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Internal problem ID [3029]
Internal file name [OUTPUT/2521_Sunday_June_05_2022_03_18_01_AM_48492365/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 1(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

yy′ = x

1.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x

y

Where f(x) = x and g(y) = 1
y
. Integrating both sides gives

1
1
y

dy = x dx

3



∫ 1
1
y

dy =
∫

x dx

y2

2 = x2

2 + c1

Which results in
y =

√
x2 + 2c1

y = −
√
x2 + 2c1

Summary
The solution(s) found are the following

(1)y =
√

x2 + 2c1
(2)y = −

√
x2 + 2c1

Figure 1: Slope field plot
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Verification of solutions

y =
√

x2 + 2c1

Verified OK.

y = −
√
x2 + 2c1

Verified OK.

1.1.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x(u′(x)x+ u(x)) = x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u2 − 1
ux

Where f(x) = − 1
x
and g(u) = u2−1

u
. Integrating both sides gives

1
u2−1
u

du = −1
x
dx

∫ 1
u2−1
u

du =
∫

−1
x
dx

ln (u− 1)
2 + ln (u+ 1)

2 = − ln (x) + c2

The above can be written as(
1
2

)
(ln (u− 1) + ln (u+ 1)) = − ln (x) + 2c2

ln (u− 1) + ln (u+ 1) = (2) (− ln (x) + 2c2)
= −2 ln (x) + 4c2

Raising both side to exponential gives

eln(u−1)+ln(u+1) = e−2 ln(x)+2c2
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Which simplifies to

u2 − 1 = 2c2
x2

= c3
x2

The solution is
u(x)2 − 1 = c3

x2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

x2 − 1 = c3
x2

y2

x2 − 1 = c3
x2

Which simplifies to

−(−y + x) (y + x) = c3

Summary
The solution(s) found are the following

(1)−(−y + x) (y + x) = c3

Figure 2: Slope field plot
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Verification of solutions

−(−y + x) (y + x) = c3

Verified OK.

1.1.3 Solving as differentialType ode

Writing the ode as

y′ = x

y
(1)

Which becomes

(y) dy = (x) dx (2)

But the RHS is complete differential because

(x) dx = d

(
x2

2

)
Hence (2) becomes

(y) dy = d

(
x2

2

)
Integrating both sides gives gives these solutions

y =
√

x2 + 2c1 + c1

y = −
√
x2 + 2c1 + c1

Summary
The solution(s) found are the following

(1)y =
√

x2 + 2c1 + c1

(2)y = −
√
x2 + 2c1 + c1
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Figure 3: Slope field plot

Verification of solutions

y =
√
x2 + 2c1 + c1

Verified OK.

y = −
√
x2 + 2c1 + c1

Verified OK.

1.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x

y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = y2

2 + c1

Which simplifies to

x2

2 = y2

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x
y

dS
dR

= R

R = y

S = x2

2

Summary
The solution(s) found are the following

(1)x2

2 = y2

2 + c1
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Figure 4: Slope field plot

Verification of solutions

x2

2 = y2

2 + c1

Verified OK.

1.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y) dy = (x) dx
(−x) dx+(y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x
(y)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y. Therefore equation (4) becomes

(5)y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + y2

2

Summary
The solution(s) found are the following

(1)−x2

2 + y2

2 = c1

Figure 5: Slope field plot

Verification of solutions

−x2

2 + y2

2 = c1

Verified OK.
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1.1.6 Maple step by step solution

Let’s solve
yy′ = x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
yy′dx =

∫
xdx+ c1

• Evaluate integral
y2

2 = x2

2 + c1

• Solve for y{
y =

√
x2 + 2c1, y = −

√
x2 + 2c1

}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)*y(x)=x,y(x), singsol=all)� �

y(x) =
√

x2 + c1

y(x) = −
√
x2 + c1
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3 Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 35� �
DSolve[y'[x]*y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

x2 + 2c1
y(x) →

√
x2 + 2c1
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1.2 problem 1(b)
1.2.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 18
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Internal problem ID [3030]
Internal file name [OUTPUT/2522_Sunday_June_05_2022_03_18_03_AM_29034540/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 1(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − y = x3

1.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
q(x) = x3

Hence the ode is

y′ − y = x3

The integrating factor µ is

µ = e
∫
(−1)dx

= e−x
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The ode becomes
d
dx(µy) = (µ)

(
x3)

d
dx
(
e−xy

)
=
(
e−x
) (

x3)
d
(
e−xy

)
=
(
x3e−x

)
dx

Integrating gives

e−xy =
∫

x3e−x dx

e−xy = −
(
x3 + 3x2 + 6x+ 6

)
e−x + c1

Dividing both sides by the integrating factor µ = e−x results in

y = −ex
(
x3 + 3x2 + 6x+ 6

)
e−x + c1ex

which simplifies to

y = −x3 − 3x2 − 6x− 6 + c1ex

Summary
The solution(s) found are the following

(1)y = −x3 − 3x2 − 6x− 6 + c1ex

Figure 6: Slope field plot
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Verification of solutions

y = −x3 − 3x2 − 6x− 6 + c1ex

Verified OK.

1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3 + y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

exdy

Which results in

S = e−xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −e−xy

Sy = e−x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x3e−x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R3e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
(
R3 + 3R2 + 6R + 6

)
e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−xy = −
(
x3 + 3x2 + 6x+ 6

)
e−x + c1

Which simplifies to (
x3 + 3x2 + 6x+ y + 6

)
e−x − c1 = 0

Which gives

y = −
(
x3e−x + 3 e−xx2 + 6x e−x + 6 e−x − c1

)
ex

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3 + y dS
dR

= R3e−R

R = x

S = e−xy

Summary
The solution(s) found are the following

(1)y = −
(
x3e−x + 3 e−xx2 + 6x e−x + 6 e−x − c1

)
ex
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Figure 7: Slope field plot

Verification of solutions

y = −
(
x3e−x + 3 e−xx2 + 6x e−x + 6 e−x − c1

)
ex

Verified OK.

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
x3 + y

)
dx(

−x3 − y
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 − y

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3 − y

)
= −1

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−1)− (0))
= −1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−1 dx

The result of integrating gives

µ = e−x

= e−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x
(
−x3 − y

)
= −e−x

(
x3 + y

)
And

N = µN

= e−x(1)
= e−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−x
(
x3 + y

))
+
(
e−x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−x

(
x3 + y

)
dx

(3)φ =
(
x3 + 3x2 + 6x+ y + 6

)
e−x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−x + f ′(y)

But equation (2) says that ∂φ
∂y

= e−x. Therefore equation (4) becomes

(5)e−x = e−x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
x3 + 3x2 + 6x+ y + 6

)
e−x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
x3 + 3x2 + 6x+ y + 6

)
e−x

The solution becomes

y = −
(
x3e−x + 3 e−xx2 + 6x e−x + 6 e−x − c1

)
ex
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Summary
The solution(s) found are the following

(1)y = −
(
x3e−x + 3 e−xx2 + 6x e−x + 6 e−x − c1

)
ex

Figure 8: Slope field plot

Verification of solutions

y = −
(
x3e−x + 3 e−xx2 + 6x e−x + 6 e−x − c1

)
ex

Verified OK.

1.2.4 Maple step by step solution

Let’s solve
y′ − y = x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y + x3
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y = x3

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y) = µ(x)x3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

• Solve to find the integrating factor
µ(x) = e−x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x3dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x3dx+ c1

• Solve for y

y =
∫
µ(x)x3dx+c1

µ(x)

• Substitute µ(x) = e−x

y =
∫
x3e−xdx+c1

e−x

• Evaluate the integrals on the rhs

y = −
(
x3+3x2+6x+6

)
e−x+c1

e−x

• Simplify
y = −x3 − 3x2 − 6x− 6 + c1ex

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)-y(x)=x^3,y(x), singsol=all)� �

y(x) = −x3 − 3x2 − 6x− 6 + exc1

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 26� �
DSolve[y'[x]-y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x3 − 3x2 − 6x+ c1e
x − 6
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1.3 problem 1(c)
1.3.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 33
1.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 37
1.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 41

Internal problem ID [3031]
Internal file name [OUTPUT/2523_Sunday_June_05_2022_03_18_05_AM_49581105/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 1(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y cot (x) = x

1.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cot (x)
q(x) = x

Hence the ode is

y′ + y cot (x) = x

The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)
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The ode becomes
d
dx(µy) = (µ) (x)

d
dx(sin (x) y) = (sin (x)) (x)

d(sin (x) y) = (x sin (x)) dx

Integrating gives

sin (x) y =
∫

x sin (x) dx

sin (x) y = sin (x)− cos (x)x+ c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = csc (x) (sin (x)− cos (x)x) + c1 csc (x)

which simplifies to

y = − cot (x)x+ 1 + c1 csc (x)

Summary
The solution(s) found are the following

(1)y = − cot (x)x+ 1 + c1 csc (x)

Figure 9: Slope field plot
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Verification of solutions

y = − cot (x)x+ 1 + c1 csc (x)

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y cot (x) + x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

34



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)

dy

Which results in

S = sin (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y cot (x) + x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = cos (x) y
Sy = sin (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (R)−R cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sin (x) = sin (x)− cos (x)x+ c1

Which simplifies to

y sin (x) = sin (x)− cos (x)x+ c1

Which gives

y = −cos (x)x− sin (x)− c1
sin (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y cot (x) + x dS
dR

= R sin (R)

R = x

S = sin (x) y

Summary
The solution(s) found are the following

(1)y = −cos (x)x− sin (x)− c1
sin (x)
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Figure 10: Slope field plot

Verification of solutions

y = −cos (x)x− sin (x)− c1
sin (x)

Verified OK.

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (−y cot (x) + x) dx
(y cot (x)− x) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y cot (x)− x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y cot (x)− x)

= cot (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

38



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cot (x))− (0))
= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
cot(x) dx

The result of integrating gives

µ = eln(sin(x))

= sin (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x) (y cot (x)− x)
= cos (x) y − x sin (x)

And

N = µN

= sin (x) (1)
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(cos (x) y − x sin (x)) + (sin (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) y − x sin (x) dx

(3)φ = (y − 1) sin (x) + cos (x)x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x). Therefore equation (4) becomes

(5)sin (x) = sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y − 1) sin (x) + cos (x)x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y − 1) sin (x) + cos (x)x

The solution becomes

y = −cos (x)x− sin (x)− c1
sin (x)
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Summary
The solution(s) found are the following

(1)y = −cos (x)x− sin (x)− c1
sin (x)

Figure 11: Slope field plot

Verification of solutions

y = −cos (x)x− sin (x)− c1
sin (x)

Verified OK.

1.3.4 Maple step by step solution

Let’s solve
y′ + y cot (x) = x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = −y cot (x) + x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y cot (x) = x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y cot (x)) = µ(x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = sin (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)xdx+ c1

• Solve for y

y =
∫
µ(x)xdx+c1

µ(x)

• Substitute µ(x) = sin (x)

y =
∫
x sin(x)dx+c1

sin(x)

• Evaluate the integrals on the rhs
y = sin(x)−cos(x)x+c1

sin(x)

• Simplify
y = − cot (x)x+ 1 + c1 csc (x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)+y(x)*cot(x)=x,y(x), singsol=all)� �

y(x) = − cot (x)x+ 1 + csc (x) c1

3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 17� �
DSolve[y'[x]+y[x]*Cot[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x cot(x) + c1 csc(x) + 1
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1.4 problem 1(d)
1.4.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 44
1.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 46
1.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 50
1.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 54

Internal problem ID [3032]
Internal file name [OUTPUT/2524_Sunday_June_05_2022_03_18_10_AM_35961804/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 1(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y cot (x) = tan (x)

1.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cot (x)
q(x) = tan (x)

Hence the ode is

y′ + y cot (x) = tan (x)

The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)
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The ode becomes
d
dx(µy) = (µ) (tan (x))

d
dx(sin (x) y) = (sin (x)) (tan (x))

d(sin (x) y) = (tan (x) sin (x)) dx

Integrating gives

sin (x) y =
∫

tan (x) sin (x) dx

sin (x) y = − sin (x) + ln (sec (x) + tan (x)) + c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = csc (x) (− sin (x) + ln (sec (x) + tan (x))) + c1 csc (x)

which simplifies to

y = csc (x) (− sin (x) + ln (sec (x) + tan (x)) + c1)

Summary
The solution(s) found are the following

(1)y = csc (x) (− sin (x) + ln (sec (x) + tan (x)) + c1)

Figure 12: Slope field plot

45



Verification of solutions

y = csc (x) (− sin (x) + ln (sec (x) + tan (x)) + c1)

Verified OK.

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y cot (x) + tan (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)

dy

Which results in

S = sin (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y cot (x) + tan (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = cos (x) y
Sy = sin (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (x) sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R) sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − sin (R) + ln (sec (R) + tan (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sin (x) = − sin (x) + ln (sec (x) + tan (x)) + c1

Which simplifies to

y sin (x) = − sin (x) + ln (sec (x) + tan (x)) + c1

Which gives

y = −sin (x)− ln (sec (x) + tan (x))− c1
sin (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y cot (x) + tan (x) dS
dR

= tan (R) sin (R)

R = x

S = sin (x) y

Summary
The solution(s) found are the following

(1)y = −sin (x)− ln (sec (x) + tan (x))− c1
sin (x)
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Figure 13: Slope field plot

Verification of solutions

y = −sin (x)− ln (sec (x) + tan (x))− c1
sin (x)

Verified OK.

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (−y cot (x) + tan (x)) dx
(y cot (x)− tan (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y cot (x)− tan (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y cot (x)− tan (x))

= cot (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cot (x))− (0))
= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
cot(x) dx

The result of integrating gives

µ = eln(sin(x))

= sin (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x) (y cot (x)− tan (x))
= cos (x) y − tan (x) sin (x)

And

N = µN

= sin (x) (1)
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(cos (x) y − tan (x) sin (x)) + (sin (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) y − tan (x) sin (x) dx

(3)φ = sin (x) y + sin (x)− ln (sec (x) + tan (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x). Therefore equation (4) becomes

(5)sin (x) = sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (x) y + sin (x)− ln (sec (x) + tan (x)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (x) y + sin (x)− ln (sec (x) + tan (x))

The solution becomes

y = −sin (x)− ln (sec (x) + tan (x))− c1
sin (x)
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Summary
The solution(s) found are the following

(1)y = −sin (x)− ln (sec (x) + tan (x))− c1
sin (x)

Figure 14: Slope field plot

Verification of solutions

y = −sin (x)− ln (sec (x) + tan (x))− c1
sin (x)

Verified OK.

1.4.4 Maple step by step solution

Let’s solve
y′ + y cot (x) = tan (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = −y cot (x) + tan (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y cot (x) = tan (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + y cot (x)) = µ(x) tan (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = sin (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) tan (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) tan (x) dx+ c1

• Solve for y

y =
∫
µ(x) tan(x)dx+c1

µ(x)

• Substitute µ(x) = sin (x)

y =
∫
tan(x) sin(x)dx+c1

sin(x)

• Evaluate the integrals on the rhs
y = − sin(x)+ln(sec(x)+tan(x))+c1

sin(x)

• Simplify
y = csc (x) (− sin (x) + ln (sec (x) + tan (x)) + c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)+y(x)*cot(x)=tan(x),y(x), singsol=all)� �

y(x) = csc (x) (− sin (x) + ln (sec (x) + tan (x)) + c1)

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 18� �
DSolve[y'[x]+y[x]*Cot[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → csc(x)arctanh(sin(x)) + c1 csc(x)− 1
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1.5 problem 1(e)
1.5.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 57
1.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 59
1.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 63
1.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 67

Internal problem ID [3033]
Internal file name [OUTPUT/2525_Sunday_June_05_2022_03_18_12_AM_49144292/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 1(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y tan (x) = cot (x)

1.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = cot (x)

Hence the ode is

y′ + y tan (x) = cot (x)

The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)
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Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ) (cot (x))

d
dx(sec (x) y) = (sec (x)) (cot (x))

d(sec (x) y) = csc (x) dx

Integrating gives

sec (x) y =
∫

csc (x) dx

sec (x) y = − ln (csc (x) + cot (x)) + c1

Dividing both sides by the integrating factor µ = sec (x) results in

y = − cos (x) ln (csc (x) + cot (x)) + c1 cos (x)

which simplifies to

y = cos (x) (− ln (csc (x) + cot (x)) + c1)

Summary
The solution(s) found are the following

(1)y = cos (x) (− ln (csc (x) + cot (x)) + c1)
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Figure 15: Slope field plot

Verification of solutions

y = cos (x) (− ln (csc (x) + cot (x)) + c1)

Verified OK.

1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − tan (x) y + cot (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − tan (x) y + cot (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sec (x) tan (x) y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= csc (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= csc (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (csc (R) + cot (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sec (x) = − ln (csc (x) + cot (x)) + c1

Which simplifies to

y sec (x) = − ln (csc (x) + cot (x)) + c1

Which gives

y = − ln (csc (x) + cot (x))− c1
sec (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − tan (x) y + cot (x) dS
dR

= csc (R)

R = x

S = sec (x) y

Summary
The solution(s) found are the following

(1)y = − ln (csc (x) + cot (x))− c1
sec (x)
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Figure 16: Slope field plot

Verification of solutions

y = − ln (csc (x) + cot (x))− c1
sec (x)

Verified OK.

1.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (− tan (x) y + cot (x)) dx
(tan (x) y − cot (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = tan (x) y − cot (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(tan (x) y − cot (x))

= tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((tan (x))− (0))
= tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
tan(x) dx

The result of integrating gives

µ = e− ln(cos(x))

= sec (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x) (tan (x) y − cot (x))
= sec (x) tan (x) y − csc (x)

And

N = µN

= sec (x) (1)
= sec (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(sec (x) tan (x) y − csc (x)) + (sec (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sec (x) tan (x) y − csc (x) dx

(3)φ = sec (x) y + ln (csc (x) + cot (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sec (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x). Therefore equation (4) becomes

(5)sec (x) = sec (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sec (x) y + ln (csc (x) + cot (x)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sec (x) y + ln (csc (x) + cot (x))

The solution becomes

y = − ln (csc (x) + cot (x))− c1
sec (x)
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Summary
The solution(s) found are the following

(1)y = − ln (csc (x) + cot (x))− c1
sec (x)

Figure 17: Slope field plot

Verification of solutions

y = − ln (csc (x) + cot (x))− c1
sec (x)

Verified OK.

1.5.4 Maple step by step solution

Let’s solve
y′ + y tan (x) = cot (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = −y tan (x) + cot (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y tan (x) = cot (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + y tan (x)) = µ(x) cot (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cot (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cot (x) dx+ c1

• Solve for y

y =
∫
µ(x) cot(x)dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫ cot(x)

cos(x)dx+ c1
)

• Evaluate the integrals on the rhs
y = cos (x) (ln (csc (x)− cot (x)) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)+y(x)*tan(x)=cot(x),y(x), singsol=all)� �

y(x) = (− ln (csc (x) + cot (x)) + c1) cos (x)

3 Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 16� �
DSolve[y'[x]+y[x]*Tan[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos(x)(−arctanh(cos(x)) + c1)
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1.6 problem 1(f)
1.6.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 70
1.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 72
1.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 76
1.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 80

Internal problem ID [3034]
Internal file name [OUTPUT/2526_Sunday_June_05_2022_03_18_14_AM_48549037/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 1(f).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y ln (x) = x−x

1.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = ln (x)
q(x) = x−x

Hence the ode is

y′ + y ln (x) = x−x

The integrating factor µ is

µ = e
∫
ln(x)dx

= eln(x)x−x
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Which simplifies to
µ = xxe−x

The ode becomes

d
dx(µy) = (µ)

(
x−x
)

d
dx
(
xxe−xy

)
=
(
xxe−x

) (
x−x
)

d
(
xxe−xy

)
= e−x dx

Integrating gives

xxe−xy =
∫

e−x dx

xxe−xy = −e−x + c1

Dividing both sides by the integrating factor µ = xxe−x results in

y = −x−xexe−x + c1x
−xex

which simplifies to

y = (−1 + c1ex)x−x

Summary
The solution(s) found are the following

(1)y = (−1 + c1ex)x−x
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Figure 18: Slope field plot

Verification of solutions

y = (−1 + c1ex)x−x

Verified OK.

1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − ln (x) y + x−x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 16: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− ln(x)x+x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(x)x+x
dy

Which results in

S = eln(x)x−xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − ln (x) y + x−x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = xxe−xy ln (x)
Sy = xxe−x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xxe−xy = −e−x + c1

Which simplifies to

xxe−xy = −e−x + c1

Which gives

y = −
(
e−x − c1

)
x−xex

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − ln (x) y + x−x dS
dR

= e−R

R = x

S = xxe−xy

Summary
The solution(s) found are the following

(1)y = −
(
e−x − c1

)
x−xex
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Figure 19: Slope field plot

Verification of solutions

y = −
(
e−x − c1

)
x−xex

Verified OK.

1.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
− ln (x) y + x−x

)
dx(

ln (x) y − x−x
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = ln (x) y − x−x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
ln (x) y − x−x

)
= ln (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((ln (x))− (0))
= ln (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
ln(x) dx

The result of integrating gives

µ = eln(x)x−x

= xxe−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= xxe−x
(
ln (x) y − x−x

)
= e−x(ln (x) y xx − 1)

And

N = µN

= xxe−x(1)
= xxe−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

e−x(ln (x) y xx − 1)
)
+
(
xxe−x

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
e−x(ln (x) y xx − 1) dx

(3)φ = e−x(xxy + 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= xxe−x + f ′(y)

But equation (2) says that ∂φ
∂y

= xxe−x. Therefore equation (4) becomes

(5)xxe−x = xxe−x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = e−x(xxy + 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = e−x(xxy + 1)

The solution becomes
y = −

(
e−x − c1

)
x−xex

Summary
The solution(s) found are the following

(1)y = −
(
e−x − c1

)
x−xex
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Figure 20: Slope field plot

Verification of solutions

y = −
(
e−x − c1

)
x−xex

Verified OK.

1.6.4 Maple step by step solution

Let’s solve
y′ + y ln (x) = x−x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y ln (x) + x−x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y ln (x) = x−x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y ln (x)) = µ(x)x−x
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• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y ln (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) ln (x)

• Solve to find the integrating factor
µ(x) = xxe−x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x−xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x−xdx+ c1

• Solve for y

y =
∫
µ(x)x−xdx+c1

µ(x)

• Substitute µ(x) = xxe−x

y =
∫
x−xxxe−xdx+c1

xxe−x

• Evaluate the integrals on the rhs
y = −e−x+c1

xxe−x

• Simplify
y = (−1 + c1ex)x−x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)+y(x)*ln(x)=x^(-x),y(x), singsol=all)� �

y(x) = (exc1 − 1)x−x

3 Solution by Mathematica
Time used: 0.08 (sec). Leaf size: 19� �
DSolve[y'[x]+y[x]*Log[x]==x^(-x),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−x(−1 + c1e
x)
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1.7 problem 2(a)
1.7.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 83
1.7.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 85
1.7.3 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 86
1.7.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 88
1.7.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 92
1.7.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 96

Internal problem ID [3035]
Internal file name [OUTPUT/2527_Sunday_June_05_2022_03_18_16_AM_35390428/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + y = x

1.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = 1

Hence the ode is

y′ + y

x
= 1
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The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dx(µy) = µ

d
dx(xy) = x

d(xy) = xdx

Integrating gives

xy =
∫

x dx

xy = x2

2 + c1

Dividing both sides by the integrating factor µ = x results in

y = x

2 + c1
x

Summary
The solution(s) found are the following

(1)y = x

2 + c1
x
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Figure 21: Slope field plot

Verification of solutions

y = x

2 + c1
x

Verified OK.

1.7.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x)) + u(x)x = x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u+ 1
x

Where f(x) = 1
x
and g(u) = −2u+ 1. Integrating both sides gives

1
−2u+ 1 du = 1

x
dx

85



∫ 1
−2u+ 1 du =

∫ 1
x
dx

− ln (−2u+ 1)
2 = ln (x) + c2

Raising both side to exponential gives
1√

−2u+ 1
= eln(x)+c2

Which simplifies to
1√

−2u+ 1
= c3x

Therefore the solution y is

y = ux

= (c23e2c2x2 − 1) e−2c2

2x c23
Summary
The solution(s) found are the following

(1)y = (c23e2c2x2 − 1) e−2c2

2x c23

Figure 22: Slope field plot
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Verification of solutions

y = (c23e2c2x2 − 1) e−2c2

2x c23

Verified OK.

1.7.3 Solving as differentialType ode

Writing the ode as

y′ = −y + x

x
(1)

Which becomes

0 = (−x) dy + (−y + x) dx (2)

But the RHS is complete differential because

(−x) dy + (−y + x) dx = d

(
1
2x

2 − xy

)
Hence (2) becomes

0 = d

(
1
2x

2 − xy

)
Integrating both sides gives gives these solutions

y = x2 + 2c1
2x + c1

Summary
The solution(s) found are the following

(1)y = x2 + 2c1
2x + c1
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Figure 23: Slope field plot

Verification of solutions

y = x2 + 2c1
2x + c1

Verified OK.

1.7.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y − x

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 19: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y − x

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = x2

2 + c1

Which simplifies to

yx = x2

2 + c1

Which gives

y = x2 + 2c1
2x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y−x
x

dS
dR

= R

R = x

S = xy

Summary
The solution(s) found are the following

(1)y = x2 + 2c1
2x
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Figure 24: Slope field plot

Verification of solutions

y = x2 + 2c1
2x

Verified OK.

1.7.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (−y + x) dx
(y − x) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − x

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y − x)

= 1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y − x dx

(3)φ = −x(x− 2y)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x(x− 2y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x− 2y)
2
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The solution becomes

y = x2 + 2c1
2x

Summary
The solution(s) found are the following

(1)y = x2 + 2c1
2x

Figure 25: Slope field plot

Verification of solutions

y = x2 + 2c1
2x

Verified OK.
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1.7.6 Maple step by step solution

Let’s solve
xy′ + y = x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 1− y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= 1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)

• Substitute µ(x) = x

y =
∫
xdx+c1

x

• Evaluate the integrals on the rhs

y =
x2
2 +c1
x

• Simplify
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y = x2+2c1
2x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(x*diff(y(x),x)+y(x)=x,y(x), singsol=all)� �

y(x) = x

2 + c1
x

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 17� �
DSolve[x*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

2 + c1
x
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1.8 problem 2(b)
1.8.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 98
1.8.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 100
1.8.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 101
1.8.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 105
1.8.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 110

Internal problem ID [3036]
Internal file name [OUTPUT/2528_Sunday_June_05_2022_03_18_18_AM_29826810/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 2(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − y = x3

1.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = x2

Hence the ode is

y′ − y

x
= x2
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
x2)

d
dx

(y
x

)
=
(
1
x

)(
x2)

d
(y
x

)
= x dx

Integrating gives

y

x
=
∫

x dx

y

x
= x2

2 + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = 1
2x

3 + c1x

Summary
The solution(s) found are the following

(1)y = 1
2x

3 + c1x
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Figure 26: Slope field plot

Verification of solutions

y = 1
2x

3 + c1x

Verified OK.

1.8.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x = x3

Integrating both sides gives

u(x) =
∫

x dx

= x2

2 + c2

Therefore the solution y is

y = ux

= x

(
x2

2 + c2

)
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Summary
The solution(s) found are the following

(1)y = x

(
x2

2 + c2

)

Figure 27: Slope field plot

Verification of solutions

y = x

(
x2

2 + c2

)
Verified OK.

1.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3 + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 22: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= x2

2 + c1

Which simplifies to

y

x
= x2

2 + c1

Which gives

y = x(x2 + 2c1)
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3+y
x

dS
dR

= R

R = x

S = y

x
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Summary
The solution(s) found are the following

(1)y = x(x2 + 2c1)
2

Figure 28: Slope field plot

Verification of solutions

y = x(x2 + 2c1)
2

Verified OK.

1.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x3 + y

)
dx(

−x3 − y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 − y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x3 − y

)
= −1
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And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−1)− (1))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−x3 − y

)
= −x3 − y

x2

And

N = µN

= 1
x2 (x)

= 1
x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x3 − y

x2

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 − y

x2 dx

(3)φ = −x3 + 2y
2x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x3 + 2y
2x + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−x3 + 2y

2x

The solution becomes

y = x(x2 + 2c1)
2

Summary
The solution(s) found are the following

(1)y = x(x2 + 2c1)
2

Figure 29: Slope field plot
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Verification of solutions

y = x(x2 + 2c1)
2

Verified OK.

1.8.5 Maple step by step solution

Let’s solve
xy′ − y = x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
+ x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x2dx+ c1

• Solve for y

y =
∫
µ(x)x2dx+c1

µ(x)

• Substitute µ(x) = 1
x
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y = x
(∫

xdx+ c1
)

• Evaluate the integrals on the rhs

y = x
(

x2

2 + c1
)

• Simplify

y = x
(
x2+2c1

)
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(x*diff(y(x),x)-y(x)=x^3,y(x), singsol=all)� �

y(x) = (x2 + 2c1)x
2

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 17� �
DSolve[x*y'[x]-y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

2 + c1x
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1.9 problem 2(c)
1.9.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 112
1.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 113
1.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 116
1.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 120

Internal problem ID [3037]
Internal file name [OUTPUT/2529_Sunday_June_05_2022_03_18_20_AM_42066283/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 2(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + ny = xn

1.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = n

x
q(x) = xn−1

Hence the ode is

y′ + ny

x
= xn−1

The integrating factor µ is

µ = e
∫

n
x
dx

= en ln(x)
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Which simplifies to
µ = xn

The ode becomes

d
dx(µy) = (µ)

(
xn−1)

d
dx(x

ny) = (xn)
(
xn−1)

d(xny) = x2n−1 dx

Integrating gives

xny =
∫

x2n−1 dx

xny = x2n

2n + c1

Dividing both sides by the integrating factor µ = xn results in

y = x−nx2n

2n + c1x
−n

which simplifies to

y = xn

2n + c1x
−n

Summary
The solution(s) found are the following

(1)y = xn

2n + c1x
−n

Verification of solutions

y = xn

2n + c1x
−n

Verified OK.

113



1.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −ny + xn

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 25: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e−n ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−n ln(x)dy

Which results in

S = en ln(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −ny + xn

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = ny xn−1

Sy = xn

115



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2n−1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2n−1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2n

2n + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xny = x2n

2n + c1

Which simplifies to

xny = x2n

2n + c1

Which gives

y = (2nc1 + x2n)x−n

2n

Summary
The solution(s) found are the following

(1)y = (2nc1 + x2n)x−n

2n
Verification of solutions

y = (2nc1 + x2n)x−n

2n

Verified OK.
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1.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (−ny + xn) dx
(ny − xn) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = ny − xn

N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(ny − xn)

= n

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((n)− (1))

= n− 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫

n−1
x

dx

The result of integrating gives

µ = e(n−1) ln(x)

= xn−1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= xn−1(ny − xn)
= (ny − xn)xn−1
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And

N = µN

= xn−1(x)
= xn

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(ny − xn)xn−1)+ (xn) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(ny − xn)xn−1 dx

(3)φ = xny − x2n

2n + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= xn + f ′(y)

But equation (2) says that ∂φ
∂y

= xn. Therefore equation (4) becomes

(5)xn = xn + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = xny − x2n

2n + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xny − x2n

2n

The solution becomes

y = (2nc1 + x2n)x−n

2n

Summary
The solution(s) found are the following

(1)y = (2nc1 + x2n)x−n

2n
Verification of solutions

y = (2nc1 + x2n)x−n

2n

Verified OK.

1.9.4 Maple step by step solution

Let’s solve
xy′ + ny = xn

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −ny

x
+ xn

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
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y′ + ny
x
= xn

x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + ny

x

)
= µ(x)xn

x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + ny

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)n

x

• Solve to find the integrating factor
µ(x) = xn

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)xn

x
dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)xn

x
dx+ c1

• Solve for y

y =
∫ µ(x)xn

x
dx+c1

µ(x)

• Substitute µ(x) = xn

y =
∫ (

xn
)2

x
dx+c1

xn

• Evaluate the integrals on the rhs

y =
(
xn

)2
2n +c1
xn

• Simplify
y = xn

2n + c1x
−n

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(x*diff(y(x),x)+n*y(x)=x^n,y(x), singsol=all)� �

y(x) = xn

2n + x−nc1

3 Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 24� �
DSolve[x*y'[x]+n*y[x]==x^n,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xn

2n + c1x
−n
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1.10 problem 2(d)
1.10.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 123
1.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 124
1.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 127
1.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 131

Internal problem ID [3038]
Internal file name [OUTPUT/2530_Sunday_June_05_2022_03_18_22_AM_68192248/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 2(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − ny = xn

1.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −n

x
q(x) = xn−1

Hence the ode is

y′ − ny

x
= xn−1

The integrating factor µ is

µ = e
∫
−n

x
dx

= e−n ln(x)

123



Which simplifies to
µ = x−n

The ode becomes
d
dx(µy) = (µ)

(
xn−1)

d
dx
(
x−ny

)
=
(
x−n
) (

xn−1)
d
(
x−ny

)
= 1

x
dx

Integrating gives

x−ny =
∫ 1

x
dx

x−ny = ln (x) + c1

Dividing both sides by the integrating factor µ = x−n results in

y = xn ln (x) + c1x
n

which simplifies to

y = (ln (x) + c1)xn

Summary
The solution(s) found are the following

(1)y = (ln (x) + c1)xn

Verification of solutions

y = (ln (x) + c1)xn

Verified OK.

1.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = ny + xn

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 28: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = en ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

en ln(x)dy

Which results in

S = e−n ln(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = ny + xn

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −ny x−1−n

Sy = x−n

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x−ny = ln (x) + c1

Which simplifies to

x−ny = ln (x) + c1

Which gives

y = (ln (x) + c1)xn

Summary
The solution(s) found are the following

(1)y = (ln (x) + c1)xn

Verification of solutions

y = (ln (x) + c1)xn

Verified OK.

1.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (ny + xn) dx
(−ny − xn) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ny − xn

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ny − xn)

= −n

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−n)− (1))

= −1− n

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ −1−n

x
dx

The result of integrating gives

µ = e(−1−n) ln(x)

= x−1−n

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x−1−n(−ny − xn)

= −1− x−nny

x

And

N = µN

= x−1−n(x)
= x−n

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−1− x−nny

x

)
+
(
x−n
) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1− x−nny

x
dx

(3)φ = x−ny + ln (x−n)
n

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x−n + f ′(y)

But equation (2) says that ∂φ
∂y

= x−n. Therefore equation (4) becomes

(5)x−n = x−n + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x−ny + ln (x−n)
n

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x−ny + ln (x−n)
n
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The solution becomes

y = −(−nc1 + ln (x−n))xn

n

Summary
The solution(s) found are the following

(1)y = −(−nc1 + ln (x−n))xn

n

Verification of solutions

y = −(−nc1 + ln (x−n))xn

n

Verified OK.

1.10.4 Maple step by step solution

Let’s solve
xy′ − ny = xn

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = ny

x
+ xn

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − ny

x
= xn

x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − ny

x

)
= µ(x)xn

x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − ny

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)n

x

• Solve to find the integrating factor
µ(x) = 1

xn

• Integrate both sides with respect to x
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∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)xn

x
dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)xn

x
dx+ c1

• Solve for y

y =
∫ µ(x)xn

x
dx+c1

µ(x)

• Substitute µ(x) = 1
xn

y = xn
(∫ 1

x
dx+ c1

)
• Evaluate the integrals on the rhs

y = (ln (x) + c1)xn

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)-n*y(x)=x^n,y(x), singsol=all)� �

y(x) = (ln (x) + c1)xn

3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 14� �
DSolve[x*y'[x]-n*y[x]==x^n,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xn(log(x) + c1)
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1.11 problem 2(e)
1.11.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 133
1.11.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 135
1.11.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 139
1.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 144

Internal problem ID [3039]
Internal file name [OUTPUT/2531_Sunday_June_05_2022_03_18_24_AM_5097122/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 2(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x3 + x

)
y′ + y = x

1.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x (x2 + 1)

q(x) = 1
x2 + 1

Hence the ode is

y′ + y

x (x2 + 1) = 1
x2 + 1

133



The integrating factor µ is

µ = e
∫ 1

x
(
x2+1

)dx

= e−
ln

(
x2+1

)
2 +ln(x)

Which simplifies to

µ = x√
x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
1

x2 + 1

)
d
dx

(
xy√
x2 + 1

)
=
(

x√
x2 + 1

)(
1

x2 + 1

)
d
(

xy√
x2 + 1

)
=
(

x

(x2 + 1)
3
2

)
dx

Integrating gives

xy√
x2 + 1

=
∫

x

(x2 + 1)
3
2
dx

xy√
x2 + 1

= − 1√
x2 + 1

+ c1

Dividing both sides by the integrating factor µ = x√
x2+1 results in

y = −1
x
+ c1

√
x2 + 1
x

which simplifies to

y = c1
√
x2 + 1− 1

x

Summary
The solution(s) found are the following

(1)y = c1
√
x2 + 1− 1

x
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Figure 30: Slope field plot

Verification of solutions

y = c1
√
x2 + 1− 1

x

Verified OK.

1.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y − x

x (x2 + 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 31: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln

(
x2+1

)
2 −ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln

(
x2+1

)
2 −ln(x)

dy

Which results in

S = xy√
x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y − x

x (x2 + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

(x2 + 1)
3
2

Sy =
x√

x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x

(x2 + 1)
3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

(R2 + 1)
3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1√
R2 + 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy√
x2 + 1

= − 1√
x2 + 1

+ c1

Which simplifies to

xy√
x2 + 1

= − 1√
x2 + 1

+ c1

Which gives

y = c1
√
x2 + 1− 1

x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y−x
x(x2+1)

dS
dR

= R

(R2+1)
3
2

R = x

S = xy√
x2 + 1
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Summary
The solution(s) found are the following

(1)y = c1
√
x2 + 1− 1

x

Figure 31: Slope field plot

Verification of solutions

y = c1
√
x2 + 1− 1

x

Verified OK.

1.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x3 + x

)
dy = (−y + x) dx

(y − x) dx+
(
x3 + x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − x

N(x, y) = x3 + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(y − x)

= 1
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And
∂N

∂x
= ∂

∂x

(
x3 + x

)
= 3x2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x3 + x

(
(1)−

(
3x2 + 1

))
= − 3x

x2 + 1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3x

x2+1 dx

The result of integrating gives

µ = e−
3 ln

(
x2+1

)
2

= 1
(x2 + 1)

3
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x2 + 1)

3
2
(y − x)

= y − x

(x2 + 1)
3
2

And

N = µN

= 1
(x2 + 1)

3
2

(
x3 + x

)
= x√

x2 + 1
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

y − x

(x2 + 1)
3
2

)
+
(

x√
x2 + 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y − x

(x2 + 1)
3
2
dx

(3)φ = xy + 1√
x2 + 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x√

x2 + 1
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x√
x2+1 . Therefore equation (4) becomes

(5)x√
x2 + 1

= x√
x2 + 1

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = xy + 1√
x2 + 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
xy + 1√
x2 + 1

The solution becomes

y = c1
√
x2 + 1− 1

x

Summary
The solution(s) found are the following

(1)y = c1
√
x2 + 1− 1

x

Figure 32: Slope field plot
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Verification of solutions

y = c1
√
x2 + 1− 1

x

Verified OK.

1.11.4 Maple step by step solution

Let’s solve
(x3 + x) y′ + y = x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x(x2+1) +
1

x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x(x2+1) =
1

x2+1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

x(x2+1)

)
= µ(x)

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x(x2+1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x(x2+1)

• Solve to find the integrating factor
µ(x) = x√

x2+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
x2+1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
x2+1dx+ c1

• Solve for y

y =
∫ µ(x)

x2+1dx+c1

µ(x)
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• Substitute µ(x) = x√
x2+1

y =

√
x2+1

∫
x(

x2+1
) 3
2
dx+c1


x

• Evaluate the integrals on the rhs

y =
√
x2+1

(
− 1√

x2+1
+c1

)
x

• Simplify

y = c1
√
x2+1−1
x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve((x^3+x)*diff(y(x),x)+y(x)=x,y(x), singsol=all)� �

y(x) =
√
x2 + 1 c1 − 1

x

3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 23� �
DSolve[(x^3+x)*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1 + c1
√
x2 + 1

x
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1.12 problem 3(a)
1.12.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 146
1.12.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 148
1.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 152
1.12.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 157

Internal problem ID [3040]
Internal file name [OUTPUT/2532_Sunday_June_05_2022_03_18_27_AM_74647826/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 3(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

cot (x) y′ + y = x

1.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = tan (x)x

Hence the ode is

y′ + y tan (x) = tan (x)x

The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)
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Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ) (tan (x)x)

d
dx(sec (x) y) = (sec (x)) (tan (x)x)

d(sec (x) y) = (x sec (x) tan (x)) dx

Integrating gives

sec (x) y =
∫

x sec (x) tan (x) dx

sec (x) y = x

cos (x) − ln (sec (x) + tan (x)) + c1

Dividing both sides by the integrating factor µ = sec (x) results in

y = cos (x)
(

x

cos (x) − ln (sec (x) + tan (x))
)
+ c1 cos (x)

which simplifies to

y = − ln (sec (x) + tan (x)) cos (x) + c1 cos (x) + x

Summary
The solution(s) found are the following

(1)y = − ln (sec (x) + tan (x)) cos (x) + c1 cos (x) + x
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Figure 33: Slope field plot

Verification of solutions

y = − ln (sec (x) + tan (x)) cos (x) + c1 cos (x) + x

Verified OK.

1.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y − x

cot (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 34: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y − x

cot (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sec (x) tan (x) y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x sec (x) tan (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R sec (R) tan (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

cos (R) − ln (sec (R) + tan (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sec (x) = x

cos (x) − ln (sec (x) + tan (x)) + c1

Which simplifies to

ln (sec (x) + tan (x)) + sec (x) (y − x)− c1 = 0

Which gives

y = sec (x)x− ln (sec (x) + tan (x)) + c1
sec (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y−x
cot(x)

dS
dR

= R sec (R) tan (R)

R = x

S = sec (x) y
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Summary
The solution(s) found are the following

(1)y = sec (x)x− ln (sec (x) + tan (x)) + c1
sec (x)

Figure 34: Slope field plot

Verification of solutions

y = sec (x)x− ln (sec (x) + tan (x)) + c1
sec (x)

Verified OK.

1.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(cot (x)) dy = (−y + x) dx
(y − x) dx+(cot (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − x

N(x, y) = cot (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives
∂M

∂y
= ∂

∂y
(y − x)

= 1

And
∂N

∂x
= ∂

∂x
(cot (x))

= − csc (x)2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= tan (x)

(
(1)−

(
−1− cot (x)2

))
= 2 tan (x) + cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
2 tan(x)+cot(x) dx

The result of integrating gives

µ = e−2 ln(cos(x))+ln(sin(x))

= sin (x)
cos (x)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x)
cos (x)2

(y − x)

= sec (x) tan (x) (y − x)

And

N = µN

= sin (x)
cos (x)2

(cot (x))

= sec (x)
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(sec (x) tan (x) (y − x)) + (sec (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sec (x) tan (x) (y − x) dx

(3)φ = ln (sec (x) + tan (x)) + sec (x) (y − x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sec (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x). Therefore equation (4) becomes

(5)sec (x) = sec (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (sec (x) + tan (x)) + sec (x) (y − x) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (sec (x) + tan (x)) + sec (x) (y − x)

The solution becomes

y = sec (x)x− ln (sec (x) + tan (x)) + c1
sec (x)

Summary
The solution(s) found are the following

(1)y = sec (x)x− ln (sec (x) + tan (x)) + c1
sec (x)

Figure 35: Slope field plot

Verification of solutions

y = sec (x)x− ln (sec (x) + tan (x)) + c1
sec (x)

Verified OK.
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1.12.4 Maple step by step solution

Let’s solve
cot (x) y′ + y = x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

cot(x) +
x

cot(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

cot(x) =
x

cot(x)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

cot(x)

)
= µ(x)x

cot(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

cot(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

cot(x)

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)x
cot(x)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)x
cot(x)dx+ c1

• Solve for y

y =
∫ µ(x)x

cot(x)dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫

x
cos(x) cot(x)dx+ c1

)
• Evaluate the integrals on the rhs

y = cos (x)
(

x
cos(x) − ln (sec (x) + tan (x)) + c1

)
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• Simplify
y = − ln (sec (x) + tan (x)) cos (x) + c1 cos (x) + x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(cot(x)*diff(y(x),x)+y(x)=x,y(x), singsol=all)� �

y(x) = x+ cos (x) (− ln (sec (x) + tan (x)) + c1)

3 Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 45� �
DSolve[Cot[x]*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ cos(x)
(
log
(
cos
(x
2

)
− sin

(x
2

))
− log

(
sin
(x
2

)
+ cos

(x
2

))
+ c1

)
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1.13 problem 3(b)
1.13.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 159
1.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 161
1.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 165
1.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 170

Internal problem ID [3041]
Internal file name [OUTPUT/2533_Sunday_June_05_2022_03_18_29_AM_13567649/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 3(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

cot (x) y′ + y = tan (x)

1.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = tan (x)2

Hence the ode is

y′ + y tan (x) = tan (x)2

The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)
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Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ)

(
tan (x)2

)
d
dx(sec (x) y) = (sec (x))

(
tan (x)2

)
d(sec (x) y) =

(
tan (x)2 sec (x)

)
dx

Integrating gives

sec (x) y =
∫

tan (x)2 sec (x) dx

sec (x) y = sin (x)3

2 cos (x)2
+ sin (x)

2 − ln (sec (x) + tan (x))
2 + c1

Dividing both sides by the integrating factor µ = sec (x) results in

y = cos (x)
(

sin (x)3

2 cos (x)2
+ sin (x)

2 − ln (sec (x) + tan (x))
2

)
+ c1 cos (x)

which simplifies to

y = tan (x)
2 − ln (sec (x) + tan (x)) cos (x)

2 + c1 cos (x)

Summary
The solution(s) found are the following

(1)y = tan (x)
2 − ln (sec (x) + tan (x)) cos (x)

2 + c1 cos (x)
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Figure 36: Slope field plot

Verification of solutions

y = tan (x)
2 − ln (sec (x) + tan (x)) cos (x)

2 + c1 cos (x)

Verified OK.

1.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y − tan (x)
cot (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 37: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y − tan (x)
cot (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sec (x) tan (x) y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (x)2 sec (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)2 sec (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (R)3

2 cos (R)2
+ sin (R)

2 − ln (sec (R) + tan (R))
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sec (x) = sin (x)3

2 cos (x)2
+ sin (x)

2 − ln (sec (x) + tan (x))
2 + c1

Which simplifies to

ln (sec (x) + tan (x))
2 + (2y − tan (x)) sec (x)

2 − c1 = 0

Which gives

y = sec (x) tan (x)− ln (sec (x) + tan (x)) + 2c1
2 sec (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y−tan(x)
cot(x)

dS
dR

= tan (R)2 sec (R)

R = x

S = sec (x) y
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Summary
The solution(s) found are the following

(1)y = sec (x) tan (x)− ln (sec (x) + tan (x)) + 2c1
2 sec (x)

Figure 37: Slope field plot

Verification of solutions

y = sec (x) tan (x)− ln (sec (x) + tan (x)) + 2c1
2 sec (x)

Verified OK.

1.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(cot (x)) dy = (−y + tan (x)) dx
(y − tan (x)) dx+(cot (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − tan (x)
N(x, y) = cot (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives
∂M

∂y
= ∂

∂y
(y − tan (x))

= 1

And
∂N

∂x
= ∂

∂x
(cot (x))

= − csc (x)2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= tan (x)

(
(1)−

(
−1− cot (x)2

))
= 2 tan (x) + cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
2 tan(x)+cot(x) dx

The result of integrating gives

µ = e−2 ln(cos(x))+ln(sin(x))

= sin (x)
cos (x)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x)
cos (x)2

(y − tan (x))

= sec (x) tan (x) (y − tan (x))

And

N = µN

= sin (x)
cos (x)2

(cot (x))

= sec (x)
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(sec (x) tan (x) (y − tan (x))) + (sec (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sec (x) tan (x) (y − tan (x)) dx

(3)φ = ln (sec (x) + tan (x))
2 + (2y − tan (x)) sec (x)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sec (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x). Therefore equation (4) becomes

(5)sec (x) = sec (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (sec (x) + tan (x))
2 + (2y − tan (x)) sec (x)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (sec (x) + tan (x))

2 + (2y − tan (x)) sec (x)
2

The solution becomes

y = sec (x) tan (x)− ln (sec (x) + tan (x)) + 2c1
2 sec (x)

Summary
The solution(s) found are the following

(1)y = sec (x) tan (x)− ln (sec (x) + tan (x)) + 2c1
2 sec (x)

Figure 38: Slope field plot
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Verification of solutions

y = sec (x) tan (x)− ln (sec (x) + tan (x)) + 2c1
2 sec (x)

Verified OK.

1.13.4 Maple step by step solution

Let’s solve
cot (x) y′ + y = tan (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

cot(x) +
tan(x)
cot(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

cot(x) =
tan(x)
cot(x)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

cot(x)

)
= µ(x) tan(x)

cot(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

cot(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

cot(x)

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) tan(x)
cot(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) tan(x)
cot(x) dx+ c1

• Solve for y

y =
∫ µ(x) tan(x)

cot(x) dx+c1

µ(x)
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• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫ tan(x)

cos(x) cot(x)dx+ c1
)

• Evaluate the integrals on the rhs

y = cos (x)
(

sin(x)3

2 cos(x)2 +
sin(x)

2 − ln(sec(x)+tan(x))
2 + c1

)
• Simplify

y = tan(x)
2 − ln(sec(x)+tan(x)) cos(x)

2 + c1 cos (x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(cot(x)*diff(y(x),x)+y(x)=tan(x),y(x), singsol=all)� �

y(x) = tan (x)
2 − cos (x) ln (sec (x) + tan (x))

2 + cos (x) c1

3 Solution by Mathematica
Time used: 0.071 (sec). Leaf size: 25� �
DSolve[Cot[x]*y'[x]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2(cos(x)(−arctanh(sin(x))) + tan(x) + 2c1 cos(x))
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1.14 problem 3(c)
1.14.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 172
1.14.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 174
1.14.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 178
1.14.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 182

Internal problem ID [3042]
Internal file name [OUTPUT/2534_Sunday_June_05_2022_03_18_31_AM_93861156/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 3(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ tan (x) + y = cot (x)

1.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cot (x)
q(x) = cot (x)2

Hence the ode is

y′ + y cot (x) = cot (x)2

The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)
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The ode becomes
d
dx(µy) = (µ)

(
cot (x)2

)
d
dx(sin (x) y) = (sin (x))

(
cot (x)2

)
d(sin (x) y) = (cos (x) cot (x)) dx

Integrating gives

sin (x) y =
∫

cos (x) cot (x) dx

sin (x) y = cos (x) + ln (csc (x)− cot (x)) + c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = csc (x) (cos (x) + ln (csc (x)− cot (x))) + c1 csc (x)

which simplifies to

y = csc (x) (cos (x) + ln (csc (x)− cot (x)) + c1)

Summary
The solution(s) found are the following

(1)y = csc (x) (cos (x) + ln (csc (x)− cot (x)) + c1)

Figure 39: Slope field plot
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Verification of solutions

y = csc (x) (cos (x) + ln (csc (x)− cot (x)) + c1)

Verified OK.

1.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y − cot (x)
tan (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 40: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)

dy

Which results in

S = sin (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y − cot (x)
tan (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = cos (x) y
Sy = sin (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x) cot (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R) cot (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cos (R) + ln (csc (R)− cot (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sin (x) = cos (x) + ln (csc (x)− cot (x)) + c1

Which simplifies to

y sin (x) = cos (x) + ln (csc (x)− cot (x)) + c1

Which gives

y = cos (x) + ln (csc (x)− cot (x)) + c1
sin (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y−cot(x)
tan(x)

dS
dR

= cos (R) cot (R)

R = x

S = sin (x) y

Summary
The solution(s) found are the following

(1)y = cos (x) + ln (csc (x)− cot (x)) + c1
sin (x)

177



Figure 40: Slope field plot

Verification of solutions

y = cos (x) + ln (csc (x)− cot (x)) + c1
sin (x)

Verified OK.

1.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(tan (x)) dy = (−y + cot (x)) dx
(y − cot (x)) dx+(tan (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − cot (x)
N(x, y) = tan (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y − cot (x))

= 1

And
∂N

∂x
= ∂

∂x
(tan (x))

= sec (x)2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= cot (x)

(
(1)−

(
1 + tan (x)2

))
= − tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− tan(x) dx

The result of integrating gives

µ = eln(cos(x))

= cos (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (x) (y − cot (x))
= (y − cot (x)) cos (x)

And

N = µN

= cos (x) (tan (x))
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

((y − cot (x)) cos (x)) + (sin (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(y − cot (x)) cos (x) dx

(3)φ = sin (x) y − cos (x)− ln (csc (x)− cot (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x). Therefore equation (4) becomes

(5)sin (x) = sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (x) y − cos (x)− ln (csc (x)− cot (x)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (x) y − cos (x)− ln (csc (x)− cot (x))

The solution becomes

y = cos (x) + ln (csc (x)− cot (x)) + c1
sin (x)
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Summary
The solution(s) found are the following

(1)y = cos (x) + ln (csc (x)− cot (x)) + c1
sin (x)

Figure 41: Slope field plot

Verification of solutions

y = cos (x) + ln (csc (x)− cot (x)) + c1
sin (x)

Verified OK.

1.14.4 Maple step by step solution

Let’s solve
y′ tan (x) + y = cot (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = − y
tan(x) +

cot(x)
tan(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

tan(x) =
cot(x)
tan(x)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

tan(x)

)
= µ(x) cot(x)

tan(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

tan(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

tan(x)

• Solve to find the integrating factor
µ(x) = sin (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) cot(x)
tan(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) cot(x)
tan(x) dx+ c1

• Solve for y

y =
∫ µ(x) cot(x)

tan(x) dx+c1

µ(x)

• Substitute µ(x) = sin (x)

y =
∫ sin(x) cot(x)

tan(x) dx+c1

sin(x)

• Evaluate the integrals on the rhs
y = cos(x)+ln(csc(x)−cot(x))+c1

sin(x)

• Simplify
y = csc (x) (cos (x) + ln (csc (x)− cot (x)) + c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(tan(x)*diff(y(x),x)+y(x)=cot(x),y(x), singsol=all)� �

y(x) = csc (x) (cos (x) + ln (csc (x)− cot (x)) + c1)

3 Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 29� �
DSolve[Tan[x]*y'[x]+y[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → csc(x)
(
cos(x) + log

(
sin
(x
2

))
− log

(
cos
(x
2

))
+ c1

)
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1.15 problem 3(a)
1.15.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 185
1.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 187
1.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 191
1.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 196

Internal problem ID [3043]
Internal file name [OUTPUT/2535_Sunday_June_05_2022_03_18_33_AM_46989943/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 3(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ tan (x)− y = − cos (x)

1.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − cot (x)
q(x) = − cos (x) cot (x)

Hence the ode is

y′ − y cot (x) = − cos (x) cot (x)

The integrating factor µ is

µ = e
∫
− cot(x)dx

= 1
sin (x)
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Which simplifies to
µ = csc (x)

The ode becomes

d
dx(µy) = (µ) (− cos (x) cot (x))

d
dx(csc (x) y) = (csc (x)) (− cos (x) cot (x))

d(csc (x) y) =
(
− cot (x)2

)
dx

Integrating gives

csc (x) y =
∫

− cot (x)2 dx

csc (x) y = cot (x)− π

2 + x+ c1

Dividing both sides by the integrating factor µ = csc (x) results in

y = sin (x)
(
cot (x)− π

2 + x
)
+ c1 sin (x)

which simplifies to

y = sin (x)
(
cot (x)− π

2 + x+ c1
)

Summary
The solution(s) found are the following

(1)y = sin (x)
(
cot (x)− π

2 + x+ c1
)
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Figure 42: Slope field plot

Verification of solutions

y = sin (x)
(
cot (x)− π

2 + x+ c1
)

Verified OK.

1.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−y + cos (x)
tan (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 43: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

sin (x)dy

Which results in

S = y

sin (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−y + cos (x)
tan (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − csc (x) cot (x) y
Sy = csc (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − cot (x)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − cot (R)2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cot (R)− π

2 +R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

csc (x) y = cot (x)− π

2 + x+ c1

Which simplifies to

csc (x) y = cot (x)− π

2 + x+ c1

Which gives

y = −−2 cot (x) + π − 2x− 2c1
2 csc (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−y+cos(x)
tan(x)

dS
dR

= − cot (R)2

R = x

S = csc (x) y
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Summary
The solution(s) found are the following

(1)y = −−2 cot (x) + π − 2x− 2c1
2 csc (x)

Figure 43: Slope field plot

Verification of solutions

y = −−2 cot (x) + π − 2x− 2c1
2 csc (x)

Verified OK.

1.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(tan (x)) dy = (y − cos (x)) dx
(−y + cos (x)) dx+(tan (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y + cos (x)
N(x, y) = tan (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives
∂M

∂y
= ∂

∂y
(−y + cos (x))

= −1

And
∂N

∂x
= ∂

∂x
(tan (x))

= sec (x)2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= cot (x)

(
(−1)−

(
1 + tan (x)2

))
= −2 cot (x)− tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−2 cot(x)−tan(x) dx

The result of integrating gives

µ = e−2 ln(sin(x))+ln(cos(x))

= cos (x)
sin (x)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (x)
sin (x)2

(−y + cos (x))

= − cot (x) (csc (x) y − cot (x))

And

N = µN

= cos (x)
sin (x)2

(tan (x))

= csc (x)

193



Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(− cot (x) (csc (x) y − cot (x))) + (csc (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− cot (x) (csc (x) y − cot (x)) dx

(3)φ = −x− cot (x) + csc (x) y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= csc (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= csc (x). Therefore equation (4) becomes

(5)csc (x) = csc (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x− cot (x) + csc (x) y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− cot (x) + csc (x) y

The solution becomes

y = cot (x) + x+ c1
csc (x)

Summary
The solution(s) found are the following

(1)y = cot (x) + x+ c1
csc (x)

Figure 44: Slope field plot

Verification of solutions

y = cot (x) + x+ c1
csc (x)

Verified OK.
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1.15.4 Maple step by step solution

Let’s solve
y′ tan (x)− y = − cos (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

tan(x) −
cos(x)
tan(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

tan(x) = − cos(x)
tan(x)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − y

tan(x)

)
= −µ(x) cos(x)

tan(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

tan(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = − µ(x)

tan(x)

• Solve to find the integrating factor
µ(x) = 1

sin(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x) cos(x)

tan(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x) cos(x)

tan(x) dx+ c1

• Solve for y

y =
∫
−µ(x) cos(x)

tan(x) dx+c1

µ(x)

• Substitute µ(x) = 1
sin(x)

y = sin (x)
(∫

− cos(x)
sin(x) tan(x)dx+ c1

)
• Evaluate the integrals on the rhs

y = sin (x) (cot (x) + x+ c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(tan(x)*diff(y(x),x)=y(x)-cos(x),y(x), singsol=all)� �

y(x) =
(
cot (x)− π

2 + x+ c1
)
sin (x)

3 Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 28� �
DSolve[Tan[x]*y'[x]==y[x]-Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos(x)Hypergeometric2F1
(
−1
2 , 1,

1
2 ,− tan2(x)

)
+ c1 sin(x)
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1.16 problem 4(a)
1.16.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 198
1.16.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 200
1.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 204
1.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 208

Internal problem ID [3044]
Internal file name [OUTPUT/2536_Sunday_June_05_2022_03_18_36_AM_93063267/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 4(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + cos (x) y = sin (2x)

1.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cos (x)
q(x) = sin (2x)

Hence the ode is

y′ + cos (x) y = sin (2x)

The integrating factor µ is

µ = e
∫
cos(x)dx

= esin(x)
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The ode becomes
d
dx(µy) = (µ) (sin (2x))

d
dx
(
esin(x)y

)
=
(
esin(x)

)
(sin (2x))

d
(
esin(x)y

)
=
(
sin (2x) esin(x)

)
dx

Integrating gives

esin(x)y =
∫

sin (2x) esin(x) dx

esin(x)y = 2 sin (x) esin(x) − 2 esin(x) + c1

Dividing both sides by the integrating factor µ = esin(x) results in

y = e− sin(x)(2 sin (x) esin(x) − 2 esin(x)
)
+ c1e− sin(x)

which simplifies to

y = 2 sin (x)− 2 + c1e− sin(x)

Summary
The solution(s) found are the following

(1)y = 2 sin (x)− 2 + c1e− sin(x)

Figure 45: Slope field plot
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Verification of solutions

y = 2 sin (x)− 2 + c1e− sin(x)

Verified OK.

1.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − cos (x) y + sin (2x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 46: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− sin(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− sin(x)dy

Which results in

S = esin(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − cos (x) y + sin (2x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = cos (x) esin(x)y
Sy = esin(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (2x) esin(x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (2R) esin(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 + 2 esin(R)(−1 + sin (R)) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

esin(x)y = 2 esin(x)(sin (x)− 1) + c1

Which simplifies to

esin(x)y = 2 esin(x)(sin (x)− 1) + c1

Which gives

y = e− sin(x)(2 sin (x) esin(x) − 2 esin(x) + c1
)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − cos (x) y + sin (2x) dS
dR

= sin (2R) esin(R)

R = x

S = esin(x)y

Summary
The solution(s) found are the following

(1)y = e− sin(x)(2 sin (x) esin(x) − 2 esin(x) + c1
)
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Figure 46: Slope field plot

Verification of solutions

y = e− sin(x)(2 sin (x) esin(x) − 2 esin(x) + c1
)

Verified OK.

1.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (− cos (x) y + sin (2x)) dx
(cos (x) y − sin (2x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = cos (x) y − sin (2x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(cos (x) y − sin (2x))

= cos (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cos (x))− (0))
= cos (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
cos(x) dx

The result of integrating gives

µ = esin(x)

= esin(x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= esin(x)(cos (x) y − sin (2x))
= esin(x) cos (x) (−2 sin (x) + y)

And

N = µN

= esin(x)(1)
= esin(x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

esin(x) cos (x) (−2 sin (x) + y)
)
+
(
esin(x)

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
esin(x) cos (x) (−2 sin (x) + y) dx

(3)φ = (y − 2 sin (x) + 2) esin(x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= esin(x) + f ′(y)

But equation (2) says that ∂φ
∂y

= esin(x). Therefore equation (4) becomes

(5)esin(x) = esin(x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y − 2 sin (x) + 2) esin(x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y − 2 sin (x) + 2) esin(x)

The solution becomes

y = e− sin(x)(2 sin (x) esin(x) − 2 esin(x) + c1
)
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Summary
The solution(s) found are the following

(1)y = e− sin(x)(2 sin (x) esin(x) − 2 esin(x) + c1
)

Figure 47: Slope field plot

Verification of solutions

y = e− sin(x)(2 sin (x) esin(x) − 2 esin(x) + c1
)

Verified OK.

1.16.4 Maple step by step solution

Let’s solve
y′ + cos (x) y = sin (2x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − cos (x) y + sin (2x)
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + cos (x) y = sin (2x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + cos (x) y) = µ(x) sin (2x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + cos (x) y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cos (x)

• Solve to find the integrating factor
µ(x) = esin(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (2x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (2x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(2x)dx+c1

µ(x)

• Substitute µ(x) = esin(x)

y =
∫
sin(2x)esin(x)dx+c1

esin(x)

• Evaluate the integrals on the rhs

y = 2 sin(x)esin(x)−2 esin(x)+c1
esin(x)

• Simplify
y = 2 sin (x)− 2 + c1e− sin(x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)+y(x)*cos(x)=sin(2*x),y(x), singsol=all)� �

y(x) = 2 sin (x)− 2 + e− sin(x)c1

3 Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 20� �
DSolve[y'[x]+y[x]*Cos[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 sin(x) + c1e
− sin(x) − 2
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1.17 problem 4(b)
1.17.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 211
1.17.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 213
1.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 217
1.17.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 222

Internal problem ID [3045]
Internal file name [OUTPUT/2537_Sunday_June_05_2022_03_18_38_AM_92517129/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 4(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ cos (x) + y = sin (2x)

1.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = sec (x)
q(x) = 2 sin (x)

Hence the ode is

y′ + y sec (x) = 2 sin (x)

The integrating factor µ is

µ = e
∫
sec(x)dx

= sec (x) + tan (x)
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The ode becomes
d
dx(µy) = (µ) (2 sin (x))

d
dx((sec (x) + tan (x)) y) = (sec (x) + tan (x)) (2 sin (x))

d((sec (x) + tan (x)) y) = ((2 sin (x) + 2) tan (x)) dx

Integrating gives

(sec (x) + tan (x)) y =
∫

(2 sin (x) + 2) tan (x) dx

(sec (x) + tan (x)) y = −2 sin (x)− 2 ln (sin (x)− 1) + c1

Dividing both sides by the integrating factor µ = sec (x) + tan (x) results in

y = −2 sin (x)− 2 ln (sin (x)− 1)
sec (x) + tan (x) + c1

sec (x) + tan (x)

Summary
The solution(s) found are the following

(1)y = −2 sin (x)− 2 ln (sin (x)− 1)
sec (x) + tan (x) + c1

sec (x) + tan (x)

Figure 48: Slope field plot
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Verification of solutions

y = −2 sin (x)− 2 ln (sin (x)− 1)
sec (x) + tan (x) + c1

sec (x) + tan (x)

Verified OK.

1.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y + sin (2x)
cos (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 49: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sec (x) + tan (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sec(x)+tan(x)

dy

Which results in

S = (sec (x) + tan (x)) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y + sin (2x)
cos (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

sin (x)− 1
Sy = sec (x) + tan (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (x) (cos (x) + 1 + sin (x))2

cos (x) + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R) (cos (R) + 1 + sin (R))2

cos (R) + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 sin (R)− 2 ln (sin (R)− 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(sec (x) + tan (x)) y = −2 sin (x)− 2 ln (sin (x)− 1) + c1

Which simplifies to

(sec (x) + tan (x)) y = −2 sin (x)− 2 ln (sin (x)− 1) + c1

Which gives

y = −2 sin (x) + 2 ln (sin (x)− 1)− c1
sec (x) + tan (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y+sin(2x)
cos(x)

dS
dR

= tan(R)(cos(R)+1+sin(R))2
cos(R)+1

R = x

S = (sec (x) + tan (x)) y

Summary
The solution(s) found are the following

(1)y = −2 sin (x) + 2 ln (sin (x)− 1)− c1
sec (x) + tan (x)

216



Figure 49: Slope field plot

Verification of solutions

y = −2 sin (x) + 2 ln (sin (x)− 1)− c1
sec (x) + tan (x)

Verified OK.

1.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(cos (x)) dy = (−y + sin (2x)) dx
(y − sin (2x)) dx+(cos (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − sin (2x)
N(x, y) = cos (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y − sin (2x))

= 1

And
∂N

∂x
= ∂

∂x
(cos (x))

= − sin (x)
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= sec (x) ((1)− (− sin (x)))
= sec (x) + tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
sec(x)+tan(x) dx

The result of integrating gives

µ = eln(sec(x)+tan(x))−ln(cos(x))

= sec (x) + tan (x)
cos (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x) + tan (x)
cos (x) (y − sin (2x))

= −y + 2 sin (x) cos (x)
sin (x)− 1

And

N = µN

= sec (x) + tan (x)
cos (x) (cos (x))

= sec (x) + tan (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−y + 2 sin (x) cos (x)
sin (x)− 1

)
+ (sec (x) + tan (x)) dydx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y + 2 sin (x) cos (x)

sin (x)− 1 dx

(3)φ=
4 tan

(
x
2

)
1 + tan

(
x
2

)2 −2 ln
(
sec
(x
2

)2)
− 2y
−1 + tan

(
x
2

)+4 ln
(
−1+tan

(x
2

))
+f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 2

−1 + tan
(
x
2

) + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x) + tan (x). Therefore equation (4) becomes

(5)sec (x) + tan (x) = − 2
−1 + tan

(
x
2

) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) =
tan (x) tan

(
x
2

)
+ sec (x) tan

(
x
2

)
− tan (x)− sec (x) + 2

−1 + tan
(
x
2

)
= −1

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(−1) dy

f(y) = −y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =
4 tan

(
x
2

)
1 + tan

(
x
2

)2 − 2 ln
(
sec
(x
2

)2)
− 2y

−1 + tan
(
x
2

) + 4 ln
(
−1 + tan

(x
2

))
− y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
4 tan

(
x
2

)
1 + tan

(
x
2

)2 − 2 ln
(
sec
(x
2

)2)
− 2y

−1 + tan
(
x
2

) + 4 ln
(
−1 + tan

(x
2

))
− y

The solution becomes

y =

−
2 tan

(
x
2

)3 ln(sec (x2)2)− 4 tan
(
x
2

)3 ln (−1 + tan
(
x
2

))
+ tan

(
x
2

)3
c1 − 2 tan

(
x
2

)2 ln(sec (x2)2)+ 4 tan
(
x
2

)2 ln (−1 + tan
(
x
2

))
− tan

(
x
2

)2
c1 − 4 tan

(
x
2

)2 + 2 tan
(
x
2

)
ln
(
sec
(
x
2

)2)− 4 tan
(
x
2

)
ln
(
−1 + tan

(
x
2

))
+ tan

(
x
2

)
c1 + 4 tan

(
x
2

)
− 2 ln

(
sec
(
x
2

)2)+ 4 ln
(
−1 + tan

(
x
2

))
− c1

1 + tan
(
x
2

)3 + tan
(
x
2

)2 + tan
(
x
2

)
Summary
The solution(s) found are the following

(1)y =

−
2 tan

(
x
2

)3 ln(sec (x2)2)− 4 tan
(
x
2

)3 ln (−1 + tan
(
x
2

))
+ tan

(
x
2

)3
c1 − 2 tan

(
x
2

)2 ln(sec (x2)2)+ 4 tan
(
x
2

)2 ln (−1 + tan
(
x
2

))
− tan

(
x
2

)2
c1 − 4 tan

(
x
2

)2 + 2 tan
(
x
2

)
ln
(
sec
(
x
2

)2)− 4 tan
(
x
2

)
ln
(
−1 + tan

(
x
2

))
+ tan

(
x
2

)
c1 + 4 tan

(
x
2

)
− 2 ln

(
sec
(
x
2

)2)+ 4 ln
(
−1 + tan

(
x
2

))
− c1

1 + tan
(
x
2

)3 + tan
(
x
2

)2 + tan
(
x
2

)
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Figure 50: Slope field plot

Verification of solutions
y =

−
2 tan

(
x
2

)3 ln(sec (x2)2)− 4 tan
(
x
2

)3 ln (−1 + tan
(
x
2

))
+ tan

(
x
2

)3
c1 − 2 tan

(
x
2

)2 ln(sec (x2)2)+ 4 tan
(
x
2

)2 ln (−1 + tan
(
x
2

))
− tan

(
x
2

)2
c1 − 4 tan

(
x
2

)2 + 2 tan
(
x
2

)
ln
(
sec
(
x
2

)2)− 4 tan
(
x
2

)
ln
(
−1 + tan

(
x
2

))
+ tan

(
x
2

)
c1 + 4 tan

(
x
2

)
− 2 ln

(
sec
(
x
2

)2)+ 4 ln
(
−1 + tan

(
x
2

))
− c1

1 + tan
(
x
2

)3 + tan
(
x
2

)2 + tan
(
x
2

)
Verified OK.

1.17.4 Maple step by step solution

Let’s solve
y′ cos (x) + y = sin (2x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

cos(x) +
sin(2x)
cos(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

cos(x) =
sin(2x)
cos(x)
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• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

cos(x)

)
= µ(x) sin(2x)

cos(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

cos(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

cos(x)

• Solve to find the integrating factor
µ(x) = sec (x) + tan (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) sin(2x)
cos(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) sin(2x)
cos(x) dx+ c1

• Solve for y

y =
∫ µ(x) sin(2x)

cos(x) dx+c1

µ(x)

• Substitute µ(x) = sec (x) + tan (x)

y =
∫ (sec(x)+tan(x)) sin(2x)

cos(x) dx+c1

sec(x)+tan(x)

• Evaluate the integrals on the rhs
y = −2 sin(x)−2 ln(sin(x)−1)+c1

sec(x)+tan(x)

• Simplify
y = (−2 sin(x)−2 ln(sin(x)−1)+c1)(cos(x)−sin(x)+1)

cos(x)+1+sin(x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(cos(x)*diff(y(x),x)+y(x)=sin(2*x),y(x), singsol=all)� �

y(x) = (cos (x)− sin (x) + 1) (−2 sin (x)− 2 ln (sin (x)− 1) + c1)
cos (x) + sin (x) + 1

3 Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 42� �
DSolve[Cos[x]*y'[x]+y[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2arctanh
(
tan

(
x
2
))(

−2 sin(x)− 4 log
(
cos
(x
2

)
− sin

(x
2

))
+ c1

)
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1.18 problem 4(c)
1.18.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 225
1.18.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 227
1.18.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 231
1.18.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 235

Internal problem ID [3046]
Internal file name [OUTPUT/2538_Sunday_June_05_2022_03_18_40_AM_54738457/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 4(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y sin (x) = sin (2x)

1.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = sin (x)
q(x) = sin (2x)

Hence the ode is

y′ + y sin (x) = sin (2x)

The integrating factor µ is

µ = e
∫
sin(x)dx

= e− cos(x)
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The ode becomes
d
dx(µy) = (µ) (sin (2x))

d
dx
(
e− cos(x)y

)
=
(
e− cos(x)) (sin (2x))

d
(
e− cos(x)y

)
=
(
sin (2x) e− cos(x)) dx

Integrating gives

e− cos(x)y =
∫

sin (2x) e− cos(x) dx

e− cos(x)y = 2 cos (x) e− cos(x) + 2 e− cos(x) + c1

Dividing both sides by the integrating factor µ = e− cos(x) results in

y = ecos(x)
(
2 cos (x) e− cos(x) + 2 e− cos(x))+ c1ecos(x)

which simplifies to

y = c1ecos(x) + 2 cos (x) + 2

Summary
The solution(s) found are the following

(1)y = c1ecos(x) + 2 cos (x) + 2

Figure 51: Slope field plot
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Verification of solutions

y = c1ecos(x) + 2 cos (x) + 2

Verified OK.

1.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − sin (x) y + sin (2x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 52: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ecos(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ecos(x)dy

Which results in

S = e− cos(x)y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − sin (x) y + sin (2x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sin (x) e− cos(x)y

Sy = e− cos(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (2x) e− cos(x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (2R) e− cos(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 + 2 e− cos(R)(1 + cos (R)) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e− cos(x)y = 2 e− cos(x)(cos (x) + 1) + c1

Which simplifies to

(y − 2 cos (x)− 2) e− cos(x) − c1 = 0

Which gives

y = ecos(x)
(
2 cos (x) e− cos(x) + 2 e− cos(x) + c1

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − sin (x) y + sin (2x) dS
dR

= sin (2R) e− cos(R)

R = x

S = e− cos(x)y

Summary
The solution(s) found are the following

(1)y = ecos(x)
(
2 cos (x) e− cos(x) + 2 e− cos(x) + c1

)
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Figure 52: Slope field plot

Verification of solutions

y = ecos(x)
(
2 cos (x) e− cos(x) + 2 e− cos(x) + c1

)
Verified OK.

1.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (− sin (x) y + sin (2x)) dx
(sin (x) y − sin (2x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = sin (x) y − sin (2x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(sin (x) y − sin (2x))

= sin (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((sin (x))− (0))
= sin (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
sin(x) dx

The result of integrating gives

µ = e− cos(x)

= e− cos(x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e− cos(x)(sin (x) y − sin (2x))
= e− cos(x) sin (x) (−2 cos (x) + y)

And

N = µN

= e− cos(x)(1)
= e− cos(x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

e− cos(x) sin (x) (−2 cos (x) + y)
)
+
(
e− cos(x)) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
e− cos(x) sin (x) (−2 cos (x) + y) dx

(3)φ = (y − 2 cos (x)− 2) e− cos(x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e− cos(x) + f ′(y)

But equation (2) says that ∂φ
∂y

= e− cos(x). Therefore equation (4) becomes

(5)e− cos(x) = e− cos(x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y − 2 cos (x)− 2) e− cos(x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y − 2 cos (x)− 2) e− cos(x)

The solution becomes

y = ecos(x)
(
2 cos (x) e− cos(x) + 2 e− cos(x) + c1

)
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Summary
The solution(s) found are the following

(1)y = ecos(x)
(
2 cos (x) e− cos(x) + 2 e− cos(x) + c1

)

Figure 53: Slope field plot

Verification of solutions

y = ecos(x)
(
2 cos (x) e− cos(x) + 2 e− cos(x) + c1

)
Verified OK.

1.18.4 Maple step by step solution

Let’s solve
y′ + y sin (x) = sin (2x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y sin (x) + sin (2x)
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y sin (x) = sin (2x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y sin (x)) = µ(x) sin (2x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y sin (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) sin (x)

• Solve to find the integrating factor
µ(x) = e− cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (2x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (2x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(2x)dx+c1

µ(x)

• Substitute µ(x) = e− cos(x)

y =
∫
sin(2x)e− cos(x)dx+c1

e− cos(x)

• Evaluate the integrals on the rhs

y = 2 cos(x)e− cos(x)+2 e− cos(x)+c1
e− cos(x)

• Simplify
y = c1ecos(x) + 2 cos (x) + 2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)+y(x)*sin(x)=sin(2*x),y(x), singsol=all)� �

y(x) = 2 cos (x) + 2 + ecos(x)c1

3 Solution by Mathematica
Time used: 0.075 (sec). Leaf size: 18� �
DSolve[y'[x]+y[x]*Sin[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 cos(x) + c1e
cos(x) + 2
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1.19 problem 4(d)
1.19.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 238
1.19.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 240
1.19.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 244
1.19.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 249

Internal problem ID [3047]
Internal file name [OUTPUT/2539_Sunday_June_05_2022_03_18_43_AM_65009450/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 4(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ sin (x) + y = sin (2x)

1.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = csc (x)
q(x) = 2 cos (x)

Hence the ode is

y′ + csc (x) y = 2 cos (x)

The integrating factor µ is

µ = e
∫
csc(x)dx

= csc (x)− cot (x)
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The ode becomes
d
dx(µy) = (µ) (2 cos (x))

d
dx((csc (x)− cot (x)) y) = (csc (x)− cot (x)) (2 cos (x))

d((csc (x)− cot (x)) y) = ((−2 cos (x) + 2) cot (x)) dx

Integrating gives

(csc (x)− cot (x)) y =
∫

(−2 cos (x) + 2) cot (x) dx

(csc (x)− cot (x)) y = −2 cos (x) + 2 ln (cos (x) + 1) + c1

Dividing both sides by the integrating factor µ = csc (x)− cot (x) results in

y = −2 cos (x) + 2 ln (cos (x) + 1)
csc (x)− cot (x) + c1

csc (x)− cot (x)
which simplifies to

y = csc (x) (−2 cos (x) + 2 ln (cos (x) + 1) + c1) (cos (x) + 1)
Summary
The solution(s) found are the following

(1)y = csc (x) (−2 cos (x) + 2 ln (cos (x) + 1) + c1) (cos (x) + 1)

Figure 54: Slope field plot
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Verification of solutions

y = csc (x) (−2 cos (x) + 2 ln (cos (x) + 1) + c1) (cos (x) + 1)

Verified OK.

1.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y + sin (2x)
sin (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 55: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = csc (x) + cot (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

csc (x) + cot (x)dy

Which results in

S = y

csc (x) + cot (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y + sin (2x)
sin (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

cos (x) + 1

Sy =
1

csc (x) + cot (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (2x)

cos (x) + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (2R)

cos (R) + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 cos (R) + 2 ln (cos (R) + 1) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

csc (x) + cot (x) = −2 cos (x) + 2 ln (cos (x) + 1) + c1

Which simplifies to
y

csc (x) + cot (x) = −2 cos (x) + 2 ln (cos (x) + 1) + c1

Which gives

y = −2 cos (x) cot (x)− 2 cos (x) csc (x) + 2 ln (cos (x) + 1) cot (x) + c1 cot (x) + 2 ln (cos (x) + 1) csc (x) + c1 csc (x)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y+sin(2x)
sin(x)

dS
dR

= sin(2R)
cos(R)+1

R = x

S = y

csc (x) + cot (x)

Summary
The solution(s) found are the following

(1)y = −2 cos (x) cot (x)− 2 cos (x) csc (x) + 2 ln (cos (x) + 1) cot (x)
+ c1 cot (x) + 2 ln (cos (x) + 1) csc (x) + c1 csc (x)
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Figure 55: Slope field plot

Verification of solutions

y = −2 cos (x) cot (x)− 2 cos (x) csc (x) + 2 ln (cos (x) + 1) cot (x)
+ c1 cot (x) + 2 ln (cos (x) + 1) csc (x) + c1 csc (x)

Verified OK.

1.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(sin (x)) dy = (−y + sin (2x)) dx
(y − sin (2x)) dx+(sin (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − sin (2x)
N(x, y) = sin (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y − sin (2x))

= 1

And
∂N

∂x
= ∂

∂x
(sin (x))

= cos (x)
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= csc (x) ((1)− (cos (x)))
= csc (x)− cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
csc(x)−cot(x) dx

The result of integrating gives

µ = e− ln(sin(x))−ln(csc(x)+cot(x))

= 1
(csc (x) + cot (x)) sin (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(csc (x) + cot (x)) sin (x)(y − sin (2x))

= y − 2 sin (x) cos (x)
cos (x) + 1

And

N = µN

= 1
(csc (x) + cot (x)) sin (x)(sin (x))

= 1
csc (x) + cot (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

y − 2 sin (x) cos (x)
cos (x) + 1

)
+
(

1
csc (x) + cot (x)

)
dy
dx = 0

246



The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y − 2 sin (x) cos (x)

cos (x) + 1 dx

(3)φ = tan
(x
2

)
y + 4 cos

(x
2

)2
+ 2 ln

(
sec
(x
2

)2)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= tan

(x
2

)
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
csc(x)+cot(x) . Therefore equation (4) becomes

(5)1
csc (x) + cot (x) = tan

(x
2

)
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = tan
(x
2

)
y + 4 cos

(x
2

)2
+ 2 ln

(
sec
(x
2

)2)
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = tan
(x
2

)
y + 4 cos

(x
2

)2
+ 2 ln

(
sec
(x
2

)2)

The solution becomes

y = −
4 cos

(
x
2

)2 + 2 ln
(
sec
(
x
2

)2)− c1

tan
(
x
2

)
Summary
The solution(s) found are the following

(1)y = −
4 cos

(
x
2

)2 + 2 ln
(
sec
(
x
2

)2)− c1

tan
(
x
2

)

Figure 56: Slope field plot
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Verification of solutions

y = −
4 cos

(
x
2

)2 + 2 ln
(
sec
(
x
2

)2)− c1

tan
(
x
2

)
Verified OK.

1.19.4 Maple step by step solution

Let’s solve
y′ sin (x) + y = sin (2x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

sin(x) +
sin(2x)
sin(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

sin(x) =
sin(2x)
sin(x)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

sin(x)

)
= µ(x) sin(2x)

sin(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

sin(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

sin(x)

• Solve to find the integrating factor
µ(x) = cot (x)− csc (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) sin(2x)
sin(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) sin(2x)
sin(x) dx+ c1

• Solve for y

y =
∫ µ(x) sin(2x)

sin(x) dx+c1

µ(x)
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• Substitute µ(x) = cot (x)− csc (x)

y =
∫ (cot(x)−csc(x)) sin(2x)

sin(x) dx+c1

cot(x)−csc(x)

• Evaluate the integrals on the rhs
y = 2 cos(x)−2 ln(cos(x)+1)+c1

cot(x)−csc(x)

• Simplify
y = − csc (x) (2 cos (x)− 2 ln (cos (x) + 1) + c1) (cos (x) + 1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(sin(x)*diff(y(x),x)+y(x)=sin(2*x),y(x), singsol=all)� �

y(x) = csc (x) (−2 cos (x) + 2 ln (cos (x) + 1) + c1) (cos (x) + 1)

3 Solution by Mathematica
Time used: 0.288 (sec). Leaf size: 38� �
DSolve[Sin[x]*y'[x]+y[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → earctanh(cos(x))
(
−2
√

sin2(x) csc(x)
(
cos(x) + log

(
sec2

(x
2

)))
+ c1

)

250



1.20 problem 5(a)
1.20.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 251
1.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 253
1.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 257
1.20.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 262

Internal problem ID [3048]
Internal file name [OUTPUT/2540_Sunday_June_05_2022_03_18_45_AM_70471759/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 5(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

√
x2 + 1 y′ + y = 2x

1.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1√
x2 + 1

q(x) = 2x√
x2 + 1

Hence the ode is

y′ + y√
x2 + 1

= 2x√
x2 + 1
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The integrating factor µ is

µ = e
∫ 1√

x2+1
dx

=
√
x2 + 1 + x

The ode becomes

d
dx(µy) = (µ)

(
2x√
x2 + 1

)
d
dx

((√
x2 + 1 + x

)
y
)
=
(√

x2 + 1 + x
)( 2x√

x2 + 1

)
d
((√

x2 + 1 + x
)
y
)
=
(
2x
(√

x2 + 1 + x
)

√
x2 + 1

)
dx

Integrating gives(√
x2 + 1 + x

)
y =

∫ 2x
(√

x2 + 1 + x
)

√
x2 + 1

dx(√
x2 + 1 + x

)
y = x2 +

√
x2 + 1x− arcsinh (x) + c1

Dividing both sides by the integrating factor µ =
√
x2 + 1 + x results in

y = x2 +
√
x2 + 1x− arcsinh (x)√

x2 + 1 + x
+ c1√

x2 + 1 + x

which simplifies to

y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x

Summary
The solution(s) found are the following

(1)y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x
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Figure 57: Slope field plot

Verification of solutions

y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x

Verified OK.

1.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−2x+ y√
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 58: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x2 + 1 + x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x2+1+x

dy

Which results in

S =
(√

x2 + 1 + x
)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−2x+ y√
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
(

x√
x2 + 1

+ 1
)
y

Sy =
√
x2 + 1 + x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

2x
(√

x2 + 1 + x
)

√
x2 + 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

2R
(√

R2 + 1 +R
)

√
R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 +R
√
R2 + 1− arcsinh (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (√

x2 + 1 + x
)
y =

√
x2 + 1x+ x2 − arcsinh (x) + c1

Which simplifies to

(y − x)
√
x2 + 1− x2 + yx− c1 + arcsinh (x) = 0

Which gives

y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2x+y√
x2+1

dS
dR

=
2R

(√
R2+1+R

)
√
R2+1

R = x

S =
(√

x2 + 1 + x
)
y
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Summary
The solution(s) found are the following

(1)y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x

Figure 58: Slope field plot

Verification of solutions

y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x

Verified OK.

1.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (√
x2 + 1

)
dy = (2x− y) dx

(−2x+ y) dx+
(√

x2 + 1
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x+ y

N(x, y) =
√
x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y
(−2x+ y)

= 1

And
∂N

∂x
= ∂

∂x

(√
x2 + 1

)
= x√

x2 + 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1√

x2 + 1

(
(1)−

(
x√

x2 + 1

))
=

√
x2 + 1− x

x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ √

x2+1−x
x2+1 dx

The result of integrating gives

µ = earcsinh(x)−
ln

(
x2+1

)
2

= x√
x2 + 1

+ 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x√
x2 + 1

+ 1(−2x+ y)

= (−2x+ y)
(

x√
x2 + 1

+ 1
)

259



And

N = µN

= x√
x2 + 1

+ 1
(√

x2 + 1
)

=
√
x2 + 1 + x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(−2x+ y)
(

x√
x2 + 1

+ 1
))

+
(√

x2 + 1 + x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(−2x+ y)

(
x√

x2 + 1
+ 1
)
dx

(3)φ = (y − x)
√
x2 + 1− x2 + xy + arcsinh (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
x2 + 1 + x+ f ′(y)

But equation (2) says that ∂φ
∂y

=
√
x2 + 1 + x. Therefore equation (4) becomes

(5)
√
x2 + 1 + x =

√
x2 + 1 + x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y − x)
√
x2 + 1− x2 + xy + arcsinh (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y − x)
√
x2 + 1− x2 + xy + arcsinh (x)

The solution becomes

y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x

Summary
The solution(s) found are the following

(1)y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x

Figure 59: Slope field plot
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Verification of solutions

y =
√
x2 + 1x+ x2 − arcsinh (x) + c1√

x2 + 1 + x

Verified OK.

1.20.4 Maple step by step solution

Let’s solve
√
x2 + 1 y′ + y = 2x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y√

x2+1 +
2x√
x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y√

x2+1 = 2x√
x2+1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y√

x2+1

)
= 2µ(x)x√

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y√

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)√

x2+1

• Solve to find the integrating factor
µ(x) =

√
x2 + 1 + x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 2µ(x)x√
x2+1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ 2µ(x)x√
x2+1dx+ c1

• Solve for y

y =
∫ 2µ(x)x√

x2+1
dx+c1

µ(x)
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• Substitute µ(x) =
√
x2 + 1 + x

y =
∫ 2x

(√
x2+1+x

)
√

x2+1
dx+c1

√
x2+1+x

• Evaluate the integrals on the rhs

y =
√
x2+1x+x2−arcsinh(x)+c1√

x2+1+x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(sqrt(1+x^2)*diff(y(x),x)+y(x)=2*x,y(x), singsol=all)� �

y(x) = x2 + x
√
x2 + 1− arcsinh (x) + c1

x+
√
x2 + 1

3 Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 50� �
DSolve[Sqrt[1+x^2]*y'[x]+y[x]==2*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(√

x2 + 1− x
)(

x2 +
√
x2 + 1x+ log

(√
x2 + 1− x

)
+ c1

)
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1.21 problem 5(b)
1.21.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 264
1.21.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 266
1.21.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 270
1.21.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 275

Internal problem ID [3049]
Internal file name [OUTPUT/2541_Sunday_June_05_2022_03_18_47_AM_17618221/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 5(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

√
x2 + 1 y′ − y = 2

√
x2 + 1

1.21.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1√
x2 + 1

q(x) = 2

Hence the ode is

y′ − y√
x2 + 1

= 2
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The integrating factor µ is

µ = e
∫
− 1√

x2+1
dx

= 1√
x2 + 1 + x

The ode becomes

d
dx(µy) = (µ) (2)

d
dx

(
y√

x2 + 1 + x

)
=
(

1√
x2 + 1 + x

)
(2)

d
(

y√
x2 + 1 + x

)
=
(

2√
x2 + 1 + x

)
dx

Integrating gives

y√
x2 + 1 + x

=
∫ 2√

x2 + 1 + x
dx

y√
x2 + 1 + x

=
√
x2 + 1x+ arcsinh (x)− x2 + c1

Dividing both sides by the integrating factor µ = 1√
x2+1+x

results in

y =
(√

x2 + 1 + x
)(√

x2 + 1x+ arcsinh (x)− x2
)
+ c1

(√
x2 + 1 + x

)
which simplifies to

y = (arcsinh (x) + c1)
√
x2 + 1 + x(c1 + arcsinh (x) + 1)

Summary
The solution(s) found are the following

(1)y = (arcsinh (x) + c1)
√
x2 + 1 + x(c1 + arcsinh (x) + 1)
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Figure 60: Slope field plot

Verification of solutions

y = (arcsinh (x) + c1)
√
x2 + 1 + x(c1 + arcsinh (x) + 1)

Verified OK.

1.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y + 2
√
x2 + 1√

x2 + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 61: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) =

√
x2 + 1 + x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

x2 + 1 + x
dy

Which results in

S = y√
x2 + 1 + x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + 2
√
x2 + 1√

x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y(
−
√
x2 + 1− x

)√
x2 + 1

Sy =
1√

x2 + 1 + x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2√

x2 + 1 + x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2√

R2 + 1 +R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R
√
R2 + 1 + arcsinh (R)−R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x2 + 1 + x

=
√
x2 + 1x+ arcsinh (x)− x2 + c1

Which simplifies to
y√

x2 + 1 + x
=

√
x2 + 1x+ arcsinh (x)− x2 + c1

Which gives

y =
√
x2 + 1 arcsinh (x) + c1

√
x2 + 1 + arcsinh (x)x+ c1x+ x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+2
√
x2+1√

x2+1
dS
dR

= 2√
R2+1+R

R = x

S = y√
x2 + 1 + x

Summary
The solution(s) found are the following

(1)y =
√
x2 + 1 arcsinh (x) + c1

√
x2 + 1 + arcsinh (x)x+ c1x+ x
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Figure 61: Slope field plot

Verification of solutions

y =
√
x2 + 1 arcsinh (x) + c1

√
x2 + 1 + arcsinh (x)x+ c1x+ x

Verified OK.

1.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (√
x2 + 1

)
dy =

(
y + 2

√
x2 + 1

)
dx(

−y − 2
√
x2 + 1

)
dx+

(√
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y − 2
√
x2 + 1

N(x, y) =
√
x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y − 2

√
x2 + 1

)
= −1
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And
∂N

∂x
= ∂

∂x

(√
x2 + 1

)
= x√

x2 + 1
Since ∂M

∂y
6= ∂N

∂x
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1√

x2 + 1

(
(−1)−

(
x√

x2 + 1

))
= −

√
x2 + 1− x

x2 + 1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ −

√
x2+1−x
x2+1 dx

The result of integrating gives

µ = e− arcsinh(x)−
ln

(
x2+1

)
2

= 1(√
x2 + 1 + x

)√
x2 + 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1(√
x2 + 1 + x

)√
x2 + 1

(
−y − 2

√
x2 + 1

)
= − y + 2

√
x2 + 1(√

x2 + 1 + x
)√

x2 + 1
And

N = µN

= 1(√
x2 + 1 + x

)√
x2 + 1

(√
x2 + 1

)
= 1√

x2 + 1 + x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− y + 2
√
x2 + 1(√

x2 + 1 + x
)√

x2 + 1

)
+
(

1√
x2 + 1 + x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
− y + 2

√
x2 + 1(√

x2 + 1 + x
)√

x2 + 1
dx

(3)φ = (y − x)
√
x2 + 1 + x2 − xy − arcsinh (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
x2 + 1− x+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1√
x2+1+x

. Therefore equation (4) becomes

(5)1√
x2 + 1 + x

=
√
x2 + 1− x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y − x)
√
x2 + 1 + x2 − xy − arcsinh (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y − x)
√
x2 + 1 + x2 − xy − arcsinh (x)

The solution becomes

y =
√
x2 + 1x+ arcsinh (x)− x2 + c1√

x2 + 1− x

Summary
The solution(s) found are the following

(1)y =
√
x2 + 1x+ arcsinh (x)− x2 + c1√

x2 + 1− x

Figure 62: Slope field plot
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Verification of solutions

y =
√
x2 + 1x+ arcsinh (x)− x2 + c1√

x2 + 1− x

Verified OK.

1.21.4 Maple step by step solution

Let’s solve
√
x2 + 1 y′ − y = 2

√
x2 + 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2 + y√

x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y√

x2+1 = 2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − y√

x2+1

)
= 2µ(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y√

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = − µ(x)√

x2+1

• Solve to find the integrating factor
µ(x) = 1√

x2+1+x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
2µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
2µ(x) dx+ c1

• Solve for y

y =
∫
2µ(x)dx+c1

µ(x)
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• Substitute µ(x) = 1√
x2+1+x

y =
(√

x2 + 1 + x
) (∫ 2√

x2+1+x
dx+ c1

)
• Evaluate the integrals on the rhs

y =
(√

x2 + 1 + x
) (√

x2 + 1x+ arcsinh(x)− x2 + c1
)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(sqrt(1+x^2)*diff(y(x),x)-y(x)=2*sqrt(1+x^2),y(x), singsol=all)� �

y(x) =
(
x
√
x2 + 1 + arcsinh (x)− x2 + c1

)(
x+

√
x2 + 1

)
3 Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 55� �
DSolve[Sqrt[1+x^2]*y'[x]-y[x]==2*Sqrt[1+x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
x2 −

√
x2 + 1x+ log

(√
x2 + 1− x

)
− c1

x−
√
x2 + 1
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1.22 problem 5(c)
1.22.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 277
1.22.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 279
1.22.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 283
1.22.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 287

Internal problem ID [3050]
Internal file name [OUTPUT/2542_Sunday_June_05_2022_03_18_49_AM_37191220/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 5(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

√
(x+ a) (x+ b) (2y′ − 3) + y = 0

1.22.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
2
√
(x+ a) (x+ b)

q(x) = 3
2

Hence the ode is

y′ + y

2
√
(x+ a) (x+ b)

= 3
2
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The integrating factor µ is

µ = e
∫ 1

2
√

(x+a)(x+b)
dx

=e
√

(x+b)2+(−b+a)(x+b)+
(−b+a) ln

(
b
2+a

2+x+
√

(x+b)2+(−b+a)(x+b)
)

2
2a−2b −

√
(x+a)2+(b−a)(x+a)+

(b−a) ln
(

b
2+a

2+x+
√

(x+a)2+(b−a)(x+a)
)

2
2(−b+a)

Which simplifies to

µ =

√
2
√

a+ b+ 2x+ 2
√
(x+ a) (x+ b)

2

The ode becomes
d
dx(µy) = (µ)

(
3
2

)
d
dx

√
2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b) y
2

 =

√
2
√
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

2

(3
2

)

d

√
2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b) y
2

 =

3
√
2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b)
4

 dx

Integrating gives
√
2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b) y
2 =

∫ 3
√
2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b)
4 dx

√
2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b) y
2 =

∫ 3
√
2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b)
4 dx+ c1

Dividing both sides by the integrating factor µ =
√
2
√

a+b+2x+2
√

(x+a)(x+b)
2 results in

y =

√
2
(∫ 3

√
2
√

a+b+2x+2
√

(x+a)(x+b)
4 dx

)
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b)
+ c1

√
2√

a+ b+ 2x+ 2
√
(x+ a) (x+ b)

which simplifies to

y =
2
√
2 c1 + 3

(∫ √
a+ b+ 2x+ 2

√
(x+ a) (x+ b)dx

)
2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b)
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Summary
The solution(s) found are the following

(1)y =
2
√
2 c1 + 3

(∫ √
a+ b+ 2x+ 2

√
(x+ a) (x+ b)dx

)
2
√

a+ b+ 2x+ 2
√
(x+ a) (x+ b)

Verification of solutions

y =
2
√
2 c1 + 3

(∫ √
a+ b+ 2x+ 2

√
(x+ a) (x+ b)dx

)
2
√

a+ b+ 2x+ 2
√
(x+ a) (x+ b)

Verified OK.

1.22.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 3
√
(x+ a) (x+ b)− y

2
√
(x+ a) (x+ b)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 64: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 2√
2a+ 2b+ 4x+ 4

√
x2 + (a+ b)x+ ab

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2√
2a+2b+4x+4

√
x2+(a+b)x+ab

dy

Which results in

S =

√
2a+ 2b+ 4x+ 4

√
x2 + (a+ b)x+ ab y

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 3
√
(x+ a) (x+ b)− y

2
√
(x+ a) (x+ b)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
y
(
a+ b+ 2x+ 2

√
x+ a

√
x+ b

)
2
√

2a+ 2b+ 4x+ 4
√
x+ a

√
x+ b

√
x+ a

√
x+ b

Sy =
√

2a+ 2b+ 4x+ 4
√
x+ a

√
x+ b

2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

3
(√

x+b
(
a+b+2x+ 2y

3

)√
x+a

2 +
(
a
6 +

b
6 +

x
3

)
y + (x+ a) (x+ b)

)√
(x+ a) (x+ b)− y

(√
x+b (2x+b+a)

√
x+a

2 + (x+ a) (x+ b)
)

√
2a+ 2b+ 4x+ 4

√
x+ a

√
x+ b

√
x+ a

√
x+ b

√
(x+ a) (x+ b)

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3

√
2a+ 2b+ 4R + 4

√
R + a

√
R + b

4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 3

√
2a+ 2b+ 4R + 4

√
R + a

√
R + b

4 dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in√

2a+ 2b+ 4x+ 4
√
x+ a

√
x+ b y

2 =
∫ 3

√
2a+ 2b+ 4x+ 4

√
x+ a

√
x+ b

4 dx+ c1

Which simplifies to√
2a+ 2b+ 4x+ 4

√
x+ a

√
x+ b y

2 =
∫ 3

√
2a+ 2b+ 4x+ 4

√
x+ a

√
x+ b

4 dx+ c1

Which gives

y =
2
(∫ 3

√
2a+2b+4x+4

√
x+a

√
x+b

4 dx
)
+ 2c1√

2a+ 2b+ 4x+ 4
√
x+ a

√
x+ b

Summary
The solution(s) found are the following

(1)y =
2
(∫ 3

√
2a+2b+4x+4

√
x+a

√
x+b

4 dx
)
+ 2c1√

2a+ 2b+ 4x+ 4
√
x+ a

√
x+ b

Verification of solutions

y =
2
(∫ 3

√
2a+2b+4x+4

√
x+a

√
x+b

4 dx
)
+ 2c1√

2a+ 2b+ 4x+ 4
√
x+ a

√
x+ b

Verified OK.
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1.22.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2
√

(x+ a) (x+ b)
)
dy =

(
3
√

(x+ a) (x+ b)− y
)
dx(

−3
√

(x+ a) (x+ b) + y
)
dx+

(
2
√

(x+ a) (x+ b)
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3
√

(x+ a) (x+ b) + y

N(x, y) = 2
√
(x+ a) (x+ b)
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−3
√

(x+ a) (x+ b) + y
)

= 1

And

∂N

∂x
= ∂

∂x

(
2
√

(x+ a) (x+ b)
)

= 2x+ b+ a√
(x+ a) (x+ b)

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2
√

(x+ a) (x+ b)

(
(1)−

(
2x+ b+ a√
(x+ a) (x+ b)

))

=
√

(x+ a) (x+ b)− 2x− b− a

2 (x+ a) (x+ b)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ √

(x+a)(x+b)−2x−b−a
2(x+a)(x+b) dx

The result of integrating gives

µ = e

√
(x+b)2+(−b+a)(x+b)+

(−b+a) ln
(

b
2+a

2+x+
√

(x+b)2+(−b+a)(x+b)
)

2
2a−2b −

√
(x+a)2+(b−a)(x+a)+

(b−a) ln
(

b
2+a

2+x+
√

(x+a)2+(b−a)(x+a)
)

2
2(−b+a) − ln((x+a)(x+b))

2

=

√
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

√
2

2
√

(x+ a) (x+ b)
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

=

√
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

√
2

2
√

(x+ a) (x+ b)

(
−3
√
(x+ a) (x+ b) + y

)

=

(
−3
√
(x+ a) (x+ b) + y

)√
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

√
2

2
√
(x+ a) (x+ b)

And

N = µN

=

√
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

√
2

2
√

(x+ a) (x+ b)

(
2
√
(x+ a) (x+ b)

)
=

√
2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(
−3
√
(x+ a) (x+ b) + y

)√
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

√
2

2
√

(x+ a) (x+ b)

+
(√

2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b)
)

dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ (
−3
√
(x+ a) (x+ b) + y

)√
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

√
2

2
√
(x+ a) (x+ b)

dx
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φ =
∫ x

(
−3
√

(_a+ a) (_a+ b) + y
)√

a+ b+ 2_a+ 2
√

(_a+ a) (_a+ b)
√
2

2
√
(_a+ a) (_a+ b)

d_a

+ f(y)
(3)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
2
√
a+ b+ 2x+ 2

√
(x+ a) (x+ b) + f ′(y)

But equation (2) says that ∂φ
∂y

=
√
2
√

a+ b+ 2x+ 2
√
(x+ a) (x+ b). Therefore equa-

tion (4) becomes

√
2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b) =
√
2
√

a+ b+ 2x+ 2
√

(x+ a) (x+ b) + f ′(y)
(5)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
∫ x

(
−3
√

(_a+ a) (_a+ b) + y
)√

a+ b+ 2_a+ 2
√
(_a+ a) (_a+ b)

√
2

2
√
(_a+ a) (_a+ b)

d_a

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
∫ x

(
−3
√

(_a+ a) (_a+ b) + y
)√

a+ b+ 2_a+ 2
√

(_a+ a) (_a+ b)
√
2

2
√

(_a+ a) (_a+ b)
d_a
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Summary
The solution(s) found are the following

∫ x

(
−3
√

(_a+ a) (_a+ b) + y
)√

a+ b+ 2_a+ 2
√

(_a+ a) (_a+ b)
√
2

2
√
(_a+ a) (_a+ b)

d_a = c1

(1)
Verification of solutions

∫ x

(
−3
√

(_a+ a) (_a+ b) + y
)√

a+ b+ 2_a+ 2
√

(_a+ a) (_a+ b)
√
2

2
√
(_a+ a) (_a+ b)

d_a = c1

Verified OK.

1.22.4 Maple step by step solution

Let’s solve√
(x+ a) (x+ b) (2y′ − 3) + y = 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 3

2 −
y

2
√

(x+a)(x+b)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

2
√

(x+a)(x+b) =
3
2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

2
√

(x+a)(x+b)

)
= 3µ(x)

2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

2
√

(x+a)(x+b)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

2
√

(x+a)(x+b)

• Solve to find the integrating factor

µ(x) =
√

2a+ 2b+ 4x+ 4
√

(x+ a) (x+ b)

• Integrate both sides with respect to x
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∫ (
d
dx
(µ(x) y)

)
dx =

∫ 3µ(x)
2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ 3µ(x)
2 dx+ c1

• Solve for y

y =
∫ 3µ(x)

2 dx+c1
µ(x)

• Substitute µ(x) =
√

2a+ 2b+ 4x+ 4
√

(x+ a) (x+ b)

y =
∫ 3

√
2a+2b+4x+4

√
(x+a)(x+b)

2 dx+c1√
2a+2b+4x+4

√
(x+a)(x+b)

• Simplify

y =
3
(∫ √

2a+2b+4x+4
√

(x+a)(x+b)dx
)
+2c1

2
√

2a+2b+4x+4
√

(x+a)(x+b)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 60� �
dsolve(sqrt((x+a)*(x+b))*(2*diff(y(x),x)-3)+y(x)=0,y(x), singsol=all)� �

y(x) =
3
(∫ √

2a+ 2b+ 4x+ 4
√

(x+ a) (x+ b)dx
)
+ 4c1

2
√

2a+ 2b+ 4x+ 4
√
(x+ a) (x+ b)
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3 Solution by Mathematica
Time used: 0.433 (sec). Leaf size: 115� �
DSolve[Sqrt[(x+a)*(x+b)]*(2*y'[x]-3)+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ exp

−

√
a+ x

√
b+ xarctanh

(√
b+x√
a+x

)
√

(a+ x)(b+ x)

∫ x

1

3
2 exp

arctanh
(√

b+K[1]√
a+K[1]

)√
a+K[1]

√
b+K[1]√

(a+K[1])(b+K[1])

 dK[1]

+ c1
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1.23 problem 5(d)
1.23.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 290
1.23.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 292
1.23.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 295
1.23.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 300

Internal problem ID [3051]
Internal file name [OUTPUT/2543_Sunday_June_05_2022_03_18_52_AM_9840611/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60
Problem number: 5(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

√
(x+ a) (x+ b) y′ + y =

√
x+ a−

√
x+ b

1.23.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1√
(x+ a) (x+ b)

q(x) =
√
x+ a−

√
x+ b√

(x+ a) (x+ b)

Hence the ode is

y′ + y√
(x+ a) (x+ b)

=
√
x+ a−

√
x+ b√

(x+ a) (x+ b)
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The integrating factor µ is

µ = e
∫ 1√

(x+a)(x+b)
dx

=e
√

(x+b)2+(−b+a)(x+b)+
(−b+a) ln

(
b
2+a

2+x+
√

(x+b)2+(−b+a)(x+b)
)

2
−b+a

−
√

(x+a)2+(b−a)(x+a)+
(b−a) ln

(
b
2+a

2+x+
√

(x+a)2+(b−a)(x+a)
)

2
−b+a

Which simplifies to

µ = b

2 + a

2 + x+
√

(x+ a) (x+ b)

The ode becomes

d
dx(µy) = (µ)

(√
x+ a−

√
x+ b√

(x+ a) (x+ b)

)
d
dx

((
b

2 + a

2 + x+
√

(x+ a) (x+ b)
)
y

)
=
(
b

2 + a

2 + x+
√
(x+ a) (x+ b)

)(√
x+ a−

√
x+ b√

(x+ a) (x+ b)

)

d
((

b

2 + a

2 + x+
√

(x+ a) (x+ b)
)
y

)
=

(√x+ a−
√
x+ b

) (
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

)
2
√

(x+ a) (x+ b)

 dx

Integrating gives

(
b

2 + a

2 + x+
√

(x+ a) (x+ b)
)
y =

∫ (√
x+ a−

√
x+ b

) (
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

)
2
√

(x+ a) (x+ b)
dx(

b

2 + a

2 + x+
√

(x+ a) (x+ b)
)
y = 2(x+ a)

3
2

3 − 2(x+ b)
3
2

3 +
√
x+ a (x+ b) (2x− b+ 3a)

3
√

(x+ a) (x+ b)
−

√
x+ b (x+ a) (2x− a+ 3b)

3
√
(x+ a) (x+ b)

+ c1

Dividing both sides by the integrating factor µ = b
2 +

a
2 + x+

√
(x+ a) (x+ b) results

in

y =
4(x+a)

3
2

3 − 4(x+b)
3
2

3 + 2
√
x+a (x+b)(2x−b+3a)
3
√

(x+a)(x+b) − 2
√
x+b (x+a)(2x−a+3b)
3
√

(x+a)(x+b)

a+ b+ 2x+ 2
√

(x+ a) (x+ b)
+ 2c1

a+ b+ 2x+ 2
√
(x+ a) (x+ b)

which simplifies to

y =
2
(
(2a+ 2x)

√
x+ a+ (−2b− 2x)

√
x+ b+ 3c1

)√
(x+ a) (x+ b) + 6(x+ b)

(
− b

3 + a+ 2x
3

)√
x+ a+ 2

√
x+ b (x+ a) (−2x+ a− 3b)√

(x+ a) (x+ b)
(
3a+ 3b+ 6x+ 6

√
(x+ a) (x+ b)

)
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Summary
The solution(s) found are the following

(1)y

=
2
(
(2a+ 2x)

√
x+ a+ (−2b− 2x)

√
x+ b+ 3c1

)√
(x+ a) (x+ b) + 6(x+ b)

(
− b

3 + a+ 2x
3

)√
x+ a+ 2

√
x+ b (x+ a) (−2x+ a− 3b)√

(x+ a) (x+ b)
(
3a+ 3b+ 6x+ 6

√
(x+ a) (x+ b)

)
Verification of solutions
y

=
2
(
(2a+ 2x)

√
x+ a+ (−2b− 2x)

√
x+ b+ 3c1

)√
(x+ a) (x+ b) + 6(x+ b)

(
− b

3 + a+ 2x
3

)√
x+ a+ 2

√
x+ b (x+ a) (−2x+ a− 3b)√

(x+ a) (x+ b)
(
3a+ 3b+ 6x+ 6

√
(x+ a) (x+ b)

)
Verified OK.

1.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y +
√
x+ a−

√
x+ b√

(x+ a) (x+ b)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 67: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
a
2 +

b
2 + x+

√
x2 + (a+ b)x+ ab

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
a
2+

b
2+x+

√
x2+(a+b)x+ab

dy

Which results in

S =
(
a

2 + b

2 + x+
√
x2 + (a+ b)x+ ab

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y +
√
x+ a−

√
x+ b√

(x+ a) (x+ b)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
(
a+ b+ 2x+ 2

√
x+ a

√
x+ b

)
y

2
√
x+ a

√
x+ b

Sy =
a

2 + b

2 + x+
√
x+ a

√
x+ b

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

(
a+ b+ 2x+ 2

√
x+ a

√
x+ b

) (
y√

x+a
√
x+b

+ −y+
√
x+a−

√
x+b√

(x+a)(x+b)

)
2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=
(
2
√
R + a

√
R + b+ a+ b+ 2R

) (√
R + a−

√
R + b

)
2
√
R + a

√
R + b
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
√
R + b a−

√
R + b b+

√
R + a a−

√
R + a b+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in(
a+ b+ 2x+ 2

√
x+ a

√
x+ b

)
y

2 =
√
x+ b a−

√
x+ b b+

√
x+ a a−

√
x+ a b+ c1

Which simplifies to(
y
√
x+ b− a+ b

)√
x+ a+ (b− a)

√
x+ b+ y(2x+ b+ a)

2 − c1 = 0

Which gives

y = 2
√
x+ b a− 2

√
x+ b b+ 2

√
x+ a a− 2

√
x+ a b+ 2c1

a+ b+ 2x+ 2
√
x+ a

√
x+ b

Summary
The solution(s) found are the following

(1)y = 2
√
x+ b a− 2

√
x+ b b+ 2

√
x+ a a− 2

√
x+ a b+ 2c1

a+ b+ 2x+ 2
√
x+ a

√
x+ b

Verification of solutions

y = 2
√
x+ b a− 2

√
x+ b b+ 2

√
x+ a a− 2

√
x+ a b+ 2c1

a+ b+ 2x+ 2
√
x+ a

√
x+ b

Verified OK.

1.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (√
(x+ a) (x+ b)

)
dy =

(
−y +

√
x+ a−

√
x+ b

)
dx(

y −
√
x+ a+

√
x+ b

)
dx+

(√
(x+ a) (x+ b)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y −
√
x+ a+

√
x+ b

N(x, y) =
√

(x+ a) (x+ b)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y −

√
x+ a+

√
x+ b

)
= 1
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And

∂N

∂x
= ∂

∂x

(√
(x+ a) (x+ b)

)
= 2x+ b+ a

2
√

(x+ a) (x+ b)

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1√

(x+ a) (x+ b)

(
(1)−

(
2x+ b+ a

2
√
(x+ a) (x+ b)

))

= 2
√

(x+ a) (x+ b)− 2x− b− a

2 (x+ a) (x+ b)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 2

√
(x+a)(x+b)−2x−b−a

2(x+a)(x+b) dx

The result of integrating gives

µ = e

√
(x+b)2+(−b+a)(x+b)+

(−b+a) ln
(

b
2+a

2+x+
√

(x+b)2+(−b+a)(x+b)
)

2
−b+a

−
√

(x+a)2+(b−a)(x+a)+
(b−a) ln

(
b
2+a

2+x+
√

(x+a)2+(b−a)(x+a)
)

2
−b+a

− ln((x+a)(x+b))
2

= a+ b+ 2x+ 2
√

(x+ a) (x+ b)
2
√

(x+ a) (x+ b)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= a+ b+ 2x+ 2
√

(x+ a) (x+ b)
2
√

(x+ a) (x+ b)

(
y −

√
x+ a+

√
x+ b

)

=

(
y −

√
x+ a+

√
x+ b

) (
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

)
2
√
(x+ a) (x+ b)
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And

N = µN

= a+ b+ 2x+ 2
√
(x+ a) (x+ b)

2
√

(x+ a) (x+ b)

(√
(x+ a) (x+ b)

)
= b

2 + a

2 + x+
√

(x+ a) (x+ b)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(y −√

x+ a+
√
x+ b

) (
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

)
2
√

(x+ a) (x+ b)

+
(
b

2 + a

2 + x+
√
(x+ a) (x+ b)

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ (
y −

√
x+ a+

√
x+ b

) (
a+ b+ 2x+ 2

√
(x+ a) (x+ b)

)
2
√
(x+ a) (x+ b)

dx

(3)φ =

−
(
(2a+ 2x)

√
x+ a+ (−2b− 2x)

√
x+ b− 3xy

)√
(x+ a) (x+ b) + 3(x+ b)

(
− b

3 + a+ 2x
3

)√
x+ a+

(√
x+ b (−2x+ a− 3b)− 3(x+ b) y

)
(x+ a)

3
√
(x+ a) (x+ b)

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

−3
√

(x+ a) (x+ b)x+ (−3x− 3b) (x+ a)
3
√
(x+ a) (x+ b)

+ f ′(y)

=
√

(x+ a) (x+ b)x+ (x+ a) (x+ b)√
(x+ a) (x+ b)

+ f ′(y)
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But equation (2) says that ∂φ
∂y

= b
2 +

a
2 + x+

√
(x+ a) (x+ b). Therefore equation (4)

becomes

(5)b

2 + a

2 + x+
√

(x+ a) (x+ b) =
√
(x+ a) (x+ b)x+ (x+ a) (x+ b)√

(x+ a) (x+ b)
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = a

2 + b

2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
a

2 + b

2

)
dy

f(y) =
(
a

2 + b

2

)
y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ =

−
(
(2a+ 2x)

√
x+ a+ (−2b− 2x)

√
x+ b− 3xy

)√
(x+ a) (x+ b) + 3(x+ b)

(
− b

3 + a+ 2x
3

)√
x+ a+

(√
x+ b (−2x+ a− 3b)− 3(x+ b) y

)
(x+ a)

3
√

(x+ a) (x+ b)

+
(
a

2 + b

2

)
y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =

−
(
(2a+ 2x)

√
x+ a+ (−2b− 2x)

√
x+ b− 3xy

)√
(x+ a) (x+ b) + 3(x+ b)

(
− b

3 + a+ 2x
3

)√
x+ a+

(√
x+ b (−2x+ a− 3b)− 3(x+ b) y

)
(x+ a)

3
√

(x+ a) (x+ b)

+
(
a

2 + b

2

)
y

The solution becomes

y

=
2
√
x+b a2

3 − 2
√
x+ b ba+ 2

√
x+ a ab− 2

√
x+b ax
3 + 2

√
x+ a ax+ 4

√
(x+a)(x+b)

√
x+a a

3 − 2
√
x+a b2

3 − 2
√
x+ b bx+ 2

√
x+a bx
3 − 4

√
(x+a)(x+b)

√
x+b b

3 − 4
√
x+b x2

3 + 4
√
x+a x2

3 − 4
√

(x+a)(x+b)
√
x+b x

3 + 4
√

(x+a)(x+b)
√
x+a x

3 + 2
√

(x+ a) (x+ b) c1√
(x+ a) (x+ b) a+

√
(x+ a) (x+ b) b+ 2

√
(x+ a) (x+ b)x+ 2ab+ 2ax+ 2bx+ 2x2
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Summary
The solution(s) found are the following

(1)y

=
2
√
x+b a2

3 − 2
√
x+ b ba+ 2

√
x+ a ab− 2

√
x+b ax
3 + 2

√
x+ a ax+ 4

√
(x+a)(x+b)

√
x+a a

3 − 2
√
x+a b2

3 − 2
√
x+ b bx+ 2

√
x+a bx
3 − 4

√
(x+a)(x+b)

√
x+b b

3 − 4
√
x+b x2

3 + 4
√
x+a x2

3 − 4
√

(x+a)(x+b)
√
x+b x

3 + 4
√

(x+a)(x+b)
√
x+a x

3 + 2
√

(x+ a) (x+ b) c1√
(x+ a) (x+ b) a+

√
(x+ a) (x+ b) b+ 2

√
(x+ a) (x+ b)x+ 2ab+ 2ax+ 2bx+ 2x2

Verification of solutions
y

=
2
√
x+b a2

3 − 2
√
x+ b ba+ 2

√
x+ a ab− 2

√
x+b ax
3 + 2

√
x+ a ax+ 4

√
(x+a)(x+b)

√
x+a a

3 − 2
√
x+a b2

3 − 2
√
x+ b bx+ 2

√
x+a bx
3 − 4

√
(x+a)(x+b)

√
x+b b

3 − 4
√
x+b x2

3 + 4
√
x+a x2

3 − 4
√

(x+a)(x+b)
√
x+b x

3 + 4
√

(x+a)(x+b)
√
x+a x

3 + 2
√

(x+ a) (x+ b) c1√
(x+ a) (x+ b) a+

√
(x+ a) (x+ b) b+ 2

√
(x+ a) (x+ b)x+ 2ab+ 2ax+ 2bx+ 2x2

Verified OK.

1.23.4 Maple step by step solution

Let’s solve√
(x+ a) (x+ b) y′ + y =

√
x+ a−

√
x+ b

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = − y√
(x+a)(x+b) +

√
x+a−

√
x+b√

(x+a)(x+b)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y√
(x+a)(x+b) =

√
x+a−

√
x+b√

(x+a)(x+b)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y√

(x+a)(x+b)

)
= µ(x)

(√
x+a−

√
x+b

)√
(x+a)(x+b)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y√

(x+a)(x+b)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)√

(x+a)(x+b)

• Solve to find the integrating factor
µ(x) = a+ b+ 2x+ 2

√
(x+ a) (x+ b)

• Integrate both sides with respect to x
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∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
(√

x+a−
√
x+b

)√
(x+a)(x+b) dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ µ(x)

(√
x+a−

√
x+b

)√
(x+a)(x+b) dx+ c1

• Solve for y

y =
∫ µ(x)

(√
x+a−

√
x+b

)√
(x+a)(x+b)

dx+c1

µ(x)

• Substitute µ(x) = a+ b+ 2x+ 2
√
(x+ a) (x+ b)

y =
∫ (√

x+a−
√
x+b

)(
a+b+2x+2

√
(x+a)(x+b)

)
√

(x+a)(x+b)
dx+c1

a+b+2x+2
√

(x+a)(x+b)

• Evaluate the integrals on the rhs

y =
4(x+a)

3
2

3 − 4(x+b)
3
2

3 + 2
√
x+a (x+b)(2x−b+3a)
3
√

(x+a)(x+b)
− 2

√
x+b (x+a)(2x−a+3b)
3
√

(x+a)(x+b)
+c1

a+b+2x+2
√

(x+a)(x+b)

• Simplify

y =
2
((

(2a+2x)
√
x+a+(−2b−2x)

√
x+b+ 3c1

2

)√
(x+a)(x+b)+3(x+b)

(
− b

3+a+ 2x
3

)√
x+a+

√
x+b (x+a)(−2x+a−3b)

)
√

(x+a)(x+b)
(
3a+3b+6x+6

√
(x+a)(x+b)

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 114� �
dsolve(sqrt((x+a)*(x+b))*diff(y(x),x)+y(x)=sqrt(x+a)-sqrt(x+b),y(x), singsol=all)� �
y(x)

=
2
(
(2a+ 2x)

√
x+ a+ (−2b− 2x)

√
x+ b+ 3c1

)√
(x+ a) (x+ b) + 6

(
− b

3 + a+ 2x
3

)
(x+ b)

√
x+ a+ 2

√
x+ b (x+ a) (−2x+ a− 3b)√

(x+ a) (x+ b)
(
3a+ 3b+ 6x+ 6

√
(x+ a) (x+ b)

)
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3 Solution by Mathematica
Time used: 2.411 (sec). Leaf size: 145� �
DSolve[Sqrt[(x+a)*(x+b)]*y'[x]+y[x]==Sqrt[x+a]-Sqrt[x+b],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ exp

−
2
√
a+ x

√
b+ xarctanh

(√
b+x√
a+x

)
√

(a+ x)(b+ x)



∫ x

1

exp
(

2arctanh
(√

b+K[1]√
a+K[1]

)√
a+K[1]

√
b+K[1]√

(a+K[1])(b+K[1])

)(√
a+K[1]−

√
b+K[1]

)
√

(a+K[1])(b+K[1])
dK[1]

+ c1
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