{2 p} \\
& q(p)=-1
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{3 x(p)}{2 p}=-1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{2 p} d p} \\
& =p^{\frac{3}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)(-1) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(p^{\frac{3}{2}} x\right) & =\left(p^{\frac{3}{2}}\right)(-1) \\
\mathrm{d}\left(p^{\frac{3}{2}} x\right) & =\left(-p^{\frac{3}{2}}\right) \mathrm{d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& p^{\frac{3}{2}} x=\int-p^{\frac{3}{2}} \mathrm{~d} p \\
& p^{\frac{3}{2}} x=-\frac{2 p^{\frac{5}{2}}}{5}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=p^{\frac{3}{2}}$ results in

$$
x(p)=-\frac{2 p}{5}+\frac{c_{1}}{p^{\frac{3}{2}}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=-\frac{3 x}{2}+\frac{\sqrt{9 x^{2}+4 y}}{2} \\
& p=-\frac{3 x}{2}-\frac{\sqrt{9 x^{2}+4 y}}{2}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x=\frac{3 x}{5}-\frac{\sqrt{9 x^{2}+4 y}}{5}+\frac{8 c_{1}}{\left(-6 x+2 \sqrt{9 x^{2}+4 y}\right)^{\frac{3}{2}}} \\
& x=\frac{3 x}{5}+\frac{\sqrt{9 x^{2}+4 y}}{5}+\frac{8 c_{1}}{\left(-6 x-2 \sqrt{9 x^{2}+4 y}\right)^{\frac{3}{2}}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& x=\frac{3 x}{5}-\frac{\sqrt{9 x^{2}+4 y}}{5}+\frac{8 c_{1}}{\left(-6 x+2 \sqrt{9 x^{2}+4 y}\right)^{\frac{3}{2}}} \tag{2}\\
& x=\frac{3 x}{5}+\frac{\sqrt{9 x^{2}+4 y}}{5}+\frac{8 c_{1}}{\left(-6 x-2 \sqrt{9 x^{2}+4 y}\right)^{\frac{3}{2}}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
x=\frac{3 x}{5}-\frac{\sqrt{9 x^{2}+4 y}}{5}+\frac{8 c_{1}}{\left(-6 x+2 \sqrt{9 x^{2}+4 y}\right)^{\frac{3}{2}}}
$$

Verified OK.

$$
x=\frac{3 x}{5}+\frac{\sqrt{9 x^{2}+4 y}}{5}+\frac{8 c_{1}}{\left(-6 x-2 \sqrt{9 x^{2}+4 y}\right)^{\frac{3}{2}}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 85
dsolve(diff $(y(x), x) \wedge 2+3 * x * \operatorname{diff}(y(x), x)-y(x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& \frac{c_{1}}{\left(-6 x-2 \sqrt{9 x^{2}+4 y(x)}\right)^{\frac{3}{2}}}+\frac{2 x}{5}-\frac{\sqrt{9 x^{2}+4 y(x)}}{5}=0 \\
& \frac{c_{1}}{\left(-6 x+2 \sqrt{9 x^{2}+4 y(x)}\right)^{\frac{3}{2}}}+\frac{2 x}{5}+\frac{\sqrt{9 x^{2}+4 y(x)}}{5}=0
\end{aligned}
$$

Solution by Mathematica

Time used: 14.495 (sec). Leaf size: 776

```
DSolve[(y'[x])^2+3*x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$y(x) \rightarrow \operatorname{Root}\left[16 \# 1^{5}+40 \# 1^{4} x^{2}+25 \# 1^{3} x^{4}+160 \# 1^{2} e^{5 c_{1}} x+360 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right.$
$\left.-64 e^{10 c_{1}} \&, 1\right]$
$y(x) \rightarrow \operatorname{Root}\left[16 \# 1^{5}+40 \# 1^{4} x^{2}+25 \# 1^{3} x^{4}+160 \# 1^{2} e^{5 c_{1}} x+360 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right.$
$\left.-64 e^{10 c_{1}} \&, 2\right]$
$y(x) \rightarrow \operatorname{Root}\left[16 \# 1^{5}+40 \# 1^{4} x^{2}+25 \# 1^{3} x^{4}+160 \# 1^{2} e^{5 c_{1}} x+360 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right.$
$\left.-64 e^{10 c_{1}} \&, 3\right]$
$y(x) \rightarrow \operatorname{Root}\left[16 \# 1^{5}+40 \# 1^{4} x^{2}+25 \# 1^{3} x^{4}+160 \# 1^{2} e^{5 c_{1}} x+360 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right.$
$\left.-64 e^{10 c_{1}} \&, 4\right]$
$y(x) \rightarrow \operatorname{Root}\left[16 \# 1^{5}+40 \# 1^{4} x^{2}+25 \# 1^{3} x^{4}+160 \# 1^{2} e^{5 c_{1}} x+360 \# 1 e^{5 c_{1}} x^{3}+216 e^{5 c_{1}} x^{5}\right.$
$\left.-64 e^{10 c_{1}} \&, 5\right]$
$y(x) \rightarrow \operatorname{Root}\left[1024 \# 1^{5}+2560 \# 1^{4} x^{2}+1600 \# 1^{3} x^{4}-160 \# 1^{2} e^{5 c_{1}} x-360 \# 1 e^{5 c_{1}} x^{3}\right.$
$\left.-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 1\right]$
$y(x) \rightarrow \operatorname{Root}\left[1024 \# 1^{5}+2560 \# 1^{4} x^{2}+1600 \# 1^{3} x^{4}-160 \# 1^{2} e^{5 c_{1}} x-360 \# 1 e^{5 c_{1}} x^{3}\right.$
$\left.-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 2\right]$
$y(x) \rightarrow \operatorname{Root}\left[1024 \# 1^{5}+2560 \# 1^{4} x^{2}+1600 \# 1^{3} x^{4}-160 \# 1^{2} e^{5 c_{1}} x-360 \# 1 e^{5 c_{1}} x^{3}\right.$
$\left.-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 3\right]$
$y(x) \rightarrow \operatorname{Root}\left[1024 \# 1^{5}+2560 \# 1^{4} x^{2}+1600 \# 1^{3} x^{4}-160 \# 1^{2} e^{5 c_{1}} x-360 \# 1 e^{5 c_{1}} x^{3}\right.$
$\left.-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 4\right]$
$y(x) \rightarrow \operatorname{Root}\left[1024 \# 1^{5}+2560 \# 1^{4} x^{2}+1600 \# 1^{3} x^{4}-160 \# 1^{2} e^{5 c_{1}} x-360 \# 1 e^{5 c_{1}} x^{3}\right.$
$\left.-216 e^{5 c_{1}} x^{5}-e^{10 c_{1}} \&, 5\right]$
$y(x) \rightarrow 0$

3.26 problem 29

Internal problem ID [6820]
Internal file name [OUTPUT/6067_Thursday_July_28_2022_04_29_00_AM_25586871/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 99. Clairaut's equation. EXERCISES
Page 320
Problem number: 29.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
y-x y^{\prime}-x^{3} y^{\prime 2}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{-1+\sqrt{1+4 y x}}{2 x^{2}} \tag{1}\\
& y^{\prime}=-\frac{1+\sqrt{1+4 y x}}{2 x^{2}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{-1+\sqrt{4 x y+1}}{2 x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
\xi & =x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta & =x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\frac{(-1+\sqrt{4 x y+1})\left(b_{3}-a_{2}\right)}{2 x^{2}}-\frac{(-1+\sqrt{4 x y+1})^{2} a_{3}}{4 x^{4}} \tag{5E}\\
& \quad-\left(-\frac{-1+\sqrt{4 x y+1}}{x^{3}}+\frac{y}{x^{2} \sqrt{4 x y+1}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-\frac{x b_{2}+y b_{3}+b_{1}}{x \sqrt{4 x y+1}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-4 b_{2} x^{4} \sqrt{4 x y+1}+4 x^{4} b_{2}-4 x^{3} y a_{2}-4 x^{3} y b_{3}-12 x^{2} y^{2} a_{3}+(4 x y+1)^{\frac{3}{2}} a_{3}+2 \sqrt{4 x y+1} x^{2} a_{2}+2 \sqrt{4 x y+}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 b_{2} x^{4} \sqrt{4 x y+1}-4 x^{4} b_{2}+4 x^{3} y a_{2}+4 x^{3} y b_{3}+12 x^{2} y^{2} a_{3}-(4 x y+1)^{\frac{3}{2}} a_{3} \tag{6E}\\
& \quad-2 \sqrt{4 x y+1} x^{2} a_{2}-2 \sqrt{4 x y+1} x^{2} b_{3}-4 \sqrt{4 x y+1} x y a_{3}-4 x^{3} b_{1}+12 x^{2} y a_{1} \\
& -4 \sqrt{4 x y+1} x a_{1}+2 x^{2} a_{2}+2 x^{2} b_{3}+12 x y a_{3}-a_{3} \sqrt{4 x y+1}+4 x a_{1}+2 a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} x^{4} \sqrt{4 x y+1}+2(4 x y+1) x^{2} a_{2}+2(4 x y+1) x^{2} b_{3}+4(4 x y+1) x y a_{3} \\
& \quad-4 x^{4} b_{2}-4 x^{3} y a_{2}-4 x^{3} y b_{3}-4 x^{2} y^{2} a_{3}-(4 x y+1)^{\frac{3}{2}} a_{3}+4(4 x y+1) x a_{1} \tag{6E}\\
& \quad-2 \sqrt{4 x y+1} x^{2} a_{2}-2 \sqrt{4 x y+1} x^{2} b_{3}-4 \sqrt{4 x y+1} x y a_{3}-4 x^{3} b_{1} \\
& \quad-4 x^{2} y a_{1}+2(4 x y+1) a_{3}-4 \sqrt{4 x y+1} x a_{1}-a_{3} \sqrt{4 x y+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 4 b_{2} x^{4} \sqrt{4 x y+1}-4 x^{4} b_{2}+4 x^{3} y a_{2}+4 x^{3} y b_{3}+12 x^{2} y^{2} a_{3}-4 x^{3} b_{1} \\
& \quad-2 \sqrt{4 x y+1} x^{2} a_{2}-2 \sqrt{4 x y+1} x^{2} b_{3}+12 x^{2} y a_{1}-8 \sqrt{4 x y+1} x y a_{3}+2 x^{2} a_{2} \\
& +2 x^{2} b_{3}-4 \sqrt{4 x y+1} x a_{1}+12 x y a_{3}+4 x a_{1}-2 a_{3} \sqrt{4 x y+1}+2 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \sqrt{4 x y+1}\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{4 x y+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& 4 b_{2} v_{1}^{4} v_{3}+4 v_{1}^{3} v_{2} a_{2}+12 v_{1}^{2} v_{2}^{2} a_{3}-4 v_{1}^{4} b_{2}+4 v_{1}^{3} v_{2} b_{3}+12 v_{1}^{2} v_{2} a_{1}-2 v_{3} v_{1}^{2} a_{2} \\
& \quad-8 v_{3} v_{1} v_{2} a_{3}-4 v_{1}^{3} b_{1}-2 v_{3} v_{1}^{2} b_{3}-4 v_{3} v_{1} a_{1}+2 v_{1}^{2} a_{2}+12 v_{1} v_{2} a_{3}+2 v_{1}^{2} b_{3}+4 v_{1} a_{1} \\
& \quad-2 a_{3} v_{3}+2 a_{3}=0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{4} v_{3}-4 v_{1}^{4} b_{2}+\left(4 a_{2}+4 b_{3}\right) v_{1}^{3} v_{2}-4 v_{1}^{3} b_{1}+12 v_{1}^{2} v_{2}^{2} a_{3} \tag{8E}\\
& \quad+12 v_{1}^{2} v_{2} a_{1}+\left(-2 a_{2}-2 b_{3}\right) v_{1}^{2} v_{3}+\left(2 a_{2}+2 b_{3}\right) v_{1}^{2}-8 v_{3} v_{1} v_{2} a_{3} \\
& \quad+12 v_{1} v_{2} a_{3}-4 v_{3} v_{1} a_{1}+4 v_{1} a_{1}-2 a_{3} v_{3}+2 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-4 a_{1} & =0 \\
4 a_{1} & =0 \\
12 a_{1} & =0 \\
-8 a_{3} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
12 a_{3} & =0 \\
-4 b_{1} & =0 \\
-4 b_{2} & =0 \\
4 b_{2} & =0 \\
-2 a_{2}-2 b_{3} & =0 \\
2 a_{2}+2 b_{3} & =0 \\
4 a_{2}+4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{-1+\sqrt{4 x y+1}}{2 x^{2}}\right)(-x) \\
& =\frac{2 x y+\sqrt{4 x y+1}-1}{2 x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x y+\sqrt{4 x y+1}-1}{2 x}} d y
\end{aligned}
$$

Which results in
$S=\frac{3 \ln (x y-2)}{4}+\frac{\ln (y)}{4}-\frac{3 \ln (\sqrt{4 x y+1}-3)}{4}-\frac{\ln (\sqrt{4 x y+1}+1)}{4}+\frac{\ln (-1+\sqrt{4 x y+1})}{4}+\frac{3 \ln (\sqrt{ }}{}$
Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-1+\sqrt{4 x y+1}}{2 x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{-3 x y+2 \sqrt{4 x y+1}}{(4 x y-8) x} \\
& S_{y}=-\frac{2(-2 x y+\sqrt{4 x y+1}+1)}{(4 x y-8) y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{3}{4 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{3}{4 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 \ln (R)}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 \ln (y x-2)}{4}+\frac{\ln (y)}{4}-\frac{3 \ln (\sqrt{1+4 y x}-3)}{4}-\frac{\ln (1+\sqrt{1+4 y x})}{4}+\frac{\ln (-1+\sqrt{1+4 y x})}{4}+\frac{3 \ln (\sqrt{1+4}}{4}
$$

Which simplifies to

$$
\frac{3 \ln (y x-2)}{4}+\frac{\ln (y)}{4}-\frac{3 \ln (\sqrt{1+4 y x}-3)}{4}-\frac{\ln (1+\sqrt{1+4 y x})}{4}+\frac{\ln (-1+\sqrt{1+4 y x})}{4}+\frac{3 \ln (\sqrt{1+4}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{gather*}
\frac{3 \ln (y x-2)}{4}+\frac{\ln (y)}{4}-\frac{3 \ln (\sqrt{1+4 y x}-3)}{4}-\frac{\ln (1+\sqrt{1+4 y x})}{4} \tag{1}\\
+\frac{\ln (-1+\sqrt{1+4 y x})}{4}+\frac{3 \ln (\sqrt{1+4 y x}+3)}{4}=\frac{3 \ln (x)}{4}+c_{1}
\end{gather*}
$$

Verification of solutions

$$
\begin{aligned}
& \frac{3 \ln (y x-2)}{4}+\frac{\ln (y)}{4}-\frac{3 \ln (\sqrt{1+4 y x}-3)}{4}-\frac{\ln (1+\sqrt{1+4 y x})}{4} \\
& +\frac{\ln (-1+\sqrt{1+4 y x})}{4}+\frac{3 \ln (\sqrt{1+4 y x}+3)}{4}=\frac{3 \ln (x)}{4}+c_{1}
\end{aligned}
$$

Verified OK.
Solving equation (2)

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\sqrt{4 x y+1}+1}{2 x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(\sqrt{4 x y+1}+1)\left(b_{3}-a_{2}\right)}{2 x^{2}}-\frac{(\sqrt{4 x y+1}+1)^{2} a_{3}}{4 x^{4}} \tag{5E}\\
& -\left(-\frac{y}{x^{2} \sqrt{4 x y+1}}+\frac{\sqrt{4 x y+1}+1}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)+\frac{x b_{2}+y b_{3}+b_{1}}{x \sqrt{4 x y+1}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-4 b_{2} x^{4} \sqrt{4 x y+1}-4 x^{4} b_{2}+4 x^{3} y a_{2}+4 x^{3} y b_{3}+12 x^{2} y^{2} a_{3}+(4 x y+1)^{\frac{3}{2}} a_{3}+2 \sqrt{4 x y+1} x^{2} a_{2}+2 \sqrt{4 x y+}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 b_{2} x^{4} \sqrt{4 x y+1}+4 x^{4} b_{2}-4 x^{3} y a_{2}-4 x^{3} y b_{3}-12 x^{2} y^{2} a_{3}-(4 x y+1)^{\frac{3}{2}} a_{3} \tag{6E}\\
& \quad-2 \sqrt{4 x y+1} x^{2} a_{2}-2 \sqrt{4 x y+1} x^{2} b_{3}-4 \sqrt{4 x y+1} x y a_{3}+4 x^{3} b_{1}-12 x^{2} y a_{1} \\
& -4 \sqrt{4 x y+1} x a_{1}-2 x^{2} a_{2}-2 x^{2} b_{3}-12 x y a_{3}-a_{3} \sqrt{4 x y+1}-4 x a_{1}-2 a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} x^{4} \sqrt{4 x y+1}-2(4 x y+1) x^{2} a_{2}-2(4 x y+1) x^{2} b_{3}-4(4 x y+1) x y a_{3} \\
& +4 x^{4} b_{2}+4 x^{3} y a_{2}+4 x^{3} y b_{3}+4 x^{2} y^{2} a_{3}-(4 x y+1)^{\frac{3}{2}} a_{3}-4(4 x y+1) x a_{1} \tag{6E}\\
& -2 \sqrt{4 x y+1} x^{2} a_{2}-2 \sqrt{4 x y+1} x^{2} b_{3}-4 \sqrt{4 x y+1} x y a_{3}+4 x^{3} b_{1} \\
& +4 x^{2} y a_{1}-2(4 x y+1) a_{3}-4 \sqrt{4 x y+1} x a_{1}-a_{3} \sqrt{4 x y+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 4 b_{2} x^{4} \sqrt{4 x y+1}+4 x^{4} b_{2}-4 x^{3} y a_{2}-4 x^{3} y b_{3}-12 x^{2} y^{2} a_{3}+4 x^{3} b_{1} \\
& \quad-2 \sqrt{4 x y+1} x^{2} a_{2}-2 \sqrt{4 x y+1} x^{2} b_{3}-12 x^{2} y a_{1}-8 \sqrt{4 x y+1} x y a_{3}-2 x^{2} a_{2} \\
& \quad-2 x^{2} b_{3}-4 \sqrt{4 x y+1} x a_{1}-12 x y a_{3}-4 x a_{1}-2 a_{3} \sqrt{4 x y+1}-2 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \sqrt{4 x y+1}\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{4 x y+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{4} v_{3}-4 v_{1}^{3} v_{2} a_{2}-12 v_{1}^{2} v_{2}^{2} a_{3}+4 v_{1}^{4} b_{2}-4 v_{1}^{3} v_{2} b_{3}-12 v_{1}^{2} v_{2} a_{1}-2 v_{3} v_{1}^{2} a_{2} \tag{7E}\\
& \quad-8 v_{3} v_{1} v_{2} a_{3}+4 v_{1}^{3} b_{1}-2 v_{3} v_{1}^{2} b_{3}-4 v_{3} v_{1} a_{1}-2 v_{1}^{2} a_{2}-12 v_{1} v_{2} a_{3}-2 v_{1}^{2} b_{3}-4 v_{1} a_{1} \\
& \quad-2 a_{3} v_{3}-2 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{4} v_{3}+4 v_{1}^{4} b_{2}+\left(-4 a_{2}-4 b_{3}\right) v_{1}^{3} v_{2}+4 v_{1}^{3} b_{1}-12 v_{1}^{2} v_{2}^{2} a_{3} \tag{8E}\\
& \quad-12 v_{1}^{2} v_{2} a_{1}+\left(-2 a_{2}-2 b_{3}\right) v_{1}^{2} v_{3}+\left(-2 a_{2}-2 b_{3}\right) v_{1}^{2} \\
& \quad-8 v_{3} v_{1} v_{2} a_{3}-12 v_{1} v_{2} a_{3}-4 v_{3} v_{1} a_{1}-4 v_{1} a_{1}-2 a_{3} v_{3}-2 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-12 a_{1} & =0 \\
-4 a_{1} & =0 \\
-12 a_{3} & =0 \\
-8 a_{3} & =0 \\
-2 a_{3} & =0 \\
4 b_{1} & =0 \\
4 b_{2} & =0 \\
-4 a_{2}-4 b_{3} & =0 \\
-2 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{\sqrt{4 x y+1}+1}{2 x^{2}}\right)(-x) \\
& =\frac{2 x y-\sqrt{4 x y+1}-1}{2 x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x y-\sqrt{4 x y+1}-1}{2 x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{3 \ln (x y-2)}{4}+\frac{\ln (y)}{4}+\frac{3 \ln (\sqrt{4 x y+1}-3)}{4}+\frac{\ln (\sqrt{4 x y+1}+1)}{4}-\frac{\ln (-1+\sqrt{4 x y+1})}{4}-\frac{3 \ln (\sqrt{ }}{}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\sqrt{4 x y+1}+1}{2 x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3 x y+2 \sqrt{4 x y+1}}{(4 x y-8) x} \\
S_{y} & =\frac{4 x y+2 \sqrt{4 x y+1}-2}{(4 x y-8) y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{3}{4 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{3}{4 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 \ln (R)}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 \ln (y x-2)}{4}+\frac{\ln (y)}{4}+\frac{3 \ln (\sqrt{1+4 y x}-3)}{4}+\frac{\ln (1+\sqrt{1+4 y x})}{4}-\frac{\ln (-1+\sqrt{1+4 y x})}{4}-\frac{3 \ln (\sqrt{1+4}}{4}
$$

Which simplifies to

$$
\frac{3 \ln (y x-2)}{4}+\frac{\ln (y)}{4}+\frac{3 \ln (\sqrt{1+4 y x}-3)}{4}+\frac{\ln (1+\sqrt{1+4 y x})}{4}-\frac{\ln (-1+\sqrt{1+4 y x})}{4}-\frac{3 \ln (\sqrt{1+4}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{gather*}
\frac{3 \ln (y x-2)}{4}+\frac{\ln (y)}{4}+\frac{3 \ln (\sqrt{1+4 y x}-3)}{4}+\frac{\ln (1+\sqrt{1+4 y x})}{4} \tag{1}\\
-\frac{\ln (-1+\sqrt{1+4 y x})}{4}-\frac{3 \ln (\sqrt{1+4 y x}+3)}{4}=\frac{3 \ln (x)}{4}+c_{1}
\end{gather*}
$$

Verification of solutions

$$
\begin{gathered}
\frac{3 \ln (y x-2)}{4}+\frac{\ln (y)}{4}+\frac{3 \ln (\sqrt{1+4 y x}-3)}{4}+\frac{\ln (1+\sqrt{1+4 y x})}{4} \\
-\frac{\ln (-1+\sqrt{1+4 y x})}{4}-\frac{3 \ln (\sqrt{1+4 y x}+3)}{4}=\frac{3 \ln (x)}{4}+c_{1}
\end{gathered}
$$

Verified OK.

X Solution by Maple
dsolve($y(x)=x * \operatorname{diff}(y(x), x)+x^{\wedge} 3 * \operatorname{diff}(y(x), x) \sim 2, y(x)$, singsol=all)

No solution found
$\sqrt{ }$ Solution by Mathematica
Time used: 105.562 (sec). Leaf size: 7052
DSolve[y[x]==x*y'[x]+x^3*(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]
Too large to display

4 CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324

4.1 problem 1 438
4.2 problem 2 443
4.3 problem 3 447
4.4 problem 4 451
4.5 problem 5 459
4.6 problem 6 464
4.7 problem 7 468
4.8 problem 9 474
4.9 problem 10 504
4.10 problem 11 532
4.11 problem 12 540
4.12 problem 13 546
4.13 problem 14 554
4.14 problem 15 559
4.15 problem 16 565
4.16 problem 17 571
4.17 problem 18 576
4.18 problem 19 585
4.19 problem 20 594
4.20 problem 21 600
4.21 problem 23 606
4.22 problem 24 623
4.23 problem 25 628
4.24 problem 26 632
4.25 problem 27 638
4.26 problem 28 642
4.27 problem 30 647
4.28 problem 31 653
4.29 problem 32 657
4.30 problem 33 661
4.31 problem 34 668
4.32 problem 35 672
4.33 problem 36 676
4.34 problem 37 683
4.35 problem 38 687
4.36 problem 39 694
4.37 problem 40 703
4.38 problem 41 708
4.39 problem 42 733
4.40 problem 43 740

4.1 problem 1

4.1.1 Solving as second order ode missing y ode
 438

4.1.2 Maple step by step solution . 440

Internal problem ID [6821]
Internal file name [OUTPUT/6068_Thursday_July_28_2022_04_29_02_AM_22805052/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y" Maple gives the following as the ode type
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$
y^{\prime \prime}-x y^{3}=0
$$

4.1.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-x p(x)^{3}=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =x p^{3}
\end{aligned}
$$

Where $f(x)=x$ and $g(p)=p^{3}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p^{3}} d p & =x d x \\
\int \frac{1}{p^{3}} d p & =\int x d x \\
-\frac{1}{2 p^{2}} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
-\frac{1}{2 p(x)^{2}}-\frac{x^{2}}{2}-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\frac{1}{2 y^{\prime 2}}-\frac{x^{2}}{2}-c_{1}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =-\frac{1}{\sqrt{-x^{2}-2 c_{1}}} \tag{1}\\
y^{\prime} & =\frac{1}{\sqrt{-x^{2}-2 c_{1}}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{1}{\sqrt{-x^{2}-2 c_{1}}} \mathrm{~d} x \\
& =-\arctan \left(\frac{x}{\sqrt{-x^{2}-2 c_{1}}}\right)+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{\sqrt{-x^{2}-2 c_{1}}} \mathrm{~d} x \\
& =\arctan \left(\frac{x}{\sqrt{-x^{2}-2 c_{1}}}\right)+c_{3}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=-\arctan \left(\frac{x}{\sqrt{-x^{2}-2 c_{1}}}\right)+c_{2} \tag{1}\\
& y=\arctan \left(\frac{x}{\sqrt{-x^{2}-2 c_{1}}}\right)+c_{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-\arctan \left(\frac{x}{\sqrt{-x^{2}-2 c_{1}}}\right)+c_{2}
$$

Verified OK.

$$
y=\arctan \left(\frac{x}{\sqrt{-x^{2}-2 c_{1}}}\right)+c_{3}
$$

Verified OK.

4.1.2 Maple step by step solution

Let's solve
$y^{\prime \prime}-x y^{\prime 3}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE
$u^{\prime}(x)-x u(x)^{3}=0$
- Separate variables
$\frac{u^{\prime}(x)}{u(x)^{3}}=x$
- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{u(x)^{3}} d x=\int x d x+c_{1}$
- Evaluate integral
$-\frac{1}{2 u(x)^{2}}=\frac{x^{2}}{2}+c_{1}$
- \quad Solve for $u(x)$
$\left\{u(x)=\frac{1}{\sqrt{-x^{2}-2 c_{1}}}, u(x)=-\frac{1}{\sqrt{-x^{2}-2 c_{1}}}\right\}$
- \quad Solve 1st ODE for $u(x)$

$$
u(x)=\frac{1}{\sqrt{-x^{2}-2 c_{1}}}
$$

- Make substitution $u=y^{\prime}$

$$
y^{\prime}=\frac{1}{\sqrt{-x^{2}-2 c_{1}}}
$$

- Integrate both sides to solve for y
$\int y^{\prime} d x=\int \frac{1}{\sqrt{-x^{2}-2 c_{1}}} d x+c_{2}$
- Compute integrals

$$
y=\arctan \left(\frac{x}{\sqrt{-x^{2}-2 c_{1}}}\right)+c_{2}
$$

- \quad Solve 2 nd ODE for $u(x)$
$u(x)=-\frac{1}{\sqrt{-x^{2}-2 c_{1}}}$
- Make substitution $u=y^{\prime}$

$$
y^{\prime}=-\frac{1}{\sqrt{-x^{2}-2 c_{1}}}
$$

- Integrate both sides to solve for y

$$
\int y^{\prime} d x=\int-\frac{1}{\sqrt{-x^{2}-2 c_{1}}} d x+c_{2}
$$

- Compute integrals

$$
y=-\arctan \left(\frac{x}{\sqrt{-x^{2}-2 c_{1}}}\right)+c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = _a*_b(_a)^3, _b(_a), HINT = [[_a, __b]]
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, -_b]
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 37
dsolve(diff $(y(x), x \$ 2)=x *(\operatorname{diff}(y(x), x)) \wedge 3, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\arctan \left(\frac{x}{\sqrt{-x^{2}+c_{1}}}\right)+c_{2} \\
& y(x)=-\arctan \left(\frac{x}{\sqrt{-x^{2}+c_{1}}}\right)+c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 10.922 (sec). Leaf size: 57
DSolve[y''[x]==x*(y'[x])^3,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{2}-\arctan \left(\frac{x}{\sqrt{-x^{2}-2 c_{1}}}\right) \\
& y(x) \rightarrow \arctan \left(\frac{x}{\sqrt{-x^{2}-2 c_{1}}}\right)+c_{2} \\
& y(x) \rightarrow c_{2}
\end{aligned}
$$

4.2 problem 2

4.2.1 Solving as second order ode missing y ode

443
Internal problem ID [6822]
Internal file name [OUTPUT/6069_Thursday_July_28_2022_04_29_03_AM_89762227/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x^{2} y^{\prime \prime}+y^{\prime 2}-2 x y^{\prime}=0
$$

With initial conditions

$$
\left[y(2)=5, y^{\prime}(2)=-4\right]
$$

4.2.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
x^{2} p^{\prime}(x)+(p(x)-2 x) p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Using the change of variables $p(x)=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x^{2}\left(u^{\prime}(x) x+u(x)\right)+(u(x) x-2 x) u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(u-1)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u(u-1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u(u-1)} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u(u-1)} d u & =\int-\frac{1}{x} d x \\
-\ln (u)+\ln (u-1) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u)+\ln (u-1)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{u-1}{u}=\frac{c_{3}}{x}
$$

Therefore the solution $p(x)$ is

$$
\begin{aligned}
p(x) & =u x \\
& =-\frac{x^{2}}{c_{3}-x}
\end{aligned}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=2$ and $p=-4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-4=-\frac{4}{c_{3}-2} \\
c_{3}=3
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
p(x)=\frac{x^{2}}{-3+x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{x^{2}}{-3+x}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x^{2}}{-3+x} \mathrm{~d} x \\
& =\frac{x^{2}}{2}+3 x+9 \ln (-3+x)+c_{4}
\end{aligned}
$$

Initial conditions are used to solve for c_{4}. Substituting $x=2$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=9 i \pi+c_{4}+8 \\
c_{4}=-9 i \pi-3
\end{gathered}
$$

Substituting c_{4} found above in the general solution gives

$$
y=\frac{x^{2}}{2}+3 x+9 \ln (-3+x)-9 i \pi-3
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}+3 x+9 \ln (-3+x)-9 i \pi-3 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{2}}{2}+3 x+9 \ln (-3+x)-9 i \pi-3
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)*(_b(_a)-2*_a)/_a`2, _b(_a), HIN
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:` [_a, _b]
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 24
dsolve ([x^2*diff $\left.(y(x), x \$ 2)+\operatorname{diff}(y(x), x)^{\wedge} 2-2 * x * \operatorname{diff}(y(x), x)=0, y(2)=5, D(y)(2)=-4\right], y(x)$,

$$
y(x)=\frac{x^{2}}{2}+3 x+9 \ln (x-3)-3-9 i \pi
$$

\checkmark Solution by Mathematica
Time used: 0.478 (sec). Leaf size: 28
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime} '[x]+(y '[x]) \wedge 2-2 * x * y '[x]==0,\left\{y[2]==5, y^{\prime}[2]==-4\right\}\right\}, y[x], x\right.$, IncludeSingularSolutio

$$
y(x) \rightarrow \frac{x^{2}}{2}+3 x+9 \log (x-3)-9 i \pi-3
$$

4.3 problem 3

$$
\text { 4.3.1 Solving as second order ode missing y ode } 447
$$

Internal problem ID [6823]
Internal file name [OUTPUT/6070_Thursday_July_28_2022_04_29_06_AM_15447379/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 3 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x^{2} y^{\prime \prime}+y^{\prime 2}-2 x y^{\prime}=0
$$

With initial conditions

$$
\left[y(2)=5, y^{\prime}(2)=2\right]
$$

4.3.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
x^{2} p^{\prime}(x)+(p(x)-2 x) p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Using the change of variables $p(x)=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x^{2}\left(u^{\prime}(x) x+u(x)\right)+(u(x) x-2 x) u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(u-1)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u(u-1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u(u-1)} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u(u-1)} d u & =\int-\frac{1}{x} d x \\
-\ln (u)+\ln (u-1) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u)+\ln (u-1)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{u-1}{u}=\frac{c_{3}}{x}
$$

Therefore the solution $p(x)$ is

$$
\begin{aligned}
p(x) & =u x \\
& =-\frac{x^{2}}{c_{3}-x}
\end{aligned}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=2$ and $p=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=-\frac{4}{c_{3}-2} \\
c_{3}=0
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
p(x)=x
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=x
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{~d} x \\
& =\frac{x^{2}}{2}+c_{4}
\end{aligned}
$$

Initial conditions are used to solve for c_{4}. Substituting $x=2$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=2+c_{4} \\
c_{4}=3
\end{gathered}
$$

Substituting c_{4} found above in the general solution gives

$$
y=\frac{x^{2}}{2}+3
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}+3 \tag{1}
\end{equation*}
$$

Figure 1: Solution plot

Verification of solutions

$$
y=\frac{x^{2}}{2}+3
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-, `-> Computing symmetries using: way \(=3\) -> Calling odsolve with the ODE`, $\operatorname{diff}\left(_b\left(_a\right), \quad, a\right)=-\quad b\left(_a\right) *\left(_b\left(_a\right)-2 *-a\right) / _a-2, \quad b\left(_a\right)$, HIN symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, _b]

\checkmark Solution by Maple

Time used: 0.015 (sec). Leaf size: 11

```
dsolve([x^2*\operatorname{diff}(y(x),x$2)+\operatorname{diff}(y(x),x)^2-2*x*\operatorname{diff}(y(x),x)=0,y(2)=5,D(y)(2)=2],y(x), si
```

$$
y(x)=\frac{x^{2}}{2}+3
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 14
DSolve $\left[\left\{x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]+(y '[x]) \wedge 2-2 * x * y y^{\prime}[x]==0,\left\{y[2]==5, y^{\prime}[2]==2\right\}\right\}, y[x], x\right.$, IncludeSingularSolution

$$
y(x) \rightarrow \frac{1}{2}\left(x^{2}+6\right)
$$

4.4 problem 4

4.4.1 Solving as second order integrable as is ode 451
4.4.2 Solving as second order ode missing x ode 452
$\begin{array}{ll}\text { 4.4.3 } & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . 454 }\end{array}$
4.4.4 Solving as exact nonlinear second order ode ode 455
4.4.5 Maple step by step solution . 456

Internal problem ID [6824]
Internal file name [OUTPUT/6071_Thursday_July_28_2022_04_29_09_AM_95148677/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_integrable_as_is", "second_order_ode_missing_x", "exact nonlinear second order ode"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear],
    _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order,
    _reducible, _mu_xy]]
```

$$
y y^{\prime \prime}+y^{\prime 2}=0
$$

4.4.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y y^{\prime \prime}+y^{\prime 2}\right) d x=0 \\
y y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{y}{c_{1}} d y & =x+c_{2} \\
\frac{y^{2}}{2 c_{1}} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \\
& y_{2}=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{1}\\
& y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\sqrt{2 c_{1} c_{2}+2 c_{1} x}
$$

Verified OK.

$$
y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
$$

Verified OK.

4.4.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
y p(y)\left(\frac{d}{d y} p(y)\right)+p(y)^{2}=0
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{p}{y}
\end{aligned}
$$

Where $f(y)=-\frac{1}{y}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =-\frac{1}{y} d y \\
\int \frac{1}{p} d p & =\int-\frac{1}{y} d y \\
\ln (p) & =-\ln (y)+c_{1} \\
p & =\mathrm{e}^{-\ln (y)+c_{1}} \\
& =\frac{c_{1}}{y}
\end{aligned}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=\frac{c_{1}}{y}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{y}{c_{1}} d y & =x+c_{2} \\
\frac{y^{2}}{2 c_{1}} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \\
& y_{2}=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{1}\\
& y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\sqrt{2 c_{1} c_{2}+2 c_{1} x}
$$

Verified OK.

$$
y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
$$

Verified OK.

4.4.3 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y y^{\prime \prime}+y^{\prime 2}=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y y^{\prime \prime}+y^{\prime 2}\right) d x=0 \\
y y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{y}{c_{1}} d y & =x+c_{2} \\
\frac{y^{2}}{2 c_{1}} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \\
& y_{2}=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{1}\\
& y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\sqrt{2 c_{1} c_{2}+2 c_{1} x}
$$

Verified OK.

$$
y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
$$

Verified OK.

4.4.4 Solving as exact nonlinear second order ode ode

An exact non-linear second order ode has the form

$$
a_{2}\left(x, y, y^{\prime}\right) y^{\prime \prime}+a_{1}\left(x, y, y^{\prime}\right) y^{\prime}+a_{0}\left(x, y, y^{\prime}\right)=0
$$

Where the following conditions are satisfied

$$
\begin{aligned}
\frac{\partial a_{2}}{\partial y} & =\frac{\partial a_{1}}{\partial y^{\prime}} \\
\frac{\partial a_{2}}{\partial x} & =\frac{\partial a_{0}}{\partial y^{\prime}} \\
\frac{\partial a_{1}}{\partial x} & =\frac{\partial a_{0}}{\partial y}
\end{aligned}
$$

Looking at the the ode given we see that

$$
\begin{aligned}
& a_{2}=y \\
& a_{1}=y^{\prime} \\
& a_{0}=0
\end{aligned}
$$

Applying the conditions to the above shows this is a nonlinear exact second order ode. Therefore it can be reduced to first order ode given by

$$
\begin{array}{r}
\int a_{2} d y^{\prime}+\int a_{1} d y+\int a_{0} d x=c_{1} \\
\int y d y^{\prime}+\int y^{\prime} d y+\int 0 d x=c_{1}
\end{array}
$$

Which results in

$$
2 y y^{\prime}=c_{1}
$$

Which is now solved Integrating both sides gives

$$
\begin{aligned}
\int \frac{2 y}{c_{1}} d y & =x+c_{2} \\
\frac{y^{2}}{c_{1}} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\sqrt{c_{1} c_{2}+c_{1} x} \\
& y_{2}=-\sqrt{c_{1} c_{2}+c_{1} x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{c_{1} c_{2}+c_{1} x} \tag{1}\\
& y=-\sqrt{c_{1} c_{2}+c_{1} x} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\sqrt{c_{1} c_{2}+c_{1} x}
$$

Verified OK.

$$
y=-\sqrt{c_{1} c_{2}+c_{1} x}
$$

Verified OK.

4.4.5 Maple step by step solution

Let's solve

$$
y y^{\prime \prime}+y^{\prime 2}=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u

$$
u(x)=y^{\prime}
$$

- \quad Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $y u(y)\left(\frac{d}{d y} u(y)\right)+u(y)^{2}=0$
- \quad Separate variables

$$
\frac{\frac{d}{d y} u(y)}{u(y)}=-\frac{1}{y}
$$

- Integrate both sides with respect to y

$$
\int \frac{\frac{d}{d y} u(y)}{u(y)} d y=\int-\frac{1}{y} d y+c_{1}
$$

- Evaluate integral

$$
\ln (u(y))=-\ln (y)+c_{1}
$$

- \quad Solve for $u(y)$

$$
u(y)=\frac{\mathrm{e}^{c_{1}}}{y}
$$

- \quad Solve 1st ODE for $u(y)$
$u(y)=\frac{\mathrm{e}^{c_{1}}}{y}$
- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=\frac{\mathrm{e}^{c_{1}}}{y}
$$

- \quad Separate variables

$$
y y^{\prime}=\mathrm{e}^{c_{1}}
$$

- Integrate both sides with respect to x

$$
\int y y^{\prime} d x=\int \mathrm{e}^{c_{1}} d x+c_{2}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}=\mathrm{e}^{c_{1}} x+c_{2}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{2 \mathrm{e}^{c_{1}} x+2 c_{2}}, y=-\sqrt{2 \mathrm{e}^{c_{1}} x+2 c_{2}}\right\}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 33
dsolve $\left(y(x) * \operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)^{\wedge} 2=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\sqrt{2 c_{1} x+2 c_{2}} \\
& y(x)=-\sqrt{2 c_{1} x+2 c_{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.172 (sec). Leaf size: 20
DSolve [y $[x] * y$ '' $[x]+(y$ ' $[x]) \sim 2==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{2} \sqrt{2 x-c_{1}}
$$

4.5 problem 5

4.5.1 Solving as second order ode missing x ode 459
4.5.2 Maple step by step solution . 461

Internal problem ID [6825]
Internal file name [OUTPUT/6072_Thursday_July_28_2022_04_29_13_AM_10730317/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],
    [_2nd_order, _reducible, _mu_y_y1]]
```

$$
y^{2} y^{\prime \prime}+y^{\prime 3}=0
$$

4.5.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
y^{2} p(y)\left(\frac{d}{d y} p(y)\right)+p(y)^{3}=0
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{p^{2}}{y^{2}}
\end{aligned}
$$

Where $f(y)=-\frac{1}{y^{2}}$ and $g(p)=p^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p^{2}} d p & =-\frac{1}{y^{2}} d y \\
\int \frac{1}{p^{2}} d p & =\int-\frac{1}{y^{2}} d y \\
-\frac{1}{p} & =\frac{1}{y}+c_{1}
\end{aligned}
$$

The solution is

$$
-\frac{1}{p(y)}-\frac{1}{y}-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\frac{1}{y^{\prime}}-\frac{1}{y}-c_{1}=0
$$

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{c_{1} y+1}{y} d y & =x+c_{2} \\
-c_{1} y-\ln (y) & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{- \text {LambertW }\left(c_{1} \mathrm{e}^{-x-c_{2}}\right)-x-c_{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(c_{1} \mathrm{e}^{-x-c_{2}}\right)-x-c_{2}}
$$

Verified OK.

4.5.2 Maple step by step solution

Let's solve
$y^{2} y^{\prime \prime}+y^{3}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Define new dependent variable u

$$
u(x)=y^{\prime}
$$

- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- \quad Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $y^{2} u(y)\left(\frac{d}{d y} u(y)\right)+u(y)^{3}=0$
- \quad Separate variables

$$
\frac{\frac{d}{d y} u(y)}{u(y)^{2}}=-\frac{1}{y^{2}}
$$

- Integrate both sides with respect to y
$\int \frac{\frac{d}{d y} u(y)}{u(y)^{2}} d y=\int-\frac{1}{y^{2}} d y+c_{1}$
- Evaluate integral
$-\frac{1}{u(y)}=\frac{1}{y}+c_{1}$
- \quad Solve for $u(y)$
$u(y)=-\frac{y}{c_{1} y+1}$
- \quad Solve 1st ODE for $u(y)$

$$
u(y)=-\frac{y}{c_{1} y+1}
$$

- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=-\frac{y}{1+c_{1} y}
$$

- \quad Separate variables

$$
\frac{y^{\prime}\left(1+c_{1} y\right)}{y}=-1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}\left(1+c_{1} y\right)}{y} d x=\int(-1) d x+c_{2}
$$

- Evaluate integral

$$
c_{1} y+\ln (y)=-x+c_{2}
$$

- \quad Solve for y
$y=\mathrm{e}^{- \text {LambertW }\left(c_{1} \mathrm{e}^{-x+c_{2}}\right)-x+c_{2}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)^3/_a^2 = 0, _b(_a)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 29
dsolve $(y(x))^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x) \wedge 3=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=c_{1} \\
& y(x)=-\frac{\text { LambertW }\left(-c_{1} \mathrm{e}^{-x-c_{2}}\right)}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.609 (sec). Leaf size: 37

$$
y(x) \rightarrow c_{2}\left(1+\frac{1}{\text { InverseFunction }\left[-\frac{1}{\# 1}-\log (\# 1)+\log (\# 1+1) \&\right]\left[-x+c_{1}\right]}\right)
$$

4.6 problem 6

4.6.1 Solving as second order ode missing x ode 464
4.6.2 Maple step by step solution . 466

Internal problem ID [6826]
Internal file name [OUTPUT/6073_Thursday_July_28_2022_04_29_16_AM_33134786/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x"
Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,
    _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
```

$$
(y+1) y^{\prime \prime}-y^{2}=0
$$

4.6.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
(y+1) p(y)\left(\frac{d}{d y} p(y)\right)-p(y)^{2}=0
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{p}{y+1}
\end{aligned}
$$

Where $f(y)=\frac{1}{y+1}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =\frac{1}{y+1} d y \\
\int \frac{1}{p} d p & =\int \frac{1}{y+1} d y \\
\ln (p) & =\ln (y+1)+c_{1} \\
p & =\mathrm{e}^{\ln (y+1)+c_{1}} \\
& =c_{1}(y+1)
\end{aligned}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=c_{1}(y+1)
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{c_{1}(y+1)} d y & =\int d x \\
\frac{\ln (y+1)}{c_{1}} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (y+1)}{c_{1}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
(y+1)^{\frac{1}{c_{1}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{3} \mathrm{e}^{x}\right)^{c_{1}}-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{3} \mathrm{e}^{x}\right)^{c_{1}}-1
$$

Verified OK.

4.6.2 Maple step by step solution

Let's solve
$(y+1) y^{\prime \prime}-y^{\prime 2}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u
$u(x)=y^{\prime}$
- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- \quad Substitute in the definition of u

$$
u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}
$$

- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $(y+1) u(y)\left(\frac{d}{d y} u(y)\right)-u(y)^{2}=0$
- \quad Separate variables
$\frac{\frac{d}{d y} u(y)}{u(y)}=\frac{1}{y+1}$
- Integrate both sides with respect to y
$\int \frac{\frac{d}{d y} u(y)}{u(y)} d y=\int \frac{1}{y+1} d y+c_{1}$
- Evaluate integral
$\ln (u(y))=\ln (y+1)+c_{1}$
- \quad Solve for $u(y)$

$$
u(y)=\mathrm{e}^{c_{1}}(y+1)
$$

- \quad Solve 1st ODE for $u(y)$

$$
u(y)=\mathrm{e}^{c_{1}}(y+1)
$$

- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=\mathrm{e}^{c_{1}}(y+1)
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{y+1}=\mathrm{e}^{c_{1}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y+1} d x=\int \mathrm{e}^{c_{1}} d x+c_{2}
$$

- Evaluate integral

$$
\ln (y+1)=\mathrm{e}^{c_{1}} x+c_{2}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{\mathrm{e}^{c_{1} x+c_{2}}}-1
$$

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`
\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 16

```
dsolve((y(x)+1)*diff (y (x),x$2)=diff(y(x),x)^2,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-1 \\
& y(x)=\mathrm{e}^{c_{1} x} c_{2}-1
\end{aligned}
$$

Solution by Mathematica
Time used: 1.193 (sec). Leaf size: 26
DSolve[(y[x]+1)*y' $[x]==(y '[x]) \wedge 2, y[x], x$, IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-1+\frac{e^{c_{1}\left(x+c_{2}\right)}}{c_{1}} \\
& y(x) \rightarrow \text { Indeterminate }
\end{aligned}
$$

4.7 problem 7

4.7.1 Solving as second order ode missing y ode 468
4.7.2 Solving as second order ode missing x ode 470
4.7.3 Maple step by step solution . 471

Internal problem ID [6827]
Internal file name [OUTPUT/6074_Thursday_July_28_2022_04_29_17_AM_48951552/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_order_ode_missing_y"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]
```

$$
2 a y^{\prime \prime}+y^{\prime 3}=0
$$

4.7.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
2 a p^{\prime}(x)+p(x)^{3}=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{2 a}{p^{3}} d p & =x+c_{1} \\
\frac{a}{p^{2}} & =x+c_{1}
\end{aligned}
$$

Solving for p gives these solutions

$$
\begin{aligned}
& p_{1}=\frac{\sqrt{\left(x+c_{1}\right) a}}{x+c_{1}} \\
& p_{2}=-\frac{\sqrt{\left(x+c_{1}\right) a}}{x+c_{1}}
\end{aligned}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{\sqrt{\left(x+c_{1}\right) a}}{x+c_{1}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\sqrt{\left(x+c_{1}\right) a}}{x+c_{1}} \mathrm{~d} x \\
& =2 \sqrt{\left(x+c_{1}\right) a}+c_{2}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-\frac{\sqrt{\left(x+c_{1}\right) a}}{x+c_{1}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{\sqrt{\left(x+c_{1}\right) a}}{x+c_{1}} \mathrm{~d} x \\
& =-2 \sqrt{\left(x+c_{1}\right) a}+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=2 \sqrt{\left(x+c_{1}\right) a}+c_{2} \tag{1}\\
& y=-2 \sqrt{\left(x+c_{1}\right) a}+c_{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=2 \sqrt{\left(x+c_{1}\right) a}+c_{2}
$$

Verified OK.

$$
y=-2 \sqrt{\left(x+c_{1}\right) a}+c_{3}
$$

Verified OK.

4.7.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
2 a p(y)\left(\frac{d}{d y} p(y)\right)+p(y)^{3}=0
$$

Which is now solved as first order ode for $p(y)$. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{2 a}{p^{2}} d p & =y+c_{1} \\
\frac{2 a}{p} & =y+c_{1}
\end{aligned}
$$

Solving for p gives these solutions

$$
p_{1}=\frac{2 a}{y+c_{1}}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=\frac{2 a}{y+c_{1}}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{y+c_{1}}{2 a} d y & =x+c_{2} \\
\frac{\frac{1}{2} y^{2}+c_{1} y}{2 a} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=-c_{1}-\sqrt{4 a c_{2}+4 x a+c_{1}^{2}} \\
& y_{2}=-c_{1}+\sqrt{4 a c_{2}+4 x a+c_{1}^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-c_{1}-\sqrt{4 a c_{2}+4 x a+c_{1}^{2}} \tag{1}\\
& y=-c_{1}+\sqrt{4 a c_{2}+4 x a+c_{1}^{2}} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-c_{1}-\sqrt{4 a c_{2}+4 x a+c_{1}^{2}}
$$

Verified OK.

$$
y=-c_{1}+\sqrt{4 a c_{2}+4 x a+c_{1}^{2}}
$$

Verified OK.

4.7.3 Maple step by step solution

Let's solve

$$
2 a y^{\prime \prime}+y^{\prime 3}=0
$$

- Highest derivative means the order of the ODE is 2

```
y'
```

- Make substitution $u=y^{\prime}$ to reduce order of ODE

$$
2 a u^{\prime}(x)+u(x)^{3}=0
$$

- Separate variables

$$
\frac{u^{\prime}(x)}{u(x)^{3}}=-\frac{1}{2 a}
$$

- Integrate both sides with respect to x

$$
\int \frac{u^{\prime}(x)}{u(x)^{3}} d x=\int-\frac{1}{2 a} d x+c_{1}
$$

- Evaluate integral
$-\frac{1}{2 u(x)^{2}}=-\frac{x}{2 a}+c_{1}$
- \quad Solve for $u(x)$
$\left\{u(x)=\frac{\sqrt{-\left(2 c_{1} a-x\right) a}}{2 c_{1} a-x}, u(x)=-\frac{\sqrt{-\left(2 c_{1} a-x\right) a}}{2 c_{1} a-x}\right\}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=\frac{\sqrt{-\left(2 c_{1} a-x\right) a}}{2 c_{1} a-x}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=\frac{\sqrt{-\left(2 c_{1} a-x\right) a}}{2 c_{1} a-x}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int \frac{\sqrt{-\left(2 c_{1} a-x\right) a}}{2 c_{1} a-x} d x+c_{2}$
- Compute integrals
$y=-2 \sqrt{-\left(2 c_{1} a-x\right) a}+c_{2}$
- \quad Solve 2nd ODE for $u(x)$
$u(x)=-\frac{\sqrt{-\left(2 c_{1} a-x\right) a}}{2 c_{1} a-x}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=-\frac{\sqrt{-\left(2 c_{1} a-x\right) a}}{2 c_{1} a-x}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int-\frac{\sqrt{-\left(2 c_{1} a-x\right) a}}{2 c_{1} a-x} d x+c_{2}$
- Compute integrals
$y=2 \sqrt{-\left(2 c_{1} a-x\right) a}+c_{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, --> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(1/2)*_b(_a)^3/a, _b(_a), HINT = [[1,
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 0], [y, __b^2], [_a, -1/
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 29

```
dsolve(2*a*diff(y(x),x$2)+diff(y(x),x)^3=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=2 \sqrt{\left(x+c_{1}\right) a}+c_{2} \\
& y(x)=-2 \sqrt{\left(x+c_{1}\right) a}+c_{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.33 (sec). Leaf size: 51
DSolve[2*a*y''[x]+(y'[x])^3==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow c_{2}-2 \sqrt{a} \sqrt{x-2 a c_{1}} \\
& y(x) \rightarrow 2 \sqrt{a} \sqrt{x-2 a c_{1}}+c_{2}
\end{aligned}
$$

4.8 problem 9

4.8.1 Existence and uniqueness analysis 475
4.8.2 Solving as second order integrable as is ode 475
4.8.3 Solving as second order ode missing y ode 478
$\begin{array}{ll}\text { 4.8.4 } & \text { Solving as second order ode non constant coeff transformation } \\ & \text { on B ode . } 480\end{array}$
$\begin{array}{ll}\text { 4.8.5 } & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 485\end{array}$
4.8.6 Solving using Kovacic algorithm 488
4.8.7 Solving as exact linear second order ode ode 497
4.8.8 Maple step by step solution . 500

Internal problem ID [6828]
Internal file name [OUTPUT/6075_Thursday_July_28_2022_04_29_19_AM_15098074/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode__non_constant_coeff_transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x y^{\prime \prime}-y^{\prime}=x^{5}
$$

With initial conditions

$$
\left[y(1)=\frac{1}{2}, y^{\prime}(1)=1\right]
$$

4.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =0 \\
F & =x^{4}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}=x^{4}
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $F=x^{4}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

4.8.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \quad \int\left(x y^{\prime \prime}-y^{\prime}\right) d x=\int x^{5} d x \\
& x y^{\prime}-2 y=\frac{x^{6}}{6}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{x^{6}+6 c_{1}}{6 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=\frac{x^{6}+6 c_{1}}{6 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{x^{6}+6 c_{1}}{6 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(\frac{x^{6}+6 c_{1}}{6 x}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\left(\frac{x^{6}+6 c_{1}}{6 x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int \frac{x^{6}+6 c_{1}}{6 x^{3}} \mathrm{~d} x \\
\frac{y}{x^{2}} & =\frac{x^{4}}{24}-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=x^{2}\left(\frac{x^{4}}{24}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x^{2}
$$

which simplifies to

$$
y=\frac{1}{24} x^{6}-\frac{1}{2} c_{1}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{1}{24} x^{6}-\frac{1}{2} c_{1}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{1}{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
\frac{1}{2}=\frac{1}{24}-\frac{c_{1}}{2}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{1}{4} x^{5}+2 c_{2} x
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{1}{4}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{6} \\
& c_{2}=\frac{3}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2} \tag{1}
\end{equation*}
$$

Figure 2: Solution plot
Verification of solutions

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Verified OK.

4.8.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
x p^{\prime}(x)-p(x)-x^{5}=0
$$

Which is now solve for $p(x)$ as first order ode.
Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(x^{4}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{p}{x}\right) & =\left(\frac{1}{x}\right)\left(x^{4}\right) \\
\mathrm{d}\left(\frac{p}{x}\right) & =x^{3} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{p}{x}=\int x^{3} \mathrm{~d} x \\
& \frac{p}{x}=\frac{x^{4}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
p(x)=\frac{1}{4} x^{5}+c_{1} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $p=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{1}{4}+c_{1}
$$

$$
c_{1}=\frac{3}{4}
$$

Substituting c_{1} found above in the general solution gives

$$
p(x)=\frac{1}{4} x^{5}+\frac{3}{4} x
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{1}{4} x^{5}+\frac{3}{4} x
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{4} x^{5}+\frac{3}{4} x \mathrm{~d} x \\
& =\frac{1}{24} x^{6}+\frac{3}{8} x^{2}+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\frac{5}{12}+c_{2} \\
c_{2}=\frac{1}{12}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2} \tag{1}
\end{equation*}
$$

Figure 3: Solution plot

Verification of solutions

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Verified OK.

4.8.4 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x \\
& B=-1 \\
& C=0 \\
& F=x^{5}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(x)(0)+(-1)(0)+(0)(-1) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-x v^{\prime \prime}+(1) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-x u^{\prime}(x)+u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{1}{x} d x \\
\ln (u) & =\ln (x)+c_{1} \\
u & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1} x
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int c_{1} x \mathrm{~d} x \\
& =\frac{c_{1} x^{2}}{2}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(-1)\left(\frac{c_{1} x^{2}}{2}+c_{2}\right) \\
& =-\frac{c_{1} x^{2}}{2}-c_{2}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=-1 \\
& y_{2}=x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
-1 & x^{2} \\
\frac{d}{d x}(-1) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
-1 & x^{2} \\
0 & 2 x
\end{array}\right|
$$

Therefore

$$
W=(-1)(2 x)-\left(x^{2}\right)(0)
$$

Which simplifies to

$$
W=-2 x
$$

Which simplifies to

$$
W=-2 x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{7}}{-2 x^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{x^{5}}{2} d x
$$

Hence

$$
u_{1}=\frac{x^{6}}{12}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{-x^{5}}{-2 x^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x^{3}}{2} d x
$$

Hence

$$
u_{2}=\frac{x^{4}}{8}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x^{6}}{24}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-\frac{c_{1} x^{2}}{2}-c_{2}\right)+\left(\frac{x^{6}}{24}\right) \\
& =-\frac{1}{2} c_{1} x^{2}-c_{2}+\frac{1}{24} x^{6}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{1}{2} c_{1} x^{2}-c_{2}+\frac{1}{24} x^{6} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{1}{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
\frac{1}{2}=-\frac{c_{1}}{2}-c_{2}+\frac{1}{24} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} x+\frac{1}{4} x^{5}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-c_{1}+\frac{1}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{3}{4} \\
& c_{2}=-\frac{1}{12}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2} \tag{1}
\end{equation*}
$$

Figure 4: Solution plot

Verification of solutions

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Verified OK.

4.8.5 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x y^{\prime \prime}-y^{\prime}=x^{5}
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \quad \int\left(x y^{\prime \prime}-y^{\prime}\right) d x=\int x^{5} d x \\
& x y^{\prime}-2 y=\frac{x^{6}}{6}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{2}{x} \\
q(x) & =\frac{x^{6}+6 c_{1}}{6 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=\frac{x^{6}+6 c_{1}}{6 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{x^{6}+6 c_{1}}{6 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(\frac{x^{6}+6 c_{1}}{6 x}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\left(\frac{x^{6}+6 c_{1}}{6 x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int \frac{x^{6}+6 c_{1}}{6 x^{3}} \mathrm{~d} x \\
\frac{y}{x^{2}} & =\frac{x^{4}}{24}-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=x^{2}\left(\frac{x^{4}}{24}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x^{2}
$$

which simplifies to

$$
y=\frac{1}{24} x^{6}-\frac{1}{2} c_{1}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{1}{24} x^{6}-\frac{1}{2} c_{1}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{1}{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
\frac{1}{2}=\frac{1}{24}-\frac{c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{1}{4} x^{5}+2 c_{2} x
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{1}{4}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{6} \\
& c_{2}=\frac{3}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2} \tag{1}
\end{equation*}
$$

Figure 5: Solution plot

Verification of solutions

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Verified OK.

4.8.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x y^{\prime \prime}-y^{\prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x \\
& B=-1 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 20: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{d} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{x} d x} \\
& =z_{1} e^{\frac{\ln (x)}{2}} \\
& =z_{1}(\sqrt{x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x y^{\prime \prime}-y^{\prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}+\frac{c_{2} x^{2}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =1 \\
y_{2} & =\frac{x^{2}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & \frac{x^{2}}{2} \\
\frac{d}{d x}(1) & \frac{d}{d x}\left(\frac{x^{2}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
1 & \frac{x^{2}}{2} \\
0 & x
\end{array}\right|
$$

Therefore

$$
W=(1)(x)-\left(\frac{x^{2}}{2}\right)(0)
$$

Which simplifies to

$$
W=x
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x^{7}}{2}}{x^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{5}}{2} d x
$$

Hence

$$
u_{1}=-\frac{x^{6}}{12}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{5}}{x^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int x^{3} d x
$$

Hence

$$
u_{2}=\frac{x^{4}}{4}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x^{6}}{24}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\frac{c_{2} x^{2}}{2}\right)+\left(\frac{x^{6}}{24}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+\frac{1}{2} c_{2} x^{2}+\frac{1}{24} x^{6} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{1}{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
\frac{1}{2}=c_{1}+\frac{c_{2}}{2}+\frac{1}{24} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{2} x+\frac{1}{4} x^{5}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{2}+\frac{1}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
c_{1} & =\frac{1}{12} \\
c_{2} & =\frac{3}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2} \tag{1}
\end{equation*}
$$

Figure 6: Solution plot

Verification of solutions

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Verified OK.

4.8.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =x \\
q(x) & =-1 \\
r(x) & =0 \\
s(x) & =x^{5}
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x y^{\prime}-2 y=\int x^{5} d x
$$

We now have a first order ode to solve which is

$$
x y^{\prime}-2 y=\frac{x^{6}}{6}+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{2}{x} \\
q(x) & =\frac{x^{6}+6 c_{1}}{6 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=\frac{x^{6}+6 c_{1}}{6 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{x^{6}+6 c_{1}}{6 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(\frac{x^{6}+6 c_{1}}{6 x}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =\left(\frac{x^{6}+6 c_{1}}{6 x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int \frac{x^{6}+6 c_{1}}{6 x^{3}} \mathrm{~d} x \\
\frac{y}{x^{2}} & =\frac{x^{4}}{24}-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=x^{2}\left(\frac{x^{4}}{24}-\frac{c_{1}}{2 x^{2}}\right)+c_{2} x^{2}
$$

which simplifies to

$$
y=\frac{1}{24} x^{6}-\frac{1}{2} c_{1}+c_{2} x^{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{1}{24} x^{6}-\frac{1}{2} c_{1}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{1}{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
\frac{1}{2}=\frac{1}{24}-\frac{c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{1}{4} x^{5}+2 c_{2} x
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{1}{4}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{6} \\
& c_{2}=\frac{3}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2} \tag{1}
\end{equation*}
$$

Figure 7: Solution plot

Verification of solutions

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Verified OK.

4.8.8 Maple step by step solution

Let's solve

$$
\left[x y^{\prime \prime}-y^{\prime}=x^{5}, y(1)=\frac{1}{2},\left.y^{\prime}\right|_{\{x=1\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Make substitution $u=y^{\prime}$ to reduce order of ODE

$$
x u^{\prime}(x)-u(x)=x^{5}
$$

- Isolate the derivative

$$
u^{\prime}(x)=\frac{u(x)}{x}+x^{4}
$$

- Group terms with $u(x)$ on the lhs of the ODE and the rest on the rhs of the ODE $u^{\prime}(x)-\frac{u(x)}{x}=x^{4}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(u^{\prime}(x)-\frac{u(x)}{x}\right)=\mu(x) x^{4}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) u(x))$
$\mu(x)\left(u^{\prime}(x)-\frac{u(x)}{x}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)$
- \quad Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int \mu(x) x^{4} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) u(x)=\int \mu(x) x^{4} d x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=\frac{\int \mu(x) x^{4} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$u(x)=x\left(\int x^{3} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$u(x)=x\left(\frac{x^{4}}{4}+c_{1}\right)$
- \quad Simplify
$u(x)=\frac{x\left(x^{4}+4 c_{1}\right)}{4}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=\frac{x\left(x^{4}+4 c_{1}\right)}{4}$
- \quad Make substitution $u=y^{\prime}$
$y^{\prime}=\frac{x\left(x^{4}+4 c_{1}\right)}{4}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int \frac{x\left(x^{4}+4 c_{1}\right)}{4} d x+c_{2}$
- Compute integrals
$y=\frac{1}{24} x^{6}+\frac{1}{2} c_{1} x^{2}+c_{2}$
Check validity of solution $y=\frac{1}{24} x^{6}+\frac{1}{2} c_{1} x^{2}+c_{2}$
- Use initial condition $y(1)=\frac{1}{2}$

$$
\frac{1}{2}=\frac{1}{24}+\frac{c_{1}}{2}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=\frac{1}{4} x^{5}+c_{1} x
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=1$

$$
1=\frac{1}{4}+c_{1}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{3}{4}, c_{2}=\frac{1}{12}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

- \quad Solution to the IVP

$$
y=\frac{1}{24} x^{6}+\frac{1}{12}+\frac{3}{8} x^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (_a^5+_b(_a))/_a, _b(_a)
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 16

```
dsolve([x*diff(y(x),x$2)=diff(y(x),x)+x^5,y(1) = 1/2, D(y)(1) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{1}{24} x^{6}+\frac{3}{8} x^{2}+\frac{1}{12}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 19
DSolve[\{x*y''[x]==y'[x]+x^5,\{y[1]==1/2,y'[1]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{24}\left(x^{6}+9 x^{2}+2\right)
$$

4.9 problem 10

4.9.1 Existence and uniqueness analysis 505
4.9.2 Solving as second order integrable as is ode 505
4.9.3 Solving as second order ode missing y ode 507
4.9.4 Solving as second order ode non constant coeff transformation on B ode 510
4.9.5 Solving as type second_order_integrable_as_is (not using ABC version) 515
4.9.6 Solving using Kovacic algorithm 517
4.9.7 Solving as exact linear second order ode ode 526
4.9.8 Maple step by step solution 529

Internal problem ID [6829]
Internal file name [OUTPUT/6076_Thursday_July_28_2022_04_29_21_AM_8781136/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_ode__non_constant_coeff_transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x y^{\prime \prime}+y^{\prime}=-x
$$

With initial conditions

$$
\left[y(2)=-1, y^{\prime}(2)=-\frac{1}{2}\right]
$$

4.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =0 \\
F & =-1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}=-1
$$

The domain of $p(x)=\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $F=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

4.9.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x y^{\prime \prime}+y^{\prime}\right) d x=\int-x d x \\
& x y^{\prime}=-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{-x^{2}+2 c_{1}}{2 x} \mathrm{~d} x \\
& =-\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=-\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=-1+c_{1} \ln (2)+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{x}{2}+\frac{c_{1}}{x}
$$

substituting $y^{\prime}=-\frac{1}{2}$ and $x=2$ in the above gives

$$
\begin{equation*}
-\frac{1}{2}=\frac{c_{1}}{2}-1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-\ln (2)
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2) \tag{1}
\end{equation*}
$$

Figure 8: Solution plot

Verification of solutions

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Verified OK.

4.9.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
x p^{\prime}(x)+p(x)+x=0
$$

Which is now solve for $p(x)$ as first order ode.
Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)(-1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x p) & =(x)(-1) \\
\mathrm{d}(x p) & =(-x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x p=\int-x \mathrm{~d} x \\
& x p=-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
p(x)=-\frac{x}{2}+\frac{c_{1}}{x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $p=-\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-\frac{1}{2}=\frac{c_{1}}{2}-1 \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
p(x)=-\frac{x^{2}-2}{2 x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-\frac{x^{2}-2}{2 x}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{x^{2}-2}{2 x} \mathrm{~d} x \\
& =-\frac{x^{2}}{4}+\ln (x)+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=2$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
-1=-1+\ln (2)+c_{2}
$$

$$
c_{2}=-\ln (2)
$$

Substituting c_{2} found above in the general solution gives

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2) \tag{1}
\end{equation*}
$$

Figure 9: Solution plot

Verification of solutions

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Verified OK.

4.9.4 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x \\
& B=1 \\
& C=0 \\
& F=-x
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(x)(0)+(1)(0)+(0)(1) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
x v^{\prime \prime}+(1) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
x u^{\prime}(x)+u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x} \mathrm{~d} x \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(1)\left(c_{1} \ln (x)+c_{2}\right) \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\ln (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & \ln (x) \\
\frac{d}{d x}(1) & \frac{d}{d x}(\ln (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
1 & \ln (x) \\
0 & \frac{1}{x}
\end{array}\right|
$$

Therefore

$$
W=(1)\left(\frac{1}{x}\right)-(\ln (x))(0)
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\ln (x) x}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int-\ln (x) x d x
$$

Hence

$$
u_{1}=\frac{\ln (x) x^{2}}{2}-\frac{x^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{-x}{1} d x
$$

Which simplifies to

$$
u_{2}=\int-x d x
$$

Hence

$$
u_{2}=-\frac{x^{2}}{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{x^{2}(-1+2 \ln (x))}{4} \\
& u_{2}=-\frac{x^{2}}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x^{2}(-1+2 \ln (x))}{4}-\frac{\ln (x) x^{2}}{2}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{x^{2}}{4}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(c_{1} \ln (x)+c_{2}\right)+\left(-\frac{x^{2}}{4}\right) \\
& =-\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=-1+c_{1} \ln (2)+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{x}{2}+\frac{c_{1}}{x}
$$

substituting $y^{\prime}=-\frac{1}{2}$ and $x=2$ in the above gives

$$
\begin{equation*}
-\frac{1}{2}=\frac{c_{1}}{2}-1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-\ln (2)
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2) \tag{1}
\end{equation*}
$$

Figure 10: Solution plot

Verification of solutions

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Verified OK.

4.9.5 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x y^{\prime \prime}+y^{\prime}=-x
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x y^{\prime \prime}+y^{\prime}\right) d x=\int-x d x \\
& x y^{\prime}=-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{-x^{2}+2 c_{1}}{2 x} \mathrm{~d} x \\
& =-\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=-1+c_{1} \ln (2)+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{x}{2}+\frac{c_{1}}{x}
$$

substituting $y^{\prime}=-\frac{1}{2}$ and $x=2$ in the above gives

$$
\begin{equation*}
-\frac{1}{2}=\frac{c_{1}}{2}-1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-\ln (2)
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2) \tag{1}
\end{equation*}
$$

Figure 11: Solution plot
Verification of solutions

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Verified OK.

4.9.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x y^{\prime \prime}+y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =x \\
B & =1 \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 22: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{x} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(\ln (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x y^{\prime \prime}+y^{\prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}+c_{2} \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\ln (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & \ln (x) \\
\frac{d}{d x}(1) & \frac{d}{d x}(\ln (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
1 & \ln (x) \\
0 & \frac{1}{x}
\end{array}\right|
$$

Therefore

$$
W=(1)\left(\frac{1}{x}\right)-(\ln (x))(0)
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\ln (x) x}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int-\ln (x) x d x
$$

Hence

$$
u_{1}=\frac{\ln (x) x^{2}}{2}-\frac{x^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{-x}{1} d x
$$

Which simplifies to

$$
u_{2}=\int-x d x
$$

Hence

$$
u_{2}=-\frac{x^{2}}{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{x^{2}(-1+2 \ln (x))}{4} \\
& u_{2}=-\frac{x^{2}}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x^{2}(-1+2 \ln (x))}{4}-\frac{\ln (x) x^{2}}{2}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{x^{2}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \ln (x)\right)+\left(-\frac{x^{2}}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1}+c_{2} \ln (x)-\frac{x^{2}}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=c_{1}+c_{2} \ln (2)-1 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{2}}{x}-\frac{x}{2}
$$

substituting $y^{\prime}=-\frac{1}{2}$ and $x=2$ in the above gives

$$
\begin{equation*}
-\frac{1}{2}=\frac{c_{2}}{2}-1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\ln (2) \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2) \tag{1}
\end{equation*}
$$

Figure 12: Solution plot

Verification of solutions

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Verified OK.

4.9.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x \\
& q(x)=1 \\
& r(x)=0 \\
& s(x)=-x
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x y^{\prime}=\int-x d x
$$

We now have a first order ode to solve which is

$$
x y^{\prime}=-\frac{x^{2}}{2}+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{-x^{2}+2 c_{1}}{2 x} \mathrm{~d} x \\
& =-\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=2$ in the above gives

$$
\begin{equation*}
-1=-1+c_{1} \ln (2)+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{x}{2}+\frac{c_{1}}{x}
$$

substituting $y^{\prime}=-\frac{1}{2}$ and $x=2$ in the above gives

$$
\begin{equation*}
-\frac{1}{2}=\frac{c_{1}}{2}-1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-\ln (2)
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2) \tag{1}
\end{equation*}
$$

Figure 13: Solution plot
$\underline{\text { Verification of solutions }}$

$$
y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Verified OK.

4.9.8 Maple step by step solution

Let's solve

$$
\left[x y^{\prime \prime}+y^{\prime}=-x, y(2)=-1,\left.y^{\prime}\right|_{\{x=2\}}=-\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Make substitution $u=y^{\prime}$ to reduce order of ODE

$$
x u^{\prime}(x)+u(x)=-x
$$

- Isolate the derivative

$$
u^{\prime}(x)=-1-\frac{u(x)}{x}
$$

- Group terms with $u(x)$ on the lhs of the ODE and the rest on the rhs of the ODE $u^{\prime}(x)+\frac{u(x)}{x}=-1$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(u^{\prime}(x)+\frac{u(x)}{x}\right)=-\mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) u(x))$

$$
\mu(x)\left(u^{\prime}(x)+\frac{u(x)}{x}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)
$$

- \quad Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x}$
- \quad Solve to find the integrating factor

$$
\mu(x)=x
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int-\mu(x) d x+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(x) u(x)=\int-\mu(x) d x+c_{1}
$$

- \quad Solve for $u(x)$

$$
u(x)=\frac{\int-\mu(x) d x+c_{1}}{\mu(x)}
$$

- \quad Substitute $\mu(x)=x$

$$
u(x)=\frac{\int-x d x+c_{1}}{x}
$$

- Evaluate the integrals on the rhs
$u(x)=\frac{-\frac{x^{2}}{2}+c_{1}}{x}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=\frac{-\frac{x^{2}}{2}+c_{1}}{x}$
- \quad Make substitution $u=y^{\prime}$
$y^{\prime}=\frac{-\frac{x^{2}}{2}+c_{1}}{x}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int \frac{-\frac{x^{2}}{2}+c_{1}}{x} d x+c_{2}$
- Compute integrals
$y=-\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2}$
Check validity of solution $y=-\frac{x^{2}}{4}+c_{1} \ln (x)+c_{2}$
- Use initial condition $y(2)=-1$
$-1=-1+c_{1} \ln (2)+c_{2}$
- Compute derivative of the solution
$y^{\prime}=-\frac{x}{2}+\frac{c_{1}}{x}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=2\}}=-\frac{1}{2}$
$-\frac{1}{2}=\frac{c_{1}}{2}-1$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=-\ln (2)\right\}$
- Substitute constant values into general solution and simplify $y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)$
- \quad Solution to the IVP
$y=-\frac{x^{2}}{4}+\ln (x)-\ln (2)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(_b(_a)+_a)/_a, _b(_a)
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 16

```
dsolve([x*diff (y(x),x$2)+diff (y(x),x)+x=0,y(2) = -1, D(y)(2) = -1/2],y(x), singsol=all)
```

$$
y(x)=-\frac{x^{2}}{4}+\ln (x)-\ln (2)
$$

Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 19
DSolve $\left[\left\{x * y{ }^{\prime}{ }^{\prime}[x]+y\right.\right.$ ' $\left.[x]+x==0,\left\{y[2]==-1, y^{\prime}[2]==-1 / 2\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \log \left(\frac{x}{2}\right)-\frac{x^{2}}{4}
$$

4.10 problem 11

4.10.1 Solving as second order ode missing x ode 532
4.10.2 Maple step by step solution . 536

Internal problem ID [6830]
Internal file name [OUTPUT/6077_Thursday_July_28_2022_04_29_23_AM_4198183/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],
    [_2nd_order, _reducible, _mu_y_y1]]
```

$$
y^{\prime \prime}-2 y y^{\prime 3}=0
$$

4.10.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
p(y)\left(\frac{d}{d y} p(y)\right)-2 y p(y)^{3}=0
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =2 p^{2} y
\end{aligned}
$$

Where $f(y)=2 y$ and $g(p)=p^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p^{2}} d p & =2 y d y \\
\int \frac{1}{p^{2}} d p & =\int 2 y d y \\
-\frac{1}{p} & =y^{2}+c_{1}
\end{aligned}
$$

The solution is

$$
-\frac{1}{p(y)}-y^{2}-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\frac{1}{y^{\prime}}-y^{2}-c_{1}=0
$$

Integrating both sides gives

$$
\begin{aligned}
\int\left(-y^{2}-c_{1}\right) d y & =x+c_{2} \\
-\frac{1}{3} y^{3}-c_{1} y & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{2}-\frac{2 c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}} \\
& y_{2}=-\frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{4}+\frac{c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}} \\
& y_{3}=-\frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{4}+\frac{c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \begin{aligned}
y= & \frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{2} \\
& -\frac{2 c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}
\end{aligned} \tag{1}\\
& y=-\frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{{\underset{c}{1}}^{4}} \\
& +\frac{c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}} \\
& -\frac{i \sqrt{3}\left(\frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{2}+\frac{2 c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}\right)}{2} \\
& \begin{aligned}
y= & -\frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{4} \\
& +\frac{c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}
\end{aligned} \tag{2}\\
& +\frac{i \sqrt{3}\left(\frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{2}+\frac{2 c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}\right)}{2} \tag{3}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{2} \\
& -\frac{2 c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & -\frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{4} \\
& +\frac{c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}} \\
& -\frac{i \sqrt{3}\left(\frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{2}+\frac{2 c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}\right)}{2}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & -\frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{4} \\
& +\frac{c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}} \\
& +\frac{i \sqrt{3}\left(\frac{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{2}+\frac{2 c_{1}}{\left(-12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}\right)}{2}
\end{aligned}
$$

Verified OK.

4.10.2 Maple step by step solution

Let's solve
$y^{\prime \prime}-2 y y^{3}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u

$$
u(x)=y^{\prime}
$$

- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- \quad Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $u(y)\left(\frac{d}{d y} u(y)\right)-2 y u(y)^{3}=0$
- \quad Separate variables
$\frac{\frac{d}{d y} u(y)}{u(y)^{2}}=2 y$
- Integrate both sides with respect to y
$\int \frac{\frac{d}{d y} u(y)}{u(y)^{2}} d y=\int 2 y d y+c_{1}$
- Evaluate integral
$-\frac{1}{u(y)}=y^{2}+c_{1}$
- \quad Solve for $u(y)$
$u(y)=-\frac{1}{y^{2}+c_{1}}$
- \quad Solve 1st ODE for $u(y)$
$u(y)=-\frac{1}{y^{2}+c_{1}}$
- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$
$y^{\prime}=-\frac{1}{y^{2}+c_{1}}$
- \quad Separate variables
$y^{\prime}\left(y^{2}+c_{1}\right)=-1$
- Integrate both sides with respect to x
$\int y^{\prime}\left(y^{2}+c_{1}\right) d x=\int(-1) d x+c_{2}$
- Evaluate integral
$\frac{y^{3}}{3}+c_{1} y=-x+c_{2}$
- \quad Solve for y

$$
y=\frac{\left(12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}-18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}{2}-\frac{2 c_{1}}{\left(12 c_{2}-12 x+4 \sqrt{4 c_{1}^{3}+9 c_{2}^{2}-18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-2*_a*_b(_a) -3 = 0, _b(_a)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```


Solution by Maple

Time used: 0.031 (sec). Leaf size: 324

```
dsolve(diff(y(x),x$2)=2*y(x)*diff(y(x),x)^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=c_{1} \\
& y(x)=\frac{\left(-12 c_{2}-12 x+4 \sqrt{-4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{2}{3}}+4 c_{1}}{2\left(-12 c_{2}-12 x+4 \sqrt{-4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}
\end{aligned}
$$

$y(x)$

$$
=\frac{-i \sqrt{3}\left(-12 c_{2}-12 x+4 \sqrt{-4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{2}{3}}+4 i \sqrt{3} c_{1}-\left(-12 c_{2}-12 x+4 \sqrt{-4 c_{1}^{3}+9 c_{2}^{2}+}\right.}{4\left(-12 c_{2}-12 x+4 \sqrt{-4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}
$$

$$
y(x)=
$$

$$
-\frac{-i \sqrt{3}\left(-12 c_{2}-12 x+4 \sqrt{-4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{2}{3}}+4 i \sqrt{3} c_{1}+\left(-12 c_{2}-12 x+4 \sqrt{-4 c_{1}^{3}+9 c_{2}^{2}}\right.}{4\left(-12 c_{2}-12 x+4 \sqrt{-4 c_{1}^{3}+9 c_{2}^{2}+18 c_{2} x+9 x^{2}}\right)^{\frac{1}{3}}}
$$

\checkmark Solution by Mathematica
Time used: 7.768 (sec). Leaf size: 351

```
DSolve[y''[x]==2*y[x]*(y'[x])~3,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{\sqrt[3]{2} c_{1}}{\sqrt[3]{\sqrt{9 x^{2}+18 c_{2} x+4 c_{1}^{3}+9 c_{2}^{2}}+3 x+3 c_{2}}} \\
& \\
& -\frac{\sqrt[3]{\sqrt{9 x^{2}+18 c_{2} x+4 c_{1}^{3}+9 c_{2}^{2}}+3 x+3 c_{2}}}{\sqrt[3]{2}} \\
& \\
& \rightarrow(x) \\
& y(x) \rightarrow \frac{2^{2 / 3}(1-i \sqrt{3})\left(\sqrt{9 x^{2}+18 c_{2} x+4 c_{1}^{3}+9 c_{2}^{2}}+3 x+3 c_{2}\right)^{2 / 3}+\sqrt[3]{2}(-2-2 i \sqrt{3}) c_{1}}{4 \sqrt[3]{\sqrt{9 x^{2}+18 c_{2} x+4 c_{1}^{3}+9 c_{2}^{2}}+3 x+3 c_{2}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.11 problem 12

4.11.1 Solving as second order ode missing x ode
4.11.2 Maple step by step solution . 542

Internal problem ID [6831]
Internal file name [OUTPUT/6078_Thursday_July_28_2022_04_29_27_AM_20246841/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x"
Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]
```

$$
y y^{\prime \prime}+y^{\prime 3}-y^{\prime 2}=0
$$

4.11.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
y p(y)\left(\frac{d}{d y} p(y)\right)+\left(p(y)^{2}-p(y)\right) p(y)=0
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{p(p-1)}{y}
\end{aligned}
$$

Where $f(y)=-\frac{1}{y}$ and $g(p)=p(p-1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p(p-1)} d p & =-\frac{1}{y} d y \\
\int \frac{1}{p(p-1)} d p & =\int-\frac{1}{y} d y \\
-\ln (p)+\ln (p-1) & =-\ln (y)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (p)+\ln (p-1)}=\mathrm{e}^{-\ln (y)+c_{1}}
$$

Which simplifies to

$$
\frac{p-1}{p}=\frac{c_{2}}{y}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=-\frac{y}{c_{2}-y}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{-c_{2}+y}{y} d y & =x+c_{3} \\
y-c_{2} \ln (y) & =x+c_{3}
\end{aligned}
$$

Solving for y gives these solutions

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{c_{2} \text { LambertW }\left(-\frac{\mathrm{e}^{-\frac{x+c_{3}}{c_{2}}}}{c_{2}}\right)+c_{3}+x}{c_{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-\frac{c_{2} \text { LambertW }\left(-\frac{\mathrm{e}^{-\frac{x+c_{3}}{c_{2}}}}{c_{2}}\right)+c_{3}+x}{c_{2}}}
$$

Verified OK.

4.11.2 Maple step by step solution

Let's solve

$$
y y^{\prime \prime}+\left(y^{\prime 2}-y^{\prime}\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Define new dependent variable u
$u(x)=y^{\prime}$
- Compute $y^{\prime \prime}$

$$
u^{\prime}(x)=y^{\prime \prime}
$$

- Use chain rule on the lhs

$$
y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}
$$

- \quad Substitute in the definition of u

$$
u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}
$$

- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE

$$
y u(y)\left(\frac{d}{d y} u(y)\right)+\left(u(y)^{2}-u(y)\right) u(y)=0
$$

- Separate variables

$$
\frac{\frac{d}{d y} u(y)}{u(y)^{2}-u(y)}=-\frac{1}{y}
$$

- Integrate both sides with respect to y
$\int \frac{\frac{d}{d y} u(y)}{u(y)^{2}-u(y)} d y=\int-\frac{1}{y} d y+c_{1}$
- Evaluate integral
$-\ln (u(y))+\ln (u(y)-1)=-\ln (y)+c_{1}$
- \quad Solve for $u(y)$
$u(y)=-\frac{y}{\mathrm{e}^{c_{1}}-y}$
- \quad Solve 1st ODE for $u(y)$
$u(y)=-\frac{y}{\mathrm{e}^{c_{1}}-y}$
- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$
$y^{\prime}=-\frac{y}{\mathrm{e}^{c_{1}}-y}$
- \quad Separate variables
$\frac{y^{\prime}\left(\mathrm{e}^{c_{1}}-y\right)}{y}=-1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}\left(\mathrm{e}^{c_{1}}-y\right)}{y} d x=\int(-1) d x+c_{2}$
- Evaluate integral
$-y+\mathrm{e}^{c_{1}} \ln (y)=-x+c_{2}$
- \quad Solve for y
$y=\mathrm{e}^{-\frac{\text { LambertW }\left(-\mathrm{e}^{-\frac{c_{1} \mathrm{e}^{c_{1}} \frac{c_{2}+x}{c_{2}}}{\mathrm{e}^{c_{1}}}}\right) \mathrm{e}^{c_{1}-c_{2}+x}}{\mathrm{e}^{c_{1}}}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)^2*(_b(_a)-1)/_a = 0, _b(_
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 36

```
dsolve(y(x)*diff(y(x),x$2)+diff(y(x),x)^3-diff(y(x),x)^2=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=c_{1} \\
& y(x)=\mathrm{e}^{-c_{1} \text { LambertW }\left(\frac{e^{\frac{x+c_{2}}{c_{1}}} c_{1}}{c_{1}}\right)+c_{2}+x} \\
& c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 22.067 (sec). Leaf size: 32
DSolve[y[x]*y''[x]+(y'[x]) $-3-(y$ ' $[x]) \wedge 2==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{c_{1}} W\left(e^{e^{-c_{1}}\left(x-e^{c_{1}} c_{1}+c_{2}\right)}\right)
$$

4.12 problem 13

4.12.1 Solving as second order linear constant coeff ode 546
4.12.2 Solving as second order ode can be made integrable ode 548
4.12.3 Solving using Kovacic algorithm 549
4.12.4 Maple step by step solution . 552

Internal problem ID [6832]
Internal file name [OUTPUT/6079_Thursday_July_28_2022_04_29_28_AM_82848687/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+\beta^{2} y=0
$$

4.12.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=\beta^{2}$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\beta^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\beta^{2}+\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=\beta^{2}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(\beta^{2}\right)} \\
& = \pm \sqrt{-\beta^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\sqrt{-\beta^{2}} \\
& \lambda_{2}=-\sqrt{-\beta^{2}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\sqrt{-\beta^{2}} \\
& \lambda_{2}=-\sqrt{-\beta^{2}}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\sqrt{-\beta^{2}}\right) x}+c_{2} e^{\left(-\sqrt{-\beta^{2}}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\sqrt{-\beta^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-\beta^{2}} x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-\beta^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-\beta^{2}} x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\sqrt{-\beta^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-\beta^{2}} x}
$$

Verified OK.

4.12.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+\beta^{2} y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+\beta^{2} y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{\beta^{2} y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-\beta^{2} y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-\beta^{2} y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-\beta^{2} y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{\sqrt{\beta^{2}} y}{\sqrt{-\beta^{2} y^{2}+2 c_{1}}}\right)}{\sqrt{\beta^{2}}} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-\beta^{2} y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{\sqrt{\beta^{2}} y}{\sqrt{-\beta^{2} y^{2}+2 c_{1}}}\right)}{\sqrt{\beta^{2}}} & =x+c_{3}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
\frac{\arctan \left(\frac{\sqrt{\beta^{2}} y}{\sqrt{-\beta^{2} y^{2}+2 c_{1}}}\right)}{\sqrt{\beta^{2}}} & =x+c_{2} \tag{1}\\
-\frac{\arctan \left(\frac{\sqrt{\beta^{2}} y}{\sqrt{-\beta^{2} y^{2}+2 c_{1}}}\right)}{\sqrt{\beta^{2}}} & =x+c_{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
\frac{\arctan \left(\frac{\sqrt{\beta^{2}} y}{\sqrt{-\beta^{2} y^{2}+2 c_{1}}}\right)}{\sqrt{\beta^{2}}}=x+c_{2}
$$

Verified OK.

$$
-\frac{\arctan \left(\frac{\sqrt{\beta^{2}} y}{\sqrt{-\beta^{2} y^{2}+2 c_{1}}}\right)}{\sqrt{\beta^{2}}}=x+c_{3}
$$

Verified OK.

4.12.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+\beta^{2} y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=\beta^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{\bar{t}} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-\beta^{2}}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-\beta^{2} \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\beta^{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 26: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\beta^{2}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{\sqrt{-\beta^{2}} x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{\sqrt{-\beta^{2}} x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\sqrt{-\beta^{2}} x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{\sqrt{-\beta^{2}} x} \int \frac{1}{\mathrm{e}^{2 \sqrt{-\beta^{2}} x}} d x \\
& =\mathrm{e}^{\sqrt{-\beta^{2}} x}\left(\frac{\sqrt{-\beta^{2}} \mathrm{e}^{-2 \sqrt{-\beta^{2}} x}}{2 \beta^{2}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\sqrt{-\beta^{2}} x}\right)+c_{2}\left(\mathrm{e}^{\sqrt{-\beta^{2}} x}\left(\frac{\sqrt{-\beta^{2}} \mathrm{e}^{-2 \sqrt{-\beta^{2}} x}}{2 \beta^{2}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-\beta^{2}} x}+\frac{c_{2} \sqrt{-\beta^{2}} \mathrm{e}^{-\sqrt{-\beta^{2}} x}}{2 \beta^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\sqrt{-\beta^{2}} x}+\frac{c_{2} \sqrt{-\beta^{2}} \mathrm{e}^{-\sqrt{-\beta^{2}} x}}{2 \beta^{2}}
$$

Verified OK.

4.12.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+\beta^{2} y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$\beta^{2}+r^{2}=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm\left(\sqrt{-4 \beta^{2}}\right)}{2}$
- Roots of the characteristic polynomial

$$
r=\left(\sqrt{-\beta^{2}},-\sqrt{-\beta^{2}}\right)
$$

- \quad 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\sqrt{-\beta^{2}} x}$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\sqrt{-\beta^{2}} x}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{\sqrt{-\beta^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-\beta^{2}} x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)+beta^2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (\beta x)+c_{2} \cos (\beta x)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20

DSolve[y''[x]+$$
Beta] \(2 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow c_{1} \cos (\beta x)+c_{2} \sin (\beta x)
$$

4.13 problem 14

4.13.1 Solving as second order ode missing x ode 554
4.13.2 Maple step by step solution . 556

Internal problem ID [6833]
Internal file name [OUTPUT/6080_Thursday_July_28_2022_04_29_29_AM_353270/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x" Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],
    [_2nd_order, _reducible, _mu_y_y1]]
```

$$
y y^{\prime \prime}+y^{\prime 3}=0
$$

4.13.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
y p(y)\left(\frac{d}{d y} p(y)\right)+p(y)^{3}=0
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{p^{2}}{y}
\end{aligned}
$$

Where $f(y)=-\frac{1}{y}$ and $g(p)=p^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p^{2}} d p & =-\frac{1}{y} d y \\
\int \frac{1}{p^{2}} d p & =\int-\frac{1}{y} d y \\
-\frac{1}{p} & =-\ln (y)+c_{1}
\end{aligned}
$$

The solution is

$$
-\frac{1}{p(y)}+\ln (y)-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\frac{1}{y^{\prime}}+\ln (y)-c_{1}=0
$$

Integrating both sides gives

$$
\begin{aligned}
\int\left(\ln (y)-c_{1}\right) d y & =x+c_{2} \\
-c_{1} y+y \ln (y)-y & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\mathrm{Lambert} \mathrm{~W}\left(\left(x+c_{2}\right) \mathrm{e}^{-c_{1}-1}\right)+c_{1}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\mathrm{LambertW}\left(\left(x+c_{2}\right) \mathrm{e}^{-c_{1}-1}\right)+c_{1}+1}
$$

Verified OK.

4.13.2 Maple step by step solution

Let's solve

$$
y y^{\prime \prime}+y^{\prime 3}=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u

$$
u(x)=y^{\prime}
$$

- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- \quad Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $y u(y)\left(\frac{d}{d y} u(y)\right)+u(y)^{3}=0$
- \quad Separate variables

$$
\frac{\frac{d}{d y} u(y)}{u(y)^{2}}=-\frac{1}{y}
$$

- Integrate both sides with respect to y
$\int \frac{\frac{d}{d y} u(y)}{u(y)^{2}} d y=\int-\frac{1}{y} d y+c_{1}$
- Evaluate integral
$-\frac{1}{u(y)}=-\ln (y)+c_{1}$
- \quad Solve for $u(y)$
$u(y)=\frac{1}{\ln (y)-c_{1}}$
- \quad Solve 1st ODE for $u(y)$
$u(y)=\frac{1}{\ln (y)-c_{1}}$
- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=\frac{1}{\ln (y)-c_{1}}
$$

- \quad Separate variables
$y^{\prime}\left(\ln (y)-c_{1}\right)=1$
- Integrate both sides with respect to x
$\int y^{\prime}\left(\ln (y)-c_{1}\right) d x=\int 1 d x+c_{2}$
- Evaluate integral

$$
-c_{1} y+y \ln (y)-y=x+c_{2}
$$

- \quad Solve for y
$y=\mathrm{e}^{\text {Lambert } W\left(\left(x+c_{2}\right) \mathrm{e}^{-c_{1}-1}\right)+c_{1}+1}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 27
dsolve($y(x) * \operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x) \wedge 3=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=c_{1} \\
& y(x)=\frac{x+c_{2}}{\operatorname{LambertW}\left(\left(x+c_{2}\right) \mathrm{e}^{c_{1}-1}\right)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 60.095 (sec). Leaf size: 26
DSolve[y[x]*y''[x]+(y'[x])~3==0,y[x],x, IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{x+c_{2}}{W\left(e^{-1-c_{1}}\left(x+c_{2}\right)\right)}
$$

4.14 problem 15

4.14.1 Solving as second order ode missing y ode

559
4.14.2 Solving as second order ode non constant coeff transformation
on B ode . 561 ,
4.14.3 Maple step by step solution . 563

Internal problem ID [6834]
Internal file name [OUTPUT/6081_Thursday_July_28_2022_04_29_32_AM_67325963/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_y", "second__order_ode__non_constant__coeff_transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime} \cos (x)-y^{\prime}=0
$$

4.14.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x) \cos (x)-p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{p}{\cos (x)}
\end{aligned}
$$

Where $f(x)=\frac{1}{\cos (x)}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =\frac{1}{\cos (x)} d x \\
\int \frac{1}{p} d p & =\int \frac{1}{\cos (x)} d x \\
\ln (p) & =\ln (\sec (x)+\tan (x))+c_{1} \\
p & =\mathrm{e}^{\ln (\sec (x)+\tan (x))+c_{1}} \\
& =c_{1}(\sec (x)+\tan (x))
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=c_{1}(\sec (x)+\tan (x))
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1}(\sec (x)+\tan (x)) \mathrm{d} x \\
& =c_{1}(\ln (\sec (x)+\tan (x))-\ln (\cos (x)))+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}(\ln (\sec (x)+\tan (x))-\ln (\cos (x)))+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}(\ln (\sec (x)+\tan (x))-\ln (\cos (x)))+c_{2}
$$

Verified OK.

4.14.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=\cos (x) \\
& B=-1 \\
& C=0 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(\cos (x))(0)+(-1)(0)+(0)(-1) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-\cos (x) v^{\prime \prime}+(1) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-\cos (x) u^{\prime}(x)+u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u}{\cos (x)}
\end{aligned}
$$

Where $f(x)=\frac{1}{\cos (x)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{1}{\cos (x)} d x \\
\int \frac{1}{u} d u & =\int \frac{1}{\cos (x)} d x \\
\ln (u) & =\ln (\sec (x)+\tan (x))+c_{1} \\
u & =\mathrm{e}^{\ln (\sec (x)+\tan (x))+c_{1}} \\
& =c_{1}(\sec (x)+\tan (x))
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}(\sec (x)+\tan (x))
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int c_{1}(\sec (x)+\tan (x)) \mathrm{d} x \\
& =c_{1}(\ln (\sec (x)+\tan (x))-\ln (\cos (x)))+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(-1)\left(c_{1}(\ln (\sec (x)+\tan (x))-\ln (\cos (x)))+c_{2}\right) \\
& =c_{1}(-\ln (\sec (x)+\tan (x))+\ln (\cos (x)))-c_{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}(-\ln (\sec (x)+\tan (x))+\ln (\cos (x)))-c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}(-\ln (\sec (x)+\tan (x))+\ln (\cos (x)))-c_{2}
$$

Verified OK.

4.14.3 Maple step by step solution

Let's solve
$y^{\prime \prime} \cos (x)-y^{\prime}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE
$u^{\prime}(x) \cos (x)-u(x)=0$
- Separate variables
$\frac{u^{\prime}(x)}{u(x)}=\frac{1}{\cos (x)}$
- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{u(x)} d x=\int \frac{1}{\cos (x)} d x+c_{1}$
- Evaluate integral
$\ln (u(x))=\ln (\sec (x)+\tan (x))+c_{1}$
- \quad Solve for $u(x)$
$u(x)=-\frac{\mathrm{e}^{c_{1}} \cos (x)}{\sin (x)-1}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=-\frac{\mathrm{e}^{c_{1}} \cos (x)}{\sin (x)-1}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=-\frac{\mathrm{e}^{c_{1} \cos (x)}}{\sin (x)-1}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int-\frac{\mathrm{e}^{c_{1}} \cos (x)}{\sin (x)-1} d x+c_{2}$
- Compute integrals

$$
y=-\mathrm{e}^{c_{1}} \ln (\sin (x)-1)+c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
<- LODE missing y successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(x),x$2)*\operatorname{cos}(x)=\operatorname{diff}(y(x),x),y(x), singsol=all)
```

$$
y(x)=c_{1}+(\ln (\sec (x)+\tan (x))-\ln (\cos (x))) c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.181 (sec). Leaf size: 25
DSolve[y''[x]*Cos[x]==y'[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} \log \left(e^{4 \operatorname{arctanh}\left(\tan \left(\frac{x}{2}\right)\right)}+1\right)+c_{2}
$$

4.15 problem 16

4.15.1 Solving as second order ode missing y ode
4.15.2 Maple step by step solution . 568

Internal problem ID [6835]
Internal file name [OUTPUT/6082_Thursday_July_28_2022_04_29_34_AM_6396199/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$
y^{\prime \prime}-x y^{\prime 2}=0
$$

With initial conditions

$$
\left[y(2)=\frac{\pi}{4}, y^{\prime}(2)=-\frac{1}{4}\right]
$$

4.15.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-x p(x)^{2}=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =x p^{2}
\end{aligned}
$$

Where $f(x)=x$ and $g(p)=p^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p^{2}} d p & =x d x \\
\int \frac{1}{p^{2}} d p & =\int x d x \\
-\frac{1}{p} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
-\frac{1}{p(x)}-\frac{x^{2}}{2}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $p=-\frac{1}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2-c_{1}=0 \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{2} p+4 p+2}{2 p}=0
$$

The above simplifies to

$$
-x^{2} p-4 p-2=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-x^{2} y^{\prime}-4 y^{\prime}-2=0
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{2}{x^{2}+4} \mathrm{~d} x \\
& =-\arctan \left(\frac{x}{2}\right)+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=2$ and $y=\frac{\pi}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{\pi}{4}=-\frac{\pi}{4}+c_{2} \\
c_{2}=\frac{\pi}{2}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-\arctan \left(\frac{x}{2}\right)+\frac{\pi}{2}
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\arctan \left(\frac{x}{2}\right)+\frac{\pi}{2} \tag{1}
\end{equation*}
$$

Figure 14: Solution plot

Verification of solutions

$$
y=-\arctan \left(\frac{x}{2}\right)+\frac{\pi}{2}
$$

Verified OK.

4.15.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-x y^{\prime 2}=0, y(2)=\frac{\pi}{4},\left.y^{\prime}\right|_{\{x=2\}}=-\frac{1}{4}\right]
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE $u^{\prime}(x)-x u(x)^{2}=0$
- \quad Separate variables
$\frac{u^{\prime}(x)}{u(x)^{2}}=x$
- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{u(x)^{2}} d x=\int x d x+c_{1}$
- \quad Evaluate integral
$-\frac{1}{u(x)}=\frac{x^{2}}{2}+c_{1}$
- \quad Solve for $u(x)$
$u(x)=-\frac{2}{x^{2}+2 c_{1}}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=-\frac{2}{x^{2}+2 c_{1}}$
- \quad Make substitution $u=y^{\prime}$
$y^{\prime}=-\frac{2}{x^{2}+2 c_{1}}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int-\frac{2}{x^{2}+2 c_{1}} d x+c_{2}$
- Compute integrals
$y=-\frac{\sqrt{2} \arctan \left(\frac{x \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}+c_{2}$
$\square \quad$ Check validity of solution $y=-\frac{\sqrt{2} \arctan \left(\frac{x \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}+c_{2}$
- Use initial condition $y(2)=\frac{\pi}{4}$

$$
\frac{\pi}{4}=-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}}{\sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\frac{1}{c_{1}\left(\frac{x^{2}}{2 c_{1}}+1\right)}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=2\}}=-\frac{1}{4}$

$$
-\frac{1}{4}=-\frac{1}{c_{1}\left(\frac{2}{c_{1}}+1\right)}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=\frac{\pi}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\operatorname{arccot}\left(\frac{x}{2}\right)
$$

- Solution to the IVP

$$
y=\operatorname{arccot}\left(\frac{x}{2}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, --> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = _a*_b(_a)^2, _b(_a), HINT = [[_a, -2*_b
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, -2*_b]
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 8
dsolve([diff $(y(x), x \$ 2)=x * \operatorname{diff}(y(x), x) \wedge 2, y(2)=1 / 4 * \operatorname{Pi}, D(y)(2)=-1 / 4], y(x)$, singsol=all)

$$
y(x)=\operatorname{arccot}\left(\frac{x}{2}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 1.241 (sec). Leaf size: 19
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]==x *(y '[x])^{\wedge} 2,\{y[2]==1 / 4 * P i, y\right.\right.$ ' $\left.[2]==-1 / 4\}\right\}, y[x], x$, IncludeSingularSolutions $->$ I

$$
y(x) \rightarrow \frac{1}{2}\left(\pi-2 \arctan \left(\frac{x}{2}\right)\right)
$$

4.16 problem 17

4.16.1 Solving as second order ode missing y ode 571
4.16.2 Maple step by step solution . 573

Internal problem ID [6836]
Internal file name [OUTPUT/6083_Thursday_July_28_2022_04_29_37_AM_72415050/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$
y^{\prime \prime}-x y^{\prime 2}=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=\frac{1}{2}\right]
$$

4.16.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-x p(x)^{2}=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =x p^{2}
\end{aligned}
$$

Where $f(x)=x$ and $g(p)=p^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p^{2}} d p & =x d x \\
\int \frac{1}{p^{2}} d p & =\int x d x \\
-\frac{1}{p} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
-\frac{1}{p(x)}-\frac{x^{2}}{2}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $p=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2-c_{1}=0 \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{x^{2} p-4 p+2}{2 p}=0
$$

The above simplifies to

$$
-x^{2} p+4 p-2=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-x^{2} y^{\prime}+4 y^{\prime}-2=0
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{2}{x^{2}-4} \mathrm{~d} x \\
& =\frac{\ln (x+2)}{2}-\frac{\ln (x-2)}{2}+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{i \pi}{2}+c_{2} \\
c_{2}=\frac{i \pi}{2}+1
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{\ln (x+2)}{2}-\frac{\ln (x-2)}{2}+\frac{i \pi}{2}+1
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x+2)}{2}-\frac{\ln (x-2)}{2}+\frac{i \pi}{2}+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\ln (x+2)}{2}-\frac{\ln (x-2)}{2}+\frac{i \pi}{2}+1
$$

Verified OK.

4.16.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-x y^{\prime 2}=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Make substitution $u=y^{\prime}$ to reduce order of ODE

$$
u^{\prime}(x)-x u(x)^{2}=0
$$

- \quad Separate variables

$$
\frac{u^{\prime}(x)}{u(x)^{2}}=x
$$

- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{u(x)^{2}} d x=\int x d x+c_{1}$
- \quad Evaluate integral
$-\frac{1}{u(x)}=\frac{x^{2}}{2}+c_{1}$
- \quad Solve for $u(x)$
$u(x)=-\frac{2}{x^{2}+2 c_{1}}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=-\frac{2}{x^{2}+2 c_{1}}$
- \quad Make substitution $u=y^{\prime}$
$y^{\prime}=-\frac{2}{x^{2}+2 c_{1}}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int-\frac{2}{x^{2}+2 c_{1}} d x+c_{2}$
- \quad Compute integrals
$y=-\frac{\sqrt{2} \arctan \left(\frac{x \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}+c_{2}$
Check validity of solution $y=-\frac{\sqrt{2} \arctan \left(\frac{x \sqrt{2}}{2} \sqrt{c_{1}}\right)}{\sqrt{c_{1}}}+c_{2}$
- Use initial condition $y(0)=1$
$1=c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-\frac{1}{c_{1}\left(\frac{x^{2}}{2 c_{1}}+1\right)}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=\frac{1}{2}$
$\frac{1}{2}=-\frac{1}{c_{1}}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-2, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify

$$
y=\operatorname{arctanh}\left(\frac{x}{2}\right)+1
$$

- \quad Solution to the IVP

$$
y=\operatorname{arctanh}\left(\frac{x}{2}\right)+1
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form $m u(x, y)$
trying differential order: 2; missing variables
-, `-> Computing symmetries using: way \(=3\) symmetry methods on request `, `1st order, trying reduction of order with given symmetries:`[_a, -2*_b]
\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 10
dsolve([diff $(y(x), x \$ 2)=x * \operatorname{diff}(y(x), x) \wedge 2, y(0)=1, D(y)(0)=1 / 2], y(x), \quad$ singsol=all)

$$
y(x)=\operatorname{arctanh}\left(\frac{x}{2}\right)+1
$$

\checkmark Solution by Mathematica
Time used: 0.229 (sec). Leaf size: 13

```
DSolve[{y''[x]==x*(y'[x])~2,{y[0]==1,y'[0]==1/2}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \operatorname{arctanh}\left(\frac{x}{2}\right)+1
$$

4.17 problem 18

4.17.1 Solving as second order ode can be made integrable ode . . . 576
4.17.2 Solving as second order ode missing x ode 578
4.17.3 Maple step by step solution . 581

Internal problem ID [6837]
Internal file name [OUTPUT/6084_Thursday_July_28_2022_04_29_39_AM_54278317/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode__missing_x", "second_order_ode_can__be_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
```

$$
y^{\prime \prime}+\mathrm{e}^{-2 y}=0
$$

With initial conditions

$$
\left[y(3)=0, y^{\prime}(3)=1\right]
$$

4.17.1 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y^{\prime} \mathrm{e}^{-2 y}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} \mathrm{e}^{-2 y}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{\mathrm{e}^{-2 y}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}} d y & =\int d x \\
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}} d y & =\int d x \\
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}} & =x+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}}=x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=3$ in the above gives

$$
\begin{equation*}
\frac{\operatorname{arctanh}\left(\frac{\sqrt{1+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right) \sqrt{2}}{2 \sqrt{c_{1}}}=3+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}}
$$

substituting $y^{\prime}=1$ and $x=3$ in the above gives

$$
\begin{equation*}
1=\frac{\left(\mathrm{e}^{2\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}}-1\right) \sqrt{c_{1}} \sqrt{2}}{\mathrm{e}^{2\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}}+1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}}=x+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=3$ in the above gives

$$
\begin{equation*}
-\frac{\operatorname{arctanh}\left(\frac{\sqrt{1+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right) \sqrt{2}}{2 \sqrt{c_{1}}}=3+c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{3}\right) \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\sqrt{c_{1}}\left(x+c_{3}\right) \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{3}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}}
$$

substituting $y^{\prime}=1$ and $x=3$ in the above gives

$$
\begin{equation*}
1=\frac{\left(\mathrm{e}^{2\left(3+c_{3}\right) \sqrt{c_{1}} \sqrt{2}}-1\right) \sqrt{c_{1}} \sqrt{2}}{\mathrm{e}^{2\left(3+c_{3}\right) \sqrt{c_{1}} \sqrt{2}}+1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.
Verification of solutions N/A

4.17.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
p(y)\left(\frac{d}{d y} p(y)\right)=-\mathrm{e}^{-2 y}
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{\mathrm{e}^{-2 y}}{p}
\end{aligned}
$$

Where $f(y)=-\mathrm{e}^{-2 y}$ and $g(p)=\frac{1}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =-\mathrm{e}^{-2 y} d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int-\mathrm{e}^{-2 y} d y \\
\frac{p^{2}}{2} & =\frac{\mathrm{e}^{-2 y}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{p(y)^{2}}{2}-\frac{\mathrm{e}^{-2 y}}{2}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $y=0$ and $p=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-c_{1}=0 \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{p^{2}}{2}-\frac{\mathrm{e}^{-2 y}}{2}=0
$$

Solving for $p(y)$ from the above gives

$$
p(y)=\mathrm{e}^{-y}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=\mathrm{e}^{-y}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \mathrm{e}^{y} d y & =x+c_{2} \\
\mathrm{e}^{y} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\ln \left(x+c_{2}\right)
$$

Initial conditions are used to solve for c_{2}. Substituting $x=3$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\ln \left(3+c_{2}\right) \\
c_{2}=-2
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\ln (x-2)
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x-2) \tag{1}
\end{equation*}
$$

Figure 15: Solution plot

Verification of solutions

$$
y=\ln (x-2)
$$

Verified OK.

4.17.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-\mathrm{e}^{-2 y}, y(3)=0,\left.y^{\prime}\right|_{\{x=3\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Define new dependent variable u

$$
u(x)=y^{\prime}
$$

- Compute $y^{\prime \prime}$

$$
u^{\prime}(x)=y^{\prime \prime}
$$

- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Substitute in the definition of u

$$
u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}
$$

- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $u(y)\left(\frac{d}{d y} u(y)\right)=-\mathrm{e}^{-2 y}$
- Integrate both sides with respect to y
$\int u(y)\left(\frac{d}{d y} u(y)\right) d y=\int-\mathrm{e}^{-2 y} d y+c_{1}$
- Evaluate integral

$$
\frac{u(y)^{2}}{2}=\frac{\mathrm{e}^{-2 y}}{2}+c_{1}
$$

- \quad Solve for $u(y)$
$\left\{u(y)=\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}, u(y)=-\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}\right\}$
- \quad Solve 1st ODE for $u(y)$

$$
u(y)=\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}
$$

- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}} d x=\int 1 d x+c_{2}
$$

- \quad Evaluate integral

$$
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}}=x+c_{2}
$$

- \quad Solve for y

$$
y=-\frac{\ln \left(2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}
$$

- \quad Solve 2 nd ODE for $u(y)$

$$
u(y)=-\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}
$$

- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=-\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}
$$

- \quad Separate variables
$\frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}}=-1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}} d x=\int(-1) d x+c_{2}$
- Evaluate integral
$\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}}=-x+c_{2}$
- \quad Solve for y
$y=-\frac{\ln \left(2 \tanh \left(\sqrt{c_{1}}\left(-x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}$
Check validity of solution $y=-\frac{\ln \left(2 \tanh \left(\sqrt{c_{1}}\left(-x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}$
- Use initial condition $y(3)=0$
$0=-\frac{\ln \left(2 \tanh \left(\sqrt{c_{1}}\left(-3+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}$
- Compute derivative of the solution

$$
y^{\prime}=\frac{2 \tanh \left(\sqrt{c_{1}}\left(-x+c_{2}\right) \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\sqrt{c_{1}}\left(-x+c_{2}\right) \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\sqrt{c_{1}}\left(-x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=3\}}=1$
$1=\frac{2 \tanh \left(\sqrt{c_{1}}\left(-3+c_{2}\right) \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\sqrt{c_{1}}\left(-3+c_{2}\right) \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\sqrt{c_{1}}\left(-3+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}}$
- Solve for c_{1} and c_{2}
- The solution does not satisfy the initial conditions

Check validity of solution $y=-\frac{\ln \left(2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}$

- Use initial condition $y(3)=0$

$$
0=-\frac{\ln \left(2 \tanh \left(\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\frac{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=3\}}=1$

$$
1=-\frac{2 \tanh \left(\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}\right)^{2} c_{1}-2 c_{1}}
$$

- Solve for c_{1} and c_{2}
- The solution does not satisfy the initial conditions

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, -> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+exp(-2*_a) = 0, _b(_a), HINT =
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, -_b]
```


Solution by Maple

Time used: 0.093 (sec). Leaf size: 12

```
dsolve([diff (y(x),x$2)=-exp(-2*y(x)),y(3) = 0, D(y)(3) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{\ln \left((-2+x)^{2}\right)}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.157 (sec). Leaf size: 9
DSolve[\{y''[x]==-Exp[-2*y[x]],\{y[3]==0,y'[3]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \log (x-2)
$$

4.18 problem 19

4.18.1 Solving as second order ode can be made integrable ode . . . 585
4.18.2 Solving as second order ode missing x ode 587
4.18.3 Maple step by step solution . 590

Internal problem ID [6838]
Internal file name [OUTPUT/6085_Thursday_July_28_2022_04_29_41_AM_88428700/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode__missing_x", "second_order_ode_can__be_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
```

$$
y^{\prime \prime}+\mathrm{e}^{-2 y}=0
$$

With initial conditions

$$
\left[y(3)=0, y^{\prime}(3)=-1\right]
$$

4.18.1 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y^{\prime} \mathrm{e}^{-2 y}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} \mathrm{e}^{-2 y}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{\mathrm{e}^{-2 y}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}} d y & =\int d x \\
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}} d y & =\int d x \\
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}} & =x+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}}=x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=3$ in the above gives

$$
\begin{equation*}
\frac{\operatorname{arctanh}\left(\frac{\sqrt{1+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right) \sqrt{2}}{2 \sqrt{c_{1}}}=3+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}}
$$

substituting $y^{\prime}=-1$ and $x=3$ in the above gives

$$
\begin{equation*}
-1=\frac{\left(\mathrm{e}^{2\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}}-1\right) \sqrt{c_{1}} \sqrt{2}}{\mathrm{e}^{2\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}}+1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}}=x+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=3$ in the above gives

$$
\begin{equation*}
-\frac{\operatorname{arctanh}\left(\frac{\sqrt{1+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right) \sqrt{2}}{2 \sqrt{c_{1}}}=3+c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{3}\right) \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\sqrt{c_{1}}\left(x+c_{3}\right) \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{3}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}}
$$

substituting $y^{\prime}=-1$ and $x=3$ in the above gives

$$
\begin{equation*}
-1=\frac{\left(\mathrm{e}^{2\left(3+c_{3}\right) \sqrt{c_{1}} \sqrt{2}}-1\right) \sqrt{c_{1}} \sqrt{2}}{\mathrm{e}^{2\left(3+c_{3}\right) \sqrt{c_{1}} \sqrt{2}}+1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

4.18.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
p(y)\left(\frac{d}{d y} p(y)\right)=-\mathrm{e}^{-2 y}
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{\mathrm{e}^{-2 y}}{p}
\end{aligned}
$$

Where $f(y)=-\mathrm{e}^{-2 y}$ and $g(p)=\frac{1}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =-\mathrm{e}^{-2 y} d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int-\mathrm{e}^{-2 y} d y \\
\frac{p^{2}}{2} & =\frac{\mathrm{e}^{-2 y}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{p(y)^{2}}{2}-\frac{\mathrm{e}^{-2 y}}{2}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $y=0$ and $p=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-c_{1}=0 \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{p^{2}}{2}-\frac{\mathrm{e}^{-2 y}}{2}=0
$$

Solving for $p(y)$ from the above gives

$$
p(y)=-\mathrm{e}^{-y}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=-\mathrm{e}^{-y}
$$

Integrating both sides gives

$$
\begin{aligned}
\int-\mathrm{e}^{y} d y & =x+c_{2} \\
-\mathrm{e}^{y} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\ln \left(-\frac{1}{x+c_{2}}\right)
$$

Initial conditions are used to solve for c_{2}. Substituting $x=3$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\ln \left(-\frac{1}{3+c_{2}}\right) \\
c_{2}=-4
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-\ln \left(-\frac{1}{x-4}\right)
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln \left(-\frac{1}{x-4}\right) \tag{1}
\end{equation*}
$$

Figure 16: Solution plot

Verification of solutions

$$
y=-\ln \left(-\frac{1}{x-4}\right)
$$

Verified OK.

4.18.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-\mathrm{e}^{-2 y}, y(3)=0,\left.y^{\prime}\right|_{\{x=3\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Define new dependent variable u

$$
u(x)=y^{\prime}
$$

- Compute $y^{\prime \prime}$

$$
u^{\prime}(x)=y^{\prime \prime}
$$

- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $u(y)\left(\frac{d}{d y} u(y)\right)=-\mathrm{e}^{-2 y}$
- Integrate both sides with respect to y
$\int u(y)\left(\frac{d}{d y} u(y)\right) d y=\int-\mathrm{e}^{-2 y} d y+c_{1}$
- \quad Evaluate integral
$\frac{u(y)^{2}}{2}=\frac{\mathrm{e}^{-2 y}}{2}+c_{1}$
- \quad Solve for $u(y)$
$\left\{u(y)=\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}, u(y)=-\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}\right\}$
- \quad Solve 1st ODE for $u(y)$

$$
u(y)=\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}
$$

- \quad Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}
$$

- \quad Separate variables
$\frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}} d x=\int 1 d x+c_{2}$
- Evaluate integral
$\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}}=x+c_{2}$
- \quad Solve for y

$$
y=-\frac{\ln \left(2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}
$$

- \quad Solve 2nd ODE for $u(y)$

$$
u(y)=-\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}
$$

- \quad Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=-\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}}=-1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}}} d x=\int(-1) d x+c_{2}$
- Evaluate integral
$\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{\mathrm{e}^{-2 y}+2 c_{1}} \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}}=-x+c_{2}$
- \quad Solve for y
$y=-\frac{\ln \left(2 \tanh \left(\sqrt{c_{1}}\left(-x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}$
Check validity of solution $y=-\frac{\ln \left(2 \tanh \left(\sqrt{c_{1}}\left(-x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}$
- Use initial condition $y(3)=0$
$0=-\frac{\ln \left(2 \tanh \left(\sqrt{c_{1}}\left(-3+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}$
- Compute derivative of the solution

$$
y^{\prime}=\frac{2 \tanh \left(\sqrt{c_{1}}\left(-x+c_{2}\right) \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\sqrt{c_{1}}\left(-x+c_{2}\right) \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\sqrt{c_{1}}\left(-x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=3\}}=-1$
$-1=\frac{2 \tanh \left(\sqrt{c_{1}}\left(-3+c_{2}\right) \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\sqrt{c_{1}}\left(-3+c_{2}\right) \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\sqrt{c_{1}}\left(-3+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}}$
- Solve for c_{1} and c_{2}
- The solution does not satisfy the initial conditions

Check validity of solution $y=-\frac{\ln \left(2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}$

- Use initial condition $y(3)=0$
$0=-\frac{\ln \left(2 \tanh \left(\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}\right)^{2} c_{1}-2 c_{1}\right)}{2}$
- Compute derivative of the solution
$y^{\prime}=-\frac{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\sqrt{c_{1}}\left(x+c_{2}\right) \sqrt{2}\right)^{2} c_{1}-2 c_{1}}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=3\}}=-1$

$$
-1=-\frac{2 \tanh \left(\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}\right) c_{1}^{\frac{3}{2}} \sqrt{2}\left(1-\tanh \left(\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}\right)^{2}\right)}{2 \tanh \left(\left(3+c_{2}\right) \sqrt{c_{1}} \sqrt{2}\right)^{2} c_{1}-2 c_{1}}
$$

- Solve for c_{1} and c_{2}
- The solution does not satisfy the initial conditions

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([diff(y(x),x$2)=-exp(-2*y(x)),y(3) = 0, D(y)(3) = -1],y(x), singsol=all)
```

$$
y(x)=\frac{\ln \left((x-4)^{2}\right)}{2}
$$

Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 11

```
DSolve[{y''[x]==-Exp[-2*y[x]],{y[3]==0,y'[3]==-1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \log (4-x)
$$

4.19 problem 20

4.19.1 Solving as second order ode can be made integrable ode . . . 594
4.19.2 Solving as second order ode missing x ode 596

Internal problem ID [6839]
Internal file name [OUTPUT/6086_Thursday_July_28_2022_04_29_43_AM_89875315/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_order_ode_can__be__made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
```

$$
2 y^{\prime \prime}-\sin (2 y)=0
$$

With initial conditions

$$
\left[y(0)=\frac{\pi}{2}, y^{\prime}(0)=1\right]
$$

4.19.1 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
2 y^{\prime} y^{\prime \prime}-y^{\prime} \sin (2 y)=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(2 y^{\prime} y^{\prime \prime}-y^{\prime} \sin (2 y)\right) d x=0 \\
y^{\prime 2}+\frac{\cos (2 y)}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{-2 \cos (2 y)+4 c_{1}}}{2} \tag{1}\\
& y^{\prime}=-\frac{\sqrt{-2 \cos (2 y)+4 c_{1}}}{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
& \int \frac{2}{\sqrt{-2 \cos (2 y)+4 c_{1}}} d y=\int d x \\
& \frac{2 \sqrt{-\frac{\cos (2 y)-2 c_{1}}{2 c_{1}-1}}}{} \text { InverseJacobiAM }\left(y, \sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right) \\
& \sqrt{-2 \cos (2 y)+4 c_{1}}=x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
& \int-\frac{2}{\sqrt{-2 \cos (2 y)+4 c_{1}}} d y=\int d x \\
&-\frac{2 \sqrt{-\frac{\cos (2 y)-2 c_{1}}{2 c_{1}-1}} \text { InverseJacobiAM }\left(y, \sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right)}{\sqrt{-2 \cos (2 y)+4 c_{1}}}=x+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\frac{2 \sqrt{-\frac{\cos (2 y)-2 c_{1}}{2 c_{1}-1}} \text { InverseJacobiAM }\left(y, \sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right)}{\sqrt{-2 \cos (2 y)+4 c_{1}}}=x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{\pi}{2}$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{2 \sqrt{\frac{1+2 c_{1}}{2 c_{1}-1}} \text { EllipticK }\left(\sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right)}{\sqrt{2+4 c_{1}}}=c_{2} \tag{1A}
\end{equation*}
$$

Unable to solve for y to solve for constant of integration
Looking at the Second solution

$$
\begin{equation*}
-\frac{2 \sqrt{-\frac{\cos (2 y)-2 c_{1}}{2 c_{1}-1}}}{} \text { InverseJacobiAM }\left(y, \sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right)=x+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{\pi}{2}$ and $x=0$ in the above gives

$$
\begin{equation*}
-\frac{2 \sqrt{\frac{1+2 c_{1}}{2 c_{1}-1}} \text { EllipticK }\left(\sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right)}{\sqrt{2+4 c_{1}}}=c_{3} \tag{1~A}
\end{equation*}
$$

Unable to solve for y to solve for constant of integration
Verification of solutions N/A

4.19.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
2 p(y)\left(\frac{d}{d y} p(y)\right)=\sin (2 y)
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{\sin (2 y)}{2 p}
\end{aligned}
$$

Where $f(y)=\frac{\sin (2 y)}{2}$ and $g(p)=\frac{1}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =\frac{\sin (2 y)}{2} d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int \frac{\sin (2 y)}{2} d y \\
\frac{p^{2}}{2} & =-\frac{\cos (2 y)}{4}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{p(y)^{2}}{2}+\frac{\cos (2 y)}{4}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $y=\frac{\pi}{2}$ and $p=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{4}-c_{1}=0 \\
c_{1}=\frac{1}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{p^{2}}{2}+\frac{\cos (2 y)}{4}-\frac{1}{4}=0
$$

Solving for $p(y)$ from the above gives

$$
p(y)=\frac{\sqrt{2-2 \cos (2 y)}}{2}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=\frac{\sqrt{2-2 \cos (2 y)}}{2}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{2}{\sqrt{2-2 \cos (2 y)}} d y & =\int d x \\
-\frac{\sin (y) \operatorname{arctanh}(\cos (y))}{\sqrt{\frac{1}{2}-\frac{\cos (2 y)}{2}}} & =x+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=\frac{\pi}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{2} \\
& c_{2}=0
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
-\frac{2 \sin (y) \operatorname{arctanh}(\cos (y))}{\sqrt{2-2 \cos (2 y)}}=x
$$

The above simplifies to

$$
-\sin (y) \operatorname{arctanh}(\cos (y))-x \sqrt{\frac{1}{2}-\frac{\cos (2 y)}{2}}=0
$$

Simplifying the solution $\sin (y)(-\operatorname{arctanh}(\cos (y))-\operatorname{csgn}(\sin (y)) x)=0$ to $\sin (y)(-\operatorname{arctanh}(\cos (y))-$ 0 Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
\sin (y)(-\operatorname{arctanh}(\cos (y))-x)=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sin (y)(-\operatorname{arctanh}(\cos (y))-x)=0
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, --> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(1/2)*sin(2*_a) = 0, _b(_a)
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 140.984 (sec). Leaf size: 1495

```
dsolve([2*diff(y(x),x$2)=sin(2*y(x)),y(0) = 1/2*Pi, D(y)(0) = 1],y(x), singsol=all)
```

Expression too large to display
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[\{2 * y$ ' ' $[x]==\operatorname{Sin}[2 * y[x]],\{y[0]==P i / 2, y$ ' $[0]==1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True
\{\}

4.20 problem 21

4.20.1 Solving as second order ode can be made integrable ode 600
4.20.2 Solving as second order ode missing x ode 602

Internal problem ID [6840]
Internal file name [OUTPUT/6087_Thursday_July_28_2022_04_29_58_AM_68133921/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_order_ode_can__be__made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
```

$$
2 y^{\prime \prime}-\sin (2 y)=0
$$

With initial conditions

$$
\left[y(0)=-\frac{\pi}{2}, y^{\prime}(0)=1\right]
$$

4.20.1 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
2 y^{\prime} y^{\prime \prime}-y^{\prime} \sin (2 y)=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(2 y^{\prime} y^{\prime \prime}-y^{\prime} \sin (2 y)\right) d x=0 \\
y^{\prime 2}+\frac{\cos (2 y)}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{-2 \cos (2 y)+4 c_{1}}}{2} \tag{1}\\
& y^{\prime}=-\frac{\sqrt{-2 \cos (2 y)+4 c_{1}}}{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
& \int \frac{2}{\sqrt{-2 \cos (2 y)+4 c_{1}}} d y=\int d x \\
& \frac{2 \sqrt{-\frac{\cos (2 y)-2 c_{1}}{2 c_{1}-1}} \text { InverseJacobiAM }\left(y, \sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right)}{\sqrt{-2 \cos (2 y)+4 c_{1}}}=x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
& \int-\frac{2}{\sqrt{-2 \cos (2 y)+4 c_{1}}} d y=\int d x \\
&-\frac{2 \sqrt{-\frac{\cos (2 y)-2 c_{1}}{2 c_{1}-1}} \text { InverseJacobiAM }\left(y, \sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right)}{\sqrt{-2 \cos (2 y)+4 c_{1}}}=x+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\frac{2 \sqrt{-\frac{\cos (2 y)-2 c_{1}}{2 c_{1}-1}} \text { InverseJacobiAM }\left(y, \sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right)}{\sqrt{-2 \cos (2 y)+4 c_{1}}}=x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-\frac{\pi}{2}$ and $x=0$ in the above gives

$$
\begin{equation*}
-\frac{2 \sqrt{\frac{1+2 c_{1}}{2 c_{1}-1}} \text { EllipticK }\left(\sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right)}{\sqrt{2+4 c_{1}}}=c_{2} \tag{1A}
\end{equation*}
$$

Unable to solve for y to solve for constant of integration
Looking at the Second solution

$$
\begin{equation*}
-\frac{2 \sqrt{-\frac{\cos (2 y)-2 c_{1}}{2 c_{1}-1}}}{} \text { InverseJacobiAM }\left(y, \sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right)=x+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-\frac{\pi}{2}$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{2 \sqrt{\frac{1+2 c_{1}}{2 c_{1}-1}} \text { EllipticK }\left(\sqrt{2} \sqrt{-\frac{1}{2 c_{1}-1}}\right)}{\sqrt{2+4 c_{1}}}=c_{3} \tag{1~A}
\end{equation*}
$$

Unable to solve for y to solve for constant of integration
Verification of solutions N/A

4.20.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
2 p(y)\left(\frac{d}{d y} p(y)\right)=\sin (2 y)
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{\sin (2 y)}{2 p}
\end{aligned}
$$

Where $f(y)=\frac{\sin (2 y)}{2}$ and $g(p)=\frac{1}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =\frac{\sin (2 y)}{2} d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int \frac{\sin (2 y)}{2} d y \\
\frac{p^{2}}{2} & =-\frac{\cos (2 y)}{4}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{p(y)^{2}}{2}+\frac{\cos (2 y)}{4}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $y=-\frac{\pi}{2}$ and $p=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{4}-c_{1}=0 \\
c_{1}=\frac{1}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{p^{2}}{2}+\frac{\cos (2 y)}{4}-\frac{1}{4}=0
$$

Solving for $p(y)$ from the above gives

$$
p(y)=\frac{\sqrt{2-2 \cos (2 y)}}{2}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=\frac{\sqrt{2-2 \cos (2 y)}}{2}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{2}{\sqrt{2-2 \cos (2 y)}} d y & =\int d x \\
-\frac{\sin (y) \operatorname{arctanh}(\cos (y))}{\sqrt{\frac{1}{2}-\frac{\cos (2 y)}{2}}} & =x+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=-\frac{\pi}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{2} \\
& c_{2}=0
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
-\frac{2 \sin (y) \operatorname{arctanh}(\cos (y))}{\sqrt{2-2 \cos (2 y)}}=x
$$

The above simplifies to

$$
-\sin (y) \operatorname{arctanh}(\cos (y))-x \sqrt{\frac{1}{2}-\frac{\cos (2 y)}{2}}=0
$$

Simplifying the solution $\sin (y)(-\operatorname{arctanh}(\cos (y))-\operatorname{csgn}(\sin (y)) x)=0$ to $\sin (y)(-\operatorname{arctanh}(\cos (y))-$ 0 Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
\sin (y)(-\operatorname{arctanh}(\cos (y))-x)=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sin (y)(-\operatorname{arctanh}(\cos (y))-x)=0
$$

Warning, solution could not be verified

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, --> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(1/2)*\operatorname{sin}(2*_a) = 0, _b(_a)
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 107.406 (sec). Leaf size: 1490

```
dsolve([2*diff(y(x),x$2)=sin(2*y(x)),y(0) = -1/2*Pi, D(y)(0) = 1],y(x), singsol=all)
```

Expression too large to display
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[\{2 * y$ ' $'[x]==\operatorname{Sin}[2 * y[x]],\{y[0]==-\mathrm{Pi} / 2, y$ ' $[0]==1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow Tru
\{\}

4.21 problem 23

4.21.1 Solving as second order ode missing y ode 606
4.21.2 Solving as second order ode non constant coeff transformation
on B ode . 608
4.21.3 Solving using Kovacic algorithm 613
4.21.4 Maple step by step solution . 620

Internal problem ID [6841]
Internal file name [OUTPUT/6088_Thursday_July_28_2022_04_30_05_AM_46510715/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_ode_missing_y", "second_oorder__ode__non_constant_ccoeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x^{3} y^{\prime \prime}-x^{2} y^{\prime}=-x^{2}+3
$$

4.21.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
x^{3} p^{\prime}(x)-p(x) x^{2}+x^{2}-3=0
$$

Which is now solve for $p(x)$ as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{-x^{2}+3}{x^{3}}
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)-\frac{p(x)}{x}=\frac{-x^{2}+3}{x^{3}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(\frac{-x^{2}+3}{x^{3}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{p}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{-x^{2}+3}{x^{3}}\right) \\
\mathrm{d}\left(\frac{p}{x}\right) & =\left(\frac{-x^{2}+3}{x^{4}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{p}{x}=\int \frac{-x^{2}+3}{x^{4}} \mathrm{~d} x \\
& \frac{p}{x}=\frac{1}{x}-\frac{1}{x^{3}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
p(x)=x\left(\frac{1}{x}-\frac{1}{x^{3}}\right)+c_{1} x
$$

which simplifies to

$$
p(x)=\frac{c_{1} x^{3}+x^{2}-1}{x^{2}}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{c_{1} x^{3}+x^{2}-1}{x^{2}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1} x^{3}+x^{2}-1}{x^{2}} \mathrm{~d} x \\
& =\frac{c_{1} x^{2}}{2}+x+\frac{1}{x}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{2}}{2}+x+\frac{1}{x}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{2}}{2}+x+\frac{1}{x}+c_{2}
$$

Verified OK.

4.21.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{3} \\
& B=-x^{2} \\
& C=0 \\
& F=-x^{2}+3
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{3}\right)(-2)+\left(-x^{2}\right)(-2 x)+(0)\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-x^{5} v^{\prime \prime}+\left(-3 x^{4}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-x^{4}\left(u^{\prime}(x) x+3 u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =\left(-x^{2}\right)\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) \\
& =-c_{2} x^{2}+\frac{c_{1}}{2}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{2} \\
& y_{2}=x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{2} & x^{2} \\
\frac{d}{d x}\left(\frac{1}{2}\right) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\frac{1}{2} & x^{2} \\
0 & 2 x
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{2}\right)(2 x)-\left(x^{2}\right)(0)
$$

Which simplifies to

$$
W=x
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2}\left(-x^{2}+3\right)}{x^{4}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{-x^{2}+3}{x^{2}} d x
$$

Hence

$$
u_{1}=x+\frac{3}{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{-\frac{x^{2}}{2}+\frac{3}{2}}{x^{4}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-x^{2}+3}{2 x^{4}} d x
$$

Hence

$$
u_{2}=\frac{1}{2 x}-\frac{1}{2 x^{3}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x+\frac{3}{x} \\
& u_{2}=\frac{x^{2}-1}{2 x^{3}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x}{2}+\frac{3}{2 x}+\frac{x^{2}-1}{2 x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}+1}{x}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-c_{2} x^{2}+\frac{c_{1}}{2}\right)+\left(\frac{x^{2}+1}{x}\right) \\
& =-c_{2} x^{2}+\frac{c_{1}}{2}+\frac{x^{2}+1}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-c_{2} x^{2}+\frac{c_{1}}{2}+\frac{x^{2}+1}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-c_{2} x^{2}+\frac{c_{1}}{2}+\frac{x^{2}+1}{x}
$$

Verified OK.

4.21.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{3} y^{\prime \prime}-x^{2} y^{\prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{3} \\
& B=-x^{2} \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 34: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\frac{1}{2}-x^{2} x^{3} d x} \\
& =z_{1} e^{\frac{\ln (x)}{2}} \\
& =z_{1}(\sqrt{x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x^{2}}{x^{3}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{3} y^{\prime \prime}-x^{2} y^{\prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}+\frac{c_{2} x^{2}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\frac{x^{2}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & \frac{x^{2}}{2} \\
\frac{d}{d x}(1) & \frac{d}{d x}\left(\frac{x^{2}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
1 & \frac{x^{2}}{2} \\
0 & x
\end{array}\right|
$$

Therefore

$$
W=(1)(x)-\left(\frac{x^{2}}{2}\right)(0)
$$

Which simplifies to

$$
W=x
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x^{2}\left(-x^{2}+3\right)}{2}}{x^{4}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{-x^{2}+3}{2 x^{2}} d x
$$

Hence

$$
u_{1}=\frac{x}{2}+\frac{3}{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{-x^{2}+3}{x^{4}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{-x^{2}+3}{x^{4}} d x
$$

Hence

$$
u_{2}=\frac{1}{x}-\frac{1}{x^{3}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{x}{2}+\frac{3}{2 x} \\
& u_{2}=\frac{x^{2}-1}{x^{3}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{x}{2}+\frac{3}{2 x}+\frac{x^{2}-1}{2 x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2}+1}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\frac{c_{2} x^{2}}{2}\right)+\left(\frac{x^{2}+1}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\frac{c_{2} x^{2}}{2}+\frac{x^{2}+1}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+\frac{c_{2} x^{2}}{2}+\frac{x^{2}+1}{x}
$$

Verified OK.

4.21.4 Maple step by step solution

Let's solve
$x^{3} y^{\prime \prime}-x^{2} y^{\prime}=-x^{2}+3$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE

$$
x^{3} u^{\prime}(x)-x^{2} u(x)=-x^{2}+3
$$

- Isolate the derivative
$u^{\prime}(x)=\frac{u(x)}{x}-\frac{x^{2}-3}{x^{3}}$
- Group terms with $u(x)$ on the lhs of the ODE and the rest on the rhs of the ODE
$u^{\prime}(x)-\frac{u(x)}{x}=-\frac{x^{2}-3}{x^{3}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(u^{\prime}(x)-\frac{u(x)}{x}\right)=-\frac{\mu(x)\left(x^{2}-3\right)}{x^{3}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) u(x))$
$\mu(x)\left(u^{\prime}(x)-\frac{u(x)}{x}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int-\frac{\mu(x)\left(x^{2}-3\right)}{x^{3}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) u(x)=\int-\frac{\mu(x)\left(x^{2}-3\right)}{x^{3}} d x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=\frac{\int-\frac{\mu(x)\left(x^{2}-3\right)}{x^{3}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$u(x)=x\left(\int-\frac{x^{2}-3}{x^{4}} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$u(x)=x\left(\frac{1}{x}-\frac{1}{x^{3}}+c_{1}\right)$
- \quad Solve 1 st ODE for $u(x)$
$u(x)=x\left(\frac{1}{x}-\frac{1}{x^{3}}+c_{1}\right)$
- Make substitution $u=y^{\prime}$
$y^{\prime}=x\left(\frac{1}{x}-\frac{1}{x^{3}}+c_{1}\right)$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int x\left(\frac{1}{x}-\frac{1}{x^{3}}+c_{1}\right) d x+c_{2}$
- Compute integrals
$y=\frac{c_{1} x^{2}}{2}+x+\frac{1}{x}+c_{2}$

Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (_a^2*_b(_a)-_a^2+3)/_a^3, _b(_a)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(x^3*diff(y(x), x$2)-x^2*diff(y(x),x)=3-x^2,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x^{2}}{2}+\frac{1}{x}+x+c_{2}
$$

Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 21
DSolve $\left[x^{\wedge} 3 * y\right.$ '' $[x]-x^{\wedge} 2 * y$ ' $[x]==3-x^{\wedge} 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{1} x^{2}}{2}+x+\frac{1}{x}+c_{2}
$$

4.22 problem 24

4.22.1 Solving as second order ode missing y ode 623
4.22.2 Solving as second order ode missing x ode 624
4.22.3 Maple step by step solution . 626

Internal problem ID [6842]
Internal file name [OUTPUT/6089_Thursday_July_28_2022_04_30_08_AM_81941235/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_order_ode_missing_y"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,
    _mu_xy]]
```

$$
y^{\prime \prime}-y^{\prime 2}=0
$$

4.22.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-p(x)^{2}=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{p^{2}} d p & =x+c_{1} \\
-\frac{1}{p} & =x+c_{1}
\end{aligned}
$$

Solving for p gives these solutions

$$
p_{1}=-\frac{1}{x+c_{1}}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-\frac{1}{x+c_{1}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{1}{x+c_{1}} \mathrm{~d} x \\
& =-\ln \left(x+c_{1}\right)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln \left(x+c_{1}\right)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\ln \left(x+c_{1}\right)+c_{2}
$$

Verified OK.

4.22.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
p(y)\left(\frac{d}{d y} p(y)\right)-p(y)^{2}=0
$$

Which is now solved as first order ode for $p(y)$. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{p} d p & =y+c_{1} \\
\ln (p) & =y+c_{1} \\
p & =\mathrm{e}^{y+c_{1}} \\
p & =c_{1} \mathrm{e}^{y}
\end{aligned}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=c_{1} \mathrm{e}^{y}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{\mathrm{e}^{-y}}{c_{1}} d y & =x+c_{2} \\
-\frac{\mathrm{e}^{-y}}{c_{1}} & =x+c_{2}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\ln \left(-\frac{1}{c_{1}\left(x+c_{2}\right)}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(-\frac{1}{c_{1}\left(x+c_{2}\right)}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln \left(-\frac{1}{c_{1}\left(x+c_{2}\right)}\right)
$$

Verified OK.

4.22.3 Maple step by step solution

Let's solve
$y^{\prime \prime}-y^{\prime 2}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE $u^{\prime}(x)-u(x)^{2}=0$
- Separate variables
$\frac{u^{\prime}(x)}{u(x)^{2}}=1$
- Integrate both sides with respect to x $\int \frac{u^{\prime}(x)}{u(x)^{2}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\frac{1}{u(x)}=x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=-\frac{1}{x+c_{1}}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=-\frac{1}{x+c_{1}}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=-\frac{1}{x+c_{1}}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int-\frac{1}{x+c_{1}} d x+c_{2}$
- Compute integrals
$y=-\ln \left(x+c_{1}\right)+c_{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 15

```
dsolve(diff(y(x),x$2)=diff(y(x),x)~2,y(x), singsol=all)
```

$$
y(x)=-\ln \left(-c_{1} x-c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.197 (sec). Leaf size: 15

```
DSolve[y''[x]==(y'[x])^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{2}-\log \left(x+c_{1}\right)
$$

4.23 problem 25

4.23.1 Solving as second order ode missing y ode 628
4.23.2 Maple step by step solution . 630

Internal problem ID [6843]
Internal file name [OUTPUT/6090_Thursday_July_28_2022_04_30_10_AM_70078846/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime}-\mathrm{e}^{x} y^{\prime 2}=0
$$

4.23.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-\mathrm{e}^{x} p(x)^{2}=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\mathrm{e}^{x} p^{2}
\end{aligned}
$$

Where $f(x)=\mathrm{e}^{x}$ and $g(p)=p^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p^{2}} d p & =\mathrm{e}^{x} d x \\
\int \frac{1}{p^{2}} d p & =\int \mathrm{e}^{x} d x \\
-\frac{1}{p} & =\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

The solution is

$$
-\frac{1}{p(x)}-\mathrm{e}^{x}-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\frac{1}{y^{\prime}}-\mathrm{e}^{x}-c_{1}=0
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{1}{\mathrm{e}^{x}+c_{1}} \mathrm{~d} x \\
& =-\frac{\ln \left(\mathrm{e}^{x}\right)}{c_{1}}+\frac{\ln \left(\mathrm{e}^{x}+c_{1}\right)}{c_{1}}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\ln \left(\mathrm{e}^{x}\right)}{c_{1}}+\frac{\ln \left(\mathrm{e}^{x}+c_{1}\right)}{c_{1}}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\ln \left(\mathrm{e}^{x}\right)}{c_{1}}+\frac{\ln \left(\mathrm{e}^{x}+c_{1}\right)}{c_{1}}+c_{2}
$$

Verified OK.

4.23.2 Maple step by step solution

Let's solve
$y^{\prime \prime}-\mathrm{e}^{x} y^{\prime 2}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE $u^{\prime}(x)-\mathrm{e}^{x} u(x)^{2}=0$
- Separate variables
$\frac{u^{\prime}(x)}{u(x)^{2}}=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{u(x)^{2}} d x=\int \mathrm{e}^{x} d x+c_{1}$
- Evaluate integral
$-\frac{1}{u(x)}=\mathrm{e}^{x}+c_{1}$
- \quad Solve for $u(x)$
$u(x)=-\frac{1}{\mathrm{e}^{x}+c_{1}}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=-\frac{1}{\mathrm{e}^{x}+c_{1}}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=-\frac{1}{\mathrm{e}^{x}+c_{1}}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int-\frac{1}{\mathrm{e}^{x}+c_{1}} d x+c_{2}$
- Compute integrals
$y=-\frac{\ln \left(e^{x}\right)}{c_{1}}+\frac{\ln \left(e^{x}+c_{1}\right)}{c_{1}}+c_{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = exp(_a)*_b(_a)^2, _b(_a), HINT = [[1,
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, -_b]
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
dsolve(diff (y (x), x$2)=exp (x)*diff (y (x), x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{c_{2} c_{1}-\ln \left(\mathrm{e}^{x}-c_{1}\right)+\ln \left(\mathrm{e}^{x}\right)}{c_{1}}
$$

Solution by Mathematica
Time used: 0.985 (sec). Leaf size: 37

```
DSolve[y''[x]==Exp[x](y'[x])~2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{-x+\log \left(e^{x}+c_{1}\right)+c_{1} c_{2}}{c_{1}} \\
& y(x) \rightarrow \text { Indeterminate } \\
& y(x) \rightarrow c_{2}
\end{aligned}
$$

4.24 problem 26

4.24.1 Solving as second order ode missing y ode 632
4.24.2 Maple step by step solution . 634

Internal problem ID [6844]
Internal file name [OUTPUT/6091_Thursday_July_28_2022_04_30_12_AM_80846733/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_y"
Maple gives the following as the ode type

```
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]
```

$$
2 y^{\prime \prime}-y^{\prime 3} \sin (2 x)=0
$$

4.24.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
2 p^{\prime}(x)-p(x)^{3} \sin (2 x)=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{p^{3} \sin (2 x)}{2}
\end{aligned}
$$

Where $f(x)=\frac{\sin (2 x)}{2}$ and $g(p)=p^{3}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p^{3}} d p & =\frac{\sin (2 x)}{2} d x \\
\int \frac{1}{p^{3}} d p & =\int \frac{\sin (2 x)}{2} d x \\
-\frac{1}{2 p^{2}} & =-\frac{\cos (2 x)}{4}+c_{1}
\end{aligned}
$$

The solution is

$$
-\frac{1}{2 p(x)^{2}}+\frac{\cos (2 x)}{4}-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\frac{1}{2 y^{\prime 2}}+\frac{\cos (2 x)}{4}-c_{1}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=-\frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}} \tag{1}\\
& y^{\prime}=\frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}} \mathrm{d} x \\
& =-\frac{2 \sqrt{-\frac{-4 c_{1}+\cos (2 x)}{4 c_{1}-1}} \text { InverseJacobiAM }\left(x, \sqrt{2} \sqrt{-\frac{1}{4 c_{1}-1}}\right)}{\sqrt{-8 c_{1}+2 \cos (2 x)}}+c_{2}
\end{aligned}
$$

Solving equation (2)

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}} \mathrm{d} x \\
& =\frac{2 \sqrt{-\frac{-4 c_{1}+\cos (2 x)}{4 c_{1}-1}} \operatorname{InverseJacobiAM}\left(x, \sqrt{2} \sqrt{-\frac{1}{4 c_{1}-1}}\right)}{\sqrt{-8 c_{1}+2 \cos (2 x)}}+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{2 \sqrt{-\frac{-4 c_{1}+\cos (2 x)}{4 c_{1}-1}} \text { InverseJacobiAM }\left(x, \sqrt{2} \sqrt{-\frac{1}{4 c_{1}-1}}\right)}{\sqrt{-8 c_{1}+2 \cos (2 x)}}+c_{2} \tag{1}\\
& y=\frac{2 \sqrt{-\frac{-4 c_{1}+\cos (2 x)}{4 c_{1}-1}} \text { InverseJacobiAM }\left(x, \sqrt{2} \sqrt{-\frac{1}{4 c_{1}-1}}\right)}{\sqrt{-8 c_{1}+2 \cos (2 x)}}+c_{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-\frac{2 \sqrt{-\frac{-4 c_{1}+\cos (2 x)}{4 c_{1}-1}} \text { InverseJacobiAM }\left(x, \sqrt{2} \sqrt{-\frac{1}{4 c_{1}-1}}\right)}{\sqrt{-8 c_{1}+2 \cos (2 x)}}+c_{2}
$$

Verified OK.

$$
y=\frac{2 \sqrt{-\frac{-4 c_{1}+\cos (2 x)}{4 c_{1}-1}} \text { InverseJacobiAM }\left(x, \sqrt{2} \sqrt{-\frac{1}{4 c_{1}-1}}\right)}{\sqrt{-8 c_{1}+2 \cos (2 x)}}+c_{3}
$$

Verified OK.

4.24.2 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime}-y^{\prime 3} \sin (2 x)=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Make substitution $u=y^{\prime}$ to reduce order of ODE

$$
2 u^{\prime}(x)-u(x)^{3} \sin (2 x)=0
$$

- \quad Separate variables

$$
\frac{u^{\prime}(x)}{u(x)^{3}}=\frac{\sin (2 x)}{2}
$$

- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{u(x)^{3}} d x=\int \frac{\sin (2 x)}{2} d x+c_{1}$
- Evaluate integral
$-\frac{1}{2 u(x)^{2}}=-\frac{\cos (2 x)}{4}+c_{1}$
- \quad Solve for $u(x)$
$\left\{u(x)=-\frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}}, u(x)=\frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}}\right\}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=-\frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=-\frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int-\frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}} d x+c_{2}$
- Compute integrals
$y=-\frac{2 \sqrt{-\frac{-4 c_{1}+\cos (2 x)}{4 c_{1}-1}} \operatorname{InverseJacobiAM}\left(x, \sqrt{2} \sqrt{-\frac{1}{4 c_{1}-1}}\right)}{\sqrt{-8 c_{1}+2 \cos (2 x)}}+c_{2}$
- \quad Solve 2nd ODE for $u(x)$
$u(x)=\frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}}$
- Make substitution $u=y^{\prime}$

$$
y^{\prime}=\frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}}
$$

- Integrate both sides to solve for y
$\int y^{\prime} d x=\int \frac{2}{\sqrt{-8 c_{1}+2 \cos (2 x)}} d x+c_{2}$
- Compute integrals

$$
y=\frac{2 \sqrt{-\frac{-4 c_{1}+\cos (2 x)}{4 c_{1}-1}} \text { InverseJacobiAM }\left(x, \sqrt{2} \sqrt{-\frac{1}{4 c_{1}-1}}\right)}{\sqrt{-8 c_{1}+2 \cos (2 x)}}+c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (1/2)*_b(_a)^3*sin(2*_a), _b(_a)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 80

```
dsolve(2*diff(y(x),x$2)=diff(y(x),x)^3*sin(2*x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\sqrt{-\sin (x)^{2} c_{1}^{2}+1} \text { InverseJacobiAM }\left(x, c_{1}\right)}{\sqrt{\frac{-\sin \left(x x^{2} c_{1}^{2}+1\right.}{c_{1}^{2}}}}+c_{2} \\
& y(x)=-\frac{\sqrt{-\sin (x)^{2} c_{1}^{2}+1} \text { InverseJacobiAM }\left(x, c_{1}\right)}{\sqrt{\frac{-\sin (x)^{2} c_{1}^{2}+1}{c_{1}^{2}}}}+c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 6.102 (sec). Leaf size: 120
DSolve[2*y''[x]==(y'[x])^3*Sin[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{2}-\frac{\sqrt{-\frac{\cos (2 x)+1-4 c_{1}}{-1+2 c_{1}}} \operatorname{EllipticF}\left(x, \frac{1}{1-2 c_{1}}\right)}{\sqrt{\cos (2 x)+1-4 c_{1}}} \\
& y(x) \rightarrow \frac{\sqrt{-\frac{\cos (2 x)+1-4 c_{1}}{-1+2 c_{1}}} \operatorname{EllipticF}\left(x, \frac{1}{1-2 c_{1}}\right)}{\sqrt{\cos (2 x)+1-4 c_{1}}}+c_{2} \\
& y(x) \rightarrow c_{2}
\end{aligned}
$$

4.25 problem 27

4.25.1 Solving as second order ode missing y ode 638
4.25.2 Maple step by step solution . 640

Internal problem ID [6845]
Internal file name [OUTPUT/6092_Thursday_July_28_2022_04_30_14_AM_58312407/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

$$
x^{2} y^{\prime \prime}+y^{\prime 2}=0
$$

4.25.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
x^{2} p^{\prime}(x)+p(x)^{2}=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =-\frac{p^{2}}{x^{2}}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x^{2}}$ and $g(p)=p^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p^{2}} d p & =-\frac{1}{x^{2}} d x \\
\int \frac{1}{p^{2}} d p & =\int-\frac{1}{x^{2}} d x \\
-\frac{1}{p} & =\frac{1}{x}+c_{1}
\end{aligned}
$$

The solution is

$$
-\frac{1}{p(x)}-\frac{1}{x}-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\frac{1}{y^{\prime}}-\frac{1}{x}-c_{1}=0
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{x}{c_{1} x+1} \mathrm{~d} x \\
& =-\frac{x}{c_{1}}+\frac{\ln \left(c_{1} x+1\right)}{c_{1}^{2}}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{c_{1}}+\frac{\ln \left(c_{1} x+1\right)}{c_{1}^{2}}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{x}{c_{1}}+\frac{\ln \left(c_{1} x+1\right)}{c_{1}^{2}}+c_{2}
$$

Verified OK.

4.25.2 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+y^{\prime 2}=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE $x^{2} u^{\prime}(x)+u(x)^{2}=0$
- Separate variables
$\frac{u^{\prime}(x)}{u(x)^{2}}=-\frac{1}{x^{2}}$
- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{u(x)^{2}} d x=\int-\frac{1}{x^{2}} d x+c_{1}$
- Evaluate integral
$-\frac{1}{u(x)}=\frac{1}{x}+c_{1}$
- \quad Solve for $u(x)$
$u(x)=-\frac{x}{c_{1} x+1}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=-\frac{x}{c_{1} x+1}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=-\frac{x}{c_{1} x+1}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int-\frac{x}{c_{1} x+1} d x+c_{2}$
- Compute integrals

$$
y=-\frac{x}{c_{1}}+\frac{\ln \left(c_{1} x+1\right)}{c_{1}^{2}}+c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = __b(_a)^2/_a^2, _b(_a), HINT = [[_a,
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, _b]
```

\checkmark Solution by Maple
Time used: 0.046 (sec). Leaf size: 21

```
dsolve(x^2*diff(y(x),x$2)+diff(y(x),x)^2=0,y(x), singsol=all)
```

$$
y(x)=\frac{x}{c_{1}}+\frac{\ln \left(c_{1} x-1\right)}{c_{1}^{2}}+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.57 (sec). Leaf size: 47
DSolve[x^2*y''[x]+(y'[x])^2==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x}{c_{1}}+\frac{\log \left(1+c_{1} x\right)}{c_{1}{ }^{2}}+c_{2} \\
& y(x) \rightarrow c_{2} \\
& y(x) \rightarrow-\frac{x^{2}}{2}+c_{2}
\end{aligned}
$$

4.26 problem 28

4.26.1 Solving as second order ode missing y ode 642
4.26.2 Solving as second order ode missing x ode 643
4.26.3 Maple step by step solution . 645

Internal problem ID [6846]
Internal file name [OUTPUT/6093_Thursday_July_28_2022_04_30_16_AM_7866207/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_order_oode_missing_y"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]
```

$$
y^{\prime \prime}-y^{\prime 2}=1
$$

4.26.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-1-p(x)^{2}=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{p^{2}+1} d p & =x+c_{1} \\
\arctan (p) & =x+c_{1}
\end{aligned}
$$

Solving for p gives these solutions

$$
p_{1}=\tan \left(x+c_{1}\right)
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\tan \left(x+c_{1}\right)
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \tan \left(x+c_{1}\right) \mathrm{d} x \\
& =\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}
$$

Verified OK.

4.26.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
p(y)\left(\frac{d}{d y} p(y)\right)-p(y)^{2}=1
$$

Which is now solved as first order ode for $p(y)$. Integrating both sides gives

$$
\begin{aligned}
\int \frac{p}{p^{2}+1} d p & =\int d y \\
\frac{\ln \left(p^{2}+1\right)}{2} & =y+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{p^{2}+1}=\mathrm{e}^{y+c_{1}}
$$

Which simplifies to

$$
\sqrt{p^{2}+1}=c_{2} \mathrm{e}^{y}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
y^{\prime}=\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2 y}+1\right)
$$

Integrating both sides gives

$$
\begin{aligned}
& \int \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2 y}+1\right)} d y=\int d x \\
&\left.\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2}-a\right.}+1\right) \\
& d _a=x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2} _a+1\right)} d _a=x+c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2} _^{a}+1\right)} d _a=x+c_{3}
$$

Verified OK.

4.26.3 Maple step by step solution

Let's solve
$y^{\prime \prime}-y^{\prime 2}=1$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE $u^{\prime}(x)-u(x)^{2}=1$
- Separate variables

$$
\frac{u^{\prime}(x)}{u(x)^{2}+1}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{u^{\prime}(x)}{u(x)^{2}+1} d x=\int 1 d x+c_{1}
$$

- Evaluate integral
$\arctan (u(x))=x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=\tan \left(x+c_{1}\right)$
- \quad Solve 1st ODE for $u(x)$
$u(x)=\tan \left(x+c_{1}\right)$
- Make substitution $u=y^{\prime}$
$y^{\prime}=\tan \left(x+c_{1}\right)$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int \tan \left(x+c_{1}\right) d x+c_{2}$
- Compute integrals
$y=\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
<- 2nd order, 2 integrating factors of the form mu(x,y) successful-
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)=1+diff(y(x),x)^2,y(x), singsol=all)
```

$$
y(x)=-\ln \left(-\cos (x) c_{2}+c_{1} \sin (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 1.97 (sec). Leaf size: 16
DSolve[y''[x]==1+(y'[x])~2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{2}-\log \left(\cos \left(x+c_{1}\right)\right)
$$

4.27 problem 30

4.27.1 Solving as second order ode missing y ode 647
4.27.2 Solving as second order ode missing x ode 648
4.27.3 Maple step by step solution . 650

Internal problem ID [6847]
Internal file name [OUTPUT/6094_Thursday_July_28_2022_04_30_18_AM_11524310/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 30.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order__ode_missing_x", "second_oorder_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-\left(1+y^{\prime 2}\right)^{\frac{3}{2}}=0
$$

4.27.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-\left(1+p(x)^{2}\right)^{\frac{3}{2}}=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\left(p^{2}+1\right)^{\frac{3}{2}}} d p & =\int d x \\
\frac{p(x)}{\sqrt{1+p(x)^{2}}} & =x+c_{1}
\end{aligned}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=x+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} \sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}+x \sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}} \mathrm{~d} x \\
& =\sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}\left(c_{1}+x+1\right)\left(c_{1}+x-1\right)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}\left(c_{1}+x+1\right)\left(c_{1}+x-1\right)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}\left(c_{1}+x+1\right)\left(c_{1}+x-1\right)+c_{2}
$$

Verified OK.

4.27.2 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
p(y)\left(\frac{d}{d y} p(y)\right)=\left(1+p(y)^{2}\right)^{\frac{3}{2}}
$$

Which is now solved as first order ode for $p(y)$. Integrating both sides gives

$$
\begin{aligned}
& \int \frac{p}{\left(p^{2}+1\right)^{\frac{3}{2}}} d p=\int d y \\
& -\frac{1}{\sqrt{1+p(y)^{2}}}=y+c_{1}
\end{aligned}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\frac{1}{\sqrt{1+y^{\prime 2}}}=y+c_{1}
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{-y^{2}-2 c_{1} y-c_{1}^{2}+1}}{y+c_{1}} \tag{1}\\
& y^{\prime}=-\frac{\sqrt{-y^{2}-2 c_{1} y-c_{1}^{2}+1}}{y+c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{y+c_{1}}{\sqrt{-c_{1}^{2}-2 c_{1} y-y^{2}+1}} d y & =\int d x \\
\frac{\left(y+c_{1}+1\right)\left(y+c_{1}-1\right)}{\sqrt{-y^{2}-2 c_{1} y-c_{1}^{2}+1}} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{y+c_{1}}{\sqrt{-c_{1}^{2}-2 c_{1} y-y^{2}+1}} d y & =\int d x \\
-\frac{\left(y+c_{1}+1\right)\left(y+c_{1}-1\right)}{\sqrt{-y^{2}-2 c_{1} y-c_{1}^{2}+1}} & =x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{\left(y+c_{1}+1\right)\left(y+c_{1}-1\right)}{\sqrt{-y^{2}-2 c_{1} y-c_{1}^{2}+1}} & =x+c_{2} \tag{1}\\
-\frac{\left(y+c_{1}+1\right)\left(y+c_{1}-1\right)}{\sqrt{-y^{2}-2 c_{1} y-c_{1}^{2}+1}} & =x+c_{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
\frac{\left(y+c_{1}+1\right)\left(y+c_{1}-1\right)}{\sqrt{-y^{2}-2 c_{1} y-c_{1}^{2}+1}}=x+c_{2}
$$

Verified OK.

$$
-\frac{\left(y+c_{1}+1\right)\left(y+c_{1}-1\right)}{\sqrt{-y^{2}-2 c_{1} y-c_{1}^{2}+1}}=x+c_{3}
$$

Verified OK.

4.27.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=\left(1+y^{\prime 2}\right)^{\frac{3}{2}}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE

$$
u^{\prime}(x)=\left(u(x)^{2}+1\right)^{\frac{3}{2}}
$$

- \quad Separate variables
$\frac{u^{\prime}(x)}{\left(u(x)^{2}+1\right)^{\frac{3}{2}}}=1$
- Integrate both sides with respect to x
$\int \frac{u^{\prime}(x)}{\left(u(x)^{2}+1\right)^{\frac{3}{2}}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\frac{u(x)}{\sqrt{u(x)^{2}+1}}=x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=c_{1} \sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}+x \sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=c_{1} \sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}+x \sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=c_{1} \sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}+x \sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}$
- Integrate both sides to solve for y

$$
\int y^{\prime} d x=\int\left(c_{1} \sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}+x \sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}\right) d x+c_{2}
$$

- Compute integrals
$y=\sqrt{-\frac{1}{c_{1}^{2}+2 c_{1} x+x^{2}-1}}\left(c_{1}+x+1\right)\left(c_{1}+x-1\right)+c_{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (1+_b(_a)^2)^(3/2), _b(_a), HINT = [[1,
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:` [1, 0], [y, -_b^2-1]
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 49

```
dsolve(diff(y(x),x$2)=(1+diff(y(x),x)^2)^(3/2),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-i x+c_{1} \\
& y(x)=i x+c_{1} \\
& y(x)=\left(c_{1}+x+1\right)\left(x-1+c_{1}\right) \sqrt{-\frac{1}{\left(c_{1}+x+1\right)\left(x-1+c_{1}\right)}}+c_{2}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.269 (sec). Leaf size: 59

```
DSolve[y''[x]==(1+(y'[x])^2)^(3/2),y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow c_{2}-i \sqrt{x^{2}+2 c_{1} x-1+c_{1}^{2}} \\
& y(x) \rightarrow i \sqrt{x^{2}+2 c_{1} x-1+c_{1}^{2}}+c_{2}
\end{aligned}
$$

4.28 problem 31

4.28.1 Solving as second order ode missing x ode 653

Internal problem ID [6848]
Internal file name [OUTPUT/6095_Thursday_July_28_2022_04_30_21_AM_39831181/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 31.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]
```

$$
y y^{\prime \prime}-y^{\prime 2}\left(1-y^{\prime} \sin (y)-y y^{\prime} \cos (y)\right)=0
$$

4.28.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
y p(y)\left(\frac{d}{d y} p(y)\right)+\left(\cos (y) y p(y)^{2}+\sin (y) p(y)^{2}-p(y)\right) p(y)=0
$$

Which is now solved as first order ode for $p(y)$. Using the change of variables $p(y)=$ $u(y) y$ on the above ode results in new ode in $u(y)$

$$
y^{2} u(y)\left(\left(\frac{d}{d y} u(y)\right) y+u(y)\right)+\left(\cos (y) y^{3} u(y)^{2}+\sin (y) u(y)^{2} y^{2}-u(y) y\right) u(y) y=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(y, u) \\
& =f(y) g(u) \\
& =u^{2}(-\cos (y) y-\sin (y))
\end{aligned}
$$

Where $f(y)=-\cos (y) y-\sin (y)$ and $g(u)=u^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}} d u & =-\cos (y) y-\sin (y) d y \\
\int \frac{1}{u^{2}} d u & =\int-\cos (y) y-\sin (y) d y \\
-\frac{1}{u} & =-\sin (y) y+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{u(y)}+\sin (y) y-c_{2}=0
$$

Replacing $u(y)$ in the above solution by $\frac{p(y)}{y}$ results in the solution for $p(y)$ in implicit form

$$
\begin{aligned}
& -\frac{y}{p(y)}+\sin (y) y-c_{2}=0 \\
& -\frac{y}{p(y)}+\sin (y) y-c_{2}=0
\end{aligned}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\frac{y}{y^{\prime}}+y \sin (y)-c_{2}=0
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{\sin (y) y-c_{2}}{y} d y & =\int d x \\
\int^{y} \frac{\sin \left(_a\right) _a-c_{2}}{a} d _a & =x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{\sin \left(_a\right) _a-c_{2}}{_^{a}} d _a=x+c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{y} \frac{\sin \left(_a\right) _a-c_{2}}{_^{a}} d _a=x+c_{3}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)^2*(_b(_a)*cos(_a)*_a+_b(_
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 0.14 (sec). Leaf size: 24

```
dsolve(y(x)*diff(y(x),x$2)=diff(y(x),x)^2*(1-diff(y(x),x)*\operatorname{sin}(y(x))-y(x)*\operatorname{diff}(y(x),x)*\operatorname{cos}(y(
```

$$
\begin{aligned}
y(x) & =c_{1} \\
-\cos (y(x))+c_{1} \ln (y(x))-x-c_{2} & =0
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.489 (sec). Leaf size: 69
DSolve $[y[x] * y$ '' $[x]==(y '[x]) \sim 2 *(1-y '[x] * \operatorname{Sin}[y[x]]-y[x] * y '[x] * \operatorname{Cos}[y[x]]), y[x], x$, IncludeSingul

$$
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }\left[-\cos (\# 1)+c_{1} \log (\# 1) \&\right]\left[x+c_{2}\right] \\
& y(x) \rightarrow \text { InverseFunction }\left[-\cos (\# 1)-c_{1} \log (\# 1) \&\right]\left[x+c_{2}\right] \\
& y(x) \rightarrow \text { InverseFunction }\left[-\cos (\# 1)+c_{1} \log (\# 1) \&\right]\left[x+c_{2}\right]
\end{aligned}
$$

4.29 problem 32

4.29.1 Solving as second order ode missing x ode 657

Internal problem ID [6849]
Internal file name [OUTPUT/6096_Thursday_July_28_2022_04_30_22_AM_21244975/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 32.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$
\left(1+y^{2}\right) y^{\prime \prime}+y^{\prime 3}+y^{\prime}=0
$$

4.29.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
\left(y^{2}+1\right) p(y)\left(\frac{d}{d y} p(y)\right)+\left(1+p(y)^{2}\right) p(y)=0
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{-p^{2}-1}{y^{2}+1}
\end{aligned}
$$

Where $f(y)=\frac{1}{y^{2}+1}$ and $g(p)=-p^{2}-1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-p^{2}-1} d p & =\frac{1}{y^{2}+1} d y \\
\int \frac{1}{-p^{2}-1} d p & =\int \frac{1}{y^{2}+1} d y \\
-\arctan (p) & =\arctan (y)+c_{1}
\end{aligned}
$$

The solution is

$$
-\arctan (p(y))-\arctan (y)-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\arctan \left(y^{\prime}\right)-\arctan (y)-c_{1}=0
$$

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\tan \left(\arctan (y)+c_{1}\right)} d y & =\int d x \\
\int^{y}-\frac{1}{\tan \left(\arctan \left(_a\right)+c_{1}\right)} d _a & =x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y}-\frac{1}{\tan \left(\arctan \left(_a\right)+c_{1}\right)} d _a=x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{y}-\frac{1}{\tan \left(\arctan \left(_a\right)+c_{1}\right)} d _a=x+c_{2}
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+_b(_a)*(1+_b(_a)^2)/(_a^2+1) =
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    trying separable
    <- separable successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```


Solution by Maple

Time used: 0.187 (sec). Leaf size: 118

```
dsolve((1+y(x)~2)*diff(y(x),x$2)+diff(y(x),x)^3+diff(y(x),x)=0,y(x), singsol=all)
```

$y(x)=-i$
$y(x)=i$
$y(x)=c_{1}$
$y(x)$

\checkmark Solution by Mathematica
Time used: 57.998 (sec). Leaf size: 56
DSolve[(1+y[x] 2) *y' '[x]+(y'[x])^3+y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \csc \left(c_{1}\right) \sec \left(c_{1}\right) W\left(\sin \left(c_{1}\right) e^{-\left(\left(x+c_{2}\right) \cos ^{2}\left(c_{1}\right)\right)-\sin ^{2}\left(c_{1}\right)}\right)+\tan \left(c_{1}\right) \\
& y(x) \rightarrow e^{-x-c_{2}}
\end{aligned}
$$

4.30 problem 33

4.30.1 Solving as second order ode missing x ode 661

Internal problem ID [6850]
Internal file name [OUTPUT/6097_Thursday_July_28_2022_04_30_22_AM_28511657/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 33.
ODE order: 2.
ODE degree: 2 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

$$
\left(y y^{\prime \prime}+1+y^{\prime 2}\right)^{2}-\left(1+y^{\prime 2}\right)^{3}=0
$$

4.30.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
\left(y^{2} p(y)\left(\frac{d}{d y} p(y)\right)+2 y p(y)^{2}+2 y\right) p(y)\left(\frac{d}{d y} p(y)\right)+\left(-p(y)^{5}-2 p(y)^{3}-p(y)\right) p(y)=0
$$

Which is now solved as first order ode for $p(y)$. Solving the given ode for $\frac{d}{d y} p(y)$ results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& \frac{d}{d y} p(y)=\frac{\left(-1+\sqrt{p(y)^{2}+1}\right)\left(p(y)^{2}+1\right)}{p(y) y} \tag{1}\\
& \frac{d}{d y} p(y)=-\frac{\left(1+\sqrt{p(y)^{2}+1}\right)\left(p(y)^{2}+1\right)}{p(y) y} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{\left(-1+\sqrt{p^{2}+1}\right)\left(p^{2}+1\right)}{p y}
\end{aligned}
$$

Where $f(y)=\frac{1}{y}$ and $g(p)=\frac{\left(-1+\sqrt{p^{2}+1}\right)\left(p^{2}+1\right)}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{\left(-1+\sqrt{p^{2}+1}\right)\left(p^{2}+1\right)}{p}} d p & =\frac{1}{y} d y \\
\int \frac{1}{\frac{\left(-1+\sqrt{p^{2}+1}\right)\left(p^{2}+1\right)}{p}} d p & =\int \frac{1}{y} d y \\
-\operatorname{arctanh}\left(\frac{1}{\sqrt{p^{2}+1}}\right)+\ln (p)-\frac{\ln \left(p^{2}+1\right)}{2} & =\ln (y)+c_{1}
\end{aligned}
$$

The solution is

$$
-\operatorname{arctanh}\left(\frac{1}{\sqrt{p(y)^{2}+1}}\right)+\ln (p(y))-\frac{\ln \left(p(y)^{2}+1\right)}{2}-\ln (y)-c_{1}=0
$$

Solving equation (2)

In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{\left(\sqrt{p^{2}+1}+1\right)\left(p^{2}+1\right)}{p y}
\end{aligned}
$$

Where $f(y)=-\frac{1}{y}$ and $g(p)=\frac{\left(\sqrt{p^{2}+1}+1\right)\left(p^{2}+1\right)}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{\left(\sqrt{p^{2}+1}+1\right)\left(p^{2}+1\right)}{p}} d p & =-\frac{1}{y} d y \\
\int \frac{1}{\frac{\left(\sqrt{p^{2}+1}+1\right)\left(p^{2}+1\right)}{p}} d p & =\int-\frac{1}{y} d y \\
-\operatorname{arctanh}\left(\frac{1}{\sqrt{p^{2}+1}}\right)-\ln (p)+\frac{\ln \left(p^{2}+1\right)}{2} & =-\ln (y)+c_{2}
\end{aligned}
$$

The solution is

$$
-\operatorname{arctanh}\left(\frac{1}{\sqrt{p(y)^{2}+1}}\right)-\ln (p(y))+\frac{\ln \left(p(y)^{2}+1\right)}{2}+\ln (y)-c_{2}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\operatorname{arctanh}\left(\frac{1}{\sqrt{1+y^{\prime 2}}}\right)+\ln \left(y^{\prime}\right)-\frac{\ln \left(1+y^{\prime 2}\right)}{2}-\ln (y)-c_{1}=0
$$

Integrating both sides gives

$$
\begin{aligned}
& \int \frac{1}{\sqrt{\left.-1+\mathrm{e}^{\operatorname{RootOf}\left(\mathrm{e}-Z_{\tanh }\left(\frac{Z}{2}+c_{1}-\frac{\ln \left(\frac{\mathrm{e}-Z_{-1}}{y^{2}}\right)}{2}\right)^{2}-1\right.}\right)}} d y=\int d x \\
& \int^{y} \frac{1}{\sqrt{\operatorname{RootOf}^{\left.-1+\mathrm{e}^{-} Z_{\tanh }\left(\frac{Z}{2}+c_{1}-\frac{\ln \left(\frac{\mathrm{e}-Z_{-1}}{a^{2}}\right)}{2}\right)^{2}-1\right)}}} d _a=x+c_{3}
\end{aligned}
$$

For solution (2) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
-\operatorname{arctanh}\left(\frac{1}{\sqrt{1+y^{\prime 2}}}\right)-\ln \left(y^{\prime}\right)+\frac{\ln \left(1+y^{\prime 2}\right)}{2}+\ln (y)-c_{2}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{\mathrm{e}^{\operatorname{RootOf}\left(--Z+2 \operatorname{arctanh}\left(\mathrm{e}^{-\frac{Z}{2}}\right)+2 c_{2}-\ln \left(\frac{y^{2}}{e^{Z}-1}\right)\right)}-1} \tag{1}\\
& y^{\prime}=\sqrt{\mathrm{e}^{\operatorname{RootOf}\left(--Z-2 \operatorname{arctanh}\left(\mathrm{e}^{-\frac{Z}{2}}\right)+2 c_{2}-\ln \left(\frac{y^{2}}{e^{Z}-1}\right)\right)}-1} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{gathered}
\int \frac{1}{\sqrt{\left.\mathrm{e}^{\operatorname{RootOf}\left(--Z+2 \operatorname{arctanh}\left(\mathrm{e}^{-\frac{Z}{2}}\right)+2 c_{2}-\ln \left(\frac{y^{2}}{e^{Z}-1}\right)\right.}\right)}-1} d y=\int d x \\
\int^{y} \frac{1}{\sqrt{\mathrm{e}^{\operatorname{RootOf}\left(-_Z+2 \operatorname{arctanh}\left(\mathrm{e}^{-\frac{Z}{2}}\right)+2 c_{2}-\ln \left(-\frac{a^{2}}{\mathrm{e}-Z_{-1}}\right)\right)}-1}} d _a=x+c_{4}
\end{gathered}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
& \int \frac{1}{\sqrt{\left.\mathrm{e}^{\operatorname{RootOf}\left(--Z-2 \operatorname{arctanh}\left(\mathrm{e}^{-\frac{Z}{2}}\right)+2 c_{2}-\ln \left(\frac{y^{2}}{e^{Z}-1}\right)\right.}\right)}-1}
\end{aligned} d y=\int d x
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \int^{y} \frac{1}{\sqrt{\left.\mathrm{e}^{\operatorname{RootOf}\left(--Z+2 \operatorname{arctanh}\left(\mathrm{e}^{-\frac{Z}{2}}\right)+2 c_{2}-\ln \left(\frac{-a^{2}}{e^{-}-1}\right)\right.}\right)}-1} d _a=x+c_{4} \tag{2}\\
& \int^{y} \frac{1}{\sqrt{\left.\left.\mathrm{e}^{\operatorname{RootOf}\left(-_Z-2 \operatorname{arctanh}\left(\mathrm{e}^{-\frac{Z}{2}}\right)+2 c_{2}-\ln \left(\frac{-a^{2}}{e} \mathrm{e}^{2}-1\right.\right.}\right)\right)}-1} d _a=x+c_{5} \tag{3}
\end{align*}
$$

Verification of solutions

$$
\int^{y} \frac{1}{\sqrt{\left.\operatorname{RootOf}^{-1+\mathrm{e}^{2}-Z_{\tanh }\left(\frac{Z}{2}+c_{1}-\frac{\ln \left(\frac{e^{-}-1}{a^{2}}\right)}{a^{2}}\right)^{2}-1}\right)}} d _a=x+c_{3}
$$

Verified OK.

$$
\int^{y} \frac{1}{\sqrt{\mathrm{e}^{\operatorname{RootOf}\left(-_Z+2 \operatorname{arctanh}\left(\mathrm{e}^{-\frac{-}{2}}{ }^{\frac{Z}{2}}\right)+2 c_{2}-\ln \left(\frac{a^{2}}{e^{-Z}-1}\right)\right)}-1}} d _a=x+c_{4}
$$

Verified OK.

$$
\int^{y} \frac{1}{\sqrt{\mathrm{e}^{\operatorname{RootOf}\left(--Z-2 \operatorname{arctanh}\left(\mathrm{e}^{-\frac{\square}{2}}\right)+2 c_{2}-\ln \left(\frac{a^{2}}{e^{Z}-1}\right)\right)}-1}} d _a=x+c_{5}
$$

Verified OK.

Maple trace

- Methods for second order ODEs:
*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of $d^{\wedge} 2 y / d x \wedge 2$: 2 solutions were found. Trying to solve each resulting
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-, --> Computing symmetries using: way $=3$
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+(1+(1+_b(_a)^2)^(1/2))*(1+ symmetry methods on request -, `1st order, trying reduction of order with given symmetries:` [_a, 0]

Solution by Maple

Time used: 0.141 (sec). Leaf size: 107

```
dsolve((y(x)*diff(y(x),x$2)+1+diff(y(x),x)^2)^2=(1+diff(y(x), x)^2)^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-i x+c_{1} \\
& y(x)=i x+c_{1} \\
& y(x)=0 \\
& y(x)=-c_{1}-\sqrt{-\left(x+c_{1}+c_{2}\right)\left(x-c_{1}+c_{2}\right)} \\
& y(x)=-c_{1}+\sqrt{-\left(x+c_{1}+c_{2}\right)\left(x-c_{1}+c_{2}\right)} \\
& y(x)=c_{1}-\sqrt{-\left(x+c_{1}+c_{2}\right)\left(x-c_{1}+c_{2}\right)} \\
& y(x)=c_{1}+\sqrt{-\left(x+c_{1}+c_{2}\right)\left(x-c_{1}+c_{2}\right)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 45.659 (sec). Leaf size: 155
DSolve $\left[\left(y[x] * y '^{\prime}[x]+1+\left(y^{\prime}[x]\right) \sim 2\right)^{\wedge} 2==\left(1+\left(y^{\prime}[x]\right)^{\wedge} 2\right) \wedge 3, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{e^{2 c_{1}}-\left(x+c_{2}\right)^{2}}-e^{c_{1}} \\
& y(x) \rightarrow e^{c_{1}}-\sqrt{e^{2 c_{1}}-\left(x+c_{2}\right)^{2}} \\
& y(x) \rightarrow \sqrt{e^{2 c_{1}}-\left(x+c_{2}\right)^{2}}-e^{c_{1}} \\
& y(x) \rightarrow \sqrt{e^{2 c_{1}}-\left(x+c_{2}\right)^{2}}+e^{c_{1}} \\
& y(x) \rightarrow-\sqrt{-\left(x+c_{2}\right)^{2}} \\
& y(x) \rightarrow \sqrt{-\left(x+c_{2}\right)^{2}}
\end{aligned}
$$

4.31 problem 34

4.31.1 Solving as second order ode missing y ode 668

Internal problem ID [6851]
Internal file name [OUTPUT/6098_Friday_July_29_2022_02_05_35_AM_9550685/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 34 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x^{2} y^{\prime \prime}-y^{\prime}\left(2 x-y^{\prime}\right)=0
$$

With initial conditions

$$
\left[y(-1)=5, y^{\prime}(-1)=1\right]
$$

4.31.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
x^{2} p^{\prime}(x)+(p(x)-2 x) p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Using the change of variables $p(x)=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x^{2}\left(u^{\prime}(x) x+u(x)\right)+(u(x) x-2 x) u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(u-1)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u(u-1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u(u-1)} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u(u-1)} d u & =\int-\frac{1}{x} d x \\
-\ln (u)+\ln (u-1) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u)+\ln (u-1)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{u-1}{u}=\frac{c_{3}}{x}
$$

Therefore the solution $p(x)$ is

$$
\begin{aligned}
p(x) & =u x \\
& =-\frac{x^{2}}{c_{3}-x}
\end{aligned}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=-1$ and $p=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{1}{c_{3}+1} \\
c_{3}=-2
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
p(x)=\frac{x^{2}}{x+2}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{x^{2}}{x+2}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x^{2}}{x+2} \mathrm{~d} x \\
& =\frac{x^{2}}{2}-2 x+4 \ln (x+2)+c_{4}
\end{aligned}
$$

Initial conditions are used to solve for c_{4}. Substituting $x=-1$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=\frac{5}{2}+c_{4} \\
c_{4}=\frac{5}{2}
\end{gathered}
$$

Substituting c_{4} found above in the general solution gives

$$
y=\frac{x^{2}}{2}-2 x+4 \ln (x+2)+\frac{5}{2}
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}-2 x+4 \ln (x+2)+\frac{5}{2} \tag{1}
\end{equation*}
$$

Figure 17: Solution plot

Verification of solutions

$$
y=\frac{x^{2}}{2}-2 x+4 \ln (x+2)+\frac{5}{2}
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying differential order: 2; missing variables
-, `-> Computing symmetries using: way \(=3\) <- differential order: 2; canonical coordinates successful <- differential order 2; missing variables successful`

Solution by Maple

Time used: 0.125 (sec). Leaf size: 20

```
dsolve([x^2*\operatorname{diff}(y(x),x$2)=\operatorname{diff}(y(x),x)*(2*x-\operatorname{diff}(y(x),x)),y(-1)=5,D(y)(-1)=1],y(x), si
```

$$
y(x)=\frac{x^{2}}{2}-2 x+4 \ln (x+2)+\frac{5}{2}
$$

Solution by Mathematica
Time used: 0.52 (sec). Leaf size: 23
DSolve $\left[\left\{x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]==y\right.\right.$ ' $[x] *(2 * x-y$ ' $\left.[x]),\left\{y[-1]==5, y^{\prime}[-1]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{1}{2}\left(x^{2}-4 x+8 \log (x+2)+5\right)
$$

4.32 problem 35

4.32.1 Solving as second order ode missing y ode 672

Internal problem ID [6852]
Internal file name [OUTPUT/6099_Friday_July_29_2022_03_09_12_AM_9550685/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 35 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x^{2} y^{\prime \prime}-y^{\prime}\left(3 x-2 y^{\prime}\right)=0
$$

4.32.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
x^{2} p^{\prime}(x)+(2 p(x)-3 x) p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Using the change of variables $p(x)=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x^{2}\left(u^{\prime}(x) x+u(x)\right)+(2 u(x) x-3 x) u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u(u-1)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u(u-1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u(u-1)} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u(u-1)} d u & =\int-\frac{2}{x} d x \\
-\ln (u)+\ln (u-1) & =-2 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u)+\ln (u-1)}=\mathrm{e}^{-2 \ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{u-1}{u}=\frac{c_{3}}{x^{2}}
$$

Therefore the solution $p(x)$ is

$$
\begin{aligned}
p(x) & =x u \\
& =-\frac{x^{3}}{-x^{2}+c_{3}}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-\frac{x^{3}}{-x^{2}+c_{3}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{x^{3}}{-x^{2}+c_{3}} \mathrm{~d} x \\
& =\frac{x^{2}}{2}+\frac{c_{3} \ln \left(x^{2}-c_{3}\right)}{2}+c_{4}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}+\frac{c_{3} \ln \left(x^{2}-c_{3}\right)}{2}+c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{2}}{2}+\frac{c_{3} \ln \left(x^{2}-c_{3}\right)}{2}+c_{4}
$$

Verified OK.
Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-, --> Computing symmetries using: way $=3$
-> Calling odsolve with the ODE`, \(\operatorname{diff}\left(_b\left(_a\right), \quad\right.\) a \()=-_b\left(_a\right) *\left(-3 * _a+2 * _b\left(_a\right)\right) / _a^{\wedge} 2, \quad\) _b(_a), symmetry methods on request -, `1st order, trying reduction of order with given symmetries:` [_a, _b]

Solution by Maple
Time used: 0.062 (sec). Leaf size: 22

```
dsolve(x^2*diff(y(x),x$2)=diff(y(x),x)*(3*x-2*diff (y(x),x)),y(x), singsol=all)
```

$$
y(x)=\frac{x^{2}}{2}+\frac{c_{1} \ln \left(x^{2}-c_{1}\right)}{2}+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.333 (sec). Leaf size: 28
DSolve $\left[x \sim 2 * y^{\prime \prime}\right.$ ' $[x]==y$ ' $[x] *(3 * x-2 * y$ ' $[x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}\left(x^{2}-c_{1} \log \left(x^{2}+c_{1}\right)+2 c_{2}\right)
$$

4.33 problem 36

4.33.1 Solving as second order ode missing y ode
$\begin{array}{ll}\text { 4.33.2 } & \text { Solving as second order nonlinear solved by mainardi lioville } \\ & \text { method ode . } 680\end{array}$
Internal problem ID [6853]
Internal file name [OUTPUT/6100_Friday_July_29_2022_03_09_14_AM_38707999/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 36.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_y", "second_order_nonlinear_solved_by_mainardi_lioville_method"

Maple gives the following as the ode type

$$
\begin{aligned}
& {\left[\left[_2 n d _o r d e r, ~-m i s s i n g _y\right], ~ _L i o u v i l l e, ~\left[_2 n d _o r d e r, ~ _r e d u c i b l e, ~\right.\right.}
\end{aligned}
$$

$$
x y^{\prime \prime}-y^{\prime}\left(2-3 x y^{\prime}\right)=0
$$

4.33.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
x p^{\prime}(x)+(3 p(x) x-2) p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Writing the ode as

$$
\begin{aligned}
p^{\prime}(x) & =-\frac{(3 p x-2) p}{x} \\
p^{\prime}(x) & =\omega(x, p)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{p}-\xi_{x}\right)-\omega^{2} \xi_{p}-\omega_{x} \xi-\omega_{p} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 42: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, p) & =0 \\
\eta(x, p) & =\frac{p^{2}}{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, p) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d p}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial p}\right) S(x, p)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{p^{2}}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{p}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, p) S_{p}}{R_{x}+\omega(x, p) R_{p}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{p}, S_{x}, S_{p}$ are all partial derivatives and $\omega(x, p)$ is the right hand side of the original ode given by

$$
\omega(x, p)=-\frac{(3 p x-2) p}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{p} & =0 \\
S_{x} & =-\frac{2 x}{p} \\
S_{p} & =\frac{x^{2}}{p^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-3 x^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, p in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-3 R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-R^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, p coordinates. This results in

$$
-\frac{x^{2}}{p(x)}=-x^{3}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{p(x)}=-x^{3}+c_{1}
$$

Which gives

$$
p(x)=-\frac{x^{2}}{-x^{3}+c_{1}}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-\frac{x^{2}}{-x^{3}+c_{1}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{x^{2}}{-x^{3}+c_{1}} \mathrm{~d} x \\
& =\frac{\ln \left(x^{3}-c_{1}\right)}{3}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln \left(x^{3}-c_{1}\right)}{3}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\ln \left(x^{3}-c_{1}\right)}{3}+c_{2}
$$

Verified OK.

4.33.2 Solving as second order nonlinear solved by mainardi lioville method ode

The ode has the Liouville form given by

$$
\begin{equation*}
y^{\prime \prime}+f(x) y^{\prime}+g(y) y^{\prime 2}=0 \tag{1~A}
\end{equation*}
$$

Where in this problem

$$
\begin{aligned}
f(x) & =-\frac{2}{x} \\
g(y) & =3
\end{aligned}
$$

Dividing through by y^{\prime} then Eq (1A) becomes

$$
\begin{equation*}
\frac{y^{\prime \prime}}{y^{\prime}}+f+g y^{\prime}=0 \tag{2~A}
\end{equation*}
$$

But the first term in $\operatorname{Eq}(2 \mathrm{~A})$ can be written as

$$
\begin{equation*}
\frac{y^{\prime \prime}}{y^{\prime}}=\frac{d}{d x} \ln \left(y^{\prime}\right) \tag{3~A}
\end{equation*}
$$

And the last term in Eq (2A) can be written as

$$
\begin{align*}
g \frac{d y}{d x} & =\left(\frac{d}{d y} \int g d y\right) \frac{d y}{d x} \\
& =\frac{d}{d x} \int g d y \tag{4~A}
\end{align*}
$$

Substituting (3A, 4A) back into (2A) gives

$$
\begin{equation*}
\frac{d}{d x} \ln \left(y^{\prime}\right)+\frac{d}{d x} \int g d y=-f \tag{5~A}
\end{equation*}
$$

Integrating the above w.r.t. x gives

$$
\ln \left(y^{\prime}\right)+\int g d y=-\int f d x+c_{1}
$$

Where c_{1} is arbitrary constant. Taking the exponential of the above gives

$$
\begin{equation*}
y^{\prime}=c_{2} e^{\int-g d y} e^{\int-f d x} \tag{6A}
\end{equation*}
$$

Where c_{2} is a new arbitrary constant. But since $g=3$ and $f=-\frac{2}{x}$, then

$$
\begin{aligned}
\int-g d y & =\int(-3) d y \\
& =-3 y \\
\int-f d x & =\int \frac{2}{x} d x \\
& =2 \ln (x)
\end{aligned}
$$

Substituting the above into $\mathrm{Eq}(6 \mathrm{~A})$ gives

$$
y^{\prime}=c_{2} \mathrm{e}^{-3 y} x^{2}
$$

Which is now solved as first order separable ode. In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =c_{2} \mathrm{e}^{-3 y} x^{2}
\end{aligned}
$$

Where $f(x)=c_{2} x^{2}$ and $g(y)=\mathrm{e}^{-3 y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{-3 y}} d y & =c_{2} x^{2} d x \\
\int \frac{1}{\mathrm{e}^{-3 y}} d y & =\int c_{2} x^{2} d x \\
\frac{\mathrm{e}^{3 y}}{3} & =\frac{c_{2} x^{3}}{3}+c_{3}
\end{aligned}
$$

The solution is

$$
\frac{\mathrm{e}^{3 y}}{3}-\frac{c_{2} x^{3}}{3}-c_{3}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\mathrm{e}^{3 y}}{3}-\frac{c_{2} x^{3}}{3}-c_{3}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\mathrm{e}^{3 y}}{3}-\frac{c_{2} x^{3}}{3}-c_{3}=0
$$

Verified OK.
Maple trace
${ }^{-}$Methods for second order ODEs:
--- Trying classification methods --trying 2nd order Liouville <- 2nd_order Liouville successful`
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 16
dsolve $(x * \operatorname{diff}(y(x), x \$ 2)=\operatorname{diff}(y(x), x) *(2-3 * x * \operatorname{diff}(y(x), x)), y(x)$, singsol=all)

$$
y(x)=\frac{\ln \left(c_{1} x^{3}+3 c_{2}\right)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.267 (sec). Leaf size: 19
DSolve[x*y''[x]==y'[x]*(2-3*x*y'[x]),y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{3} \log \left(x^{3}+c_{1}\right)+c_{2}
$$

4.34 problem 37

4.34.1 Solving as second order ode missing y ode 683

Internal problem ID [6854]
Internal file name [OUTPUT/6101_Friday_July_29_2022_03_09_17_AM_29950073/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 37.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
x^{4} y^{\prime \prime}-y^{\prime}\left(y^{\prime}+x^{3}\right)=0
$$

With initial conditions

$$
\left[y(1)=2, y^{\prime}(1)=1\right]
$$

4.34.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
x^{4} p^{\prime}(x)+\left(-x^{3}-p(x)\right) p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Using the change of variables $p(x)=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x^{4}\left(u^{\prime}(x) x+u(x)\right)+\left(-x^{3}-u(x) x\right) u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}}{x^{3}}
\end{aligned}
$$

Where $f(x)=\frac{1}{x^{3}}$ and $g(u)=u^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}} d u & =\frac{1}{x^{3}} d x \\
\int \frac{1}{u^{2}} d u & =\int \frac{1}{x^{3}} d x \\
-\frac{1}{u} & =-\frac{1}{2 x^{2}}+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{u(x)}+\frac{1}{2 x^{2}}-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{p(x)}{x}$ results in the solution for $p(x)$ in implicit form

$$
\begin{aligned}
& -\frac{x}{p(x)}+\frac{1}{2 x^{2}}-c_{2}=0 \\
& -\frac{x}{p(x)}+\frac{1}{2 x^{2}}-c_{2}=0
\end{aligned}
$$

Substituting initial conditions and solving for c_{2} gives $c_{2}=-\frac{1}{2}$. Hence the solution becomes Solving for $p(x)$ from the above gives

$$
p(x)=\frac{2 x^{3}}{x^{2}+1}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{2 x^{3}}{x^{2}+1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{2 x^{3}}{x^{2}+1} \mathrm{~d} x \\
& =x^{2}-\ln \left(x^{2}+1\right)+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=1-\ln (2)+c_{3} \\
c_{3}=1+\ln (2)
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
y=x^{2}-\ln \left(x^{2}+1\right)+1+\ln (2)
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

Figure 18: Solution plot

Verification of solutions

$$
y=x^{2}-\ln \left(x^{2}+1\right)+1+\ln (2)
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = _b(_a)*(_a`3+_b(_a))/_a`4, _b(_a), HINT
    symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 3*_b]
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 25

```
dsolve([x^4*\operatorname{diff}(y(x),x$2)=\operatorname{diff}(y(x),x)*(\operatorname{diff}(y(x),x)+\mp@subsup{x}{}{\wedge}3),y(1)=2,D(y)(1)=1],y(x), sing
```

$$
y(x)=x^{2}-\ln \left(-x^{2}-1\right)+1+\ln (2)+i \pi
$$

Solution by Mathematica
Time used: 0.929 (sec). Leaf size: 20
DSolve $\left[\left\{x^{\wedge} 4 * y^{\prime}{ }^{\prime}[x]==y{ }^{\prime}[x] *\left(y^{\prime}[x]+x^{\wedge} 3\right),\left\{y[1]==2, y^{\prime}[1]==1\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow x^{2}-\log \left(x^{2}+1\right)+1+\log (2)
$$

4.35 problem 38

4.35.1 Solving as second order ode missing y ode 687

Internal problem ID [6855]
Internal file name [OUTPUT/6102_Friday_July_29_2022_03_09_20_AM_12648957/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 38.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

$$
y^{\prime \prime}-\left(x^{2}-y^{\prime}\right)^{2}=2 x
$$

4.35.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)+\left(2 x^{2}-p(x)\right) p(x)-x^{4}-2 x=0
$$

Which is now solve for $p(x)$ as first order ode. Writing the ode as

$$
\begin{aligned}
p^{\prime}(x) & =x^{4}-2 p x^{2}+p^{2}+2 x \\
p^{\prime}(x) & =\omega(x, p)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{p}-\xi_{x}\right)-\omega^{2} \xi_{p}-\omega_{x} \xi-\omega_{p} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=p a_{3}+x a_{2}+a_{1} \tag{1E}\\
& \eta=p b_{3}+x b_{2}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\left(x^{4}-2 p x^{2}+p^{2}+2 x\right)\left(b_{3}-a_{2}\right)-\left(x^{4}-2 p x^{2}+p^{2}+2 x\right)^{2} a_{3} \tag{5E}\\
& \quad-\left(4 x^{3}-4 x p+2\right)\left(p a_{3}+x a_{2}+a_{1}\right)-\left(-2 x^{2}+2 p\right)\left(p b_{3}+x b_{2}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -x^{8} a_{3}+4 p x^{6} a_{3}-6 p^{2} x^{4} a_{3}+4 p^{3} x^{2} a_{3}-4 x^{5} a_{3}-p^{4} a_{3}+4 p x^{3} a_{3} \\
& \quad-5 x^{4} a_{2}+x^{4} b_{3}+6 p x^{2} a_{2}-4 x^{3} a_{1}+2 x^{3} b_{2}-p^{2} a_{2}-p^{2} b_{3}+4 p x a_{1} \\
& \quad-2 p x b_{2}-4 x^{2} a_{3}+2 x^{2} b_{1}-2 p a_{3}-2 p b_{1}-4 x a_{2}+2 x b_{3}-2 a_{1}+b_{2}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{8} a_{3}+4 p x^{6} a_{3}-6 p^{2} x^{4} a_{3}+4 p^{3} x^{2} a_{3}-4 x^{5} a_{3}-p^{4} a_{3}+4 p x^{3} a_{3} \tag{6E}\\
& \quad-5 x^{4} a_{2}+x^{4} b_{3}+6 p x^{2} a_{2}-4 x^{3} a_{1}+2 x^{3} b_{2}-p^{2} a_{2}-p^{2} b_{3}+4 p x a_{1} \\
& \quad-2 p x b_{2}-4 x^{2} a_{3}+2 x^{2} b_{1}-2 p a_{3}-2 p b_{1}-4 x a_{2}+2 x b_{3}-2 a_{1}+b_{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{p, x\}$ in them.

$$
\{p, x\}
$$

The following substitution is now made to be able to collect on all terms with $\{p, x\}$ in them

$$
\left\{p=v_{1}, x=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{3} v_{2}^{8}+4 a_{3} v_{1} v_{2}^{6}-6 a_{3} v_{1}^{2} v_{2}^{4}+4 a_{3} v_{1}^{3} v_{2}^{2}-4 a_{3} v_{2}^{5}-5 a_{2} v_{2}^{4}-a_{3} v_{1}^{4}+4 a_{3} v_{1} v_{2}^{3} \tag{7E}\\
& +b_{3} v_{2}^{4}-4 a_{1} v_{2}^{3}+6 a_{2} v_{1} v_{2}^{2}+2 b_{2} v_{2}^{3}+4 a_{1} v_{1} v_{2}-a_{2} v_{1}^{2}-4 a_{3} v_{2}^{2}+2 b_{1} v_{2}^{2} \\
& -2 b_{2} v_{1} v_{2}-b_{3} v_{1}^{2}-4 a_{2} v_{2}-2 a_{3} v_{1}-2 b_{1} v_{1}+2 b_{3} v_{2}-2 a_{1}+b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -a_{3} v_{1}^{4}+4 a_{3} v_{1}^{3} v_{2}^{2}-6 a_{3} v_{1}^{2} v_{2}^{4}+\left(-a_{2}-b_{3}\right) v_{1}^{2}+4 a_{3} v_{1} v_{2}^{6}+4 a_{3} v_{1} v_{2}^{3}+6 a_{2} v_{1} v_{2}^{2} \tag{8E}\\
& +\left(4 a_{1}-2 b_{2}\right) v_{1} v_{2}+\left(-2 a_{3}-2 b_{1}\right) v_{1}-a_{3} v_{2}^{8}-4 a_{3} v_{2}^{5}+\left(-5 a_{2}+b_{3}\right) v_{2}^{4} \\
& +\left(-4 a_{1}+2 b_{2}\right) v_{2}^{3}+\left(-4 a_{3}+2 b_{1}\right) v_{2}^{2}+\left(-4 a_{2}+2 b_{3}\right) v_{2}-2 a_{1}+b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
6 a_{2}=0 \\
-6 a_{3}=0 \\
-4 a_{3}=0 \\
-a_{3}=0 \\
4 a_{3}=0 \\
-4 a_{1}+2 b_{2}=0 \\
-2 a_{1}+b_{2}=0 \\
4 a_{1}-2 b_{2}=0 \\
-5 a_{2}+b_{3}=0 \\
-4 a_{2}+2 b_{3}=0 \\
-a_{2}-b_{3}=0 \\
-4 a_{3}+2 b_{1}=0 \\
-2 a_{3}-2 b_{1}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =a_{1} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =2 a_{1} \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=2 x
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, p) \xi \\
& =2 x-\left(x^{4}-2 p x^{2}+p^{2}+2 x\right)(1) \\
& =-x^{4}+2 p x^{2}-p^{2} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, p) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d p}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial p}\right) S(x, p)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-x^{4}+2 p x^{2}-p^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{1}{-x^{2}+p}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, p) S_{p}}{R_{x}+\omega(x, p) R_{p}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{p}, S_{x}, S_{p}$ are all partial derivatives and $\omega(x, p)$ is the right hand side of the original ode given by

$$
\omega(x, p)=x^{4}-2 p x^{2}+p^{2}+2 x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{p} & =0 \\
S_{x} & =\frac{2 x}{\left(-x^{2}+p\right)^{2}} \\
S_{p} & =-\frac{1}{\left(-x^{2}+p\right)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, p in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, p coordinates. This results in

$$
\frac{1}{-x^{2}+p(x)}=-x+c_{1}
$$

Which simplifies to

$$
\frac{1}{-x^{2}+p(x)}=-x+c_{1}
$$

Which gives

$$
p(x)=\frac{c_{1} x^{2}-x^{3}+1}{-x+c_{1}}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{c_{1} x^{2}-x^{3}+1}{-x+c_{1}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{c_{1} x^{2}-x^{3}+1}{-x+c_{1}} \mathrm{~d} x \\
& =\frac{x^{3}}{3}-\ln \left(-c_{1}+x\right)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}}{3}-\ln \left(-c_{1}+x\right)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{3}}{3}-\ln \left(-c_{1}+x\right)+c_{2}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful
<- 2nd order, 2 integrating factors of the form mu(x,y) successful`
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 20

```
dsolve(diff(y(x),x$2)=2*x+(x^2-diff(y(x),x))^2,y(x), singsol=all)
```

$$
y(x)=\frac{x^{3}}{3}-\ln \left(c_{2} x-c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.298 (sec). Leaf size: 24
DSolve[y''[x]==2*x+(x^2-y'[x])~2,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{x^{3}}{3}-\log \left(-x+c_{1}\right)+c_{2}
$$

4.36 problem 39

4.36.1 Solving as second order ode missing y ode 694

Internal problem ID [6856]
Internal file name [OUTPUT/6103_Friday_July_29_2022_03_09_22_AM_41838316/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 39.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime 2}-2 y^{\prime \prime}+y^{\prime 2}-2 x y^{\prime}=-x^{2}
$$

With initial conditions

$$
\left[y(0)=\frac{1}{2}, y^{\prime}(0)=1\right]
$$

4.36.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
\left(p^{\prime}(x)-2\right) p^{\prime}(x)+(p(x)-2 x) p(x)+x^{2}=0
$$

Which is now solve for $p(x)$ as first order ode. Let $p=p^{\prime}(x)$ the ode becomes

$$
(p-2) p+(p-2 x) p=-x^{2}
$$

Solving for $p(x)$ from the above results in

$$
\begin{align*}
& p(x)=x+\sqrt{-p^{2}+2 p} \tag{1~A}\\
& p(x)=x-\sqrt{-p^{2}+2 p} \tag{2A}
\end{align*}
$$

This has the form

$$
\begin{equation*}
p=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=p^{\prime}(x)$. Each of the above ode's is dAlembert ode which is now solved. Solving ode 1A Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $p(x)=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=1 \\
& g=\sqrt{-(p-2) p}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-1=\frac{(-2 p+2) p^{\prime}(x)}{2 \sqrt{-(p-2) p}} \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-1=0
$$

Solving for p from the above gives

$$
p=1
$$

Substituting these in (1A) gives

$$
p(x)=x+1
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{2(p(x)-1) \sqrt{-(p(x)-2) p(x)}}{-2 p(x)+2} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-(p-2) p}} d p & =x+c_{1} \\
-\arcsin (p-1) & =x+c_{1}
\end{aligned}
$$

Solving for p gives these solutions

$$
p_{1}=1-\sin \left(x+c_{1}\right)
$$

Substituing the above solution for p in (2A) gives

$$
p(x)=x+\sqrt{-\left(-1-\sin \left(x+c_{1}\right)\right)\left(1-\sin \left(x+c_{1}\right)\right)}
$$

Solving ode 2A Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $p(x)=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=1 \\
& g=-\sqrt{-(p-2) p}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-1=-\frac{(-2 p+2) p^{\prime}(x)}{2 \sqrt{-(p-2) p}} \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-1=0
$$

Solving for p from the above gives

$$
p=1
$$

Substituting these in (1A) gives

$$
p(x)=x-1
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=-\frac{2(p(x)-1) \sqrt{-(p(x)-2) p(x)}}{-2 p(x)+2} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$. Integrating both sides gives

$$
\begin{array}{r}
\int \frac{1}{\sqrt{-(p-2) p}} d p=x+c_{2} \\
\arcsin (p-1)=x+c_{2}
\end{array}
$$

Solving for p gives these solutions

$$
p_{1}=1+\sin \left(x+c_{2}\right)
$$

Substituing the above solution for p in (2A) gives

$$
p(x)=x-\sqrt{-\left(-1+\sin \left(x+c_{2}\right)\right)\left(1+\sin \left(x+c_{2}\right)\right)}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $p=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\sqrt{-\left(-1+\sin \left(c_{2}\right)\right)\left(1+\sin \left(c_{2}\right)\right)} \\
c_{2}=\pi
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
p(x)=x-\sqrt{-(1+\sin (x))(\sin (x)-1)}
$$

But this does not satisfy the initial conditions. Hence no solution can be found. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $p=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\sqrt{-\left(1+\sin \left(c_{1}\right)\right)\left(-1+\sin \left(c_{1}\right)\right)} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
p(x)=x+\sqrt{-(1+\sin (x))(\sin (x)-1)}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=x+1
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int x+1 \mathrm{~d} x \\
& =\frac{1}{2} x^{2}+x+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=c_{3} \\
& c_{3}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{3} found above in the general solution gives

$$
y=\frac{1}{2} x^{2}+x+\frac{1}{2}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=x+\sqrt{-(1+\sin (x))(\sin (x)-1)}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int x+\sqrt{-(1+\sin (x))(\sin (x)-1)} \mathrm{d} x \\
& =\frac{x^{2}}{2}-\frac{2(\sin (x)-1)^{2}(1+\sin (x))}{3 \cos (x) \sqrt{-(1+\sin (x))(\sin (x)-1)}}+c_{4}
\end{aligned}
$$

Initial conditions are used to solve for c_{4}. Substituting $x=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{1}{2}=c_{4}-\frac{2}{3}
$$

$$
c_{4}=\frac{7}{6}
$$

Substituting c_{4} found above in the general solution gives

$$
y=\frac{2 \sin (x)}{3}+\frac{x^{2}}{2}+\frac{1}{2}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=x-1
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int x-1 \mathrm{~d} x \\
& =\frac{1}{2} x^{2}-x+c_{5}
\end{aligned}
$$

Initial conditions are used to solve for c_{5}. Substituting $x=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=c_{5} \\
& c_{5}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{5} found above in the general solution gives

$$
y=\frac{1}{2} x^{2}-x+\frac{1}{2}
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{2} x^{2}+x+\frac{1}{2} \tag{1}\\
& y=\frac{2 \sin (x)}{3}+\frac{x^{2}}{2}+\frac{1}{2} \tag{2}\\
& y=\frac{1}{2} x^{2}-x+\frac{1}{2} \tag{3}
\end{align*}
$$

Figure 19: Solution plot

Verification of solutions

$$
y=\frac{1}{2} x^{2}+x+\frac{1}{2}
$$

Verified OK.

$$
y=\frac{2 \sin (x)}{3}+\frac{x^{2}}{2}+\frac{1}{2}
$$

Warning, solution could not be verified

$$
y=\frac{1}{2} x^{2}-x+\frac{1}{2}
$$

Warning, solution could not be verified

Maple trace

- Methods for second order ODEs:
*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of $d^{\wedge} 2 y / d x \wedge 2$: 2 solutions were found. Trying to solve each resulting
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
-> Calling odsolve with the ODE`, \(\operatorname{diff}(\operatorname{diff}(\operatorname{diff}(y(x), x), x), x)+\operatorname{diff}(y(x), x)-x, y(x\) Methods for third order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 3; linear nonhomogeneous with symmetry [0,1] -> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = -_b(_a)+_a, _b(_a) Methods for second order ODEs: --- Trying classification methods --trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful <- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
<- 2nd order ODE linearizable_by_differentiation successful
* Tackling next ODE.
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
<- 2nd order ODE linearizable_b $\%$ differentiation successful
\rightarrow Calling odsolve with the ODE`, $\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{x}+1, \mathrm{y}(\mathrm{x})$, singsol = none \quad *** Sublevel Methods for first order ODEs:
\checkmark Solution by Maple
Time used: 0.391 (sec). Leaf size: 23
dsolve ([diff $(y(x), x \$ 2)^{\wedge} 2-2 * \operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)^{\wedge} 2-2 * x * \operatorname{diff}(y(x), x)+x^{\wedge} 2=0, y(0)=1 / 2$,

$$
\begin{aligned}
& y(x)=\frac{(x+1)^{2}}{2} \\
& y(x)=\frac{x^{2}}{2}+\sin (x)+\frac{1}{2}
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left\{\left(y^{\prime \prime}[x]\right) \sim 2-2 * y '^{\prime}[x]+(y '[x]) \sim 2-2 * x * y '[x]+x^{\wedge} 2==0,\left\{y[0]==1 / 2, y^{\prime}[0]==1\right\}\right\}, y[x], x\right.$, Include

Not solved

4.37 problem 40

4.37.1 Solving as second order ode missing y ode 703

Internal problem ID [6857]
Internal file name [OUTPUT/6104_Friday_July_29_2022_03_09_36_AM_52345976/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 40.
ODE order: 2.
ODE degree: 2.

The type(s) of ODE detected by this program : "second_order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime 2}-x y^{\prime \prime}+y^{\prime}=0
$$

4.37.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
\left(p^{\prime}(x)-x\right) p^{\prime}(x)+p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. This is Clairaut ODE. It has the form

$$
p=p^{\prime}(x) x+g\left(p^{\prime}(x)\right)
$$

Where g is function of $p^{\prime}(x)$. Let $p=p^{\prime}(x)$ the ode becomes

$$
(p-x) p+p=0
$$

Solving for $p(x)$ from the above results in

$$
\begin{equation*}
p(x)=-(p-x) p \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing $p^{\prime}(x)$ by p which gives

$$
\begin{aligned}
p(x) & =-p^{2}+p x \\
& =-p^{2}+p x
\end{aligned}
$$

Writing the ode as

$$
p(x)=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
p=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=-p^{2}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
p(x)=-c_{1}^{2}+c_{1} x
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=-p^{2}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-2 p \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
p_{1}=\frac{x}{2}
$$

Substituting the above back in (1) results in

$$
p(x)_{1}=\frac{x^{2}}{4}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-c_{1}^{2}+c_{1} x
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-c_{1}^{2}+c_{1} x \mathrm{~d} x \\
& =c_{1}\left(\frac{1}{2} x^{2}-c_{1} x\right)+c_{2}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{x^{2}}{4}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x^{2}}{4} \mathrm{~d} x \\
& =\frac{x^{3}}{12}+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1}\left(\frac{1}{2} x^{2}-c_{1} x\right)+c_{2} \tag{1}\\
& y=\frac{x^{3}}{12}+c_{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=c_{1}\left(\frac{1}{2} x^{2}-c_{1} x\right)+c_{2}
$$

Verified OK.

$$
y=\frac{x^{3}}{12}+c_{3}
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of $\mathrm{d}^{\wedge} 2 \mathrm{y} / \mathrm{dx}^{\wedge} 2$: 2 solutions were found. Trying to solve each resulting *** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation <- 2nd order ODE linearizable_by_differentiation successful
* Tackling next ODE.
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation <- 2nd order ODE linearizable_by_differentiation successful
\rightarrow Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=(1 / 4) * \mathrm{x}^{\wedge} 2, \mathrm{y}(\mathrm{x})\), singsol \(=\) none` $\quad * * *$ Sub
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.219 (sec). Leaf size: 28
dsolve(diff $(y(x), x \$ 2)^{\wedge} 2-x * \operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=\frac{x^{3}}{12}+c_{1} \\
& y(x)=\frac{1}{2} c_{1} x^{2}-c_{1}^{2} x+c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 24
DSolve[(y''[x])~2-x*y''[x]+y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{c_{1} x^{2}}{2}-c_{1}^{2} x+c_{2}
$$

4.38 problem 41

4.38.1 Solving as second order ode missing y ode 708

Internal problem ID [6858]
Internal file name [OUTPUT/6105_Friday_July_29_2022_03_09_39_AM_93402856/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 41.
ODE order: 2.
ODE degree: 3 .

The type(s) of ODE detected by this program : "second__order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime} 3-12 y^{\prime}\left(x y^{\prime \prime}-2 y^{\prime}\right)=0
$$

4.38.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
\left(p^{\prime}(x)^{2}-12 p(x) x\right) p^{\prime}(x)+24 p(x)^{2}=0
$$

Which is now solve for $p(x)$ as first order ode. Solving the given ode for $p^{\prime}(x)$ results in 3 differential equations to solve. Each one of these will generate a solution. The
equations generated are

$$
\begin{align*}
& p^{\prime}(x)=\left(-12 p(x)^{2}+4 \sqrt{-4 p(x)^{3} x^{3}+9 p(x)^{4}}\right)^{\frac{1}{3}}+\frac{4 p(x) x}{\left(-12 p(x)^{2}+4 \sqrt{-4 p(x)^{3} x^{3}+9 p(x)^{4}}\right)^{\frac{1}{3}}} \tag{1}\\
& p^{\prime}(x)=-\frac{\left(-12 p(x)^{2}+4 \sqrt{-4 p(x)^{3} x^{3}+9 p(x)^{4}}\right)^{\frac{1}{3}}}{2}-\frac{2 p(x) x}{\left(-12 p(x)^{2}+4 \sqrt{-4 p(x)^{3} x^{3}+9 p(x)^{4}}\right)^{\frac{1}{3}}}+i \sqrt{3} \tag{2}\\
& p^{\prime}(x)=-\frac{\left(-12 p(x)^{2}+4 \sqrt{-4 p(x)^{3} x^{3}+9 p(x)^{4}}\right)^{\frac{1}{3}}}{2}-\frac{2 p(x) x}{\left(-12 p(x)^{2}+4 \sqrt{-4 p(x)^{3} x^{3}+9 p(x)^{4}}\right)^{\frac{1}{3}}} i \sqrt{3} \tag{3}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& p^{\prime}(x)=\frac{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}+4 p x}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}} \\
& p^{\prime}(x)=\omega(x, p)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{p}-\xi_{x}\right)-\omega^{2} \xi_{p}-\omega_{x} \xi-\omega_{p} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=p a_{3}+x a_{2}+a_{1} \tag{1E}\\
& \eta=p b_{3}+x b_{2}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\left.\begin{array}{rl}
b_{2} & +\frac{\left(\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}+4 p x\right)\left(b_{3}-a_{2}\right)}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}+4 p x\right)^{2} a_{3}}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}} \\
& -\left(\frac{16 p^{3} x^{2}}{\left(-\frac{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}} \sqrt{-4 p^{3} x^{3}+9 p^{4}}}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}+4 p\right.}\right. \\
& \left.+\frac{8\left(\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}+4 p x\right) p^{3} x^{2}}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{4}{3}} \sqrt{-4 p^{3} x^{3}+9 p^{4}}}\right)\left(p a_{3}+x a_{2}+a_{1}\right) \tag{5E}\\
& -\left(\frac{-16 p+\frac{2\left(-24 p^{2} x^{3}+72 p^{3}\right)}{3 \sqrt{-4 p^{3} x^{3}+9 p^{4}}}}{\frac{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}{}+4 x}\right) \\
\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}
\end{array}\right)\left(p b_{3}\right)
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{8 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{4}{3}} p x a_{3}+16 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -8 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{4}{3}} p x a_{3} \\
& -16 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\left(-12 p^{2}\right. \\
& \left.+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p^{2} x^{2} a_{3} \\
& +8 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p x b_{2} \\
& -16\left(-4 p^{3} x^{3}+9 p^{4}\right)^{\frac{3}{2}} a_{3}+720 p^{6} a_{3}-144 p^{5} a_{1} \\
& -352 p^{5} x^{3} a_{3}+96 p^{4} x^{4} a_{2}-32 p^{4} x^{4} b_{3}+32 p^{3} x^{5} b_{2} \\
& +32 p^{4} x^{3} a_{1}+32 p^{3} x^{4} b_{1}+96 p^{5} x b_{3}-48 p^{4} x^{2} b_{2}-48 p^{4} x b_{1} \\
& -\sqrt{-4 p^{3} x^{3}+9 p^{4}}\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{5}{3}} a_{2} \\
& +\sqrt{-4 p^{3} x^{3}+9 p^{4}}\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{5}{3}} b_{3} \\
& -24\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p^{4} b_{3} \\
& +b_{2}\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{4}{3}} \sqrt{-4 p^{3} x^{3}+9 p^{4}} \\
& -24\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p^{3} b_{1} \tag{6E}\\
& -96 \sqrt{-4 p^{3} x^{3}+9 p^{4}} p^{4} a_{3}+48 \sqrt{-4 p^{3} x^{3}+9 p^{4}} p^{3} a_{1} \\
& +8\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p^{4} x^{2} a_{3} \\
& +8\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p^{3} x^{3} a_{2} \\
& +8\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p^{3} x^{3} b_{3} \\
& +8\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p^{2} x^{4} b_{2} \\
& +8\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p^{3} x^{2} a_{1} \\
& +8\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p^{2} x^{3} b_{1} \\
& -24\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p^{3} x b_{2} \\
& +8 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p^{2} b_{3} \\
& -32 \sqrt{-4 p^{3} x^{3}+9 p^{4}} p^{3} x b_{3}+16 \sqrt{-4 p^{3} x^{3}+9 p^{4}} p^{2} x^{2} b_{2} \\
& +8 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} p b_{1} \\
& +16 \sqrt{-4 p^{3} x^{3}+9 p^{4}} p^{2} x b_{1} \\
& +96 \sqrt{-4 p^{3} x^{3}+9 p^{4}} p^{3} x a_{2}-288 p^{5} x a_{2}=0
\end{align*}
$$

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{p, x\}$ in them.

$$
\left\{p, x, \sqrt{p^{3}\left(-4 x^{3}+9 p\right)},\left(-12 p^{2}+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{1}{3}},\left(-12 p^{2}+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{2}{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{p, x\}$ in them

$$
\begin{aligned}
& \left\{p=v_{1}, x=v_{2}, \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}=v_{3},\left(-12 p^{2}\right.\right. \\
& \left.\left.+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{1}{3}}=v_{4},\left(-12 p^{2}+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{2}{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -4 v_{1}\left(-32 v_{4} v_{1}^{3} v_{2}^{4} a_{3}-24 v_{1}^{3} v_{2}^{4} a_{2}+88 v_{1}^{4} v_{2}^{3} a_{3}-8 v_{1}^{2} v_{2}^{5} b_{2}+8 v_{1}^{3} v_{2}^{4} b_{3}\right. \\
& \quad-8 v_{1}^{3} v_{2}^{3} a_{1}-6 v_{5} v_{1}^{2} v_{2}^{3} a_{2}+72 v_{4} v_{1}^{4} v_{2} a_{3}-2 v_{5} v_{1}^{3} v_{2}^{2} a_{3}-16 v_{3} v_{1}^{2} v_{2}^{3} a_{3}-8 v_{1}^{2} v_{2}^{4} b_{1} \\
& +4 v_{4} v_{1}^{2} v_{2}^{3} b_{2}-2 v_{5} v_{1} v_{2}^{4} b_{2}+2 v_{5} v_{1}^{2} v_{2}^{3} b_{3}-2 v_{5} v_{1}^{2} v_{2}^{2} a_{1}+72 v_{1}^{4} v_{2} a_{2}-180 v_{1}^{5} a_{3} \tag{7E}\\
& -24 v_{4} v_{3} v_{1}^{2} v_{2} a_{3}+4 v_{5} v_{3} v_{1} v_{2}^{2} a_{3}-2 v_{5} v_{1} v_{2}^{3} b_{1}+12 v_{1}^{3} v_{2}^{2} b_{2}-24 v_{1}^{4} v_{2} b_{3} \\
& +36 v_{1}^{4} a_{1}+9 v_{5} v_{1}^{3} a_{2}-24 v_{3} v_{1}^{2} v_{2} a_{2}+60 v_{3} v_{1}^{3} a_{3}+12 v_{1}^{3} v_{2} b_{1}-9 v_{4} v_{1}^{3} b_{2} \\
& +6 v_{5} v_{1}^{2} v_{2} b_{2}-4 v_{3} v_{1} v_{2}^{2} b_{2}-3 v_{5} v_{1}^{3} b_{3}+8 v_{3} v_{1}^{2} v_{2} b_{3}-12 v_{3} v_{1}^{2} a_{1}-3 v_{5} v_{3} v_{1} a_{2} \\
& \left.+6 v_{5} v_{1}^{2} b_{1}-4 v_{3} v_{1} v_{2} b_{1}+3 v_{4} v_{3} v_{1} b_{2}-2 v_{5} v_{3} v_{2} b_{2}+v_{5} v_{3} v_{1} b_{3}-2 v_{5} v_{3} b_{1}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 720 a_{3} v_{1}^{6}-144 a_{1} v_{1}^{5}-288 a_{3} v_{2} v_{4} v_{1}^{5}+128 a_{3} v_{2}^{4} v_{4} v_{1}^{4}+8 a_{3} v_{2}^{2} v_{5} v_{1}^{4} \\
& +64 a_{3} v_{2}^{3} v_{3} v_{1}^{3}-16 b_{2} v_{2}^{3} v_{4} v_{1}^{3}+\left(24 a_{2}-8 b_{3}\right) v_{2}^{3} v_{5} v_{1}^{3}+8 a_{1} v_{2}^{2} v_{5} v_{1}^{3} \\
& +\left(96 a_{2}-32 b_{3}\right) v_{2} v_{3} v_{1}^{3}-24 b_{2} v_{2} v_{5} v_{1}^{3}+8 b_{2} v_{2}^{4} v_{5} v_{1}^{2}+8 b_{1} v_{2}^{3} v_{5} v_{1}^{2} \\
& +16 b_{2} v_{2}^{2} v_{3} v_{1}^{2}+16 b_{1} v_{2} v_{3} v_{1}^{2}-12 b_{2} v_{3} v_{4} v_{1}^{2}+\left(12 a_{2}-4 b_{3}\right) v_{3} v_{5} v_{1}^{2} \tag{8E}\\
& +8 b_{1} v_{3} v_{5} v_{1}+96 a_{3} v_{2} v_{3} v_{4} v_{1}^{3}-16 a_{3} v_{2}^{2} v_{3} v_{5} v_{1}^{2}+8 b_{2} v_{2} v_{3} v_{5} v_{1} \\
& -352 a_{3} v_{2}^{3} v_{1}^{5}+\left(-288 a_{2}+96 b_{3}\right) v_{2} v_{1}^{5}+\left(96 a_{2}-32 b_{3}\right) v_{2}^{4} v_{1}^{4} \\
& +32 a_{1} v_{2}^{3} v_{1}^{4}-48 b_{2} v_{2}^{2} v_{1}^{4}-48 b_{1} v_{2} v_{1}^{4}-240 a_{3} v_{3} v_{1}^{4}+36 b_{2} v_{4} v_{1}^{4} \\
& +\left(-36 a_{2}+12 b_{3}\right) v_{5} v_{1}^{4}+32 b_{2} v_{2}^{5} v_{1}^{3}+32 b_{1} v_{2}^{4} v_{1}^{3}+48 a_{1} v_{3} v_{1}^{3}-24 b_{1} v_{5} v_{1}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-144 a_{1} & =0 \\
8 a_{1} & =0 \\
32 a_{1} & =0 \\
48 a_{1} & =0 \\
-352 a_{3} & =0 \\
-288 a_{3} & =0 \\
-240 a_{3} & =0 \\
-16 a_{3} & =0 \\
8 a_{3} & =0 \\
64 a_{3} & =0 \\
96 a_{3} & =0 \\
128 a_{3} & =0 \\
720 a_{3} & =0 \\
-48 b_{1} & =0 \\
-24 b_{1} & =0 \\
8 b_{1} & =0 \\
16 b_{1} & =0 \\
32 b_{1} & =0 \\
-48 b_{2} & =0 \\
-24 b_{2} & =0 \\
-16 b_{2} & =0 \\
-12 b_{2} & =0 \\
8 b_{2} & =0 \\
16 b_{2} & =0 \\
32 b_{2} & =0 \\
36 b_{2} & =0 \\
-288 a_{2}+96 b_{3} & =0 \\
-36 a_{2}+12 b_{3} & =0 \\
12 a_{2}-4 b_{3} & =0 \\
24 a_{2}-8 b_{3} & =0 \\
-32 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =3 p
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, p) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d p}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial p}\right) S(x, p)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d p}{d x} & =\frac{\eta}{\xi} \\
& =\frac{3 p}{x} \\
& =\frac{3 p}{x}
\end{aligned}
$$

This is easily solved to give

$$
p(x)=c_{1} x^{3}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{p}{x^{3}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\ln (x)
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, p) S_{p}}{R_{x}+\omega(x, p) R_{p}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{p}, S_{x}, S_{p}$ are all partial derivatives and $\omega(x, p)$ is the right hand side of the original ode given by

$$
\omega(x, p)=\frac{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}+4 p x}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{3 p}{x^{4}} \\
R_{p} & =\frac{1}{x^{3}} \\
S_{x} & =\frac{1}{x} \\
S_{p} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{x^{3}\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} x+4\left(x^{2}-\frac{3\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}{4}\right) p} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, p in terms of R, S from the result obtained earlier and simplifying. This gives
$\frac{d S}{d R}=\frac{(1+i \sqrt{3}) 2^{\frac{2}{3}}(-\sqrt{9 R-4}+3 \sqrt{R})^{\frac{1}{3}}}{\sqrt{R}\left(8+2(i \sqrt{3}-1) 2^{\frac{1}{3}}(-\sqrt{9 R-4}+3 \sqrt{R})^{\frac{2}{3}}+3(-i \sqrt{3}-1) \sqrt{R} 2^{\frac{2}{3}}(-\sqrt{9 R-4}+3 \sqrt{R})^{\frac{1}{3}}\right)}$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{(1+i \sqrt{3})(-4 \sqrt{9 R-4}+12 \sqrt{R}}{\left(-3 i \sqrt{R} \sqrt{3}(-4 \sqrt{9 R-4}+12 \sqrt{R})^{\frac{1}{3}}+2 i \sqrt{3} 2^{\frac{1}{3}}\left((-\sqrt{9 R-4}+3 \sqrt{R})^{2}\right)^{\frac{1}{3}}-3 \sqrt{R}(-4 \sqrt{9}\right.} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, p coordinates. This results in

$$
\ln (x)=\int^{\frac{p(x)}{x^{3}}} \frac{(1+i \sqrt{3})\left(-4 \sqrt{9 _a-4}-\right.}{\left(-3 i \sqrt{-} a \sqrt{3}\left(-4 \sqrt{9 _a-4}+12 \sqrt{-^{a}}\right)^{\frac{1}{3}}+2 i \sqrt{3} 2^{\frac{1}{3}}\left(\left(-\sqrt{9 _a-4}+3 \sqrt{-^{a}}\right)^{2}\right)^{\frac{1}{3}}-3 \sqrt{-a}\right.}
$$

Which simplifies to

$$
2^{\frac{2}{3}}(1+i \sqrt{3})\left(\int^{\frac{p(x)}{x^{3}}}-\frac{\left(-\sqrt{9 _a-4}+3 \sqrt{-a}\right)^{\frac{1}{3}}}{\sqrt{-a}\left((2 i \sqrt{3}-2) 2^{\frac{1}{3}}\left(\sqrt{9 _a-4}-3 \sqrt{-a}\right)^{\frac{2}{3}}+8-3 \sqrt{-a}(1+i \sqrt{3}) 2^{\frac{2}{3}}\left(-\sqrt{9 _a}\right.\right.}\right.
$$

Solving equation (2)

Writing the ode as
$p^{\prime}(x)=\frac{i\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} \sqrt{3}-4 i \sqrt{3} p x-\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}-4 p x}{2\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}$
$p^{\prime}(x)=\omega(x, p)$
The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{p}-\xi_{x}\right)-\omega^{2} \xi_{p}-\omega_{x} \xi-\omega_{p} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=p a_{3}+x a_{2}+a_{1} \tag{1E}\\
& \eta=p b_{3}+x b_{2}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{aligned}
& b_{2} \\
& +\frac{\left(i\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} \sqrt{3}-4 i \sqrt{3} p x-\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}-4 p x\right)\left(b_{3}-a_{2}\right)}{2\left(-12 p^{2}+4 \sqrt{\left.-4 p^{3} x^{3}+9 p^{4}\right)^{\frac{1}{3}}}\right.} \\
& -\frac{\left(i\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} \sqrt{3}-4 i \sqrt{3} p x-\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}-4 p x\right)^{2} a_{3}}{4\left(-12 p^{2}+4 \sqrt{\left.-4 p^{3} x^{3}+9 p^{4}\right)^{\frac{2}{3}}}\right.} \\
& -\left(\frac{16 i \sqrt{3} p^{3} x^{2}}{\left(-\frac{16 p^{3} x^{2}}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}} \sqrt{-4 p^{3} x^{3}+9 p^{4}}}-4 i \sqrt{3} p+\frac{2\left(-12 p^{2}+4 \sqrt{\left.-4 p^{3} x^{3}+9 p^{4}\right)^{\frac{1}{3}}}\right.}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}} \sqrt{-4 p^{3} x^{3}+9 p^{4}}}-4 p\right.}\right. \\
& \left.+\frac{4\left(i\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} \sqrt{3}-4 i \sqrt{3} p x-\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}-4 p x\right) p^{3} x^{2}}{\left(-12 p^{2}+4 \sqrt{\left.-4 p^{3} x^{3}+9 p^{4}\right)^{\frac{4}{3}} \sqrt{-4 p^{3} x^{3}+9 p^{4}}}\right)\left(p a_{3}\right.}\right) \\
& \left.+x a_{2}+a_{1}\right)-\left(\frac{2 i \sqrt{3}\left(-24 p+\frac{-24 p^{2} x^{3}+72 p^{3}}{\sqrt{-4 p^{3} x^{3}+9 p^{4}}}\right)}{3\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}-4 i \sqrt{3} x-\frac{2\left(-24 p+\frac{-24 p^{2} x^{3}+72 p^{3}}{\sqrt{-4 p^{3} x^{3}+9 p^{4}}}\right)}{3\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}-4 x}\right. \\
& 2\left(-12 p^{2}+4 \sqrt{\left.-4 p^{3} x^{3}+9 p^{4}\right)^{\frac{1}{3}}}\right. \\
& 6\left(-12 p^{2}+4 \sqrt{\left.-4 p^{3} x^{3}+9 p^{4}\right)^{\frac{4}{3}}}\right. \\
& \left.+x b_{2}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives

> Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{p, x\}$ in them.

$$
\left\{p, x, \sqrt{p^{3}\left(-4 x^{3}+9 p\right)},\left(-12 p^{2}+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{1}{3}},\left(-12 p^{2}+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{2}{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{p, x\}$ in them

$$
\begin{aligned}
& \left\{p=v_{1}, x=v_{2}, \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}=v_{3},\left(-12 p^{2}\right.\right. \\
& \left.\left.+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{1}{3}}=v_{4},\left(-12 p^{2}+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{2}{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -8 v_{1}\left(-36 v_{1}^{4} a_{1}+180 v_{1}^{5} a_{3}+2 v_{5} v_{1}^{3} v_{2}^{2} a_{3}+6 v_{5} v_{1}^{2} v_{2}^{3} a_{2}\right. \\
& -2 v_{5} v_{1}^{2} v_{2}^{3} b_{3}+2 v_{5} v_{1} v_{2}^{4} b_{2}+2 v_{5} v_{1}^{2} v_{2}^{2} a_{1}-8 i \sqrt{3} v_{1}^{3} v_{2}^{4} b_{3} \\
& +8 i \sqrt{3} v_{1}^{2} v_{2}^{5} b_{2}+8 i \sqrt{3} v_{1}^{3} v_{2}^{3} a_{1}+8 i \sqrt{3} v_{1}^{2} v_{2}^{4} b_{1}+9 i \sqrt{3} v_{5} v_{1}^{3} a_{2} \\
& -3 i \sqrt{3} v_{5} v_{1}^{3} b_{3}-72 i \sqrt{3} v_{1}^{4} v_{2} a_{2}+24 i \sqrt{3} v_{1}^{4} v_{2} b_{3} \\
& -12 i \sqrt{3} v_{1}^{3} v_{2}^{2} b_{2}+6 i \sqrt{3} v_{5} v_{1}^{2} b_{1}-60 i \sqrt{3} v_{3} v_{1}^{3} a_{3} \\
& -12 i \sqrt{3} v_{1}^{3} v_{2} b_{1}-2 i \sqrt{3} v_{5} v_{3} b_{1}+12 i \sqrt{3} v_{3} v_{1}^{2} a_{1}-4 v_{5} v_{3} v_{1} v_{2}^{2} a_{3} \\
& -48 v_{4} v_{3} v_{1}^{2} v_{2} a_{3}-88 i \sqrt{3} v_{1}^{4} v_{2}^{3} a_{3}+24 i \sqrt{3} v_{1}^{3} v_{2}^{4} a_{2}+2 v_{5} v_{1} v_{2}^{3} b_{1} \\
& +144 v_{4} v_{1}^{4} v_{2} a_{3}+8 v_{4} v_{1}^{2} v_{2}^{3} b_{2}+16 v_{3} v_{1}^{2} v_{2}^{3} a_{3}-6 v_{5} v_{1}^{2} v_{2} b_{2} \\
& +3 v_{5} v_{3} v_{1} a_{2}-v_{5} v_{3} v_{1} b_{3}+2 v_{5} v_{3} v_{2} b_{2}+24 v_{3} v_{1}^{2} v_{2} a_{2}-8 v_{3} v_{1}^{2} v_{2} b_{3} \tag{7E}\\
& +4 v_{3} v_{1} v_{2}^{2} b_{2}+6 v_{4} v_{3} v_{1} b_{2}+4 v_{3} v_{1} v_{2} b_{1}+180 i \sqrt{3} v_{1}^{5} a_{3} \\
& -36 i \sqrt{3} v_{1}^{4} a_{1}-88 v_{1}^{4} v_{2}^{3} a_{3}+24 v_{1}^{3} v_{2}^{4} a_{2}-8 v_{1}^{3} v_{2}^{4} b_{3}+8 v_{1}^{2} v_{2}^{5} b_{2} \\
& +8 v_{1}^{3} v_{2}^{3} a_{1}+8 v_{1}^{2} v_{2}^{4} b_{1}+24 v_{1}^{4} v_{2} b_{3}-9 v_{5} v_{1}^{3} a_{2}+3 v_{5} v_{1}^{3} b_{3}-6 v_{5} v_{1}^{2} b_{1} \\
& -18 v_{4} v_{1}^{3} b_{2}-60 v_{3} v_{1}^{3} a_{3}+2 v_{5} v_{3} b_{1}+12 v_{3} v_{1}^{2} a_{1}-72 v_{1}^{4} v_{2} a_{2} \\
& -12 v_{1}^{3} v_{2}^{2} b_{2}-12 v_{1}^{3} v_{2} b_{1}+4 i \sqrt{3} v_{5} v_{3} v_{1} v_{2}^{2} a_{3}-64 v_{4} v_{1}^{3} v_{2}^{4} a_{3} \\
& +i \sqrt{3} v_{5} v_{3} v_{1} b_{3}-2 i \sqrt{3} v_{5} v_{1}^{3} v_{2}^{2} a_{3}-6 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{3} a_{2} \\
& +2 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{3} b_{3}-2 i \sqrt{3} v_{5} v_{1} v_{2}^{4} b_{2}-2 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{2} a_{1} \\
& -2 i \sqrt{3} v_{5} v_{1} v_{2}^{3} b_{1}+16 i \sqrt{3} v_{3} v_{1}^{2} v_{2}^{3} a_{3}+6 i \sqrt{3} v_{5} v_{1}^{2} v_{2} b_{2} \\
& -3 i \sqrt{3} v_{5} v_{3} v_{1} a_{2}-2 i \sqrt{3} v_{5} v_{3} v_{2} b_{2}+24 i \sqrt{3} v_{3} v_{1}^{2} v_{2} a_{2} \\
& \left.-8 i \sqrt{3} v_{3} v_{1}^{2} v_{2} b_{3}+4 i \sqrt{3} v_{3} v_{1} v_{2}^{2} b_{2}+4 i \sqrt{3} v_{3} v_{1} v_{2} b_{1}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -64 b_{2} v_{2}^{3} v_{4} v_{1}^{3}-48 b_{2} v_{3} v_{4} v_{1}^{2}-1152 a_{3} v_{2} v_{4} v_{1}^{5} \\
& +\left(-128 i \sqrt{3} a_{3}-128 a_{3}\right) v_{2}^{3} v_{3} v_{1}^{3} \\
& +\left(48 i \sqrt{3} a_{2}-16 i \sqrt{3} b_{3}-48 a_{2}+16 b_{3}\right) v_{2}^{3} v_{5} v_{1}^{3} \\
& +\left(16 i \sqrt{3} a_{1}-16 a_{1}\right) v_{2}^{2} v_{5} v_{1}^{3} \\
& +\left(-192 i \sqrt{3} a_{2}+64 i \sqrt{3} b_{3}-192 a_{2}+64 b_{3}\right) v_{2} v_{3} v_{1}^{3} \\
& +\left(-48 i \sqrt{3} b_{2}+48 b_{2}\right) v_{2} v_{5} v_{1}^{3} \\
& +\left(16 i \sqrt{3} b_{2}-16 b_{2}\right) v_{2}^{4} v_{5} v_{1}^{2}+\left(16 i \sqrt{3} b_{1}-16 b_{1}\right) v_{2}^{3} v_{5} v_{1}^{2} \\
& +\left(-32 i \sqrt{3} b_{2}-32 b_{2}\right) v_{2}^{2} v_{3} v_{1}^{2}+\left(-32 i \sqrt{3} b_{1}-32 b_{1}\right) v_{2} v_{3} v_{1}^{2} \\
& +\left(24 i \sqrt{3} a_{2}-8 i \sqrt{3} b_{3}-24 a_{2}+8 b_{3}\right) v_{3} v_{5} v_{1}^{2} \\
& +\left(16 i \sqrt{3} b_{1}-16 b_{1}\right) v_{3} v_{5} v_{1} \\
& +\left(16 i \sqrt{3} a_{3}-16 a_{3}\right) v_{2}^{2} v_{5} v_{1}^{4}+384 a_{3} v_{2} v_{3} v_{4} v_{1}^{3} \tag{8E}\\
& +512 a_{3} v_{2}^{4} v_{4} v_{1}^{4}+\left(-1440 i \sqrt{3} a_{3}-1440 a_{3}\right) v_{1}^{6} \\
& +\left(288 i \sqrt{3} a_{1}+288 a_{1}\right) v_{1}^{5}+\left(-32 i \sqrt{3} a_{3}+32 a_{3}\right) v_{2}^{2} v_{3} v_{5} v_{1}^{2} \\
& +\left(16 i \sqrt{3} b_{2}-16 b_{2}\right) v_{2} v_{3} v_{5} v_{1}+\left(704 i \sqrt{3} a_{3}+704 a_{3}\right) v_{2}^{3} v_{1}^{5} \\
& +\left(576 i \sqrt{3} a_{2}-192 i \sqrt{3} b_{3}+576 a_{2}-192 b_{3}\right) v_{2} v_{1}^{5} \\
& +\left(-192 i \sqrt{3} a_{2}+64 i \sqrt{3} b_{3}-192 a_{2}+64 b_{3}\right) v_{2}^{4} v_{1}^{4} \\
& +\left(-64 i \sqrt{3} a_{1}-64 a_{1}\right) v_{2}^{3} v_{1}^{4}+\left(96 i \sqrt{3} b_{2}+96 b_{2}\right) v_{2}^{2} v_{1}^{4} \\
& +\left(96 i \sqrt{3} b_{1}+96 b_{1}\right) v_{2} v_{1}^{4}+\left(480 i \sqrt{3} a_{3}+480 a_{3}\right) v_{3} v_{1}^{4} \\
& +\left(-72 i \sqrt{3} a_{2}+24 i \sqrt{3} b_{3}+72 a_{2}-24 b_{3}\right) v_{5} v_{1}^{4} \\
& +\left(-64 i \sqrt{3} b_{2}-64 b_{2}\right) v_{2}^{5} v_{1}^{3}+\left(-64 i \sqrt{3} b_{1}-64{\left.b_{1}\right) v_{2}^{4} v_{1}^{3}}_{+\left(-96 i \sqrt{3} a_{1}-96 a_{1}\right) v_{3} v_{1}^{3}}^{+\left(-48 i \sqrt{3} b_{1}+48 b_{1}\right) v_{5} v_{1}^{3}+144 b_{2} v_{4} v_{1}^{4}=0}\right. \\
& +(-10
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-1152 a_{3} & =0 \\
384 a_{3} & =0 \\
512 a_{3} & =0 \\
-64 b_{2} & =0 \\
-48 b_{2} & =0 \\
144 b_{2} & =0 \\
-1440 i \sqrt{3} a_{3}-1440 a_{3} & =0 \\
-128 i \sqrt{3} a_{3}-128 a_{3} & =0 \\
-96 i \sqrt{3} a_{1}-96 a_{1} & =0 \\
-64 i \sqrt{3} a_{1}-64 a_{1} & =0 \\
-64 i \sqrt{3} b_{1}-64 b_{1} & =0 \\
-64 i \sqrt{3} b_{2}-64 b_{2} & =0 \\
-48 i \sqrt{3} b_{1}+48 b_{1} & =0 \\
-48 i \sqrt{3} b_{2}+48 b_{2} & =0 \\
-32 i \sqrt{3} a_{3}+32 a_{3} & =0 \\
-32 i \sqrt{3} b_{1}-32 b_{1} & =0 \\
-32 i \sqrt{3} b_{2}-32 b_{2} & =0 \\
16 i \sqrt{3} a_{1}-16 a_{1} & =0 \\
16 i \sqrt{3} a_{3}-16 a_{3} & =0 \\
16 i \sqrt{3} b_{1}-16 b_{1} & =0 \\
16 i \sqrt{3} b_{2}-16 b_{2} & =0 \\
96 i \sqrt{3} b_{1}+96 b_{1} & =0 \\
96 i \sqrt{3} b_{2}+96 b_{2} & =0 \\
576 i \sqrt{3} a_{2}-192 i \sqrt{3} b_{3}+576 a_{2}-192 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=3 p
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, p) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d p}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial p}\right) S(x, p)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
Solving equation (3)
Writing the ode as
$p^{\prime}(x)=-\frac{i\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} \sqrt{3}-4 i \sqrt{3} p x+\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}+4 p x}{2\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}$
$p^{\prime}(x)=\omega(x, p)$
The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{p}-\xi_{x}\right)-\omega^{2} \xi_{p}-\omega_{x} \xi-\omega_{p} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=p a_{3}+x a_{2}+a_{1} \tag{1E}\\
& \eta=p b_{3}+x b_{2}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives
b_{2}

$$
\begin{aligned}
& -\frac{\left(i\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} \sqrt{3}-4 i \sqrt{3} p x+\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}+4 p x\right)\left(b_{3}-a_{2}\right)}{2\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(i\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} \sqrt{3}-4 i \sqrt{3} p x+\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}+4 p x\right)^{2} a_{3}}{4\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}}
\end{aligned}
$$

$$
-\left(-\frac{-\frac{16 i \sqrt{3} p^{3} x^{2}}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}} \sqrt{-4 p^{3} x^{3}+9 p^{4}}}-4 i \sqrt{3} p-\frac{16 p^{3} x^{2}}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}} \sqrt{-4 p^{3} x^{3}+9 p^{4}}}+4 p}{2\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}\right.
$$

$$
\left.-\frac{4\left(i\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} \sqrt{3}-4 i \sqrt{3} p x+\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}+4 p x\right) p^{3} x^{2}}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{4}{3}} \sqrt{-4 p^{3} x^{3}+9 p^{4}}}\right)\left(p a_{3}\right.
$$

$$
\left.+x a_{2}+a_{1}\right)-\left(-\frac{\frac{2 i \sqrt{3}\left(-24 p+\frac{-24 p^{2} x^{3}+72 p^{3}}{\sqrt{-4 p^{3} x^{3}+9 p^{4}}}\right)}{3\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}-4 i \sqrt{3} x+\frac{-16 p+\frac{2\left(-24 p^{2} x^{3}+72 p^{3}\right)}{3 \sqrt{-4 p^{3} x^{3}+9 p^{4}}}}{2\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}+4 x}{\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{1}{3}}}\right)
$$

$$
+\frac{\left(i\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}} \sqrt{3}-4 i \sqrt{3} p x+\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{2}{3}}+4 p x\right)\left(-24 p+\frac{-24 p^{2} x^{3}}{\sqrt{-4 p^{3} x}}\right.}{6\left(-12 p^{2}+4 \sqrt{-4 p^{3} x^{3}+9 p^{4}}\right)^{\frac{4}{3}}}
$$

$$
\left.+x b_{2}+b_{1}\right)=0
$$

Putting the above in normal form gives

> Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives

> Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{p, x\}$ in them.

$$
\left\{p, x, \sqrt{p^{3}\left(-4 x^{3}+9 p\right)},\left(-12 p^{2}+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{1}{3}},\left(-12 p^{2}+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{2}{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{p, x\}$ in them

$$
\begin{aligned}
& \left\{p=v_{1}, x=v_{2}, \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}=v_{3},\left(-12 p^{2}\right.\right. \\
& \left.\left.+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{1}{3}}=v_{4},\left(-12 p^{2}+4 \sqrt{p^{3}\left(-4 x^{3}+9 p\right)}\right)^{\frac{2}{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 8 v_{1}\left(-8 i \sqrt{3} v_{3} v_{1}^{2} v_{2} b_{3}+4 i \sqrt{3} v_{3} v_{1} v_{2}^{2} b_{2}+4 i \sqrt{3} v_{3} v_{1} v_{2} b_{1}\right. \\
& +8 i \sqrt{3} v_{1}^{3} v_{2}^{3} a_{1}+8 i \sqrt{3} v_{1}^{2} v_{2}^{4} b_{1}+4 v_{5} v_{3} v_{1} v_{2}^{2} a_{3}+48 v_{4} v_{3} v_{1}^{2} v_{2} a_{3} \\
& +9 i \sqrt{3} v_{5} v_{1}^{3} a_{2}-3 i \sqrt{3} v_{5} v_{1}^{3} b_{3}-72 i \sqrt{3} v_{1}^{4} v_{2} a_{2}+24 i \sqrt{3} v_{1}^{4} v_{2} b_{3} \\
& -12 i \sqrt{3} v_{1}^{3} v_{2}^{2} b_{2}+6 i \sqrt{3} v_{5} v_{1}^{2} b_{1}-60 i \sqrt{3} v_{3} v_{1}^{3} a_{3} \\
& -12 i \sqrt{3} v_{1}^{3} v_{2} b_{1}-2 i \sqrt{3} v_{5} v_{3} b_{1}+12 i \sqrt{3} v_{3} v_{1}^{2} a_{1} \\
& -88 i \sqrt{3} v_{1}^{4} v_{2}^{3} a_{3}+24 i \sqrt{3} v_{1}^{3} v_{2}^{4} a_{2}-8 i \sqrt{3} v_{1}^{3} v_{2}^{4} b_{3}+8 i \sqrt{3} v_{1}^{2} v_{2}^{5} b_{2} \\
& -2 v_{5} v_{1}^{3} v_{2}^{2} a_{3}-6 v_{5} v_{1}^{2} v_{2}^{3} a_{2}+2 v_{5} v_{1}^{2} v_{2}^{3} b_{3}-2 v_{5} v_{1} v_{2}^{4} b_{2} \\
& -2 v_{5} v_{1}^{2} v_{2}^{2} a_{1}-2 v_{5} v_{1} v_{2}^{3} b_{1}-144 v_{4} v_{1}^{4} v_{2} a_{3}-8 v_{4} v_{1}^{2} v_{2}^{3} b_{2} \\
& -16 v_{3} v_{1}^{2} v_{2}^{3} a_{3}+6 v_{5} v_{1}^{2} v_{2} b_{2}-3 v_{5} v_{3} v_{1} a_{2}+v_{5} v_{3} v_{1} b_{3}-2 v_{5} v_{3} v_{2} b_{2} \tag{7E}\\
& -24 v_{3} v_{1}^{2} v_{2} a_{2}+8 v_{3} v_{1}^{2} v_{2} b_{3}-4 v_{3} v_{1} v_{2}^{2} b_{2}-6 v_{4} v_{3} v_{1} b_{2} \\
& -4 v_{3} v_{1} v_{2} b_{1}+180 i \sqrt{3} v_{1}^{5} a_{3}-180 v_{1}^{5} a_{3}+36 v_{1}^{4} a_{1}+8 v_{1}^{3} v_{2}^{4} b_{3} \\
& -24 v_{1}^{3} v_{2}^{4} a_{2}+88 v_{1}^{4} v_{2}^{3} a_{3}-8 v_{1}^{2} v_{2}^{5} b_{2}-8 v_{1}^{3} v_{2}^{3} a_{1}-8 v_{1}^{2} v_{2}^{4} b_{1} \\
& -24 v_{1}^{4} v_{2} b_{3}+9 v_{5} v_{1}^{3} a_{2}-3 v_{5} v_{1}^{3} b_{3}+6 v_{5} v_{1}^{2} b_{1}+18 v_{4} v_{1}^{3} b_{2} \\
& +60 v_{3} v_{1}^{3} a_{3}-2 v_{5} v_{3} b_{1}-12 v_{3} v_{1}^{2} a_{1}+72 v_{1}^{4} v_{2} a_{2}+12 v_{1}^{3} v_{2}^{2} b_{2} \\
& +12 v_{1}^{3} v_{2} b_{1}+i \sqrt{3} v_{5} v_{3} v_{1} b_{3}-2 i \sqrt{3} v_{5} v_{1}^{3} v_{2}^{2} a_{3}-6 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{3} a_{2} \\
& +2 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{3} b_{3}-2 i \sqrt{3} v_{5} v_{1} v_{2}^{4} b_{2}-2 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{2} a_{1} \\
& -2 i \sqrt{3} v_{5} v_{1} v_{2}^{3} b_{1}+16 i \sqrt{3} v_{3} v_{1}^{2} v_{2}^{3} a_{3}+6 i \sqrt{3} v_{5} v_{1}^{2} v_{2} b_{2} \\
& -3 i \sqrt{3} v_{5} v_{3} v_{1} a_{2}-2 i \sqrt{3} v_{5} v_{3} v_{2} b_{2}+24 i \sqrt{3} v_{3} v_{1}^{2} v_{2} a_{2} \\
& \left.+4 i \sqrt{3} v_{5} v_{3} v_{1} v_{2}^{2} a_{3}+64 v_{4} v_{1}^{3} v_{2}^{4} a_{3}-36 i \sqrt{3} v_{1}^{4} a_{1}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 384 a_{3} v_{2} v_{3} v_{4} v_{1}^{3}+\left(32 i \sqrt{3} a_{3}+32 a_{3}\right) v_{2}^{2} v_{3} v_{5} v_{1}^{2} \\
& +\left(-16 i \sqrt{3} b_{2}-16 b_{2}\right) v_{2} v_{3} v_{5} v_{1} \\
& +144 b_{2} v_{4} v_{1}^{4}+\left(-704 i \sqrt{3} a_{3}+704 a_{3}\right) v_{2}^{3} v_{1}^{5} \\
& +\left(-576 i \sqrt{3} a_{2}+192 i \sqrt{3} b_{3}+576 a_{2}-192 b_{3}\right) v_{2} v_{1}^{5} \\
& +\left(192 i \sqrt{3} a_{2}-64 i \sqrt{3} b_{3}-192 a_{2}+64 b_{3}\right) v_{2}^{4} v_{1}^{4} \\
& +\left(64 i \sqrt{3} a_{1}-64 a_{1}\right) v_{2}^{3} v_{1}^{4}+\left(-96 i \sqrt{3} b_{2}+96 b_{2}\right) v_{2}^{2} v_{1}^{4} \\
& +\left(-96 i \sqrt{3} b_{1}+96 b_{1}\right) v_{2} v_{1}^{4}+\left(-480 i \sqrt{3} a_{3}+480 a_{3}\right) v_{3} v_{1}^{4} \\
& +\left(72 i \sqrt{3} a_{2}-24 i \sqrt{3} b_{3}+72 a_{2}-24 b_{3}\right) v_{5} v_{1}^{4} \\
& +\left(64 i \sqrt{3} b_{2}-64 b_{2}\right) v_{2}^{5} v_{1}^{3}+\left(64 i \sqrt{3} b_{1}-64 b_{1}\right) v_{2}^{4} v_{1}^{3} \\
& +\left(96 i \sqrt{3} a_{1}-96 a_{1}\right) v_{3} v_{1}^{3}+\left(48 i \sqrt{3} b_{1}+48 b_{1}\right) v_{5} v_{1}^{3} \tag{8E}\\
& +\left(1440 i \sqrt{3} a_{3}-1440 a_{3}\right) v_{1}^{6}+\left(-288 i \sqrt{3} a_{1}+288 a_{1}\right) v_{1}^{5} \\
& +\left(128 i \sqrt{3} a_{3}-128 a_{3}\right) v_{2}^{3} v_{3} v_{1}^{3} \\
& +\left(-48 i \sqrt{3} a_{2}+16 i \sqrt{3} b_{3}-48 a_{2}+16 b_{3}\right) v_{2}^{3} v_{5} v_{1}^{3} \\
& +\left(-16 i \sqrt{3} a_{1}-16 a_{1}\right) v_{2}^{2} v_{5} v_{1}^{3} \\
& +\left(192 i \sqrt{3} a_{2}-64 i \sqrt{3} b_{3}-192 a_{2}+64 b_{3}\right) v_{2} v_{3} v_{1}^{3} \\
& +\left(48 i \sqrt{3} b_{2}+48 b_{2}\right) v_{2} v_{5} v_{1}^{3}+\left(-16 i \sqrt{3} b_{2}-16 b_{2}\right) v_{2}^{4} v_{5} v_{1}^{2} \\
& +\left(-16 i \sqrt{3} b_{1}-16 b_{1}\right) v_{2}^{3} v_{5} v_{1}^{2} \\
& +\left(32 i \sqrt{3} b_{2}-32 b_{2}\right) v_{2}^{2} v_{3} v_{1}^{2}+\left(32 i \sqrt{3} b_{1}-32 b_{1}\right) v_{2} v_{3} v_{1}^{2} \\
& +\left(-24 i \sqrt{3} a_{2}+8 i \sqrt{3} b_{3}-24 a_{2}+8 b_{3}\right) v_{3} v_{5} v_{1}^{2} \\
& +\left(-16 i \sqrt{3} b_{1}-16 b_{1}\right) v_{3} v_{5} v_{1}+\left(-16 i \sqrt{3} a_{3}-16 a_{3}\right) v_{2}^{2} v_{5} v_{1}^{4} \\
& +64 b_{2} v_{2}^{3} v_{4} v_{1}^{3}-48 b_{2} v_{3} v_{4} v_{1}^{2}-1152 a_{3} v_{2} v_{4} v_{1}^{5}+512 a_{3} v_{2}^{4} v_{4} v_{1}^{4}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-1152 a_{3} & =0 \\
384 a_{3} & =0 \\
512 a_{3} & =0 \\
-64 b_{2} & =0 \\
-48 b_{2} & =0 \\
144 b_{2} & =0 \\
-704 i \sqrt{3} a_{3}+704 a_{3} & =0 \\
-480 i \sqrt{3} a_{3}+480 a_{3} & =0 \\
-288 i \sqrt{3} a_{1}+288 a_{1} & =0 \\
-96 i \sqrt{3} b_{1}+96 b_{1} & =0 \\
-96 i \sqrt{3} b_{2}+96 b_{2} & =0 \\
-16 i \sqrt{3} a_{1}-16 a_{1} & =0 \\
-16 i \sqrt{3} a_{3}-16 a_{3} & =0 \\
-16 i \sqrt{3} b_{1}-16 b_{1} & =0 \\
-16 i \sqrt{3} b_{2}-16 b_{2} & =0 \\
32 i \sqrt{3} a_{3}+32 a_{3} & =0 \\
32 i \sqrt{3} b_{1}-32 b_{1} & =0 \\
32 i \sqrt{3} b_{2}-32 b_{2} & =0 \\
48 i \sqrt{3} b_{1}+48 b_{1} & =0 \\
48 i \sqrt{3} b_{2}+48 b_{2} & =0 \\
64 i \sqrt{3} a_{1}-64 a_{1} & =0 \\
64 i \sqrt{3} b_{1}-64 b_{1} & =0 \\
64 i \sqrt{3} b_{2}-64 b_{2} & =0 \\
96 i \sqrt{3} a_{1}-96 a_{1} & =0 \\
128 i \sqrt{3} a_{3}-128 a_{3} & =0 \\
1440 i \sqrt{3} a_{3}-1440 a_{3} & =0 \\
-24 i \sqrt{3} \sqrt{3} a_{2}-64 i \sqrt{3} b_{3}-192 a_{2}+64 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=3 p
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, p) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d p}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial p}\right) S(x, p)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
2^{\frac{2}{3}}(1+i \sqrt{3})\left(\int^{\frac{y^{\prime}}{x^{3}}}-\frac{\left(-\sqrt{9 _a-4}+3 \sqrt{-a}\right)^{\frac{1}{3}}}{\sqrt{-^{a}}\left((2 i \sqrt{3}-2) 2^{\frac{1}{3}}\left(\sqrt{9 _a-4}-3 \sqrt{-^{a}}\right)^{\frac{2}{3}}+8-3 \sqrt{-^{a}}(1+i \sqrt{3}) 2^{\frac{2}{3}}\left(-\sqrt{9 _a}-\right.\right.}\right.
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \operatorname{RootOf}\left(i \sqrt { 3 } 2 ^ { \frac { 2 } { 3 } } \left(\int^{\frac{-Z}{x^{3}}} \frac{\left(-\sqrt{9 _}\right.}{\sqrt{-a}\left(-2 i \sqrt{3} 2^{\frac{1}{3}}\left(\sqrt{9 _a-4}-3 \sqrt{-^{a}}\right)^{\frac{2}{3}}+3 i \sqrt{-^{a}} \sqrt{3} 2^{\frac{2}{3}}\left(-\sqrt{9 _a-4}+\right.\right.}\right.\right. \\
& =\int \operatorname{RootOf}\left(i \sqrt { 3 } 2 ^ { \frac { 2 } { 3 } } \left(\int^{\frac{-Z}{x^{3}}} \frac{\left(-\sqrt{9 _-}\right.}{\sqrt{-^{a}}\left(-2 i \sqrt{3} 2^{\frac{1}{3}}\left(\sqrt{9 _a-4}-3 \sqrt{-^{a}}\right)^{\frac{2}{3}}+3 i \sqrt{\chi^{a}} \sqrt{3} 2^{\frac{2}{3}}\left(-\sqrt{9 _a-4}+\right.\right.}\right.\right.
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& =\int \text { RootOf }\left(i \sqrt { 3 } 2 ^ { \frac { 2 } { 3 } } \left(\int^{\frac{Z}{x^{3}}} \frac{(1)}{\sqrt{-^{a}}\left(-2 i \sqrt{3} 2^{\frac{1}{3}}(\sqrt{9-a-4}-3 \sqrt{-a})^{\frac{2}{3}}+3 i \sqrt{-^{a}} \sqrt{3} 2^{\frac{2}{3}}(-\sqrt{9-a-4}+3 \sqrt{9}\right.}\right.\right. \\
& +2^{\frac{2}{3}}\left(\int^{\frac{-Z}{x^{3}}} \frac{\left(-\sqrt{9 _a-4}+3 \sqrt{-a}\right)^{\frac{1}{3}}}{\sqrt{-^{a}}\left(-2 i \sqrt{3} 2^{\frac{1}{3}}(\sqrt{9-a-4}-3 \sqrt{-a})^{\frac{2}{3}}+3 i \sqrt{-a} \sqrt{3} 2^{\frac{2}{3}}(-\sqrt{9-a-4}+3 \sqrt{-a})^{\frac{1}{3}}+22^{\frac{1}{3}}\right.}(,\right. \\
& \left.+\ln (x)-c_{1}\right) d x+c_{4}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
& y \\
& =\int \operatorname{RootOf}\left(i \sqrt { 3 } 2 ^ { \frac { 2 } { 3 } } \left(\int^{\frac{\overline{x^{3}}}{}} \frac{\left(-\sqrt{9 _a-}\right.}{\sqrt{-^{a}}\left(-2 i \sqrt{3} 2^{\frac{1}{3}}\left(\sqrt{9 _a-4}-3 \sqrt{-^{a}}\right)^{\frac{2}{3}}+3 i \sqrt{-^{a}} \sqrt{3} 2^{\frac{2}{3}}\left(-\sqrt{9 _a-4}+3\right.\right.}\right.\right. \\
& +2^{\frac{2}{3}}\left(\int^{\frac{\bar{x}}{x^{3}}} \frac{\left(-\sqrt{9 _a-4}+3 \sqrt{-a}\right)^{\frac{1}{3}}}{\sqrt{-a}\left(-2 i \sqrt{3} 2^{\frac{1}{3}}\left(\sqrt{9 _a-4}-3 \sqrt{-a}\right)^{\frac{2}{3}}+3 i \sqrt{-a} \sqrt{3} 2^{\frac{2}{3}}\left(-\sqrt{9 _a-4}+3 \sqrt{-a}\right)^{\frac{1}{3}}+22^{\frac{1}{3}}(\right.}\right. \\
& \left.+\ln (x)-c_{1}\right) d x+c_{4}
\end{aligned}
$$

Warning, solution could not be verified

Maple trace

- Methods for second order ODEs:
*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of $\mathrm{d}^{\wedge} 2 \mathrm{y} / \mathrm{dx}^{\wedge} 2$: 3 solutions were found. Trying to solve each resulting
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables
-, --> Computing symmetries using: way $=3$
-> Calling odsolve with the ODE`, \(\operatorname{diff}\left(_b\left(_a\right), \quad a\right)=\left(4 * _b\left(_a\right) * _a+\left(-12 *\right.\right.\) b \(\left(_a\right) \sim 2+4 *\left(_b(\right.\) symmetry methods on request -, `1st order, trying reduction of order with given symmetries:` [_a, 3*_b]
\checkmark Solution by Maple
Time used: 0.5 (sec). Leaf size: 174
dsolve(diff $(y(x), x \$ 2)^{\wedge}=12 * \operatorname{diff}(y(x), x) *(x * \operatorname{diff}(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)), y(x)$, singsol=all)
$y(x)=\frac{x^{4}}{9}+c_{1}$
$y(x)=c_{1}$
$y(x)=\int$ RootOf $(-6 \ln (x)$

$$
-\left(\int^{-^{Z}} \frac{3-f \sqrt{\frac{1}{f(9-f-4)}} 2^{\frac{1}{3}}\left(\left(3 \sqrt{\frac{1}{f(9-f-4)}}-f+1\right)^{2}(9-f-4)^{4}\right)^{\frac{1}{3}}-22^{\frac{2}{3}}\left(\left(3 \sqrt{\frac{1}{-f(9-f-4)}}-f+1\right.\right.}{-f(9-f-4)}\right.
$$

$$
\left.+6 c_{1}\right) x^{3} d x+c_{2}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[(y''[x])~3==12*y'[x]*(x*y''[x]-2*y'[x]),y[x],x,IncludeSingularSolutions \rightarrow True]
Not solved

4.39 problem 42

4.39.1 Solving as second order ode missing x ode 733
4.39.2 Maple step by step solution . 736

Internal problem ID [6859]
Internal file name [OUTPUT/6106_Friday_July_29_2022_03_09_42_AM_61425486/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 42.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x" Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
```

$$
3 y y^{\prime} y^{\prime \prime}-y^{\prime 3}=-1
$$

4.39.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
3 y p(y)^{2}\left(\frac{d}{d y} p(y)\right)-p(y)^{3}=-1
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{p^{3}-1}{3 y p^{2}}
\end{aligned}
$$

Where $f(y)=\frac{1}{3 y}$ and $g(p)=\frac{p^{3}-1}{p^{2}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{p^{3}-1}{p^{2}}} d p & =\frac{1}{3 y} d y \\
\int \frac{1}{\frac{p^{3}-1}{p^{2}}} d p & =\int \frac{1}{3 y} d y \\
\frac{\ln \left(p^{3}-1\right)}{3} & =\frac{\ln (y)}{3}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(p^{3}-1\right)^{\frac{1}{3}}=\mathrm{e}^{\frac{\ln (y)}{3}+c_{1}}
$$

Which simplifies to

$$
\left(p^{3}-1\right)^{\frac{1}{3}}=c_{2} y^{\frac{1}{3}}
$$

Which simplifies to

$$
\left(p(y)^{3}-1\right)^{\frac{1}{3}}=c_{2} y^{\frac{1}{3}} \mathrm{e}^{c_{1}}
$$

The solution is

$$
\left(p(y)^{3}-1\right)^{\frac{1}{3}}=c_{2} y^{\frac{1}{3}} \mathrm{e}^{c_{1}}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
\left(y^{\prime 3}-1\right)^{\frac{1}{3}}=c_{2} y^{\frac{1}{3}} \mathrm{e}^{c_{1}}
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\left(y \mathrm{e}^{3 c_{1}} c_{2}^{3}+1\right)^{\frac{1}{3}} \tag{1}\\
& y^{\prime}=-\frac{\left(y \mathrm{e}^{3 c_{1}} c_{2}^{3}+1\right)^{\frac{1}{3}}}{2}+\frac{i \sqrt{3}\left(y \mathrm{e}^{3 c_{1}} c_{2}^{3}+1\right)^{\frac{1}{3}}}{2} \tag{2}\\
& y^{\prime}=-\frac{\left(y \mathrm{e}^{3 c_{1}} c_{2}^{3}+1\right)^{\frac{1}{3}}}{2}-\frac{i \sqrt{3}\left(y \mathrm{e}^{3 c_{1}} c_{2}^{3}+1\right)^{\frac{1}{3}}}{2} \tag{3}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{gathered}
\int \frac{1}{\left(y \mathrm{e}^{3 c_{1}} c_{2}^{3}+1\right)^{\frac{1}{3}}} d y=\int d x \\
\frac{3\left(y \mathrm{e}^{3 c_{1}} c_{2}^{3}+1\right)^{\frac{2}{3}} \mathrm{e}^{-3 c_{1}}}{2 c_{2}^{3}}=x+c_{3}
\end{gathered}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-\frac{\left(y \mathrm{e}^{3 c_{1}} c_{2}^{3}+1\right)^{\frac{1}{3}}}{2}+\frac{i \sqrt{3}\left(y \mathrm{e}^{3 c_{1}} c_{2}^{3}+1\right)^{\frac{1}{3}}}{2}} d y & =\int d x \\
\frac{3\left(y \mathrm{e}^{3 c_{1}} c_{2}^{3}+1\right)^{\frac{2}{3}} \mathrm{e}^{-3 c_{1}}}{(i \sqrt{3}-1) c_{2}^{3}} & =x+c_{4}
\end{aligned}
$$

Solving equation (3)
Integrating both sides gives

$$
\begin{array}{r}
\int \frac{1}{-\frac{\left(y \mathrm{e}^{\left.3 c_{1} c_{2}^{3}+1\right)^{\frac{1}{3}}}\right.}{2}-\frac{i \sqrt{3}\left(y \mathrm{e}^{\left.3 c_{1} c_{2}^{3}+1\right)^{\frac{1}{3}}}\right.}{2}} d y=\int d x \\
-\frac{3\left(y \mathrm{e}^{3 c_{1}} c_{2}^{3}+1\right)^{\frac{2}{3}} \mathrm{e}^{-3 c_{1}}}{(1+i \sqrt{3}) c_{2}^{3}}=x+c_{5}
\end{array}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{\left(-4\left(\mathrm{e}^{3 c_{1}} c_{2}^{3}\left(x+c_{3}\right)\right)^{\frac{3}{2}}+3 \sqrt{6}\right) \mathrm{e}^{-3 c_{1}} \sqrt{6}}{18 c_{2}^{3}} \tag{1}\\
& y=\frac{\left(\left(3 i \sqrt{3} \mathrm{e}^{3 c_{1}} c_{2}^{3} c_{4}+3 i \sqrt{3} \mathrm{e}^{3 c_{1}} c_{2}^{3} x-3 c_{4} \mathrm{e}^{3 c_{1}} c_{2}^{3}-3 \mathrm{e}^{3 c_{1}} c_{2}^{3} x\right)^{\frac{3}{2}}-27\right) \mathrm{e}^{-3 c_{1}}}{27 c_{2}^{3}} \tag{2}\\
& y=\frac{\left(\left(-3 i \sqrt{3} \mathrm{e}^{3 c_{1}} c_{2}^{3} c_{5}-3 i \sqrt{3} \mathrm{e}^{3 c_{1}} c_{2}^{3} x-3 c_{5} \mathrm{e}^{3 c_{1}} c_{2}^{3}-3 \mathrm{e}^{3 c_{1}} c_{2}^{3} x\right)^{\frac{3}{2}}-27\right) \mathrm{e}^{-3 c_{1}}}{27 c_{2}^{3}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=-\frac{\left(-4\left(\mathrm{e}^{3 c_{1}} c_{2}^{3}\left(x+c_{3}\right)\right)^{\frac{3}{2}}+3 \sqrt{6}\right) \mathrm{e}^{-3 c_{1}} \sqrt{6}}{18 c_{2}^{3}}
$$

Verified OK.

$$
y=\frac{\left(\left(3 i \sqrt{3} \mathrm{e}^{3 c_{1}} c_{2}^{3} c_{4}+3 i \sqrt{3} \mathrm{e}^{3 c_{1}} c_{2}^{3} x-3 c_{4} \mathrm{e}^{3 c_{1}} c_{2}^{3}-3 \mathrm{e}^{3 c_{1}} c_{2}^{3} x\right)^{\frac{3}{2}}-27\right) \mathrm{e}^{-3 c_{1}}}{27 c_{2}^{3}}
$$

Verified OK.

$$
y=\frac{\left(\left(-3 i \sqrt{3} \mathrm{e}^{3 c_{1}} c_{2}^{3} c_{5}-3 i \sqrt{3} \mathrm{e}^{3 c_{1}} c_{2}^{3} x-3 c_{5} \mathrm{e}^{3 c_{1}} c_{2}^{3}-3 \mathrm{e}^{3 c_{1}} c_{2}^{3} x\right)^{\frac{3}{2}}-27\right) \mathrm{e}^{-3 c_{1}}}{27 c_{2}^{3}}
$$

Verified OK.

4.39.2 Maple step by step solution

Let's solve
$3 y y^{\prime} y^{\prime \prime}-y^{3}=-1$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Define new dependent variable u

$$
u(x)=y^{\prime}
$$

- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs
$y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Substitute in the definition of u
$u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}$
- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $3 y u(y)^{2}\left(\frac{d}{d y} u(y)\right)-u(y)^{3}=-1$
- \quad Separate variables

$$
\frac{\left(\frac{d}{d y} u(y)\right) u(y)^{2}}{u(y)^{3}-1}=\frac{1}{3 y}
$$

- Integrate both sides with respect to y
$\int \frac{\left(\frac{d}{d y} u(y)\right) u(y)^{2}}{u(y)^{3}-1} d y=\int \frac{1}{3 y} d y+c_{1}$
- Evaluate integral
$\frac{\ln \left(u(y)^{3}-1\right)}{3}=\frac{\ln (y)}{3}+c_{1}$
- \quad Solve for $u(y)$
$u(y)=\frac{\left(\left(\mathrm{e}^{-3 c_{1}}+y\right)\left(\mathrm{e}^{-3 c_{1}}\right)^{2}\right)^{\frac{1}{3}}}{\mathrm{e}^{-3 c_{1}}}$
- \quad Solve 1st ODE for $u(y)$
$u(y)=\frac{\left(\left(\mathrm{e}^{-3 c_{1}}+y\right)\left(\mathrm{e}^{-3 c_{1}}\right)^{2}\right)^{\frac{1}{3}}}{\mathrm{e}^{-3 c_{1}}}$
- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$
$y^{\prime}=\frac{\left(\left(\mathrm{e}^{-3 c_{1}}+y\right)\left(\mathrm{e}^{-3 c_{1}}\right)^{2}\right)^{\frac{1}{3}}}{\mathrm{e}^{-3 c_{1}}}$
- Separate variables
$\frac{y^{\prime}}{\left(\left(\mathrm{e}^{-3 c_{1}}+y\right)\left(\mathrm{e}^{-3 c_{1}}\right)^{2}\right)^{\frac{1}{3}}}=\frac{1}{\mathrm{e}^{-3 c_{1}}}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\left(\left(\mathrm{e}^{-3 c_{1}}+y\right)\left(\mathrm{e}^{-3 c_{1}}\right)^{2}\right)^{\frac{1}{3}}} d x=\int \frac{1}{\mathrm{e}^{-3 c_{1}}} d x+c_{2}$
- Evaluate integral
$\frac{3\left(\left(\mathrm{e}^{-3 c_{1}}\right)^{2} y+\left(\mathrm{e}^{-3 c_{1}}\right)^{3}\right)^{\frac{2}{3}}}{2\left(\mathrm{e}^{-3 c_{1}}\right)^{2}}=\frac{x}{\mathrm{e}^{-3 c_{1}}}+c_{2}$
- \quad Solve for y

$$
\left\{\operatorname{RootOf}\left(2 c_{2}\left(\mathrm{e}^{-3 c_{1}}\right)^{2}+2 x \mathrm{e}^{-3 c_{1}}-3\left(\left(\mathrm{e}^{-3 c_{1}}\right)^{2}-Z+\left(\mathrm{e}^{-3 c_{1}}\right)^{3}\right)^{\frac{2}{3}}\right)\right\}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-, -> Computing symmetries using: way $=3$
-> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(1/3)*(_b(_a)^3-1)/(_b(_a)*_a) symmetry methods on request -, `1st order, trying reduction of order with given symmetries:` [_a, 0]

Solution by Maple
Time used: 0.078 (sec). Leaf size: 119

```
dsolve(3*y(x)*diff(y(x),x)*diff(y(x),x$2)=diff(y(x),x)^3-1,y(x), singsol=all)
```

$$
\begin{aligned}
\frac{3\left(c_{1} y(x)+1\right)^{\frac{2}{3}}+\left(-2 x-2 c_{2}\right) c_{1}}{2 c_{1}} & =0 \\
\frac{-i\left(x+c_{2}\right) c_{1} \sqrt{3}+\left(-x-c_{2}\right) c_{1}-3\left(c_{1} y(x)+1\right)^{\frac{2}{3}}}{c_{1}(1+i \sqrt{3})} & =0 \\
\frac{-3 i\left(c_{1} y(x)+1\right)^{\frac{2}{3}}+\left(-x-c_{2}\right) c_{1} \sqrt{3}-i\left(x+c_{2}\right) c_{1}}{c_{1}(\sqrt{3}+i)} & =0
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 45.036 (sec). Leaf size: 126
DSolve[3*y[x]*y'[x]*y' $[\mathrm{x}]==(\mathrm{y}$ ' $[\mathrm{x}])$ - $3-1, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{9} e^{-3 c_{1}}\left(-9+2 \sqrt{6}\left(e^{3 c_{1}}\left(x+c_{2}\right)\right)^{3 / 2}\right) \\
& y(x) \rightarrow \frac{1}{9} e^{-3 c_{1}}\left(-9+2 \sqrt{6}\left(-\sqrt[3]{-1} e^{3 c_{1}}\left(x+c_{2}\right)\right)^{3 / 2}\right) \\
& y(x) \rightarrow \frac{1}{9} e^{-3 c_{1}}\left(-9+2 \sqrt{6}\left((-1)^{2 / 3} e^{3 c_{1}}\left(x+c_{2}\right)\right)^{3 / 2}\right)
\end{aligned}
$$

4.40 problem 43

4.40.1 Solving as second order ode missing x ode 740
4.40.2 Maple step by step solution . 744

Internal problem ID [6860]
Internal file name [OUTPUT/6107_Friday_July_29_2022_03_09_43_AM_35066495/index.tex]
Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number: 43.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x" Maple gives the following as the ode type

```
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
```

$$
4 y y^{\prime 2} y^{\prime \prime}-y^{\prime 4}=3
$$

4.40.1 Solving as second order ode missing x ode

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable y an independent variable. Using

$$
y^{\prime}=p(y)
$$

Then

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
$$

Hence the ode becomes

$$
4 y p(y)^{3}\left(\frac{d}{d y} p(y)\right)-p(y)^{4}=3
$$

Which is now solved as first order ode for $p(y)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{p^{4}+3}{4 y p^{3}}
\end{aligned}
$$

Where $f(y)=\frac{1}{4 y}$ and $g(p)=\frac{p^{4}+3}{p^{3}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{p^{4}+3}{p^{3}}} d p & =\frac{1}{4 y} d y \\
\int \frac{1}{\frac{p^{4}+3}{p^{3}}} d p & =\int \frac{1}{4 y} d y \\
\frac{\ln \left(p^{4}+3\right)}{4} & =\frac{\ln (y)}{4}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(p^{4}+3\right)^{\frac{1}{4}}=\mathrm{e}^{\frac{\ln (y)}{4}+c_{1}}
$$

Which simplifies to

$$
\left(p^{4}+3\right)^{\frac{1}{4}}=c_{2} y^{\frac{1}{4}}
$$

Which simplifies to

$$
\left(p(y)^{4}+3\right)^{\frac{1}{4}}=c_{2} y^{\frac{1}{4}} \mathrm{e}^{c_{1}}
$$

The solution is

$$
\left(p(y)^{4}+3\right)^{\frac{1}{4}}=c_{2} y^{\frac{1}{4}} \mathrm{e}^{c_{1}}
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
\left(y^{\prime 4}+3\right)^{\frac{1}{4}}=c_{2} y^{\frac{1}{4}} \mathrm{e}^{c_{1}}
$$

Solving the given ode for y^{\prime} results in 4 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{1}{4}} \tag{1}\\
& y^{\prime}=i\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{1}{4}} \tag{2}\\
& y^{\prime}=-\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{1}{4}} \tag{3}\\
& y^{\prime}=-i\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{1}{4}} \tag{4}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{1}{4}}} d y & =\int d x \\
\frac{4\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{3}{4}} \mathrm{e}^{-4 c_{1}}}{3 c_{2}^{4}} & =x+c_{3}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{i}{\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{1}{4}}} d y & =\int d x \\
-\frac{4 i\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{3}{4}} \mathrm{e}^{-4 c_{1}}}{3 c_{2}^{4}} & =x+c_{4}
\end{aligned}
$$

Solving equation (3)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{1}{4}}} d y & =\int d x \\
-\frac{4\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{3}{4}} \mathrm{e}^{-4 c_{1}}}{3 c_{2}^{4}} & =x+c_{5}
\end{aligned}
$$

$\underline{\text { Solving equation (4) }}$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{i}{\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{1}{4}}} d y & =\int d x \\
\frac{4 i\left(c_{2}^{4} y \mathrm{e}^{4 c_{1}}-3\right)^{\frac{3}{4}} \mathrm{e}^{-4 c_{1}}}{3 c_{2}^{4}} & =x+c_{6}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(3\left(\mathrm{e}^{4 c_{1}} c_{2}^{4}\left(x+c_{3}\right)\right)^{\frac{4}{3}}+46^{\frac{2}{3}}\right) 6^{\frac{1}{3}} \mathrm{e}^{-4 c_{1}}}{8 c_{2}^{4}} \tag{1}\\
& \left.y=\frac{\left(\frac{33^{\frac{1}{3}} 4 \frac{2}{3}}{\left(i \mathrm{e}^{4 c_{1}} c_{2}^{4}\left(x+c_{4}\right)\right)^{\frac{4}{3}}}\right.}{16}+3\right) \mathrm{e}^{-4 c_{1}} \tag{2}\\
& y=\frac{\left(\left(-\frac{3 c_{5} \mathrm{e}^{4 c_{1}} c_{2}^{4}}{4}-\frac{3 \mathrm{e}^{4 c_{1} c_{2}^{4} x}}{4}\right)^{\frac{4}{3}}+3\right) \mathrm{e}^{-4 c_{1}}}{c_{2}^{4}} \tag{3}\\
& y=\frac{\left(\left(-\frac{3 i \mathrm{e}^{4 c_{1} c_{2}^{4}\left(x+c_{6}\right)}}{4}\right)^{\frac{4}{3}}+3\right) \mathrm{e}^{-4 c_{1}}}{c_{2}^{4}} \tag{4}
\end{align*}
$$

Verification of solutions

$$
y=\frac{\left(3\left(\mathrm{e}^{4 c_{1}} c_{2}^{4}\left(x+c_{3}\right)\right)^{\frac{4}{3}}+46^{\frac{2}{3}}\right) 6^{\frac{1}{3}} \mathrm{e}^{-4 c_{1}}}{8 c_{2}^{4}}
$$

Verified OK.

$$
y=\frac{\left(\frac{33^{\frac{1}{3}} 4^{\frac{2}{3}}\left(i \mathrm{e}^{4 c_{1}} c_{2}^{4}\left(x+c_{4}\right)\right)^{\frac{4}{3}}}{16}+3\right) \mathrm{e}^{-4 c_{1}}}{c_{2}^{4}}
$$

Verified OK.

$$
y=\frac{\left(\left(-\frac{3 c_{5} \mathrm{e}^{4 c_{1}} c_{2}^{4}}{4}-\frac{3 \mathrm{e}^{4 c_{1}} c_{2}^{4} x}{4}\right)^{\frac{4}{3}}+3\right) \mathrm{e}^{-4 c_{1}}}{c_{2}^{4}}
$$

Verified OK.

$$
y=\frac{\left(\left(-\frac{3 i e^{4 c_{1}} c_{2}^{4}\left(x+c_{6}\right)}{4}\right)^{\frac{4}{3}}+3\right) \mathrm{e}^{-4 c_{1}}}{c_{2}^{4}}
$$

Verified OK.

4.40.2 Maple step by step solution

Let's solve
$4 y y^{\prime \prime} y^{\prime 2}-y^{\prime 4}=3$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Define new dependent variable u
$u(x)=y^{\prime}$
- Compute $y^{\prime \prime}$
$u^{\prime}(x)=y^{\prime \prime}$
- Use chain rule on the lhs

$$
y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}
$$

- \quad Substitute in the definition of u

$$
u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}
$$

- Make substitutions $y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)$ to reduce order of ODE $4 y u(y)^{3}\left(\frac{d}{d y} u(y)\right)-u(y)^{4}=3$
- Separate variables
$\frac{\left(\frac{d}{d y} u(y)\right) u(y)^{3}}{u(y)^{4}+3}=\frac{1}{4 y}$
- Integrate both sides with respect to y
$\int \frac{\left(\frac{d}{d y} u(y)\right) u(y)^{3}}{u(y)^{4}+3} d y=\int \frac{1}{4 y} d y+c_{1}$
- Evaluate integral
$\frac{\ln \left(u(y)^{4}+3\right)}{4}=\frac{\ln (y)}{4}+c_{1}$
- \quad Solve for $u(y)$
$\left\{u(y)=\left(y\left(\mathrm{e}^{c_{1}}\right)^{4}-3\right)^{\frac{1}{4}}, u(y)=-\left(y\left(\mathrm{e}^{c_{1}}\right)^{4}-3\right)^{\frac{1}{4}}\right\}$
- \quad Solve 1st ODE for $u(y)$
$u(y)=\left(y\left(\mathrm{e}^{c_{1}}\right)^{4}-3\right)^{\frac{1}{4}}$
- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$
$y^{\prime}=\left(\left(\mathrm{e}^{c_{1}}\right)^{4} y-3\right)^{\frac{1}{4}}$
- Separate variables
$\frac{y^{\prime}}{\left(\left(\mathrm{e}^{c_{1}}\right)^{4} y-3\right)^{\frac{1}{4}}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\left(\left(e^{c_{1}}\right)^{4} y-3\right)^{\frac{1}{4}}} d x=\int 1 d x+c_{2}$
- Evaluate integral
$\frac{4\left(\left(\mathrm{e}^{c_{1}}\right)^{4} y-3\right)^{\frac{3}{4}}}{3\left(\mathrm{e}^{c_{1}}\right)^{4}}=x+c_{2}$
- \quad Solve for y
$y=\frac{\left(3\left(\left(\mathrm{e}^{c_{1}}\right)^{4}\left(x+c_{2}\right)\right)^{\frac{4}{3}}+46^{\frac{2}{3}}\right) 6^{\frac{1}{3}}}{8\left(\mathrm{e}^{c_{1}}\right)^{4}}$
- \quad Solve 2nd ODE for $u(y)$
$u(y)=-\left(y\left(\mathrm{e}^{c_{1}}\right)^{4}-3\right)^{\frac{1}{4}}$
- Revert to original variables with substitution $u(y)=y^{\prime}, y=y$

$$
y^{\prime}=-\left(\left(\mathrm{e}^{c_{1}}\right)^{4} y-3\right)^{\frac{1}{4}}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{\left(\left(e^{c_{1}}\right)^{4} y-3\right)^{\frac{1}{4}}}=-1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\left(\left(e^{c_{1}}\right)^{4} y-3\right)^{\frac{1}{4}}} d x=\int(-1) d x+c_{2}
$$

- Evaluate integral

$$
\frac{4\left(\left(\mathrm{e}^{c_{1}}\right)^{4} y-3\right)^{\frac{3}{4}}}{3\left(\mathrm{e}^{c_{1}}\right)^{4}}=-x+c_{2}
$$

- \quad Solve for y

$$
y=\frac{\left(3\left(\left(e^{c_{1}}\right)^{4}\left(-x+c_{2}\right)\right)^{\frac{4}{3}}+46^{\frac{2}{3}}\right) 6^{\frac{1}{3}}}{8\left(e^{c_{1}}\right)^{4}}
$$

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables
-, --> Computing symmetries using: way $=3$
\rightarrow Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-(1/4)*(_b(_a)~4+3)/(_a*_b(_a)^2) symmetry methods on request `, `1st order, trying reduction of order with given symmetries:`[_a, 0]
\checkmark Solution by Maple
Time used: 0.079 (sec). Leaf size: 111
dsolve($4 * y(x) * \operatorname{diff}(y(x), x) \sim 2 * \operatorname{diff}(y(x), x \$ 2)=\operatorname{diff}(y(x), x) \wedge 4+3, y(x)$, singsol=all)

$$
\begin{aligned}
\frac{-4\left(c_{1} y(x)-3\right)^{\frac{3}{4}}+\left(-3 x-3 c_{2}\right) c_{1}}{3 c_{1}} & =0 \\
\frac{4\left(c_{1} y(x)-3\right)^{\frac{3}{4}}+\left(-3 x-3 c_{2}\right) c_{1}}{3 c_{1}} & =0 \\
\frac{-4 i\left(c_{1} y(x)-3\right)^{\frac{3}{4}}+\left(-3 x-3 c_{2}\right) c_{1}}{3 c_{1}} & =0 \\
\frac{4 i\left(c_{1} y(x)-3\right)^{\frac{3}{4}}+\left(-3 x-3 c_{2}\right) c_{1}}{3 c_{1}} & =0
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 60.242 (sec). Leaf size: 156
DSolve[4*y[x]*(y'[x])~2*y' $[x]==(y '[x]) \sim 4+3, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) & \rightarrow \frac{3}{8} e^{-4 c_{1}}\left(8+\sqrt[3]{6}\left(-e^{4 c_{1}}\left(x+c_{2}\right)\right)^{4 / 3}\right) \\
y(x) & \rightarrow \frac{3}{8} e^{-4 c_{1}}\left(8+\sqrt[3]{6}\left(-i e^{4 c_{1}}\left(x+c_{2}\right)\right)^{4 / 3}\right) \\
y(x) & \rightarrow \frac{3}{8} e^{-4 c_{1}}\left(8+\sqrt[3]{6}\left(i e^{4 c_{1}}\left(x+c_{2}\right)\right)^{4 / 3}\right) \\
y(x) & \rightarrow \frac{3}{8} e^{-4 c_{1}}\left(8+\sqrt[3]{6}\left(e^{4 c_{1}}\left(x+c_{2}\right)\right)^{4 / 3}\right)
\end{aligned}
$$

