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Internal problem ID [3029]
Internal file name [OUTPUT/2521_Sunday_June_05_2022_03_18_01_AM_48492365/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 1(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

yy' =z
1.1.1 Solving as separable ode
In canonical form the ODE is
y =F(z,y)
= f(2)9(v)
_*
(

Where f(z) = z and g(y) = i Integrating both sides gives

dy = xdx

< || =



Which results in

Summary

The solution(s) found are the following

Yy =\12?+ 2
y=—Vr2+2¢
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Figure 1: Slope field plot



Verification of solutions

y=Va? +2
Verified OK.
y=—Va+2
Verified OK.
1.1.2 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(z) z on the above ode results in new ode in u(z)
u(z) z(v'(z) z + u(z)) ==
In canonical form the ODE is

v = F(z,u)
= f(2)g(u)
u?—1

uxr

Where f(z) = —21 and g(u) = “-1. Integrating both sides gives

u

[y [ Lo
u -2 x

In(u—1) +1n(u+l)
2 2

=—In(z)+c
The above can be written as

(%) (In(u—1)+1n (u+1)) = —In (z) + 25
In(u—1)+In(u+1)=(2)(—In(x)+ 2¢)

= —21In(z) + 4cy

Raising both side to exponential gives

e1n('u,—1)+ln(u+1) —2In(z)+2c2

=€



Which simplifies to

2c
2 _ 2
Tz
The solution is
2 _Cs
u(z)" —1= 2

v o_a
2 2
y? _C3
2 2

Which simplifies to

—(-y+2)(y+2z)=cs

Summary
The solution(s) found are the following

—(-y+2)(y+2)=cs
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Figure 2: Slope field plot



Verification of solutions

—(-y+2)(y+2z)=cs
Verified OK.

1.1.3 Solving as differentialType ode
Writing the ode as

(1)
Which becomes

(y) dy = (z) dx (2)

Hence (2) becomes

(y)dy = d<%2)

Integrating both sides gives gives these solutions

y=vz2+2+c
y=—vVz2+2+c

Summary
The solution(s) found are the following

y=Vz2+2c+c1 (1)
y=—Vvz*+2a+a (2)
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Figure 3: Slope field plot

Verification of solutions

y=\55135+cl
Verified OK.
y=—w@3155+q
Verified OK.

1.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y ==
y
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
e+ w(ny — &) — W&y —w€ —wyn =0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7



Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~/ bf(@)de—h(z)
9(z)

f(q;)e_ f bf(z)dz—h(z)
9(z)

polynomial type ode

/a1 z+b1y+c1
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—azcs

a1b2—agby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

e/ (=D f@)dzyn

Reduced Riccati

Y = fi(z)y + folz) y?

e J frdz

The above table shows that

K| =

£(z,y) =
n(z,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the




canonical coordinates, where S(R). Since n = 0 then in this special case
R=y

S is found from

5!
I
.
8

Il
——

8= = =
IS
5

Which results in

1.2

S=%

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S,
dR R, +w(z,y)R,

(2)

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

x
w(z,y) = —
(@.9) =7

Evaluating all the partial derivatives gives

R, =0
R, =1
S, =1z
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

R 2A

iR (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
d_R_R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

10



integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) =

2

R—-i-c
9 1

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

Which simplifies to

8

.'172

2

Y
9 +c

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’
dy _ =z ds __
dz Y dR R
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Summary
The solution(s) found are the following
2 2
Y
— =4 1
7 =3 (1)
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Figure 4: Slope field plot

Verification of solutions

Verified OK.

1.1.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 04d
—_— ——y =
Oxr Oydx 0 (B)

12



Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(y) dy = (z) dz
(—z)dz+(y)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —zx
N(z,y) =y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM_ o
dy Oy
=0
And
ON 0
or a(y)

13



Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—x—M (1)
¢ _

=N @)

Integrating (1) w.r.t. = gives

%dx:/de
or

op .
%dx—/—xdx

2

6= —5 + 1) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99 _ :
a—y—0+f(y) (4)

But equation (2) says that g—‘z = y. Therefore equation (4) becomes

y=0+f(y) (5)

Solving equation (5) for f’'(y) gives

Integrating the above w.r.t y gives

[rwa=[waw

2

f(y)=%+01

14



Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
22 P
= —_—— _— + C
b=—g5 Ty ta
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining c¢; and ¢, constants into new constant c; gives the solution as

Cl = —

| 8,

y?
+2

Summary
The solution(s) found are the following
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Figure 5: Slope field plot

Verification of solutions

+

.172
— =C
2

vy
2
Verified OK.
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1.1.6 Maple step by step solution

Let’s solve

v ==z
° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to x
[yyde = [zdz + ¢
° Evaluate integral
2 z2
=% ta

° Solve for y

{y=Va2+2c,y = —Vz% + 21}

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

Ldsolve(diff(y(x),x)*y(x)=x,y(x), singsol=all)

y(x) =22+
y(x) =—vVal+a

16



v/ Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 35

kDSolve [y' [x]*y[x]==x,y[x],x,IncludeSingularSolutions -> True]

y(z) = =22+ 201
y(x) = V2?4 2¢;

17



1.2 problem 1(b)

1.2.1 Solving aslinearode . . . . . .. ... .. ... ... 18]
1.2.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 201
1.2.3 Solvingasexactode . . ... ... .. ... ... ... ... . 27
1.2.4 Maple step by step solution . . . . ... ... ... ... 28]

Internal problem ID [3030]
Internal file name [OUTPUT/2522_Sunday_June_05_2022_03_18_03_AM_29034540/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 1(b).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, ~class A~]]

y —y=2a°

1.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here

p(z) = -1

q(z) = 2°
Hence the ode is

y —y=2a’
The integrating factor u is

p = el 1de

—e

18



1)

y=—2°—322— 62 — 6+ ce”
y=—1—322 — 62— 6+ c€”

e~~~ ———— ————————~—— ~—

—— T T T T T T T T T T T e S e |

////// —c——— SN N A ./ N I

e %y = —(:c3 + 32% + 62 + 6) e+
y=—e"(2°+32° + 62 +6)e " +cie”

Dividing both sides by the integrating factor u = e~* results in

The solution(s) found are the following

which simplifies to
Summary

The ode becomes
Integrating gives
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Figure 6: Slope field plot
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Verification of solutions

y=—1—322 — 62 — 6+ ce”
Verified OK.

1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y =2 +y
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fx) - wzé.y - wx§ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

20



Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

21



canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S=/—dy

n

1

S=e"%y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =z"+y

Evaluating all the partial derivatives gives

R, =1
R,=0

Sy =—e "%y
Sy=e"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 3,z
JR-Te (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

E—Re

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

22



integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=—(R*+3R*+6R+6)e "+ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ety = —(333 + 322 + 6z + 6) e+
Which simplifies to
(£°+32° +6z+y+6)e " —c;=0
Which gives
y=—(2’e"+3e "2’ +6re "+ 66" —c1)€”

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical i ) .
. . . ) ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy — 43 dS _ p3.-R
=Tty Iz = R’e

ViNA ittt VN e A p A

WNAP A [N S DD D

WNAr Attt VNAdsor g fffp A
i Ny

—s— > _7 A

pu it SUR) e e e p o e

VA2 P22 08 VN oo r ffpf A A

NS LA N s

R INaG R N e bt

R Sl A A R=z LN S AP

2 I i 1 AN A A
IS NS S=e"y | N A A A
PEYNNNN~ P VN—foe g AR p A A
LL&\.%\\/’ff N e R

IR VN1t VN T A A

VLUV AV AN \N—eer fff PP A

Y NN N IEAAAAAse

VRE VY v vyt VN A A S

Summary
The solution(s) found are the following
— 3 .— —x,.2 —x —z x
y=—(2%¢"+3e "z’ +6ze " +6e " —c)e (1)
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Figure 7: Slope field plot

Verification of solutions

y= —(x3e_x +3e %2’ +6xe 46— c1) e’

Verified OK.

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(x,y)£=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

0

gb(.’L', y) =

a
dz

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (2 +y) dz
(—2° —y)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = -2’ —y
N(z,y)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0 3
o ~oy Y
=-1
And
oN _ 2
oxr Oz
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L L(oM_oN
N\ Oy Oz
=1((-1) - (0))
=-1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

— ef—lda:

I

The result of integrating gives

p=e

—X

=€

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
3

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N@=0
dx
dy
Az (.3 —z\ Y _
(—e*(®+y)) + (e )d:c 0
The following equations are now set up to solve for the function ¢(z,y)
op —
— =M 1
e (1)
oy —
— =N 2
o &)
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Integrating (1) w.r.t. z gives

0 . [+
gdx—/de

0
a—idm=/—e_””(x3—|—y) dx

¢=(:v3—|—3x2—|-6x+y+6)e_x+f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

00 _ o, p

TP e® 4

9y —¢ TIW (4)
But equation (2) says that g—‘z = e~*. Therefore equation (4) becomes

e " =e"+ f(y) (5)

Solving equation (5) for f'(y) gives
f'ly) =0

Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=(z*+3z>+6z+y+6)e’+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

= (z*+32>+6z+y+6)e”

The solution becomes

y=—(2°e"+3e "z’ +6ze " +6e " —c1)€”
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Summary

The solution(s) found are the following

1)

y= —(m3e_”” +3e %22+ 6z " +6e° — c1) e’
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Figure 8: Slope field plot

Verification of solutions

y= —(x3e_”” +3e "> +6xe T+6e % — cl) e’

Verified OK.

Maple step by step solution

1.2.4

Let’s solve

y-—y=12’

Highest derivative means the order of the ODE is 1

Isolate the derivative

y=y+a°
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° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y—y=2a°
° The ODE is linear; multiply by an integrating factor u(x)
w(@) (' —y) = p(z) z°
o Assume the lhs of the ODE is the total derivative £ (u(z) y)
wz) (Y —y) =p(x)y + p@)y
) Isolate ()
w(z) = —p(z)
° Solve to find the integrating factor

T

p(z) = e~

° Integrate both sides with respect to x

[ (& (u(z)y)) de = [ p(z) 3dz +
° Evaluate the integral on the lhs

p@)y = [ ple)2’de +
° Solve for y

_ Ju@)addate
V="

o Substitute u(z) = e™*
[ z8e %dz+cy

y="1"==
) Evaluate the integrals on the rhs
y = —(x3+3x2—|;§€+6)e_"‘+01
° Simplify

y=—x°— 322 — 6x — 6+ ce®

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

Ldsolve(diff(y(x),x)—y(x)=x‘3,y(x), singsol=all)

y(z) = —2* — 32% — 62 — 6 + ¢,

v/ Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 26

LDSolve [y' [x]-y[x]==x"3,y[x],x,IncludeSingularSolutions -> Truel

y(z) = —2° — 32> — 62+ c1e® — 6
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1.3 problem 1(c)

1.3.1 Solving aslinearode . . . . . .. ... ... ... ... ... 31]
1.3.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 33|
1.3.3 Solvingasexactode . .. ... ... ... .. .......... 37
1.3.4 Maple step by step solution . . . . .. ... ... ... ..... 41l

Internal problem ID [3031]
Internal file name [OUTPUT/2523_Sunday_June_05_2022_03_18_05_AM_49581105/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 1(c).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Y +ycot(z) =z

1.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(2)

Where here

Hence the ode is
Yy +ycot(z) =2

The integrating factor u is

b= ef cot(z)dz

= sin ()
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(1)

(zsin (x)) dz

(sin (2)) (z)

sin (z) — cos (z)  + ¢;

(ny) = (1) (x)

dz

(sin (z) y)
d(sin (z) )

y=—cot(x)x+ 1+ cicsc(x)
y=—cot(x)z+ 1+ ¢ csc(x)

dz
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sin (z)y = /xsin (z) dz
sin (z) y
csc (z) (sin (x) — cos (z) z) + ¢ csc (z)

Dividing both sides by the integrating factor u = sin (x) results in
)

Summary
The solution(s) found are the following

The ode becomes
Integrating gives
which simplifies to
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Figure 9: Slope field plot
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Verification of solutions

y=—cot(z)z+1+ccsc(x)
Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as
y = —ycot(z) +x
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo+ w(ny — &) — W&y —w€ —wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
£(z,y) =0
1
= — Al

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S=/—dy
n
1
:/;dy

sin(z)

S is found from

Which results in
S =sin(z)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+t w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —ycot (z) +x

Evaluating all the partial derivatives gives

R,=1
R,=0

Sy =cos (z)y
Sy = sin (z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds .
Jg = osin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds .
R= Rsin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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transformation
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integration when the ode is in the canonical coordiates R, S. Integrating the above
To complete the solution, we just need to transform (4) back to z,y coordinates. This
The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

gives

results in

Which simplifies to
Which gives
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cos (z)x —sin (z) — ¢
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The solution(s) found are the following

Summary
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Figure 10: Slope field plot

Verification of solutions

cos (z)x —sin (z) — ¢

Verified OK.

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y)+ N(@,y) 2 = 0

=]
]
| y___m
= =S
i I
Sy +
]
R

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence

37



Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—ycot (z) + z)dx
(ycot () —z)dx+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = ycot (z) — x
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
En a—y(yCOt (z) — =)
= cot ()
And
oN _ 2
oxr Oz
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Since %—M # %—N, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

1 /0M ON
N (0_31 - a_w)
= 1((cot (2)) — (0))
= cot (z)

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is

p=e JAdz
—e J cot(z) dz
The result of integrating gives
u= eln(sin(x))
= sin (z)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
= sin (z) (y cot (z) — x)

= cos (z) y — zsin (z)
And

=sin (z) (1)

= sin (z)
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%=0
dz

(cos () y — zsin (z)) + (sin (z)) j—z — 0

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~
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Integrating (1) w.r.t. z gives

%dx = /de
ox

%d;p:/cos(x)y—wsm(x)dx

¢ = (y — 1)sin (z) + cos (z) « + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o =sin (o) + /') (@)
But equation (2) says that g—i = sin (z). Therefore equation (4) becomes
sin (z) = sin (z) + f'(y) (5)
Solving equation (5) for f’(y) gives

fly)=0

Therefore
fy) =a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢»=(y—1)sin(z)+cos(z)z+c;

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

c1 = (y—1)sin(z) + cos (z) z

The solution becomes
cos(z)x —sin (z) — ¢y

v=- sin ()
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Summary

(1)

cos (z) z —sin(z) — ¢
sin (x)

The solution(s) found are the following
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Figure 11: Slope field plot

Verification of solutions

cos (z)z —sin(z) — ¢

Verified OK.

Maple step by step solution

1.34

Let’s solve

Yy +ycot(z) =2z

Highest derivative means the order of the ODE is 1

Isolate the derivative
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, —_—

y' = —ycot (z) +x

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Yy +ycot(z) =2z

The ODE is linear; multiply by an integrating factor u(x)
() (' + y cot (z)) = p(z) =

Assume the lhs of the ODE is the total derivative - (u(z) y)
w(z) (y +ycot (z)) = p'(z)y + p(z)y'

Isolate ()

W' (z) = p(x) cot ()

Solve to find the integrating factor

p(z) = sin (z)

Integrate both sides with respect to x

[ (L (ule)v)) de = [ p(z) zdz + e,

Evaluate the integral on the lhs

p@)y = [ (@) zdz +c;

Solve for y
_ [ u@)zdrte

V=" u@

Substitute pu(z) = sin (x)
__ [ zsin(z)dz+tcr

y= sin(z)

Evaluate the integrals on the rhs

__ sin(z)—cos(z)z+c1

y= sin(z)
Simplify
y=—cot(x)z+ 1+ ccsc(x)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve(diff(y(x),x)+y(x)*cot(x)=x,y(x), singsol=all)

y(x) = —cot (x)z+ 1+ csc(z) ey

v/ Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 17

LDSolve[y'[x]+y[x]*Cot[x]==x,y[x],x,IncludeSingularSolutions -> True]

y(xz) = —zx cot(z) + ¢y csc(z) + 1
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1.4 problem 1(d)

1.4.1 Solving aslinearode . . . . . .. ... ... ... ... 44
1.4.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 46l
1.43 Solvingasexactode . ... ... ... ... ... ..., 50
1.4.4 Maple step by step solution . . . . ... ... ... ... ... B!

Internal problem ID [3032]
Internal file name [OUTPUT/2524_Sunday_June_05_2022_03_18_10_AM_35961804/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 1(d).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y' + ycot (z) = tan (x)

1.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
y' +p(z)y = q()

Where here

Hence the ode is
y' + ycot (z) = tan (z)

The integrating factor u is

b= ef cot(z)dz

= sin ()
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(1)

—sin (z) + In (sec (z) + tan (z)) + 1

(sin (z) y) = (sin (2)) (tan (z))
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d(sin (z) y) = (tan (z) sin (z)) dz

dz
csc (z) (—sin (z) + In (sec (z) + tan (z)) + ¢1)

csc (z) (—sin (z) + In (sec (z) + tan (z)) + ¢1)

csc (z) (—sin (z) + In (sec (z) + tan (z))) + ¢ csc (z)

sin (z)y = /tan (z)sin (z) dz

sin (z) y

Y
Y

Dividing both sides by the integrating factor u = sin (x) results in
Yy

The solution(s) found are the following

The ode becomes
Integrating gives
which simplifies to

Summary
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Figure 12: Slope field plot




Verification of solutions

y = csc (z) (—sin (z) + In (sec (z) + tan (z)) + ¢1)
Verified OK.

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as
y' = —ycot (z) + tan (z)
Y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo + w1y — &) — W€y — wef —wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
£(z,y) =0
1
= — Al

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S=/—dy
n
1
:/;dy

sin(z)

S is found from

Which results in
S =sin(z)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+t w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —ycot (x) + tan (x)

Evaluating all the partial derivatives gives

R,=1
R,=0

Sy =cos (z)y
Sy = sin (z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds .
R= tan (z) sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds .
R= tan (R) sin (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

48



(4)

FRPLILSSSS
trtrrrttrtt

ttttttttt
PPIPIIPPIE

e v e v v v v v o

—

S R A R N S N R NN

NARNRNARRRY

o T T T T T T e S

e B g e

KEPPSS SIS
trtrrrertt
Patttttttt
PFPIIPIPIL

LS » o » v v v v o v

[ S S S S S S

NNARRARRAR

(R,S)
tan (R) sin (R)

das

ODE in canonical coordinates
dR

L O
RN
RANRARNRARY
FPIPTLIIIS
trrttrrttt
trtrrrtttt
FRIIPPIILT

v v v _v_o_v b

AS S N 5SS S S N

I O
IR N
AL S S S

[ B T B S S W S W

Lo o v - o v > o

Arrrrrrrrs
ftttrtsttrtt
trtrrrtttt

KIS

B B g e

LS S N S SN N

Canonical
coordinates

sin ()

transformation

=z

R

sin (z) y

S

—sin (z) + In (sec (z) + tan (z)) + 1

S(R) = —sin (R) + In (sec (R) + tan (R)) + ¢;

ysin (z)
ysin (z)

B P P
L NG N N N N N W A W

L oo v o>

N N N N R RS

B e AV A L TN LA N§ N AE AE S S A
— b P _T \ (It
S N[ X o>

Pttt et sy
A R R S e

1S

A A o>

(S o v o v > > o > v

T S

xxx\\\\\)//fffffffff
RS |

= —ycot (z) + tan (z)

dx

Original ode in x,y coordinates
dy
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Figure 13: Slope field plot

Verification of solutions

sin (z)

Verified OK.

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y)+ N(@,y) 2 = 0

0

d(z,y) =

a
dzx
99

ode. Taking derivative of ¢ w.r.t. x gives

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—ycot (z) + tan (z)) dz
(ycot (z) — tan (z))dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M (z,y) = ycot (z) — tan (z)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
By 6_y(y cot (z) — tan (z))
= cot ()
And
oN _ 2
or Oz
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Since %—M # %N , then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
A L(oM_oN
- N\oy Oz
= 1((cot (z)) — (0))
= cot (z)

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is
—e JAdz

— ef cot(z) dz

1

The result of integrating gives
u= eln(sin(x))

= sin (z)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= sin (z) (y cot (z) — tan (z))

= cos (z) y — tan (z) sin (z)

And
=sin (z) (1)
= sin (z)
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+Nd—y=0
dzx

(cos (z) y — tan (z) sin (z)) + (sin (z)) % =0

The following equations are now set up to solve for the function ¢(z,y)

o¢ 1)

ﬁxzﬁ
06  —
8—y—N (2)
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Integrating (1) w.r.t. z gives

@dx: /de
or

% dx = / cos (z) y — tan (z) sin (z) dx

¢ =sin (z) y + sin (z) — In (sec (z) + tan (z)) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9 _ . :
oy~ on (z) + f'(y) (4)

o _

But equation (2) says that 37 = sin (z). Therefore equation (4) becomes

sin (z) = sin (z) + £/(4) 5)
Solving equation (5) for f’(y) gives

fly)=0

Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =sin (x) y + sin (z) — In (sec (z) + tan (z)) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

¢; = sin (z) y + sin (z) — In (sec (z) + tan (z))

The solution becomes

_sin (z) — In(sec (z) + tan (z)) — a
sin ()

y:
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Summary

(1)

sin (z) — In (sec (z) + tan (x)) — ¢;
sin (x)

The solution(s) found are the following
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Figure 14: Slope field plot

Verification of solutions

sin ()

Verified OK.

Let’s solve
Yy + ycot (z) = tan ()
Highest derivative means the order of the ODE is 1

1.4.4 Maple step by step solution
[ J

Isolate the derivative
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, —_—

y' = —ycot (z) + tan (z)

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y' + ycot (z) = tan (z)

The ODE is linear; multiply by an integrating factor u(x)
w(z) (' +y cot (z)) = p(x) tan ()

Assume the lhs of the ODE is the total derivative - (u(z) y)
w(z) (y +ycot (z)) = p'(z)y + p(z)y'

Isolate ()

W' (z) = p(x) cot ()

Solve to find the integrating factor

p(z) = sin (z)

Integrate both sides with respect to x

| (& (ulz)w)) de = [ p(a) ton () da +

Evaluate the integral on the lhs

w(z)y = [ p(e) tan (2) dz +

Solve for y
[ p(=) tan(z)dz+cy

vy= u(z)

Substitute pu(z) = sin (x)
__ [ tan(z)sin(z)dz+c1

y= sin(z)

Evaluate the integrals on the rhs

__ —sin(z)+In(sec(z)+tan(z))+c1
y= sin(x)

Simplify
y =csc (z) (—sin (z) + In (sec (z) + tan (z)) + ¢1)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(diff(y(x),x)+y(x)*cot(x)=tan(x),y(x), singsol=all)

y(x) = csc (z) (—sin (z) + In (sec (z) + tan (z)) + ¢1)

v/ Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 18

LDSolve[y'[x]+y[x]*Cot[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]

y(x) — csc(z)arctanh(sin(z)) + ¢; csc(z) — 1
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1.5 problem 1(e)

1.5.1 Solving aslinearode . . . . . .. . ... ... ... ... ... BTl
1.5.2 Solving as first order ode lie symmetry lookup ode . .. .. .. Ol
1.5.3 Solvingasexactode . . ... ... ... ... .......... 631
1.5.4 Maple step by step solution . . . . ... ... ... .. ..... 671

Internal problem ID [3033]
Internal file name [OUTPUT/2525_Sunday_June_05_2022_03_18_12_AM_49144292/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 1(e).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Y + ytan (z) = cot (z)

1.5.1 Solving as linear ode
Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)
Where here

Hence the ode is
Y + ytan (z) = cot (z)
The integrating factor u is
o= ef tan(z)dz

1
cos (z)
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Which simplifies to
p = sec ()

The ode becomes
() = () (cot («))
<~ (sec (@) ) = (sec () (cot (2))
d(sec (z)y) = csc(z) dz

Integrating gives

sec(z)y = /csc (z) dz

sec (z)y = —In (csc (z) + cot (x)) + ¢
Dividing both sides by the integrating factor u = sec () results in

y = —cos (z) In (csc (z) + cot (z)) + ¢1 cos (z)
which simplifies to
y = cos (z) (—In (csc (x) + cot (z)) + ¢1)

Summary
The solution(s) found are the following

y = cos (z) (—In (csc (z) + cot (z)) + ¢1) (1)
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Figure 15: Slope field plot

Verification of solutions

y = cos (z) (—In (csc (z) + cot (z)) + ¢1)

Verified OK.

1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = —tan (z) y + cot (x)

w(z,y)

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - gz) - wzfy —wg€ — Wy

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = cos ()

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S=/1dy
n
1
_/cos(x)dy

_ Y
cos (z)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

@ S+ w(z,y)S, @)
dR R, + w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —tan (z) y + cot (x)
Evaluating all the partial derivatives gives

R, =1
R,=0
Sz = sec(z)tan (z)y

S, = sec ()

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
JR = ©° (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
T R (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
To complete the solution, we just need to transform (4) back to z,y coordinates. This
The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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The solution(s) found are the following

Summary



P i i it

VAV AV A L PP P PP PP e e

————— NN A \ g7 |
11111111 ~\./——————
LLLLLLL \I\!\ N T~ —————
e s 7 7 O N NN |

T T e T I T T T T T I T T I T e
VAV AV A AP L AP P P P bbb b e

———~—~~~\\J /ST

e 7 A NN SN T -

AN N NN N N N N N R R e

T T T T T T T T T T T T T T T S — —~— [

X

Figure 16: Slope field plot

Verification of solutions

sec (x)

Verified OK.

1.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y)+ N(@,y) 2 = 0

)

=]
]
| y___m
= =S
i I
Sy +
]
R

ode. Taking derivative of ¢ w.r.t. x gives

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—tan (z) y + cot (z)) dz
(tan (z)y — cot (z))dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M (z,y) = tan (z) y — cot (z)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
By a—y(tan () y — cot (z))
= tan ()
And
oN _ 2
or Oz
=0
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Since %—M # %—N, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

1 /0M ON
N (8_y - 6_96)
= 1((tan (z)) - (0))
= tan (z)

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is

= el Ad
—e J tan(z) dz
The result of integrating gives
1 = ¢~ In(cos(@)
= sec ()

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = uM
= sec (z) (tan (z) y — cot (x))

= sec (z) tan (z) y — csc (z)
And

= sec (z) (1)
= sec (z)
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
M+ ¥ _g
dz

(sec (z) tan (z) y — csc (z)) + (sec (z)) j—i =0

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~
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Integrating (1) w.r.t. z gives

@dx = /de
or

% dz = / sec (z) tan (x) y — csc (z) dx

¢ = sec (x) y +In (csc (x) + cot (2)) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
oy 5 (=) + f'(y) (4)

o _

But equation (2) says that 37 = sec (). Therefore equation (4) becomes

sec (z) = sec (z) + f'(y) (5)

Solving equation (5) for f’(y) gives
f'y) =0
Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
¢ = sec (z) y + In (csc (z) + cot (z)) + ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

c1 = sec(z)y + In (csc (z) + cot (z))

The solution becomes
In (csc (x) + cot (z)) — ¢
sec (z)

y=-
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Summary

The solution(s) found are the following

(1)

sec (z)
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Figure 17: Slope field plot

Verification of solutions

sec (z)

Verified OK.

1.5.4 Maple step by step solution
Let’s solve

cot ()

Y + ytan (z)

Highest derivative means the order of the ODE is 1

Isolate the derivative
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y' = —ytan (z) + cot (z)
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y' + ytan (z) = cot (z)
° The ODE is linear; multiply by an integrating factor u(x)
w(z) (y' + ytan (z)) = p(z) cot (z)
o Assume the lhs of the ODE is the total derivative - (u(z) y)
u(z) (v + ytan (7)) = p'(z)y + pu(z)y'
e  Isolate y/(x)
' (z) = p(z) tan (z)

° Solve to find the integrating factor
1

w(z) = cos(z)
° Integrate both sides with respect to x

[ (£(u(z)y)) dr = [ p(z) cot (z) dz + ¢t
° Evaluate the integral on the lhs

wa)y = [ ue) cot (z) do +

° Solve for y
y= [ () cizgz)dz+c1
o Substitute u(z) = Cosl(z)
y = cos (z) (f %dﬂ: + cl>
° Evaluate the integrals on the rhs

y = cos (z) (In (csc (z) — cot (z)) + ¢1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

N
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(diff(y(x),x)+y(x)*tan(x)=cot(x),y(x), singsol=all)

y(x) = (—In(csc(z) + cot (x)) + ¢1) cos (z)

v/ Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 16

LDSolve[y'[x]+y[x]*Tan[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True]

y(z) — cos(z)(—arctanh(cos(x)) + ¢;)
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1.6 problem 1(f)

1.6.1 Solving aslinearode . . . . . .. ... .. ... ... ... ... [70]
1.6.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 2]
1.6.3 Solvingasexactode . .. ... .. ................ 761
1.6.4 Maple step by step solution . . . . ... ... ... ....... (0]

Internal problem ID [3034]
Internal file name [OUTPUT/2526_Sunday_June_05_2022_03_18_14_AM_48549037/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 1(f).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

T

Y +yln(z) =2~

1.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(@)y = q(z)

Where here

Hence the ode is

The integrating factor u is
p=e [ In(z)dz

— eln(:t:)z—m
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Which simplifies to

The ode becomes
d —x
W) =) (@)

& (amemy) = (z%7) (27)
d(z%e %y) = e *dz
Integrating gives
ze "y = / e “dx
e y=—e"40
Dividing both sides by the integrating factor u = x*e™” results in
y=—x "¢+ cix %"
which simplifies to
y=(-14ce")z™"

Summary
The solution(s) found are the following

y=(-14+ce’)z™® (1)
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Verification of solutions

y=(-14+ce®)z™®
Verified OK.

1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

x

y=-n(@)y+az

!/

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2§y —wz —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 16: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
77('7;7 y) —e In(z)z+z (Al)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=z

S is found from

1
= / e~ In(z)z+z dy

S = eln(w)x—xy

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

T

w(z,y)=—In(x)y+z~

Evaluating all the partial derivatives gives

R, =1

R,=0

Sz =z “yln (z)
Sy =zx"e™"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds

- = e_R

dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

e’ (2A)
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —e_R +c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

e y=—e"4+
Which simplifies to
e y=—e"4+01
Which gives
y= —(e_”” — c1) x~%e”

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

Original ode in x,y coordinates coordinates (R, S)

transformation

ODE in canonical coordinates
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Summary
The solution(s) found are the following

y=—(e"—c1)z %" (1)

75



VLl
/////
VP
PP
S
e —

NN NI NI NN

\
\
|
}
/
/
/

1
1
1
[ 1
/1
/7
- 17
117
77
/7

J
y(X) 0 S]]
]SS
—~ T/
— 1 NSSTTITTTT

NN NN NN
I S N N N
N T N

Figure 19: Slope field plot

Verification of solutions

—T T T

y=—(e"—c1)z %

Verified OK.

1.6.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,9) 2 =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
EQb(xa y) =0

Hence &b 96 d
ay
oz oy Oy dz =0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy=(-In(z)y+2z°)dz
(In(z)y—z*)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) =In(z)y —az™°
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
bl | _z =
= 2 )y~
= In ()
And
oN _ 2
oxr Oz
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Since %—M # %N , then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
L L(oM_oN
N\ oy ox
= 1((In (z)) — (0))

= In (z)

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is

p=e JAdz
—e JIn(z) dz
The result of integrating gives
w= eln(x)x—x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
=z " (In(z)y — ")
=e *(In(z)yz® —1)

And

=z %(1)
Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

M+NY
dz
d

x —a:) y O

(e™*(In(z)yz® — 1)) + (2" =

The following equations are now set up to solve for the function ¢(z,y)

o¢ 1)

ﬁxzﬁ
06  —
8—y—N (2)
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Integrating (1) w.r.t. z gives

%dw = /de
or

%dx = /e_””(ln (x)yz® —1)dz

p=e"(z"y+1)+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9 _

3y z"e " + f'(y) (4)

But equation (2) says that ‘g—‘z = z%e®. Therefore equation (4) becomes
e " =2""" + f'(y) (5)
Solving equation (5) for f’(y) gives
f'y) =0
Therefore
fly)=a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
p=e"(z"y+1)+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

g =e%(z°y+1)

The solution becomes

y=—(e"—c1)z %"
Summary
The solution(s) found are the following
y=—(e"—c1)z %" (1)
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Figure 20: Slope field plot

Verification of solutions

—T T T

y=—(e"—c1)z %

Verified OK.

1.6.4 Maple step by step solution

Let’s solve

T

v +yln(z)=2"
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

T

Y =—yln(z)+z
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

Y +yln(z) =277
° The ODE is linear; multiply by an integrating factor u(x)

wz) (Y +yl (2)) = plz) 2™
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o Assume the lhs of the ODE is the total derivative - (u(z)y)

p(z) (¥ +yln(z)) = p'(x)y + p) y’
o Isolate ()

' (z) = p(z)In ()
° Solve to find the integrating factor

T

u(z) = %

° Integrate both sides with respect to x

[ (L(u(@)y)) dz = [ p(z)z~"de + ¢
° Evaluate the integral on the lhs

p@)y = [ ple)z*dz + ¢
° Solve for y

_ [p(@)z—dete
y= (@)

T

) Substitute u(z) = %~

_ [z %z%e ®dz+c
Y= "piez
° Evaluate the integrals on the rhs
Y= e
° Simplify

y=(-14ce*)x"

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

Ldsolve(diff(y(x),x)+y(x)*1n(x)=x“(—x),y(x), singsol=all)

y(e) = (e cr = 1) 27"

v/ Solution by Mathematica
Time used: 0.08 (sec). Leaf size: 19

LDSolve[y'[x]+y[x]*Log[x]==x“(-x),y[x],x,IncludeSingularSolutions -> True]

y(x) = z7%(=1 4 c1€%)
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1.7 problem 2(a)

1.7.1 Solving aslinearode . . . . . .. ... ... ... 83|
1.7.2 Solving as homogeneousTypeD2ode . .. ... ... ...... 851
1.7.3 Solving as differentialTypeode . . . .. ... .. .. ... ... 86
1.7.4 Solving as first order ode lie symmetry lookup ode . .. .. .. 88|
1.7.5 Solvingasexactode . ... ... ... ... ... ... ... . 92
1.7.6 Maple step by step solution . . . . ... ... ... ....... 96!

Internal problem ID [3035]
Internal file name [OUTPUT/2527_Sunday_June_05_2022_03_18_16_AM_35390428/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 2(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differential Type",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Yy +y=1

1.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(2)

Where here
1
p(z) = o
q(z) =1
Hence the ode is
y+2=1
T
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The integrating factor u is

b= ef ;dm
=2z
The ode becomes
I M) = p
EV
d(zy) = zdx
Integrating gives
Ty = / rzdz
72
Ty = o +c

Dividing both sides by the integrating factor u = z results in

. x 4 C1
V= 2 =z
Summary
The solution(s) found are the following
x (5]
V= 2 + T
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Figure 21: Slope field plot

Verification of solutions

T C1
x

Verified OK.

1.7.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
z(u(z)z +u(z)) +u(z)z ==
In canonical form the ODE is

v = F(z,u)

f(z)g(u)
_ —2u+1

Where f(z) = 1 and g(u) = —2u + 1. Integrating both sides gives

1 1
—2u+1du_5d$
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1 1
/_2u+1du—/;dz

In(—2u+1
Raising both side to exponential gives
1 — eln(x)—i—cz
vV—2u+1
Which simplifies to
1
———=c3T
vV=—2u+1
Therefore the solution y is
Y =ux
_ (GBe*a? — 1) e 2
B 2z 2

Summary
The solution(s) found are the following

(ce?2z? — 1) e 2

v 2z 2
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Figure 22: Slope field plot

86



Verification of solutions

(ce?2x? — 1) e 2

2
2z c5

y =
Verified OK.
1.7.3 Solving as differentialType ode

Writing the ode as

r_ —y+x
- i

Y

Which becomes
0=(—z)dy+ (—y+2z)dz

But the RHS is complete differential because

2

0= d(%wZ — wy)

Integrating both sides gives gives these solutions

(—z)dy+ (—y+z)dz = d(lx2 —zy

Hence (2) becomes

2+ 20 .
2 !
Summary
The solution(s) found are the following
2+ 20 .
2 !
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Figure 23: Slope field plot

Verification of solutions

2+ 20
- 2x

&1
Verified OK.

1.7.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny - &) — W2£y —we§ —wyn =0 (A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 19: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

§(z,y) =0
wwy) = (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

89



canonical coordinates, where S(R). Since £ = 0 then in this special case
R==x

S is found from

9}
I
—

8lm = 3|
QU
<

I
—

U
<

Which results in
S=uzy

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

-
wiz,y) =~
Evaluating all the partial derivatives gives
R, =1
R, =0
Sz =Y
Sy==z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

ds
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

x (2A)

R
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
2

S(R)= "> +a (@

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in
2

Tr = z +c
yr = 9 1
Which simplifies to
T = v +c
Yyxr = 5 1
Which gives
420
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _y-«z as _
de ~ T dR__R
A A R R VAV N NN N NN f A SR
A R I VA VNN NN A AL
A B I g VY Y VNN N NN A f
A A A R R e g VYNV NN N NN f A f R
AR LR IR et R N AR
PP r RN e e NN N SRR E .
AAPPL2A P E N N w7 n RS N
VA A A R et Ol L T T S ¥
VA A R e VAN NN NN 2 A
PP AN A A AP R==<z LA YN NN NN r A A pf A}
P R Rt VA LR VAV NN~ AT TR T
ittt e IR AR S =uzy NN S T S a8
e L N RN I
rauacts VA VAV VAN NSNS
oo oo NN AR P PP PV VANt
 Gatatnan S RS b B A S 3 O A VAV VNN NN NN At
mr—m——NNNYEP PP VYV NN NN NN AR
NN N N4 A VY Y NNNN NSl A A A
———=>NNN VWP VAV VNN NN NN A
NNV PR VYV NN NN NN AR
Summary
The solution(s) found are the following
22+ 2¢;
y=—a (1)
T
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Figure 24: Slope field plot
Verification of solutions
2+ 20
- 2z
Verified OK.
1.7.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(@,y) 72 = 0 (8)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 04d
o9 o9ady _
ox + Oy dz 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(x)dy = (—y+z)dz
(y—z)dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) =y —=
N(z,y) =z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM _o,
oy Oy Y
=1
And
ON 0
o~ 2™
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—m—M (1)
¢ _
=N @)

Integrating (1) w.r.t. z gives

%dx=/de
or

o .
%dx—/y—xdx

o= ) Q

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

ay =t f'y) (4)

But equation (2) says that g—‘;’ = z. Therefore equation (4) becomes

z=1z+ f(y) ()
Solving equation (5) for f'(y) gives
flly) =0
Therefore
fly) =a

Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

b= _z(z — 2y)

2 +Cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

_z(z —2y)
2

C1 =
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1)

2z
2z

2+ 2¢;
22+ 2¢;

The solution(s) found are the following

The solution becomes

Summary
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Figure 25: Slope field plot
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Verification of solutions

Verified OK.



1.7.6 Maple step by step solution

Let’s solve
zy t+ty==
° Highest derivative means the order of the ODE is 1

/

Yy

° Isolate the derivative
y=1-1¢

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y+i=1

° The ODE is linear; multiply by an integrating factor u(x)
wz) (¥ +2) = p(@)

o Assume the lhs of the ODE is the total derivative - (u(z)y)
w) (v +2) = p(@)y+ p@)y

o  Isolate p/(x)

p(z) =42

° Solve to find the integrating factor
p(z) =z

° Integrate both sides with respect to x

[ (E(u(z)y)) de = [ p(z)dz +a

° Evaluate the integral on the lhs

p@)y = [ u@)de +a

° Solve for y
_ [ p(=@)dz+cr

Y= " @

) Substitute u(z) = x
xdr+cy

y = [zdrte
° Evaluate the integrals on the rhs

y = %4—01
° Simplify
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— 2242¢1

Y 2x

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

‘dsolve(x*diff(y(x),x)+y(x)=x,y(x), singsol=all)

v Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 17

LDSolve[x*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]

T C1
_) — J—
y(z) = 5+
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1.8 problem 2(b)

1.8.1 Solving aslinearode . . . . . .. . ... ... ... ... .. O8]
1.8.2 Solving as homogeneousTypeD2ode . .. ... ... .. .. .. 100l
1.8.3 Solving as first order ode lie symmetry lookup ode . .. .. .. 10T
1.8.4 Solvingasexactode . ... ... ... ... ........... 105]
1.8.5 Maple step by step solution . . . . ... ... ... .. .. ... 1101

Internal problem ID [3036]
Internal file name [OUTPUT/2528_Sunday_June_05_2022_03_18_18_AM_29826810/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 2(b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exact WithIntegrationFactor", "first_ order_ ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

zy —y =21

1.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y' +p(z)y = q(z)

Where here
1
p(x) = Tz
q(z) = 2*
Hence the ode is
y/ _ g — .'132
z
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The integrating factor u is

The ode becomes

Integrating gives

I

Ml aw\
8
o,
8

Rl 8w
+
o
A%

Dividing both sides by the integrating factor u = % results in

L 3
Y= §x +czx
Summary
The solution(s) found are the following
L 3
y= §x + c1x
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Figure 26: Slope field plot

Verification of solutions

.3
2x +czx

y:

Verified OK.

1.8.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

(v (z) z + u(z)) — u(z) z = 2°

Integrating both sides gives

Therefore the solution y is
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The solution(s) found are the following

Summary
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Figure 27: Slope field plot
y/

1.8.3 Solving as first order ode lie symmetry lookup ode
Mo +w(ny — &) — W2fy — wz€ —wyn

The condition of Lie symmetry is the linearized PDE given by

Verification of solutions
Verified OK.
Writing the ode as



The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 22: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form I3 n
linear ode vy = f(@)y(z) + g(z) 0 el fde
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | y = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a4 bz + cy)™ 1 —2
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . z e— J bf(z)dz—h(x) — Jbf(z)de—h(z)

First order special | ' = g(z) M@+ + f(x) e fz)e @)
form ID 1

polynomial type ode

! amzt+bhiyta
Yy az2z+bay—+ca

ai1boz—agbiz—bica+bacy

a1bey—agbiy—aice—azcy

a1ba—aszb1

a1ba—aszb;

Bernoulli ode

Y = f(x)y+g(z)y"

e~/ (=D f@)dzyn

Reduced Riccati

¥ = fi(@)y+ folz)y?

e~ J frdz

The above table shows that

£(z,y) =0

n(z,y) ==

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S:/—dy

n

T

s=2

T

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy ©)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

B +y
(d(m ’ y) - x
Evaluating all the partial derivatives gives

R, =1
R,=0

__Y
1
Sy = -

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s

R
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
ﬁ%_R

x (2A)
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Original ode in z,y coordinates

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
To complete the solution, we just need to transform (4) back to z,y coordinates. This
The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

gives

results in

Which simplifies to
Which gives
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The solution(s) found are the following

Summary

N e e e N N N N N N S N S S N S S S N
— T e N N N . N S N S S S S —
———— e T e e T T T S ~—
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T T
on (q\l — (e — [\l on
—
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X

¢(z,y) =0
105

d

d
M(x,y)+N(w,y)£=0
dz

Figure 28: Slope field plot

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)

1.8.4 Solving as exact ode
To solve an ode of the form
ode. Taking derivative of ¢ w.r.t. = gives

Verification of solutions

Verified OK.



Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (z* +y) dz
(-2 —y)dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y)=—-2*—y
N(z,y) =z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 3
a_y - % (_ - y)
=-1
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And
ON 0
o~ s
=1

Since %A;f # %—1;], then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Ao L(oM _oN
N\ 9y oz

=—((=D)-m)

—_

&
[\V]

8

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p= efAd:c
—e S —% dz
The result of integrating gives
u= 6—21n(z)
Tz

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
1
Lty

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

m+NY _o
dzx

() (D)

The following equations are now set up to solve for the function ¢(z,y)

0p —
o - M (1)
0p
3y N (2)
Integrating (1) w.r.t. = gives

o9 .

%d = /Md

op . [—aP—y

/%dx—/ p dx
P42
6= "2 1) ®

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

8(;51

=W @

But equation (2) says that g—‘g = 1. Therefore equation (4) becomes

L= 1) ©
Solving equation (5) for f'(y) gives

f'ly) =0
Therefore

fy) =a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and c; constants into new constant c; gives the solution as

The solution(s) found are the following

The solution becomes

Summary

R R e e
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X

Figure 29: Slope field plot
109




Verification of solutions

z(z? + 2¢)
Y= - 9

Verified OK.

1.8.5 Maple step by step solution

Let’s solve
oy —y=2a°
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

! Yy _ 2
Yy—53=7%

° The ODE is linear; multiply by an integrating factor u(x)

pe) (v — 2) = ple) 2?

o Assume the Ihs of the ODE is the total derivative -L (u(z) y)
wa) (f — %) = W@y + pz)y
e  Isolate p/(x)

W(z) =~

° Solve to find the integrating factor
pe) =3

° Integrate both sides with respect to x
J (& (u(@)y)) dz = [ p(z) 2*dz + ¢

° Evaluate the integral on the lhs
w(e)y = [ n(z)a*da+

° Solve for y

[ p(z)z?dztcr
V="

e  Substitute pu(z) = 1
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y=z([zdz+c1)

° Evaluate the integrals on the rhs
y= x(";—z + 01)
° Simplify
_ z(z2+2c1)
= 2

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

tdsolve(x*diff(y(x),x)—y(x)=x‘3,y(x), singsol=all)

WRMCEL DY

v Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 17

‘DSolve[x*y'[x]-y[x]==x“3,y[x],x,IncludeSingularSolutions -> True]

3

T
y(x) — 5 +azx
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1.9 problem 2(c)

1.9.1 Solving aslinearode . . . . . .. . ... ... ... ... 112l
1.9.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 113
1.9.3 Solvingasexactode . .. ... .. ... ... .......... 116
1.9.4 Maple step by step solution . . . . ... ... ... ... .... 120

Internal problem ID [3037]
Internal file name [OUTPUT/2529_Sunday_June_05_2022_03_18_20_AM_42066283/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 2(c).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

zy +ny ="

1.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(2)

Where here
n
p(z) = =
q( x) — xn—l
Hence the ode is
/ _|_ % — xn—l
T
The integrating factor u is
p=e I Ldx
enln( )
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Which simplifies to

The ode becomes

() = () (=)

L) = @) (")
d(z"y) = 2> ' dz

xny — /x2n—1 dz

" .,L.2n
x y=%+c1

Integrating gives

Dividing both sides by the integrating factor u = z™ results in

z—nx2n
Yy = omn + clx_n
which simplifies to
n

y=5 + az™"
Summary
The solution(s) found are the following

z" _

Yy = % +cx " (1)
Verification of solutions

y=g- az"

Verified OK.
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1.9.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

, —ny+z"

X
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — Wny —we€ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 25: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fd

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | i/ = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢ = £ 4 g(z) F (%) x? Ty

First order special | ¥’ = g(x) eh@)+by 4 f(z) | < S bf:z;‘;x*h(z) f(z)e” f;’{z(’)”dz_h(’”)
form ID 1

polynomial type ode |y = —Z;ﬁz;ﬂg albzz—glzg;f;:glcz+bm albzy-gjgég:;fz—azcl
Bernoulli ode v = f(z)y+g(z)y™ 0 e~ /(=D f(@)dzyn
Reduced Riccati v = fi(x)y + folx)y? 0 e~/ hdz
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The above table shows that

(z,y) =0

n(z,y) = e " (A1)
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dr dy
& n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S:/ldy
n
1
:/e—nln(z)dy

S = enln(x)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,
Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

wlo,y) = T
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy =nya"
Sy ="

115



Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 2n—1

ﬁ =X
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

— R2n—l

dR

(24)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
R2n
S(R) = — 4
(R) =% +c @
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
x2n
Ty = % + C1
Which simplifies to
2n
"y = r + ¢
2n

Which gives

(2ne; + 2*™) ™™
2n

Summary
The solution(s) found are the following

(2ne; + 2®™) ™

y= 5 (1)

Verification of solutions

(2ne; + ) ™"
2n

y:

Verified OK.
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1.9.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(x)dy = (—ny +2")dz
(ny —2")dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM_ 0
oy oy’
=n
And
ON 0
B~ )
=1

Bz

find an integrating factor to make it exact. Let

i (6M aN)

Since %’I # 9N then the ODE is not exact. Since the ODE is not exact, we will try to

- N Oy oz
= ()~ (1)
_n- 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p=e JAdz
—e J "7_1 dz
The result of integrating gives
= e(n—l)ln(w)
— xn—l

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM

= 2" (ny — z")

= (ny —a") 2"
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And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

. _dy
M —~Z =0
+ dzx

((ny —2™) 2" ") + (2" j—z =0

The following equations are now set up to solve for the function ¢(z,y)

9 —

g—x - M (1)
¢ -

oy =" 2)

Integrating (1) w.r.t. = gives
% dx = / M dx
ox

6¢ _ _en n—1
%dz—/(ny z") " dx

2n

b=a"y - +f) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0p _ o, w
a—yzx + f'(y) (4)

But equation (2) says that g—‘z = z"™. Therefore equation (4) becomes

z" ="+ f'(y) (5)

Solving equation (5) for f'(y) gives
f'y) =0
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Therefore
fy)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
2n
x
p=1"y— " +o
2n
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

xZn

N
a=rYyT o,

The solution becomes
(2ncy + ) ™"
2n

Summary
The solution(s) found are the following

(2ne; + ) ™"

y = on (1)

Verification of solutions

(2nc; + ) ™"
2n

y =
Verified OK.

1.9.4 Maple step by step solution

Let’s solve
zy +ny ="
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
y=—+5

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
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! ny __ z"
y+o ==

T

° The ODE is linear; multiply by an integrating factor u(x)
)y + ) =

T

o Assume the Ihs of the ODE is the total derivative - (u(z) y)

pz) (v +32) = 1@y + )y
° Isolate y'(x)

' (z) = M(Z)”

° Solve to find the integrating factor
p(z) = ="

° Integrate both sides with respect to x

[ (o)) de = [ M9 d 1 c,
° Evaluate the integral on the lhs
px)y = [ %dx ta
° Solve for y

. f#dz—}-cl
VY= "o

o Substitute pu(z) = 2™

(=7)? dz+c
y =L —_ta —
° Evaluate the integrals on the rhs
e 2
y = _( 2n:)1:n+61
° Simplify

7 —
y=5, taz™

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

Ldsolve(x*diff(y(x),x)+n*y(x)=x‘n,y(x), singsol=all)

n

1: —-n
y(z) = on +z "y

v/ Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 24

kDSolve [x*y' [x]+n*y[x]==x"n,y[x],x,IncludeSingularSolutions -> Truel

n

T
y(x) — % +cz

—-n
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1.10 problem 2(d)

1.10.1 Solving aslinearode . . . . . .. ... ... ... ... ... . 123
1.10.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 124
1.10.3 Solvingasexactode . . .. ... ... ... .. ... ... . 127
1.10.4 Maple step by step solution . . . . . ... .. ... ... ... 131l

Internal problem ID [3038]
Internal file name [OUTPUT/2530_Sunday_June_05_2022_03_18_22_AM_68192248/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 2(d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

zy —ny =z

1.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(2)

Where here
n
p(z) = T
q( x) — xn—l
Hence the ode is
/I % — ‘,L,n—l
T
The integrating factor u is
p=e J —Ddx
_ e—nln(z)
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Which simplifies to

The ode becomes

%(uy) = (u) (")
@) = (@) (@)
d(w_”y) = %dx

Integrating gives

Dividing both sides by the integrating factor u = ™" results in

y=2z"ln(z) + c;z"

which simplifies to
y=(In(z)+c)z"

Summary
The solution(s) found are the following

y=(n(z) +c1)z" (1)

Verification of solutions

y=(n(z)+c)z"
Verified OK.

1.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as
,_ny+a”
oz
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - 5:1:) - w2€y - wx€ — Wyl = 0 (A)
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The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 28: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form I3 n
linear ode vy = f(@)y(z) + g(z) 0 el fde
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | y = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a4 bz + cy)™ 1 —2
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . z e— J bf(z)dz—h(x) — Jbf(z)de—h(z)

First order special | ' = g(z) M@+ + f(x) e fz)e @)
form ID 1

polynomial type ode

! amzt+bhiyta
Yy az2z+bay—+ca

ai1boz—agbiz—bica+bacy

a1bey—agbiy—aice—azcy

a1ba—aszb1

a1ba—aszb;

Bernoulli ode Yy = f(z)y+ g(x)y™ 0 e~/ (n=Df(@)dzyn
Reduced Riccati v = filz)y + fo(z) ¥ 0 e~ [ frdz
The above table shows that
§(z,y) =0
n(z,y) = e""® (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n
1
= / enn(z) dy

S = e—nln(w)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS _ S;+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

ny + "
M%w=yx
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy =—nyz "
Sy=z""

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
-~ = 2A
dR =« (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

a5 _ 1
dR R

126



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R)=In(R) + ¢

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

z "y =In(z)+ ¢
Which simplifies to

z "y =In(z)+c
Which gives

y=(In(z) +c1) 2"

Summary
The solution(s) found are the following

y=(n(z)+c)z"

Verification of solutions

y=(n(z)+c)z"
Verified OK.

1.10.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(w,y)£=0

(1)

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d
Hence
99  O¢dy
oxr  Oydr
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (ny + ") dz
(—ny —2z")dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —ny — 2"
N(z,y) ==z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
M _ 0
oy oy
=-n
And
ON 0
o~ 2™
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (aM aN)

~ N\dy Oz
1

= —((=n) - (1)

—1—n

x
Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is

,u=efAdx

_ ef —1—-n dz

x

The result of integrating gives

= e(—l—n) In(z)
— x—l—n

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

= o1 (—ny — ")

—1—z""ny

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+Nd—y=0

dx
—1—z"ny a dy
( : )—l—(x )W
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The following equations are now set up to solve for the function ¢(z,y)

¢

e M (1)
0
oy N (2)

Integrating (1) w.r.t. z gives

@dx= /Hdz
or

s=ay+ 28 p) ®)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9 _

oo =+ W) @

But equation (2) says that 22 = z—". Therefore equation (4) becomes
Y Ay

z "=z + f(y) (5)

Solving equation (5) for f'(y) gives
f'ly) =0
Therefore
fly)=a
Where c¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
In (z

-n
¢=x_"y+T)+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

In(z7™)

a=z "y+
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The solution becomes
(—ncy + In (7)) 2™
n

y=-

Summary
The solution(s) found are the following

(—ncy +1In(z7™)) 2™

y=- - (1)

Verification of solutions

(—ncy + In (7)) 2™

Yy=—-
Verified OK.

1.10.4 Maple step by step solution

Let’s solve
zy —ny ="

° Highest derivative means the order of the ODE is 1

/

Yy

° Isolate the derivative
y="2+5

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y - = z"

° The ODE is linear; multiply by an integrating factor u(x)
wz) (v — ) = Ho

o Assume the lhs of the ODE is the total derivative - (u(z) y)
wa) (v —2) = @)y + p)y

o Isolate ()

M/(x) — _l/«(i)"

° Solve to find the integrating factor
W) = =

° Integrate both sides with respect to x
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[ (E(u(z)y)de= [ “(zzidx +c
° Evaluate the integral on the lhs
px)y = [ “(a;idx ta
° Solve for y

_ [ M dayen
Y="ww

o Substitute p(z) = =
y=a"([1dz+c)
° Evaluate the integrals on the rhs

y=(n(z) +e)a”

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

Ldsolve(x*diff(y(x),x)-n*y(x)=x“n,y(x), singsol=all)

y(x) = (In(z) + ¢1) z"

v/ Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 14

LDSolve[x*y'[x]-n*y[x]==x“n,y[x],x,IncludeSingularSolutions -> True]

y(z) — 2" (log(z) + c1)
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1.11 problem 2(e)

1.11.1 Solving aslinearode . . . . . . . . .. ... ... ... ... . 133
1.11.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 135]
1.11.3 Solvingasexactode . . .. ... .. ... .. ... ..... 1391
1.11.4 Maple step by step solution . . . . . ... .. .. ... ... .. 144

Internal problem ID [3039]
Internal file name [OUTPUT/2531_Sunday_June_05_2022_03_18_24_AM_5097122/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 2(e).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

(P+z)y+y==

1.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
p(z) = z(x2+1)
1
Hence the ode is
1
I

z(x2+1) 2241
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The integrating factor u is

Which simplifies to

The ode becomes

24+ 1

() = () (75

(5) ()

o
5|
o
=
<
N—r
I
—
=
N—r
VR
_l_ —
N———

8

[

Integrating gives

xy x

= dz
Va2 +1 (22 +1)?
Ty 1

= — + C
Vai+l  VEE+l
Dividing both sides by the integrating factor yu = \/ﬁ results in
1 n c1vV x2 +1

y=—=
x x

which simplifies to

avzi+1-1

T

Summary
The solution(s) found are the following
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Figure 30: Slope field plot

Verification of solutions

avri+1-1

X

Verified OK.

1.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yfz_ﬁ
z(x2+1)
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - w2§y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 31: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
In a:2+1
Ho,y) = e (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _ dy _

ds
§ 7

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

[t
n

1
= [ - 4
/ ln(12+1) —ln(z) y

e 2

S is found from

S

Which results in

ry
2 41

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS _ S, +w(@,y)s, 2
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

wiz,y) = ——=
V= z(z2+1)
Evaluating all the partial derivatives gives
R,=1
Ry =0
g - Y
T 3
(z2+1)2
x
S =
Y x2+1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as x
— = (2A)
dR (22 + 1)%

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ﬁ_ R
dR (R2+1)%
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The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) =

vVR?+1

1
+c

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

ry

1

= — +C
Vot +1 v+l

Which simplifies to

Yy

1

= — —|—C
vz +1 vV +1 !

Which gives

avzi+1-1

X

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canoni
(R,

cal coordinates

5)

d_ __y-T
dr = z(z?+1)

l, Y N\ a—e— e
L Y\ N\
l A\ e
1IN

¥

; N s>

[

S>> v v TN

— st

\ a—>—e—a—a—w—s—s—s
——>—>> o > v ¥ A Ao T o> o>

——>——> s> >—>a | f pfA B s

f A A > >

—— sy
——s s> —b—s~a % AA oo
—————s—>—a Yl e

A o>

s —a N |

———b—b—b—b—b
S S S

b

b
——> s~ -4 Vi

1! fAT oo

' ’

———eee—aa e

zy
241

ds _

R

- .3
dE  (R241)2

——b—b—b—b — — ~a ~a —8{
——s——b—s—b—a a8
———b———s— ~a ~a 4
———s—b—p—p—a—a~a s
—————s y AR
I 113 A
e ~a~a ]
——s——b—s—b s~ a s
——s——b—b—b—a~aa ]

———b—b—>—5 b —a A s/

> v v > > > > > b
B e B
B B B
B e B e
B e B e
B B e
> v _»_ > > b bbb
B e B
B B e

> v _» > > > >—>—b—b

PR S SN
—>—b—>—s—b—b & —a ~a |
— s> —b—b—s—> ~a ~a |
-»-»—»—»-—sw\»\s\g_?
—>—b——s—b—b a5 ~a |
— s —b—b—b—> ~a a5
——b—b——b——s 5 ~a s
————e—s a5~ “a7s|
——s—b—p—b—b—> ~a a |

——s—s—e—b b5 ~a

T T
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Summary
The solution(s) found are the following
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Figure 31: Slope field plot

Verification of solutions

aVvri+1-1

X

Verified OK.

1.11.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
M(z,9) + N(z,9) ¥ = 0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(£’ +z)dy=(—y+z)ds
(y—z)dz+(z® +z)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =y —=
N(z,y)=z*+=z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM_o,
gy ~ oy
=1
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And

ON 0
o = o™ o)
=322 +1

Since %}VI # %—1;], then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A= L(OM _ON

N\ oy ox

— 1 _ 2

- (- @)
3z

241

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
_ ef_zgil dz
The result of integrating gives
31n(1:2+1)
n= e 2z
. 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%=0
dz

(i) (=) -

The following equations are now set up to solve for the function ¢(z,y)

[N

0p —
6 _~
oy 2

Integrating (1) w.r.t. z gives

0 . [+
%dx—/de

%dxz/y;%dx
Ox (z2 +1)2
zy+1

- S ®)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

@_ T
Oy 2 +1

+ 1) (4)

But equation (2) says that g—‘z = 2+ Therefore equation (4) becomes

T 0z
Vzz+1 Va2 +1

+ () (5)

Solving equation (5) for f’'(y) gives

Therefore
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
zy+1

:—+c
¢ 2 +1 '

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into new constant c¢; gives the solution as

zy+1
x2+1

C =

The solution becomes

aVvrzi+1-1

T

Summary
The solution(s) found are the following

Y= (1)
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Figure 32: Slope field plot
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Verification of solutions

Verified OK.

1.11.4 Maple step by step solution

Let’s solve
(@ +2)y +y=2
° Highest derivative means the order of the ODE is 1

/

Y
° Isolate the derivative
_ 1
V=@ e

. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y+ (z2+1) x21+1

° The ODE is linear; multiply by an integrating factor u(x)
() (3/ + z(m2+1)> = ;L?(ﬂ

o Assume the lhs of the ODE is the total derivative £ (u(z) y)
p(z) (y’ + m> =W (z)y + p@)y

o Isolate u'(x)

p(z) = 5(2?1)

° Solve to find the integrating factor

W) = 7=
° Integrate both sides with respect to x
J (& u(@)y) do = [ &de + e
° Evaluate the integral on the lhs
pu(x)y = "21)1 dz +c
° Solve for y
_ ;;fl dz+c1
o w(z)
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T

° Substitute u(z) = Joi 1

V241 (f z - dz+cl>

(124—1) 2

Y= z
° Evaluate the integrals on the rhs
Y= 241 (—xﬁ+c1)
° Simplify
_ caVz24+1-1
y=""7=

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

tdsolve((x‘3+x)*diff(y(x),x)+y(x)=x,y(x), singsol=all)

\/I2+101—1

X

y(z) =

v/ Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 23

LDSolve[(x“3+x)*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]

—14+cavz?2+1

T

y(z) =
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1.12 problem 3(a)

1.12.1 Solving aslinearode . . . . . .. . .. .. ... ... ... ... 146
1.12.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 148
1.12.3 Solvingasexactode . . ... ... ... ... ... ..., 152
1.12.4 Maple step by step solution . . . . . ... .. ... ... ... 157

Internal problem ID [3040]
Internal file name [OUTPUT/2532_Sunday_June_05_2022_03_18_27_AM_74647826/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 3(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

cot(z)y +y=z

1.12.1 Solving as linear ode
Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)
Where here

Hence the ode is
y' + ytan(z) = tan (z) x

The integrating factor u is

o= ef tan(z)dz

1
cos (z)
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Which simplifies to
p = sec ()

The ode becomes
2 () = (1) (tan (2) 2)
L (see (z) ) = (sec (¢)) (tan (2) 2)
d(sec (z) y) = (zsec (z) tan (z)) dz
Integrating gives

sec (z)y = /x sec (z) tan (z) dz

sec(z)y = #(w) — In (sec (z) + tan (z)) + &

Dividing both sides by the integrating factor u = sec (z) results in

X

v=cos(o) (2

— In (sec () + tan (x))) + ¢ cos (z)
which simplifies to

y = —In (sec (x) + tan (x)) cos (z) + ¢1 cos (z) + x

Summary
The solution(s) found are the following

y = —In(sec (z) + tan (x)) cos (z) + ¢; cos (z) + x
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Figure 33: Slope field plot

Verification of solutions

y = —1In (sec (z) + tan (z)) cos (z) + ¢1 cos (z) +

Verified OK.

1.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

0

Nz + W(ny - gx) - w2€y —wz€ —wyn

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 34: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = cos ()

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

$= [ La
n
1
- / cos (x)dy

_ Y
cos ()

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(ay) ==
Y= oot (z)
Evaluating all the partial derivatives gives

R,=1

R,=0

Sz = sec(z)tan (z)y

S, = sec ()

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as
JR = vsec (x) tan (x) (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
Fio Rsec (R) tan (R)

150



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

R
S(R) = s (B) In (sec (R) + tan (R)) + ¢; (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
x
ysec(z) = cos (@) In (sec (z) + tan (x)) + 1

Which simplifies to
In (sec (z) + tan (z)) +sec(z) (y—z) —c1 =0
Which gives

sec (z) z — In (sec (z) + tan (z)) + ¢
sec ()

y:

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)

transformation

T 45 — Rsec (R)tan (R)

cot(z) d

S
I

=¥

s
S nds
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;/»»/

o s
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t A2
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o nds
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ST
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v
|
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\
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(1)

sec (z)

sec (z) z — In (sec (z) + tan (x)) + ¢;

The solution(s) found are the following

Summary
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Figure 34: Slope field plot
dy
M N —==0
(z,9) + N(z,y) -
152

sec () z — In (sec (z) + tan (x)) + ¢

Y
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)

1.12.3 Solving as exact ode
To solve an ode of the form

Verification of solutions

Verified OK.



ode. Taking derivative of ¢ w.r.t.  gives

d
Hence 06 06d
Y
I T i A B
ox + Oy dz 0 (B)
Comparing (A,B) shows that
09
h N /s
ox
09
TN
Ay
But since % = (,;9; g; then for the above to be valid, we require that
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

Ef,: (ffy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(cot (z))dy = (—y + z) dz
(y —z)dz+(cot (z))dy =0 (2A)

Comparing (1A) and (2A) shows that

N(z,y) = cot ()
The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives

‘9_M_ﬁ( — )
oy oy
=1
And
ON 8

B g(COt (z))

= —csc(z)”

Since %—A; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
A- L (3_M _ 3_N)
N\ Oy ox

= tan (z) ((1) — (=1 — cot (z)?))

= 2tan (z) + cot (z)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
— oJAde

L
— ef2tan(m)+cot(m) dz

The result of integrating gives

w= e—2ln(cos(a:))+ln(sin(m))

_ sin(x)

 cos (z)?
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

_ sin(z) .
cos (z)? v -2)

= sec (z) tan (z) (y — x)
And
N =uN
sin (z)

= e )

= sec ()
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%:0
dz

(sec (z) tan (z) (y — z)) + (sec (z)) j—z =0

The following equations are now set up to solve for the function ¢(z,y)

00 —
g—z =M (1)
%y =N (2)
Integrating (1) w.r.t. z gives

1) —

9z dx = /Mdm

% dz = /sec (z)tan (z) (y — z) dz

¢ = 1n (sec (z) + tan (z)) + sec (z) (y — z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o =sec(a) + ) (@)
But equation (2) says that g—ﬁ = sec (). Therefore equation (4) becomes
sec (z) = sec (z) + f'(y) (5)
Solving equation (5) for f'(y) gives

flly)=0

Therefore
fly) =a
Where c¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = In (sec (x) + tan (z)) +sec (z) (y — z) + ¢
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

¢1 = In (sec (z) + tan (z)) + sec (z) (y — x)

The solution becomes

_ sec(z) z — In (sec(x) + tan (7)) + ¢1
sec (x)

Summary
The solution(s) found are the following

_ sec(z)z — In(sec (z) + tan (z)) + ¢,

= 1

Y sec (x) (1)
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Figure 35: Slope field plot

Verification of solutions

)= sec (z) z — In (sec (z) + tan (z)) + 1
sec (z)

Verified OK.
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1.12.4 Maple step by step solution

Let’s solve
cot(z)y +y==z
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
V= "am twm
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y+ @ = wi@
° The ODE is linear; multiply by an integrating factor u(x)
wa) (v + ey ) = H2
o Assume the lhs of the ODE is the total derivative - (u(z)y)
p(z )(y + Cot(x)> W (@)y + @)y’
e  Isolate y/(x)
w

MI(J;) = cotE:(Ex))

° Solve to find the integrating factor
wE) = o
° Integrate both sides with respect to x
J (& (@) y)) de = [ Ei5dr+ e
° Evaluate the integral on the lhs
o)y = [HDTqp 4 ¢

cot(z)
° Solve for y
_ [ go(t“?;; dz+c1
V="u
o Substitute u(z) = Cosl(m)

Y = COS (1’) (f Wdﬁl’ + Cl>
° Evaluate the integrals on the rhs

y = cos (z) (m In (sec (z) + tan (x)) + 01)
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° Simplify
y = —1In (sec (z) + tan (z)) cos (z) + ¢1 cos (z) +

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

tdsolve(cot(x)*diff(y(x),x)+y(x)=x,y(x), singsol=all)

y(z) = = + cos (z) (— In (sec (z) + tan (z)) + ¢1)

v/ Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 45

-

tDSolve[Cot[x]*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions -> True]

e—

y(z) = z + cos(x) <log (cos <g> —sin (g)) —log (sin (g) + cos <g>> + cl>
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1.13 problem 3(b)

1.13.1 Solving aslinearode . . . . . .. ... ... ... ... ... . 159
1.13.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 161
1.13.3 Solvingasexactode . . ... ... ... ... ... ..., 1651
1.13.4 Maple step by step solution . . . . . ... .. ... ... ... 1770

Internal problem ID [3041]
Internal file name [OUTPUT/2533_Sunday_June_05_2022_03_18_29_AM_13567649/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 3(b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

cot (z) y' +y = tan (z)

1.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y' +p(z)y = q(z)

Where here
p(z) = tan (z)
g(z) = tan (z)*

Hence the ode is

Yy +ytan (z) = tan (z)°

The integrating factor u is
o= ef tan(z)dz

1
cos (z)
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Which simplifies to
p = sec ()

The ode becomes
= () = (1) (tan (=)
%(see (z)y) = (sec (z)) (tan (z)?)
d(sec (z)y) = (tan (z)’sec (z)) d=
Integrating gives
sec(z)y = /tan (z)* sec (x) dz

sin (z)®  sin () _In(sec(z) + tan (z))
2 cos (z)? 2 2

sec(z)y = +c

Dividing both sides by the integrating factor u = sec () results in

sin (z)°  sin () _ In(sec(z) + tan (z))
2 cos (z)? 2 2

y = cos (z) ( > + ¢; cos (z)

which simplifies to

y= tan (z) In(sec(z) + tan (z)) cos (z)
2 2

+ ¢; cos (z)
Summary
The solution(s) found are the following

_ tan (z) _ In(sec(z) + tan (z)) cos (z)
2 2

+ ¢; cos (z) (1)
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Figure 36: Slope field plot
Verification of solutions
Y= tan (z) In(sec(z) + tan (z)) cos (z) + 1 cos (z)

2 2
Verified OK.

1.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

r_ Y= tan (1")
L — (x)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Ne +w(ny — &) — wzgy —wz§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 37: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = cos ()

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

$= [ La
n
1
- / cos (x)dy

_ Y
cos ()

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

__y—tan(z)
(AJ(IL‘,y) - cot (IL‘)
Evaluating all the partial derivatives gives
R,=1
R,=0
Sy = sec(z)tan (z)y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates

ds 2
iR- tan (z)” sec (z) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as

Fioh tan (R)” sec (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

_ sin(R)® | sin(R) _ In(sec(R) + tan (R))
S(R) = 2cos (R)’ 2 2

+c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

sin (z)®  sin () _ In(sec(z) + tan (z)) to

sec (z) =
ysec () 2 cos (z)? 2 2

Which simplifies to

In (sec (z) + tan (z)) N (2y — tan (z)) sec (z)

2 2 —a=0

Which gives

sec (z) tan () — In (sec (z) + tan (z)) + 2¢;
2sec (z)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ y—tan(z) ds __ 2
dr — cot(z) dR — tan (R) sec (R)
VPP ANV VPP ALY ANV N —=—\ Vs N——\
VPP ANAVN PP ANV NP AN AN N\ e N\
NP P ANANT AN A= P AN NN | b A L e
=ttt ANt P AN P AN N\ Ve N\
/H/\\J/x;)f/\\f?f/\\ﬂ NTNGERY AT A T NN
AR G RN NS RN SN N PR L ] N
frfm~stt 22Nttt N\ /2 N\
f ettt fmwt? N =\ s N\
tt sttt frgs—et t fors—rtt R_ N ——\ S f N\
; ;{4»%;% ; /»ﬁ;; ;‘/,M;;; ; = z;-b":_' ;.._..; ‘:_.._..é
I o S —— y—— b o b\ ——
SRCUVER G YRR ISR S (@)y NSNS B DO7N D v N
Pissof ittt ittt NSNS B 2 DR B Ny
PENS PN PN ] =\ Ve N\
PENNAL NN~ Pt AN S N\ f—t— S N\
IR R NAR AR YN N\ Aot S N\
PNt/ PPNV PN N\ St N——\
ENAYNZAPENAUN]Z PPV ANAT Y N\ f—=f N——\
PAYAVNAP VAN P VAN P lN—=—=N} A=t LN\t
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Summary
The solution(s) found are the following

sec (z) tan () — In (sec (x) + tan (z)) + 2¢;
y= (1)
2sec ()
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Figure 37: Slope field plot

Verification of solutions

_sec(z) tan (z) — In (sec (z) + tan (x)) + 2¢;
v= 2sec ()

Verified OK.

1.13.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

Y _o ()

NN%Q+JW%th

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
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ode. Taking derivative of ¢ w.r.t.  gives

d
Hence 06 06d
Y
I T i A B
ox + Oy dz 0 (B)
Comparing (A,B) shows that
09
h N /s
ox
09
TN
Ay
But since % = (,;9; g; then for the above to be valid, we require that
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

Ef,: (ffy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(cot (z))dy = (—y + tan (z)) dz
(y —tan (z)) dz +(cot (x))dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =y — tan (z)
N(z,y) = cot (x)
The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives

oM 0
— = —(y—tan(z
= 5 = tan (@)
=1
And
ON 0
B g(COt (z))

= —csc(z)”

Since %—A; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
A- L (3_M _ G_N)
N\ Oy ox
= tan (z) ((1) — (=1 — cot (z)?))

= 2tan (z) + cot (z)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

b= efAdm
— ef2tan(m)+cot(m) dz

The result of integrating gives

w= e—2ln(cos(a:))+ln(sin(m))

_ sin(x)

 cos (z)?
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
_ sin (z) an (1
cos (.’L')2 (y t ( ))

= sec (z) tan (z) (y — tan (x))
And
N =uN
sin (z)

= e )

= sec ()
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+ Nj—i =0
(sec (z) tan (z) (y — tan (z))) + (sec (z)) j—gyc =0

The following equations are now set up to solve for the function ¢(z,y)

op —
g—z =M (1)
oy = N (2)
Integrating (1) w.r.t. = gives
0¢ —
9z dz = / Mdz
% dz = /sec (z)tan (z) (y — tan (z)) dz
_In(sec(z) +tan (z)) = (2y —tan(x))sec(z)
= . n ¢ e )

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o =sec (@) + ) (@)
But equation (2) says that g—‘z = sec (). Therefore equation (4) becomes

sec (z) = sec (z) + f'(y) ()

Solving equation (5) for f'(y) gives
flly) =0

Therefore

fy)=a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

b= In (sec (m)2+ tan (z)) 4 (2y — tan éx)) sec (z) b

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

o = In (sec (x) + tan (x)) + (2y — tan (z)) sec (x)
2

The solution becomes

_ sec(z) tan (z) — In (sec (z) + tan (z)) + 2c1
y 2sec (z)

Summary
The solution(s) found are the following

sec (z) tan (z) — In (sec (z) + tan (z)) + 2¢;
y= (1)
2sec (z)
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Figure 38: Slope field plot
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Verification of solutions

_ sec(z) tan (z) — In (sec (z) + tan (z)) + 2¢,
2sec (z)

Verified OK.

1.13.4 Maple step by step solution

Let’s solve
cot (z)y' + y = tan (x)
. Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

Iy tan(z)
y = cot(z) + cot(z)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

__ tan(z)
y + cot (x) cot(z)

° The ODE is linear; multiply by an integrating factor u(x)

p(z) tan(z)
/’l’( ) (y + cot(a;)) T:ot(az)z

o Assume the lhs of the ODE is the total derivative £ (u(z) y)

@) (v + Gy ) = K@)y + u(@)y

e  Isolate y/(x)
W (@) = 55

° Solve to find the integrating factor
H (I) = cosl(m)

° Integrate both sides with respect to x
J (& (u(2)y)) de = [ 0P de + o
° Evaluate the integral on the lhs

wz)y = [ HEdy 4 ¢,

° Solve for y
_ MR dea
y u(@)
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e  Substitute pu(z) = —=

cos(x)

y = cos () <f de—l—cl)

cos(z) cot(z)

° Evaluate the integrals on the rhs

in(x)> sin(z n(sec(z)+tan(x
y = cos (z) (;wg(i)ﬁ (o) _ Infeec(s)+t ())+C1>

° Simplify
y= ta112(90) _ ln(sec(w)+t;n(x))°°s(w) + ¢y cos (x)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

tdsolve(cot(x)*diff(y(x),x)+y(x)=tan(x),y(x), singsol=all)

y(z) = tan2(x) _ cos () In (sec 2(x) + tan (z)) +cos(z) er

v/ Solution by Mathematica
Time used: 0.071 (sec). Leaf size: 25

LDSolve[Cot[x]*y'[x]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> Truel

y(z) — %(cos(z)(—arctanh(sin(a:))) + tan(z) + 2¢1 cos(z))
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1.14 problem 3(c)

1.14.1 Solving aslinearode . . . . . . . . .. .. ... ... ... .. 172l
1.14.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 174
1.14.3 Solvingasexactode . . ... ... ... ... ... ..., 178}
1.14.4 Maple step by step solution . . . . . ... .. ... ... ... 182

Internal problem ID [3042]
Internal file name [OUTPUT/2534_Sunday_June_05_2022_03_18_31_AM_93861156/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 3(c).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Yy tan (z) +y = cot (z)

1.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(2)

Where here

Hence the ode is
y' + ycot (z) = cot (z)*

The integrating factor u is

b= ef cot(z)dz

= sin ()
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The ode becomes
2 () = (1) (cot (2)?)
%(sin (z)y) = (sin (z)) (cot (z)?)
d(sin (z) y) = (cos (z) cot (z)) dz
Integrating gives
sin (z)y = /cos (z) cot (z) dz
sin (z) y = cos (z) + In (csc (z) — cot (z)) + ¢
Dividing both sides by the integrating factor u = sin (x) results in
y = csc (z) (cos (z) + In (csc (z) — cot (x))) + ¢1 csc (z)
which simplifies to
y = csc () (cos (z) + In (csc (z) — cot (z)) + ¢1)

Summary
The solution(s) found are the following

y = csc (z) (cos (z) + In (csc (z) — cot (z)) + ¢1) (1)
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Figure 39: Slope field plot
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Verification of solutions

y = csc () (cos (z) + In (csc (z) — cot (z)) + ¢1)
Verified OK.

1.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, _ y—cot(x)
Y= " tan (x)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €x) - wzé.y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 40: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
£(z,y) =0
1
= — Al

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

5= [ Lay
n
_ 1

/;dy

sin(z)

S is found from

Which results in
S =sin(z)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

__y—cot(z)
UJ(.’IJ,y) - tan (JJ)
Evaluating all the partial derivatives gives
R, =1
Ry=0
Sz = cos(z)y
Sy = sin (z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR

= cos (z) cot (x) (2A)

= cos (R) cot (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) = cos (R) + In (csc (R) — cot (R)) + ¢

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

ysin (z) = cos (z) + In (csc (x) — cot (x)) + &1

Which simplifies to

ysin (z) = cos (z) + In (csc () — cot (x)) + &1

Which gives

Y= cos (z) + In (csc (z) — cot (z)) + ¢

sin (z)

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical ) . .

. . . . ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)
transformation ’
dy __ _ y—cot(z) ds _
= 9% = cos (R) cot (R)
NAPPAVANZEHVAN AN e AN e
NAEENANZ VAN LN e R et A N
NP AN PANANZ TN AN N L e SRR
AR RN A P BOGYRNnntdi/ isnait R hma:
N ~ ~ —— 7 ~ A e
AR AN S U INNGA R AN DRGNS Ets S S
IS P N N o AN N e e
N RS R NSy i S e P Ve | e Y e
et e N | el (g R— A e Y I S SR
AR PRy || PRy R P = 3 BN | Y S BN
eIttt Iaa At e ol IR AR
s s . —— = —— 7 s A 7 e
/\\f?f/\x%Tf/\\r?f/\ »»/f&\»»X{f/»»/f&\ﬂﬂ
AN P AN P NN —— A f AN | f A
ANNAP P ANNYME P NN PN e AN\ e A
ANN=t P ANN A P AN AN = AN A
ZNANT I AN NN P AN == f AN f e 7
AR EERYASRIIEEA SRR A —— 7 AN\ A e
ANAVV PR ANV PP ANV AN = A AN\ A A
Summary

The solution(s) found are the following

_cos (z) +In (csc (x) — cot (x)) + 1

sin (z)
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Verification of solutions

Verified OK.

Figure 40: Slope field plot

_cos (z) +In (csc (x) — cot (x)) + 1

y_

sin (z)

1.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,y)

dy
35_0

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

< ow9) =0

06  0pdy _
oxr  Oydr
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(tan (z)) dy = (—y + cot (z)) dz
(y — cot (z)) dz +(tan (z))dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) =y — cot (z)
N(z,y) = tan (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
En 6_y(y — cot (z))
And
ON 0
B a(tan (z))
= sec ()
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Since %i; # %—N, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

am k(2 o)

- N Oy or
= cot (z) (1) — (1 + tan (z)?))
= —tan (z)

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is
—e JAdz

— ef—tan(:z:) dz

I

The result of integrating gives

1 = elneos(@))
= cos (z)

M and N are multiplied by this integrating factor, giving new M and new N which

are called M and N for now so not to confuse them with the original M and N.

= cos (z) (y — cot (z))
= (y — cot (z)) cos (x)

And

= cos (z) (tan (x))

= sin (z)
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+Nd—y=0
dz

((y — cot (z)) cos (z)) + (sin (z)) g_i =0

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~
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Integrating (1) w.r.t. z gives

@dx = /de
or

% dz = / (y — cot (z)) cos (x) dz

¢ =sin (z)y — cos (z) — In (csc (z) — cot (x)) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9 _ . :
oy~ on (z) + f'(y) (4)

o _

But equation (2) says that 37 = sin (z). Therefore equation (4) becomes

sin (z) = sin (z) + £/(4) 5)
Solving equation (5) for f’(y) gives

fly)=0

Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = sin (z) y — cos (z) — In (csc (z) — cot (x)) + &1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

¢; = sin (z) y — cos (z) — In (csc (z) — cot (z))

The solution becomes

Y= cos (z) + In (csc (z) — cot (z)) + ¢;

sin (z)
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Summary
The solution(s) found are the following

Y= cos (z) + In (csc (z) — cot (z)) + ¢1

sin ()
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Figure 41: Slope field plot

Verification of solutions

_cos (z) +In (csc (z) — cot (x)) + 1
v= sin ()

Verified OK.

1.14.4 Maple step by step solution

Let’s solve
y'tan (z) +y = cot (z)
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

182



cot(z)

y, = " tan(z) @ T tan(z)
Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

__ cot(z)

/
Y+ tan(z) ~ tan(z)

The ODE is linear; multiply by an integrating factor u(x)
p(z) (yl + taf(x)) ”(filf?%(x)

Assume the lhs of the ODE is the total derivative - (u(z) y)
(@) (¥ + o ) = W@y + ula) y

Isolate ()

w(x) = tgx(lg(ci)

Solve to find the integrating factor
p(z) = sin (z)

Integrate both sides with respect to x
J (& (ple) ) do = [ HET do + o
Evaluate the integral on the lhs

pz)y = [ wle) eot() o 4 e

tan(z)
Solve for y
[ M dater
y= ()

Substitute u(z) = sin (x)

f sin(z) cot(z) dz—+c;

tan(x)

y= sin(z)

Evaluate the integrals on the rhs

__ cos(z)+In(csc(z)—cot(x))+c
y= sin(zx) :

Simplify
y = csc () (cos (z) + In (csc (z) — cot (z)) + ¢1)
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(tan(x)*diff(y(x),x)+y(x)=cot(x),y(x), singsol=all)

y(z) = csc (x) (cos (z) + In (csc (z) — cot (z)) + ¢1)

v/ Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 29

LDSolve[Tan[x]*y'[x]+y[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True]

y(x) — csc(x) (cos(:c) + log (sin (;)) —log (cos (g)) + c1>
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1.15 problem 3(a)

1.15.1 Solving aslinearode . . . . . .. . .. ... ... ... ... . 185
1.15.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 187
1.15.3 Solvingasexactode . . ... ... ... ... ... ..., 191l
1.15.4 Maple step by step solution . . . . . ... ... ... ... ... 196

Internal problem ID [3043]
Internal file name [OUTPUT/2535_Sunday_June_05_2022_03_18_33_AM_46989943/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 3(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y' tan (z) —y = — cos (z)

1.15.1 Solving as linear ode
Entering Linear first order ODE solver. In canonical form a linear first order is
y +p(z)y = q(z)
Where here
p(z) = —cot (z)
q(z) = — cos (z) cot (z)
Hence the ode is
y' — ycot (z) = — cos (z) cot (z)
The integrating factor u is
o= ef—cot(:c)d:v
_ 1
sin (z)
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Which simplifies to
p = csc ()

The ode becomes

= () = (1) (— cos (z) cot (x))

%(CSC () y) = (csc(z)) (— cos (x) cot (x))
d(csc (z) y) = (—cot (z)*) dz

Integrating gives

csc(z)y = / —cot (z)° dz

csc (z) y = cot (z) — g +r4+ ¢
Dividing both sides by the integrating factor 4 = csc (z) results in

y = sin (x) <cot (z) — g + z) + ¢ sin (z)

which simplifies to
_ s
y = sin (z) (cot (z) — 5 +z+ cl)

Summary
The solution(s) found are the following

y = sin (z) <cot (x) — g +z+ c1>
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Figure 42: Slope field plot

Verification of solutions

: s
y = sin (z) <cot (x) — 5Tzt cl>
Verified OK.

1.15.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as
,__—y+cos(z)

- tan ()

Y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €z) - w2€y —wz§ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 43: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

$= [La
n
1
B / sin () ay

S is found from

Which results in

_ Y
sin ()

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

__—Y+cos(z)
w(x,y) - tan (x)
Evaluating all the partial derivatives gives
R,=1
R,=0
Sy = —csc(z) cot (z) y
Sy = csc(x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates

as 2

-~ 2A
iR cot (z) (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as

22— _cot(R)?
iR cot (R)

189



(4)

+R+Cl
§+ﬁr+cl
§+£U+Cl

™
™

™

2

2csc ()

cot (x) —
cot (z) —

cot (R) —

S(R)
csc(z)y
csc (x)y

The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
To complete the solution, we just need to transform (4) back to z,y coordinates. This

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Which simplifies to

results in
Which gives
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Summary
The solution(s) found are the following

—2cot (z) + 7 — 22 — 2¢4

2csc () (1)

y=—

f
710\
Sonnnnd/AR R RN
“HNN~~——~ 7 11V \\N\~——rrr
A\NNS~==/ 7 |\ \\~—=—7/ ]
VANNN==/ 711V \V\\~=—//1
— 21 VNN~ TV VN N\~=77 /1
LANNN~=7T 11V \\~—//711
LANNNS=7 11T P VNN~ 7 11
=H VNN VNN~
-3 -2 =1 0 ] 2 3

Figure 43: Slope field plot

Verification of solutions

_ —2cot(z) + T — 2z —2¢
2csc ()

Verified OK.

1.15.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

Y _o ()

-M@WW+N@th

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
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ode. Taking derivative of ¢ w.r.t.  gives

d
Hence 06 06d
Y
I T i A B
ox + Oy dz 0 (B)
Comparing (A,B) shows that
09
h N /s
ox
09
TN
Ay
But since % = (,;9; g; then for the above to be valid, we require that
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

Ef,: (ffy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(tan (z))dy = (y — cos (z)) dz
(—y + cos (z))dz +(tan (z))dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —y + cos (z)
N(z,y) = tan ()

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives

And

Since %—A; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
A— L (3_M _ 5‘_N>
N\ Oy ox

= cot (z) ((=1) — (1 +tan (z)*))

= —2cot () — tan ()
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

o= efAda:
— ef —2cot(z)—tan(z) dz
The result of integrating gives
w= e—2ln(sin(z))+ln(cos(m))
_ cos(x)
sin (z)?

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

_ cos(z)

A

= —cot (z) (csc (z) y — cot (x))
And

~—~

_ cos(x) an (x
= o tan ()

= csc ()
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+Nd—y=0
dz

(—cot (z) (csc (z) y — cot (x))) + (csc (z)) j—gyc =0

The following equations are now set up to solve for the function ¢(z,y)

0 —
% o
0 —
=N @)
Integrating (1) w.r.t.  gives

a¢ _

9z dz = / M dz

% dz = / _ cot (z) (csc () y — cot (z)) dz

¢ =—x —cot(z) +csc(x)y+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o = e (@) + ) (@)
But equation (2) says that g—ﬁ = csc (). Therefore equation (4) becomes
csc (z) = csc () + f'(y) (5)
Solving equation (5) for f'(y) gives

flly)=0

Therefore
fly) =a
Where c¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =—x—cot(z)+csc(z)y+c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

c1 = —x — cot (x) + csc (z) y

The solution becomes
_cot(z)+z+c
B csc (x)

Summary
The solution(s) found are the following

_cot(z)+z+c
N csc ()

(1)
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Figure 44: Slope field plot

Verification of solutions

_cot(z)+z+c
N csc (z)

Verified OK.
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1.15.4 Maple step by step solution

Let’s solve
y'tan (z) —y = — cos (x)
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative

r_ _y _ cos(x)
y= tan(z) tan(z)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

r__y __ _ cos(z)
Y tan(z) ~  tan(z)

° The ODE is linear; multiply by an integrating factor u(x)
(@) (v = ) = =+

o Assume the lhs of the ODE is the total derivative - (u(z) y)
p(z) (y’ ﬁ) () y + )y

e  Isolate y/(x )

(.’L') tan(a:)
° Solve to find the integrating factor

M(J?) = sinl(x)

° Integrate both sides with respect to x
[ (E(u(x)y) do = [ —%&S)(z)dx +c

° Evaluate the integral on the lhs
p)y= [ - —u@)eos(@) o 1 ¢

tan(z)

° Solve for y

_ MG deta

y= u()
. _ 1

o Substitute u(z) = 5

= sin (z) <f —Sm(f%dx + cl>
° Evaluate the integrals on the rhs

y = sin (z) (cot (z) + = + ¢1)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve(tan(x)*diff(y(x),x)=y(x)-cos(x),y(x), singsol=all)

y(x) = (cot (x) — g +x+ cl> sin ()

v Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 28

LDSolve[Tan[x]*y'[x]==y[x]—Cos[x],y[x],x,IncludeSingularSolutions -> Truel

1 1
1,-,— tan2(a:)) + ¢; sin(z)

y(x) — cos(z) Hypergeometric2F1 (—5, 5
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1.16 problem 4(a)

1.16.1 Solving aslinearode . . . . . .. ... ... ... ... ... . 198]
1.16.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 200
1.16.3 Solvingasexactode . . ... ... ... ... ... ..., 204
1.16.4 Maple step by step solution . . . . . ... .. .. ... ... .. 208]

Internal problem ID [3044]
Internal file name [OUTPUT/2536_Sunday_June_05_2022_03_18_36_AM_93063267/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 4(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y' + cos (z) y = sin (2z)

1.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(z)

Where here

p(x) = cos (z)
q(z) =sin (2z)
Hence the ode is
y' + cos (z) y = sin (2z)

The integrating factor u is

b= ef cos(z)dz

— esin(:t:)
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The ode becomes

() = (1) sin (20))

d sm(x) sin(z) .
4 (gintony) = (e409) (sin (22))
d(e"*®y) = (sin (22) e™®) dz
Integrating gives
@)y — / sin (2z) €@ dg

sin(z)

@)y — 2sin (z) 0@ — 2@ 4 ¢

Dividing both sides by the integrating factor u = e*™® results in
y = e 5@ (2 sin (z) 2@ — 2 esin(x)) + ce 5@

which simplifies to

— sin(x)

y =2sin(z) — 2+ ce

Summary
The solution(s) found are the following

y = 2sin (z) — 2 4 ¢;e” 5@ (1)
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Figure 45: Slope field plot
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Verification of solutions

y = 2sin (z) — 2 4 ¢;e~ 2@
Verified OK.

1.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = —cos (z) y + sin (2z)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W("?y - &) — w2£y —we§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 46: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S = / —dy
n
1
:/e—sin(m)dy

S = esin(z) y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —cos (z) y + sin (2z)

Evaluating all the partial derivatives gives

R,=1

R,=0

S, = cos (z) e™@y
S, = @

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds -
iR- sin (2x) e50(®
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

d .
% = sin (2R) "B
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by

(24)
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
S(R) = ¢; + 2B (1 4 sin (R)) (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

@y = 2652 (sin (z) — 1) + ¢
Which simplifies to
@y = 2652 (sin (z) — 1) + ¢
Which gives
y = e~ ") (25in (z) @ — 2@ 4 ¢;)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)
transformation ’

dy _ i S _ i sin(R

= —cos(z)y +sin (2z) 43 — sin (2R) e¥2®)
NALE PP ANV VNSNS PPN F AN SN SN i NN S
NP PR EANVA NS F AN AN SRt NN
e A A A A A A NN\ Nm el 7 AN\ e s
~=/ PP P ANNN NN AN NN T m a7 AN e
‘“”/fffy’)g\\\\\‘”/fff/’\ 7N\ N R:Z\\///\\\//—v\»
*—’/’/"ff/n VA N AN NN\ N a7 A AN\ T
——m AL L AN KN A A A AN NN a7 A AN\ e e
e 7 L L AN N T A TN N e N D B e ot
e f NN N A N PN a7 £ AN\ Sa
N T A TN NN T N T A TN R==x NN\ Nl £ AN\ S e
NN NN S NS . FNSyg oty —Sol 7 S g N\ ey
O NS N S = esin@)y NN e e PN e A —ee
AN\ N e A A A AN NN N Tl 7 AN T
ZANN N N A S AN\ e R e e N N
NN NN N A AL AN YN NN N f AN e
INNYNNS= ML AN VN e NN N a7 S AN\ e
NV YV AL P ANV VN e AN\ N Tl 7 AN\ e
ANV Y NNNAZ PPN Y LY A NN T —aaalt AN\ e e
INAVAV VNSNS PPNV LV AN A S e AN N S e

Summary

The solution(s) found are the following

y=e" sin(z) (2 sin (.’E) esin(z) —9 esin(:/v) + cl)
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Figure 46: Slope field plot

Verification of solutions

y=e" sin(z) (2 sin (IE) esin(ac) -9 esin(w) + Cl)
Verified OK.

1.16.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,9) 2 =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 04d
Yy _
Oox + oydr 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—cos (z) y + sin (2z)) dz
(cos(z)y —sin (2z))dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = cos (z) y — sin (2x)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
- _ = —sin (2
o~ (cos (z) y —sin (2z))
= cos ()
And
oN _ 2
or Oz
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2o

- N Oy Ox
= 1((cos (z)) — (0))
= cos ()

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
—e J cos(z) dz

The result of integrating gives
= esin(x)

— esin(m)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M =uM
= ¥ (cos () y — sin (2x))
= &"@) cos (z) (—2sin (z) + y)
And

N = uN
— esin(m)(l)

— esin(ac)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M + Nd—y =0
dx
sin(z) : sin(z) dy
(e cos (z) (—2sin (z) + y)) + () P 0
The following equations are now set up to solve for the function ¢(z,y)
op —
— =M 1
e (1)
oy —
T —N 2
o &)
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Integrating (1) w.r.t. z gives

09 . [+
%dx—/de

9¢

o dz = /esm(””) cos (z) (—2sin (z) + y) dz

¢ = (y — 2sin (z) + 2) @ + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

0¢ ;
Z¥ _ osin(@) / 4
50— e 1 () (@
But equation (2) says that g—z = e*n(®), Therefore equation (4) becomes
esin(z) — esin(a:) + fl(y) (5)

Solving equation (5) for f'(y) gives
f'ly)=0

Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = (y — 2sin (z) + 2) 0@ 4 ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

¢ = (y — 2sin (z) 4 2) 2@

The solution becomes

y=e" sin(x) (2 sin (.’L‘) esin(m) -9 esin(z) 4+ 01)
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Summary
The solution(s) found are the following

y=e" sin(z) (2 sin (.’E) esin(x) -9 esin(ar:) + Cl) (1)
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Figure 47: Slope field plot

Verification of solutions

y=e" sin(z) (2 sin (.’E) esin(ac) -9 esin(x) + Cl)
Verified OK.

1.16.4 Maple step by step solution

Let’s solve
y' + cos (z) y = sin (2x)
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

/

y' = —cos (z) y + sin (2z)
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° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y' + cos (z) y = sin (2z)

° The ODE is linear; multiply by an integrating factor u(x)
() (' + cos (z) y) = p(x) sin (2z)

o Assume the lhs of the ODE is the total derivative £ (u(z) y)
u(z) (Y + cos (2) y) = p'(z) y + (@) y'

e  Isolate p/(x)
W' (z) = p(x) cos ()

° Solve to find the integrating factor
p(z) = e

° Integrate both sides with respect to x
[ (& (ulx)v)) de = [ p(a)sin (20) dz +

° Evaluate the integral on the lhs
u(@)y = [ p(@)sin (22)do + cx

° Solve for y

_ | p(=z)sin(2z)dz+c1
y= (@)

o Substitute u(z) = e®
_ [ sin(2z)es™(®) dz+tc;

y (@)
. Evaluate the integrals on the rhs
_ 2sin(x)esin(®) _2sin(®) ¢
Y= osin(z)
. Simplify

y = 2sin (z) — 2 + ¢ e~ 5@

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve (diff (y(x) ,x)+y(x)*cos(x)=sin(2*x),y(x), singsol=all) J

y(z) = 2sin (z) — 2 4 e~ 52@)¢,

v/ Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 20

LDSolve [y' [x]+y[x]*Cos [x]==Sin[2*x] ,y[x] ,x,IncludeSingularSolutions -> True] J

y(z) — 2sin(z) 4 c;e” 0@ — 2
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1.17 problem 4(b)

1.17.1 Solving aslinearode . . . . . . . ... .. ... ... ... ... 211
1.17.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 213]
1.17.3 Solvingasexactode . . ... ... ... ... ... ..., 217
1.17.4 Maple step by step solution . . . . . ... ... ... ...... 227

Internal problem ID [3045]
Internal file name [OUTPUT/2537_Sunday_June_05_2022_03_18_38_AM_92517129/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 4(b).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y cos (z) + y = sin (2z)

1.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(2)

Where here

Hence the ode is
y' + ysec(z) = 2sin (z)

The integrating factor u is

L= ef sec(z)dz

= sec (z) + tan (z)
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1)

(sec (z) + tan (x)) (2sin (x))
((2sin (z) + 2) tan (z)) dz

—2sin (z) —2In(sin(z) — 1)+ ¢

/ (2sin (z) + 2) tan (z) dz

(uy) = (u) (2sin (z))

dz

S~~~ NNN\\NWVNV
77777 ~~~~~N\\V1 /]
1111111 ~~~~\\/ - r—m—m————
111111111 -~\/
LLLLLLL \1\ /l/llll/ll’l’l'l'l'l'
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\\\\\ —_—— =7 ] \_ NN SN S
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1111111 ~\/,——— =
A SN J ST =~
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—2sin (z) — 2In (sin (z) — 1)

((sec (z) + tan (z)) y)

d((sec (z) + tan (2)) )
(sec(z) + tan (z))y
(sec(z) + tan (z))y

dx
Dividing both sides by the integrating factor u = sec (z) + tan (x) results in

The solution(s) found are the following

Integrating gives

The ode becomes
Summary

T T T T
o — N on

X

Figure 48: Slope field plot
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Verification of solutions

_ —2sin () —21n (sin (z) — 1) 1

sec (z) + tan () e (x) + tan (x)
Verified OK.

1.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,  —Yy+sin(2z)
Y=—"—"7
cos ()
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - é.m) - w2£y - sz —Wyn = 0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 49: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
1

n(z,y) =

sec (z) + tan ()

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

214



canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

S is found from

sec(z)+tan(z)
Which results in

S = (sec (x) + tan (z)) y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_ —y+sin(22)
CU(.’L‘,y) - COS(CI?)
Evaluating all the partial derivatives gives

R, =1
Ry =0

- ¥
S = sin (z) — 1

S, = sec (z) + tan (z)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS _ tan(z)(cos(z) + 1 +sin (z))?

dR cos(z) + 1 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS _ tan(R)(cos(R)+1+4sin (R))?
dR cos(R) +1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) = —2sin(R) —2In(sin(R) — 1) + ¢

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

(sec(z) +tan(z))y
Which simplifies to

(sec (z) +tan(z))y
Which gives

__2sin(z) +2In(sin(z) — 1) —a

sec (z) + tan (z)

—2sin(z) —2ln(sin(z) — 1) + ¢

—2sin (z) —2In(sin(z) — 1)+ ¢

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’
dy _ —y+sin(2z) dS __ tan(R)(cos(R)+1+sin(R))?2
dz = cos(z) drR — cos(R)+1

Ve rrt vyttt rttd TR TR St N e i B B
L A A A A O VO O O A A TR T St e i B B
L N A A A S S S O OO VR S A A Pl Ve rr—dd s f ]\ e
L O A A A A O VOV O O S A IR St N gy i B RN S
Lff/‘f/‘yfxt)\;\\q\Lffff/‘T& ?L\a\/';gj: R A B R T e
REE RN AR NN RN N NI R ST I I S .
VPP A2 AP L VEINNVE LA A IR et N g L B R e
D e R RN D R T IR TR Sttt e i B e
AP 2NN NN A NN =T flANT a7 f ] A v e
EEENS DA A RN RO I ¢ BN AN A NS Sae
PASSAN VL P2 SN (z) + (z) Pl 11 VRS S
PANNNYYE P 242 P UNN NV L] Pl Vool s f ]\ arr e
FAYNNYY Y A2 PP VNN N TR TR St e g i B R
IR R R R R Pl ANT =l m f ] Vo
N RN LRI St N g i B B
IEE R R TR TR St e e N gy i B
IEEEEE RN Pl AN = m f ] Ve
IR IR RN (TR St N el A B B

Summary

The solution(s) found are the following

__2sin (z) +2In(sin(z) — 1) — ¢

sec (z) + tan (z)
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Figure 49: Slope field plot

Verification of solutions

i
Q
_
~
L
_\./
53
|
Sl g
g+~
o=
Z|+
=S
2(
Q
gk
8
N—r
=l
o=
2]
N
_
|
=

Verified OK.

1.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y)+ N(@,y) 2 = 0

0

d(z,y) =

a
dzx
99

ode. Taking derivative of ¢ w.r.t. x gives

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(cos (z)) dy = (—y +sin (2z)) dz
(y —sin (2z)) dz +(cos (z))dy = 0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) =y — sin (2z)
N(z,y) = cos (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
e — Z(y—sin(2
= 5y —sin (22))
And
ON 0
or &(COS (z))
= —sin ()
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

= 1 /OM ON

N\ dy ox

= se (z) (1) = (—sin (2))

= sec (z) + tan (z)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

b= efAdm

— ef sec(z)+tan(z) dz
The result of integrating gives

= eln(sec(x)—i—tan(w))—ln(cos(:c))

_ sec(z) + tan ()
cos ()

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = puM
= ¢ (xc)o:(:)m (z) (y — sin (2z))
—y + 2sin (x) cos (x)
sin (z) — 1

And

N = uN
_sec (x) + tan ()
cos ()
= sec (z) + tan (z)

(cos (z))

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+ _j—i =0
—y + 2sin (x) cos (x) dy _
( sin (2) -1 ) + (sec (z) + tan (z)) I = 0
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The following equations are now set up to solve for the function ¢(z,y)

0p —
g—x =M (1)
¢ ~

Integrating (1) w.r.t. z gives

0¢ [~
B_mdx_/de

@d _/—y—i-ZSin(z)cos(a:) dz

oz sin (z) — 1

4tan (5 x\? L
— L))z_th (sec <§> ) 2—y)—|—4ln (—1+tan <§>> +1®)

_1+tan(§ _—1+ta,n(§

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0p 2 )
a—y——m‘i‘f(y) (4)

But equation (2) says that g—ﬁ = sec (z) + tan (z). Therefore equation (4) becomes

sec (z) + tan (z) = 2 W) (5)

_—1 + tan (%

Solving equation (5) for f'(y) gives

,y _ tan(z)tan (Z) + sec (z) tan (%) — tan (z) — sec (z) + 2
fly) = —1+ tan (%)

=-1

Integrating the above w.r.t y results in

/f’(y) dy = /(—1)dy

fly)=—y+a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

4 z
- ::;ln((z%)) —2In (sec <g>2) - +2th_(§) +4In (—1 + tan (g)) —y+a

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

4
= . +t::n((2§) —2In (sec <§>2) — ﬁin(%) +4In (—1 + tan <g>> —y

The solution becomes

y =
2tan (%)3 In (sec (%)2) — 4tan (g)?’ In (—1+tan (%)) + tan (%)3 c; — 2tan (%)2 In <sec (%)2> +4t
Summary
The solution(s) found are the following
y= (1)

2tan (g)?’ In (sec (%)2) — 4tan (%)3 In (—1+tan (%)) + tan (%)3 c; — 2tan (%)2 In <sec (%)2> +4t
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Figure 50: Slope field plot

sin(2z)
cos(z)

sin(2z)
cos(z)

)3 In <sec (

cos(z)

Yy
cos(z)

Highest derivative means the order of the ODE is 1
Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y' cos (z) + y = sin (2z)
Isolate the derivative

Let’s solve
Yy =-
Y+

1.17.4 Maple step by step solution

Verification of solutions
Verified OK.



° The ODE is linear; multiply by an integrating factor u(x)
(o) (o + sy ) = H

o Assume the lhs of the ODE is the total derivative - (u(z) y)
w(@) (v + o) = K@)y + @)y

e  Isolate p/(x)
w(z) = L2

cos(z)

. Solve to find the integrating factor
p(z) = sec (x) + tan (x)

° Integrate both sides with respect to x
[ (£ (u(z)y)) de = [ M) gy

° Evaluate the integral on the lhs
pz)y= [ pe)sine) g, 4 o

" cos(z)
° Solve for y
I ke
y= u(z)

) Substitute pu(z) = sec (x) + tan (x)
f (sec(z)+tan(z)) sin(2z) de+cq

cos(x)

y= sec(z)+tan(z)
° Evaluate the integrals on the rhs
_ —2sin(z)—2In(sin(z)—1)+c1
y= sec(z)+tan(z)
° Simplify
(—2sin(z)—2In(sin(xz)—1)+c1)(cos(z)—sin(z)+1)
y= cos(z)+1+sin(z)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

Ldsolve (cos(x)*diff (y(x),x)+y(x)=sin(2*x),y(x), singsol=all) J

(cos(z) —sin (z) + 1) (—2sin (z) — 2In(sin(z) — 1) + ¢1)
cos (z) +sin (z) + 1

y(z) =

v/ Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 42

LDSolve [Cos[x]*y' [x]+y[x]1==Sin[2*x],y[x],x,IncludeSingularSolutions -> Truel J

y(z) — ¢ 22rctanh(tan(3)) (—2 sin(z) — 4log (cos (g) — sin <g>> + cl>
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1.18 problem 4(c)

1.18.1 Solving aslinearode . . . . . . . ... ... ... ... ... . 225
1.18.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 227
1.18.3 Solvingasexactode . . ... ... ... ... ... ..., 2311
1.18.4 Maple step by step solution . . . . . ... ... ... ... ... 235

Internal problem ID [3046]
Internal file name [OUTPUT/2538_Sunday_June_05_2022_03_18_40_AM_54738457/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 4(c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y' + ysin (z) = sin (2z)

1.18.1 Solving as linear ode
Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(z)

Where here

p(z) = sin (z)

q(z) =sin (2z)
Hence the ode is

y' + ysin (z) = sin (2z)

The integrating factor u is

b= ef sin(z)dz

—e cos(x)
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The ode becomes

() = (1) sin (20))

4 (o) = (e (sim (20))
d(e”**®@y) = (sin (2z) e~ @) dz

Integrating gives

e~ cs(@y — / sin (2z) e~ <@ dz

e” @y = 2 cos (x)e” cos(z) 4 9 g c0s(®) 4 ¢
Dividing both sides by the integrating factor p = e~ °*® results in

y = e() (2cos (z) e~ cos(@) 4 9 o~ cos(x)) + ¢e5()
which simplifies to
y = ¢1e°® 4 2cos () + 2

Summary
The solution(s) found are the following

y = ;6@ + 2cos (z) + 2 (1)
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Figure 51: Slope field plot
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Verification of solutions

y = ;6@ + 2cos (z) + 2
Verified OK.

1.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = —sin (z) y + sin (2z)
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W("?y - &) — w2£y —we§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 52: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
’l’](.’E, y) — ecos(x) (Al)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S = / —dy
n
1
:/ecos(m)dy

S =e" cos(w)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —sin (z) y + sin (2z)

Evaluating all the partial derivatives gives

R,=1
R,=0
S, = sin (z) e~ =@y

Sy — e cos(z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dsS
R sin (2z) e~ <@ (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
oG —cos(R)
Jp = Sin (2R)e

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = ¢; +2e~ B (1 4 cos (R)) (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

e @y = 2e7@) (cos (2) + 1) + 1
Which simplifies to
(y —2cos (z) —2)e =@ —¢; =0
Which gives
y = e (2 cos (z) e~ cos(z) 4 9 e cos(@) 4 cl)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)
transformation ’

dy __ : : as _ o3 —cos(R

% = —sin(x) y + sin (2z) 95 — sin (2R) e~ *5(R)
VEANAP PP A NN VAN ! NN S A NN S
VYANZA PP P2 NV VAN R L T A et S e O NN
NVANZA PP P2 AN NN AN ANAN S At NN NS
VAYANA PP sV AN NN A NN S
&&\\/ffj/”*\¥¥¥\/fff }\\\/?WQ\‘)/}\\\ff/\
NN 2 I NN B NN NN I
A e e NN D NN e NN S S
NN\NNAS S AN N NN S S NN/ Al s NN S
e I O N B T T A g AN I I ANCNCN B S5 AN I O
B N ) N NN S R:.’L' B ARV A S S Rt SRV A
g~ r N B S ] BN VANV Y S ESCSE e S SA Wl SR
/”\\”ﬂ\\\\///”\tjc\”/"\ S=e—COS(KZJ)y B R R WA e S S g N WA AN
e N N e ﬂ\\\/)‘/\\»»/ﬂ\\R\//‘/\
e N e " NN SN
frAA=—=NNNN|A P 7=\ NN S AT N NN
SN P e N B e O e N
PEASNAV MNP N NN e NN
PRZ NN ML E 2NN NN s r SN
P2 NV VAN 7 2NV ANNN S A NN NS S
[ AN T R TN DA S b i N NN A NN

Summary
The solution(s) found are the following
__ cos(z) — cos(z) — cos(z)
y = e (2cos (z)e +2e +c1) (1)
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Figure 52: Slope field plot

Verification of solutions

y= ecos(ac) (2 cos (.’L’) e cos(z) +2e” cos(z) + Cl)
Verified OK.

1.18.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,9) 2 =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 04d
Yy _
Oox + oydr 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—sin (z) y + sin (2z)) dz
(sin (z)y —sin (2z))dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M (z,y) = sin (z) y — sin (2z)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
%—J\y/[ = aﬁy(sin (x)y — sin (2z))
= sin (z)

And

oN _ 2

or Oz

=0
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 o)

- N oy ox
= 1((sin (z)) — (0))
= sin ()

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
—e [ sin(z) dz
The result of integrating gives
p=e" cos(z)
— e cos(x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = uM

= e~ @ (sin (z) y — sin (2z))

= e @ gin (z) (=2 cos (z) + ¥)
And

N =uN
—e cos(z) (1)

— cos(z)

=€

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M + N% =0
dx
—cos(z) — cos(z) dy
(e sin (z) (—2cos (z) +y)) + (e ) = 0
The following equations are now set up to solve for the function ¢(z,y)
op —
— =M 1
e (1)
oy —
T —N 2
o &)
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Integrating (1) w.r.t. z gives

%dx = /de
or

% dz = /e_ cos(2) sin (z) (—2 cos () + y) dz

¢ = (y—2cos (z) —2)e” @ + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

B = 4 1) (@

But equation (2) says that g—z = e~ (@), Therefore equation (4) becomes

I~ cos(z) _ e~ cos(x) + f/(y) (5)

Solving equation (5) for f'(y) gives
f'ly)=0

Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = (y — 2cos (z) — 2) e @ 4 ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as
— cos(z)

c1=(y—2cos(z)—2)e

The solution becomes

y= ecos(:n) (2 cos (.’L') e cos(z) +2e” cos(z) 4+ 01)
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Summary
The solution(s) found are the following

y = ecos(:l:) (2 cos (.’E) e cos(z) +2e” cos(z) + Cl) (1)
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Figure 53: Slope field plot

Verification of solutions

y= ecos(ac) (2 cos (.’ﬂ) e cos(z) +2e” cos(z) + Cl)
Verified OK.

1.18.4 Maple step by step solution

Let’s solve
y' + ysin (z) = sin (2x)
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

/

y' = —ysin (z) + sin (2z)
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° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y' + ysin (z) = sin (2z)

° The ODE is linear; multiply by an integrating factor u(x)
w(z) (y + ysin (z)) = p(z) sin (2z)

o Assume the lhs of the ODE is the total derivative £ (u(z) y)
w(z) (' +ysin (z) = p'(z) y + p(z) ¥’

e  Isolate p/(x)
' (z) = p(z)sin (z)

° Solve to find the integrating factor
u(z) = e~ cos(@)

° Integrate both sides with respect to x
[ (& (ulx)v)) de = [ p(a)sin (20) dz +

° Evaluate the integral on the lhs
u(@)y = [ p(@)sin (22)do + cx

° Solve for y

_ | p(=z)sin(2z)dz+c1
y= (@)

) Substitute u(z) = e~ @
_ J sin(2z)e™ cos(2) drtcq

Y o— cos(z)
o Evaluate the integrals on the rhs
__ 2cos(x)e™ ©0s(z) 49 e~ cos(@) ¢y
y= o— cos(@)
° Simplify

y = 1@ + 2cos () + 2

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve (diff (y(x) ,x)+y(x)*sin(x)=sin(2*x),y(x), singsol=all) J

y(z) = 2cos (z) + 2 + @ ¢

v/ Solution by Mathematica
Time used: 0.075 (sec). Leaf size: 18

LDSolve [y' [x]+y[x]*Sin[x]==Sin[2*x] ,y[x] ,x,IncludeSingularSolutions -> True] J

y(z) — 2cos(x) + c1e°® 42
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1.19 problem 4(d)

1.19.1 Solving aslinearode . . . . . . . . .. .. ... ... ... ... 238]
1.19.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 2400
1.19.3 Solvingasexactode . . ... .. ... ... ... ... . 247
1.19.4 Maple step by step solution . . . . . ... .. ... ... ... 249

Internal problem ID [3047]
Internal file name [OUTPUT/2539_Sunday_June_05_2022_03_18_43_AM_65009450/index . tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 4(d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y'sin (z) + y = sin (2z)

1.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(2)

Where here

Hence the ode is
y' + csc(z)y = 2cos ()

The integrating factor u is
b= ef csc(z)dz

= csc (x) — cot (z)
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The ode becomes
d
_— = 2
L (uy) = (1) (2c05 (@)

() y) = (csc () — cot (x)) (2 cos (x))
(z))y) = ((—2cos (z) + 2) cot (z)) dz

a((csc (x) — cot
d((csc (z) — cot

Integrating gives
(csc(z) —cot (z))y = / (—2cos (z) +2) cot (z) dz
(csc(z) —cot (z))y = —2cos (z) + 21In (cos (z) + 1) + ¢

Dividing both sides by the integrating factor u = csc (z) — cot (z) results in
_ —2cos (z) +2In(cos (z) + 1) c1

csc (z) — cot () csc (z) — cot ()
which simplifies to
y =csc(z) (—2cos (z) + 2In(cos (z) + 1) 4+ ¢1) (cos (z) + 1)

Summary
The solution(s) found are the following

y = csc(x) (—2cos (z) + 21In (cos () + 1) + ¢1) (cos (z) + 1) (1)
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Figure 54: Slope field plot
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Verification of solutions

y = csc(x) (—2cos (z) + 21In (cos () + 1) + ¢1) (cos (x) + 1)
Verified OK.

1.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, —y+sin(2z)
y=——
sin (z)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €x) - wzé.y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

240



Table 55: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(x,y) = csc(z) + cot (x)

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

241



canonical coordinates, where S(R). Since £ = 0 then in this special case
R==x

S is found from

csc (z) + cot (z) @

Which results in

_ y
csc (x) + cot (z)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +tw(z,y)S,
dR R, +w(z,y)R,

(2)

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—y + sin (2z)

wiz,y) = sin (z)

Evaluating all the partial derivatives gives

R, =1
R,=0
_ oy
cos(z)+ 1
_ 1
V" csc(x) + cot ()

T

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as sin (2z)

dR ~ cos (x)+1 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS _ sin(2R)
dR  cos(R)+1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —2cos(R) +2In(cos(R)+1) + 1 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
)
csc (z) + cot (x)
Which simplifies to

= —2cos(z) +2In(cos(z) + 1) + ¢;

Y
csc (z) + cot (x)

= —2cos(z)+2In(cos(z)+ 1)+ ¢
Which gives
y = —2cos (z) cot (z) — 2 cos (x) csc (z) + 21n (cos (x) + 1) cot (x) + ¢; cot (z) + 21n (cos (z) + 1) csc (z)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R,S)
transformation ’

dy __ —y+sin(2z) ds __ sin(2R)

dz —  sin(z) dR = cos(R)+1
e IR EE N ANV Y PP s N L
R R S R T A D S S Pt i NN A i S N
N SN RN, R N IR N I N
NERE RN IR I RERE RN EY PO R RSt pit § B R Tt
™ NaalT T Ny S
ERREY S IR NS SNy T SRS s
NNV VP AP ANNN VLAY P L RN e S et N B AN
DRI e A A AR A E R S S ot A NN R N
=N b A s f NN e R=zx R L RS S et AN SN
5N VNN A SN N e TR I A S S et S T
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Summary
The solution(s) found are the following
y = —2cos () cot (x) — 2cos (z) csc (z) + 21In (cos (z) + 1) cot (x) (1)

+ ¢ cot (z) + 21n (cos (x) + 1) csc (z) + ¢; csc (x)
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dz
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Figure 55: Slope field plot
dy
M N = =
(@,9) + N(z,y) -~ =0

Verification of solutions

y = —2cos (x) cot () — 2cos (z) csc (x) + 21n (cos (z) + 1) cot (z)
+ ¢ cot (z) + 21n (cos (x) + 1) csc (z) + ¢; csc (x)

Verified OK.

1.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

Hence



Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(sin (z))dy = (—y + sin (2z)) dz
(y —sin (2z)) dz +(sin (z)) dy = 0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) =y — sin (2z)
N(z,9) = sin (2)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
27— 2 (y—sin(2
= 5y —sin (22))
And
ON 0,
or 8—x(31n (z))
= cos (z)
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A 1 /0M ON
N\ dy Oz
= csc (z) ((1) — (cos (z)))
= csc (z) — cot (x)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
p=e JAdx
_ ef csc(z)—cot(z) dz
The result of integrating gives
— e~ In(sin(z))—In(csc(z)+cot(x))
. 1
~ (csc(z) + cot (x)) sin ()

L

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M= 'u,M
1 .
N (csc (z) + cot (z)) sin (z) (y — sin (2z))
_ Yy — 2sin (z) cos (z)

cos(z) +1

And

N =uN
_ 1
"~ (esc(z) + cot (z)) sin
_ 1
~ csc(z) + cot (z)

2 (in @)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N-==
+N =0

(y - ij:zf)”)_:(is (‘E)) + (csc (x) j— cot (x)) j_i =0
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The following equations are now set up to solve for the function ¢(z,y)

0  —
g—w_M (1)
¢ _w

Integrating (1) w.r.t. z gives

%dx = /de
ox

) — 25sin (z) cos ()
a_idwz/y zos(x)-l-l de
¢ = tan (g) y + 4 cos (g)z +2In (sec (;)2> + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

99 _ z :
oy =10 (5) +/'0) (4)
But equation (2) says that g—i = m Therefore equation (4) becomes
o =tan (2) + () )
csc (z) + cot (z) 2
Solving equation (5) for f’(y) gives
f'(y) =0
Therefore
fly) =a

Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
¢ = tan (g) Yy + 4 cos (§>2 +2In <sec <§)2) +
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and

combining ¢; and cy; constants into new constant c; gives the solution as

c1 = tan (g) y + 4 cos <§)2 +2In (sec (3)2)

The solution becomes

—~
A
~
— —
Q Q
_ _
7 N S
N [a\]
— —
~ ~
Q Q
% —~ % —~
N | BIN N | 8l
5|5 5\ 3
(@] + [a] +~
T +
N [a\]
— —
8l 8|
~ ~—
[¢2] n
Q Q
() o
< <
_ _
| Il
S SN

The solution(s) found are the following

Summary
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Figure 56: Slope field plot
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Verification of solutions

4 cos (%)2 +21n (sec (%)2> —c
y=- tan (%)

Verified OK.

1.19.4 Maple step by step solution

Let’s solve
y'sin (z) + y = sin (2z)
° Highest derivative means the order of the ODE is 1

/

Y
° Isolate the derivative
y/ ——_¥ 4 sin(2x)

sin(x) sin(z)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

__ sin(2z)
s1n(x) sin(z)

Yy +

° The ODE is linear; multiply by an integrating factor u(x)

) sin(2x
,Ll,( ) (y + sm(z)> = s)ln(z() )

o Assume the Ihs of the ODE is the total derivative - (u(z) y)

(@) (v + 55 ) = W@y + ue)y

e  Isolate y/(x)

() — (&)
K (.’L’) " sin(z)

° Solve to find the integrating factor
u(z) = cot (z) — csc (z)
° Integrate both sides with respect to x
J (& (u@)y)) de = [ “Gepiode + c,
° Evaluate the integral on the lhs
z)y=[ ) sin2e) g0 4 o

"~ sin(z)
° Solve for y
_ e g
y= w(x)
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) Substitute p(z) = cot (x) — csc ()
f (cot(z)—csc(x)) sin(2z) dz—+c1

sin(z)

y= cot(z)—csc(x)
° Evaluate the integrals on the rhs
_ 2cos(z)—2In(cos(z)+1)+c1
y= cot(z)—csc(z)
° Simplify

y=—csc(x)(2cos(z) —2In(cos (z) + 1) + ¢1) (cos (z) + 1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

‘dsolve(sin(x)*diff(y(x),x)+y(x)=sin(2*x),y(x), singsol=all)

y(x) = csc(x) (—2cos (z) +2In (cos (z) + 1) + ¢1) (cos (z) + 1)

v/ Solution by Mathematica
Time used: 0.288 (sec). Leaf size: 38

LDSolve[Sin[x]*y'[x]+y[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True] J

y(x) — errctanh(cos(@) (—2\ /sin?(z) csc(z) (cos(ac) + log <sec:2 (g))) + cl)
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1.20 problem 5(a)

1.20.1 Solving aslinearode . . . . . .. . . ... ... ... ... .. 2511
1.20.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 253]
1.20.3 Solvingasexactode . . .. ... ... ... ... ... ... 2571
1.20.4 Maple step by step solution . . . . . ... ... ... ... ... 262

Internal problem ID [3048]
Internal file name [OUTPUT/2540_Sunday_June_05_2022_03_18_45_AM_70471759/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 5(a).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Va2 + 1y +y=2z

1.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here
1
.'L' ey
P@) z?2+1
2z
€Tr) =
@) z?2+1
Hence the ode is
2z
I .
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The integrating factor u is
[
lj/ = e z4+1

=Vzi+l+z

The ode becomes

%(uy) = (w) (;—xﬂ)

4 (Ve 1+a)y) = (VP +1+a) (le)

2z (vVz? + 1 +x)> e

2 +1

o((vries)y) -

Integrating gives

(m 4 :I?) Y = / 236(\/ x;++11+ x)

<\/x2+1—|—x)y=x2+Vx2+1x—arcsinh(z)+cl

dx

Dividing both sides by the integrating factor u = v/x22 + 1 + z results in

_ 2%+ /22 + 1z — arcsinh (z) N c1
Y Vel +1l+zx Va+1l+4x

which simplifies to

_ Va?+4 1z +2® —arcsinh () + ¢
Vet +1l+x

Summary
The solution(s) found are the following

_ Va2 + 1z +2® —arcsinh (z) + ¢ 1)
v Vai+1l+z
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Figure 57: Slope field plot

Verification of solutions

V22 + 1z + 2% — arcsinh (z) + ¢;
Vz+1l+x

Verified OK.

1.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

J = _—293 +y
vz +1
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
N+ w1y — &) — W€y — wef —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 58: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

1
N e

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

(A1)

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n

1
[
z2+14x

S is found from

Which results in
S = <\/x2+1+x)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S _ S, +w(zy)s,
dR R, +w(z,y)R,

(2)
Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—2r+y
w(z,y) = —W

Evaluating all the partial derivatives gives
R, =1
R, =0
x
e (o)
( 2 +1 y

Sy=Vva:+1l+z
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ﬁ _ 2m(\/x2 + 1+$)
dR x2+1

(24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS 2R(VR’+1+R)

dR VRZ+1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

S(R) = R* + RVR? + 1 — arcsinh (R) + ¢;

results in
(\/F-I-l—l—x) y = V22 4+ 1z + 2% — arcsinh (z) + ¢;
Which simplifies to
(y — ) Va2 + 1 — 2° + yz — ¢; + arcsinh (z) = 0
Which gives

_ Va?+ 1z +a® —arcsinh (z) + ¢
vV?+1l+x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy _ _ —2z+y ds _ 2R(VEPFIR)

dx Vz2+1 dR —  JVRZf1
[ R S P P PP TGS S 5 5 S GV s A N N N B O
MAVAA ALV LN NN S g o O
[ R L NN S TP e aaadg o ff PPt
NRRRREEEE NNsiotoota TIIII N

- 7 —~ e s Ta Na el A
\q\\q\q\xyi(xéw\\»/////// »»\N\\»KRI\\MMHHT
YANAMANANNNNESIN—r A ff s —— e~ f ot
NAYNNNNNNNNNerfffffp e S g A
SNNNNNNNNNr A S A SRS =z e S A
SRR S RN
A N 5 A e 5

MNNYNNNNNS AL LSS = 2 e B Mg e |
NN A A ( L +1+x>y e 7 1 1 1R
NNNNNN S A AP I NS, e A
NNNN NN A p AL LSS R e A A B
NNNN NN g fE PRSP S ——e—assaaaaaw 7 ARt
NN NN A fUfffff R R N gy S S N A
R - & I A A S o A A A 5 R A P S O SR R
NN NN g AN p ——e—a—nsaaaaaa 7 ARt
NN Naa—e T ff g a g —~ a7 A f Pt}
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Summary
The solution(s) found are the following

Vz? + 1z + 2% — arcsinh (z) + ¢;

= 1
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Figure 58: Slope field plot
Verification of solutions
_ V2?2 + 1z +2? — arcsinh (z) + ¢
Viz+1+zx
Verified OK.
1.20.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(z,y) 52 =0 (8)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
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ode. Taking derivative of ¢ w.r.t.  gives

d
Hence 06 06d
Y
I T i A B
ox + Oy dz 0 (B)
Comparing (A,B) shows that
09
h N /s
ox
09
TN
Ay
But since % = (,;9; g; then for the above to be valid, we require that
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

Ef,: (ffy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(W) dy = 2z —y)dz
(~20+y)do+(vVa?+1) dy =0 (2A)
Comparing (1A) and (2A) shows that

M(z,y) = —2z+y
N(z,y) = Va? +1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy  Ox
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Using result found above gives

8—M’—E—M—F )
oy Oy y
And
ON 0
oy _“ 2
T 6z< z-l—l)
__ T
2 +1

Since %—Aj # %—2’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L L(OM _oN
- N\oy Oz

-0 ()
Vit 1z

241

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

’u:efAdx

. ef \/a:2+lfa: dz

w2+1

The result of integrating gives

. ln(z2+1)
L= earcsmh(ac)—f
X

- +1
2 +1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= ———+1(-2z+y)

:(—2m+y)( w2x+1 +1)
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And

N = uN
= ———+1(Va?+1)
z2+1
=vVal+l+z

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+Nd—=0
dx

+1>)+(\/1T+1+m>£=0

(o0 (igim

The following equations are now set up to solve for the function ¢(z,y)

0p —
¢ =

Integrating (1) w.r.t. = gives

—dx—/de

g¢ /(—2x+y)<\/x2x7+1+1>dx
¢ = (y—z) Va2 +1— z* + zy + arcsinh (z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

@=\/x27+1+z+f’(y) (4)

But equation (2) says that a—¢ Vz? + 1 + z. Therefore equation (4) becomes
V2+l+z=vVz2+1+z+ f(y) (5)

Solving equation (5) for f’(y) gives
flly)=0
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Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =(y—z)Va?+1—2°+zy+arcsinh (z) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into new constant c¢; gives the solution as

c1 = (y—z) Va2 + 1 — 2% + zy + arcsinh ()

The solution becomes

Vz?+ 1z + 2% — arcsinh (z) + ¢;
Vz+1l+z

Summary
The solution(s) found are the following

V22 + 1z + 2% — arcsinh (z) + ¢;

= 1

Y T i1a (1)
K T T T T T A T A R R R R N A
VVYAVAVVVY VAV ANANNNN~——
AR AR AR RRR R S s
HANNNVNNNNNNNNNSN— 7
V"V ANAVAVNANNNNNN—— 7 7 7
NVANNNNNNNNNSN—= 777
HNNVNNNNNNNNN~— 77777
WANNMANNNNNNSN—=S /77777
VANNMANNNNN~~ /777777
o NNANNNNNNNS— 777777 7
Y(X) NN NNNNNNS— T
NANNNNNNS~—S /77777777
NANNNNNNSN—~~/ 7777777717
—HNNNNNNN~—=/ 77777171717
NNNNNNN—~~ 7771711171111
NNNNNN~—= 771111 1111]
=2INNNN\N~—~=~ 77111111171
NNNNN~—= /7711111111711
NNNN~—== 7771111111111
—3HANNNN~—=S 111111
-3 -2 -1 0 1 2 3

Figure 59: Slope field plot
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Verification of solutions

_ Vaz?+ 1z +a? — arcsinh (z) + ¢
Y vVri+l+z

Verified OK.

1.20.4 Maple step by step solution

Let’s solve
vVl + 1y +y =2z

° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

/

Vil T Varal
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

_ 2z

/ Yy
Y + V241~ Vz2+1

° The ODE is linear; multiply by an integrating factor u(x)

2u(z)x
u(z) (y, T \/xg-i-l) - \/ng—i)-l

o Assume the lhs of the ODE is the total derivative - (u(z) y)

@) (v + 7 ) = W (@) y + plo)y
° Isolate p/(z )
p(z) = :v2+
° Solve to find the integrating factor
wz) =V +1+z
° Integrate both sides with respect to x
J (G (u(z)y)) do = [ %dm +a
° Evaluate the integral on the lhs
z)y= [ 224y 4 ¢

Va2+1
° Solve for y
[ j"(g%daﬁ-cl
Y= " uw
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) Substitute pu(z) = V2 +1+x

2x(\/m2+1+a:)
— f Vz241
Y Va2+l+tx

T+c1

° Evaluate the integrals on the rhs

__ V241 z4x?—arcsinh(z)+c;
vy= VaZ+ita

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

Ldsolve (sqrt (1+x72) *diff (y(x) ,x)+y (x)=2#*x,y(x), singsol=all) J

(z) = z? 4+ /22 + 1 — arcsinh (z) + ¢;
Y z+vVz2+1

v/ Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 50

LDSolve[Sqrt[1+x‘2]*y'[x]+y[x]==2*x,y[x],x,IncludeSingularSolutions -> True] J

y(@) > (Va2 +1-z) (2 + Vol + 1o +log (Va2 T 1—2) +c1)
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1.21 problem 5(b)

1.21.1 Solving aslinearode . . . . . . . . . ... .. ... ... ... 264
1.21.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 266]
1.21.3 Solvingasexactode . . .. ... ... .. ... ... ..., 2701
1.21.4 Maple step by step solution . . . . . ... .. ... .. ... 275

Internal problem ID [3049]
Internal file name [OUTPUT/2541_Sunday_June_05_2022_03_18_47_AM_17618221/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 5(b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Vaz+ 1y —y=2vz2+1

1.21.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here
1
T)=—
p(@) z?2+1
q(z) =2
Hence the ode is
g Y
2 +1
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The integrating factor u is

The ode becomes

d—(uy) (1) (2

%( x2 )=<\/93721+x)(2)
(rres) = () &

—

Integrating gives

Yy
—_— = —dl‘
v+ 1l+zx /\/x2+1+x
) _ 2 : 2
—— =22+ 1z +arcsinh (z) —z°+¢
vz2+1l+z (=) !

Dividing both sides by the integrating factor u = ﬁ results in

y= (m-kx) (\/ﬂT-I—lz—l—arcsinh (z) —z2> +c <\/ﬂm+z>

which simplifies to

y = (arcsinh (z) + ¢1) Va2 + 1 + z(c; + arcsinh (z) + 1)

Summary
The solution(s) found are the following

y = (arcsinh (z) + ¢1) Va2 + 1 4+ z(c; + arcsinh (z) + 1
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Figure 60: Slope field plot

Verification of solutions

y = (arcsinh () + ¢;) V&2 + 1 + z(c; + arcsinh (z) 4+ 1)
Verified OK.

1.21.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

J = y+2vVr2+1
2 +1
y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - é.x) - wzé.y - wx§ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 61: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) =va:+1l+z

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

(A1)

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n

1
S N S—
/\/x2+1+x v

S is found from

Which results in

S—__ Y
Vat+1l+z

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z y)_L va? +1
e vz +1

Evaluating all the partial derivatives gives

R, =1
R, =0

S, = Y

R o g

1
Sy=——
Y Vz+1+z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s 2
dR  z2+1+z

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

(24)

ds _ 2
dR  VR2+1+R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = RVR2 + 1+ arcsinh (R) — R? + ¢, 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

Y il : 2
N 2?2 + 1z + arcsinh (z) — z° + ¢;

Which simplifies to

ﬁ = /22 + 1z + arcsinh (r) — 2+

Which gives
y = Vz?2+ 1 arcsinh () + ¢; V2?2 + 1 + arcsinh () z + 12 + =

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy _ y+2va?+1 as _ 2

dx Vr2+1 dR vVR?2+1+R
fFrrtrrr ittty ttttttttt A
frrrrrr ittty trttttt S
frrrrrtrttattrrrrrrry ttttttttaf 7
AEEE R IR R REY RE SR RNVttt
AR T v
AR C I IR RRR Rttt
PLPPPPLLENNIELLLLLLLS ttttt e
PEPPIPPLINILIRLILLL R RN EEEE
PRIPPIPPIIILIIPLIIELIL R=zx ttt bttt s
PPPPPPPPPANPP I LLPLL BEEERERN P EEEEE e
FIaFF I AP TR FFAF AT Y uﬂff_'%ffﬁf///g/uﬂﬁk,m
Y VY vy YLy NS SRR RN Vsl s
A A >
PRI PP AAAA A AP PPN rl+a ttttttt gl e
VA N S N ttttttt A
S AAPAAAANN~e s fff AL S tttttt s rmr e
SAAAAA NN\ T A A S ttttt A mr e
e N N N A ttttttt ) mrrmr
A7 AAmm= NN NN N 7 A A IR A e tatatatatacncnd
A7 NN NN N N 2 ttrrrrtrtyrrmmr

Summary
The solution(s) found are the following
y = Vva?+1 arcsinh (z) + ¢; V2?2 + 1 + arcsinh (z) x + c1z + = (1)
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Figure 61: Slope field plot

Verification of solutions

y = V2?2 + 1 arcsinh (z) + ¢; V2?2 + 1 4+ arcsinh (z) z + 1z + =

Verified OK.

1.21.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy

M(.’E,y)+N(l‘,y)£

=0 (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

< oa,9) =0

Hence
8¢ L9 0¢ dy

0z ' Oydr =0 (B)
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz +N(z,y)dy =0 (1A)

Therefore
( x2+1> dy = <y+2\/m> dx
(~y—2va?+1) do+(Va? +1) dy =0 (24)
Comparing (1A) and (2A) shows that

M(z,y) = -y —2vVz? +1
N(z,y) = Va* +1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM  ON
oy Oz
Using result found above gives

%:%(- — 2V +1)

=-1
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And

ON 0

= (1 /.'132 + 1)

oxr Ox

x
x2+1

Since %—Aj # %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L] <aM 8N>

T N\dy Oz

a0 ()
2 +1 Va2 +1
/=g g
2 +1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

p=e JAdz
The result of integrating gives
X ln(z2+1)
p=e" arcsinh(z)— 5
1

(Vz?+1+z) Va2 +1
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

_ ! (~y-2vam+1)
(Vo2 +1+z) Va2 +1

_ y+2vVz2+1
(Va2 +1+4+z) Va2 +1

And
N =uN
1
(m+x)m< 2 +1)

1
VPt l+az
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M + N% =0
dx
_ y+2vVx?+1 +(;)%_
(Va2 +1+4z) Va2 +1 Vet +1+z/) do
The following equations are now set up to solve for the function ¢(z,y)
0p —
9 M (1)
0y —
2 —-N 2
- )
Integrating (1) w.r.t. = gives
@ dx = /de
0x
%dx—/— y+2var+l dx
oz (Vo2 +1+z) Va2 +1
¢ = (y — x) Va2 + 1 + 2° — zy — arcsinh (z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0
6—z=\/w2+1—x+f’(y) (4)
But equation (2) says that g—‘;’ = ﬁ Therefore equation (4) becomes
1
L —VPTI-ztf) )
2+ 142

Solving equation (5) for f'(y) gives
fy)=0

Therefore

fy)=a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = (y—z) Va2 + 1+ 2* — zy — arcsinh (z) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

¢1 = (y — z) Va2 + 1+ z* — zy — arcsinh ()
The solution becomes

_ Va2 + 1z + arcsinh (z) —2° + ¢,
Viz+1l—z

Summary
The solution(s) found are the following

_ Va?+4 1z +arcsinh (z) — 22 + ¢ 1)
Y Vez+1l—x
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Figure 62: Slope field plot
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Verification of solutions

_ Vaz?+ 1z +arcsinh (z) — 22 + ¢
v Vai+1l—zx

Verified OK.

1.21.4 Maple step by step solution

Let’s solve
Vel+1ly —y=2vVz2+1

° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
r_ y
vV =2+

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y~ Zarm =2

° The ODE is linear; multiply by an integrating factor u(x)

(@) (v - ) = 26(e)
o Assume the lhs of the ODE is the total derivative - (u(z) y)

@) (v - ) = @)y + (@) y

o Isolate ()

=)

p(z) = Ny

° Solve to find the integrating factor
W) = =

° Integrate both sides with respect to x
J (& (u(z)y)) de = [2u(z) dz +

° Evaluate the integral on the lhs

p@)y = [ 2u(z)dr +a

° Solve for y
_ [ 2p(z)dz+tc
Y= "
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e  Substitute u(z) = ﬁ

y= (Va2 +1+z) (fﬁdx-l—cl)

° Evaluate the integrals on the rhs

y= (V22 +1+z) (Va? + 1z + arcsinh(z) — 2% + ¢1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

Ldsolve (sqrt (1+x72) *diff (y(x) ,x) -y (x)=2*sqrt (1+x~2) ,y(x), singsol=all) J

y(x) = (mx/m + arcsinh (z) — z* + cl> (a: + \/m)

v Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 55

LDSolve[Sqrt[1+x‘2]*y'[x]—y[x]==2*Sqrt[1+x‘2],y[x],x,IncludeSingularSolutions f> Truel

2? — Va2 + 1z +log (Va2 +1—z) — ¢
r—vVx2+1

y(z) =
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1.22 problem 5(c)

1.22.1 Solving aslinearode . . . . . . . . .. ... .. ... ... .. 27T
1.22.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 2779
1.22.3 Solvingasexactode . . ... .. .. ... ... ... ..., 283]
1.22.4 Maple step by step solution . . . . . ... .. ... ... ... 287

Internal problem ID [3050]
Internal file name [OUTPUT/2542_Sunday_June_05_2022_03_18_49_AM_37191220/index.tex|

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 5(c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

VE@+a)(z+b) (2 —=3)+y=0

1.22.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
p(z) =
(=) 2\/(z +a) (z+b)
3
q(z) = 9
Hence the ode is
3
J o+ y _3

2\/(z+a)(z+b) 2
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The integrating factor u is

1
= ef PNV CIDCI

(=b+a) ln(%+%+x+\/(z+b)2+(—b+a)(a:+b)) (b—a) ln(%+%+w+\/ (w+a)2+(b—a)(:c+a))

V/(@+5)2+(—b+a) (a+b)+ 3 _V(@+a)l+(-a)(z+a)+ 2

—e 2a—2b 2(—b+a)

Which simplifies to

\/5\/&+b+2z+2\/(z+a)(x+b)
- 2

L
The ode becomes

%(uy) = (w) (g)

4 (VEJatb+2w+2/(@ra)(@tby Va\Jatb+2w+2/@ta)@+b)) /3
dz 2 - 2 (2)

d(x/ﬁ\/a+b+2x+2\/(x+a)(x—|—b)y) 3\/5\/a+b+2x+2\/(x+a)(x—|—b)) is

2 - 4

Integrating gives

\/5\/&+b+2x+2\/(x+a)(x+b)y :/3\/§\/a+b+2x+2\/(x+a)(a:+b)dm

92 4
ﬁ\/a+b+2x+22\/(w+a)(x+b)y:/3\/5\/“+b+2xz2\/(x+a)(x+b)dx+c1

V2 \/a+b+2:c+2\ /(z+a)(z+b)
2

Dividing both sides by the integrating factor u = results in

\/5 (f 3v2 \/a+b+2x-;2\/(x+a)(a:+b) dl‘)

Cl\/§
y= +
\/a+b+2x+2\/(x+a)(x+b) \/a+b+2x+2\/(:c+a)(x+b)

which simplifies to

2\/§cl—l—3(f\/a+b+2z+2\/(z+a)(x+b)dx)

y:

2\/a+b+2x+2\/(z+a)(x—|—b)
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Summary
The solution(s) found are the following

2\/§cl—|—3(f\/a+b+2w+2\/(x+a)(x+b)dx)

y:

2\/a+b+2x+2\/(w+a)(x+b)

Verification of solutions

2\/§cl+3(f\/a+b+2x+2\/(x+a)(x+b)dx)

y:

2\/a+b+2x+2\/(x+a) (z+b)
Verified OK.

1.22.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

- 3V(z+a)(z+b)—y
2/(z +a)(z+0b)
y/:w(xay)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - w2§y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 64: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) =

2

\/2a+2b+4x+4\/x2+(a+b)x+ab

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
&

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=xz

S is found from
1

S = / —dy
n

2
\/2a+2b+4x+4\ /z2+(a+b)z+ab

1

dy

Which results in

S \/2a+26+4x+4\/x2+(a+b)x+aby
- 2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +w(x,y)Sy (2)
dR R, + w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

3V(z+a)(z+b)—vy
2/(z +a)(z+0)

Evaluating all the partial derivatives gives

w(z,y) =

R,=1
R,=0
g _ y(a+b+2z+2V/z+avz+D)

- 2V2a+2b+ 4z +4/r+avVT +b/r+aVT +b

B V2a+2b+4z+ 4z tavz + b
B 2

Sy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

Vz+b (a+b+2z+2 ) Vzta -
is 3( Rlevtrier¥)ver +(%+%+§)y+(w+a)(x+b))¢(z+a)(x+b)—y(“m<2””+2”+“%
dR V2a+2b+4z + 4/ Favr +bvz+avr+b./(z+a)(z+b)

(2A)
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS  3v2a+2b+4R+4VR+avVR+b
dR 4
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R):/3\/2a+2b+4R—£4\/R+a\/R+bdR+01 n

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

dr + ¢

V2a+2b+ 4z + 4z + avr + by _/3\/2a+2b+4x+4\/x+a\/x+b
2 B 4

Which simplifies to

dr + ¢

V2a+2b+ 4z + 4z + avr + by _/3\/2a+2b+4x+4\/:v+a\/x+b
2 N 4

Which gives

9 ( f 3\/2a+2b+4x1-4\/m Vath g m) ¥ 20

y:
V2a+2b+4z+ 4z tavz + b

Summary
The solution(s) found are the following

9 ( f 3\/2a+2b+4z1-4\/m Vaib g ac) ¥ 20

y: ].
V2 +2b+4z + 4T+ aVz +b o

Verification of solutions

9 < f 3\/2a+2b+4x1-4\/m Vz+b da:) ¥ 20

V2t 2b+dr+ 4z tavz+b

Verified OK.
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1.22.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form
dy
dz

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

M(z,y) + N(z,y) o= =0 (A)

ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 6(;5 6¢ p
ay
oz 8y dz =0 (B)

Comparing (A,B) shows that

0p
or
0p
oy
But since % = 8 8 then for the above to be valid, we require that
OM _ON
oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘?: gy = aa gs is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
<2\/(ac+a)(a:+b)> dy = (3\/(:1:+a)(x+b)—y> dz
( -3v/(z+a)(z+b)+y dz+<2\/(x+a)(x+b))dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = =3/(z + a) (x +b) +
N(z,y) =2/ (z +a) (z +b)
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
By —y<—3\/(x+a) (z +b) +y>
=1
And
ON 0
== —x(2\/(m Ya) @+ b))
_ 2z+b+a
V(z+a)(z+b)

Since %’I # %—J;], then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] <6M azv)

T N\dy Oz

_ 1 (O%—( 2 +b+a ))
2y/(z+a) (z+b) V(z+a)(z+D)

_V@+a)(z+b)—2z—-b—a
B 2(z+a)(z+0)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

M:efAdx

f v (z+a)(z+b)—2zx—b—a d
= e 2(z+a)(z+b)

T

The result of integrating gives

(=b+a) 1n<g+% +z+\/(m+b)2+(—b+a)(z+b))

(b—a)lIn (%-ﬁ- % +z+4/ (m+a)2+(b—a)(x+a)>

V(@)% +(=bt+a) (@ +b)+ 3 _ V(@ta)2+(b—a)(@ta)+ 2 In((
L=ce 2a—2b 2(=b+a)
Va+b+2e+2/(e+a)(@+b)v2
B 2\/(z+a)(z+0)
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
\/a+b+2z+2\/(x+a)(3:+b)\/§
= NCEDICED) (—3\/(x+a) (sc—l—b)—i—y)
<—3\/(m+a)(x+b)+y) \/a+b+2x+2\/(m+a)(m+b)\/§
a 2/(z +a) (z +b)

And

N = uN
B \/a+b+2w+2\/(w+a)(w+b)\/§
B 2/(z + a) (z + b)

:\/ﬁ\/a+b+2x+2\/(a:+a)($+b)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

(2\/(:0 Ya)(z+ b))

(—3\/(x+a)(x+b)+y) \/a+b+2x+2\/(x+a)(x+b)\/§
2¢/(z +a)(z+0b) +<\/§\/a+b+2m+2\/m

The following equations are now set up to solve for the function ¢(z,y)

0p —
¢ =

Integrating (1) w.r.t. z gives

%dx = /de
oz

0 . _ <—3\/($+a)(w+b)+y>\/a+b+2x+2\/(x+a)(x+b)\/§d
oz x_/ 2/(@+a) @+ v
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d _a

x <—3\/(_a+a) (a+ b)—l—y) \/a+b+2_a+2\/(_a+a) (_a+0b)v2
¢:/ 2y/(_a+a)(_a+b)

(3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99

ay=\/§\/a+b+2x+2\/(w+a)(m+b)+f’(y) (4)

But equation (2) says that g—ﬁ =2 \/ a+b+ 2z +2./(z + a) (z + b). Therefore equa-
tion (4) becomes

ﬁ\/a+b+2x+2\/(x+a)(x+b)=\/5\/a+b+2x+2\/(x+a)(x+b)+f’(y)
(5)

Solving equation (5) for f'(y) gives

fly)=0

Therefore

fly)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

d a

o (—3\/(_a+a) (_a—l—b)+y> \/a+b+2_a+2\/(_a,+a) (_a+b)Vv2
¢:/ 2y/(_a+a)(_a+b)

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into new constant c¢; gives the solution as

d _a

<3\/ a+a)( a—i—b)—l—y)\/a+b+2_a+2\/(_a+a)(_a+b)\/§
01:/ 2v/(_a+a)(_a+b)
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Summary
The solution(s) found are the following

d a=c¢

(1)

/x (—3\/(_a+a) (_a+b)+y> \/a+b+2_a+2\/(_a+a) (_a+b)v2
2y/(_a+a)(_a+b)

Verification of solutions

/m <—3\/(_a+a) (_a+b)+y> \/a+b+2_a—l—2\/(_a+a) (a+b)v2
2y/(_a+a)(_a+b)

d a=q¢
Verified OK.
1.22.4 Maple step by step solution

Let’s solve
VE+a)(z+b) (2 —3)+y=0
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
3 y

I P ——
Y =27 3/ Gra@r)
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

10

VY o eraem — 2
° The ODE is linear; multiply by an integrating factor u(x)
_ 3u(=z)
p(@) (y’ + 2\/(z+?jz)(x+b)> =
o Assume the lhs of the ODE is the total derivative - (u(z) y)

@) (v + 5 ) = @)y + @)y

o Isolate ()

B(z)

p(z) = 2/ (@+a)(@+b)
° Solve to find the integrating factor

u(@) = \/2a+2+4z+4/(z +a) @@+ D)

° Integrate both sides with respect to x
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[ (E(u(z)y)de= [ 3“7(“’)dx +c
° Evaluate the integral on the lhs
px)y = [ 3“T(z)dl' +a
° Solve for y

o J 73“2@) dz+c1
V="

e  Substitute p(z) = \/2(1 +2b+4z+4/(z +a)(z+b)
\/2a+2b+4z-+4/(e+a) (@+b)
° Simplify
3 ( Iy 2a+2b+4w+4\/Wdz> +2¢1
¥y= 2\/2a+2b+40+4,/(a+a)(@+b)

y:

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 60

Ldsolve (sqrt ((x+a) *(x+b) ) * (2*diff (y(x) ,x)-3)+y(x)=0,y(x), singsol=all)

3(f\/2a+2b+4x+4\/(x+a)(a:—i—b)dcc) +4¢;

y(z) =

2\/2a+2b + 4z +4,/(w + a) (& + )
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v/ Solution by Mathematica
Time used: 0.433 (sec). Leaf size: 115

kDSolve [Sqrt [(x+a) *(x+b)]1*(2*y' [x]-3)+y[x]==0,y[x],x,IncludeSingularSolutions J—> Truel

y(z)

Vva+zvb+ xarctanh(‘/ﬁ) z g arctanh(\/l%v Vva+ K[1]/b+ K[1] K
e WY/ s T ey /1 277 V@t K)o+ K1)

2
+ 01)

:
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1.23 problem 5(d)

1.23.1 Solving aslinearode . . . . . .. . .. ... ... ... ... 290
1.23.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 292
1.23.3 Solvingasexactode . . .. ... ... .. ... ... ... . 295
1.23.4 Maple step by step solution . . . . . .. ... ... ... ...

Internal problem ID [3051]
Internal file name [OUTPUT/2543_Sunday_June_05_2022_03_18_52_AM_9840611/index.tex]

Book: Elementary Differential equations, Chaundy, 1969
Section: Exercises 3, page 60

Problem number: 5(d).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Vc+a)(z+b)y +y=ve+a—Vz+b

1.23.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
N Y
_Vrt+a—Vz+b
A e CF )
Hence the ode is
Y _Vzt+a—+Vz+b

Y+ =

VE+a)(z+b) /(z+a)(z+b)
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The integrating factor u is

1
= o Terem®

(—b+a) 1n(g+ %ot \/(z+b)2+(—b+a)(m+b)> (b—a) ln(%+%+x+\/(z+a)2+(b—a)(m+a)>
> V(z+a)2+(b—a)(z+a)+ >

V(@ +b)2+(~b+a)(@+b)+
=e —b+a - “bta

Which simplifies to

b
,u=§+g+z+\/(z+a)(x+b)

The ode becomes

d _ Vr+a—+Vz+b
OB (\/(Ha) (x+b)>

%((g+g+x+\/(x+a)(x+b)) y) = <g+g+x+\/(x+a)(x+b)) (‘\//i:fa—)éizf)

b a (Vz+a—-vz+b) (a+b+2z+2/(z+a)(z+b)
d(<§+§+x+\/(w+a)(x+b))y)_( 2\5(x+a)(9€+b) >)

Integrating gives

(Vz+a—+vz+D) <a+b+2z+2\/(z+a)(x+b)>

b a

(§+§+x+\/(x+a)(x+b))y=/ 2\/(z +a) (z +b) 4

b a . s _2(x+a)%_2(x+b)% Vzt+a(@+b)(2z-b+3a) Vz+b
(2+2+ +V(z+a)( +b))y— 3 s+ N(CETICED) 3,

Dividing both sides by the integrating factor p = % + ¢ +z 4+ \/(z + a) (z + b) results
in

4(:c+a)% i 4(x+b)§ + 2vz+a (z+b)(2x—b+3a)  2vx+b(x+a)(2z—a+3b)
3 3 3/ (z+a)(z+b) 3/ (z+a)(z+b) 2¢;

a+b+2z+2\/(z+a)(x+b) a+b+2z+2\/(z+a)(x+b)

y:

which simplifies to

2((2a +22) Vo +a+ (—2b—22) Vo +b+3c) Ve +a) (@ +b) + 6z +b) (S +a+%)Va+a
V(z+a)(z+D) <3a+3b+6x+6\/(a:+a)(x+b)>
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Summary
The solution(s) found are the following

y (1)
_2((2a+22) Vo +a+ (20— 22) Va+b+3a) V(z+a)(z+b)+6(x+b) (-2 +a+Z)Vzta+
V@ +a)(@+0) <3a+3b+6x+6\/(x+a)(x+b)>

Verification of solutions

Y
:2((2a+2x)\/m—|—(—2b—2:v)\/m+b+3cl) VE+a)(@+b)+6(z+b) (-2 +a+Z)Vr+a+

V(z+a)(z+b) <3a+3b+6z+6\/(z+a)(x+b)>

Verified OK.

1.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

) —y+vVr+a—+vVz+b
V(z+a)(z+b)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €z) - w2€y —wg€ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 67: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~/ bf(@)de—h(z)
9(z)

f(q;)e_ f bf(z)dz—h(z)
9(z)

polynomial type ode

/ _ a1z+biytc

aibosr—aobix—bico+bacy

a1by—agbiy—aica—azcs

Y = wortboytes a1ba—azh: a1bs—azbt
Bernoulli ode v =fx)y+g(z)y" 0 e~ f("—l)f(w)dwyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~ J fds
The above table shows that
{(z,y) =0
1
n(x’y):%+%+x—l—\/m2+(a+b)x+ab (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=x
S is found from

S

dy

IS | =

1
i dy
§+5+a+\/2?+(a+b)o+ab

/
/

Which results in

b
S = <g+§+x+\/z2+(a+b)z+ab)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S _ S, +w(@,y)s, 2
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—y+vVz+a—Vz+b
V(z+a)(z+0)

Evaluating all the partial derivatives gives

w(x7y) =

R, =1
R,=0
g _ (a+b+22+2y/z+avz+b)y

2vV/r+avx+b

b
Sy=g+§+x+\/x+a\/m+b

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

e ST —y+vzF+a—z+b
as (a+b+2z+2Vz+aVr+b) <\/m+ay\/:c+b + y\/(a:-i-a)(m-i-b) )
dR 2

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS (2VR+aVR+b+a+b+2R) (VR+a-VR+))

dR 2VR+avR+Db

(24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=vR+ba—VR+bb+VR+aa—vVR+ab+c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

(a+b+22+2V/z+avz+b)y
2

=vVz+ba—Vz+bb+vVz+aa—Vr+ab+c

Which simplifies to

2z +b
(y\/x+b—a+b> \/x+a+(b—a)\/x+b+w—cl=0

Which gives

. 2vVr+ba—2vVx+bb+2v/x+aa—2v/x+ab+ 2c
Y a+b+2x+2v/x+avzr+b

Summary
The solution(s) found are the following

. 2vVx+ba—2vVx+bb+2/x+aa—2v/x+ab+ 2c¢;
Y a+b+2x+2v/x+avr+b

Verification of solutions

_2Vz+ba—2Vr+bb+2v/r+aa—2v/r+ab+2¢
Y a+b+2x+2v/x+avr+b

Verified OK.

1.23.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,9)+ N(z,y) 2 =0 (4)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
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Hence

09 Opdy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
99 _
or
o¢
T _N
dy
But since % = 8‘9—284’— then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (,;9; 5’; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
<\/(x+a)(x+b)> dy = (—y+\/x+a—\/x+b> dz
(y—\/z+a+\/z+b>dx+<\/(a:+a)(x+b)>dy:() (2A)

Comparing (1A) and (2A) shows that

M(z,y)=y—+vVr+a++vVr+b
N(z,y) = /(z +a) (z +)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

oM 0
8—y—8—y<y—\/x+a+\/x+b)
=1
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And

%:%W(ﬁa)(ﬁb))
_ 2z +b+a
2y/(z+a) (z+b)

Since %i; 9N ' then the ODE is not exact. Since the ODE is not exact, we will try to

Bz

find an integrating factor to make it exact. Let

L] <6M azv)

“ N\dy Oz

_ 1 (1) - 2r+b+a
V(z+a)(z+b) 2\/(z +a)(z+0)

_2/(z+a)(z+b)—2z—b—a
B 2(z+a)(z+0)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

N:efAdx

f 2y/(z+a)(z+b)—2z—b—a d

2(z+a)(z+b) z

=e

The result of integrating gives

(=b+a) 1n<g+% +w+\/(:c+b)2+(—b+a)(z+b))

(b—a)lIn <%+ % +z+4/ (z+a)2+(b—a)(w+a))

V(@+5)2+(—b+a) (a+b)+ 5 V/(@+a)2+(b—a) (a+a)+ . In((
M = e —b+a - —b+a -
_a+b+2z+2/(z+a)(x+b)
2¢/(z +a) (z+b)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

=a+b+2x+2\/(x+a)(x+b)
2y/(z+a) (z+b)

(y—vVz+a++Vz+D) <a+b+2x+2\/(x+a)(x+b)>
NEEDIeE)

<y—\/m—|—a+\/x—|—b)
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And

:a+b+2x+2\/(x+a)(x+b)
2y/(z+a) (z+)

b
=+ +e+V/@+a@+h)
Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

(Ve +a)(@+b))

M+
dx
(y—\/x+a+\/w+b)<a—|—b+2x—|—2\/(.’v+a)($+b)> b g dy
( NCEDICED) +(§+§+x+\/(x+a)(z+b)>a:
The following equations are now set up to solve for the function ¢(z,y)
0p  —
e M (1)
0p —
oy = N (2)
Integrating (1) w.r.t. z gives
0o —
o dx = /Mda:
¢ (y—vz+a+Vz+D) <a+b+2x+2\/(x+a)(x+b))
/—dx =/ dx
Oz 2¢/(z+a)(z+0)
¢= (3)
_((2a+2x)\/m+(—2b—2x)\/:c——|—b—3zy) Ve+a)(z+b)+3x+b) (-2 +a+ %)
3/ (z +a)(z+)
+ /()

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

@:_—3\/(x+a)(z—|—b)z+(—3x—3b)(x—|—a) N
Ay 3V/(z +a)(z+0)

') (4)

_VE+a)(@+bz+(z+a)(z+b) |
- NCEDICED) 1)
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But equation (2) says that g—z =2+24+ 2+ /(z+a)(z+D). Therefore equation (4)
becomes

boa, s V@t @E+bet(z+a(z+d)
sty et ViEta)(@+b) N CEICED) +f'(v) (5)
Solving equation (5) for f'(y) gives
f’(y)=g+g

Integrating the above w.r.t y gives

/f’(y)dy=/<g+g> dy

fly) = (§+g>y+01

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ =
(2a+2z) vz +a+ (-2b—2z) Ve +b—3zy) \/(z+a) (+b) +3(z+b) (-2 +a+Z)Vz+a
3V (z+a)(z+0)

a b
+(—+—)y+61

2 2

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

1—((2a+2x)\/ﬂc——|—a+(—2b—2m)\/9¢—|—b—3xy) Vie+a)(@+b)+3z+b) (-2 +a+%)Vrz+a
3/(z+a)(z+D)

L(eL b
27 2)Y

The solution becomes

Y
2v/z+ba? 2v/z+baz 4./(z+a)(z+b) Vzt+aa 2v/z+a b?
T—2\/z+bba—l—2\/z—|—aab—f—t-Z\/x—l—aax—i- 3 — 3 —2Vz +

VE+a)(z+ba+/(z+a)(z-

299



Summary
The solution(s) found are the following

Y (1)
2Ee _ 9z +bba+2VT +aab— 2 4 9\ /5 gag + WTHAEHIVITa 2Vl _ g /5
Vc+a)(z+b)a+/(z+a)(z
Verification of solutions
Yy
2Wetba® _ 9\/zr + bba + 2z + aab — 22 4 9 [y qag 4 WEHAED Vetea  atabt g,/
\/($+a)(1'+b)a+ (z+a)(z-
Verified OK.

1.23.4 Maple step by step solution

Let’s solve
VE+a)(z+by+y=vr+a—Vz+b
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative

y/ - _ Y + vrta—vz+b
V(@+a)(z+b)  /(z+a)(z+b)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y + _ vVzta—Vz+b
\/(w+a )(@+b)  \/(a+a)(z+b)

° The ODE is linear; multiply by an integrating factor u(x)

(@) (Va+a—/z+b)
w(z) (y t Vara) <m+b>> NEDIET)

o Assume the lhs of the ODE is the total derivative & (u(z) y)

p(z) (y’ + m) = p(@)y+p(@)y
o Isolate 1/ ()

©(x)
(.’L‘) v/ (z+a)(z+b)

. Solve to find the integrating factor
wz)=a+b+2zx+2\/(z+a)(x+b)

° Integrate both sides with respect to x
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(z) (Vo+a—vz+b
J (u(a)y)) do = [ HETED) gy,

. Evaluate the integral on the lhs

_r p(=)(vVzra—Vz+b)
pE)y=[ NG dx + ¢
° Solve for y
(2) (VEFa—Va+h)
y=! “m%dﬂq
(=

e  Substitute u(z) =a+b+2z+2\/(z+a)(z+b)

(vVaFa—+/z¥b) (a+b+2m+2\/(m+a)(a:+b))
f (z+a)(z+b)
y =
a+b+2z+2+/(z+a)(z+b)

dz+ci

° Evaluate the integrals on the rhs

4(m+a)% _ 4(z+b)% + 2vz+a (z+b)(2z—b+3a) _ 2v/z+b (z+a)(2z—a+3b) +e
__ 3 3 3\/(z+a) (@+b) 3\/(z+a) (@+b) !
Yy a+b+2z+2\/(m+a) (z+b)

° Simplify
2 ( ((2a+2z)\/m+(—2b—2x)\/x+b+3%) v/ (z+a)(z+b)+3(z+b) <—§+a+%’”) Vzt+a+vz+b (x+a)(—2x+a—3b))
vy= v/ (z+a)(z+b) <3a+3b+6x+6\/ (z+a) (z+b))

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 114

Ldsolve (sqrt ((x+a)*(x+b) ) *diff (y(x) ,x) +y(x)=sqrt (x+a)-sqrt (x+b) ,y(x), singsol=jall)

y(x)
=2((2a+2x)\/m+(—2b—2:v)\/m-|—b+3cl) Ve+a)(z+b)+6(-2+a+%)(z+b)vVr+a+

V(z+a)(z+b) <3a+3b+6$+6\/(z+a)(:v+b)>
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v/ Solution by Mathematica
Time used: 2.411 (sec). Leaf size: 145

kDSolve [Sqrt [(x+a) *(x+b) 1 *y' [x]+y[x]==Sqrt [x+a] -Sqrt [x+b] ,y[x],x, IncludeSingul%.rSolutions ->

y(z)
sarctanh ( YKL ) /G K]/6+ K]
\/m exp («/a-‘-K[l]) < a + K[l]
2+/a + xv/b + xarctanh<m> T V(a+K[1])(b+KT1])
—exp | —
V(e +z)(b+ ) 1 V(e + K[1])(b+ KT[1])
+c
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