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Internal problem ID [1824]
Internal file name [OUTPUT/1825_Sunday_June_05_2022_02_34_15_AM_73582960/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 6x1(t)− 3x2(t)

x′
2(t) = 2x1(t) + x2(t)

1.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 6 −3
2 1

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 −2 e3t + 3 e4t −3 e4t + 3 e3t

2 e4t − 2 e3t 3 e3t − 2 e4t
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 −2 e3t + 3 e4t −3 e4t + 3 e3t

2 e4t − 2 e3t 3 e3t − 2 e4t

 c1

c2


=

 (−2 e3t + 3 e4t) c1 + (−3 e4t + 3 e3t) c2
(2 e4t − 2 e3t) c1 + (3 e3t − 2 e4t) c2


=

 (−2c1 + 3c2) e3t + 3 e4t(c1 − c2)
(−2c1 + 3c2) e3t + 2 e4t(c1 − c2)


Since no forcing function is given, then the final solution is ~xh(t) above.

1.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 6 −3
2 1

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 6 −3
2 1

− λ

 1 0
0 1

 = 0

Therefore

det

 6− λ −3
2 1− λ

 = 0
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Which gives the characteristic equation

λ2 − 7λ+ 12 = 0

The roots of the above are the eigenvalues.

λ1 = 3
λ2 = 4

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

3 1 real eigenvalue

4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 6 −3
2 1

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 3 −3

2 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3 −3 0

2 −2 0



R2 = R2 −
2R1

3 =⇒

3 −3 0
0 0 0


Therefore the system in Echelon form is 3 −3

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


Considering the eigenvalue λ2 = 4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 6 −3
2 1

− (4)

 1 0
0 1

 v1

v2

 =

 0
0


 2 −3

2 −3

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 −3 0

2 −3 0



R2 = R2 −R1 =⇒

2 −3 0
0 0 0


Therefore the system in Echelon form is 2 −3

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

2

}
Hence the solution is  3t

2

t

 =

 3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

2

t

 = t

 3
2

1


Let t = 1 the eigenvector becomes  3t

2

t

 =

 3
2

1


Which is normalized to  3t

2

t

 =

 3
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3 1 1 No

 1
1



4 1 1 No

 3
2

1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
3t

=

 1
1

 e3t

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
4t

=

 3
2

1

 e4t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 e3t

e3t

+ c2

 3 e4t
2

e4t


Which becomes  x1(t)

x2(t)

 =

 c1e3t + 3c2e4t
2

c1e3t + c2e4t


The following is the phase plot of the system.
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Figure 1: Phase plot

1.1.3 Maple step by step solution

Let’s solve
[x′

1(t) = 6x1(t)− 3x2(t) , x′
2(t) = 2x1(t) + x2(t)]

• Define vector

→x__(t) =

 x1(t)
x2(t)


• Convert system into a vector equation

→x__
′
(t) =

 6 −3
2 1

 · →x__(t) +

 0
0


• System to solve

→x__
′
(t) =

 6 −3
2 1

 · →x__(t)

• Define the coefficient matrix
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A =

 6 −3
2 1


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A3,

 1
1

 ,

4,
 3

2

1


• Consider eigenpair3,

 1
1


• Solution to homogeneous system from eigenpair

→x__1 = e3t ·

 1
1


• Consider eigenpair4,

 3
2

1


• Solution to homogeneous system from eigenpair

→x__2 = e4t ·

 3
2

1


• General solution to the system of ODEs

→x__ = c1
→x__1 + c2

→x__2

• Substitute solutions into the general solution

→x__ = c1e3t ·

 1
1

+ c2e4t ·

 3
2

1


• Substitute in vector of dependent variables
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 x1(t)
x2(t)

 =

 c1e3t + 3c2e4t
2

c1e3t + c2e4t


• Solution to the system of ODEs{

x1(t) = c1e3t + 3c2e4t
2 , x2(t) = c1e3t + c2e4t

}

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
dsolve([diff(x__1(t),t)=6*x__1(t)-3*x__2(t),diff(x__2(t),t)=2*x__1(t)+1*x__2(t)],singsol=all)� �

x1(t) = c1e3t + c2e4t

x2(t) = c1e3t +
2c2e4t
3

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 60� �
DSolve[{x1'[t]==6*x1[t]-3*x2[t],x2'[t]==2*x1[t]+1*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e3t
(
c1
(
3et − 2

)
− 3c2

(
et − 1

))
x2(t) → e3t

(
2c1

(
et − 1

)
+ c2

(
3− 2et

))
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1.2 problem 2
1.2.1 Solution using Matrix exponential method . . . . . . . . . . . . 12
1.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 13
1.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 18

Internal problem ID [1825]
Internal file name [OUTPUT/1826_Sunday_June_05_2022_02_34_18_AM_98845134/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −2x1(t) + x2(t)

x′
2(t) = −4x1(t) + 3x2(t)

1.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 −2 1
−4 3

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 4 e−t

3 − e2t
3

e2t
3 − e−t

3

−4 e2t
3 + 4 e−t

3 − e−t

3 + 4 e2t
3
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 4 e−t

3 − e2t
3

e2t
3 − e−t

3

−4 e2t
3 + 4 e−t

3 − e−t

3 + 4 e2t
3

 c1

c2


=


(

4 e−t

3 − e2t
3

)
c1 +

(
e2t
3 − e−t

3

)
c2(

−4 e2t
3 + 4 e−t

3

)
c1 +

(
− e−t

3 + 4 e2t
3

)
c2


=

 (4c1−c2)e−t

3 − e2t(c1−c2)
3

(4c1−c2)e−t

3 − 4 e2t(c1−c2)
3


Since no forcing function is given, then the final solution is ~xh(t) above.

1.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 −2 1
−4 3

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −2 1
−4 3

− λ

 1 0
0 1

 = 0

Therefore

det

 −2− λ 1
−4 3− λ

 = 0
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Which gives the characteristic equation

λ2 − λ− 2 = 0

The roots of the above are the eigenvalues.

λ1 = 2
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −2 1
−4 3

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 1

−4 4

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 1 0

−4 4 0



R2 = R2 − 4R1 =⇒

−1 1 0
0 0 0


Therefore the system in Echelon form is −1 1

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = t}

Hence the solution is  t

t

 =

 t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

t

 = t

 1
1


Let t = 1 the eigenvector becomes  t

t

 =

 1
1


Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −2 1
−4 3

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 −4 1

−4 1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −4 1 0

−4 1 0



R2 = R2 −R1 =⇒

−4 1 0
0 0 0


Therefore the system in Echelon form is −4 1

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = t

4

}
Hence the solution is  t

4

t

 =

 t
4

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

4

t

 = t

 1
4

1


Let t = 1 the eigenvector becomes  t

4

t

 =

 1
4

1


Which is normalized to  t

4

t

 =

 1
4


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 1 1 No

 1
4

1



−1 1 1 No

 1
1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
2t

=

 1
4

1

 e2t

Since eigenvalue −1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−t

=

 1
1

 e−t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 e2t
4

e2t

+ c2

 e−t

e−t


Which becomes  x1(t)

x2(t)

 =

 c1e2t
4 + c2e−t

c1e2t + c2e−t


The following is the phase plot of the system.
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Figure 2: Phase plot

1.2.3 Maple step by step solution

Let’s solve
[x′

1(t) = −2x1(t) + x2(t) , x′
2(t) = −4x1(t) + 3x2(t)]

• Define vector

→x__(t) =

 x1(t)
x2(t)


• Convert system into a vector equation

→x__
′
(t) =

 −2 1
−4 3

 · →x__(t) +

 0
0


• System to solve

→x__
′
(t) =

 −2 1
−4 3

 · →x__(t)

• Define the coefficient matrix
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A =

 −2 1
−4 3


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−1,

 1
1

 ,

2,
 1

4

1


• Consider eigenpair−1,

 1
1


• Solution to homogeneous system from eigenpair

→x__1 = e−t ·

 1
1


• Consider eigenpair2,

 1
4

1


• Solution to homogeneous system from eigenpair

→x__2 = e2t ·

 1
4

1


• General solution to the system of ODEs

→x__ = c1
→x__1 + c2

→x__2

• Substitute solutions into the general solution

→x__ = c1e−t ·

 1
1

+ c2e2t ·

 1
4

1


• Substitute in vector of dependent variables
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 x1(t)
x2(t)

 =

 c1e−t + c2e2t
4

c1e−t + c2e2t


• Solution to the system of ODEs{

x1(t) = c1e−t + c2e2t
4 , x2(t) = c1e−t + c2e2t

}

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve([diff(x__1(t),t)=-2*x__1(t)+1*x__2(t),diff(x__2(t),t)=-4*x__1(t)+3*x__2(t)],singsol=all)� �

x1(t) = e−tc1 + c2e2t

x2(t) = e−tc1 + 4c2e2t

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 72� �
DSolve[{x1'[t]==-2*x1[t]+1*x2[t],x2'[t]==-4*x1[t]+3*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
3e

−t
(
c2
(
e3t − 1

)
− c1

(
e3t − 4

))
x2(t) → 1

3e
−t
(
c2
(
4e3t − 1

)
− 4c1

(
e3t − 1

))
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1.3 problem 3
1.3.1 Solution using Matrix exponential method . . . . . . . . . . . . 21
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Internal problem ID [1826]
Internal file name [OUTPUT/1827_Sunday_June_05_2022_02_34_19_AM_54133011/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t) + 2x2(t) + 4x3(t)

x′
2(t) = 2x1(t) + 2x3(t)

x′
3(t) = 4x1(t) + 2x2(t) + 3x3(t)

1.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


3 2 4
2 0 2
4 2 3




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


5 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9 −4 e−t

9 + 4 e8t
9

−2 e−t

9 + 2 e8t
9

8 e−t

9 + e8t
9 −2 e−t

9 + 2 e8t
9

−4 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9

5 e−t

9 + 4 e8t
9
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


5 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9 −4 e−t

9 + 4 e8t
9

−2 e−t

9 + 2 e8t
9

8 e−t

9 + e8t
9 −2 e−t

9 + 2 e8t
9

−4 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9

5 e−t

9 + 4 e8t
9




c1

c2

c3



=



(
5 e−t

9 + 4 e8t
9

)
c1 +

(
−2 e−t

9 + 2 e8t
9

)
c2 +

(
−4 e−t

9 + 4 e8t
9

)
c3(

−2 e−t

9 + 2 e8t
9

)
c1 +

(
8 e−t

9 + e8t
9

)
c2 +

(
−2 e−t

9 + 2 e8t
9

)
c3(

−4 e−t

9 + 4 e8t
9

)
c1 +

(
−2 e−t

9 + 2 e8t
9

)
c2 +

(
5 e−t

9 + 4 e8t
9

)
c3



=


(5c1−2c2−4c3)e−t

9 + 4
(
c1+ c2

2 +c3
)
e8t

9

(−2c1+8c2−2c3)e−t

9 + 2
(
c1+ c2

2 +c3
)
e8t

9

(−4c1−2c2+5c3)e−t

9 + 4
(
c1+ c2

2 +c3
)
e8t

9


Since no forcing function is given, then the final solution is ~xh(t) above.

1.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


3 2 4
2 0 2
4 2 3




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




3 2 4
2 0 2
4 2 3

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




3− λ 2 4
2 −λ 2
4 2 3− λ


 = 0

Which gives the characteristic equation

λ3 − 6λ2 − 15λ− 8 = 0

The roots of the above are the eigenvalues.

λ1 = 8
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

8 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 2 4
2 0 2
4 2 3

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




4 2 4
2 1 2
4 2 4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

4 2 4 0
2 1 2 0
4 2 4 0
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R2 = R2 −
R1

2 =⇒


4 2 4 0
0 0 0 0
4 2 4 0



R3 = R3 −R1 =⇒


4 2 4 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

4 2 4
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation

{
v1 = − t

2 − s
}

Hence the solution is 
− t

2 − s

t

s

 =


− t

2 − s

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

− t
2 − s

t

s

 =


− t

2

t

0

+


−s

0
s



= t


−1

2

1
0

+ s


−1
0
1


By letting t = 1 and s = 1 then the above becomes

− t
2 − s

t

s

 =


−1

2

1
0

+


−1
0
1
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Hence the two eigenvectors associated with this eigenvalue are


−1
2

1
0

 ,


−1
0
1




Which are normalized to 


−1
2
0

 ,


−1
0
1




Considering the eigenvalue λ2 = 8

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 2 4
2 0 2
4 2 3

− (8)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−5 2 4
2 −8 2
4 2 −5




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−5 2 4 0
2 −8 2 0
4 2 −5 0



R2 = R2 +
2R1

5 =⇒


−5 2 4 0
0 −36

5
18
5 0

4 2 −5 0



R3 = R3 +
4R1

5 =⇒


−5 2 4 0
0 −36

5
18
5 0

0 18
5 −9

5 0
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R3 = R3 +
R2

2 =⇒


−5 2 4 0
0 −36

5
18
5 0

0 0 0 0


Therefore the system in Echelon form is

−5 2 4
0 −36

5
18
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t, v2 = t

2

}
Hence the solution is 

t

t
2

t

 =


t

t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t
2

t

 = t


1
1
2

1


Let t = 1 the eigenvector becomes 

t

t
2

t

 =


1
1
2

1


Which is normalized to 

t

t
2

t

 =


2
1
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

8 1 1 No


1
1
2

1



−1 2 2 No


−1

2 −1

1 0
0 1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 8 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
8t

=


1
1
2

1

 e8t

eigenvalue −1 is real and repated eigenvalue of multiplicity 2.There are two possible
cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 3: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2, then it is complete eigenvalue and this falls into case 1 shown above.
Hence the corresponding eigenvector basis are

~x2(t) = ~v2e
−t

=


−1

2

1
0

 e−t

~x3(t) = ~v3e
−t

=


−1
0
1

 e−t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
x1(t)
x2(t)
x3(t)

 = c1


e8t
e8t
2

e8t

+ c2


− e−t

2

e−t

0

+ c3


−e−t

0
e−t


Which becomes 

x1(t)
x2(t)
x3(t)

 =


(−c2−2c3)e−t

2 + c1e8t

c1e8t
2 + c2e−t

c1e8t + c3e−t


1.3.3 Maple step by step solution

Let’s solve
[x′

1(t) = 3x1(t) + 2x2(t) + 4x3(t) , x′
2(t) = 2x1(t) + 2x3(t) , x′

3(t) = 4x1(t) + 2x2(t) + 3x3(t)]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


3 2 4
2 0 2
4 2 3

 · →x__(t) +


0
0
0


• System to solve

→x__
′
(t) =


3 2 4
2 0 2
4 2 3

 · →x__(t)

• Define the coefficient matrix
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A =


3 2 4
2 0 2
4 2 3


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


−1

2

1
0


 ,

−1,


−1
0
1


 ,

8,


1
1
2

1





• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1,


−1

2

1
0




• First solution from eigenvalue − 1

→x__1(t) = e−t ·


−1

2

1
0


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1 is the eigenvalue, and →
v is the eigenvector

→x__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →x__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p
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• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →x__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1


3 2 4
2 0 2
4 2 3

− (−1) ·


1 0 0
0 1 0
0 0 1


 · →p =


−1

2

1
0


• Choice of →

p

→
p =


−1

8

0
0


• Second solution from eigenvalue − 1

→x__2(t) = e−t ·

t ·


−1

2

1
0

+


−1

8

0
0




• Consider eigenpair8,


1
1
2

1




• Solution to homogeneous system from eigenpair

→x__3 = e8t ·


1
1
2

1


• General solution to the system of ODEs

→x__ = c1
→x__1(t) + c2

→x__2(t) + c3
→x__3

• Substitute solutions into the general solution
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→x__ = c1e−t ·


−1

2

1
0

+ c2e−t ·

t ·


−1

2

1
0

+


−1

8

0
0


+ c3e8t ·


1
1
2

1


• Substitute in vector of dependent variables

x1(t)
x2(t)
x3(t)

 =


((−4t−1)c2−4c1)e−t

8 + c3e8t

(c2t+ c1) e−t + c3e8t
2

c3e8t


• Solution to the system of ODEs{

x1(t) = ((−4t−1)c2−4c1)e−t

8 + c3e8t, x2(t) = (c2t+ c1) e−t + c3e8t
2 , x3(t) = c3e8t

}

3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 67� �
dsolve([diff(x__1(t),t)=3*x__1(t)+2*x__2(t)+4*x__3(t),diff(x__2(t),t)=2*x__1(t)+0*x__2(t)+2*x__3(t),diff(x__3(t),t)=4*x__1(t)+2*x__2(t)+3*x__3(t)],singsol=all)� �

x1(t) = 2c2e8t + 2c3e−t + e−tc1
x2(t) = c2e8t + c3e−t

x3(t) = 2c2e8t −
5c3e−t

2 − e−tc1

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 135� �
DSolve[{x1'[t]==3*x1[t]+2*x2[t]+4*x3[t],x2'[t]==2*x1[t]+0*x2[t]+2*x3[t],x3'[t]==4*x1[t]+2*x2[t]+3*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
9e

−t
(
c1
(
4e9t + 5

)
+ 2(c2 + 2c3)

(
e9t − 1

))
x2(t) → 1

9e
−t
(
2c1

(
e9t − 1

)
+ c2

(
e9t + 8

)
+ 2c3

(
e9t − 1

))
x3(t) → 1

9e
−t
(
4c1

(
e9t − 1

)
+ 2c2

(
e9t − 1

)
+ c3

(
4e9t + 5

))
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Internal problem ID [1827]
Internal file name [OUTPUT/1828_Sunday_June_05_2022_02_34_22_AM_35330707/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 7x1(t)− x2(t) + 6x3(t)

x′
2(t) = −10x1(t) + 4x2(t)− 12x3(t)

x′
3(t) = −2x1(t) + x2(t)− x3(t)

1.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


7 −1 6

−10 4 −12
−2 1 −1




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


2 e2t − 4 e3t + 3 e5t −e3t + e2t 3 e5t − 3 e3t

8 e3t − 2 e2t − 6 e5t −e2t + 2 e3t −6 e5t + 6 e3t

4 e3t − 2 e2t − 2 e5t e3t − e2t 3 e3t − 2 e5t
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


2 e2t − 4 e3t + 3 e5t −e3t + e2t 3 e5t − 3 e3t

8 e3t − 2 e2t − 6 e5t −e2t + 2 e3t −6 e5t + 6 e3t

4 e3t − 2 e2t − 2 e5t e3t − e2t 3 e3t − 2 e5t




c1

c2

c3



=


(2 e2t − 4 e3t + 3 e5t) c1 + (−e3t + e2t) c2 + (3 e5t − 3 e3t) c3

(8 e3t − 2 e2t − 6 e5t) c1 + (−e2t + 2 e3t) c2 + (−6 e5t + 6 e3t) c3
(4 e3t − 2 e2t − 2 e5t) c1 + (e3t − e2t) c2 + (3 e3t − 2 e5t) c3



=


(−4c1 − c2 − 3c3) e3t + (2c1 + c2) e2t + 3 e5t(c1 + c3)
(8c1 + 2c2 + 6c3) e3t + (−2c1 − c2) e2t − 6 e5t(c1 + c3)
(4c1 + c2 + 3c3) e3t + (−2c1 − c2) e2t − 2 e5t(c1 + c3)


Since no forcing function is given, then the final solution is ~xh(t) above.

1.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


7 −1 6

−10 4 −12
−2 1 −1




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




7 −1 6
−10 4 −12
−2 1 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




7− λ −1 6
−10 4− λ −12
−2 1 −1− λ


 = 0

Which gives the characteristic equation

λ3 − 10λ2 + 31λ− 30 = 0

The roots of the above are the eigenvalues.

λ1 = 3
λ2 = 5
λ3 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


7 −1 6
−10 4 −12
−2 1 −1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




5 −1 6
−10 2 −12
−2 1 −3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

5 −1 6 0
−10 2 −12 0
−2 1 −3 0
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R2 = R2 + 2R1 =⇒


5 −1 6 0
0 0 0 0
−2 1 −3 0



R3 = R3 +
2R1

5 =⇒


5 −1 6 0
0 0 0 0
0 3

5 −3
5 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

5 −1 6 0
0 3

5 −3
5 0

0 0 0 0


Therefore the system in Echelon form is

5 −1 6
0 3

5 −3
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = t}

Hence the solution is 
−t

t

t

 =


−t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

t

t

 = t


−1
1
1
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Let t = 1 the eigenvector becomes
−t

t

t

 =


−1
1
1


Considering the eigenvalue λ2 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


7 −1 6
−10 4 −12
−2 1 −1

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




4 −1 6
−10 1 −12
−2 1 −4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

4 −1 6 0
−10 1 −12 0
−2 1 −4 0



R2 = R2 +
5R1

2 =⇒


4 −1 6 0
0 −3

2 3 0

−2 1 −4 0



R3 = R3 +
R1

2 =⇒


4 −1 6 0
0 −3

2 3 0

0 1
2 −1 0



R3 = R3 +
R2

3 =⇒


4 −1 6 0
0 −3

2 3 0

0 0 0 0
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Therefore the system in Echelon form is
4 −1 6
0 −3

2 3

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = 2t}

Hence the solution is 
−t

2t
t

 =


−t

2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

2t
t

 = t


−1
2
1


Let t = 1 the eigenvector becomes

−t

2t
t

 =


−1
2
1


Considering the eigenvalue λ3 = 5

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


7 −1 6
−10 4 −12
−2 1 −1

− (5)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 −1 6
−10 −1 −12
−2 1 −6




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 −1 6 0
−10 −1 −12 0
−2 1 −6 0



R2 = R2 + 5R1 =⇒


2 −1 6 0
0 −6 18 0
−2 1 −6 0



R3 = R3 +R1 =⇒


2 −1 6 0
0 −6 18 0
0 0 0 0


Therefore the system in Echelon form is

2 −1 6
0 −6 18
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = −3t

2 , v2 = 3t
}

Hence the solution is 
−3t

2

3t
t

 =


−3t

2

3t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−3t
2

3t
t

 = t


−3

2

3
1
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Let t = 1 the eigenvector becomes
−3t

2

3t
t

 =


−3

2

3
1


Which is normalized to 

−3t
2

3t
t

 =


−3
6
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3 1 1 No


−1
2
1



5 1 1 No


−3

2

3
1



2 1 1 No


−1
1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
3t

=


−1
2
1

 e3t

Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
5t

=


−3

2

3
1

 e5t

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
2t

=


−1
1
1

 e2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


−e3t

2 e3t

e3t

+ c2


−3 e5t

2

3 e5t

e5t

+ c3


−e2t

e2t

e2t


Which becomes 

x1(t)
x2(t)
x3(t)

 =


−c1e3t − 3c2e5t

2 − c3e2t

2c1e3t + 3c2e5t + c3e2t

c1e3t + c2e5t + c3e2t
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1.4.3 Maple step by step solution

Let’s solve
[x′

1(t) = 7x1(t)− x2(t) + 6x3(t) , x′
2(t) = −10x1(t) + 4x2(t)− 12x3(t) , x′

3(t) = −2x1(t) + x2(t)− x3(t)]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


7 −1 6

−10 4 −12
−2 1 −1

 · →x__(t) +


0
0
0


• System to solve

→x__
′
(t) =


7 −1 6

−10 4 −12
−2 1 −1

 · →x__(t)

• Define the coefficient matrix

A =


7 −1 6

−10 4 −12
−2 1 −1


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

2,


−1
1
1


 ,

3,


−1
2
1


 ,

5,


−3
2

3
1





• Consider eigenpair
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2,


−1
1
1




• Solution to homogeneous system from eigenpair

→x__1 = e2t ·


−1
1
1


• Consider eigenpair3,


−1
2
1




• Solution to homogeneous system from eigenpair

→x__2 = e3t ·


−1
2
1


• Consider eigenpair5,


−3

2

3
1




• Solution to homogeneous system from eigenpair

→x__3 = e5t ·


−3

2

3
1


• General solution to the system of ODEs

→x__ = c1
→x__1 + c2

→x__2 + c3
→x__3

• Substitute solutions into the general solution
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→x__ = c1e2t ·


−1
1
1

+ c2e3t ·


−1
2
1

+ c3e5t ·


−3

2

3
1


• Substitute in vector of dependent variables

x1(t)
x2(t)
x3(t)

 =


−c1e2t − c2e3t − 3c3e5t

2

c1e2t + 2c2e3t + 3c3e5t

c1e2t + c2e3t + c3e5t


• Solution to the system of ODEs{

x1(t) = −c1e2t − c2e3t − 3c3e5t
2 , x2(t) = c1e2t + 2c2e3t + 3c3e5t, x3(t) = c1e2t + c2e3t + c3e5t

}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 74� �
dsolve([diff(x__1(t),t)=7*x__1(t)-1*x__2(t)+6*x__3(t),diff(x__2(t),t)=-10*x__1(t)+4*x__2(t)-12*x__3(t),diff(x__3(t),t)=-2*x__1(t)+1*x__2(t)-1*x__3(t)],singsol=all)� �

x1(t) = c1e3t + c2e2t + c3e5t

x2(t) = −2c1e3t − c2e2t − 2c3e5t

x3(t) = −c1e3t − c2e2t −
2c3e5t
3

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 153� �
DSolve[{x1'[t]==7*x1[t]-1*x2[t]+6*x3[t],x2'[t]==-10*x1[t]+4*x2[t]-12*x3[t],x3'[t]==-2*x1[t]+1*x2[t]-1*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e2t
(
c1
(
−4et + 3e3t + 2

)
− c2

(
et − 1

)
+ 3c3et

(
e2t − 1

))
x2(t) → −e2t

(
c1
(
−8et + 6e3t + 2

)
+ c2

(
1− 2et

)
+ 6c3et

(
e2t − 1

))
x3(t) → e2t

(
−2c1

(
−2et + e3t + 1

)
+ c2

(
et − 1

)
+ c3e

t
(
3− 2e2t

))
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Internal problem ID [1828]
Internal file name [OUTPUT/1829_Sunday_June_05_2022_02_34_24_AM_41905812/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −7x1(t) + 6x3(t)

x′
2(t) = 5x2(t)

x′
3(t) = 6x1(t) + 2x3(t)

1.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−7 0 6
0 5 0
6 0 2




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


(
e15t+4

)
e−10t

5 0 2
(
e15t−1

)
e−10t

5

0 e5t 0
2
(
e15t−1

)
e−10t

5 0
(
4 e15t+1

)
e−10t

5
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(
e15t+4

)
e−10t

5 0 2
(
e15t−1

)
e−10t

5

0 e5t 0
2
(
e15t−1

)
e−10t

5 0
(
4 e15t+1

)
e−10t

5




c1

c2

c3



=


(
e15t+4

)
e−10tc1

5 + 2
(
e15t−1

)
e−10tc3

5

e5tc2
2
(
e15t−1

)
e−10tc1

5 +
(
4 e15t+1

)
e−10tc3

5



=


e−10t((c1+2c3)e15t+4c1−2c3

)
5

e5tc2
2
(
(c1+2c3)e15t−c1+ c3

2
)
e−10t

5


Since no forcing function is given, then the final solution is ~xh(t) above.

1.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−7 0 6
0 5 0
6 0 2




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−7 0 6
0 5 0
6 0 2

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−7− λ 0 6
0 5− λ 0
6 0 2− λ


 = 0

Which gives the characteristic equation

λ3 − 75λ+ 250 = 0

The roots of the above are the eigenvalues.

λ1 = 5
λ2 = −10

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

5 1 real eigenvalue

−10 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −10

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−7 0 6
0 5 0
6 0 2

− (−10)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




3 0 6
0 15 0
6 0 12




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

3 0 6 0
0 15 0 0
6 0 12 0
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R3 = R3 − 2R1 =⇒


3 0 6 0
0 15 0 0
0 0 0 0


Therefore the system in Echelon form is

3 0 6
0 15 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −2t, v2 = 0}

Hence the solution is 
−2t
0
t

 =


−2t
0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−2t
0
t

 = t


−2
0
1


Let t = 1 the eigenvector becomes

−2t
0
t

 =


−2
0
1


Considering the eigenvalue λ2 = 5
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−7 0 6
0 5 0
6 0 2

− (5)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−12 0 6
0 0 0
6 0 −3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−12 0 6 0
0 0 0 0
6 0 −3 0



R3 = R3 +
R1

2 =⇒


−12 0 6 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

−12 0 6
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation

{
v1 = s

2

}
Hence the solution is 

s
2

t

s

 =


s
2

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
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eigenvalue. The above can be written as
s
2

t

s

 =


0
t

0

+


s
2

0
s



= t


0
1
0

+ s


1
2

0
1


By letting t = 1 and s = 1 then the above becomes

s
2

t

s

 =


0
1
0

+


1
2

0
1


Hence the two eigenvectors associated with this eigenvalue are


0
1
0

 ,


1
2

0
1




Which are normalized to 


0
1
0

 ,


1
0
2




The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

5 2 2 No


1
2 0

0 1
1 0



−10 1 1 No


−2
0
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 5 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 4: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
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multiplicity 2, then it is complete eigenvalue and this falls into case 1 shown above.
Hence the corresponding eigenvector basis are

~x1(t) = ~v1e
5t

=


1
2

0
1

 e5t

~x2(t) = ~v2e
5t

=


0
1
0

 e5t

Since eigenvalue −10 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
−10t

=


−2
0
1

 e−10t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


e5t
2

0
e5t

+ c2


0
e5t

0

+ c3


−2 e−10t

0
e−10t


Which becomes 

x1(t)
x2(t)
x3(t)

 =


(
c1e15t−4c3

)
e−10t

2

c2e5t

(c1e15t + c3) e−10t
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1.5.3 Maple step by step solution

Let’s solve
[x′

1(t) = −7x1(t) + 6x3(t) , x′
2(t) = 5x2(t) , x′

3(t) = 6x1(t) + 2x3(t)]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


−7 0 6
0 5 0
6 0 2

 · →x__(t) +


0
0
0


• System to solve

→x__
′
(t) =


−7 0 6
0 5 0
6 0 2

 · →x__(t)

• Define the coefficient matrix

A =


−7 0 6
0 5 0
6 0 2


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−10,


−2
0
1


 ,

5,


1
2

0
1


 ,

5,


0
1
0





• Consider eigenpair
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−10,


−2
0
1




• Solution to homogeneous system from eigenpair

→x__1 = e−10t ·


−2
0
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 25,


1
2

0
1




• First solution from eigenvalue 5

→x__2(t) = e5t ·


1
2

0
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 5 is the eigenvalue, and →
v is the eigenvector

→x__3(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 5

• Substitute →x__3(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →x__3(t) to be a solution to the homogeneous system
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(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 5


−7 0 6
0 5 0
6 0 2

− 5 ·


1 0 0
0 1 0
0 0 1


 · →p =


1
2

0
1


• Choice of →

p

→
p =


− 1

24

0
0


• Second solution from eigenvalue 5

→x__3(t) = e5t ·

t ·


1
2

0
1

+


− 1

24

0
0




• General solution to the system of ODEs
→x__ = c1

→x__1 + c2
→x__2(t) + c3

→x__3(t)
• Substitute solutions into the general solution

→x__ = c1e−10t ·


−2
0
1

+ c2e5t ·


1
2

0
1

+ c3e5t ·

t ·


1
2

0
1

+


− 1

24

0
0




• Substitute in vector of dependent variables
x1(t)
x2(t)
x3(t)

 =


(((

t− 1
12
)
c3+c2

)
e15t−4c1

)
e−10t

2

0
((c3t+ c2) e15t + c1) e−10t


• Solution to the system of ODEs{

x1(t) =
(((

t− 1
12
)
c3+c2

)
e15t−4c1

)
e−10t

2 , x2(t) = 0, x3(t) = ((c3t+ c2) e15t + c1) e−10t
}
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
dsolve([diff(x__1(t),t)=-7*x__1(t)+0*x__2(t)+6*x__3(t),diff(x__2(t),t)=0*x__1(t)+5*x__2(t)+0*x__3(t),diff(x__3(t),t)=6*x__1(t)+0*x__2(t)+2*x__3(t)],singsol=all)� �

x1(t) = c1e−10t + c2e5t

x2(t) = c3e5t

x3(t) = −c1e−10t

2 + 2c2e5t

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 158� �
DSolve[{x1'[t]==-7*x1[t]+0*x2[t]+6*x3[t],x2'[t]==0*x1[t]+5*x2[t]+0*x3[t],x3'[t]==6*x1[t]+0*x2[t]+2*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
5e

−10t(c1(e15t + 4
)
+ 2c2

(
e15t − 1

))
x3(t) → 1

5e
−10t(2c1(e15t − 1

)
+ c2

(
4e15t + 1

))
x2(t) → c3e

5t

x1(t) → 1
5e

−10t(c1(e15t + 4
)
+ 2c2

(
e15t − 1

))
x3(t) → 1

5e
−10t(2c1(e15t − 1

)
+ c2

(
4e15t + 1

))
x2(t) → 0
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1.6 problem 6
1.6.1 Solution using Matrix exponential method . . . . . . . . . . . . 57
1.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 58
1.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 68

Internal problem ID [1829]
Internal file name [OUTPUT/1830_Sunday_June_05_2022_02_34_26_AM_42392674/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + 2x2(t) + 3x3(t) + 6x4(t)

x′
2(t) = 3x1(t) + 6x2(t) + 9x3(t) + 18x4(t)

x′
3(t) = 5x1(t) + 10x2(t) + 15x3(t) + 30x4(t)

x′
4(t) = 7x1(t) + 14x2(t) + 21x3(t) + 42x4(t)

1.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

x′
4(t)

 =


1 2 3 6
3 6 9 18
5 10 15 30
7 14 21 42




x1(t)
x2(t)
x3(t)
x4(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


63
64 +

e64t
64

e64t
32 − 1

32
3 e64t
64 − 3

64
3 e64t
32 − 3

32
3 e64t
64 − 3

64
29
32 +

3 e64t
32

9 e64t
64 − 9

64
9 e64t
32 − 9

32
5 e64t
64 − 5

64
5 e64t
32 − 5

32
49
64 +

15 e64t
64

15 e64t
32 − 15

32
7 e64t
64 − 7

64
7 e64t
32 − 7

32
21 e64t
64 − 21

64
11
32 +

21 e64t
32


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


63
64 +

e64t
64

e64t
32 − 1

32
3 e64t
64 − 3

64
3 e64t
32 − 3

32
3 e64t
64 − 3

64
29
32 +

3 e64t
32

9 e64t
64 − 9

64
9 e64t
32 − 9

32
5 e64t
64 − 5

64
5 e64t
32 − 5

32
49
64 +

15 e64t
64

15 e64t
32 − 15

32
7 e64t
64 − 7

64
7 e64t
32 − 7

32
21 e64t
64 − 21

64
11
32 +

21 e64t
32




c1

c2

c3

c4



=



(
63
64 +

e64t
64

)
c1 +

(
e64t
32 − 1

32

)
c2 +

(
3 e64t
64 − 3

64

)
c3 +

(
3 e64t
32 − 3

32

)
c4(

3 e64t
64 − 3

64

)
c1 +

(
29
32 +

3 e64t
32

)
c2 +

(
9 e64t
64 − 9

64

)
c3 +

(
9 e64t
32 − 9

32

)
c4(

5 e64t
64 − 5

64

)
c1 +

(
5 e64t
32 − 5

32

)
c2 +

(
49
64 +

15 e64t
64

)
c3 +

(
15 e64t
32 − 15

32

)
c4(

7 e64t
64 − 7

64

)
c1 +

(
7 e64t
32 − 7

32

)
c2 +

(
21 e64t
64 − 21

64

)
c3 +

(
11
32 +

21 e64t
32

)
c4



=



(c1+2c2+3c3+6c4)e64t
64 + 63c1

64 − c2
32 −

3c3
64 − 3c4

32
3(c1+2c2+3c3+6c4)e64t

64 − 3c1
64 + 29c2

32 − 9c3
64 − 9c4

32
5(c1+2c2+3c3+6c4)e64t

64 − 5c1
64 − 5c2

32 + 49c3
64 − 15c4

32
7(c1+2c2+3c3+6c4)e64t

64 − 7c1
64 − 7c2

32 − 21c3
64 + 11c4

32


Since no forcing function is given, then the final solution is ~xh(t) above.

1.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)
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Or 
x′
1(t)

x′
2(t)

x′
3(t)

x′
4(t)

 =


1 2 3 6
3 6 9 18
5 10 15 30
7 14 21 42




x1(t)
x2(t)
x3(t)
x4(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 2 3 6
3 6 9 18
5 10 15 30
7 14 21 42

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

Therefore

det




1− λ 2 3 6
3 6− λ 9 18
5 10 15− λ 30
7 14 21 42− λ



 = 0

Which gives the characteristic equation

λ4 − 64λ3 = 0

The roots of the above are the eigenvalues.

λ1 = 64
λ2 = 0

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

64 1 real eigenvalue
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Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 0

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 2 3 6
3 6 9 18
5 10 15 30
7 14 21 42

− (0)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




1 2 3 6
3 6 9 18
5 10 15 30
7 14 21 42




v1

v2

v3

v4

 =


0
0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 2 3 6 0
3 6 9 18 0
5 10 15 30 0
7 14 21 42 0



R2 = R2 − 3R1 =⇒


1 2 3 6 0
0 0 0 0 0
5 10 15 30 0
7 14 21 42 0



R3 = R3 − 5R1 =⇒


1 2 3 6 0
0 0 0 0 0
0 0 0 0 0
7 14 21 42 0
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R4 = R4 − 7R1 =⇒


1 2 3 6 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Therefore the system in Echelon form is

1 2 3 6
0 0 0 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v2, v3, v4} and the leading variables are {v1}. Let v2 = t. Let
v3 = s. Let v4 = r. Now we start back substitution. Solving the above equation for the
leading variables in terms of free variables gives equation {v1 = −2t− 3s− 6r}

Hence the solution is 
−2t− 3s− 6r

t

s

r

 =


−2t− 3s− 6r

t

s

r


Since there are three free Variable, we have found three eigenvectors associated with
this eigenvalue. The above can be written as

−2t− 3s− 6r
t

s

r

 =


−2t
t

0
0

+


−3s
0
s

0



= t


−2
1
0
0

+ s


−3
0
1
0

+ r


−6
0
0
1
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By letting t = 1 and s = 1 and r = 1 then the above becomes
−2t− 3s− 6r

t

s

r

 =


−2
1
0
0

+


−3
0
1
0

+


−6
0
0
1


Hence the three eigenvectors associated with this eigenvalue are


−2
1
0
0

 ,


−3
0
1
0

 ,


−6
0
0
1




Considering the eigenvalue λ2 = 64

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 2 3 6
3 6 9 18
5 10 15 30
7 14 21 42

− (64)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




−63 2 3 6
3 −58 9 18
5 10 −49 30
7 14 21 −22




v1

v2

v3

v4

 =


0
0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−63 2 3 6 0
3 −58 9 18 0
5 10 −49 30 0
7 14 21 −22 0
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R2 = R2 +
R1

21 =⇒


−63 2 3 6 0
0 −1216

21
64
7

128
7 0

5 10 −49 30 0
7 14 21 −22 0



R3 = R3 +
5R1

63 =⇒


−63 2 3 6 0
0 −1216

21
64
7

128
7 0

0 640
63 −1024

21
640
21 0

7 14 21 −22 0



R4 = R4 +
R1

9 =⇒


−63 2 3 6 0
0 −1216

21
64
7

128
7 0

0 640
63 −1024

21
640
21 0

0 128
9

64
3 −64

3 0



R3 = R3 +
10R2

57 =⇒


−63 2 3 6 0
0 −1216

21
64
7

128
7 0

0 0 −896
19

640
19 0

0 128
9

64
3 −64

3 0



R4 = R4 +
14R2

57 =⇒


−63 2 3 6 0
0 −1216

21
64
7

128
7 0

0 0 −896
19

640
19 0

0 0 448
19 −320

19 0



R4 = R4 +
R3

2 =⇒


−63 2 3 6 0
0 −1216

21
64
7

128
7 0

0 0 −896
19

640
19 0

0 0 0 0 0
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Therefore the system in Echelon form is
−63 2 3 6
0 −1216

21
64
7

128
7

0 0 −896
19

640
19

0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

7 , v2 =
3t
7 , v3 =

5t
7

}
Hence the solution is 

t
7
3t
7
5t
7

t

 =


t
7
3t
7
5t
7

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
7
3t
7
5t
7

t

 = t


1
7
3
7
5
7

1


Let t = 1 the eigenvector becomes 

t
7
3t
7
5t
7

t

 =


1
7
3
7
5
7

1


Which is normalized to 

t
7
3t
7
5t
7

t

 =


1
3
5
7
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The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

64 1 1 No



1
7

3
7

5
7

1



0 3 3 No


−6 −3 −2
0 0 1
0 1 0
1 0 0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 64 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
64t

=


1
7
3
7
5
7

1

 e64t

eigenvalue 0 is real and repated eigenvalue of multiplicity 3.There are three possible
cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 5: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 which is the same as its geometric
multiplicity 3, then it is complete eigenvalue and this falls into case 1 shown above.
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Hence the corresponding eigenvector basis are

~x2(t) = ~v2e
0

=


−6
0
0
1

 e0

~x3(t) = ~v3e
0

=


−3
0
1
0

 e0

~x4(t) = ~v4e
0

=


−2
1
0
0

 e0

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t) + c4~x4(t)

Which is written as
x1(t)
x2(t)
x3(t)
x4(t)

 = c1


e64t
7

3 e64t
7

5 e64t
7

e64t

+ c2


−6
0
0
1

+ c3


−3
0
1
0

+ c4


−2
1
0
0


Which becomes 

x1(t)
x2(t)
x3(t)
x4(t)

 =


c1e64t

7 − 6c2 − 3c3 − 2c4
3c1e64t

7 + c4
5c1e64t

7 + c3

c1e64t + c2
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1.6.3 Maple step by step solution

Let’s solve
[x′

1(t) = x1(t) + 2x2(t) + 3x3(t) + 6x4(t) , x′
2(t) = 3x1(t) + 6x2(t) + 9x3(t) + 18x4(t) , x′

3(t) = 5x1(t) + 10x2(t) + 15x3(t) + 30x4(t) , x′
4(t) = 7x1(t) + 14x2(t) + 21x3(t) + 42x4(t)]

• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)
x4(t)


• Convert system into a vector equation

→x__
′
(t) =


1 2 3 6
3 6 9 18
5 10 15 30
7 14 21 42

 · →x__(t) +


0
0
0
0


• System to solve

→x__
′
(t) =


1 2 3 6
3 6 9 18
5 10 15 30
7 14 21 42

 · →x__(t)

• Define the coefficient matrix

A =


1 2 3 6
3 6 9 18
5 10 15 30
7 14 21 42


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

68





0,


−6
0
0
1



 ,

0,


−3
0
1
0



 ,

0,


−2
1
0
0



 ,

64,


1
7
3
7
5
7

1






• Consider eigenpair0,


−6
0
0
1




• Solution to homogeneous system from eigenpair

→x__1 =


−6
0
0
1


• Consider eigenpair0,


−3
0
1
0




• Solution to homogeneous system from eigenpair

→x__2 =


−3
0
1
0


• Consider eigenpair
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0,


−2
1
0
0




• Solution to homogeneous system from eigenpair

→x__3 =


−2
1
0
0


• Consider eigenpair64,


1
7
3
7
5
7

1




• Solution to homogeneous system from eigenpair

→x__4 = e64t ·


1
7
3
7
5
7

1


• General solution to the system of ODEs

→x__ = c1
→x__1 + c2

→x__2 + c3
→x__3 + c4

→x__4

• Substitute solutions into the general solution

→x__ = c4e64t ·


1
7
3
7
5
7

1

+


−6c1 − 3c2 − 2c3

c3

c2

c1


• Substitute in vector of dependent variables
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x1(t)
x2(t)
x3(t)
x4(t)

 =


c4e64t

7 − 2c3 − 3c2 − 6c1
3c4e64t

7 + c3
5c4e64t

7 + c2

c4e64t + c1


• Solution to the system of ODEs{

x1(t) = c4e64t
7 − 2c3 − 3c2 − 6c1, x2(t) = 3c4e64t

7 + c3, x3(t) = 5c4e64t
7 + c2, x4(t) = c4e64t + c1

}

3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 63� �
dsolve([diff(x__1(t),t)=1*x__1(t)+2*x__2(t)+3*x__3(t)+6*x__4(t),diff(x__2(t),t)=3*x__1(t)+6*x__2(t)+9*x__3(t)+18*x__4(t),diff(x__3(t),t)=5*x__1(t)+10*x__2(t)+15*x__3(t)+30*x__4(t),diff(x__4(t),t)=7*x__1(t)+14*x__2(t)+21*x__3(t)+42*x__4(t)],singsol=all)� �

x1(t) = c3 + c4e64t

x2(t) = 3c3 + 3c4e64t + c2
x3(t) = 5c3 + 5c4e64t + c1

x4(t) = 7c4e64t −
11c3
3 − c2

3 − c1
2
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3 Solution by Mathematica
Time used: 0.089 (sec). Leaf size: 554� �
DSolve[{x1'[t]==1*x1[t]+2*x2[t]+3*x3[t]+6*x4[t],x2'[t]==3*x1[t]+6*x2[t]+9*x3[t]+19*x4[t],x3'[t]==5*x1[t]+10*x2[t]+15*x3[t]+30*x4[t],x4'[t]==7*x1[t]+14*x2[t]+21*x3[t]+42*x4[t]},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]� �
x1(t)

→
e−

√
1038t

(
2076(7c1 − c4)e

√
1038t −

(
7
√
1038c1 + 14

√
1038c2 + 21

√
1038c3 + 10

√
1038c4 − 1038c4

)
e32t +

(
7
√
1038c1 + 14

√
1038c2 + 21

√
1038c3 + 10

√
1038c4 + 1038c4

)
e
2
(
16+

√
1038

)
t

)
14532

x2(t)

→
(
7
(
519 + 13

√
1038

)
c1 + 14

(
519 + 13

√
1038

)
c2 + 273

√
1038c3 + 10899c3 − 389

√
1038c4 − 8304c4

)
e
−
((√

1038−32
)
t
)
+
((
3633− 91

√
1038

)
c1 +

(
7266− 182

√
1038

)
c2 − 273

√
1038c3 + 10899c3 + 389

√
1038c4 − 8304c4

)
e

(
32+

√
1038

)
t − 1038(7c1 + 21c3 − 16c4)

14532
x3(t)

→
e−

√
1038t

(
2076(7c3 − 5c4)e

√
1038t − 5

(
7
√
1038c1 + 14

√
1038c2 + 21

√
1038c3 + 10

√
1038c4 − 1038c4

)
e32t + 5

(
7
√
1038c1 + 14

√
1038c2 + 21

√
1038c3 + 10

√
1038c4 + 1038c4

)
e
2
(
16+

√
1038

)
t

)
14532

x4(t)

→
e
−
((√

1038−32
)
t
)(

7c1
(
e2

√
1038t − 1

)
+ 14c2

(
e2

√
1038t − 1

)
+ 21c3e2

√
1038t +

√
1038c4e2

√
1038t + 10c4e2

√
1038t − 21c3 +

√
1038c4 − 10c4

)
2
√
1038
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1.7 problem 7
1.7.1 Solution using Matrix exponential method . . . . . . . . . . . . 73
1.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 74

Internal problem ID [1830]
Internal file name [OUTPUT/1831_Sunday_June_05_2022_02_34_29_AM_45158599/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + x2(t)

x′
2(t) = 4x1(t) + x2(t)

With initial conditions
[x1(0) = 2, x2(0) = 3]

1.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 1 1
4 1

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−t

2 + e3t
2

e3t
4 − e−t

4

e3t − e−t e−t

2 + e3t
2
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e−t

2 + e3t
2

e3t
4 − e−t

4

e3t − e−t e−t

2 + e3t
2

 2
3


=

 e−t

4 + 7 e3t
4

7 e3t
2 − e−t

2


Since no forcing function is given, then the final solution is ~xh(t) above.

1.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 1 1
4 1

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 1
4 1

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ 1
4 1− λ

 = 0

Which gives the characteristic equation

λ2 − 2λ− 3 = 0
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The roots of the above are the eigenvalues.

λ1 = −1
λ2 = 3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 1
4 1

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 2 1

4 2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 1 0

4 2 0



R2 = R2 − 2R1 =⇒

2 1 0
0 0 0


Therefore the system in Echelon form is 2 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − t

2

}
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Hence the solution is  − t
2

t

 =

 − t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − t

2

t

 = t

 −1
2

1


Let t = 1 the eigenvector becomes − t

2

t

 =

 −1
2

1


Which is normalized to  − t

2

t

 =

 −1
2


Considering the eigenvalue λ2 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 1
4 1

− (3)

 1 0
0 1

 v1

v2

 =

 0
0


 −2 1

4 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −2 1 0

4 −2 0



R2 = R2 + 2R1 =⇒

−2 1 0
0 0 0


Therefore the system in Echelon form is −2 1

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = t

2

}
Hence the solution is  t

2

t

 =

 t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t

2

t

 = t

 1
2

1


Let t = 1 the eigenvector becomes  t

2

t

 =

 1
2

1


Which is normalized to  t

2

t

 =

 1
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 1 1 No

 −1
2

1



3 1 1 No

 1
2

1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=

 −1
2

1

 e−t

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
3t

=

 1
2

1

 e3t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 − e−t

2

e−t

+ c2

 e3t
2

e3t


Which becomes  x1(t)

x2(t)

 =

 − c1e−t

2 + c2e3t
2

c1e−t + c2e3t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 2

x2(0) = 3

 (1)

Substituting initial conditions into the above solution at t = 0 gives 2
3

 =

 − c1
2 + c2

2

c1 + c2
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Solving for the constants of integrations gives c1 = −1
2

c2 = 7
2


Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 e−t

4 + 7 e3t
4

7 e3t
2 − e−t

2


The following is the phase plot of the system.

Figure 6: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 34� �
dsolve([diff(x__1(t),t) = x__1(t)+x__2(t), diff(x__2(t),t) = 4*x__1(t)+x__2(t), x__1(0) = 2, x__2(0) = 3], singsol=all)� �

x1(t) =
7 e3t
4 + e−t

4
x2(t) =

7 e3t
2 − e−t

2

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 44� �
DSolve[{x1'[t]==1*x1[t]+1*x2[t],x2'[t]==4*x1[t]+1*x2[t]},{x1[0]==2,x2[0]==3},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
4e

−t
(
7e4t + 1

)
x2(t) → 1

2e
−t
(
7e4t − 1

)
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1.8 problem 8
1.8.1 Solution using Matrix exponential method . . . . . . . . . . . . 81
1.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 82

Internal problem ID [1831]
Internal file name [OUTPUT/1832_Sunday_June_05_2022_02_34_31_AM_49847952/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t)− 3x2(t)

x′
2(t) = −2x1(t) + 2x2(t)

With initial conditions
[x1(0) = 0, x2(0) = 5]

1.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 1 −3
−2 2

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 3 e−t

5 + 2 e4t
5 −3 e4t

5 + 3 e−t

5

−2 e4t
5 + 2 e−t

5
2 e−t

5 + 3 e4t
5
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 3 e−t

5 + 2 e4t
5 −3 e4t

5 + 3 e−t

5

−2 e4t
5 + 2 e−t

5
2 e−t

5 + 3 e4t
5

 0
5


=

 −3 e4t + 3 e−t

2 e−t + 3 e4t


Since no forcing function is given, then the final solution is ~xh(t) above.

1.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 1 −3
−2 2

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 −3
−2 2

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ −3
−2 2− λ

 = 0

Which gives the characteristic equation

λ2 − 3λ− 4 = 0
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The roots of the above are the eigenvalues.

λ1 = 4
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

4 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −3
−2 2

− (−1)

 1 0
0 1

 v1

v2

 =

 0
0


 2 −3

−2 3

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  2 −3 0

−2 3 0



R2 = R2 +R1 =⇒

2 −3 0
0 0 0


Therefore the system in Echelon form is 2 −3

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = 3t

2

}
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Hence the solution is  3t
2

t

 =

 3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 3t

2

t

 = t

 3
2

1


Let t = 1 the eigenvector becomes  3t

2

t

 =

 3
2

1


Which is normalized to  3t

2

t

 =

 3
2


Considering the eigenvalue λ2 = 4

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −3
−2 2

− (4)

 1 0
0 1

 v1

v2

 =

 0
0


 −3 −3

−2 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −3 −3 0

−2 −2 0



R2 = R2 −
2R1

3 =⇒

−3 −3 0
0 0 0


Therefore the system in Echelon form is −3 −3

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}

Hence the solution is  −t

t

 =

 −t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

4 1 1 No

 −1
1



−1 1 1 No

 3
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 4 is real and distinct then the
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corresponding eigenvector solution is

~x1(t) = ~v1e
4t

=

 −1
1

 e4t

Since eigenvalue −1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−t

=

 3
2

1

 e−t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 −e4t

e4t

+ c2

 3 e−t

2

e−t


Which becomes  x1(t)

x2(t)

 =

 −c1e4t + 3c2e−t

2

c1e4t + c2e−t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 0

x2(0) = 5

 (1)

Substituting initial conditions into the above solution at t = 0 gives 0
5

 =

 −c1 + 3c2
2

c1 + c2


Solving for the constants of integrations gives c1 = 3

c2 = 2
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Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 −3 e4t + 3 e−t

2 e−t + 3 e4t


The following is the phase plot of the system.

Figure 7: Phase plot

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 34� �
dsolve([diff(x__1(t),t) = x__1(t)-3*x__2(t), diff(x__2(t),t) = -2*x__1(t)+2*x__2(t), x__1(0) = 0, x__2(0) = 5], singsol=all)� �

x1(t) = 3 e−t − 3 e4t

x2(t) = 2 e−t + 3 e4t

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 37� �
DSolve[{x1'[t]==1*x1[t]-3*x2[t],x2'[t]==-2*x1[t]+2*x2[t]},{x1[0]==0,x2[0]==5},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → −3e−t
(
e5t − 1

)
x2(t) → e−t

(
3e5t + 2

)
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1.9 problem 9
1.9.1 Solution using Matrix exponential method . . . . . . . . . . . . 89
1.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 90

Internal problem ID [1832]
Internal file name [OUTPUT/1833_Sunday_June_05_2022_02_34_33_AM_6328522/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t) + x2(t)− x3(t)

x′
2(t) = x1(t) + 3x2(t)− x3(t)

x′
3(t) = 3x1(t) + 3x2(t)− x3(t)

With initial conditions

[x1(0) = 1, x2(0) = −2, x3(0) = −1]

1.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


3 1 −1
1 3 −1
3 3 −1




x1(t)
x2(t)
x3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


2 e2t − et e2t − et −e2t + et

e2t − et 2 e2t − et −e2t + et

3 e2t − 3 et 3 e2t − 3 et 3 et − 2 e2t


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


2 e2t − et e2t − et −e2t + et

e2t − et 2 e2t − et −e2t + et

3 e2t − 3 et 3 e2t − 3 et 3 et − 2 e2t




1
−2
−1



=


e2t

−2 e2t

−e2t


Since no forcing function is given, then the final solution is ~xh(t) above.

1.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


3 1 −1
1 3 −1
3 3 −1




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




3 1 −1
1 3 −1
3 3 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




3− λ 1 −1
1 3− λ −1
3 3 −1− λ


 = 0

Which gives the characteristic equation

λ3 − 5λ2 + 8λ− 4 = 0

The roots of the above are the eigenvalues.

λ1 = 2
λ2 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 1 −1
1 3 −1
3 3 −1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 1 −1
1 2 −1
3 3 −2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 1 −1 0
1 2 −1 0
3 3 −2 0
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R2 = R2 −
R1

2 =⇒


2 1 −1 0
0 3

2 −1
2 0

3 3 −2 0



R3 = R3 −
3R1

2 =⇒


2 1 −1 0
0 3

2 −1
2 0

0 3
2 −1

2 0



R3 = R3 −R2 =⇒


2 1 −1 0
0 3

2 −1
2 0

0 0 0 0


Therefore the system in Echelon form is

2 1 −1
0 3

2 −1
2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

3 , v2 =
t
3

}
Hence the solution is 

t
3
t
3

t

 =


t
3
t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
3
t
3

t

 = t


1
3
1
3

1
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Let t = 1 the eigenvector becomes 
t
3
t
3

t

 =


1
3
1
3

1


Which is normalized to 

t
3
t
3

t

 =


1
1
3


Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 1 −1
1 3 −1
3 3 −1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 1 −1
1 1 −1
3 3 −3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 1 −1 0
1 1 −1 0
3 3 −3 0



R2 = R2 −R1 =⇒


1 1 −1 0
0 0 0 0
3 3 −3 0



R3 = R3 − 3R1 =⇒


1 1 −1 0
0 0 0 0
0 0 0 0
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Therefore the system in Echelon form is
1 1 −1
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation {v1 = −t+ s}

Hence the solution is 
−t+ s

t

s

 =


−t+ s

t

s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

−t+ s

t

s

 =


−t

t

0

+


s

0
s



= t


−1
1
0

+ s


1
0
1


By letting t = 1 and s = 1 then the above becomes

−t+ s

t

s

 =


−1
1
0

+


1
0
1


Hence the two eigenvectors associated with this eigenvalue are


−1
1
0

 ,


1
0
1




The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 2 2 No


1 −1
0 1
1 0



1 1 1 No


1
3

1
3

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 8: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2, then it is complete eigenvalue and this falls into case 1 shown above.
Hence the corresponding eigenvector basis are

~x1(t) = ~v1e
2t

=


1
0
1

 e2t

~x2(t) = ~v2e
2t

=


−1
1
0

 e2t
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Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
t

=


1
3
1
3

1

 et

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


e2t

0
e2t

+ c2


−e2t

e2t

0

+ c3


et
3
et
3

et


Which becomes 

x1(t)
x2(t)
x3(t)

 =


(c1 − c2) e2t + c3et

3

c2e2t + c3et
3

c1e2t + c3et


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = 1
x2(0) = −2
x3(0) = −1

 (1)

Substituting initial conditions into the above solution at t = 0 gives
1
−2
−1

 =


c1 − c2 + c3

3

c2 + c3
3

c1 + c3


Solving for the constants of integrations gives

c1 = −1
c2 = −2
c3 = 0
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Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)

 =


e2t

−2 e2t

−e2t


The following are plots of each solution against another.

The following are plots of each solution.

98



3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 27� �
dsolve([diff(x__1(t),t) = 3*x__1(t)+x__2(t)-x__3(t), diff(x__2(t),t) = x__1(t)+3*x__2(t)-x__3(t), diff(x__3(t),t) = 3*x__1(t)+3*x__2(t)-x__3(t), x__1(0) = 1, x__2(0) = -2, x__3(0) = -1], singsol=all)� �

x1(t) = e2t

x2(t) = −2 e2t

x3(t) = −e2t
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3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 30� �
DSolve[{x1'[t]==3*x1[t]+1*x2[t]-1*x3[t],x2'[t]==1*x1[t]+3*x2[t]-1*x3[t],x3'[t]==3*x1[t]+3*x2[t]-1*x3[t]},{x1[0]==1,x2[0]==-2,x3[0]==-1},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e2t

x2(t) → −2e2t

x3(t) → −e2t
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1.10 problem 10
1.10.1 Solution using Matrix exponential method . . . . . . . . . . . . 101
1.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 102

Internal problem ID [1833]
Internal file name [OUTPUT/1834_Sunday_June_05_2022_02_34_35_AM_9724454/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t)− x2(t)

x′
2(t) = x1(t) + 2x2(t) + x3(t)

x′
3(t) = x1(t) + 10x2(t) + 2x3(t)

With initial conditions

[x1(0) = −1, x2(0) = −4, x3(0) = 13]

1.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 −1 0
1 2 1
1 10 2




x1(t)
x2(t)
x3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


9 et
8 − e5t

24 − e−t

12 − e5t
8 − et

8 + e−t

4 − e5t
24 + et

8 − e−t

12
e5t
6 − e−t

6
e−t

2 + e5t
2

e5t
6 − e−t

6

−9 et
8 + 7 e−t

12 + 13 e5t
24

13 e5t
8 + et

8 − 7 e−t

4
7 e−t

12 + 13 e5t
24 − et

8


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


9 et
8 − e5t

24 − e−t

12 − e5t
8 − et

8 + e−t

4 − e5t
24 + et

8 − e−t

12
e5t
6 − e−t

6
e−t

2 + e5t
2

e5t
6 − e−t

6

−9 et
8 + 7 e−t

12 + 13 e5t
24

13 e5t
8 + et

8 − 7 e−t

4
7 e−t

12 + 13 e5t
24 − et

8




−1
−4
13



=


et − 2 e−t

−4 e−t

−et + 14 e−t


Since no forcing function is given, then the final solution is ~xh(t) above.

1.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 −1 0
1 2 1
1 10 2




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 −1 0
1 2 1
1 10 2

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




1− λ −1 0
1 2− λ 1
1 10 2− λ


 = 0

Which gives the characteristic equation

λ3 − 5λ2 − λ+ 5 = 0

The roots of the above are the eigenvalues.

λ1 = −1
λ2 = 1
λ3 = 5

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

1 1 real eigenvalue

5 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 0
1 2 1
1 10 2

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 −1 0
1 3 1
1 10 3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 −1 0 0
1 3 1 0
1 10 3 0
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R2 = R2 −
R1

2 =⇒


2 −1 0 0
0 7

2 1 0

1 10 3 0



R3 = R3 −
R1

2 =⇒


2 −1 0 0
0 7

2 1 0

0 21
2 3 0



R3 = R3 − 3R2 =⇒


2 −1 0 0
0 7

2 1 0

0 0 0 0


Therefore the system in Echelon form is

2 −1 0
0 7

2 1

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − t

7 , v2 = −2t
7

}
Hence the solution is 

− t
7

−2t
7

t

 =


− t

7

−2t
7

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− t
7

−2t
7

t

 = t


−1

7

−2
7

1
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Let t = 1 the eigenvector becomes
− t

7

−2t
7

t

 =


−1

7

−2
7

1


Which is normalized to 

− t
7

−2t
7

t

 =


−1
−2
7


Considering the eigenvalue λ2 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 0
1 2 1
1 10 2

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 −1 0
1 1 1
1 10 1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 −1 0 0
1 1 1 0
1 10 1 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

1 1 1 0
0 −1 0 0
1 10 1 0



R3 = R3 −R1 =⇒


1 1 1 0
0 −1 0 0
0 9 0 0
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R3 = R3 + 9R2 =⇒


1 1 1 0
0 −1 0 0
0 0 0 0


Therefore the system in Echelon form is

1 1 1
0 −1 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = 0}

Hence the solution is 
−t

0
t

 =


−t

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

0
t

 = t


−1
0
1


Let t = 1 the eigenvector becomes

−t

0
t

 =


−1
0
1


Considering the eigenvalue λ3 = 5
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 0
1 2 1
1 10 2

− (5)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−4 −1 0
1 −3 1
1 10 −3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−4 −1 0 0
1 −3 1 0
1 10 −3 0



R2 = R2 +
R1

4 =⇒


−4 −1 0 0
0 −13

4 1 0

1 10 −3 0



R3 = R3 +
R1

4 =⇒


−4 −1 0 0
0 −13

4 1 0

0 39
4 −3 0



R3 = R3 + 3R2 =⇒


−4 −1 0 0
0 −13

4 1 0

0 0 0 0


Therefore the system in Echelon form is

−4 −1 0
0 −13

4 1

0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − t

13 , v2 =
4t
13

}
Hence the solution is 

− t
13

4t
13

t

 =


− t

13
4t
13

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− t
13

4t
13

t

 = t


− 1

13
4
13

1


Let t = 1 the eigenvector becomes

− t
13

4t
13

t

 =


− 1

13
4
13

1


Which is normalized to 

− t
13

4t
13

t

 =


−1
4
13


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 1 1 No


−1

7

−2
7

1



1 1 1 No


−1
0
1



5 1 1 No


− 1

13

4
13

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=


−1

7

−2
7

1

 e−t

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
t

=


−1
0
1

 et
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Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
5t

=


− 1

13
4
13

1

 e5t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


− e−t

7

−2 e−t

7

e−t

+ c2


−et

0
et

+ c3


− e5t

13
4 e5t
13

e5t


Which becomes 

x1(t)
x2(t)
x3(t)

 =


− c1e−t

7 − c2et − c3e5t
13

−2c1e−t

7 + 4c3e5t
13

c1e−t + c2et + c3e5t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = −1
x2(0) = −4
x3(0) = 13

 (1)

Substituting initial conditions into the above solution at t = 0 gives
−1
−4
13

 =


− c1

7 − c2 − c3
13

−2c1
7 + 4c3

13

c1 + c2 + c3


Solving for the constants of integrations gives

c1 = 14
c2 = −1
c3 = 0
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Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)

 =


et − 2 e−t

−4 e−t

−et + 14 e−t


The following are plots of each solution against another.

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 37� �
dsolve([diff(x__1(t),t) = x__1(t)-x__2(t), diff(x__2(t),t) = x__1(t)+2*x__2(t)+x__3(t), diff(x__3(t),t) = x__1(t)+10*x__2(t)+2*x__3(t), x__1(0) = -1, x__2(0) = -4, x__3(0) = 13], singsol=all)� �

x1(t) = et − 2 e−t

x2(t) = −4 e−t

x3(t) = −et + 14 e−t
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3 Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 42� �
DSolve[{x1'[t]==1*x1[t]-1*x2[t]-0*x3[t],x2'[t]==1*x1[t]+2*x2[t]+1*x3[t],x3'[t]==1*x1[t]+10*x2[t]+2*x3[t]},{x1[0]==-1,x2[0]==-4,x3[0]==13},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → et − 2e−t

x2(t) → −4e−t

x3(t) → 14e−t − et
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1.11 problem 11
1.11.1 Solution using Matrix exponential method . . . . . . . . . . . . 114
1.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 115

Internal problem ID [1834]
Internal file name [OUTPUT/1835_Sunday_June_05_2022_02_34_38_AM_33026560/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t)− 3x2(t) + 2x3(t)

x′
2(t) = −x2(t)

x′
3(t) = −x2(t)− 2x3(t)

With initial conditions

[x1(0) = −2, x2(0) = 0, x3(0) = 3]

1.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 −3 2
0 −1 0
0 −1 −2




x1(t)
x2(t)
x3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


et −

(
11 e3t−15 et+4

)
e−2t

6
2
(
e3t−1

)
e−2t

3

0 e−t 0
0 −e−t + e−2t e−2t


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


et −

(
11 e3t−15 et+4

)
e−2t

6
2
(
e3t−1

)
e−2t

3

0 e−t 0
0 −e−t + e−2t e−2t




−2
0
3



=


−2 et + 2(e3t − 1) e−2t

0
3 e−2t



=


−2 e−2t

0
3 e−2t


Since no forcing function is given, then the final solution is ~xh(t) above.

1.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 −3 2
0 −1 0
0 −1 −2




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




1 −3 2
0 −1 0
0 −1 −2

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1− λ −3 2
0 −1− λ 0
0 −1 −2− λ


 = 0

Which gives the characteristic equation

λ3 + 2λ2 − λ− 2 = 0

The roots of the above are the eigenvalues.

λ1 = −1
λ2 = 1
λ3 = −2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−2 1 real eigenvalue

1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −3 2
0 −1 0
0 −1 −2

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




3 −3 2
0 1 0
0 −1 0




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

3 −3 2 0
0 1 0 0
0 −1 0 0



R3 = R3 +R2 =⇒


3 −3 2 0
0 1 0 0
0 0 0 0


Therefore the system in Echelon form is

3 −3 2
0 1 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = −2t

3 , v2 = 0
}

Hence the solution is 
−2t

3

0
t

 =


−2t

3

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−2t
3

0
t

 = t


−2

3

0
1


Let t = 1 the eigenvector becomes

−2t
3

0
t

 =


−2

3

0
1
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Which is normalized to 
−2t

3

0
t

 =


−2
0
3


Considering the eigenvalue λ2 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −3 2
0 −1 0
0 −1 −2

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 −3 2
0 0 0
0 −1 −1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 −3 2 0
0 0 0 0
0 −1 −1 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

2 −3 2 0
0 −1 −1 0
0 0 0 0


Therefore the system in Echelon form is

2 −3 2
0 −1 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = −5t

2 , v2 = −t
}
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Hence the solution is 
−5t

2

−t

t

 =


−5t

2

−t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−5t
2

−t

t

 = t


−5

2

−1
1


Let t = 1 the eigenvector becomes

−5t
2

−t

t

 =


−5

2

−1
1


Which is normalized to 

−5t
2

−t

t

 =


−5
−2
2


Considering the eigenvalue λ3 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −3 2
0 −1 0
0 −1 −2

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 −3 2
0 −2 0
0 −1 −3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 −3 2 0
0 −2 0 0
0 −1 −3 0
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R2 = R2 −
2R1

3 =⇒


0 −3 2 0
0 0 −4

3 0

0 −1 −3 0



R3 = R3 −
R1

3 =⇒


0 −3 2 0
0 0 −4

3 0

0 0 −11
3 0



R3 = R3 −
11R2

4 =⇒


0 −3 2 0
0 0 −4

3 0

0 0 0 0


Therefore the system in Echelon form is

0 −3 2
0 0 −4

3

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v1} and the leading variables are {v2, v3}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0}

Hence the solution is 
t

0
0

 =


t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0

 = t


1
0
0


Let t = 1 the eigenvector becomes 

t

0
0

 =


1
0
0
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The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 1 1 No


−5

2

−1
1



1 1 1 No


1
0
0



−2 1 1 No


−2

3

0
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=


−5

2

−1
1

 e−t
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Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
t

=


1
0
0

 et

Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
−2t

=


−2

3

0
1

 e−2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


−5 e−t

2

−e−t

e−t

+ c2


et

0
0

+ c3


−2 e−2t

3

0
e−2t


Which becomes 

x1(t)
x2(t)
x3(t)

 =


(
6c2e3t−15c1et−4c3

)
e−2t

6

−c1e−t

c1e−t + c3e−2t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = −2
x2(0) = 0
x3(0) = 3

 (1)
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Substituting initial conditions into the above solution at t = 0 gives
−2
0
3

 =


c2 − 5c1

2 − 2c3
3

−c1

c1 + c3


Solving for the constants of integrations gives

c1 = 0
c2 = 0
c3 = 3


Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)

 =


−2 e−2t

0
3 e−2t


The following are plots of each solution against another.

123



The following are plots of each solution.
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 24� �
dsolve([diff(x__1(t),t) = x__1(t)-3*x__2(t)+2*x__3(t), diff(x__2(t),t) = -x__2(t), diff(x__3(t),t) = -x__2(t)-2*x__3(t), x__1(0) = -2, x__2(0) = 0, x__3(0) = 3], singsol=all)� �

x1(t) = −2 e−2t

x2(t) = 0
x3(t) = 3 e−2t

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 26� �
DSolve[{x1'[t]==1*x1[t]-3*x2[t]+2*x3[t],x2'[t]==0*x1[t]-1*x2[t]+0*x3[t],x3'[t]==0*x1[t]-1*x2[t]-2*x3[t]},{x1[0]==-2,x2[0]==0,x3[0]==3},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → −2e−2t

x2(t) → 0
x3(t) → 3e−2t
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1.12 problem 12
1.12.1 Solution using Matrix exponential method . . . . . . . . . . . . 126
1.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 127

Internal problem ID [1835]
Internal file name [OUTPUT/1836_Sunday_June_05_2022_02_34_40_AM_5214114/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method.
Page 339
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t) + x2(t)− 2x3(t)

x′
2(t) = −x1(t) + 2x2(t) + x3(t)

x′
3(t) = 4x1(t) + x2(t)− 3x3(t)

With initial conditions

[x1(0) = 1, x2(0) = 4, x3(0) = −7]

1.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


3 1 −2
−1 2 1
4 1 −3




x1(t)
x2(t)
x3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


−7 e−t

6 + 5 et
2 − e2t

3 e2t − et e2t
3 − 3 et

2 + 7 e−t

6

− e2t
3 + e−t

3 e2t e2t
3 − e−t

3
5 et
2 − 13 e−t

6 − e2t
3 e2t − et 13 e−t

6 + e2t
3 − 3 et

2


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


−7 e−t

6 + 5 et
2 − e2t

3 e2t − et e2t
3 − 3 et

2 + 7 e−t

6

− e2t
3 + e−t

3 e2t e2t
3 − e−t

3
5 et
2 − 13 e−t

6 − e2t
3 e2t − et 13 e−t

6 + e2t
3 − 3 et

2




1
4
−7



=


−28 e−t

3 + 9 et + 4 e2t
3

4 e2t
3 + 8 e−t

3

9 et − 52 e−t

3 + 4 e2t
3


Since no forcing function is given, then the final solution is ~xh(t) above.

1.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


3 1 −2
−1 2 1
4 1 −3




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




3 1 −2
−1 2 1
4 1 −3

− λ


1 0 0
0 1 0
0 0 1


 = 0

127



Therefore

det




3− λ 1 −2
−1 2− λ 1
4 1 −3− λ


 = 0

Which gives the characteristic equation

λ3 − 2λ2 − λ+ 2 = 0

The roots of the above are the eigenvalues.

λ1 = −1
λ2 = 1
λ3 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 1 −2
−1 2 1
4 1 −3

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




4 1 −2
−1 3 1
4 1 −2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

4 1 −2 0
−1 3 1 0
4 1 −2 0
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R2 = R2 +
R1

4 =⇒


4 1 −2 0
0 13

4
1
2 0

4 1 −2 0



R3 = R3 −R1 =⇒


4 1 −2 0
0 13

4
1
2 0

0 0 0 0


Therefore the system in Echelon form is

4 1 −2
0 13

4
1
2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 7t

13 , v2 = − 2t
13

}
Hence the solution is 

7t
13

− 2t
13

t

 =


7t
13

− 2t
13

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

7t
13

− 2t
13

t

 = t


7
13

− 2
13

1


Let t = 1 the eigenvector becomes

7t
13

− 2t
13

t

 =


7
13

− 2
13

1
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Which is normalized to 
7t
13

− 2t
13

t

 =


7
−2
13


Considering the eigenvalue λ2 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 1 −2
−1 2 1
4 1 −3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 1 −2
−1 1 1
4 1 −4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 1 −2 0
−1 1 1 0
4 1 −4 0



R2 = R2 +
R1

2 =⇒


2 1 −2 0
0 3

2 0 0

4 1 −4 0



R3 = R3 − 2R1 =⇒


2 1 −2 0
0 3

2 0 0

0 −1 0 0



R3 = R3 +
2R2

3 =⇒


2 1 −2 0
0 3

2 0 0

0 0 0 0
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Therefore the system in Echelon form is
2 1 −2
0 3

2 0

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = 0}

Hence the solution is 
t

0
t

 =


t

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
t

 = t


1
0
1


Let t = 1 the eigenvector becomes 

t

0
t

 =


1
0
1


Considering the eigenvalue λ3 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 1 −2
−1 2 1
4 1 −3

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 1 −2
−1 0 1
4 1 −5




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 1 −2 0
−1 0 1 0
4 1 −5 0



R2 = R2 +R1 =⇒


1 1 −2 0
0 1 −1 0
4 1 −5 0



R3 = R3 − 4R1 =⇒


1 1 −2 0
0 1 −1 0
0 −3 3 0



R3 = R3 + 3R2 =⇒


1 1 −2 0
0 1 −1 0
0 0 0 0


Therefore the system in Echelon form is

1 1 −2
0 1 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1
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Let t = 1 the eigenvector becomes 
t

t

t

 =


1
1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 1 1 No


7
13

− 2
13

1



1 1 1 No


1
0
1



2 1 1 No


1
1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=


7
13

− 2
13

1

 e−t
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Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
t

=


1
0
1

 et

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
2t

=


1
1
1

 e2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


7 e−t

13

−2 e−t

13

e−t

+ c2


et

0
et

+ c3


e2t

e2t

e2t


Which becomes 

x1(t)
x2(t)
x3(t)

 =


7c1e−t

13 + c2et + c3e2t

−2c1e−t

13 + c3e2t

c1e−t + c2et + c3e2t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = 1
x2(0) = 4
x3(0) = −7

 (1)
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Substituting initial conditions into the above solution at t = 0 gives
1
4
−7

 =


7c1
13 + c2 + c3

−2c1
13 + c3

c1 + c2 + c3


Solving for the constants of integrations gives

c1 = −52
3

c2 = 9
c3 = 4

3


Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)

 =


−28 e−t

3 + 9 et + 4 e2t
3

4 e2t
3 + 8 e−t

3

9 et − 52 e−t

3 + 4 e2t
3


The following are plots of each solution against another.
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The following are plots of each solution.
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 58� �
dsolve([diff(x__1(t),t) = 3*x__1(t)+x__2(t)-2*x__3(t), diff(x__2(t),t) = -x__1(t)+2*x__2(t)+x__3(t), diff(x__3(t),t) = 4*x__1(t)+x__2(t)-3*x__3(t), x__1(0) = 1, x__2(0) = 4, x__3(0) = -7], singsol=all)� �

x1(t) = 9 et − 28 e−t

3 + 4 e2t
3

x2(t) =
8 e−t

3 + 4 e2t
3

x3(t) = 9 et − 52 e−t

3 + 4 e2t
3

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 75� �
DSolve[{x1'[t]==3*x1[t]+1*x2[t]-2*x3[t],x2'[t]==-1*x1[t]+2*x2[t]+1*x3[t],x3'[t]==4*x1[t]+1*x2[t]-3*x3[t]},{x1[0]==1,x2[0]==4,x3[0]==-7},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → −28e−t

3 + 9et + 4e2t
3

x2(t) → 4
3e

−t
(
e3t + 2

)
x3(t) → −52e−t

3 + 9et + 4e2t
3
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2.1 problem 1
2.1.1 Solution using Matrix exponential method . . . . . . . . . . . . 139
2.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 140
2.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 144

Internal problem ID [1836]
Internal file name [OUTPUT/1837_Sunday_June_05_2022_02_34_42_AM_76804885/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.9, Systems of differential equations. Complex roots. Page 344
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −3x1(t) + 2x2(t)

x′
2(t) = −x1(t)− x2(t)

2.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 −3 2
−1 −1

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−2t cos (t)− e−2t sin (t) 2 e−2t sin (t)
−e−2t sin (t) e−2t cos (t) + e−2t sin (t)


=

 e−2t(− sin (t) + cos (t)) 2 e−2t sin (t)
−e−2t sin (t) e−2t(cos (t) + sin (t))
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e−2t(− sin (t) + cos (t)) 2 e−2t sin (t)
−e−2t sin (t) e−2t(cos (t) + sin (t))

 c1

c2


=

 e−2t(− sin (t) + cos (t)) c1 + 2 e−2t sin (t) c2
−e−2t sin (t) c1 + e−2t(cos (t) + sin (t)) c2


=

 ((−c1 + 2c2) sin (t) + c1 cos (t)) e−2t

−(sin (t) (c1 − c2)− c2 cos (t)) e−2t


Since no forcing function is given, then the final solution is ~xh(t) above.

2.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 −3 2
−1 −1

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 −3 2
−1 −1

− λ

 1 0
0 1

 = 0

Therefore

det

 −3− λ 2
−1 −1− λ

 = 0
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Which gives the characteristic equation

λ2 + 4λ+ 5 = 0

The roots of the above are the eigenvalues.

λ1 = −2 + i

λ2 = −2− i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 + i 1 complex eigenvalue

−2− i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2− i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −3 2
−1 −1

− (−2− i)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 + i 2

−1 1 + i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 + i 2 0

−1 1 + i 0



R2 = R2 +
(
−1
2 − i

2

)
R1 =⇒

−1 + i 2 0
0 0 0


Therefore the system in Echelon form is −1 + i 2

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = (1 + i) t}

Hence the solution is  (1 + I) t
t

 =

 (1 + i) t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (1 + I) t

t

 = t

 1 + i

1


Let t = 1 the eigenvector becomes (1 + I) t

t

 =

 1 + i

1


Considering the eigenvalue λ2 = −2 + i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes −3 2
−1 −1

− (−2 + i)

 1 0
0 1

 v1

v2

 =

 0
0


 −1− i 2

−1 1− i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1− i 2 0

−1 1− i 0



R2 = R2 +
(
−1
2 + i

2

)
R1 =⇒

−1− i 2 0
0 0 0


Therefore the system in Echelon form is −1− i 2

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = (1− i) t}

Hence the solution is  (1− I) t
t

 =

 (1− i) t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (1− I) t

t

 = t

 1− i

1


Let t = 1 the eigenvector becomes (1− I) t

t

 =

 1− i

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 + i 1 1 No

 1− i

1



−2− i 1 1 No

 1 + i

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)
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Which is written as x1(t)
x2(t)

 = c1

 (1− i) e(−2+i)t

e(−2+i)t

+ c2

 (1 + i) e(−2−i)t

e(−2−i)t


Which becomes  x1(t)

x2(t)

 =

 (1− i) c1e(−2+i)t + (1 + i) c2e(−2−i)t

c1e(−2+i)t + c2e(−2−i)t


The following is the phase plot of the system.

Figure 9: Phase plot

2.1.3 Maple step by step solution

Let’s solve
[x′

1(t) = −3x1(t) + 2x2(t) , x′
2(t) = −x1(t)− x2(t)]

• Define vector
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→x__(t) =

 x1(t)
x2(t)


• Convert system into a vector equation

→x__
′
(t) =

 −3 2
−1 −1

 · →x__(t) +

 0
0


• System to solve

→x__
′
(t) =

 −3 2
−1 −1

 · →x__(t)

• Define the coefficient matrix

A =

 −3 2
−1 −1


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A−2− I,

 1 + I
1

 ,

−2 + I,

 1− I
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2− I,

 1 + I
1


• Solution from eigenpair

e(−2−I)t ·

 1 + I
1


• Use Euler identity to write solution in terms of sin and cos

e−2t · (cos (t)− I sin (t)) ·

 1 + I
1


• Simplify expression
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e−2t ·

 (1 + I) (cos (t)− I sin (t))
cos (t)− I sin (t)


• Both real and imaginary parts are solutions to the homogeneous system →x__1(t) = e−2t ·

 cos (t) + sin (t)
cos (t)

 ,
→x__2(t) = e−2t ·

 − sin (t) + cos (t)
− sin (t)


• General solution to the system of ODEs

→x__ = c1
→x__1(t) + c2

→x__2(t)
• Substitute solutions into the general solution

→x__ = c1e−2t ·

 cos (t) + sin (t)
cos (t)

+ e−2tc2 ·

 − sin (t) + cos (t)
− sin (t)


• Substitute in vector of dependent variables x1(t)

x2(t)

 =

 (cos (t) (c1 + c2) + (c1 − c2) sin (t)) e−2t

e−2t(−c2 sin (t) + c1 cos (t))


• Solution to the system of ODEs

{x1(t) = (cos (t) (c1 + c2) + (c1 − c2) sin (t)) e−2t, x2(t) = e−2t(−c2 sin (t) + c1 cos (t))}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 46� �
dsolve([diff(x__1(t),t)=-3*x__1(t)+2*x__2(t),diff(x__2(t),t)=-1*x__1(t)-1*x__2(t)],singsol=all)� �

x1(t) = e−2t(c1 sin (t) + c2 cos (t))

x2(t) =
e−2t(c1 sin (t)− c2 sin (t) + c1 cos (t) + c2 cos (t))

2

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 53� �
DSolve[{x1'[t]==-3*x1[t]+2*x2[t],x2'[t]==-1*x1[t]-1*x2[t]},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e−2t(c1 cos(t)− (c1 − 2c2) sin(t))
x2(t) → e−2t(c2 cos(t) + (c2 − c1) sin(t))
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2.2 problem 2
2.2.1 Solution using Matrix exponential method . . . . . . . . . . . . 147
2.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 148
2.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 155

Internal problem ID [1837]
Internal file name [OUTPUT/1838_Sunday_June_05_2022_02_34_45_AM_81520183/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.9, Systems of differential equations. Complex roots. Page 344
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t)− 5x2(t)

x′
2(t) = x1(t)− 3x2(t)

x′
3(t) = x3(t)

2.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 −5 0
1 −3 0
0 0 1




x1(t)
x2(t)
x3(t)



147



For the above matrix A, the matrix exponential can be found to be

eAt =


e−t cos (t) + 2 e−t sin (t) −5 e−t sin (t) 0

e−t sin (t) e−t cos (t)− 2 e−t sin (t) 0
0 0 et



=


e−t(cos (t) + 2 sin (t)) −5 e−t sin (t) 0

e−t sin (t) e−t(cos (t)− 2 sin (t)) 0
0 0 et


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−t(cos (t) + 2 sin (t)) −5 e−t sin (t) 0

e−t sin (t) e−t(cos (t)− 2 sin (t)) 0
0 0 et




c1

c2

c3



=


e−t(cos (t) + 2 sin (t)) c1 − 5 e−t sin (t) c2
e−t sin (t) c1 + e−t(cos (t)− 2 sin (t)) c2

etc3



=


e−t((2c1 − 5c2) sin (t) + c1 cos (t))
((c1 − 2c2) sin (t) + c2 cos (t)) e−t

etc3


Since no forcing function is given, then the final solution is ~xh(t) above.

2.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 −5 0
1 −3 0
0 0 1




x1(t)
x2(t)
x3(t)
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 −5 0
1 −3 0
0 0 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1− λ −5 0
1 −3− λ 0
0 0 1− λ


 = 0

Which gives the characteristic equation

λ3 + λ2 − 2 = 0

The roots of the above are the eigenvalues.

λ1 = −1 + i

λ2 = −1− i

λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1− i 1 complex eigenvalue

1 1 real eigenvalue

−1 + i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

149



We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −5 0
1 −3 0
0 0 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 −5 0
1 −4 0
0 0 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 −5 0 0
1 −4 0 0
0 0 0 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

1 −4 0 0
0 −5 0 0
0 0 0 0


Therefore the system in Echelon form is

1 −4 0
0 −5 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = 0}

Hence the solution is 
0
0
t

 =


0
0
t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
0
t

 = t


0
0
1


Let t = 1 the eigenvector becomes 

0
0
t

 =


0
0
1


Considering the eigenvalue λ2 = −1− i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −5 0
1 −3 0
0 0 1

− (−1− i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 + i −5 0
1 −2 + i 0
0 0 2 + i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 + i −5 0 0
1 −2 + i 0 0
0 0 2 + i 0



R2 = R2 +
(
−2
5 + i

5

)
R1 =⇒


2 + i −5 0 0
0 0 0 0
0 0 2 + i 0


Since the current pivot A(2, 3) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

2 + i −5 0 0
0 0 2 + i 0
0 0 0 0
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Therefore the system in Echelon form is
2 + i −5 0
0 0 2 + i

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = (2− i) t, v3 = 0}

Hence the solution is 
(2− I) t

t

0

 =


(2− i) t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(2− I) t
t

0

 = t


2− i

1
0


Let t = 1 the eigenvector becomes

(2− I) t
t

0

 =


2− i

1
0


Considering the eigenvalue λ3 = −1 + i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −5 0
1 −3 0
0 0 1

− (−1 + i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2− i −5 0
1 −2− i 0
0 0 2− i




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2− i −5 0 0
1 −2− i 0 0
0 0 2− i 0



R2 = R2 +
(
−2
5 − i

5

)
R1 =⇒


2− i −5 0 0
0 0 0 0
0 0 2− i 0


Since the current pivot A(2, 3) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

2− i −5 0 0
0 0 2− i 0
0 0 0 0


Therefore the system in Echelon form is

2− i −5 0
0 0 2− i

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = (2 + i) t, v3 = 0}

Hence the solution is 
(2 + I) t

t

0

 =


(2 + i) t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(2 + I) t
t

0

 = t


2 + i

1
0
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Let t = 1 the eigenvector becomes
(2 + I) t

t

0

 =


2 + i

1
0


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 + i 1 1 No


2 + i

1
0



−1− i 1 1 No


2− i

1
0



1 1 1 No


0
0
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=


0
0
1

 et
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Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


(2 + i) e(−1+i)t

e(−1+i)t

0

+ c2


(2− i) e(−1−i)t

e(−1−i)t

0

+ c3


0
0
et


Which becomes 

x1(t)
x2(t)
x3(t)

 =


(2 + i) c1e(−1+i)t + (2− i) c2e(−1−i)t

c1e(−1+i)t + c2e(−1−i)t

c3et


2.2.3 Maple step by step solution

Let’s solve
[x′

1(t) = x1(t)− 5x2(t) , x′
2(t) = x1(t)− 3x2(t) , x′

3(t) = x3(t)]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


1 −5 0
1 −3 0
0 0 1

 · →x__(t) +


0
0
0


• System to solve

→x__
′
(t) =


1 −5 0
1 −3 0
0 0 1

 · →x__(t)

• Define the coefficient matrix
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A =


1 −5 0
1 −3 0
0 0 1


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


0
0
1


 ,

−1− I,


2− I
1
0


 ,

−1 + I,


2 + I
1
0





• Consider eigenpair1,


0
0
1




• Solution to homogeneous system from eigenpair

→x__1 = et ·


0
0
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−1− I,


2− I
1
0




• Solution from eigenpair

e(−1−I)t ·


2− I
1
0


• Use Euler identity to write solution in terms of sin and cos
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e−t · (cos (t)− I sin (t)) ·


2− I
1
0


• Simplify expression

e−t ·


(2− I) (cos (t)− I sin (t))

cos (t)− I sin (t)
0


• Both real and imaginary parts are solutions to the homogeneous system →x__2(t) = e−t ·


2 cos (t)− sin (t)

cos (t)
0

 ,
→x__3(t) = e−t ·


− cos (t)− 2 sin (t)

− sin (t)
0




• General solution to the system of ODEs
→x__ = c1

→x__1 + c2
→x__2(t) + c3

→x__3(t)
• Substitute solutions into the general solution

→x__ = c1et ·


0
0
1

+ c2e−t ·


2 cos (t)− sin (t)

cos (t)
0

+ c3e−t ·


− cos (t)− 2 sin (t)

− sin (t)
0


• Substitute in vector of dependent variables

x1(t)
x2(t)
x3(t)

 =


2
((

c2 − c3
2

)
cos (t)− sin(t)(c2+2c3)

2

)
e−t

e−t(c2 cos (t)− c3 sin (t))
c1et


• Solution to the system of ODEs{

x1(t) = 2
((

c2 − c3
2

)
cos (t)− sin(t)(c2+2c3)

2

)
e−t, x2(t) = e−t(c2 cos (t)− c3 sin (t)) , x3(t) = c1et

}

157



3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 55� �
dsolve([diff(x__1(t),t)=1*x__1(t)-5*x__2(t)+0*x__3(t),diff(x__2(t),t)=1*x__1(t)-3*x__2(t)+0*x__3(t),diff(x__3(t),t)=0*x__1(t)-0*x__2(t)+1*x__3(t)],singsol=all)� �

x1(t) = e−t(c1 sin (t) + c2 cos (t))

x2(t) =
e−t(−c1 cos (t) + c2 sin (t) + 2c1 sin (t) + 2c2 cos (t))

5
x3(t) = c3et

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 120� �
DSolve[{x1'[t]==1*x1[t]-5*x2[t]+0*x3[t],x2'[t]==1*x1[t]-3*x2[t]+0*x3[t],x3'[t]==0*x1[t]-0*x2[t]+1*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e−t(c1 cos(t) + (2c1 − 5c2) sin(t))
x2(t) → e−t(c2 cos(t) + (c1 − 2c2) sin(t))
x3(t) → c3e

t

x1(t) → e−t(c1 cos(t) + (2c1 − 5c2) sin(t))
x2(t) → e−t(c2 cos(t) + (c1 − 2c2) sin(t))
x3(t) → 0
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2.3 problem 3
2.3.1 Solution using Matrix exponential method . . . . . . . . . . . . 159
2.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 160
2.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 168

Internal problem ID [1838]
Internal file name [OUTPUT/1839_Sunday_June_05_2022_02_34_47_AM_73909231/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.9, Systems of differential equations. Complex roots. Page 344
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t)

x′
2(t) = 3x1(t) + x2(t)− 2x3(t)

x′
3(t) = 2x1(t) + 2x2(t) + x3(t)

2.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 0 0
3 1 −2
2 2 1




x1(t)
x2(t)
x3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


et 0 0

et cos (2t) + 3 et sin(2t)
2 − et et cos (2t) −et sin (2t)

−3 et cos(2t)
2 + et sin (2t) + 3 et

2 et sin (2t) et cos (2t)



=


et 0 0

et(−2+2 cos(2t)+3 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−3+3 cos(2t)−2 sin(2t))
2 et sin (2t) et cos (2t)


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


et 0 0

et(−2+2 cos(2t)+3 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−3+3 cos(2t)−2 sin(2t))
2 et sin (2t) et cos (2t)




c1

c2

c3



=


etc1

et(−2+2 cos(2t)+3 sin(2t))c1
2 + et cos (2t) c2 − et sin (2t) c3

− et(−3+3 cos(2t)−2 sin(2t))c1
2 + et sin (2t) c2 + et cos (2t) c3



=


etc1(

(c1 + c2) cos (2t) +
(3c1

2 − c3
)
sin (2t)− c1

)
et

−
3
((

c1− 2c3
3

)
cos(2t)+ 2(−c1−c2) sin(2t)

3 −c1
)
et

2


Since no forcing function is given, then the final solution is ~xh(t) above.

2.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 0 0
3 1 −2
2 2 1




x1(t)
x2(t)
x3(t)



160



The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 0 0
3 1 −2
2 2 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1− λ 0 0
3 1− λ −2
2 2 1− λ


 = 0

Which gives the characteristic equation

λ3 − 3λ2 + 7λ− 5 = 0

The roots of the above are the eigenvalues.

λ1 = 1
λ2 = 1 + 2i
λ3 = 1− 2i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

1 + 2i 1 complex eigenvalue

1− 2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 0
3 1 −2
2 2 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 0 0
3 0 −2
2 2 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 0 0 0
3 0 −2 0
2 2 0 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

3 0 −2 0
0 0 0 0
2 2 0 0



R3 = R3 −
2R1

3 =⇒


3 0 −2 0
0 0 0 0
0 2 4

3 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

3 0 −2 0
0 2 4

3 0

0 0 0 0


Therefore the system in Echelon form is

3 0 −2
0 2 4

3

0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 2t

3 , v2 = −2t
3

}
Hence the solution is 

2t
3

−2t
3

t

 =


2t
3

−2t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t
3

−2t
3

t

 = t


2
3

−2
3

1


Let t = 1 the eigenvector becomes

2t
3

−2t
3

t

 =


2
3

−2
3

1


Which is normalized to 

2t
3

−2t
3

t

 =


2
−2
3


Considering the eigenvalue λ2 = 1− 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 0
3 1 −2
2 2 1

− (1− 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2i 0 0
3 2i −2
2 2 2i




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2i 0 0 0
3 2i −2 0
2 2 2i 0



R2 = R2 +
3iR1

2 =⇒


2i 0 0 0
0 2i −2 0
2 2 2i 0



R3 = iR1 +R3 =⇒


2i 0 0 0
0 2i −2 0
0 2 2i 0



R3 = iR2 +R3 =⇒


2i 0 0 0
0 2i −2 0
0 0 0 0


Therefore the system in Echelon form is

2i 0 0
0 2i −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = −it}

Hence the solution is 
0
-I t
t

 =


0
−it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
-I t
t

 = t


0
−i

1
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Let t = 1 the eigenvector becomes
0
-I t
t

 =


0
−i

1


Considering the eigenvalue λ3 = 1 + 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 0
3 1 −2
2 2 1

− (1 + 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2i 0 0
3 −2i −2
2 2 −2i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2i 0 0 0
3 −2i −2 0
2 2 −2i 0



R2 = R2 −
3iR1

2 =⇒


−2i 0 0 0
0 −2i −2 0
2 2 −2i 0



R3 = −iR1 +R3 =⇒


−2i 0 0 0
0 −2i −2 0
0 2 −2i 0



R3 = −iR2 +R3 =⇒


−2i 0 0 0
0 −2i −2 0
0 0 0 0
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Therefore the system in Echelon form is
−2i 0 0
0 −2i −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = it}

Hence the solution is 
0
I t
t

 =


0
it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
I t
t

 = t


0
i

1


Let t = 1 the eigenvector becomes 

0
I t
t

 =


0
i

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 1 1 No


2
3

−2
3

1



1 + 2i 1 1 No


0
i

1



1− 2i 1 1 No


0
−i

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=


2
3

−2
3

1

 et

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


2 et
3

−2 et
3

et

+ c2


0

ie(1+2i)t

e(1+2i)t

+ c3


0

−ie(1−2i)t

e(1−2i)t
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Which becomes 
x1(t)
x2(t)
x3(t)

 =


2c1et
3

−2c1et
3 + ic2e(1+2i)t − ic3e(1−2i)t

c1et + c2e(1+2i)t + c3e(1−2i)t


2.3.3 Maple step by step solution

Let’s solve
[x′

1(t) = x1(t) , x′
2(t) = 3x1(t) + x2(t)− 2x3(t) , x′

3(t) = 2x1(t) + 2x2(t) + x3(t)]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


1 0 0
3 1 −2
2 2 1

 · →x__(t) +


0
0
0


• System to solve

→x__
′
(t) =


1 0 0
3 1 −2
2 2 1

 · →x__(t)

• Define the coefficient matrix

A =


1 0 0
3 1 −2
2 2 1


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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1,


2
3

−2
3

1


 ,

1− 2 I,


0
−I
1


 ,

1 + 2 I,


0
I
1





• Consider eigenpair1,


2
3

−2
3

1




• Solution to homogeneous system from eigenpair

→x__1 = et ·


2
3

−2
3

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− 2 I,


0
−I
1




• Solution from eigenpair

e(1−2 I)t ·


0
−I
1


• Use Euler identity to write solution in terms of sin and cos

et · (cos (2t)− I sin (2t)) ·


0
−I
1


• Simplify expression

et ·


0

−I(cos (2t)− I sin (2t))
cos (2t)− I sin (2t)
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• Both real and imaginary parts are solutions to the homogeneous system →x__2(t) = et ·


0

− sin (2t)
cos (2t)

 ,
→x__3(t) = et ·


0

− cos (2t)
− sin (2t)




• General solution to the system of ODEs
→x__ = c1

→x__1 + c2
→x__2(t) + c3

→x__3(t)
• Substitute solutions into the general solution

→x__ = c1et ·


2
3

−2
3

1

+ c2et ·


0

− sin (2t)
cos (2t)

+ c3et ·


0

− cos (2t)
− sin (2t)


• Substitute in vector of dependent variables

x1(t)
x2(t)
x3(t)

 =


2c1et
3

− et(3c3 cos(2t)+3c2 sin(2t)+2c1)
3

et(c1 + c2 cos (2t)− c3 sin (2t))


• Solution to the system of ODEs{

x1(t) = 2c1et
3 , x2(t) = − et(3c3 cos(2t)+3c2 sin(2t)+2c1)

3 , x3(t) = et(c1 + c2 cos (2t)− c3 sin (2t))
}

3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 70� �
dsolve([diff(x__1(t),t)=1*x__1(t)-0*x__2(t)+0*x__3(t),diff(x__2(t),t)=3*x__1(t)+1*x__2(t)-2*x__3(t),diff(x__3(t),t)=2*x__1(t)+2*x__2(t)+1*x__3(t)],singsol=all)� �

x1(t) = c3et
x2(t) = et(c2 sin (2t) + c1 cos (2t)− c3 cos (2t)− c3)

x3(t) =
et(2c1 sin (2t)− 2c3 sin (2t)− 2c2 cos (2t) + 3c3)

2
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 91� �
DSolve[{x1'[t]==1*x1[t]-0*x2[t]+0*x3[t],x2'[t]==3*x1[t]+1*x2[t]-2*x3[t],x3'[t]==2*x1[t]+2*x2[t]+1*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → c1e
t

x2(t) → 1
2e

t(2(c1 + c2) cos(2t) + (3c1 − 2c3) sin(2t)− 2c1)

x3(t) → 1
2e

t((2c3 − 3c1) cos(2t) + 2(c1 + c2) sin(2t) + 3c1)
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2.4 problem 4
2.4.1 Solution using Matrix exponential method . . . . . . . . . . . . 172
2.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 173
2.4.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 180

Internal problem ID [1839]
Internal file name [OUTPUT/1840_Sunday_June_05_2022_02_34_50_AM_46350731/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.9, Systems of differential equations. Complex roots. Page 344
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + x3(t)

x′
2(t) = x2(t)− x3(t)

x′
3(t) = −2x1(t)− x3(t)

2.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 0 1
0 1 −1
−2 0 −1




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


cos (t) + sin (t) 0 sin (t)

et − cos (t)− sin (t) et − sin (t)
−2 sin (t) 0 − sin (t) + cos (t)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


cos (t) + sin (t) 0 sin (t)

et − cos (t)− sin (t) et − sin (t)
−2 sin (t) 0 − sin (t) + cos (t)




c1

c2

c3



=


(cos (t) + sin (t)) c1 + sin (t) c3

(et − cos (t)− sin (t)) c1 + etc2 − sin (t) c3
−2 sin (t) c1 + (− sin (t) + cos (t)) c3



=


(c1 + c3) sin (t) + c1 cos (t)

(c1 + c2) et + (−c1 − c3) sin (t)− c1 cos (t)
(−2c1 − c3) sin (t) + c3 cos (t)


Since no forcing function is given, then the final solution is ~xh(t) above.

2.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 0 1
0 1 −1
−2 0 −1




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 0 1
0 1 −1
−2 0 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




1− λ 0 1
0 1− λ −1
−2 0 −1− λ


 = 0

Which gives the characteristic equation

λ3 − λ2 + λ− 1 = 0

The roots of the above are the eigenvalues.

λ1 = i

λ2 = −i

λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

−i 1 complex eigenvalue

i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 1
0 1 −1
−2 0 −1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 0 1
0 0 −1
−2 0 −2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 0 1 0
0 0 −1 0
−2 0 −2 0



174



Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 3 gives

−2 0 −2 0
0 0 −1 0
0 0 1 0



R3 = R3 +R2 =⇒


−2 0 −2 0
0 0 −1 0
0 0 0 0


Therefore the system in Echelon form is

−2 0 −2
0 0 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v3 = 0}

Hence the solution is 
0
t

0

 =


0
t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
t

0

 = t


0
1
0


Let t = 1 the eigenvector becomes 

0
t

0

 =


0
1
0
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Considering the eigenvalue λ2 = −i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 1
0 1 −1
−2 0 −1

− (−i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 + i 0 1
0 1 + i −1
−2 0 −1 + i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 + i 0 1 0
0 1 + i −1 0
−2 0 −1 + i 0



R3 = R3 + (1− i)R1 =⇒


1 + i 0 1 0
0 1 + i −1 0
0 0 0 0


Therefore the system in Echelon form is

1 + i 0 1
0 1 + i −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 =

(
−1

2 +
i
2

)
t, v2 =

(1
2 −

i
2

)
t
}

Hence the solution is 
(
−1

2 +
I
2

)
t(1

2 −
I
2

)
t

t

 =


(
−1

2 +
i
2

)
t(1

2 −
i
2

)
t

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(
−1

2 +
I
2

)
t(1

2 −
I
2

)
t

t

 = t


−1

2 +
i
2

1
2 −

i
2

1


Let t = 1 the eigenvector becomes

(
−1

2 +
I
2

)
t(1

2 −
I
2

)
t

t

 =


−1

2 +
i
2

1
2 −

i
2

1


Which is normalized to 

(
−1

2 +
I
2

)
t(1

2 −
I
2

)
t

t

 =


−1 + i

1− i

2


Considering the eigenvalue λ3 = i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 1
0 1 −1
−2 0 −1

− (i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1− i 0 1
0 1− i −1
−2 0 −1− i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1− i 0 1 0
0 1− i −1 0
−2 0 −1− i 0



R3 = R3 + (1 + i)R1 =⇒


1− i 0 1 0
0 1− i −1 0
0 0 0 0
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Therefore the system in Echelon form is
1− i 0 1
0 1− i −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 =

(
−1

2 −
i
2

)
t, v2 =

(1
2 +

i
2

)
t
}

Hence the solution is 
(
−1

2 −
I
2

)
t(1

2 +
I
2

)
t

t

 =


(
−1

2 −
i
2

)
t(1

2 +
i
2

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(
−1

2 −
I
2

)
t(1

2 +
I
2

)
t

t

 = t


−1

2 −
i
2

1
2 +

i
2

1


Let t = 1 the eigenvector becomes

(
−1

2 −
I
2

)
t(1

2 +
I
2

)
t

t

 =


−1

2 −
i
2

1
2 +

i
2

1


Which is normalized to 

(
−1

2 −
I
2

)
t(1

2 +
I
2

)
t

t

 =


−1− i

1 + i

2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

i 1 1 No


−1

2 −
i
2

1
2 +

i
2

1



−i 1 1 No


−1

2 +
i
2

1
2 −

i
2

1



1 1 1 No


0
1
0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=


0
1
0

 et

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


(
−1

2 −
i
2

)
eit(1

2 +
i
2

)
eit

eit

+ c2


(
−1

2 +
i
2

)
e−it(1

2 −
i
2

)
e−it

e−it

+ c3


0
et

0
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Which becomes 
x1(t)
x2(t)
x3(t)

 =


(
−1

2 −
i
2

)
c1eit +

(
−1

2 +
i
2

)
c2e−it(1

2 +
i
2

)
c1eit +

(1
2 −

i
2

)
c2e−it + c3et

c1eit + c2e−it


2.4.3 Maple step by step solution

Let’s solve
[x′

1(t) = x1(t) + x3(t) , x′
2(t) = x2(t)− x3(t) , x′

3(t) = −2x1(t)− x3(t)]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


1 0 1
0 1 −1
−2 0 −1

 · →x__(t) +


0
0
0


• System to solve

→x__
′
(t) =


1 0 1
0 1 −1
−2 0 −1

 · →x__(t)

• Define the coefficient matrix

A =


1 0 1
0 1 −1
−2 0 −1


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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1,


0
1
0


 ,

−I,


−1

2 +
I
2

1
2 −

I
2

1


 ,

I,


−1
2 −

I
2

1
2 +

I
2

1





• Consider eigenpair1,


0
1
0




• Solution to homogeneous system from eigenpair

→x__1 = et ·


0
1
0


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−1

2 +
I
2

1
2 −

I
2

1




• Solution from eigenpair

e−It ·


−1

2 +
I
2

1
2 −

I
2

1


• Use Euler identity to write solution in terms of sin and cos

(cos (t)− I sin (t)) ·


−1

2 +
I
2

1
2 −

I
2

1


• Simplify expression

(
−1

2 +
I
2

)
(cos (t)− I sin (t))(1

2 −
I
2

)
(cos (t)− I sin (t))

cos (t)− I sin (t)
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• Both real and imaginary parts are solutions to the homogeneous system →x__2(t) =


− cos(t)

2 + sin(t)
2

cos(t)
2 − sin(t)

2

cos (t)

 ,
→x__3(t) =


cos(t)

2 + sin(t)
2

− cos(t)
2 − sin(t)

2

− sin (t)




• General solution to the system of ODEs
→x__ = c1

→x__1 + c2
→x__2(t) + c3

→x__3(t)
• Substitute solutions into the general solution

→x__ = c1et ·


0
1
0

+


c3
(

cos(t)
2 + sin(t)

2

)
+ c2

(
− cos(t)

2 + sin(t)
2

)
c2
(

cos(t)
2 − sin(t)

2

)
+ c3

(
− cos(t)

2 − sin(t)
2

)
c2 cos (t)− c3 sin (t)


• Substitute in vector of dependent variables

x1(t)
x2(t)
x3(t)

 =


(−c2+c3) cos(t)

2 + (c2+c3) sin(t)
2

(c2−c3) cos(t)
2 + (−c2−c3) sin(t)

2 + c1et

c2 cos (t)− c3 sin (t)


• Solution to the system of ODEs{

x1(t) = (−c2+c3) cos(t)
2 + (c2+c3) sin(t)

2 , x2(t) = (c2−c3) cos(t)
2 + (−c2−c3) sin(t)

2 + c1et, x3(t) = c2 cos (t)− c3 sin (t)
}

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 66� �
dsolve([diff(x__1(t),t)=1*x__1(t)-0*x__2(t)+1*x__3(t),diff(x__2(t),t)=0*x__1(t)+1*x__2(t)-1*x__3(t),diff(x__3(t),t)=-2*x__1(t)-0*x__2(t)-1*x__3(t)],singsol=all)� �

x1(t) =
c3 sin (t)

2 − c2 cos (t)
2 − c2 sin (t)

2 − c3 cos (t)
2

x2(t) =
c2 sin (t)

2 − c3 sin (t)
2 + c2 cos (t)

2 + c3 cos (t)
2 + c1et

x3(t) = c2 sin (t) + c3 cos (t)
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 67� �
DSolve[{x1'[t]==1*x1[t]-0*x2[t]+1*x3[t],x2'[t]==0*x1[t]+1*x2[t]-1*x3[t],x3'[t]==-2*x1[t]-0*x2[t]-1*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → c1 cos(t) + (c1 + c3) sin(t)
x2(t) → (c1 + c2)et − c1 cos(t)− (c1 + c3) sin(t)
x3(t) → c3 cos(t)− (2c1 + c3) sin(t)
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2.5 problem 5
2.5.1 Solution using Matrix exponential method . . . . . . . . . . . . 184
2.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 185

Internal problem ID [1840]
Internal file name [OUTPUT/1841_Sunday_June_05_2022_02_34_53_AM_79439982/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.9, Systems of differential equations. Complex roots. Page 344
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t)− x2(t)

x′
2(t) = 5x1(t)− 3x2(t)

With initial conditions
[x1(0) = 1, x2(0) = 2]

2.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 1 −1
5 −3

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 e−t cos (t) + 2 e−t sin (t) −e−t sin (t)
5 e−t sin (t) e−t cos (t)− 2 e−t sin (t)


=

 e−t(cos (t) + 2 sin (t)) −e−t sin (t)
5 e−t sin (t) e−t(cos (t)− 2 sin (t))
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 e−t(cos (t) + 2 sin (t)) −e−t sin (t)
5 e−t sin (t) e−t(cos (t)− 2 sin (t))

 1
2


=

 e−t(cos (t) + 2 sin (t))− 2 e−t sin (t)
5 e−t sin (t) + 2 e−t(cos (t)− 2 sin (t))


=

 e−t cos (t)
e−t(sin (t) + 2 cos (t))


Since no forcing function is given, then the final solution is ~xh(t) above.

2.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 1 −1
5 −3

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 −1
5 −3

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ −1
5 −3− λ

 = 0
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Which gives the characteristic equation

λ2 + 2λ+ 2 = 0

The roots of the above are the eigenvalues.

λ1 = −1 + i

λ2 = −1− i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1− i 1 complex eigenvalue

−1 + i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1− i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −1
5 −3

− (−1− i)

 1 0
0 1

 v1

v2

 =

 0
0


 2 + i −1

5 −2 + i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 + i −1 0

5 −2 + i 0



R2 = R2 + (−2 + i)R1 =⇒

2 + i −1 0
0 0 0


Therefore the system in Echelon form is 2 + i −1

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(2
5 −

i
5

)
t
}

Hence the solution is  (2
5 −

I
5

)
t

t

 =

 (2
5 −

i
5

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (2

5 −
I
5

)
t

t

 = t

 2
5 −

i
5

1


Let t = 1 the eigenvector becomes (2

5 −
I
5

)
t

t

 =

 2
5 −

i
5

1


Which is normalized to  (2

5 −
I
5

)
t

t

 =

 2− i

5


Considering the eigenvalue λ2 = −1 + i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −1
5 −3

− (−1 + i)

 1 0
0 1

 v1

v2

 =

 0
0


 2− i −1

5 −2− i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2− i −1 0

5 −2− i 0



R2 = R2 + (−2− i)R1 =⇒

2− i −1 0
0 0 0
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Therefore the system in Echelon form is 2− i −1
0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(2
5 +

i
5

)
t
}

Hence the solution is  (2
5 +

I
5

)
t

t

 =

 (2
5 +

i
5

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (2

5 +
I
5

)
t

t

 = t

 2
5 +

i
5

1


Let t = 1 the eigenvector becomes (2

5 +
I
5

)
t

t

 =

 2
5 +

i
5

1


Which is normalized to  (2

5 +
I
5

)
t

t

 =

 2 + i

5


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−1 + i 1 1 No

 2
5 +

i
5

1



−1− i 1 1 No

 2
5 −

i
5

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x1(t)
x2(t)

 = c1

 (2
5 +

i
5

)
e(−1+i)t

e(−1+i)t

+ c2

 (2
5 −

i
5

)
e(−1−i)t

e(−1−i)t


Which becomes x1(t)

x2(t)

 =

 (2
5 +

i
5

)
c1e(−1+i)t +

(2
5 −

i
5

)
c2e(−1−i)t

c1e(−1+i)t + c2e(−1−i)t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 1

x2(0) = 2

 (1)

Substituting initial conditions into the above solution at t = 0 gives 1
2

 =

 (2
5 +

i
5

)
c1 +

(2
5 −

i
5

)
c2

c1 + c2


Solving for the constants of integrations gives c1 = 1− i

2

c2 = 1 + i
2
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Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 e(−1−i)t

2 + e(−1+i)t

2(
1− i

2

)
e(−1+i)t +

(
1 + i

2

)
e(−1−i)t


The following is the phase plot of the system.

Figure 10: Phase plot

The following are plots of each solution.

3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 30� �
dsolve([diff(x__1(t),t) = x__1(t)-x__2(t), diff(x__2(t),t) = 5*x__1(t)-3*x__2(t), x__1(0) = 1, x__2(0) = 2], singsol=all)� �

x1(t) = e−t cos (t)
x2(t) = −e−t(−2 cos (t)− sin (t))
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 29� �
DSolve[{x1'[t]==1*x1[t]-1*x2[t],x2'[t]==5*x1[t]-3*x2[t]},{x1[0]==1,x2[0]==2},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e−t cos(t)
x2(t) → e−t(sin(t) + 2 cos(t))
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2.6 problem 6
2.6.1 Solution using Matrix exponential method . . . . . . . . . . . . 192
2.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 193

Internal problem ID [1841]
Internal file name [OUTPUT/1842_Sunday_June_05_2022_02_34_55_AM_35798951/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.9, Systems of differential equations. Complex roots. Page 344
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t)− 2x2(t)

x′
2(t) = 4x1(t)− x2(t)

With initial conditions
[x1(0) = 1, x2(0) = 5]

2.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −2
4 −1

  x1(t)
x2(t)


For the above matrix A, the matrix exponential can be found to be

eAt =

 et cos (2t) + et sin (2t) −et sin (2t)
2 et sin (2t) et cos (2t)− et sin (2t)


=

 et(cos (2t) + sin (2t)) −et sin (2t)
2 et sin (2t) et(cos (2t)− sin (2t))
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 et(cos (2t) + sin (2t)) −et sin (2t)
2 et sin (2t) et(cos (2t)− sin (2t))

 1
5


=

 et(cos (2t) + sin (2t))− 5 et sin (2t)
2 et sin (2t) + 5 et(cos (2t)− sin (2t))


=

 et(cos (2t)− 4 sin (2t))
et(−3 sin (2t) + 5 cos (2t))


Since no forcing function is given, then the final solution is ~xh(t) above.

2.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −2
4 −1

  x1(t)
x2(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 3 −2
4 −1

− λ

 1 0
0 1

 = 0

Therefore

det

 3− λ −2
4 −1− λ

 = 0
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Which gives the characteristic equation

λ2 − 2λ+ 5 = 0

The roots of the above are the eigenvalues.

λ1 = 1 + 2i
λ2 = 1− 2i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 + 2i 1 complex eigenvalue

1− 2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1− 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 −2
4 −1

− (1− 2i)

 1 0
0 1

 v1

v2

 =

 0
0


 2 + 2i −2

4 −2 + 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 + 2i −2 0

4 −2 + 2i 0



R2 = R2 + (−1 + i)R1 =⇒

2 + 2i −2 0
0 0 0


Therefore the system in Echelon form is 2 + 2i −2

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(1
2 −

i
2

)
t
}

Hence the solution is  (1
2 −

I
2

)
t

t

 =

 (1
2 −

i
2

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (1

2 −
I
2

)
t

t

 = t

 1
2 −

i
2

1


Let t = 1 the eigenvector becomes (1

2 −
I
2

)
t

t

 =

 1
2 −

i
2

1


Which is normalized to  (1

2 −
I
2

)
t

t

 =

 1− i

2


Considering the eigenvalue λ2 = 1 + 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 −2
4 −1

− (1 + 2i)

 1 0
0 1

 v1

v2

 =

 0
0


 2− 2i −2

4 −2− 2i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2− 2i −2 0

4 −2− 2i 0



R2 = R2 + (−1− i)R1 =⇒

2− 2i −2 0
0 0 0
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Therefore the system in Echelon form is 2− 2i −2
0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(1
2 +

i
2

)
t
}

Hence the solution is  (1
2 +

I
2

)
t

t

 =

 (1
2 +

i
2

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (1

2 +
I
2

)
t

t

 = t

 1
2 +

i
2

1


Let t = 1 the eigenvector becomes (1

2 +
I
2

)
t

t

 =

 1
2 +

i
2

1


Which is normalized to  (1

2 +
I
2

)
t

t

 =

 1 + i

2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 + 2i 1 1 No

 1
2 +

i
2

1



1− 2i 1 1 No

 1
2 −

i
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x1(t)
x2(t)

 = c1

 (1
2 +

i
2

)
e(1+2i)t

e(1+2i)t

+ c2

 (1
2 −

i
2

)
e(1−2i)t

e(1−2i)t


Which becomes  x1(t)

x2(t)

 =

 (1
2 +

i
2

)
c1e(1+2i)t +

(1
2 −

i
2

)
c2e(1−2i)t

c1e(1+2i)t + c2e(1−2i)t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 1

x2(0) = 5

 (1)

Substituting initial conditions into the above solution at t = 0 gives 1
5

 =

 (1
2 +

i
2

)
c1 +

(1
2 −

i
2

)
c2

c1 + c2


Solving for the constants of integrations gives c1 = 5

2 +
3i
2

c2 = 5
2 −

3i
2
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Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 (1
2 + 2i

)
e(1+2i)t +

(1
2 − 2i

)
e(1−2i)t(5

2 +
3i
2

)
e(1+2i)t +

(5
2 −

3i
2

)
e(1−2i)t


The following is the phase plot of the system.

Figure 11: Phase plot

The following are plots of each solution.

3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve([diff(x__1(t),t) = 3*x__1(t)-2*x__2(t), diff(x__2(t),t) = 4*x__1(t)-x__2(t), x__1(0) = 1, x__2(0) = 5], singsol=all)� �

x1(t) = et(−4 sin (2t) + cos (2t))
x2(t) = −et(−5 cos (2t) + 3 sin (2t))
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 40� �
DSolve[{x1'[t]==3*x1[t]-2*x2[t],x2'[t]==4*x1[t]-1*x2[t]},{x1[0]==1,x2[0]==5},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → et(cos(2t)− 4 sin(2t))
x2(t) → et(5 cos(2t)− 3 sin(2t))
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2.7 problem 7
2.7.1 Solution using Matrix exponential method . . . . . . . . . . . . 200
2.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 201

Internal problem ID [1842]
Internal file name [OUTPUT/1843_Sunday_June_05_2022_02_34_57_AM_9880818/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.9, Systems of differential equations. Complex roots. Page 344
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −3x1(t) + 2x3(t)

x′
2(t) = x1(t)− x2(t)

x′
3(t) = −2x1(t)− x2(t)

With initial conditions

[x1(0) = 0, x2(0) = −1, x3(0) = −2]

2.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−3 0 2
1 −1 0
−2 −1 0




x1(t)
x2(t)
x3(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


2 e−2t

3 +
e−t cos

(√
2 t
)

3 −
2
√
2 e−t sin

(√
2 t
)

3 −
√
2 e−t sin

(√
2 t
)

3 +
2 e−t cos

(√
2 t
)

3 − 2 e−2t

3
2 e−t cos

(√
2 t
)

3 +
2
√
2 e−t sin

(√
2 t
)

3 − 2 e−2t

3

2 e−t cos
(√

2 t
)

3 +
√
2 e−t sin

(√
2 t
)

6 − 2 e−2t

3
2 e−2t

3 +
e−t cos

(√
2 t
)

3 +
√
2 e−t sin

(√
2 t
)

3 −
2 e−t cos

(√
2 t
)

3 +
√
2 e−t sin

(√
2 t
)

3 + 2 e−2t

3

−
e−t cos

(√
2 t
)

3 + e−2t

3 −
5
√
2 e−t sin

(√
2 t
)

6 −
2
√
2 e−t sin

(√
2 t
)

3 +
e−t cos

(√
2 t
)

3 − e−2t

3
4 e−t cos

(√
2 t
)

3 +
√
2 e−t sin

(√
2 t
)

3 − e−2t

3


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


2 e−2t

3 +
e−t cos

(√
2 t
)

3 −
2
√
2 e−t sin

(√
2 t
)

3 −
√
2 e−t sin

(√
2 t
)

3 +
2 e−t cos

(√
2 t
)

3 − 2 e−2t

3
2 e−t cos

(√
2 t
)

3 +
2
√
2 e−t sin

(√
2 t
)

3 − 2 e−2t

3

2 e−t cos
(√

2 t
)

3 +
√
2 e−t sin

(√
2 t
)

6 − 2 e−2t

3
2 e−2t

3 +
e−t cos

(√
2 t
)

3 +
√
2 e−t sin

(√
2 t
)

3 −
2 e−t cos

(√
2 t
)

3 +
√
2 e−t sin

(√
2 t
)

3 + 2 e−2t

3

−
e−t cos

(√
2 t
)

3 + e−2t

3 −
5
√
2 e−t sin

(√
2 t
)

6 −
2
√
2 e−t sin

(√
2 t
)

3 +
e−t cos

(√
2 t
)

3 − e−2t

3
4 e−t cos

(√
2 t
)

3 +
√
2 e−t sin

(√
2 t
)

3 − e−2t

3




0
−1
−2



=


−2 e−t cos

(√
2 t

)
−

√
2 e−t sin

(√
2 t

)
+ 2 e−2t

−2 e−2t + e−t cos
(√

2 t
)
−
√
2 e−t sin

(√
2 t

)
−3 e−t cos

(√
2 t

)
+ e−2t


Since no forcing function is given, then the final solution is ~xh(t) above.

2.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−3 0 2
1 −1 0
−2 −1 0




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




−3 0 2
1 −1 0
−2 −1 0

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−3− λ 0 2
1 −1− λ 0
−2 −1 −λ


 = 0

Which gives the characteristic equation

λ3 + 4λ2 + 7λ+ 6 = 0

The roots of the above are the eigenvalues.

λ1 = −2
λ2 = −1 + i

√
2

λ3 = −1− i
√
2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 + i
√
2 1 complex eigenvalue

−2 1 real eigenvalue

−1− i
√
2 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 0 2
1 −1 0
−2 −1 0

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 0 2
1 1 0
−2 −1 2




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 0 2 0
1 1 0 0
−2 −1 2 0



R2 = R2 +R1 =⇒


−1 0 2 0
0 1 2 0
−2 −1 2 0



R3 = R3 − 2R1 =⇒


−1 0 2 0
0 1 2 0
0 −1 −2 0



R3 = R3 +R2 =⇒


−1 0 2 0
0 1 2 0
0 0 0 0


Therefore the system in Echelon form is

−1 0 2
0 1 2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 2t, v2 = −2t}

Hence the solution is 
2t
−2t
t

 =


2t
−2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t
−2t
t

 = t


2
−2
1
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Let t = 1 the eigenvector becomes
2t
−2t
t

 =


2
−2
1


Considering the eigenvalue λ2 = −1− i

√
2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 0 2
1 −1 0
−2 −1 0

−
(
−1− i

√
2
)

1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 + i
√
2 0 2

1 i
√
2 0

−2 −1 1 + i
√
2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 + i
√
2 0 2 0

1 i
√
2 0 0

−2 −1 1 + i
√
2 0



R2 = R2 −
R1

−2 + i
√
2
=⇒


−2 + i

√
2 0 2 0

0 i
√
2 − 2

−2+i
√
2 0

−2 −1 1 + i
√
2 0



R3 = R3 +
2R1

−2 + i
√
2
=⇒


−2 + i

√
2 0 2 0

0 i
√
2 − 2

−2+i
√
2 0

0 −1 −
√
2

2i+
√
2 0



R3 = R3 −
i
√
2R2

2 =⇒


−2 + i

√
2 0 2 0

0 i
√
2 − 2

−2+i
√
2 0

0 0 0 0
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Therefore the system in Echelon form is
−2 + i

√
2 0 2

0 i
√
2 − 2

−2+i
√
2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − 2t

−2+i
√
2 , v2 = − t

1+i
√
2

}
Hence the solution is 

− 2t
−2+I

√
2

− t
1+I

√
2

t

 =


− 2t

−2+i
√
2

− t
1+i

√
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− 2t
−2+I

√
2

− t
1+I

√
2

t

 = t


− 2

−2+i
√
2

− 1
1+i

√
2

1


Let t = 1 the eigenvector becomes

− 2t
−2+I

√
2

− t
1+I

√
2

t

 =


− 2

−2+i
√
2

− 1
1+i

√
2

1


Which is normalized to 

− 2t
−2+I

√
2

− t
1+I

√
2

t

 =


− 2

−2+i
√
2

− 1
1+i

√
2

1


Considering the eigenvalue λ3 = −1 + i

√
2
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−3 0 2
1 −1 0
−2 −1 0

−
(
−1 + i

√
2
)

1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2− i
√
2 0 2

1 −i
√
2 0

−2 −1 1− i
√
2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2− i
√
2 0 2 0

1 −i
√
2 0 0

−2 −1 1− i
√
2 0



R2 = R2 −
R1

−2− i
√
2
=⇒


−2− i

√
2 0 2 0

0 −i
√
2 2

2+i
√
2 0

−2 −1 1− i
√
2 0



R3 = R3 +
2R1

−2− i
√
2
=⇒


−2− i

√
2 0 2 0

0 −i
√
2 2

2+i
√
2 0

0 −1
√
2

2i−
√
2 0



R3 = R3 +
i
√
2R2

2 =⇒


−2− i

√
2 0 2 0

0 −i
√
2 2

2+i
√
2 0

0 0 0 0


Therefore the system in Echelon form is

−2− i
√
2 0 2

0 −i
√
2 2

2+i
√
2

0 0 0




v1

v2

v3

 =


0
0
0



206



The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = 2t

2+i
√
2 , v2 =

t
−1+i

√
2

}
Hence the solution is 

2t
2+I

√
2

t
−1+I

√
2

t

 =


2t

2+i
√
2

t
−1+i

√
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t
2+I

√
2

t
−1+I

√
2

t

 = t


2

2+i
√
2

1
−1+i

√
2

1


Let t = 1 the eigenvector becomes

2t
2+I

√
2

t
−1+I

√
2

t

 =


2

2+i
√
2

1
−1+i

√
2

1


Which is normalized to 

2t
2+I

√
2

t
−1+I

√
2

t

 =


2

2+i
√
2

1
−1+i

√
2

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

207



multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 1 1 No


2
−2
1



−1 + i
√
2 1 1 No


2

2+i
√
2

i
(
−2+i

√
2
)√

2
6

1



−1− i
√
2 1 1 No


2

2−i
√
2

−
i
(
−2−i

√
2
)√

2
6

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −2 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−2t

=


2
−2
1

 e−2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as


x1(t)
x2(t)
x3(t)

 = c1


2 e−2t

−2 e−2t

e−2t

+ c2


2 e

(
−1+i

√
2
)
t

2+i
√
2

ie
(
−1+i

√
2
)
t
(
−2+i

√
2
)√

2
6

e
(
−1+i

√
2
)
t

+ c3


2 e

(
−1−i

√
2
)
t

2−i
√
2

−
ie

(
−1−i

√
2
)
t
(
−2−i

√
2
)√

2
6

e
(
−1−i

√
2
)
t
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Which becomes


x1(t)
x2(t)
x3(t)

 =



(
2+i

√
2
)
c3e

−
(
1+i

√
2
)
t

3 +
c2
(
2−i

√
2
)
e
(
−1+i

√
2
)
t

3 + 2c1e−2t

(
−1+i

√
2
)
c3e

−
(
1+i

√
2
)
t

3 +
c2
(
−1−i

√
2
)
e
(
−1+i

√
2
)
t

3 − 2c1e−2t

c1e−2t + c2e
(
−1+i

√
2
)
t + c3e−

(
1+i

√
2
)
t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = 0
x2(0) = −1
x3(0) = −2

 (1)

Substituting initial conditions into the above solution at t = 0 gives
0
−1
−2

 =


i(c3−c2)

√
2

3 + 2c1 + 2c2
3 + 2c3

3
i(c3−c2)

√
2

3 − 2c1 − c2
3 − c3

3

c1 + c2 + c3


Solving for the constants of integrations gives

c1 = 1
c2 = −3

2

c3 = −3
2


Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)

 =


−
(
2+i

√
2
)
e−

(
1+i

√
2
)
t

2 −
(
2−i

√
2
)
e
(
−1+i

√
2
)
t

2 + 2 e−2t

−
(
−1+i

√
2
)
e−

(
1+i

√
2
)
t

2 −
(
−1−i

√
2
)
e
(
−1+i

√
2
)
t

2 − 2 e−2t

e−2t − 3 e
(
−1+i

√
2
)
t

2 − 3 e−
(
1+i

√
2
)
t

2


The following are plots of each solution against another.

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 95� �
dsolve([diff(x__1(t),t) = -3*x__1(t)+2*x__3(t), diff(x__2(t),t) = x__1(t)-x__2(t), diff(x__3(t),t) = -2*x__1(t)-x__2(t), x__1(0) = 0, x__2(0) = -1, x__3(0) = -2], singsol=all)� �

x1(t) = 2 e−2t −
√
2 e−t sin

(√
2 t

)
− 2 e−t cos

(√
2 t

)
x2(t) = −2 e−2t + e−t cos

(√
2 t

)
−

√
2 e−t sin

(√
2 t

)
x3(t) = e−2t − 3 e−t cos

(√
2 t

)
3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 109� �
DSolve[{x1'[t]==-3*x1[t]-0*x2[t]+2*x3[t],x2'[t]==1*x1[t]-1*x2[t]-0*x3[t],x3'[t]==-2*x1[t]-1*x2[t]-0*x3[t]},{x1[0]==0,x2[0]==-1,x3[0]==-2},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → −e−2t
(√

2et sin
(√

2t
)
+ 2et cos

(√
2t
)
− 2

)
x2(t) → e−2t

(
−
√
2et sin

(√
2t
)
+ et cos

(√
2t
)
− 2

)
x3(t) → e−2t

(
1− 3et cos

(√
2t
))
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2.8 problem 8
2.8.1 Solution using Matrix exponential method . . . . . . . . . . . . 211
2.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 212

Internal problem ID [1843]
Internal file name [OUTPUT/1844_Sunday_June_05_2022_02_35_01_AM_71795827/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.9, Systems of differential equations. Complex roots. Page 344
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 2x2(t)

x′
2(t) = −2x1(t)

x′
3(t) = −3x4(t)

x′
4(t) = 3x3(t)

With initial conditions

[x1(0) = 1, x2(0) = 1, x3(0) = 1, x4(0) = 0]

2.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

x′
4(t)

 =


0 2 0 0
−2 0 0 0
0 0 0 −3
0 0 3 0




x1(t)
x2(t)
x3(t)
x4(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


cos (2t) sin (2t) 0 0
− sin (2t) cos (2t) 0 0

0 0 cos (3t) − sin (3t)
0 0 sin (3t) cos (3t)


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


cos (2t) sin (2t) 0 0
− sin (2t) cos (2t) 0 0

0 0 cos (3t) − sin (3t)
0 0 sin (3t) cos (3t)




1
1
1
0



=


cos (2t) + sin (2t)
cos (2t)− sin (2t)

cos (3t)
sin (3t)


Since no forcing function is given, then the final solution is ~xh(t) above.

2.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

x′
4(t)

 =


0 2 0 0
−2 0 0 0
0 0 0 −3
0 0 3 0




x1(t)
x2(t)
x3(t)
x4(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det




0 2 0 0
−2 0 0 0
0 0 0 −3
0 0 3 0

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

Therefore

det




−λ 2 0 0
−2 −λ 0 0
0 0 −λ −3
0 0 3 −λ



 = 0

Which gives the characteristic equation

λ4 + 13λ2 + 36 = 0

The roots of the above are the eigenvalues.

λ1 = 2i
λ2 = −2i
λ3 = 3i
λ4 = −3i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2i 1 complex eigenvalue

−2i 1 complex eigenvalue

−3i 1 complex eigenvalue

3i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3i
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


0 2 0 0
−2 0 0 0
0 0 0 −3
0 0 3 0

− (−3i)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




3i 2 0 0
−2 3i 0 0
0 0 3i −3
0 0 3 3i




v1

v2

v3

v4

 =


0
0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

3i 2 0 0 0
−2 3i 0 0 0
0 0 3i −3 0
0 0 3 3i 0



R2 = R2 −
2iR1

3 =⇒


3i 2 0 0 0
0 5i

3 0 0 0

0 0 3i −3 0
0 0 3 3i 0



R4 = iR3 +R4 =⇒


3i 2 0 0 0
0 5i

3 0 0 0

0 0 3i −3 0
0 0 0 0 0


Therefore the system in Echelon form is

3i 2 0 0
0 5i

3 0 0

0 0 3i −3
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0
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The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = 0, v3 = −it}

Hence the solution is 
0
0
-I t
t

 =


0
0
−it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
0
-I t
t

 = t


0
0
−i

1


Let t = 1 the eigenvector becomes

0
0
-I t
t

 =


0
0
−i

1


Considering the eigenvalue λ2 = −2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


0 2 0 0
−2 0 0 0
0 0 0 −3
0 0 3 0

− (−2i)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




2i 2 0 0
−2 2i 0 0
0 0 2i −3
0 0 3 2i




v1

v2

v3

v4

 =


0
0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2i 2 0 0 0
−2 2i 0 0 0
0 0 2i −3 0
0 0 3 2i 0



R2 = −iR1 +R2 =⇒


2i 2 0 0 0
0 0 0 0 0
0 0 2i −3 0
0 0 3 2i 0


Since the current pivot A(2, 3) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

2i 2 0 0 0
0 0 2i −3 0
0 0 0 0 0
0 0 3 2i 0



R4 = R4 +
3iR2

2 =⇒


2i 2 0 0 0
0 0 2i −3 0
0 0 0 0 0
0 0 0 −5i

2 0


Since the current pivot A(3, 4) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 3 and row 4 gives

2i 2 0 0 0
0 0 2i −3 0
0 0 0 −5i

2 0

0 0 0 0 0
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Therefore the system in Echelon form is
2i 2 0 0
0 0 2i −3
0 0 0 −5i

2

0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v2} and the leading variables are {v1, v3, v4}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = it, v3 = 0, v4 = 0}

Hence the solution is 
I t
t

0
0

 =


it

t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

I t
t

0
0

 = t


i

1
0
0


Let t = 1 the eigenvector becomes 

I t
t

0
0

 =


i

1
0
0


Considering the eigenvalue λ3 = 2i
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


0 2 0 0
−2 0 0 0
0 0 0 −3
0 0 3 0

− (2i)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




−2i 2 0 0
−2 −2i 0 0
0 0 −2i −3
0 0 3 −2i




v1

v2

v3

v4

 =


0
0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2i 2 0 0 0
−2 −2i 0 0 0
0 0 −2i −3 0
0 0 3 −2i 0



R2 = iR1 +R2 =⇒


−2i 2 0 0 0
0 0 0 0 0
0 0 −2i −3 0
0 0 3 −2i 0


Since the current pivot A(2, 3) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

−2i 2 0 0 0
0 0 −2i −3 0
0 0 0 0 0
0 0 3 −2i 0



R4 = R4 −
3iR2

2 =⇒


−2i 2 0 0 0
0 0 −2i −3 0
0 0 0 0 0
0 0 0 5i

2 0
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Since the current pivot A(3, 4) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 3 and row 4 gives

−2i 2 0 0 0
0 0 −2i −3 0
0 0 0 5i

2 0

0 0 0 0 0


Therefore the system in Echelon form is

−2i 2 0 0
0 0 −2i −3
0 0 0 5i

2

0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v2} and the leading variables are {v1, v3, v4}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −it, v3 = 0, v4 = 0}

Hence the solution is 
-I t
t

0
0

 =


−it

t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

-I t
t

0
0

 = t


−i

1
0
0


Let t = 1 the eigenvector becomes

-I t
t

0
0

 =


−i

1
0
0
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Considering the eigenvalue λ4 = 3i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


0 2 0 0
−2 0 0 0
0 0 0 −3
0 0 3 0

− (3i)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




−3i 2 0 0
−2 −3i 0 0
0 0 −3i −3
0 0 3 −3i




v1

v2

v3

v4

 =


0
0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−3i 2 0 0 0
−2 −3i 0 0 0
0 0 −3i −3 0
0 0 3 −3i 0



R2 = R2 +
2iR1

3 =⇒


−3i 2 0 0 0
0 −5i

3 0 0 0

0 0 −3i −3 0
0 0 3 −3i 0



R4 = −iR3 +R4 =⇒


−3i 2 0 0 0
0 −5i

3 0 0 0

0 0 −3i −3 0
0 0 0 0 0


Therefore the system in Echelon form is

−3i 2 0 0
0 −5i

3 0 0

0 0 −3i −3
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0
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The free variables are {v4} and the leading variables are {v1, v2, v3}. Let v4 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = 0, v3 = it}

Hence the solution is 
0
0
I t
t

 =


0
0
it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
0
I t
t

 = t


0
0
i

1


Let t = 1 the eigenvector becomes 

0
0
I t
t

 =


0
0
i

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2i 1 1 No


−i

1
0
0



−2i 1 1 No


i

1
0
0



3i 1 1 No


0
0
i

1



−3i 1 1 No


0
0
−i

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t) + c4~x4(t)

Which is written as
x1(t)
x2(t)
x3(t)
x4(t)

 = c1


−ie2it

e2it

0
0

+ c2


ie−2it

e−2it

0
0

+ c3


0
0

ie3it

e3it

+ c4


0
0

−ie−3it

e−3it
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Which becomes 
x1(t)
x2(t)
x3(t)
x4(t)

 =


−i(c1e2it − c2e−2it)
c1e2it + c2e−2it

−i(c4e−3it − c3e3it)
c3e3it + c4e−3it


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = 1
x2(0) = 1
x3(0) = 1
x4(0) = 0

 (1)

Substituting initial conditions into the above solution at t = 0 gives
1
1
1
0

 =


−i(c1 − c2)
c1 + c2

i(c3 − c4)
c3 + c4


Solving for the constants of integrations gives

c1 = 1
2 +

i
2

c2 = 1
2 −

i
2

c3 = − i
2

c4 = i
2


Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)
x4(t)

 =



−i
((1

2 +
i
2

)
e2it +

(
−1

2 +
i
2

)
e−2it)(1

2 +
i
2

)
e2it +

(1
2 −

i
2

)
e−2it

−i
(

ie−3it

2 + ie3it
2

)
− ie3it

2 + ie−3it

2



223



The following are plots of each solution against another.
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The following are plots of each solution.

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 42� �
dsolve([diff(x__1(t),t) = 2*x__2(t), diff(x__2(t),t) = -2*x__1(t), diff(x__3(t),t) = -3*x__4(t), diff(x__4(t),t) = 3*x__3(t), x__1(0) = 1, x__2(0) = 1, x__3(0) = 1, x__4(0) = 0], singsol=all)� �

x1(t) = sin (2t) + cos (2t)
x2(t) = cos (2t)− sin (2t)
x3(t) = cos (3t)
x4(t) = sin (3t)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42� �
DSolve[{x1'[t]==-0*x1[t]+2*x2[t]+0*x3[t]+0*x4[t],x2'[t]==-2*x1[t]-0*x2[t]-0*x3[t]+0*x4[t],x3'[t]==0*x1[t]-0*x2[t]-0*x3[t]-3*x4[t],x4'[t]==0*x1[t]-0*x2[t]+3*x3[t]-0*x4[t]},{x1[0]==1,x2[0]==1,x3[0]==1,x4[0]==0},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → sin(2t) + cos(2t)
x2(t) → cos(2t)− sin(2t)
x3(t) → cos(3t)
x4(t) → sin(3t)
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3.1 problem Example 1, page 348
3.1.1 Solution using Matrix exponential method . . . . . . . . . . . . 227
3.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 228

Internal problem ID [1844]
Internal file name [OUTPUT/1845_Sunday_June_05_2022_02_35_05_AM_69074826/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.10, Systems of differential equations. Equal roots. Page 352
Problem number: Example 1, page 348.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + x2(t)

x′
2(t) = x2(t)

x′
3(t) = 2x3(t)

3.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 1 0
0 1 0
0 0 2




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


et t et 0
0 et 0
0 0 e2t
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


et t et 0
0 et 0
0 0 e2t




c1

c2

c3



=


etc1 + t etc2

etc2
e2tc3



=


et(c2t+ c1)

etc2
e2tc3


Since no forcing function is given, then the final solution is ~xh(t) above.

3.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 1 0
0 1 0
0 0 2




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 1 0
0 1 0
0 0 2

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




1− λ 1 0
0 1− λ 0
0 0 2− λ


 = 0

Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

(1− λ)(1− λ)(2− λ) = 0

The roots of the above are the eigenvalues.

λ1 = 1
λ2 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 1 0
0 1 0
0 0 2

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 1 0
0 0 0
0 0 1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 1 0 0
0 0 0 0
0 0 1 0
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Since the current pivot A(2, 3) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

0 1 0 0
0 0 1 0
0 0 0 0


Therefore the system in Echelon form is

0 1 0
0 0 1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v1} and the leading variables are {v2, v3}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0}

Hence the solution is 
t

0
0

 =


t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0

 = t


1
0
0


Let t = 1 the eigenvector becomes 

t

0
0

 =


1
0
0


Considering the eigenvalue λ2 = 2
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 1 0
0 1 0
0 0 2

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 1 0
0 −1 0
0 0 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 1 0 0
0 −1 0 0
0 0 0 0


Therefore the system in Echelon form is

−1 1 0
0 −1 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = 0}

Hence the solution is 
0
0
t

 =


0
0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
0
t

 = t


0
0
1
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Let t = 1 the eigenvector becomes 
0
0
t

 =


0
0
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 2 1 Yes


1
0
0



2 1 1 No


0
0
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 12: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


1 1 0
0 1 0
0 0 2

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
0
0




0 1 0
0 0 0
0 0 1




v1

v2

v3

 =


1
0
0
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Solving for ~v2 gives

~v2 =


1
1
0


We have found two generalized eigenvectors for eigenvalue 1. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


1
0
0

 et

=


et

0
0


And

~x2(t) = (~v1t+ ~v2) eλt

=




1
0
0

 t+


1
1
0


 et

=


et(t+ 1)

et

0


Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
2t

=


0
0
1

 e2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
x1(t)
x2(t)
x3(t)

 = c1


et

0
0

+ c2


et(t+ 1)

et

0

+ c3


0
0
e2t


Which becomes 

x1(t)
x2(t)
x3(t)

 =


et(c2t+ c1 + c2)

c2et

c3e2t


3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve([diff(x__1(t),t)=1*x__1(t)+1*x__2(t)+0*x__3(t),diff(x__2(t),t)=0*x__1(t)+1*x__2(t)-0*x__3(t),diff(x__3(t),t)=0*x__1(t)-0*x__2(t)+2*x__3(t)],singsol=all)� �

x1(t) = et(c2t+ c1)
x2(t) = c2et

x3(t) = c3e2t

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 64� �
DSolve[{x1'[t]==1*x1[t]+1*x2[t]+0*x3[t],x2'[t]==0*x1[t]+1*x2[t]-0*x3[t],x3'[t]==0*x1[t]-0*x2[t]+2*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → et(c2t+ c1)
x2(t) → c2e

t

x3(t) → c3e
2t

x1(t) → et(c2t+ c1)
x2(t) → c2e

t

x3(t) → 0
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3.2 problem Example 2, page 349
3.2.1 Solution using Matrix exponential method . . . . . . . . . . . . 236
3.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 237

Internal problem ID [1845]
Internal file name [OUTPUT/1846_Sunday_June_05_2022_02_35_07_AM_53505999/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.10, Systems of differential equations. Equal roots. Page 352
Problem number: Example 2, page 349.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 2x1(t) + x2(t) + 3x3(t)

x′
2(t) = 2x2(t)− x3(t)

x′
3(t) = 2x3(t)

With initial conditions
[x1(0) = 1, x2(0) = 2, x3(0) = 1]

3.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


2 1 3
0 2 −1
0 0 2




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e2t e2tt − e2tt(t−6)

2

0 e2t −e2tt
0 0 e2t
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


e2t e2tt − e2tt(t−6)

2

0 e2t −e2tt
0 0 e2t




1
2
1



=


e2t + 2 e2tt− e2tt(t−6)

2

2 e2t − e2tt
e2t



=


e2t

(
1 + 5t− 1

2t
2)

e2t(−t+ 2)
e2t


Since no forcing function is given, then the final solution is ~xh(t) above.

3.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


2 1 3
0 2 −1
0 0 2




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




2 1 3
0 2 −1
0 0 2

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




2− λ 1 3
0 2− λ −1
0 0 2− λ


 = 0

Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

(2− λ)(2− λ)(2− λ) = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


2 1 3
0 2 −1
0 0 2

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 1 3
0 0 −1
0 0 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 1 3 0
0 0 −1 0
0 0 0 0
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Therefore the system in Echelon form is
0 1 3
0 0 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v1} and the leading variables are {v2, v3}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0}

Hence the solution is 
t

0
0

 =


t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0

 = t


1
0
0


Let t = 1 the eigenvector becomes 

t

0
0

 =


1
0
0


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 3 1 Yes


1
0
0
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 13: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
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~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence


2 1 3
0 2 −1
0 0 2

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
0
0




0 1 3
0 0 −1
0 0 0




v1

v2

v3

 =


1
0
0


Solving for ~v2 gives

~v2 =


1
1
0


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


2 1 3
0 2 −1
0 0 2

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
1
0




0 1 3
0 0 −1
0 0 0




v1

v2

v3

 =


1
1
0


Solving for ~v3 gives

~v3 =


1
4
−1
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We have found three generalized eigenvectors for eigenvalue 2. Therefore the three basis
solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


1
0
0

 e2t

=


e2t

0
0


And

~x2(t) = eλt(~v1t+ ~v2)

= e2t




1
0
0

 t+


1
1
0




=


e2t(t+ 1)

e2t

0


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




1
0
0

 t2

2 +


1
1
0

 t+


1
4
−1


 e2t

=


e2t
(
t2+2t+2

)
2

e2t(t+ 4)
−e2t


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
x1(t)
x2(t)
x3(t)

 = c1


e2t

0
0

+ c2


e2t(t+ 1)

e2t

0

+ c3


e2t

(
t+ 1

2t
2 + 1

)
e2t(t+ 4)

−e2t


Which becomes 

x1(t)
x2(t)
x3(t)

 =


((
t2+2t+2

)
c3+2c2t+2c1+2c2

)
e2t

2

((t+ 4) c3 + c2) e2t

−c3e2t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = 1
x2(0) = 2
x3(0) = 1

 (1)

Substituting initial conditions into the above solution at t = 0 gives
1
2
1

 =


c3 + c1 + c2

4c3 + c2

−c3


Solving for the constants of integrations gives

c1 = −4
c2 = 6
c3 = −1


Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)

 =


e2t
(
−t2+10t+2

)
2

e2t(−t+ 2)
e2t
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The following are plots of each solution against another.

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 41� �
dsolve([diff(x__1(t),t) = 2*x__1(t)+x__2(t)+3*x__3(t), diff(x__2(t),t) = 2*x__2(t)-x__3(t), diff(x__3(t),t) = 2*x__3(t), x__1(0) = 1, x__2(0) = 2, x__3(0) = 1], singsol=all)� �

x1(t) =
(−t2 + 10t+ 2) e2t

2
x2(t) = (−t+ 2) e2t

x3(t) = e2t
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3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 43� �
DSolve[{x1'[t]==2*x1[t]+1*x2[t]+3*x3[t],x2'[t]==0*x1[t]+2*x2[t]-1*x3[t],x3'[t]==0*x1[t]-0*x2[t]+2*x3[t]},{x1[0]==1,x2[0]==2,x3[0]==1},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → −1
2e

2t(t2 − 10t− 2
)

x2(t) → −e2t(t− 2)
x3(t) → e2t

246



3.3 problem 1
3.3.1 Solution using Matrix exponential method . . . . . . . . . . . . 247
3.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 248
3.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 256

Internal problem ID [1846]
Internal file name [OUTPUT/1847_Sunday_June_05_2022_02_35_09_AM_62664101/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.10, Systems of differential equations. Equal roots. Page 352
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −x2(t) + x3(t)

x′
2(t) = 2x1(t)− 3x2(t) + x3(t)

x′
3(t) = x1(t)− x2(t)− x3(t)

3.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


0 −1 1
2 −3 1
1 −1 −1




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e−t(t+ 1) −t e−t t e−t

t e−t + e−t − e−2t −t e−t + e−2t t e−t

e−t − e−2t −e−t + e−2t e−t
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−t(t+ 1) −t e−t t e−t

t e−t + e−t − e−2t −t e−t + e−2t t e−t

e−t − e−2t −e−t + e−2t e−t




c1

c2

c3



=


e−t(t+ 1) c1 − t e−tc2 + t e−tc3

(t e−t + e−t − e−2t) c1 + (−t e−t + e−2t) c2 + t e−tc3

(e−t − e−2t) c1 + (−e−t + e−2t) c2 + e−tc3



=


e−t((c1 − c2 + c3) t+ c1)

(c1(t+ 1)− t(c2 − c3)) e−t − e−2t(c1 − c2)
(c1 − c2 + c3) e−t − e−2t(c1 − c2)


Since no forcing function is given, then the final solution is ~xh(t) above.

3.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


0 −1 1
2 −3 1
1 −1 −1




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




0 −1 1
2 −3 1
1 −1 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−λ −1 1
2 −3− λ 1
1 −1 −1− λ


 = 0

Which gives the characteristic equation

λ3 + 4λ2 + 5λ+ 2 = 0

The roots of the above are the eigenvalues.

λ1 = −2
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


0 −1 1
2 −3 1
1 −1 −1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2 −1 1
2 −1 1
1 −1 1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2 −1 1 0
2 −1 1 0
1 −1 1 0



249



R2 = R2 −R1 =⇒


2 −1 1 0
0 0 0 0
1 −1 1 0



R3 = R3 −
R1

2 =⇒


2 −1 1 0
0 0 0 0
0 −1

2
1
2 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

2 −1 1 0
0 −1

2
1
2 0

0 0 0 0


Therefore the system in Echelon form is

2 −1 1
0 −1

2
1
2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = t}

Hence the solution is 
0
t

t

 =


0
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
t

t

 = t


0
1
1
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Let t = 1 the eigenvector becomes 
0
t

t

 =


0
1
1


Considering the eigenvalue λ2 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


0 −1 1
2 −3 1
1 −1 −1

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 −1 1
2 −2 1
1 −1 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 −1 1 0
2 −2 1 0
1 −1 0 0



R2 = R2 − 2R1 =⇒


1 −1 1 0
0 0 −1 0
1 −1 0 0



R3 = R3 −R1 =⇒


1 −1 1 0
0 0 −1 0
0 0 −1 0



R3 = R3 −R2 =⇒


1 −1 1 0
0 0 −1 0
0 0 0 0
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Therefore the system in Echelon form is
1 −1 1
0 0 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2} and the leading variables are {v1, v3}. Let v2 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v3 = 0}

Hence the solution is 
t

t

0

 =


t

t

0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

0

 = t


1
1
0


Let t = 1 the eigenvector becomes 

t

t

0

 =


1
1
0


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 1 1 No


0
1
1



−1 2 1 Yes


1
1
0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −2 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−2t

=


0
1
1

 e−2t

eigenvalue −1 is real and repated eigenvalue of multiplicity 2.There are two possible
cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 14: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


0 −1 1
2 −3 1
1 −1 −1

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
1
0




1 −1 1
2 −2 1
1 −1 0




v1

v2

v3

 =


1
1
0
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Solving for ~v2 gives

~v2 =


1
1
1


We have found two generalized eigenvectors for eigenvalue −1. Therefore the two basis
solution associated with this eigenvalue are

~x2(t) = ~v1e
λt

=


1
1
0

 e−t

=


e−t

e−t

0


And

~x3(t) = (~v1t+ ~v2) eλt

=




1
1
0

 t+


1
1
1


 e−t

=


e−t(t+ 1)
e−t(t+ 1)

e−t


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


0

e−2t

e−2t

+ c2


e−t

e−t

0

+ c3


e−t(t+ 1)
e−t(t+ 1)

e−t
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Which becomes 
x1(t)
x2(t)
x3(t)

 =


e−t(c3t+ c2 + c3)

((t+ 1) c3 + c2) e−t + c1e−2t

c1e−2t + c3e−t


3.3.3 Maple step by step solution

Let’s solve
[x′

1(t) = −x2(t) + x3(t) , x′
2(t) = 2x1(t)− 3x2(t) + x3(t) , x′

3(t) = x1(t)− x2(t)− x3(t)]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


0 −1 1
2 −3 1
1 −1 −1

 · →x__(t) +


0
0
0


• System to solve

→x__
′
(t) =


0 −1 1
2 −3 1
1 −1 −1

 · →x__(t)

• Define the coefficient matrix

A =


0 −1 1
2 −3 1
1 −1 −1


• Rewrite the system as

→x__
′
(t) = A · →x__(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−2,


0
1
1


 ,

−1,


1
1
0


 ,

−1,


0
0
0





• Consider eigenpair−2,


0
1
1




• Solution to homogeneous system from eigenpair

→x__1 = e−2t ·


0
1
1


• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1,


1
1
0




• First solution from eigenvalue − 1

→x__2(t) = e−t ·


1
1
0


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1 is the eigenvalue, and →
v is the eigenvector

→x__3(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →x__3(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation
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λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →x__3(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1


0 −1 1
2 −3 1
1 −1 −1

− (−1) ·


1 0 0
0 1 0
0 0 1


 · →p =


1
1
0


• Choice of →

p

→
p =


1
0
0


• Second solution from eigenvalue − 1

→x__3(t) = e−t ·

t ·


1
1
0

+


1
0
0




• General solution to the system of ODEs
→x__ = c1

→x__1 + c2
→x__2(t) + c3

→x__3(t)
• Substitute solutions into the general solution

→x__ = c1e−2t ·


0
1
1

+ c2e−t ·


1
1
0

+ c3e−t ·

t ·


1
1
0

+


1
0
0




• Substitute in vector of dependent variables
x1(t)
x2(t)
x3(t)

 =


e−t(c3t+ c2 + c3)

(c3t+ c2) e−t + c1e−2t

c1e−2t


• Solution to the system of ODEs
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{x1(t) = e−t(c3t+ c2 + c3) , x2(t) = (c3t+ c2) e−t + c1e−2t, x3(t) = c1e−2t}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 54� �
dsolve([diff(x__1(t),t)=0*x__1(t)-1*x__2(t)+1*x__3(t),diff(x__2(t),t)=2*x__1(t)-3*x__2(t)+1*x__3(t),diff(x__3(t),t)=1*x__1(t)-1*x__2(t)-1*x__3(t)],singsol=all)� �

x1(t) = e−t(c3t+ c2)
x2(t) = c2e−t + c3e−tt+ c1e−2t

x3(t) = c3e−t + c1e−2t

3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 99� �
DSolve[{x1'[t]==0*x1[t]-1*x2[t]+1*x3[t],x2'[t]==2*x1[t]-3*x2[t]+1*x3[t],x3'[t]==1*x1[t]-1*x2[t]-1*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e−t(c1(t+ 1) + (c3 − c2)t)
x2(t) → e−2t(c1(et(t+ 1)− 1

)
− c2e

tt+ c3e
tt+ c2

)
x3(t) → e−2t(c1(et − 1

)
− c2e

t + c3e
t + c2

)
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3.4 problem 2
3.4.1 Solution using Matrix exponential method . . . . . . . . . . . . 260
3.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 261

Internal problem ID [1847]
Internal file name [OUTPUT/1848_Sunday_June_05_2022_02_35_11_AM_19255775/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.10, Systems of differential equations. Equal roots. Page 352
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + x2(t) + x3(t)

x′
2(t) = 2x1(t) + x2(t)− x3(t)

x′
3(t) = −3x1(t) + 2x2(t) + 4x3(t)

3.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 1 1
2 1 −1
−3 2 4




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e2t(1− t) e2tt e2tt

− e2t(t−4)t
2 e2t

(
1− t+ 1

2t
2) e2tt(t−2)

2
e2tt(t−6)

2 − e2t(t−4)t
2 e2t

(
1− 1

2t
2 + 2t

)
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e2t(1− t) e2tt e2tt

− e2t(t−4)t
2 e2t

(
1− t+ 1

2t
2) e2tt(t−2)

2
e2tt(t−6)

2 − e2t(t−4)t
2 e2t

(
1− 1

2t
2 + 2t

)



c1

c2

c3



=


e2t(1− t) c1 + e2ttc2 + e2ttc3

− e2t(t−4)tc1
2 + e2t

(
1− t+ 1

2t
2) c2 + e2tt(t−2)c3

2
e2tt(t−6)c1

2 − e2t(t−4)tc2
2 + e2t

(
1− 1

2t
2 + 2t

)
c3



=


−((c1 − c2 − c3) t− c1) e2t

−
(
(c1−c2−c3)t2+(−4c1+2c2+2c3)t−2c2

)
e2t

2(
(c1−c2−c3)t2+(−6c1+4c2+4c3)t+2c3

)
e2t

2


Since no forcing function is given, then the final solution is ~xh(t) above.

3.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 1 1
2 1 −1
−3 2 4




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 1 1
2 1 −1
−3 2 4

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




1− λ 1 1
2 1− λ −1
−3 2 4− λ


 = 0

Which gives the characteristic equation

λ3 − 6λ2 + 12λ− 8 = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 1 1
2 1 −1
−3 2 4

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 1 1
2 −1 −1
−3 2 2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 1 1 0
2 −1 −1 0
−3 2 2 0



R2 = R2 + 2R1 =⇒


−1 1 1 0
0 1 1 0
−3 2 2 0
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R3 = R3 − 3R1 =⇒


−1 1 1 0
0 1 1 0
0 −1 −1 0



R3 = R3 +R2 =⇒


−1 1 1 0
0 1 1 0
0 0 0 0


Therefore the system in Echelon form is

−1 1 1
0 1 1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = −t}

Hence the solution is 
0
−t

t

 =


0
−t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
−t

t

 = t


0
−1
1


Let t = 1 the eigenvector becomes

0
−t

t

 =


0
−1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 3 1 Yes


0
−1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 15: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence


1 1 1
2 1 −1
−3 2 4

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
−1
1




−1 1 1
2 −1 −1
−3 2 2




v1

v2

v3

 =


0
−1
1


Solving for ~v2 gives

~v2 =


−1
−2
1


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


1 1 1
2 1 −1
−3 2 4

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−1
−2
1




−1 1 1
2 −1 −1
−3 2 2




v1

v2

v3

 =


−1
−2
1


Solving for ~v3 gives

~v3 =


−3
−5
1


We have found three generalized eigenvectors for eigenvalue 2. Therefore the three basis

266



solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


0
−1
1

 e2t

=


0

−e2t

e2t


And

~x2(t) = eλt(~v1t+ ~v2)

= e2t




0
−1
1

 t+


−1
−2
1




=


−e2t

−e2t(2 + t)
e2t(t+ 1)


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




0
−1
1

 t2

2 +


−1
−2
1

 t+


−3
−5
1


 e2t

=


−e2t(t+ 3)

− e2t
(
t2+4t+10

)
2

e2t
(
t2+2t+2

)
2


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
x1(t)
x2(t)
x3(t)

 = c1


0

−e2t

e2t

+ c2


−e2t

e2t(−t− 2)
e2t(t+ 1)

+ c3


e2t(−t− 3)

e2t
(
−1

2t
2 − 2t− 5

)
e2t

(
t+ 1

2t
2 + 1

)


Which becomes 
x1(t)
x2(t)
x3(t)

 =


−((t+ 3) c3 + c2) e2t

−
((
t2+4t+10

)
c3+2c2t+2c1+4c2

)
e2t

2((
t2+2t+2

)
c3+2c2t+2c1+2c2

)
e2t

2


3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 73� �
dsolve([diff(x__1(t),t)=1*x__1(t)+1*x__2(t)+1*x__3(t),diff(x__2(t),t)=2*x__1(t)+1*x__2(t)-1*x__3(t),diff(x__3(t),t)=-3*x__1(t)+2*x__2(t)+4*x__3(t)],singsol=all)� �

x1(t) = e2t(c3t+ c2)

x2(t) =
(c3t2 + 2c2t− 2c3t+ 2c1) e2t

2
x3(t) = −e2t(c3t2 + 2c2t− 4c3t+ 2c1 − 2c2 − 2c3)

2

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 110� �
DSolve[{x1'[t]==1*x1[t]+1*x2[t]+1*x3[t],x2'[t]==2*x1[t]+1*x2[t]-1*x3[t],x3'[t]==-3*x1[t]+2*x2[t]+4*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e2t((c2 + c3)t− c1(t− 1))

x2(t) → 1
2e

2t(c2(t2 − 2t+ 2
)
− (c1(t− 4)t) + c3(t− 2)t

)
x3(t) → 1

2e
2t((c1 − c2 − c3)t2 − 6c1t+ 4(c2 + c3)t+ 2c3

)
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3.5 problem 3
3.5.1 Solution using Matrix exponential method . . . . . . . . . . . . 269
3.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 270

Internal problem ID [1848]
Internal file name [OUTPUT/1849_Sunday_June_05_2022_02_35_14_AM_70188850/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.10, Systems of differential equations. Equal roots. Page 352
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −x1(t)− x2(t)

x′
2(t) = −x2(t)

x′
3(t) = −2x3(t)

3.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−1 −1 0
0 −1 0
0 0 −2




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e−t −t e−t 0
0 e−t 0
0 0 e−2t
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Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−t −t e−t 0
0 e−t 0
0 0 e−2t




c1

c2

c3



=


e−tc1 − t e−tc2

e−tc2

e−2tc3



=


e−t(−c2t+ c1)

e−tc2

e−2tc3


Since no forcing function is given, then the final solution is ~xh(t) above.

3.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−1 −1 0
0 −1 0
0 0 −2




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−1 −1 0
0 −1 0
0 0 −2

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−1− λ −1 0
0 −1− λ 0
0 0 −2− λ


 = 0

Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

(−1− λ)(−1− λ)(−2− λ) = 0

The roots of the above are the eigenvalues.

λ1 = −2
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 −1 0
0 −1 0
0 0 −2

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 −1 0
0 1 0
0 0 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 −1 0 0
0 1 0 0
0 0 0 0
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Therefore the system in Echelon form is
1 −1 0
0 1 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = 0}

Hence the solution is 
0
0
t

 =


0
0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
0
t

 = t


0
0
1


Let t = 1 the eigenvector becomes 

0
0
t

 =


0
0
1


Considering the eigenvalue λ2 = −1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 −1 0
0 −1 0
0 0 −2

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 −1 0
0 0 0
0 0 −1




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 −1 0 0
0 0 0 0
0 0 −1 0


Since the current pivot A(2, 3) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

0 −1 0 0
0 0 −1 0
0 0 0 0


Therefore the system in Echelon form is

0 −1 0
0 0 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v1} and the leading variables are {v2, v3}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0}

Hence the solution is 
t

0
0

 =


t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0

 = t


1
0
0


Let t = 1 the eigenvector becomes 

t

0
0

 =


1
0
0
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The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 1 1 No


0
0
1



−1 2 1 Yes


1
0
0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −2 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−2t

=


0
0
1

 e−2t

eigenvalue −1 is real and repated eigenvalue of multiplicity 2.There are two possible
cases that can happen. This is illustrated in this diagram

274



λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 16: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


−1 −1 0
0 −1 0
0 0 −2

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
0
0




0 −1 0
0 0 0
0 0 −1




v1

v2

v3

 =


1
0
0
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Solving for ~v2 gives

~v2 =


1
−1
0


We have found two generalized eigenvectors for eigenvalue −1. Therefore the two basis
solution associated with this eigenvalue are

~x2(t) = ~v1e
λt

=


1
0
0

 e−t

=


e−t

0
0


And

~x3(t) = (~v1t+ ~v2) eλt

=




1
0
0

 t+


1
−1
0


 e−t

=


e−t(t+ 1)

−e−t

0


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


0
0

e−2t

+ c2


e−t

0
0

+ c3


e−t(t+ 1)

−e−t

0
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Which becomes 
x1(t)
x2(t)
x3(t)

 =


e−t(c3t+ c2 + c3)

−c3e−t

c1e−2t


3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 34� �
dsolve([diff(x__1(t),t)=-1*x__1(t)-1*x__2(t)+0*x__3(t),diff(x__2(t),t)=0*x__1(t)-1*x__2(t)+0*x__3(t),diff(x__3(t),t)=0*x__1(t)-0*x__2(t)-2*x__3(t)],singsol=all)� �

x1(t) = (−c2t+ c1) e−t

x2(t) = c2e−t

x3(t) = c3e−2t

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 74� �
DSolve[{x1'[t]==-1*x1[t]-1*x2[t]+0*x3[t],x2'[t]==0*x1[t]-1*x2[t]+0*x3[t],x3'[t]==0*x1[t]-0*x2[t]-2*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e−t(c1 − c2t)
x2(t) → c2e

−t

x3(t) → c3e
−2t

x1(t) → e−t(c1 − c2t)
x2(t) → c2e

−t

x3(t) → 0
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3.6 problem 4
3.6.1 Solution using Matrix exponential method . . . . . . . . . . . . 278
3.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 279

Internal problem ID [1849]
Internal file name [OUTPUT/1850_Sunday_June_05_2022_02_35_15_AM_735843/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.10, Systems of differential equations. Equal roots. Page 352
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 2x1(t)− x3(t)

x′
2(t) = 2x2(t) + x3(t)

x′
3(t) = 2x3(t)

x′
4(t) = −x3(t) + 2x4(t)

3.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

x′
4(t)

 =


2 0 −1 0
0 2 1 0
0 0 2 0
0 0 −1 2




x1(t)
x2(t)
x3(t)
x4(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


e2t 0 −e2tt 0
0 e2t e2tt 0
0 0 e2t 0
0 0 −e2tt e2t


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e2t 0 −e2tt 0
0 e2t e2tt 0
0 0 e2t 0
0 0 −e2tt e2t




c1

c2

c3

c4



=


e2tc1 − e2ttc3
e2tc2 + e2ttc3

e2tc3
−e2ttc3 + e2tc4



=


e2t(−c3t+ c1)
e2t(c3t+ c2)

e2tc3
e2t(−c3t+ c4)


Since no forcing function is given, then the final solution is ~xh(t) above.

3.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

x′
4(t)

 =


2 0 −1 0
0 2 1 0
0 0 2 0
0 0 −1 2




x1(t)
x2(t)
x3(t)
x4(t)
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




2 0 −1 0
0 2 1 0
0 0 2 0
0 0 −1 2

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

Therefore

det




2− λ 0 −1 0
0 2− λ 1 0
0 0 2− λ 0
0 0 −1 2− λ



 = 0

Which gives the characteristic equation

λ4 − 8λ3 + 24λ2 − 32λ+ 16 = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

280



We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


2 0 −1 0
0 2 1 0
0 0 2 0
0 0 −1 2

− (2)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




0 0 −1 0
0 0 1 0
0 0 0 0
0 0 −1 0




v1

v2

v3

v4

 =


0
0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 0 −1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 −1 0 0



R2 = R2 +R1 =⇒


0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0



R4 = R4 −R1 =⇒


0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Therefore the system in Echelon form is

0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0
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The free variables are {v1, v2, v4} and the leading variables are {v3}. Let v1 = t. Let
v2 = s. Let v4 = r. Now we start back substitution. Solving the above equation for the
leading variables in terms of free variables gives equation {v3 = 0}

Hence the solution is 
t

s

0
r

 =


t

s

0
r


Since there are three free Variable, we have found three eigenvectors associated with
this eigenvalue. The above can be written as

t

s

0
r

 =


t

0
0
0

+


0
s

0
0



= t


1
0
0
0

+ s


0
1
0
0

+ r


0
0
0
1


By letting t = 1 and s = 1 and r = 1 then the above becomes

t

s

0
r

 =


1
0
0
0

+


0
1
0
0

+


0
0
0
1


Hence the three eigenvectors associated with this eigenvalue are


1
0
0
0

 ,


0
1
0
0

 ,


0
0
0
1




The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 4 3 Yes


0 0 1
0 1 0
0 0 0
1 0 0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
4.There are four possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v⃗1

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 4

case 1

case 2

x⃗1 = eλtv⃗1

x⃗2 = eλtv⃗2

x⃗3 = eλtv⃗3

x⃗4 = eλtv⃗4

The solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

The Four possible cases for repeated eigenvalue of multiplicity 4

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

A− λI

zero vector
v⃗1 A− λI

v⃗2

v⃗4
rank 2 vector

In this case, we need to solve for v⃗4 from linear combination of v⃗1, v⃗2, v⃗3.

(A− λ)v⃗4 = a1v⃗1 + a2v⃗2 + a3v⃗3

Where ai are any scalars not all zero.

u⃗ = a1v⃗1 + a2v⃗2 + a3v⃗3

A− λI

x⃗1 = eλtv⃗1

x⃗2 = eλtv⃗2

x⃗3 = eλtv⃗3

x⃗4 = eλt (u⃗ t+ v⃗4)

Where u⃗ = a1v⃗1 + a2v⃗2 + a3v⃗3 and ai are
constants to find that are not all zero.

(A− λI) v⃗4 = u⃗

Hence the solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

✓

normal
eigenvector

v⃗2 v⃗4v⃗3

λ
eigenvectors

Multiplicity 4

v⃗1

✓ ✓

normal
eigenvector

normal
eigenvector

✓

normal
eigenvector

?

Generalized
eigenvector

v⃗2 v⃗4v⃗3

v⃗3
A− λI

(A− λI)2

case 3

Incomplete eigenvalue.
defect is 2

A− λI

zero vector
v⃗1 A− λI

v⃗2

v⃗3
rank 2

First solve for v⃗3, v⃗4 from

(A− λI)v⃗3 = v⃗1

(A− λI)v⃗4 = v⃗4

x⃗1 = eλtv⃗1

x⃗2 = eλtv⃗2

x⃗3 = eλt (v⃗1 t+ v⃗3)

x⃗4 = eλt (v⃗2 t+ v⃗4)

Hence the solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

λ
eigenvectors

Multiplicity 4

v⃗1

✓ ✓

normal
eigenvector

normal
eigenvector

? ?

Generalized
eigenvector

v⃗2 v⃗4v⃗3

Generalized
eigenvector

v⃗4
rank 2 A− λI

case 4

Incomplete eigenvalue.
defect is 3

A− λI

zero vector
v⃗1

v⃗2
rank 2 A− λI

x⃗1 = eλtv⃗1

x⃗2 = eλt (v⃗1 t+ v⃗2)

x⃗3 = eλt
(
v⃗1

t2

2
+ v⃗2 t+ v⃗3

)

x⃗4 = eλt
(
v⃗1

t3

6
+ v⃗2

t2

2
+ v⃗3 t+ v⃗4

)
Where v⃗2 is found by solving (A− λI)v⃗2 =
v⃗1. And v⃗3 is found by solving (A−λI)v⃗3 =
v⃗2. And v⃗4 is found by solving (A−λI)v⃗4 =
v⃗3.
Hence the solution is

x⃗ = c1x⃗1 + c2x⃗2 + c3x⃗3 + c4x⃗4

λ
eigenvectors

Multiplicity 4

v⃗1

✓ ?

normal
eigenvector

? ?

Generalized
eigenvector

v⃗2 v⃗4v⃗3

Generalized
eigenvector

v⃗3
rank 3 A− λI

Generalized
eigenvector

rank 1
v⃗4

rank 3 A− λI

A− λI

Figure 17: Possible case for repeated λ of multiplicity 4

This eigenvalue has algebraic multiplicity of 4, and geometric multiplicity 3, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to find rank-2 eigenvector ~v4. This eigenvector must therefore satisfy (A− λI)2 ~v4 = ~0.
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But

(A− λI)2 =




2 0 −1 0
0 2 1 0
0 0 2 0
0 0 −1 2

− 2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





2

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Therefore ~v4 could be any eigenvector vector we want (but not the zero vector). Let

~v4 =


η1

η2

η3

η4


To determine the actual ~v4 we need now to enforce the condition that ~v4 satisfies

(A− λI)~v4 = ~u (1)

Where ~u is linear combination of ~v1, ~v2, ~v3. Hence

~u = a1~v1 + a2~v2 + a3~v3
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Where a1, a2, a3 are arbitrary constants (not all zero). Eq. (1) becomes

(A− λI)


η1

η2

η3

η4

 = a1


0
0
0
1

+ a2


0
1
0
0

+ a3


1
0
0
0




0 0 −1 0
0 0 1 0
0 0 0 0
0 0 −1 0




η1

η2

η3

η4

 = a1


0
0
0
1

+ a2


0
1
0
0

+ a3


1
0
0
0




−η3

η3

0
−η3

 =


a3

a2

0
a1


Expanding the above gives the following equations equations

−η3 = a3

η3 = a2

−η3 = a1

solving for a1, a2, a3 from the above gives

−η3 = a3

η3 = a2

−η3 = a1

Since a1, a2, a3 are not all zero, then we just need to determine ηi values, not all zero,
which satisfy the above equations for a1, a2, a3 not all zero. By inspection we see that
the following values satisfy this condition

[η3 = 1]

Hence we found the missing generalized eigenvector

~v4 =


0
0
1
0
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Which implies that

a1 = −1
a2 = 1
a3 = −1

Therefore

~u = a1~v1 + a2~v2 + a3~v3

= −1


0
0
0
1

+ (1)


0
1
0
0

+ (−1)


1
0
0
0



=


−1
1
0
−1


Therefore the missing generalized eigenvector is now found. We have found four gener-
alized eigenvectors for eigenvalue 2. Therefore the four basis solutions associated with
this eigenvalue are

~x1(t) = ~v1e
λt

=


0
0
0
1

 e2t

=


0
0
0
e2t



287



And

~x2(t) = ~v2e
λt

=


0
1
0
0

 e2t

=


0
e2t

0
0


And

~x3(t) = ~v3e
λt

=


1
0
0
0

 e2t

=


e2t

0
0
0


And

~x4(t) = (~ut+ ~v4) eλt

=




−1
1
0
−1

 t+


0
0
1
0



 e2t

Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t) + c4~x4(t)
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Which is written as
x1(t)
x2(t)
x3(t)
x4(t)

 = c1


0
0
0
e2t

+ c2


0
e2t

0
0

+ c3


e2t

0
0
0

+ c4


−e2tt
e2tt
e2t

−e2tt


Which becomes 

x1(t)
x2(t)
x3(t)
x4(t)

 =


e2t(−tc4 + c3)
e2t(tc4 + c2)

c4e2t

e2t(−tc4 + c1)


3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 52� �
dsolve([diff(x__1(t),t)=2*x__1(t)+0*x__2(t)-1*x__3(t)+0*x__4(t),diff(x__2(t),t)=0*x__1(t)+2*x__2(t)+1*x__3(t)+0*x__4(t),diff(x__3(t),t)=0*x__1(t)-0*x__2(t)+2*x__3(t)-0*x__4(t),diff(x__4(t),t)=0*x__1(t)-0*x__2(t)-1*x__3(t)+2*x__4(t)],singsol=all)� �

x1(t) = (−c4t+ c3) e2t

x2(t) = (c4t+ c2) e2t

x3(t) = c4e2t

x4(t) = (−c4t+ c1) e2t

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 63� �
DSolve[{x1'[t]==2*x1[t]+0*x2[t]-1*x3[t]+0*x4[t],x2'[t]==0*x1[t]+2*x2[t]+1*x3[t]+0*x4[t],x3'[t]==0*x1[t]-0*x2[t]+2*x3[t]-0*x4[t],x4'[t]==0*x1[t]-0*x2[t]-1*x3[t]+2*x4[t]},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e2t(c1 − c3t)
x2(t) → e2t(c3t+ c2)
x3(t) → c3e

2t

x4(t) → e2t(c4 − c3t)
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3.7 problem 5
3.7.1 Solution using Matrix exponential method . . . . . . . . . . . . 290
3.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 291

Internal problem ID [1850]
Internal file name [OUTPUT/1851_Sunday_June_05_2022_02_35_18_AM_77697202/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.10, Systems of differential equations. Equal roots. Page 352
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −x1(t) + x2(t) + 2x3(t)

x′
2(t) = −x1(t) + x2(t) + x3(t)

x′
3(t) = −2x1(t) + x2(t) + 3x3(t)

With initial conditions
[x1(0) = 1, x2(0) = 0, x3(0) = 1]

3.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−1 1 2
−1 1 1
−2 1 3




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


et
(
1− 1

2t
2 − 2t

)
t et ett(t+4)

2

−t et et t et

− ett(t+4)
2 t et et

(
1 + 1

2t
2 + 2t

)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


et
(
1− 1

2t
2 − 2t

)
t et ett(t+4)

2

−t et et t et

− ett(t+4)
2 t et et

(
1 + 1

2t
2 + 2t

)



1
0
1



=


et
(
1− 1

2t
2 − 2t

)
+ ett(t+4)

2

0

− ett(t+4)
2 + et

(
1 + 1

2t
2 + 2t

)


=


et

0
et


Since no forcing function is given, then the final solution is ~xh(t) above.

3.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−1 1 2
−1 1 1
−2 1 3




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−1 1 2
−1 1 1
−2 1 3

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−1− λ 1 2
−1 1− λ 1
−2 1 3− λ


 = 0

Which gives the characteristic equation

λ3 − 3λ2 + 3λ− 1 = 0

The roots of the above are the eigenvalues.

λ1 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 1 2
−1 1 1
−2 1 3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 1 2
−1 0 1
−2 1 2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 1 2 0
−1 0 1 0
−2 1 2 0



R2 = R2 −
R1

2 =⇒


−2 1 2 0
0 −1

2 0 0

−2 1 2 0
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R3 = R3 −R1 =⇒


−2 1 2 0
0 −1

2 0 0

0 0 0 0


Therefore the system in Echelon form is

−2 1 2
0 −1

2 0

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = 0}

Hence the solution is 
t

0
t

 =


t

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
t

 = t


1
0
1


Let t = 1 the eigenvector becomes 

t

0
t

 =


1
0
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 3 1 Yes


1
0
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 18: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence


−1 1 2
−1 1 1
−2 1 3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
0
1




−2 1 2
−1 0 1
−2 1 2




v1

v2

v3

 =


1
0
1


Solving for ~v2 gives

~v2 =


1
1
1


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


−1 1 2
−1 1 1
−2 1 3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
1
1




−2 1 2
−1 0 1
−2 1 2




v1

v2

v3

 =


1
1
1


Solving for ~v3 gives

~v3 =


0
−1
1


We have found three generalized eigenvectors for eigenvalue 1. Therefore the three basis
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solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


1
0
1

 et

=


et

0
et


And

~x2(t) = eλt(~v1t+ ~v2)

= et




1
0
1

 t+


1
1
1




=


et(t+ 1)

et

et(t+ 1)


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




1
0
1

 t2

2 +


1
1
1

 t+


0
−1
1


 et

=


ett(2+t)

2

et(t− 1)
et
(
t2+2t+2

)
2


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
x1(t)
x2(t)
x3(t)

 = c1


et

0
et

+ c2


et(t+ 1)

et

et(t+ 1)

+ c3


et
(1
2t

2 + t
)

et(t− 1)
et
(
t+ 1

2t
2 + 1

)


Which becomes 
x1(t)
x2(t)
x3(t)

 =


(
c3t2+(2c2+2c3)t+2c1+2c2

)
et

2

((t− 1) c3 + c2) et((
t2+2t+2

)
c3+2c2t+2c1+2c2

)
et

2


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = 1
x2(0) = 0
x3(0) = 1

 (1)

Substituting initial conditions into the above solution at t = 0 gives
1
0
1

 =


c1 + c2

−c3 + c2

c3 + c1 + c2


Solving for the constants of integrations gives

c1 = 1
c2 = 0
c3 = 0


Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)

 =


et

0
et
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The following are plots of each solution against another.

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 16� �
dsolve([diff(x__1(t),t) = -x__1(t)+x__2(t)+2*x__3(t), diff(x__2(t),t) = -x__1(t)+x__2(t)+x__3(t), diff(x__3(t),t) = -2*x__1(t)+x__2(t)+3*x__3(t), x__1(0) = 1, x__2(0) = 0, x__3(0) = 1], singsol=all)� �

x1(t) = et
x2(t) = 0
x3(t) = et
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 18� �
DSolve[{x1'[t]==-1*x1[t]+1*x2[t]+2*x3[t],x2'[t]==-1*x1[t]+1*x2[t]+1*x3[t],x3'[t]==-2*x1[t]+1*x2[t]+3*x3[t]},{x1[0]==1,x2[0]==0,x3[0]==1},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → et

x2(t) → 0
x3(t) → et
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3.8 problem 6
3.8.1 Solution using Matrix exponential method . . . . . . . . . . . . 302
3.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 303

Internal problem ID [1851]
Internal file name [OUTPUT/1852_Sunday_June_05_2022_02_35_20_AM_64036813/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.10, Systems of differential equations. Equal roots. Page 352
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −4x1(t)− 4x2(t)

x′
2(t) = 10x1(t) + 9x2(t) + x3(t)

x′
3(t) = −4x1(t)− 3x2(t) + x3(t)

With initial conditions

[x1(0) = 2, x2(0) = 1, x3(0) = −1]

3.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−4 −4 0
10 9 1
−4 −3 1




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e2t(−2t2 − 6t+ 1) −2 e2tt(2 + t) −2 e2tt2

e2tt(3t+ 10) e2t(3t2 + 7t+ 1) e2t(3t2 + t)
−e2tt(t+ 4) −e2tt(t+ 3) e2t(−t2 − t+ 1)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


e2t(−2t2 − 6t+ 1) −2 e2tt(2 + t) −2 e2tt2

e2tt(3t+ 10) e2t(3t2 + 7t+ 1) e2t(3t2 + t)
−e2tt(t+ 4) −e2tt(t+ 3) e2t(−t2 − t+ 1)




2
1
−1



=


2 e2t(−2t2 − 6t+ 1)− 2 e2tt(2 + t) + 2 e2tt2

2 e2tt(3t+ 10) + e2t(3t2 + 7t+ 1)− e2t(3t2 + t)
−2 e2tt(t+ 4)− e2tt(t+ 3)− e2t(−t2 − t+ 1)



=


(−4t2 − 16t+ 2) e2t

e2t(6t2 + 26t+ 1)
−2

(
t2 + 5t+ 1

2

)
e2t


Since no forcing function is given, then the final solution is ~xh(t) above.

3.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−4 −4 0
10 9 1
−4 −3 1




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−4 −4 0
10 9 1
−4 −3 1

− λ


1 0 0
0 1 0
0 0 1


 = 0
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Therefore

det




−4− λ −4 0
10 9− λ 1
−4 −3 1− λ


 = 0

Which gives the characteristic equation

λ3 − 6λ2 + 12λ− 8 = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−4 −4 0
10 9 1
−4 −3 1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−6 −4 0
10 7 1
−4 −3 −1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−6 −4 0 0
10 7 1 0
−4 −3 −1 0



R2 = R2 +
5R1

3 =⇒


−6 −4 0 0
0 1

3 1 0

−4 −3 −1 0
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R3 = R3 −
2R1

3 =⇒


−6 −4 0 0
0 1

3 1 0

0 −1
3 −1 0



R3 = R3 +R2 =⇒


−6 −4 0 0
0 1

3 1 0

0 0 0 0


Therefore the system in Echelon form is

−6 −4 0
0 1

3 1

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 2t, v2 = −3t}

Hence the solution is 
2t
−3t
t

 =


2t
−3t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

2t
−3t
t

 = t


2
−3
1


Let t = 1 the eigenvector becomes

2t
−3t
t

 =


2
−3
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 3 1 Yes


2
−3
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 19: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence


−4 −4 0
10 9 1
−4 −3 1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


2
−3
1




−6 −4 0
10 7 1
−4 −3 −1




v1

v2

v3

 =


2
−3
1


Solving for ~v2 gives

~v2 =


1
−2
1


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


−4 −4 0
10 9 1
−4 −3 1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
−2
1




−6 −4 0
10 7 1
−4 −3 −1




v1

v2

v3

 =


1
−2
1


Solving for ~v3 gives

~v3 =


5
2

−4
1


We have found three generalized eigenvectors for eigenvalue 2. Therefore the three basis
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solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


2
−3
1

 e2t

=


2 e2t

−3 e2t

e2t


And

~x2(t) = eλt(~v1t+ ~v2)

= e2t




2
−3
1

 t+


1
−2
1




=


e2t(1 + 2t)
(−3t− 2) e2t

e2t(t+ 1)


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




2
−3
1

 t2

2 +


1
−2
1

 t+


5
2

−4
1


 e2t

=


e2t
(
2t2+2t+5

)
2

− e2t
(
3t2+4t+8

)
2

e2t
(
t2+2t+2

)
2


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

309



Which is written as
x1(t)
x2(t)
x3(t)

 = c1


2 e2t

−3 e2t

e2t

+ c2


e2t(1 + 2t)
(−3t− 2) e2t

e2t(t+ 1)

+ c3


e2t

(
t2 + t+ 5

2

)
e2t

(
−3

2t
2 − 2t− 4

)
e2t

(
t+ 1

2t
2 + 1

)


Which becomes
x1(t)
x2(t)
x3(t)

 =


((
t2 + t+ 5

2

)
c3 + 2c2t+ 2c1 + c2

)
e2t

e2t
(
−3c1 − 3c2t− 2c2 − 3

2c3t
2 − 2c3t− 4c3

)
((
t2+2t+2

)
c3+2c2t+2c1+2c2

)
e2t

2


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = 2
x2(0) = 1
x3(0) = −1

 (1)

Substituting initial conditions into the above solution at t = 0 gives
2
1
−1

 =


5c3
2 + 2c1 + c2

−3c1 − 2c2 − 4c3
c3 + c1 + c2


Solving for the constants of integrations gives

c1 = 9
c2 = −6
c3 = −4


Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)

 =


(−4t2 − 16t+ 2) e2t

e2t(6t2 + 26t+ 1)(
−4t2−20t−2

)
e2t

2
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The following are plots of each solution against another.

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 58� �
dsolve([diff(x__1(t),t) = -4*x__1(t)-4*x__2(t), diff(x__2(t),t) = 10*x__1(t)+9*x__2(t)+x__3(t), diff(x__3(t),t) = -4*x__1(t)-3*x__2(t)+x__3(t), x__1(0) = 2, x__2(0) = 1, x__3(0) = -1], singsol=all)� �

x1(t) = e2t
(
−4t2 − 16t+ 2

)
x2(t) = −e2t(−24t2 − 104t− 4)

4
x3(t) =

e2t(−8t2 − 40t− 4)
4
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3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 61� �
DSolve[{x1'[t]==-4*x1[t]-4*x2[t]+0*x3[t],x2'[t]==10*x1[t]+9*x2[t]+1*x3[t],x3'[t]==-4*x1[t]-3*x2[t]+1*x3[t]},{x1[0]==2,x2[0]==1,x3[0]==-1},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → −2e2t
(
2t2 + 8t− 1

)
x2(t) → e2t

(
6t2 + 26t+ 1

)
x3(t) → −e2t

(
2t2 + 10t+ 1

)
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3.9 problem 7
3.9.1 Solution using Matrix exponential method . . . . . . . . . . . . 314
3.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 315

Internal problem ID [1852]
Internal file name [OUTPUT/1853_Sunday_June_05_2022_02_35_22_AM_67541300/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.10, Systems of differential equations. Equal roots. Page 352
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + 2x2(t)− 3x3(t)

x′
2(t) = x1(t) + x2(t) + 2x3(t)

x′
3(t) = x1(t)− x2(t) + 4x3(t)

With initial conditions
[x1(0) = 1, x2(0) = 0, x3(0) = 0]

3.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 2 −3
1 1 2
1 −1 4




x1(t)
x2(t)
x3(t)


For the above matrix A, the matrix exponential can be found to be

eAt =


e2t(1− t) − e2t(t−4)t

2
e2tt(t−6)

2

e2tt e2t
(
1− t+ 1

2t
2) − e2t(t−4)t

2

e2tt e2tt(t−2)
2 e2t

(
1− 1

2t
2 + 2t

)
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Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


e2t(1− t) − e2t(t−4)t

2
e2tt(t−6)

2

e2tt e2t
(
1− t+ 1

2t
2) − e2t(t−4)t

2

e2tt e2tt(t−2)
2 e2t

(
1− 1

2t
2 + 2t

)



1
0
0



=


e2t(1− t)

e2tt
e2tt


Since no forcing function is given, then the final solution is ~xh(t) above.

3.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 2 −3
1 1 2
1 −1 4




x1(t)
x2(t)
x3(t)


The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 2 −3
1 1 2
1 −1 4

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1− λ 2 −3
1 1− λ 2
1 −1 4− λ


 = 0
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Which gives the characteristic equation

λ3 − 6λ2 + 12λ− 8 = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 2 −3
1 1 2
1 −1 4

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 2 −3
1 −1 2
1 −1 2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 2 −3 0
1 −1 2 0
1 −1 2 0



R2 = R2 +R1 =⇒


−1 2 −3 0
0 1 −1 0
1 −1 2 0



R3 = R3 +R1 =⇒


−1 2 −3 0
0 1 −1 0
0 1 −1 0
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R3 = R3 −R2 =⇒


−1 2 −3 0
0 1 −1 0
0 0 0 0


Therefore the system in Echelon form is

−1 2 −3
0 1 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = t}

Hence the solution is 
−t

t

t

 =


−t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

t

t

 = t


−1
1
1


Let t = 1 the eigenvector becomes

−t

t

t

 =


−1
1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 3 1 Yes


−1
1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 20: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence


1 2 −3
1 1 2
1 −1 4

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−1
1
1




−1 2 −3
1 −1 2
1 −1 2




v1

v2

v3

 =


−1
1
1


Solving for ~v2 gives

~v2 =


0
1
1


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


1 2 −3
1 1 2
1 −1 4

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
1
1




−1 2 −3
1 −1 2
1 −1 2




v1

v2

v3

 =


0
1
1


Solving for ~v3 gives

~v3 =


1
2
1


We have found three generalized eigenvectors for eigenvalue 2. Therefore the three basis
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solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


−1
1
1

 e2t

=


−e2t

e2t

e2t


And

~x2(t) = eλt(~v1t+ ~v2)

= e2t




−1
1
1

 t+


0
1
1




=


−e2tt

e2t(t+ 1)
e2t(t+ 1)


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




−1
1
1

 t2

2 +


0
1
1

 t+


1
2
1


 e2t

=


− e2t

(
t2−2

)
2

e2t
(
t2+2t+4

)
2

e2t
(
t2+2t+2

)
2


Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
x1(t)
x2(t)
x3(t)

 = c1


−e2t

e2t

e2t

+ c2


−e2tt

e2t(t+ 1)
e2t(t+ 1)

+ c3


e2t

(
1− t2

2

)
e2t

(1
2t

2 + t+ 2
)

e2t
(
t+ 1

2t
2 + 1

)


Which becomes 
x1(t)
x2(t)
x3(t)

 =


e2t

(
−c1 − tc2 + c3 − 1

2c3t
2)

((
t2+2t+4

)
c3+2tc2+2c1+2c2

)
e2t

2((
t2+2t+2

)
c3+2tc2+2c1+2c2

)
e2t

2


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = 1
x2(0) = 0
x3(0) = 0

 (1)

Substituting initial conditions into the above solution at t = 0 gives
1
0
0

 =


−c1 + c3

2c3 + c1 + c2

c3 + c1 + c2


Solving for the constants of integrations gives

c1 = −1
c2 = 1
c3 = 0


Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)

 =


e2t(1− t)

e2tt
e2tt
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The following are plots of each solution against another.

The following are plots of each solution.
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve([diff(x__1(t),t) = x__1(t)+2*x__2(t)-3*x__3(t), diff(x__2(t),t) = x__1(t)+x__2(t)+2*x__3(t), diff(x__3(t),t) = x__1(t)-x__2(t)+4*x__3(t), x__1(0) = 1, x__2(0) = 0, x__3(0) = 0], singsol=all)� �

x1(t) = e2t(−t+ 1)
x2(t) = e2tt
x3(t) = e2tt
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 35� �
DSolve[{x1'[t]==1*x1[t]+2*x2[t]-3*x3[t],x2'[t]==1*x1[t]+1*x2[t]+2*x3[t],x3'[t]==1*x1[t]-1*x2[t]+4*x3[t]},{x1[0]==1,x2[0]==0,x3[0]==0},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → −e2t(t− 1)
x2(t) → e2tt

x3(t) → e2tt
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3.10 problem 8
3.10.1 Solution using Matrix exponential method . . . . . . . . . . . . 326
3.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 327

Internal problem ID [1853]
Internal file name [OUTPUT/1854_Sunday_June_05_2022_02_35_25_AM_60018694/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.10, Systems of differential equations. Equal roots. Page 352
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t)

x′
2(t) = x1(t) + 3x2(t)

x′
3(t) = 3x3(t)

x′
4(t) = 2x3(t) + 3x4(t)

With initial conditions

[x1(0) = 1, x2(0) = 1, x3(0) = 1, x4(0) = 1]

3.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

x′
4(t)

 =


3 0 0 0
1 3 0 0
0 0 3 0
0 0 2 3




x1(t)
x2(t)
x3(t)
x4(t)
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For the above matrix A, the matrix exponential can be found to be

eAt =


e3t 0 0 0
e3tt e3t 0 0
0 0 e3t 0
0 0 2 e3tt e3t


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


e3t 0 0 0
e3tt e3t 0 0
0 0 e3t 0
0 0 2 e3tt e3t




1
1
1
1



=


e3t

e3tt+ e3t

e3t

e3t + 2 e3tt



=


e3t

e3t(t+ 1)
e3t

e3t(1 + 2t)


Since no forcing function is given, then the final solution is ~xh(t) above.

3.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

x′
4(t)

 =


3 0 0 0
1 3 0 0
0 0 3 0
0 0 2 3




x1(t)
x2(t)
x3(t)
x4(t)
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




3 0 0 0
1 3 0 0
0 0 3 0
0 0 2 3

− λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 = 0

Therefore

det




3− λ 0 0 0
1 3− λ 0 0
0 0 3− λ 0
0 0 2 3− λ



 = 0

Since the matrix A is triangular matrix, then the determinant is the product of the
elements along the diagonal. Therefore the above becomes

(3− λ)(3− λ)(3− λ)(3− λ) = 0

The roots of the above are the eigenvalues.

λ1 = 3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 3
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 0 0 0
1 3 0 0
0 0 3 0
0 0 2 3

− (3)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v1

v2

v3

v4

 =


0
0
0
0




0 0 0 0
1 0 0 0
0 0 0 0
0 0 2 0




v1

v2

v3

v4

 =


0
0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 2 0 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 2 0 0


Since the current pivot A(2, 3) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 4 gives

1 0 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0
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Therefore the system in Echelon form is
1 0 0 0
0 0 2 0
0 0 0 0
0 0 0 0




v1

v2

v3

v4

 =


0
0
0
0


The free variables are {v2, v4} and the leading variables are {v1, v3}. Let v2 = t. Let
v4 = s. Now we start back substitution. Solving the above equation for the leading
variables in terms of free variables gives equation {v1 = 0, v3 = 0}

Hence the solution is 
0
t

0
s

 =


0
t

0
s


Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

0
t

0
s

 =


0
t

0
0

+


0
0
0
s



= t


0
1
0
0

+ s


0
0
0
1


By letting t = 1 and s = 1 then the above becomes

0
t

0
s

 =


0
1
0
0

+


0
0
0
1
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Hence the two eigenvectors associated with this eigenvalue are


0
1
0
0

 ,


0
0
0
1




The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3 4 2 Yes


0 0
0 1
0 0
1 0


This case will be solved using the Jordan form of the matrix A. The Jordan form
diagonalization is

A = PJP−1

Which can be found to be
3 0 0 0
1 3 0 0
0 0 3 0
0 0 2 3

 =


0 1 0 0
1 0 0 0
0 1 0 1
2 0 2 0




3 1 0 0
0 3 0 0
0 0 3 1
0 0 0 3




0 1 0 0
1 0 0 0
0 1 0 1
2 0 2 0



−1

Looking at the P matrix above, we see there are 2 chains. Therefore, we now construct
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the basis solution by following these chains as follows.

~x1 =


0
e3t

0
2 e3t



~x2 =


e3t

e3tt
e3t

2 e3tt



~x3 =


0
0
0

2 e3t



~x4 =


0
0
e3t

2 e3tt



Therefore the final solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t) + c4~x4(t)

Which is written as
x1(t)
x2(t)
x3(t)
x4(t)

 = c1


0
e3t

0
2 e3t

+ c2


e3t

e3tt
e3t

2 e3tt

+ c3


0
0
0

2 e3t

+ c4


0
0
e3t

2 e3tt
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Which becomes 
x1(t)
x2(t)
x3(t)
x4(t)

 =


c2e3t

e3t(tc2 + c1)
e3t(c2 + c4)

2((c2 + c4) t+ c1 + c3) e3t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = 1
x2(0) = 1
x3(0) = 1
x4(0) = 1

 (1)

Substituting initial conditions into the above solution at t = 0 gives
1
1
1
1

 =


c2

c1

c2 + c4

2c1 + 2c3


Solving for the constants of integrations gives

c1 = 1
c2 = 1
c3 = −1

2

c4 = 0


Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)
x4(t)

 =


e3t

e3t(t+ 1)
e3t

2
(
t+ 1

2

)
e3t
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The following are plots of each solution against another.
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The following are plots of each solution.
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 40� �
dsolve([diff(x__1(t),t) = 3*x__1(t), diff(x__2(t),t) = x__1(t)+3*x__2(t), diff(x__3(t),t) = 3*x__3(t), diff(x__4(t),t) = 2*x__3(t)+3*x__4(t), x__1(0) = 1, x__2(0) = 1, x__3(0) = 1, x__4(0) = 1], singsol=all)� �

x1(t) = e3t

x2(t) = (t+ 1) e3t

x3(t) = e3t

x4(t) = (2t+ 1) e3t

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 44� �
DSolve[{x1'[t]==3*x1[t]+0*x2[t]+0*x3[t]+0*x4[t],x2'[t]==1*x1[t]+3*x2[t]-0*x3[t]+0*x4[t],x3'[t]==0*x1[t]-0*x2[t]+3*x3[t]-0*x4[t],x4'[t]==0*x1[t]-0*x2[t]+2*x3[t]+3*x4[t]},{x1[0]==1,x2[0]==1,x3[0]==1,x4[0]==1},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e3t

x2(t) → e3t(t+ 1)
x3(t) → e3t

x4(t) → e3t(2t+ 1)

336



4 Section 3.12, Systems of differential equations.
The nonhomogeneous equation. variation of
parameters. Page 366

4.1 problem Example 1, page 361 . . . . . . . . . . . . . . . . . . . . . . . . . 338
4.2 problem Example 2, page 364 . . . . . . . . . . . . . . . . . . . . . . . . . 355
4.3 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
4.4 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
4.5 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
4.6 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
4.7 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
4.8 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
4.9 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
4.10 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
4.11 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
4.12 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
4.13 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4.14 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
4.15 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
4.16 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
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4.1 problem Example 1, page 361
4.1.1 Solution using Matrix exponential method . . . . . . . . . . . . 338
4.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 340
4.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 349

Internal problem ID [1854]
Internal file name [OUTPUT/1855_Sunday_June_05_2022_02_35_26_AM_67103142/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: Example 1, page 361.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t)

x′
2(t) = 2x1(t) + x2(t)− 2x3(t)

x′
3(t) = 3x1(t) + 2x2(t) + x3(t) + 2 cos (t)2 et − et

4.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 0 0
2 1 −2
3 2 1




x1(t)
x2(t)
x3(t)

+


0
0

2 cos (t)2 et − et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

338



Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


et 0 0

3 et cos(2t)
2 + et sin (2t)− 3 et

2 et cos (2t) −et sin (2t)

−et cos (2t) + 3 et sin(2t)
2 + et et sin (2t) et cos (2t)



=


et 0 0

et(−3+3 cos(2t)+2 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−2+2 cos(2t)−3 sin(2t))
2 et sin (2t) et cos (2t)


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


et 0 0

et(−3+3 cos(2t)+2 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−2+2 cos(2t)−3 sin(2t))
2 et sin (2t) et cos (2t)




c1

c2

c3



=


etc1

et(−3+3 cos(2t)+2 sin(2t))c1
2 + et cos (2t) c2 − et sin (2t) c3

− et(−2+2 cos(2t)−3 sin(2t))c1
2 + et sin (2t) c2 + et cos (2t) c3



=


etc1

3
((

c1+ 2c2
3

)
cos(2t)+ 2(c1−c3) sin(2t)

3 −c1
)
et

2

−
(
(c1 − c3) cos (2t) +

(
−3c1

2 − c2
)
sin (2t)− c1

)
et


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


e−t 0 0

(−3+3 cos(2t)−2 sin(2t))e−t

2 e−t cos (2t) e−t sin (2t)

− (−2+2 cos(2t)+3 sin(2t))e−t

2 −e−t sin (2t) e−t cos (2t)
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Hence

~xp(t) =


et 0 0

et(−3+3 cos(2t)+2 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−2+2 cos(2t)−3 sin(2t))
2 et sin (2t) et cos (2t)


∫ 

e−t 0 0
(−3+3 cos(2t)−2 sin(2t))e−t

2 e−t cos (2t) e−t sin (2t)

− (−2+2 cos(2t)+3 sin(2t))e−t

2 −e−t sin (2t) e−t cos (2t)




0
0

2 cos (t)2 et − et

 dt

=


et 0 0

et(−3+3 cos(2t)+2 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−2+2 cos(2t)−3 sin(2t))
2 et sin (2t) et cos (2t)




0
cos (t)2 sin (t)2

t
2 +

sin(4t)
8



=


0

− ett sin(2t)
2(

2 cos(t)2t+sin(t) cos(t)−t
)
et

2


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


etc1

− ((t−2c1+2c3) sin(2t)+(−3c1−2c2) cos(2t)+3c1)et
2(

(t+ 2c3) cos (t)2 + 3
(
c1 + 2c2

3 + 1
6

)
sin (t) cos (t) + 2 sin (t)2 c1 − t

2 − c3
)
et


4.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 0 0
2 1 −2
3 2 1




x1(t)
x2(t)
x3(t)

+


0
0

2 cos (t)2 et − et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 0 0
2 1 −2
3 2 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1− λ 0 0
2 1− λ −2
3 2 1− λ


 = 0

Which gives the characteristic equation

λ3 − 3λ2 + 7λ− 5 = 0

The roots of the above are the eigenvalues.

λ1 = 1 + 2i
λ2 = 1− 2i
λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

1 + 2i 1 complex eigenvalue

1− 2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 0
2 1 −2
3 2 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 0 0
2 0 −2
3 2 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 0 0 0
2 0 −2 0
3 2 0 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

2 0 −2 0
0 0 0 0
3 2 0 0



R3 = R3 −
3R1

2 =⇒


2 0 −2 0
0 0 0 0
0 2 3 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

2 0 −2 0
0 2 3 0
0 0 0 0


Therefore the system in Echelon form is

2 0 −2
0 2 3
0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t, v2 = −3t

2

}
Hence the solution is 

t

−3t
2

t

 =


t

−3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

−3t
2

t

 = t


1
−3

2

1


Let t = 1 the eigenvector becomes

t

−3t
2

t

 =


1
−3

2

1


Which is normalized to 

t

−3t
2

t

 =


2
−3
2


Considering the eigenvalue λ2 = 1− 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 0
2 1 −2
3 2 1

− (1− 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2i 0 0
2 2i −2
3 2 2i




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2i 0 0 0
2 2i −2 0
3 2 2i 0



R2 = iR1 +R2 =⇒


2i 0 0 0
0 2i −2 0
3 2 2i 0



R3 = R3 +
3iR1

2 =⇒


2i 0 0 0
0 2i −2 0
0 2 2i 0



R3 = iR2 +R3 =⇒


2i 0 0 0
0 2i −2 0
0 0 0 0


Therefore the system in Echelon form is

2i 0 0
0 2i −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = −it}

Hence the solution is 
0
-I t
t

 =


0
−it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
-I t
t

 = t


0
−i

1
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Let t = 1 the eigenvector becomes
0
-I t
t

 =


0
−i

1


Considering the eigenvalue λ3 = 1 + 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 0
2 1 −2
3 2 1

− (1 + 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2i 0 0
2 −2i −2
3 2 −2i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2i 0 0 0
2 −2i −2 0
3 2 −2i 0



R2 = −iR1 +R2 =⇒


−2i 0 0 0
0 −2i −2 0
3 2 −2i 0



R3 = R3 −
3iR1

2 =⇒


−2i 0 0 0
0 −2i −2 0
0 2 −2i 0



R3 = −iR2 +R3 =⇒


−2i 0 0 0
0 −2i −2 0
0 0 0 0



345



Therefore the system in Echelon form is
−2i 0 0
0 −2i −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = it}

Hence the solution is 
0
I t
t

 =


0
it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
I t
t

 = t


0
i

1


Let t = 1 the eigenvector becomes 

0
I t
t

 =


0
i

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 + 2i 1 1 No


0
i

1



1− 2i 1 1 No


0
−i

1



1 1 1 No


1

−3
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=


1
−3

2

1

 et

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


0

ie(1+2i)t

e(1+2i)t

+ c2


0

−ie(1−2i)t

e(1−2i)t

+ c3


et

−3 et
2

et


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
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Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =


0 0 et

ie(1+2i)t −ie(1−2i)t −3 et
2

e(1+2i)t e(1−2i)t et


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =


(
−1

2 −
3i
4

)
e(−1−2i)t − ie(−1−2i)t

2
e(−1−2i)t

2(
−1

2 +
3i
4

)
e(−1+2i)t ie(−1+2i)t

2
e(−1+2i)t

2

e−t 0 0


Hence

~xp(t) =


0 0 et

ie(1+2i)t −ie(1−2i)t −3 et
2

e(1+2i)t e(1−2i)t et


∫ 

(
−1

2 −
3i
4

)
e(−1−2i)t − ie(−1−2i)t

2
e(−1−2i)t

2(
−1

2 +
3i
4

)
e(−1+2i)t ie(−1+2i)t

2
e(−1+2i)t

2

e−t 0 0




0
0

2 cos (t)2 et − et

 dt

=


0 0 et

ie(1+2i)t −ie(1−2i)t −3 et
2

e(1+2i)t e(1−2i)t et


∫ 

e−2it cos(2t)
2

e2it cos(2t)
2

0

 dt

=


0 0 et

ie(1+2i)t −ie(1−2i)t −3 et
2

e(1+2i)t e(1−2i)t et




t
4 +

ie−4it

16

− ie4it
16 + t

4

0



=


0

ie(1+2i)tt
4 − e(1−2i)t

16 − e(1+2i)t

16 − ie(1−2i)tt
4

(i+4t)e(1−2i)t

16 − (i−4t)e(1+2i)t

16



348



Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t)
x1(t)
x2(t)
x3(t)

 =


0

ic1e(1+2i)t

c1e(1+2i)t

+


0

−ic2e(1−2i)t

c2e(1−2i)t

+


c3et

−3c3et
2

c3et

+


0

ie(1+2i)tt
4 − e(1−2i)t

16 − e(1+2i)t

16 − ie(1−2i)tt
4

(i+4t)e(1−2i)t

16 − (i−4t)e(1+2i)t

16


Which becomes

x1(t)
x2(t)
x3(t)

 =


c3et

(−4it−16ic2−1)e(1−2i)t

16 + (4it+16ic1−1)e(1+2i)t

16 − 3c3et
2

(i+4t+16c2)e(1−2i)t

16 + (−i+4t+16c1)e(1+2i)t

16 + c3et


4.1.3 Maple step by step solution

Let’s solve[
x′
1(t) = x1(t) , x′

2(t) = 2x1(t) + x2(t)− 2x3(t) , x′
3(t) = 3x1(t) + 2x2(t) + x3(t) + 2 cos (t)2 et − et

]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


1 0 0
2 1 −2
3 2 1

 · →x__(t) +


0
0

2 cos (t)2 et − et


• System to solve

→x__
′
(t) =


1 0 0
2 1 −2
3 2 1

 · →x__(t) +


0
0

2 cos (t)2 et − et


• Define the forcing function
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→
f (t) =


0
0

2 cos (t)2 et − et


• Define the coefficient matrix

A =


1 0 0
2 1 −2
3 2 1


• Rewrite the system as

→x__
′
(t) = A · →x__(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
−3

2

1


 ,

1− 2 I,


0
−I
1


 ,

1 + 2 I,


0
I
1





• Consider eigenpair1,


1
−3

2

1




• Solution to homogeneous system from eigenpair

→x__1 = et ·


1
−3

2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− 2 I,


0
−I
1




• Solution from eigenpair
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e(1−2 I)t ·


0
−I
1


• Use Euler identity to write solution in terms of sin and cos

et · (cos (2t)− I sin (2t)) ·


0
−I
1


• Simplify expression

et ·


0

−I(cos (2t)− I sin (2t))
cos (2t)− I sin (2t)


• Both real and imaginary parts are solutions to the homogeneous system →x__2(t) = et ·


0

− sin (2t)
cos (2t)

 ,
→x__3(t) = et ·


0

− cos (2t)
− sin (2t)




• General solution of the system of ODEs can be written in terms of the particular solution →x__p(t)
→x__(t) = c1

→x__1 + c2
→x__2(t) + c3

→x__3(t) +
→x__p(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =


et 0 0

−3 et
2 −et sin (2t) −et cos (2t)

et et cos (2t) −et sin (2t)


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)
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Φ(t) =


et 0 0

−3 et
2 −et sin (2t) −et cos (2t)

et et cos (2t) −et sin (2t)

 · 1
1 0 0
−3

2 0 −1

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =


et 0 0

et(−3+3 cos(2t)+2 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−2+2 cos(2t)−3 sin(2t))
2 et sin (2t) et cos (2t)


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→x__p(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→x__

′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→x__p(t) = Φ(t) ·
(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute
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→x__p(t) =


0

− ett sin(2t)
2

et(2 cos(2t)t+sin(2t))
4


• Plug particular solution back into general solution

→x__(t) = c1
→x__1 + c2

→x__2(t) + c3
→x__3(t) +


0

− ett sin(2t)
2

et(2 cos(2t)t+sin(2t))
4


• Substitute in vector of dependent variables

x1(t)
x2(t)
x3(t)

 =


c1et

− et((t+2c2) sin(2t)+2c3 cos(2t)+3c1)
2(

(t+2c2) cos(2t)+
(
−2c3+ 1

2
)
sin(2t)+2c1

)
et

2


• Solution to the system of ODEs{

x1(t) = c1et, x2(t) = − et((t+2c2) sin(2t)+2c3 cos(2t)+3c1)
2 , x3(t) =

(
(t+2c2) cos(2t)+

(
−2c3+ 1

2
)
sin(2t)+2c1

)
et

2

}

3 Solution by Maple
Time used: 0.485 (sec). Leaf size: 93� �
dsolve([diff(x__1(t),t)=1*x__1(t)+0*x__2(t)+0*x__3(t),diff(x__2(t),t)=2*x__1(t)+1*x__2(t)-2*x__3(t),diff(x__3(t),t)=3*x__1(t)+2*x__2(t)+1*x__3(t)+exp(t)*cos(2*t)],singsol=all)� �

x1(t) = c3et

x2(t) =
et(−3c3 − 3c3 cos (2t) + 2c1 cos (2t) + 2c2 sin (2t)− sin (2t) t)

2
x3(t) = −et(4c2 cos (2t)− 2t cos (2t)− 4c1 sin (2t) + 6c3 sin (2t)− sin (2t)− 4c3)

4
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3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 103� �
DSolve[{x1'[t]==1*x1[t]+0*x2[t]+0*x3[t],x2'[t]==2*x1[t]+1*x2[t]-2*x3[t],x3'[t]==3*x1[t]+2*x2[t]+1*x3[t]+Exp[t]*Cos[2*t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → c1e
t

x2(t) → −1
8e

t((1− 12c1 − 8c2) cos(2t) + 4(t− 2c1 + 2c3) sin(2t) + 12c1)

x3(t) → 1
8e

t(4(t− 2c1 + 2c3) cos(2t) + (1 + 12c1 + 8c2) sin(2t) + 8c1)
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4.2 problem Example 2, page 364
4.2.1 Solution using Matrix exponential method . . . . . . . . . . . . 355
4.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 357
4.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 366

Internal problem ID [1855]
Internal file name [OUTPUT/1856_Sunday_June_05_2022_02_35_31_AM_54055234/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: Example 2, page 364.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + ect

x′
2(t) = 2x1(t) + x2(t)− 2x3(t)

x′
3(t) = 3x1(t) + 2x2(t) + x3(t)

4.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 0 0
2 1 −2
3 2 1




x1(t)
x2(t)
x3(t)

+


ect

0
0


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


et 0 0

3 et cos(2t)
2 + et sin (2t)− 3 et

2 et cos (2t) −et sin (2t)

−et cos (2t) + 3 et sin(2t)
2 + et et sin (2t) et cos (2t)



=


et 0 0

et(−3+3 cos(2t)+2 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−2+2 cos(2t)−3 sin(2t))
2 et sin (2t) et cos (2t)


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


et 0 0

et(−3+3 cos(2t)+2 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−2+2 cos(2t)−3 sin(2t))
2 et sin (2t) et cos (2t)




c1

c2

c3



=


etc1

et(−3+3 cos(2t)+2 sin(2t))c1
2 + et cos (2t) c2 − et sin (2t) c3

− et(−2+2 cos(2t)−3 sin(2t))c1
2 + et sin (2t) c2 + et cos (2t) c3



=


etc1

3
((

c1+ 2c2
3

)
cos(2t)+ 2(c1−c3) sin(2t)

3 −c1
)
et

2

−
(
(c1 − c3) cos (2t) +

(
−3c1

2 − c2
)
sin (2t)− c1

)
et


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


e−t 0 0

(−3+3 cos(2t)−2 sin(2t))e−t

2 e−t cos (2t) e−t sin (2t)

− (−2+2 cos(2t)+3 sin(2t))e−t

2 −e−t sin (2t) e−t cos (2t)
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Hence

~xp(t) =


et 0 0

et(−3+3 cos(2t)+2 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−2+2 cos(2t)−3 sin(2t))
2 et sin (2t) et cos (2t)


∫ 

e−t 0 0
(−3+3 cos(2t)−2 sin(2t))e−t

2 e−t cos (2t) e−t sin (2t)

− (−2+2 cos(2t)+3 sin(2t))e−t

2 −e−t sin (2t) e−t cos (2t)




ect

0
0

 dt

=


et 0 0

et(−3+3 cos(2t)+2 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−2+2 cos(2t)−3 sin(2t))
2 et sin (2t) et cos (2t)




et(c−1)

c−1

3
((

c2− 2
3 c−

1
3
)
cos(2t)− 2(c−1)(c−4) sin(2t)

3 −c2+2c−5
)
et(c−1)

2(c−1)(c2−2c+5)

−
((
c2−5c+4

)
cos(2t)+

( 3
2 c

2−c− 1
2
)
sin(2t)−c2+2c−5

)
et(c−1)

(c−1)(c2−2c+5)



=


ect
c−1

2(c−4)ect
(c−1)(c2−2c+5)

(3c+1)ect
(c−1)(c2−2c+5)


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


ect+(c−1)c1et

c−1

3
(
c1+ 2c2

3

)(
c2−2c+5

)
(c−1)et cos(2t)+2 et(c−1)

(
c2−2c+5

)
(c1−c3) sin(2t)+4(c−4)ect−3 etc1(c−1)

(
c2−2c+5

)
2(c−1)(c2−2c+5)

−2 et(c−1)
(
c2−2c+5

)
(c1−c3) cos(2t)+3

(
c1+ 2c2

3

)(
c2−2c+5

)
(c−1)et sin(2t)+(6c+2)ect+2 etc1(c−1)

(
c2−2c+5

)
2(c−1)(c2−2c+5)


4.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 0 0
2 1 −2
3 2 1




x1(t)
x2(t)
x3(t)

+


ect

0
0


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 0 0
2 1 −2
3 2 1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1− λ 0 0
2 1− λ −2
3 2 1− λ


 = 0

Which gives the characteristic equation

λ3 − 3λ2 + 7λ− 5 = 0

The roots of the above are the eigenvalues.

λ1 = 1 + 2i
λ2 = 1− 2i
λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

1 + 2i 1 complex eigenvalue

1− 2i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 0
2 1 −2
3 2 1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 0 0
2 0 −2
3 2 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 0 0 0
2 0 −2 0
3 2 0 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

2 0 −2 0
0 0 0 0
3 2 0 0



R3 = R3 −
3R1

2 =⇒


2 0 −2 0
0 0 0 0
0 2 3 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

2 0 −2 0
0 2 3 0
0 0 0 0


Therefore the system in Echelon form is

2 0 −2
0 2 3
0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t, v2 = −3t

2

}
Hence the solution is 

t

−3t
2

t

 =


t

−3t
2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

−3t
2

t

 = t


1
−3

2

1


Let t = 1 the eigenvector becomes

t

−3t
2

t

 =


1
−3

2

1


Which is normalized to 

t

−3t
2

t

 =


2
−3
2


Considering the eigenvalue λ2 = 1− 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 0
2 1 −2
3 2 1

− (1− 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




2i 0 0
2 2i −2
3 2 2i




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

2i 0 0 0
2 2i −2 0
3 2 2i 0



R2 = iR1 +R2 =⇒


2i 0 0 0
0 2i −2 0
3 2 2i 0



R3 = R3 +
3iR1

2 =⇒


2i 0 0 0
0 2i −2 0
0 2 2i 0



R3 = iR2 +R3 =⇒


2i 0 0 0
0 2i −2 0
0 0 0 0


Therefore the system in Echelon form is

2i 0 0
0 2i −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = −it}

Hence the solution is 
0
-I t
t

 =


0
−it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
-I t
t

 = t


0
−i

1
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Let t = 1 the eigenvector becomes
0
-I t
t

 =


0
−i

1


Considering the eigenvalue λ3 = 1 + 2i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 0 0
2 1 −2
3 2 1

− (1 + 2i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2i 0 0
2 −2i −2
3 2 −2i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2i 0 0 0
2 −2i −2 0
3 2 −2i 0



R2 = −iR1 +R2 =⇒


−2i 0 0 0
0 −2i −2 0
3 2 −2i 0



R3 = R3 −
3iR1

2 =⇒


−2i 0 0 0
0 −2i −2 0
0 2 −2i 0



R3 = −iR2 +R3 =⇒


−2i 0 0 0
0 −2i −2 0
0 0 0 0
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Therefore the system in Echelon form is
−2i 0 0
0 −2i −2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = 0, v2 = it}

Hence the solution is 
0
I t
t

 =


0
it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

0
I t
t

 = t


0
i

1


Let t = 1 the eigenvector becomes 

0
I t
t

 =


0
i

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 + 2i 1 1 No


0
i

1



1− 2i 1 1 No


0
−i

1



1 1 1 No


1

−3
2

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=


1
−3

2

1

 et

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


0

ie(1+2i)t

e(1+2i)t

+ c2


0

−ie(1−2i)t

e(1−2i)t

+ c3


et

−3 et
2

et


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
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Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =


0 0 et

ie(1+2i)t −ie(1−2i)t −3 et
2

e(1+2i)t e(1−2i)t et


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =


(
−1

2 −
3i
4

)
e(−1−2i)t − ie(−1−2i)t

2
e(−1−2i)t

2(
−1

2 +
3i
4

)
e(−1+2i)t ie(−1+2i)t

2
e(−1+2i)t

2

e−t 0 0


Hence

~xp(t) =


0 0 et

ie(1+2i)t −ie(1−2i)t −3 et
2

e(1+2i)t e(1−2i)t et


∫ 

(
−1

2 −
3i
4

)
e(−1−2i)t − ie(−1−2i)t

2
e(−1−2i)t

2(
−1

2 +
3i
4

)
e(−1+2i)t ie(−1+2i)t

2
e(−1+2i)t

2

e−t 0 0




ect

0
0

 dt

=


0 0 et

ie(1+2i)t −ie(1−2i)t −3 et
2

e(1+2i)t e(1−2i)t et


∫ 

(
−1

2 −
3i
4

)
et(c−1−2i)(

−1
2 +

3i
4

)
et(c−1+2i)

et(c−1)

 dt

=


0 0 et

ie(1+2i)t −ie(1−2i)t −3 et
2

e(1+2i)t e(1−2i)t et




(3−2i)et(c−1−2i)

4ic−4i+8

(−2+3i)et(c−1+2i)

4c−4+8i

et(c−1)

c−1



=


ect
c−1

− 2(c−4)ect
−c3+3c2−7c+5
(−3c−1)ect

−c3+3c2−7c+5
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Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t)
x1(t)
x2(t)
x3(t)

 =


0

ic1e(1+2i)t

c1e(1+2i)t

+


0

−ic2e(1−2i)t

c2e(1−2i)t

+


c3et

−3c3et
2

c3et

+


ect
c−1

− 2(c−4)ect
−c3+3c2−7c+5
(−3c−1)ect

−c3+3c2−7c+5


Which becomes

x1(t)
x2(t)
x3(t)

 =


ect+(c−1)c3et

c−1

−2i
(
c2−2c+5

)
(c−1)c2e(1−2i)t+2i

(
c2−2c+5

)
(c−1)c1e(1+2i)t+(4c−16)ect−3c3et(c−1)

(
c2−2c+5

)
2c3−6c2+14c−10(

c2−2c+5
)
(c−1)c2e(1−2i)t+

(
c2−2c+5

)
(c−1)c1e(1+2i)t+(3c+1)ect+c3et(c−1)

(
c2−2c+5

)
c3−3c2+7c−5


4.2.3 Maple step by step solution

Let’s solve
[x′

1(t) = x1(t) + ect, x′
2(t) = 2x1(t) + x2(t)− 2x3(t) , x′

3(t) = 3x1(t) + 2x2(t) + x3(t)]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


1 0 0
2 1 −2
3 2 1

 · →x__(t) +


ect

0
0


• System to solve

→x__
′
(t) =


1 0 0
2 1 −2
3 2 1

 · →x__(t) +


ect

0
0


• Define the forcing function
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→
f (t) =


ect

0
0


• Define the coefficient matrix

A =


1 0 0
2 1 −2
3 2 1


• Rewrite the system as

→x__
′
(t) = A · →x__(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
−3

2

1


 ,

1− 2 I,


0
−I
1


 ,

1 + 2 I,


0
I
1





• Consider eigenpair1,


1
−3

2

1




• Solution to homogeneous system from eigenpair

→x__1 = et ·


1
−3

2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− 2 I,


0
−I
1




• Solution from eigenpair
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e(1−2 I)t ·


0
−I
1


• Use Euler identity to write solution in terms of sin and cos

et · (cos (2t)− I sin (2t)) ·


0
−I
1


• Simplify expression

et ·


0

−I(cos (2t)− I sin (2t))
cos (2t)− I sin (2t)


• Both real and imaginary parts are solutions to the homogeneous system →x__2(t) = et ·


0

− sin (2t)
cos (2t)

 ,
→x__3(t) = et ·


0

− cos (2t)
− sin (2t)




• General solution of the system of ODEs can be written in terms of the particular solution →x__p(t)
→x__(t) = c1

→x__1 + c2
→x__2(t) + c3

→x__3(t) +
→x__p(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =


et 0 0

−3 et
2 −et sin (2t) −et cos (2t)

et et cos (2t) −et sin (2t)


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)
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Φ(t) =


et 0 0

−3 et
2 −et sin (2t) −et cos (2t)

et et cos (2t) −et sin (2t)

 · 1
1 0 0
−3

2 0 −1

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =


et 0 0

et(−3+3 cos(2t)+2 sin(2t))
2 et cos (2t) −et sin (2t)

− et(−2+2 cos(2t)−3 sin(2t))
2 et sin (2t) et cos (2t)


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→x__p(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→x__

′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→x__p(t) = Φ(t) ·
(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute
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→x__p(t) =


−et+ect

c−1

et
(
4(c−4)et(c−1)−3

(
c2− 2

3 c−
1
3
)
cos(2t)−2(c−1)(c−4) sin(2t)+3c2−6c+15

)
2(c−1)(c2−2c+5)(

(3c+1)et(c−1)+
(
c2−5c+4

)
cos(2t)+

(
− 3

2 c
2+c+ 1

2
)
sin(2t)−c2+2c−5

)
et

(c−1)(c2−2c+5)


• Plug particular solution back into general solution

→x__(t) = c1
→x__1 + c2

→x__2(t) + c3
→x__3(t) +


−et+ect

c−1

et
(
4(c−4)et(c−1)−3

(
c2− 2

3 c−
1
3
)
cos(2t)−2(c−1)(c−4) sin(2t)+3c2−6c+15

)
2(c−1)(c2−2c+5)(

(3c+1)et(c−1)+
(
c2−5c+4

)
cos(2t)+

(
− 3

2 c
2+c+ 1

2
)
sin(2t)−c2+2c−5

)
et

(c−1)(c2−2c+5)


• Substitute in vector of dependent variables


x1(t)
x2(t)
x3(t)

 =



ect+(−1+(c−1)c1)et
c−1

−
3
(

4(−c+4)et(c−1)
3 +

2
(
c3c

2+
(
−2c3+

3
2
)
c+5c3+

1
2
)
(c−1) cos(2t)

3 +
2
(
c2c

2+(1−2c2)c+5c2−4
)
(c−1) sin(2t)

3 +
(
c2−2c+5

)
(cc1−c1−1)

)
et

2(c−1)(c2−2c+5)(
(3c+1)et(c−1)+

(
c2c2+(1−2c2)c+5c2−4

)
(c−1) cos(2t)−

(
c3c2+

(
−2c3+ 3

2
)
c+5c3+ 1

2
)
(c−1) sin(2t)+

(
c2−2c+5

)
(cc1−c1−1)

)
et

(c−1)(c2−2c+5)


• Solution to the system of ODEsx1(t) = ect+(−1+(c−1)c1)et

c−1 , x2(t) = −
3
(

4(−c+4)et(c−1)
3 +

2
(
c3c

2+
(
−2c3+

3
2
)
c+5c3+

1
2
)
(c−1) cos(2t)

3 +
2
(
c2c

2+(1−2c2)c+5c2−4
)
(c−1) sin(2t)

3 +
(
c2−2c+5

)
(cc1−c1−1)

)
et

2(c−1)(c2−2c+5) , x3(t) =
(
(3c+1)et(c−1)+

(
c2c2+(1−2c2)c+5c2−4

)
(c−1) cos(2t)−

(
c3c2+

(
−2c3+ 3

2
)
c+5c3+ 1

2
)
(c−1) sin(2t)+

(
c2−2c+5

)
(cc1−c1−1)

)
et

(c−1)(c2−2c+5)


3 Solution by Maple
Time used: 0.375 (sec). Leaf size: 408� �
dsolve([diff(x__1(t),t)=1*x__1(t)+0*x__2(t)+0*x__3(t)+exp(c*t),diff(x__2(t),t)=2*x__1(t)+1*x__2(t)-2*x__3(t),diff(x__3(t),t)=3*x__1(t)+2*x__2(t)+1*x__3(t)],singsol=all)� �
x1(t) = c3et +

ect
c− 1

x2(t)

= 2 et sin (2t) c2c3 + 2 et cos (2t) c1c3 − 3c3etc3 cos (2t)− 6 et sin (2t) c2c2 − 6 et cos (2t) c1c2 + 9c2etc3 cos (2t)− 3c3etc3 + 14 et sin (2t) c2c+ 14 et cos (2t) c1c− 21 etc3c cos (2t) + 9c2etc3 − 10c2et sin (2t)− 10c1et cos (2t) + 15 etc3 cos (2t)− 21 etc3c+ 4c et+t(c−1) + 15c3et − 16 et+t(c−1)

2 (c− 1) (c2 − 2c+ 5)
x3(t)

= 2 et sin (2t) c1c3 − 3c3etc3 sin (2t)− 2 et cos (2t) c2c3 − 6 et sin (2t) c1c2 + 9c2etc3 sin (2t) + 6 et cos (2t) c2c2 + 2c3etc3 + 14 et sin (2t) c1c− 21 etc3c sin (2t)− 14 et cos (2t) c2c− 6c2etc3 − 10c1et sin (2t) + 15 sin (2t) etc3 + 10c2et cos (2t) + 14 etc3c− 10c3et + 6 ectc+ 2 ect
2 (c− 1) (c2 − 2c+ 5)
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3 Solution by Mathematica
Time used: 0.496 (sec). Leaf size: 256� �
DSolve[{x1'[t]==1*x1[t]+0*x2[t]+0*x3[t]+Exp[c*t],x2'[t]==2*x1[t]+1*x2[t]-2*x3[t],x3'[t]==3*x1[t]+2*x2[t]+1*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �
x1(t) → et

(
e(c−1)t

c− 1 + c1

)
x2(t)

→
et
(
−3c3c1 + 9c2c1 + (c3 − 3c2 + 7c− 5) (3c1 + 2c2) cos(2t) + 2(c3 − 3c2 + 7c− 5) (c1 − c3) sin(2t) + 4ce(c−1)t − 16e(c−1)t − 21cc1 + 15c1

)
2(c− 1) (c2 − 2c+ 5)

x3(t)

→
et
(
−2(c3 − 3c2 + 7c− 5) (c1 − c3) cos(2t) + (c3 − 3c2 + 7c− 5) (3c1 + 2c2) sin(2t) + 2(c3 − 3c2 + 7c− 5) c1 + 2(3c+ 1)e(c−1)t)

2(c− 1) (c2 − 2c+ 5)
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4.3 problem 1
4.3.1 Solution using Matrix exponential method . . . . . . . . . . . . 372
4.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 374

Internal problem ID [1856]
Internal file name [OUTPUT/1857_Sunday_June_05_2022_02_35_35_AM_69161224/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 4x1(t) + 5x2(t) + 4 et cos (t)

x′
2(t) = −2x1(t)− 2x2(t)

With initial conditions
[x1(0) = 0, x2(0) = 0]

4.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 4 5
−2 −2

  x1(t)
x2(t)

+

 4 et cos (t)
0


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
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of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =

 et cos (t) + 3 sin (t) et 5 sin (t) et

−2 sin (t) et et cos (t)− 3 sin (t) et


=

 et(cos (t) + 3 sin (t)) 5 sin (t) et

−2 sin (t) et et(−3 sin (t) + cos (t))


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 et(cos (t) + 3 sin (t)) 5 sin (t) et

−2 sin (t) et et(−3 sin (t) + cos (t))

 0
0


=

 0
0


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=

 (−3 sin (t) + cos (t)) e−t −5 e−t sin (t)
2 e−t sin (t) (cos (t) + 3 sin (t)) e−t


Hence

~xp(t) =

 et(cos (t) + 3 sin (t)) 5 sin (t) et

−2 sin (t) et et(−3 sin (t) + cos (t))

∫  (−3 sin (t) + cos (t)) e−t −5 e−t sin (t)
2 e−t sin (t) (cos (t) + 3 sin (t)) e−t

 4 et cos (t)
0

 dt

=

 et(cos (t) + 3 sin (t)) 5 sin (t) et

−2 sin (t) et et(−3 sin (t) + cos (t))

 6 cos (t)2 + 2 sin (t) cos (t) + 2t
−4 cos (t)2


=

 2((t+ 3) cos (t) + 3t sin (t)) et

−4 et(cos (t) + t sin (t))
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Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=

 2((t+ 3) cos (t) + 3t sin (t)) et

−4 et(cos (t) + t sin (t))


4.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 4 5
−2 −2

  x1(t)
x2(t)

+

 4 et cos (t)
0


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 4 5
−2 −2

− λ

 1 0
0 1

 = 0

Therefore

det

 4− λ 5
−2 −2− λ

 = 0

Which gives the characteristic equation

λ2 − 2λ+ 2 = 0
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The roots of the above are the eigenvalues.

λ1 = 1 + i

λ2 = 1− i

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1− i 1 complex eigenvalue

1 + i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1− i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 4 5
−2 −2

− (1− i)

 1 0
0 1

 v1

v2

 =

 0
0


 3 + i 5

−2 −3 + i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3 + i 5 0

−2 −3 + i 0



R2 = R2 +
(
3
5 − i

5

)
R1 =⇒

3 + i 5 0
0 0 0


Therefore the system in Echelon form is 3 + i 5

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(
−3

2 +
i
2

)
t
}
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Hence the solution is  (
−3

2 +
I
2

)
t

t

 =

 (
−3

2 +
i
2

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (

−3
2 +

I
2

)
t

t

 = t

 −3
2 +

i
2

1


Let t = 1 the eigenvector becomes (

−3
2 +

I
2

)
t

t

 =

 −3
2 +

i
2

1


Which is normalized to  (

−3
2 +

I
2

)
t

t

 =

 −3 + i

2


Considering the eigenvalue λ2 = 1 + i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 4 5
−2 −2

− (1 + i)

 1 0
0 1

 v1

v2

 =

 0
0


 3− i 5

−2 −3− i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 3− i 5 0

−2 −3− i 0



R2 = R2 +
(
3
5 + i

5

)
R1 =⇒

3− i 5 0
0 0 0


Therefore the system in Echelon form is 3− i 5

0 0

 v1

v2

 =

 0
0
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The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 =

(
−3

2 −
i
2

)
t
}

Hence the solution is  (
−3

2 −
I
2

)
t

t

 =

 (
−3

2 −
i
2

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (

−3
2 −

I
2

)
t

t

 = t

 −3
2 −

i
2

1


Let t = 1 the eigenvector becomes (

−3
2 −

I
2

)
t

t

 =

 −3
2 −

i
2

1


Which is normalized to  (

−3
2 −

I
2

)
t

t

 =

 −3− i

2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 + i 1 1 No

 −3
2 −

i
2

1



1− i 1 1 No

 −3
2 +

i
2

1
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Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x1(t)
x2(t)

 = c1

 (
−3

2 −
i
2

)
e(1+i)t

e(1+i)t

+ c2

 (
−3

2 +
i
2

)
e(1−i)t

e(1−i)t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 (
−3

2 −
i
2

)
e(1+i)t (

−3
2 +

i
2

)
e(1−i)t

e(1+i)t e(1−i)t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =

 ie(−1−i)t (1
2 +

3i
2

)
e(−1−i)t

−ie(−1+i)t (1
2 −

3i
2

)
e(−1+i)t


Hence

~xp(t) =

 (
−3

2 −
i
2

)
e(1+i)t (

−3
2 +

i
2

)
e(1−i)t

e(1+i)t e(1−i)t

∫  ie(−1−i)t (1
2 +

3i
2

)
e(−1−i)t

−ie(−1+i)t (1
2 −

3i
2

)
e(−1+i)t

 4 et cos (t)
0

 dt

=

 (
−3

2 −
i
2

)
e(1+i)t (

−3
2 +

i
2

)
e(1−i)t

e(1+i)t e(1−i)t

∫  4i cos (t) e−it

−4i cos (t) eit

 dt

=

 (
−3

2 −
i
2

)
e(1+i)t (

−3
2 +

i
2

)
e(1−i)t

e(1+i)t e(1−i)t

 2((i− t) sin (t) + it cos (t)) e−it

−2((t+ i) sin (t) + it cos (t)) eit


=

 2 et(t cos (t) + sin (t) + 3t sin (t))
−4t et sin (t)
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Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x1(t)
x2(t)

 =

 (
−3

2 −
i
2

)
c1e(1+i)t

c1e(1+i)t

+

 (
−3

2 +
i
2

)
c2e(1−i)t

c2e(1−i)t

+

 2 et(t cos (t) + sin (t) + 3t sin (t))
−4t et sin (t)


Which becomes x1(t)

x2(t)

 =

 (
−3

2 +
i
2

)
c2e(1−i)t +

(
−3

2 −
i
2

)
c1e(1+i)t + 2((1 + 3t) sin (t) + t cos (t)) et

c1e(1+i)t + c2e(1−i)t − 4t et sin (t)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 0

x2(0) = 0

 (1)

Substituting initial conditions into the above solution at t = 0 gives 0
0

 =

 (
−3

2 −
i
2

)
c1 +

(
−3

2 +
i
2

)
c2

c1 + c2


Solving for the constants of integrations gives c1 = 0

c2 = 0


Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 2((1 + 3t) sin (t) + t cos (t)) et

−4t et sin (t)
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The following are plots of each solution.

3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 34� �
dsolve([diff(x__1(t),t) = 4*x__1(t)+5*x__2(t)+4*exp(t)*cos(t), diff(x__2(t),t) = -2*x__1(t)-2*x__2(t), x__1(0) = 0, x__2(0) = 0], singsol=all)� �

x1(t) =
et(12 sin (t) t+ 4 cos (t) t+ 4 sin (t))

2
x2(t) = −4 et sin (t) t
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3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 33� �
DSolve[{x1'[t]==4*x1[t]+5*x2[t]+4*Exp[t]*Cos[t],x2'[t]==-2*x1[t]-2*x2[t]},{x1[0]==0,x2[0]==0},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 2et(3t sin(t) + sin(t) + t cos(t))
x2(t) → −4ett sin(t)

381



4.4 problem 2
4.4.1 Solution using Matrix exponential method . . . . . . . . . . . . 382
4.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 384

Internal problem ID [1857]
Internal file name [OUTPUT/1858_Sunday_June_05_2022_02_35_38_AM_51191583/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t)− 4x2(t) + et

x′
2(t) = x1(t)− x2(t) + et

With initial conditions
[x1(0) = 1, x2(0) = 1]

4.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −4
1 −1

  x1(t)
x2(t)

+

 et

et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
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of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =

 et(1 + 2t) −4t et

t et et(1− 2t)


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 et(1 + 2t) −4t et

t et et(1− 2t)

 1
1


=

 et(1 + 2t)− 4t et

t et + et(1− 2t)


=

 et(1− 2t)
et(1− t)


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=

 e−t(1− 2t) 4t e−t

−t e−t e−t(1 + 2t)


Hence

~xp(t) =

 et(1 + 2t) −4t et

t et et(1− 2t)

∫  e−t(1− 2t) 4t e−t

−t e−t e−t(1 + 2t)

 et

et

 dt

=

 et(1 + 2t) −4t et

t et et(1− 2t)

 t(t+ 1)
t(2+t)

2


=

 −ett(t− 1)

− ett(t−2)
2
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Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=

 et(−t2 − t+ 1)

et
(
1− t2

2

)


4.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 3 −4
1 −1

  x1(t)
x2(t)

+

 et

et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 3 −4
1 −1

− λ

 1 0
0 1

 = 0

Therefore

det

 3− λ −4
1 −1− λ

 = 0
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Which gives the characteristic equation

λ2 − 2λ+ 1 = 0

The roots of the above are the eigenvalues.

λ1 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 3 −4
1 −1

− (1)

 1 0
0 1

 v1

v2

 =

 0
0


 2 −4

1 −2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 −4 0

1 −2 0



R2 = R2 −
R1

2 =⇒

2 −4 0
0 0 0


Therefore the system in Echelon form is 2 −4

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = 2t}
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Hence the solution is  2t
t

 =

 2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as 2t

t

 = t

 2
1


Let t = 1 the eigenvector becomes  2t

t

 =

 2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 2 1 Yes

 2
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 21: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 3 −4
1 −1

− (1)

 1 0
0 1

 v1

v2

 =

 2
1


 2 −4

1 −2

 v1

v2

 =

 2
1


Solving for ~v2 gives

~v2 =

 3
1
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We have found two generalized eigenvectors for eigenvalue 1. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 2
1

 et

=

 2 et

et


And

~x2(t) = (~v1t+ ~v2) eλt

=

 2
1

 t+

 3
1

 et

=

 et(2t+ 3)
et(t+ 1)


Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 2 et

et

+ c2

 et(2t+ 3)
et(t+ 1)


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 2 et et(2t+ 3)
et et(t+ 1)


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt
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But

Φ−1 =

 −e−t(t+ 1) e−t(2t+ 3)
e−t −2 e−t


Hence

~xp(t) =

 2 et et(2t+ 3)
et et(t+ 1)

∫  −e−t(t+ 1) e−t(2t+ 3)
e−t −2 e−t

 et

et

 dt

=

 2 et et(2t+ 3)
et et(t+ 1)

∫  2 + t

−1

 dt

=

 2 et et(2t+ 3)
et et(t+ 1)

 t(t+4)
2

−t


=

 −ett(t− 1)

− ett(t−2)
2


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x1(t)
x2(t)

 =

 2c1et

c1et

+

 c2et(2t+ 3)
c2et(t+ 1)

+

 −ett(t− 1)

− ett(t−2)
2


Which becomes  x1(t)

x2(t)

 =

 −(t2 + (−2c2 − 1) t− 2c1 − 3c2) et

et
(
c1 + c2t+ c2 − 1

2t
2 + t

)


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 1

x2(0) = 1

 (1)

Substituting initial conditions into the above solution at t = 0 gives 1
1

 =

 2c1 + 3c2
c1 + c2
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Solving for the constants of integrations gives c1 = 2
c2 = −1


Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 −et(t2 + t− 1)

et
(
1− t2

2

)


The following are plots of each solution.
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 32� �
dsolve([diff(x__1(t),t) = 3*x__1(t)-4*x__2(t)+exp(t), diff(x__2(t),t) = x__1(t)-x__2(t)+exp(t), x__1(0) = 1, x__2(0) = 1], singsol=all)� �

x1(t) = et
(
−t2 − t+ 1

)
x2(t) =

et(−2t2 + 4)
4

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 31� �
DSolve[{x1'[t]==3*x1[t]-4*x2[t]+Exp[t],x2'[t]==1*x1[t]-1*x2[t]+Exp[t]},{x1[0]==1,x2[0]==1},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → −et
(
t2 + t− 1

)
x2(t) → −1

2e
t
(
t2 − 2

)
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4.5 problem 3
4.5.1 Solution using Matrix exponential method . . . . . . . . . . . . 392
4.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 394

Internal problem ID [1858]
Internal file name [OUTPUT/1859_Sunday_June_05_2022_02_35_40_AM_24763410/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 2x1(t)− 5x2(t) + sin (t)

x′
2(t) = x1(t)− 2x2(t) + tan (t)

With initial conditions
[x1(0) = 0, x2(0) = 0]

4.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 2 −5
1 −2

  x1(t)
x2(t)

+

 sin (t)
tan (t)


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
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of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =

 cos (t) + 2 sin (t) −5 sin (t)
sin (t) cos (t)− 2 sin (t)


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 cos (t) + 2 sin (t) −5 sin (t)
sin (t) cos (t)− 2 sin (t)

 0
0


=

 0
0


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=

 cos (t)− 2 sin (t) 5 sin (t)
− sin (t) cos (t) + 2 sin (t)


Hence

~xp(t) =

 cos (t) + 2 sin (t) −5 sin (t)
sin (t) cos (t)− 2 sin (t)

∫  cos (t)− 2 sin (t) 5 sin (t)
− sin (t) cos (t) + 2 sin (t)

 sin (t)
tan (t)

 dt

=

 cos (t) + 2 sin (t) −5 sin (t)
sin (t) cos (t)− 2 sin (t)

 − cos(t)2
2 + sin (t) cos (t)− t− 5 sin (t) + 5 ln (sec (t) + tan (t))

2 ln (sec (t) + tan (t)) + (sin(t)−2) cos(t)
2 − t

2 − 2 sin (t)


=

 − cos(t)
2 + t sin(t)

2 + 5 cos (t) ln (sec (t) + tan (t))− t cos (t)

−1 + (sin (t) + 2 cos (t)) ln (sec (t) + tan (t))− t cos(t)
2


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=

 − cos(t)
2 + t sin(t)

2 + 5 cos (t) ln (sec (t) + tan (t))− t cos (t)

−1 + (sin (t) + 2 cos (t)) ln (sec (t) + tan (t))− t cos(t)
2



393



4.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 2 −5
1 −2

  x1(t)
x2(t)

+

 sin (t)
tan (t)


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 2 −5
1 −2

− λ

 1 0
0 1

 = 0

Therefore

det

 2− λ −5
1 −2− λ

 = 0

Which gives the characteristic equation

λ2 + 1 = 0

The roots of the above are the eigenvalues.

λ1 = i

λ2 = −i

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

−i 1 complex eigenvalue

i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 2 −5
1 −2

− (−i)

 1 0
0 1

 v1

v2

 =

 0
0


 2 + i −5

1 −2 + i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2 + i −5 0

1 −2 + i 0



R2 = R2 +
(
−2
5 + i

5

)
R1 =⇒

2 + i −5 0
0 0 0


Therefore the system in Echelon form is 2 + i −5

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = (2− i) t}

Hence the solution is  (2− I) t
t

 =

 (2− i) t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (2− I) t

t

 = t

 2− i

1
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Let t = 1 the eigenvector becomes (2− I) t
t

 =

 2− i

1


Considering the eigenvalue λ2 = i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 2 −5
1 −2

− (i)

 1 0
0 1

 v1

v2

 =

 0
0


 2− i −5

1 −2− i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2− i −5 0

1 −2− i 0



R2 = R2 +
(
−2
5 − i

5

)
R1 =⇒

2− i −5 0
0 0 0


Therefore the system in Echelon form is 2− i −5

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = (2 + i) t}

Hence the solution is  (2 + I) t
t

 =

 (2 + i) t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as (2 + I) t

t

 = t

 2 + i

1
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Let t = 1 the eigenvector becomes (2 + I) t
t

 =

 2 + i

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

i 1 1 No

 2 + i

1



−i 1 1 No

 2− i

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as x1(t)
x2(t)

 = c1

 (2 + i) eit

eit

+ c2

 (2− i) e−it

e−it


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 (2 + i) eit (2− i) e−it

eit e−it
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The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =

 − ie−it

2

(1
2 + i

)
e−it

ieit
2

(1
2 − i

)
eit


Hence

~xp(t) =

 (2 + i) eit (2− i) e−it

eit e−it

∫  − ie−it

2

(1
2 + i

)
e−it

ieit
2

(1
2 − i

)
eit

 sin (t)
tan (t)

 dt

=

 (2 + i) eit (2− i) e−it

eit e−it

∫  − e−it(i sin(t)+(−1−2i) tan(t))
2

eit(i sin(t)+(1−2i) tan(t))
2

 dt

=

 (2 + i) eit (2− i) e−it

eit e−it


 ∫ t

0

(
− ie−iτ sin(τ)

2 +
(1
2 + i

)
e−iτ tan (τ)

)
dτ

− t
4 −

ie2it
8 +

(
−1

2 + i
)
eit +

(
−1− i

2

)
ln (eit − i) +

(
1 + i

2

)
ln (eit + i)



=


(
1 + i

2

)
eit
(∫ t

0 e
−iτ (2i tan (τ)− i sin (τ) + tan (τ)) dτ

)
− 5 e−it ln

(
eit−i

)
2 + 5 e−it ln

(
eit+i

)
2 +

(
−1

2 +
i
4

)
t e−it + 5i

2 +
(
−1

8 −
i
4

)
eit

eit
(∫ t

0 e−iτ (2i tan(τ)−i sin(τ)+tan(τ))dτ
)

2 +
(
−1− i

2

)
e−it ln (eit − i) +

(
1 + i

2

)
e−it ln (eit + i)− ieit

8 − t e−it

4 − 1
2 + i


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x1(t)
x2(t)

 =

 (2 + i) c1eit

c1eit

+

 (2− i) c2e−it

c2e−it

+


(
1 + i

2

)
eit
(∫ t

0 e
−iτ (2i tan (τ)− i sin (τ) + tan (τ)) dτ

)
− 5 e−it ln

(
eit−i

)
2 + 5 e−it ln

(
eit+i

)
2 +

(
−1

2 +
i
4

)
t e−it + 5i

2 +
(
−1

8 −
i
4

)
eit

eit
(∫ t

0 e−iτ (2i tan(τ)−i sin(τ)+tan(τ))dτ
)

2 +
(
−1− i

2

)
e−it ln (eit − i) +

(
1 + i

2

)
e−it ln (eit + i)− ieit

8 − t e−it

4 − 1
2 + i


Which becomes x1(t)

x2(t)

 =


5i
2 +

(
1 + i

2

)
eit
(∫ t

0 e
−iτ (2i tan (τ)− i sin (τ) + tan (τ)) dτ

)
− 5 e−it ln

(
eit−i

)
2 + 5 e−it ln

(
eit+i

)
2 +

(1
2 −

i
4

)
(4c2 − t) e−it + (−1−2i+(16+8i)c1)eit

8

eit
(∫ t

0 e−iτ (2i tan(τ)−i sin(τ)+tan(τ))dτ
)

2 +
(
−1− i

2

)
e−it ln (eit − i) +

(
1 + i

2

)
e−it ln (eit + i) + (−2t+8c2)e−it

8 + (−i+8c1)eit
8 − 1

2 + i
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Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 0

x2(0) = 0

 (1)

Substituting initial conditions into the above solution at t = 0 gives 0
0

 =

 (2 + i) c1 + (2− i) c2 + 5iπ
4 − 1

8 +
9i
4(

−1
4 +

i
2

)
π − 1

2 +
7i
8 + c1 + c2


Solving for the constants of integrations gives c1 = 0

c2 = − i(2iπ+4π+4i+7)
8


Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =


5i
2 +

(
1 + i

2

)
eit
(∫ t

0 e
−iτ (2i tan (τ)− i sin (τ) + tan (τ)) dτ

)
− 5 e−it ln

(
eit−i

)
2 + 5 e−it ln

(
eit+i

)
2 +

(1
2 −

i
4

) (
− i(2iπ+4π+4i+7)

2 − t
)
e−it +

(
−1

8 −
i
4

)
eit

eit
(∫ t

0 e−iτ (2i tan(τ)−i sin(τ)+tan(τ))dτ
)

2 +
(
−1− i

2

)
e−it ln (eit − i) +

(
1 + i

2

)
e−it ln (eit + i) + (−2t−i(2iπ+4π+4i+7))e−it

8 − ieit
8 − 1

2 + i


The following are plots of each solution.

3 Solution by Maple
Time used: 0.187 (sec). Leaf size: 149� �
dsolve([diff(x__1(t),t) = 2*x__1(t)-5*x__2(t)+sin(t), diff(x__2(t),t) = x__1(t)-2*x__2(t)+tan(t), x__1(0) = 0, x__2(0) = 0], singsol=all)� �
x1(t) = −4 sin (t) + 5 cos (t) ln (sec (t) + tan (t))− cos (t) t+ sin (t) t

2
x2(t)

= 10 sin (t) ln (sec (t) + tan (t)) sec (t) + 20 cos (t) ln (sec (t) + tan (t)) sec (t)− 15 sin (t) sec (t)− 10 sec (t) cos (t) tan (t) + 10 cos (t) sec (t)− 5 cos (t) t sec (t) + 10 sin (t) ln (sec (t) + tan (t)) tan (t) + 20 cos (t) ln (sec (t) + tan (t)) tan (t)− 15 sin (t) tan (t)− 10 cos (t) tan (t)2 + 10 cos (t) tan (t)− 5 cos (t) t tan (t)− 10 cos (t)
10 sec (t) + 10 tan (t)
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3 Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 58� �
DSolve[{x1'[t]==2*x1[t]-5*x2[t]+Sin[t],x2'[t]==1*x1[t]-2*x2[t]+Tan[t]},{x1[0]==0,x2[0]==0},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 5 cos(t)arctanh(sin(t)) + 1
2(t− 8) sin(t)− t cos(t)

x2(t) → arctanh(sin(t))(sin(t) + 2 cos(t))− 3 sin(t)
2 − 1

2t cos(t) + cos(t)− 1
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4.6 problem 4
4.6.1 Solution using Matrix exponential method . . . . . . . . . . . . 401
4.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 403

Internal problem ID [1859]
Internal file name [OUTPUT/1860_Sunday_June_05_2022_02_35_44_AM_29637151/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x2(t) + f1(t)

x′
2(t) = −x1(t) + f2(t)

With initial conditions
[x1(0) = 0, x2(0) = 0]

4.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 0 1
−1 0

  x1(t)
x2(t)

+

 f1(t)
f2(t)


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation

401



of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =

 cos (t) sin (t)
− sin (t) cos (t)


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=

 cos (t) sin (t)
− sin (t) cos (t)

 0
0


=

 0
0


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=

 cos (t) − sin (t)
sin (t) cos (t)


Hence

~xp(t) =

 cos (t) sin (t)
− sin (t) cos (t)

∫  cos (t) − sin (t)
sin (t) cos (t)

 f1(t)
f2(t)

 dt

=

 cos (t) sin (t)
− sin (t) cos (t)

 ∫
(cos (t) f1(t)− sin (t) f2(t)) dt∫
(sin (t) f1(t) + cos (t) f2(t)) dt


=

 cos (t)
(∫

(cos (t) f1(t)− sin (t) f2(t)) dt
)
+ sin (t)

(∫
(sin (t) f1(t) + cos (t) f2(t)) dt

)
− sin (t)

(∫
(cos (t) f1(t)− sin (t) f2(t)) dt

)
+ cos (t)

(∫
(sin (t) f1(t) + cos (t) f2(t)) dt

)


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=

 cos (t)
(∫

(cos (t) f1(t)− sin (t) f2(t)) dt
)
+ sin (t)

(∫
(sin (t) f1(t) + cos (t) f2(t)) dt

)
− sin (t)

(∫
(cos (t) f1(t)− sin (t) f2(t)) dt

)
+ cos (t)

(∫
(sin (t) f1(t) + cos (t) f2(t)) dt

)
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4.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 0 1
−1 0

  x1(t)
x2(t)

+

 f1(t)
f2(t)


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 0 1
−1 0

− λ

 1 0
0 1

 = 0

Therefore

det

 −λ 1
−1 −λ

 = 0

Which gives the characteristic equation

λ2 + 1 = 0

The roots of the above are the eigenvalues.

λ1 = i

λ2 = −i

This table summarises the above result
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eigenvalue algebraic multiplicity type of eigenvalue

−i 1 complex eigenvalue

i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 0 1
−1 0

− (−i)

 1 0
0 1

 v1

v2

 =

 0
0


 i 1

−1 i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is  i 1 0

−1 i 0



R2 = −iR1 +R2 =⇒

i 1 0
0 0 0


Therefore the system in Echelon form is i 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = it}

Hence the solution is  I t
t

 =

 it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as I t

t

 = t

 i

1
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Let t = 1 the eigenvector becomes  I t
t

 =

 i

1


Considering the eigenvalue λ2 = i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 0 1
−1 0

− (i)

 1 0
0 1

 v1

v2

 =

 0
0


 −i 1

−1 −i

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −i 1 0

−1 −i 0



R2 = iR1 +R2 =⇒

−i 1 0
0 0 0


Therefore the system in Echelon form is −i 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −it}

Hence the solution is  -I t
t

 =

 −it

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as -I t

t

 = t

 −i

1



405



Let t = 1 the eigenvector becomes -I t
t

 =

 −i

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

i 1 1 No

 −i

1



−i 1 1 No

 i

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of
is if the eigenvalue is defective. Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 −ieit

eit

+ c2

 ie−it

e−it


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 −ieit ie−it

eit e−it
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The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =

 ie−it

2
e−it

2

− ieit
2

eit
2


Hence

~xp(t) =

 −ieit ie−it

eit e−it

∫  ie−it

2
e−it

2

− ieit
2

eit
2

 f1(t)
f2(t)

 dt

=

 −ieit ie−it

eit e−it

∫  e−it(if1(t)+f2(t))
2

eit(−if1(t)+f2(t))
2

 dt

=

 −ieit ie−it

eit e−it




∫ t

0

(
ie−iτf1(τ)

2 + e−iτf2(τ)
2

)
dτ∫ t

0

(
− ieiτf1(τ)

2 + eiτf2(τ)
2

)
dτ



=

 −
i
(
eit
(∫ t

0 e−iτ (if1(τ)+f2(τ))dτ
)
+e−it

(∫ t
0 eiτ (if1(τ)−f2(τ))dτ

))
2

eit
(∫ t

0 e−iτ (if1(τ)+f2(τ))dτ
)

2 −
e−it

(∫ t
0 eiτ (if1(τ)−f2(τ))dτ

)
2


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x1(t)
x2(t)

 =

 −ic1eit

c1eit

+

 ic2e−it

c2e−it

+

 −
i
(
eit
(∫ t

0 e−iτ (if1(τ)+f2(τ))dτ
)
+e−it

(∫ t
0 eiτ (if1(τ)−f2(τ))dτ

))
2

eit
(∫ t

0 e−iτ (if1(τ)+f2(τ))dτ
)

2 −
e−it

(∫ t
0 eiτ (if1(τ)−f2(τ))dτ

)
2


Which becomes x1(t)

x2(t)

 =

 −
i
(
eit
(∫ t

0 e−iτ (if1(τ)+f2(τ))dτ
)
+2c1eit+e−it

(∫ t
0 eiτ (if1(τ)−f2(τ))dτ

)
−2c2e−it

)
2

c1eit + c2e−it +
eit
(∫ t

0 e−iτ (if1(τ)+f2(τ))dτ
)

2 −
e−it

(∫ t
0 eiτ (if1(τ)−f2(τ))dτ

)
2
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Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions x1(0) = 0

x2(0) = 0

 (1)

Substituting initial conditions into the above solution at t = 0 gives 0
0

 =

 −i(c1 − c2)
c1 + c2


Solving for the constants of integrations gives c1 = 0

c2 = 0


Substituting these constants back in original solution in Eq. (1) gives

 x1(t)
x2(t)

 =

 −
i
(
eit
(∫ t

0 e−iτ (if1(τ)+f2(τ))dτ
)
+e−it

(∫ t
0 eiτ (if1(τ)−f2(τ))dτ

))
2

eit
(∫ t

0 e−iτ (if1(τ)+f2(τ))dτ
)

2 −
e−it

(∫ t
0 eiτ (if1(τ)−f2(τ))dτ

)
2


The following are plots of each solution.

3 Solution by Maple
Time used: 0.187 (sec). Leaf size: 101� �
dsolve([diff(x__1(t),t) = x__2(t)+f__1(t), diff(x__2(t),t) = -x__1(t)+f__2(t), x__1(0) = 0, x__2(0) = 0], singsol=all)� �

x1(t) = f1(0) sin (t) +
(∫ t

0
cos (_z1)

(
d

d_z1f1(_z1) + f2(_z1)
)
d_z1

)
sin (t)

−
(∫ t

0
sin (_z1)

(
d

d_z1f1(_z1) + f2(_z1)
)
d_z1

)
cos (t)

x2(t) = f1(0) cos (t) +
(∫ t

0
cos (_z1)

(
d

d_z1f1(_z1) + f2(_z1)
)
d_z1

)
cos (t)

+
(∫ t

0
sin (_z1)

(
d

d_z1f1(_z1) + f2(_z1)
)
d_z1

)
sin (t)− f1(t)
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3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 216� �
DSolve[{x1'[t]==0*x1[t]+1*x2[t]+f1[t],x2'[t]==-1*x1[t]-0*x2[t]+f2[t]},{x1[0]==0,x2[0]==0},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → − cos(t)
∫ 0

1
(cos(K[1])f1(K[1])− f2(K[1]) sin(K[1]))dK[1]

+ cos(t)
∫ t

1
(cos(K[1])f1(K[1])− f2(K[1]) sin(K[1]))dK[1]

+ sin(t)
(∫ t

1
(cos(K[2])f2(K[2]) + f1(K[2]) sin(K[2]))dK[2]

−
∫ 0

1
(cos(K[2])f2(K[2]) + f1(K[2]) sin(K[2]))dK[2]

)
x2(t) → sin(t)

∫ 0

1
(cos(K[1])f1(K[1])− f2(K[1]) sin(K[1]))dK[1]

− sin(t)
∫ t

1
(cos(K[1])f1(K[1])− f2(K[1]) sin(K[1]))dK[1]

+ cos(t)
(∫ t

1
(cos(K[2])f2(K[2]) + f1(K[2]) sin(K[2]))dK[2]

−
∫ 0

1
(cos(K[2])f2(K[2]) + f1(K[2]) sin(K[2]))dK[2]

)
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4.7 problem 5
4.7.1 Solution using Matrix exponential method . . . . . . . . . . . . 410
4.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 412

Internal problem ID [1860]
Internal file name [OUTPUT/1861_Sunday_June_05_2022_02_35_47_AM_16078708/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 2x1(t) + x3(t) + e2t

x′
2(t) = 2x2(t)

x′
3(t) = x2(t) + 3x3(t) + e2t

With initial conditions
[x1(0) = 1, x2(0) = 1, x3(0) = 1]

4.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


2 0 1
0 2 0
0 1 3




x1(t)
x2(t)
x3(t)

+


e2t

0
e2t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


e2t (−t− 1) e2t + e3t e3t − e2t

0 e2t 0
0 e3t − e2t e3t


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


e2t (−t− 1) e2t + e3t e3t − e2t

0 e2t 0
0 e3t − e2t e3t




1
1
1



=


(−t− 1) e2t + 2 e3t

e2t

−e2t + 2 e3t


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


e−2t (1 + et(t− 1)) e−3t −e−3t(et − 1)
0 e−2t 0
0 −e−3t(et − 1) e−3t
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Hence

~xp(t) =


e2t (−t− 1) e2t + e3t e3t − e2t

0 e2t 0
0 e3t − e2t e3t

∫ 
e−2t (1 + et(t− 1)) e−3t −e−3t(et − 1)
0 e−2t 0
0 −e−3t(et − 1) e−3t




e2t

0
e2t

 dt

=


e2t (−t− 1) e2t + e3t e3t − e2t

0 e2t 0
0 e3t − e2t e3t




−e−t

0
−e−t



=


−e2t

0
−e2t


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


e2t(−t− 2) + 2 e3t

e2t

−2 e2t + 2 e3t


4.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


2 0 1
0 2 0
0 1 3




x1(t)
x2(t)
x3(t)

+


e2t

0
e2t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




2 0 1
0 2 0
0 1 3

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




2− λ 0 1
0 2− λ 0
0 1 3− λ


 = 0

Which gives the characteristic equation

λ3 − 7λ2 + 16λ− 12 = 0

The roots of the above are the eigenvalues.

λ1 = 2
λ2 = 3

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


2 0 1
0 2 0
0 1 3

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 0 1
0 0 0
0 1 1




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 0 1 0
0 0 0 0
0 1 1 0


Since the current pivot A(1, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 3 gives

0 1 1 0
0 0 0 0
0 0 1 0


Since the current pivot A(2, 3) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

0 1 1 0
0 0 1 0
0 0 0 0


Therefore the system in Echelon form is

0 1 1
0 0 1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v1} and the leading variables are {v2, v3}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0}

Hence the solution is 
t

0
0

 =


t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0

 = t


1
0
0
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Let t = 1 the eigenvector becomes 
t

0
0

 =


1
0
0


Considering the eigenvalue λ2 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


2 0 1
0 2 0
0 1 3

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 0 1
0 −1 0
0 1 0




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 0 1 0
0 −1 0 0
0 1 0 0



R3 = R3 +R2 =⇒


−1 0 1 0
0 −1 0 0
0 0 0 0


Therefore the system in Echelon form is

−1 0 1
0 −1 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = 0}
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Hence the solution is 
t

0
t

 =


t

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
t

 = t


1
0
1


Let t = 1 the eigenvector becomes 

t

0
t

 =


1
0
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 2 1 Yes


1
0
0



3 1 1 No


1
0
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
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if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 22: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve


2 0 1
0 2 0
0 1 3

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


1
0
0




0 0 1
0 0 0
0 1 1




v1

v2

v3

 =


1
0
0
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Solving for ~v2 gives

~v2 =


1
−1
1


We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


1
0
0

 e2t

=


e2t

0
0


And

~x2(t) = (~v1t+ ~v2) eλt

=




1
0
0

 t+


1
−1
1


 e2t

=


e2t(t+ 1)

−e2t

e2t


Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
3t

=


1
0
1

 e3t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
x1(t)
x2(t)
x3(t)

 = c1


e2t

0
0

+ c2


e2t(t+ 1)

−e2t

e2t

+ c3


e3t

0
e3t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =


e2t e2t(t+ 1) e3t

0 −e2t 0
0 e2t e3t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =


e−2t t e−2t −e−2t

0 −e−2t 0
0 e−3t e−3t
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Hence

~xp(t) =


e2t e2t(t+ 1) e3t

0 −e2t 0
0 e2t e3t

∫ 
e−2t t e−2t −e−2t

0 −e−2t 0
0 e−3t e−3t




e2t

0
e2t

 dt

=


e2t e2t(t+ 1) e3t

0 −e2t 0
0 e2t e3t

∫ 
0
0
e−t

 dt

=


e2t e2t(t+ 1) e3t

0 −e2t 0
0 e2t e3t




0
0

−e−t



=


−e2t

0
−e2t


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t)
x1(t)
x2(t)
x3(t)

 =


c1e2t

0
0

+


c2e2t(t+ 1)

−c2e2t

c2e2t

+


c3e3t

0
c3e3t

+


−e2t

0
−e2t


Which becomes 

x1(t)
x2(t)
x3(t)

 =


((t+ 1) c2 + c1 − 1) e2t + c3e3t

−c2e2t

(c2 − 1) e2t + c3e3t


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = 1
x2(0) = 1
x3(0) = 1

 (1)
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Substituting initial conditions into the above solution at t = 0 gives
1
1
1

 =


c2 + c1 − 1 + c3

−c2

c2 − 1 + c3


Solving for the constants of integrations gives

c1 = 0
c2 = −1
c3 = 3


Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)

 =


e2t(−t− 2) + 3 e3t

e2t

3 e3t − 2 e2t


The following are plots of each solution against another.
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The following are plots of each solution.
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 45� �
dsolve([diff(x__1(t),t) = 2*x__1(t)+x__3(t)+exp(2*t), diff(x__2(t),t) = 2*x__2(t), diff(x__3(t),t) = x__2(t)+3*x__3(t)+exp(2*t), x__1(0) = 1, x__2(0) = 1, x__3(0) = 1], singsol=all)� �

x1(t) = (−t− 2) e2t + 3 e3t

x2(t) = e2t

x3(t) = −2 e2t + 3 e3t

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 45� �
DSolve[{x1'[t]==2*x1[t]+0*x2[t]+1*x3[t]+Exp[2*t],x2'[t]==0*x1[t]+2*x2[t]+0*x3[t],x3'[t]==0*x1[t]+1*x2[t]+3*x3[t]+Exp[2*t]},{x1[0]==1,x2[0]==1,x3[0]==1},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → e2t
(
−t+ 3et − 2

)
x2(t) → e2t

x3(t) → e2t
(
3et − 2

)
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4.8 problem 6
4.8.1 Solution using Matrix exponential method . . . . . . . . . . . . 424
4.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 426

Internal problem ID [1861]
Internal file name [OUTPUT/1862_Sunday_June_05_2022_02_35_50_AM_26128245/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −x1(t)− x2(t)− 2x3(t) + et

x′
2(t) = x1(t) + x2(t) + x3(t)

x′
3(t) = 2x1(t) + x2(t) + 3x3(t)

With initial conditions
[x1(0) = 0, x2(0) = 0, x3(0) = 0]

4.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−1 −1 −2
1 1 1
2 1 3




x1(t)
x2(t)
x3(t)

+


et

0
0


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

424



Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


et
(
1− 1

2t
2 − 2t

)
−t et − ett(t+4)

2

t et et t et
ett(t+4)

2 t et et
(
1 + 1

2t
2 + 2t

)


Therefore the homogeneous solution is

~xh(t) = eAt~x0

=


et
(
1− 1

2t
2 − 2t

)
−t et − ett(t+4)

2

t et et t et
ett(t+4)

2 t et et
(
1 + 1

2t
2 + 2t

)



0
0
0



=


0
0
0


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


−
(
t2−4t−2

)
e−t

2 t e−t − e−tt(t−4)
2

−t e−t e−t −t e−t

e−tt(t−4)
2 −t e−t

(
t2−4t+2

)
e−t

2
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Hence

~xp(t) =


et
(
1− 1

2t
2 − 2t

)
−t et − ett(t+4)

2

t et et t et
ett(t+4)

2 t et et
(
1 + 1

2t
2 + 2t

)

∫ 

−
(
t2−4t−2

)
e−t

2 t e−t − e−tt(t−4)
2

−t e−t e−t −t e−t

e−tt(t−4)
2 −t e−t

(
t2−4t+2

)
e−t

2




et

0
0

 dt

=


et
(
1− 1

2t
2 − 2t

)
−t et − ett(t+4)

2

t et et t et
ett(t+4)

2 t et et
(
1 + 1

2t
2 + 2t

)



− t
(
t2−6t−6

)
6

− t2

2
t2(t−6)

6



=


− ett

(
t2+6t−6

)
6

t2et
2

ett2(t+6)
6


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


− ett

(
t2+6t−6

)
6

t2et
2

ett2(t+6)
6


4.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−1 −1 −2
1 1 1
2 1 3




x1(t)
x2(t)
x3(t)

+


et

0
0


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−1 −1 −2
1 1 1
2 1 3

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−1− λ −1 −2
1 1− λ 1
2 1 3− λ


 = 0

Which gives the characteristic equation

λ3 − 3λ2 + 3λ− 1 = 0

The roots of the above are the eigenvalues.

λ1 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 −1 −2
1 1 1
2 1 3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 −1 −2
1 0 1
2 1 2




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 −1 −2 0
1 0 1 0
2 1 2 0



R2 = R2 +
R1

2 =⇒


−2 −1 −2 0
0 −1

2 0 0

2 1 2 0



R3 = R3 +R1 =⇒


−2 −1 −2 0
0 −1

2 0 0

0 0 0 0


Therefore the system in Echelon form is

−2 −1 −2
0 −1

2 0

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = 0}

Hence the solution is 
−t

0
t

 =


−t

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

0
t

 = t


−1
0
1
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Let t = 1 the eigenvector becomes
−t

0
t

 =


−1
0
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 3 1 Yes


−1
0
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 23: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence


−1 −1 −2
1 1 1
2 1 3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−1
0
1




−2 −1 −2
1 0 1
2 1 2




v1

v2

v3

 =


−1
0
1


Solving for ~v2 gives

~v2 =


−1
1
1


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


−1 −1 −2
1 1 1
2 1 3

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−1
1
1




−2 −1 −2
1 0 1
2 1 2




v1

v2

v3

 =


−1
1
1


Solving for ~v3 gives

~v3 =


0
−1
1


We have found three generalized eigenvectors for eigenvalue 1. Therefore the three basis
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solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


−1
0
1

 et

=


−et

0
et


And

~x2(t) = eλt(~v1t+ ~v2)

= et




−1
0
1

 t+


−1
1
1




=


−et(t+ 1)

et

et(t+ 1)


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




−1
0
1

 t2

2 +


−1
1
1

 t+


0
−1
1


 et

=


− ett(2+t)

2

et(t− 1)
et
(
t2+2t+2

)
2


Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)
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Which is written as
x1(t)
x2(t)
x3(t)

 = c1


−et

0
et

+ c2


(−t− 1) et

et

et(t+ 1)

+ c3


et
(
−1

2t
2 − t

)
et(t− 1)

et
(
t+ 1

2t
2 + 1

)


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =


−et (−t− 1) et et

(
−1

2t
2 − t

)
0 et et(t− 1)
et et(t+ 1) et

(
t+ 1

2t
2 + 1

)


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =


(
t2−2t−4

)
e−t

2 −e−t(t+ 1)
(
t2−2t−2

)
e−t

2

−(t− 1) e−t e−t −(t− 1) e−t

e−t 0 e−t
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Hence

~xp(t) =


−et (−t− 1) et et

(
−1

2t
2 − t

)
0 et et(t− 1)
et et(t+ 1) et

(
t+ 1

2t
2 + 1

)

∫ 

(
t2−2t−4

)
e−t

2 −e−t(t+ 1)
(
t2−2t−2

)
e−t

2

−(t− 1) e−t e−t −(t− 1) e−t

e−t 0 e−t




et

0
0

 dt

=


−et (−t− 1) et et

(
−1

2t
2 − t

)
0 et et(t− 1)
et et(t+ 1) et

(
t+ 1

2t
2 + 1

)

∫ 

1
2t

2 − t− 2

1− t

1

 dt

=


−et (−t− 1) et et

(
−1

2t
2 − t

)
0 et et(t− 1)
et et(t+ 1) et

(
t+ 1

2t
2 + 1

)



t
(
t2−3t−12

)
6

− t(t−2)
2

t



=


− ett

(
t2+6t−6

)
6

t2et
2

ett2(t+6)
6


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t)
x1(t)
x2(t)
x3(t)

 =


−c1et

0
c1et

+


c2(−t− 1) et

c2et

c2et(t+ 1)

+


c3et

(
−1

2t
2 − t

)
c3et(t− 1)

c3et
(
t+ 1

2t
2 + 1

)
+


− ett

(
t2+6t−6

)
6

t2et
2

ett2(t+6)
6


Which becomes 

x1(t)
x2(t)
x3(t)

 =


−
(
t3+(3c3+6)t2+(6c2+6c3−6)t+6c1+6c2

)
et

6

et
(
c2 + c3t− c3 + 1

2t
2)

et
(
t3+(3c3+6)t2+(6c2+6c3)t+6c1+6c2+6c3

)
6


Since initial conditions are given, the solution above needs to be updated by solving
for the constants of integrations using the given initial conditions

x1(0) = 0
x2(0) = 0
x3(0) = 0

 (1)
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Substituting initial conditions into the above solution at t = 0 gives
0
0
0

 =


−c1 − c2

c2 − c3

c1 + c2 + c3


Solving for the constants of integrations gives

c1 = 0
c2 = 0
c3 = 0


Substituting these constants back in original solution in Eq. (1) gives


x1(t)
x2(t)
x3(t)

 =


−
(
t3+6t2−6t

)
et

6
t2et
2

et
(
t3+6t2

)
6


The following are plots of each solution against another.
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The following are plots of each solution.
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 47� �
dsolve([diff(x__1(t),t) = -x__1(t)-x__2(t)-2*x__3(t)+exp(t), diff(x__2(t),t) = x__1(t)+x__2(t)+x__3(t), diff(x__3(t),t) = 2*x__1(t)+x__2(t)+3*x__3(t), x__1(0) = 0, x__2(0) = 0, x__3(0) = 0], singsol=all)� �

x1(t) = −et(t3 + 6t2 − 6t)
6

x2(t) =
t2et
2

x3(t) =
(t3 + 6t2) et

6

3 Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 50� �
DSolve[{x1'[t]==-1*x1[t]-1*x2[t]-2*x3[t]+Exp[t],x2'[t]==1*x1[t]+1*x2[t]+1*x3[t],x3'[t]==2*x1[t]+1*x2[t]+3*x3[t]},{x1[0]==0,x2[0]==0,x3[0]==0},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → −1
6e

tt
(
t2 + 6t− 6

)
x2(t) → ett2

2
x3(t) → 1

6e
tt2(t+ 6)
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4.9 problem 10
4.9.1 Solution using Matrix exponential method . . . . . . . . . . . . 438
4.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 440
4.9.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 446

Internal problem ID [1862]
Internal file name [OUTPUT/1863_Sunday_June_05_2022_02_35_53_AM_74684757/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 2x1(t) + x2(t) + e3t

x′
2(t) = 3x1(t)− 2x2(t) + e3t

4.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 2 1
3 −2

  x1(t)
x2(t)

+

 e3t

e3t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
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of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


(
−2

√
7+7

)
e−

√
7 t

14 +
e
√
7 t
(
2
√
7+7

)
14

(
−e−

√
7 t+e

√
7 t
)√

7
14

3
(
−e−

√
7 t+e

√
7 t
)√

7
14

(
2
√
7+7

)
e−

√
7 t

14 +
(
−2

√
7+7

)
e
√
7 t

14


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(
−2

√
7+7

)
e−

√
7 t

14 +
e
√
7 t
(
2
√
7+7

)
14

(
−e−

√
7 t+e

√
7 t
)√

7
14

3
(
−e−

√
7 t+e

√
7 t
)√

7
14

(
2
√
7+7

)
e−

√
7 t

14 +
(
−2

√
7+7

)
e
√
7 t

14


 c1

c2



=


((

−2
√
7+7

)
e−

√
7 t

14 +
e
√
7 t
(
2
√
7+7

)
14

)
c1 +

(
−e−

√
7 t+e

√
7 t
)√

7 c2
14

3
(
−e−

√
7 t+e

√
7 t
)√

7 c1
14 +

((
2
√
7+7

)
e−

√
7 t

14 +
(
−2

√
7+7

)
e
√
7 t

14

)
c2



=


(
(−2c1−c2)

√
7+7c1

)
e−

√
7 t

14 +
((

c1+ c2
2
)√

7+ 7c1
2

)
e
√
7 t

7(
(−3c1+2c2)

√
7+7c2

)
e−

√
7 t

14 +
3
((

c1− 2c2
3

)√
7+ 7c2

3

)
e
√
7 t

14


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


(
2
√
7+7

)
e−

√
7 t

14 +
(
−2

√
7+7

)
e
√
7 t

14 −
(
−e−

√
7 t+e

√
7 t
)√

7
14

−
3
(
−e−

√
7 t+e

√
7 t
)√

7
14

(
−2

√
7+7

)
e−

√
7 t

14 +
e
√
7 t
(
2
√
7+7

)
14
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Hence

~xp(t) =


(
−2

√
7+7

)
e−

√
7 t

14 +
e
√

7 t
(
2
√
7+7

)
14

(
−e−

√
7 t+e

√
7 t
)√

7
14

3
(
−e−

√
7 t+e

√
7 t
)√

7
14

(
2
√
7+7

)
e−

√
7 t

14 +
(
−2

√
7+7

)
e
√
7 t

14

∫ 
(
2
√
7+7

)
e−

√
7 t

14 +
(
−2

√
7+7

)
e
√

7 t

14 −
(
−e−

√
7 t+e

√
7 t
)√

7
14

−
3
(
−e−

√
7 t+e

√
7 t
)√

7
14

(
−2

√
7+7

)
e−

√
7 t

14 +
e
√

7 t
(
2
√
7+7

)
14


 e3t

e3t

 dt

=


(
−2

√
7+7

)
e−

√
7 t

14 +
e
√

7 t
(
2
√
7+7

)
14

(
−e−

√
7 t+e

√
7 t
)√

7
14

3
(
−e−

√
7 t+e

√
7 t
)√

7
14

(
2
√
7+7

)
e−

√
7 t

14 +
(
−2

√
7+7

)
e
√
7 t

14


 4

√
7 e−t

(
−3+

√
7
)

7 − 4
√
7 et

(
3+

√
7
)

7 + 3 e−t
(
−3+

√
7
)

2 + 3 et
(
3+

√
7
)

2

5
√
7 e−t

(
−3+

√
7
)

14 − 5
√
7 et

(
3+

√
7
)

14 + e−t
(
−3+

√
7
)
+ et

(
3+

√
7
)


=

 3 e3t

2 e3t


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


(
(−2c1−c2)

√
7+7c1

)
e−

√
7 t

14 +
(
(2c1+c2)

√
7+7c1

)
e
√
7 t

14 + 3 e3t(
(−3c1+2c2)

√
7+7c2

)
e−

√
7 t

14 +
(
(3c1−2c2)

√
7+7c2

)
e
√
7 t

14 + 2 e3t


4.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 2 1
3 −2

  x1(t)
x2(t)

+

 e3t

e3t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0
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Expanding gives

det

 2 1
3 −2

− λ

 1 0
0 1

 = 0

Therefore

det

 2− λ 1
3 −2− λ

 = 0

Which gives the characteristic equation

λ2 − 7 = 0

The roots of the above are the eigenvalues.

λ1 =
√
7

λ2 = −
√
7

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue
√
7 1 real eigenvalue

−
√
7 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 =
√
7

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 2 1
3 −2

−
(√

7
) 1 0

0 1

 v1

v2

 =

 0
0


 2−

√
7 1

3 −2−
√
7

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 2−√

7 1 0
3 −2−

√
7 0
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R2 = R2 −
3R1

2−
√
7
=⇒

2−√
7 1 0

0 0 0


Therefore the system in Echelon form is 2−

√
7 1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = t√

7−2

}
Hence the solution is  t√

7−2

t

 =

 t√
7−2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as t√

7−2

t

 = t

 1√
7−2

1


Let t = 1 the eigenvector becomes t√

7−2

t

 =

 1√
7−2

1


Considering the eigenvalue λ2 = −

√
7

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 2 1
3 −2

−
(
−
√
7
) 1 0

0 1

 v1

v2

 =

 0
0


 √

7 + 2 1
3

√
7− 2

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is √7 + 2 1 0

3
√
7− 2 0
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R2 = R2 −
3R1√
7 + 2

=⇒

√7 + 2 1 0
0 0 0


Therefore the system in Echelon form is √

7 + 2 1
0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation

{
v1 = − t√

7+2

}
Hence the solution is  − t√

7+2

t

 =

 − t√
7+2

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as − t√

7+2

t

 = t

 − 1√
7+2

1


Let t = 1 the eigenvector becomes − t√

7+2

t

 =

 − 1√
7+2

1


Which is normalized to  − t√

7+2

t

 =

 − 1√
7+2

1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

√
7 1 1 No

 1√
7−2

1



−
√
7 1 1 No

 1
−2−

√
7

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue

√
7 is real and distinct then the

corresponding eigenvector solution is

~x1(t) = ~v1e
√
7 t

=

 1√
7−2

1

 e
√
7 t

Since eigenvalue −
√
7 is real and distinct then the corresponding eigenvector solution

is

~x2(t) = ~v2e
−
√
7 t

=

 1
−2−

√
7

1

 e−
√
7 t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 e
√
7 t

√
7−2

e
√
7 t

+ c2

 e−
√
7 t

−2−
√
7

e−
√
7 t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
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Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 e
√
7 t

√
7−2

e−
√
7 t

−2−
√
7

e
√
7 t e−

√
7 t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =

 3
√
7 e−

√
7 t

14

√
7
(√

7−2
)
e−

√
7 t

14

−3
√
7 e

√
7 t

14

√
7 e

√
7 t
(√

7+2
)

14


Hence

~xp(t) =

 e
√
7 t

√
7−2

e−
√
7 t

−2−
√
7

e
√
7 t e−

√
7 t

∫  3
√
7 e−

√
7 t

14

√
7
(√

7−2
)
e−

√
7 t

14

−3
√
7 e

√
7 t

14

√
7 e

√
7 t
(√

7+2
)

14


 e3t

e3t

 dt

=

 e
√
7 t

√
7−2

e−
√
7 t

−2−
√
7

e
√
7 t e−

√
7 t

∫ 
e−t

(
−3+

√
7
)(√

7+7
)

14

−
et

(
3+

√
7
)(√

7−7
)

14

 dt

=

 e
√
7 t

√
7−2

e−
√
7 t

−2−
√
7

e
√
7 t e−

√
7 t




√
7 e−t

(
−3+

√
7
)(

1+
√
7
)(

3+
√
7
)

28

−
√
7 et

(
3+

√
7
)(

−3+
√
7
)(

−1+
√
7
)

28


=

 3 e3t

2 e3t


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x1(t)
x2(t)

 =

 c1e
√
7 t

√
7−2

c1e
√
7 t

+

 c2e−
√
7 t

−2−
√
7

c2e−
√
7 t

+

 3 e3t

2 e3t
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Which becomes x1(t)
x2(t)

 =

 −
c2
(√

7−2
)
e−

√
7 t

3 +
c1
(√

7+2
)
e
√
7 t

3 + 3 e3t

c1e
√
7 t + c2e−

√
7 t + 2 e3t


4.9.3 Maple step by step solution

Let’s solve[
x′
1(t) = 2x1(t) + x2(t) + (et)3 , x′

2(t) = 3x1(t)− 2x2(t) + (et)3
]

• Define vector

→x__(t) =

 x1(t)
x2(t)


• Convert system into a vector equation

→x__
′
(t) =

 2 1
3 −2

 · →x__(t) +

 (et)3

(et)3


• System to solve

→x__
′
(t) =

 2 1
3 −2

 · →x__(t) +

 (et)3

(et)3


• Define the forcing function

→
f (t) =

 (et)3

(et)3


• Define the coefficient matrix

A =

 2 1
3 −2


• Rewrite the system as

→x__
′
(t) = A · →x__(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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√7,

 1√
7−2

1

 ,

−√
7,

 1
−2−

√
7

1


• Consider eigenpair√7,

 1√
7−2

1


• Solution to homogeneous system from eigenpair

→x__1 = e
√
7 t ·

 1√
7−2

1


• Consider eigenpair−√

7,

 1
−2−

√
7

1


• Solution to homogeneous system from eigenpair

→x__2 = e−
√
7 t ·

 1
−2−

√
7

1


• General solution of the system of ODEs can be written in terms of the particular solution →x__p(t)

→x__(t) = c1
→x__1 + c2

→x__2 +
→x__p(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =

 e
√
7 t

√
7−2

e−
√
7 t

−2−
√
7

e
√
7 t e−

√
7 t


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)

Φ(t) =

 e
√

7 t
√
7−2

e−
√
7 t

−2−
√
7

e
√
7 t e−

√
7 t

 · 1
1√
7−2

1
−2−

√
7

1 1
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◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =


((√

7−2
)
e−

√
7 t+e

√
7 t
(√

7+2
))√

7
14

(
−e−

√
7 t+e

√
7 t
)√

7
14

3
(
−e−

√
7 t+e

√
7 t
)√

7
14

(
2
√
7+7

)
e−

√
7 t

14 +
(
−2

√
7+7

)
e
√
7 t

14


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→x__p(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→x__

′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→x__p(t) = Φ(t) ·
(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→x__p(t) =


(
−21+8

√
7
)
e−

√
7 t

14 +
(
−21−8

√
7
)
e
√
7 t

14 + 3 e3t

2 e3t − 5
√
7 e

√
7 t

14 + 5
√
7 e−

√
7 t

14 − e
√
7 t − e−

√
7 t


• Plug particular solution back into general solution
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→x__(t) = c1
→x__1 + c2

→x__2 +


(
−21+8

√
7
)
e−

√
7 t

14 +
(
−21−8

√
7
)
e
√
7 t

14 + 3 e3t

2 e3t − 5
√
7 e

√
7 t

14 + 5
√
7 e−

√
7 t

14 − e
√
7 t − e−

√
7 t


• Substitute in vector of dependent variables x1(t)

x2(t)

 =


(
(−14c2+24)

√
7+28c2−63

)
e−

√
7 t

42 +
(
(14c1−24)

√
7+28c1−63

)
e
√
7 t

42 + 3 e3t(
14c2+5

√
7−14

)
e−

√
7 t

14 +
(
14c1−5

√
7−14

)
e
√
7 t

14 + 2 e3t


• Solution to the system of ODEs{

x1(t) =
(
(−14c2+24)

√
7+28c2−63

)
e−

√
7 t

42 +
(
(14c1−24)

√
7+28c1−63

)
e
√
7 t

42 + 3 e3t, x2(t) =
(
14c2+5

√
7−14

)
e−

√
7 t

14 +
(
14c1−5

√
7−14

)
e
√

7 t

14 + 2 e3t
}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 82� �
dsolve([diff(x__1(t),t)=2*x__1(t)+1*x__2(t)+1*exp(3*t),diff(x__2(t),t)=3*x__1(t)-2*x__2(t)+exp(3*t)],singsol=all)� �

x1(t) = e
√
7 tc2 + e−

√
7 tc1 + 3 e3t

x2(t) =
√
7 e

√
7 tc2 −

√
7 e−

√
7 tc1 + 2 e3t − 2 e

√
7 tc2 − 2 e−

√
7 tc1

3 Solution by Mathematica
Time used: 0.411 (sec). Leaf size: 171� �
DSolve[{x1'[t]==2*x1[t]+1*x2[t]+Exp[3*t],x2'[t]==3*x1[t]-2*x2[t]+Exp[3*t]},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �
x1(t) → 1

14e
−
√
7t
(
42e

(
3+

√
7
)
t +

((
7 + 2

√
7
)
c1 +

√
7c2

)
e2

√
7t +

(
7− 2

√
7
)
c1 −

√
7c2

)
x2(t)→ 1

14e
−
√
7t
(
28e

(
3+

√
7
)
t+

(
3
√
7c1+

(
7−2

√
7
)
c2
)
e2

√
7t−3

√
7c1+

(
7+2

√
7
)
c2

)
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4.10 problem 11
4.10.1 Solution using Matrix exponential method . . . . . . . . . . . . 450
4.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 452
4.10.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 457

Internal problem ID [1863]
Internal file name [OUTPUT/1864_Sunday_June_05_2022_02_35_56_AM_70867750/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t)− x2(t)− t2

x′
2(t) = x1(t) + 3x2(t) + 2t

4.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 1 −1
1 3

  x1(t)
x2(t)

+

 −t2

2t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
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of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =

 e2t(1− t) −e2tt
e2tt e2t(t+ 1)


Therefore the homogeneous solution is

~xh(t) = eAt~c

=

 e2t(1− t) −e2tt
e2tt e2t(t+ 1)

 c1

c2


=

 e2t(1− t) c1 − e2ttc2
e2ttc1 + e2t(t+ 1) c2


=

 −(c1(t− 1) + c2t) e2t

e2t(tc1 + c2t+ c2)


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=

 e−2t(t+ 1) t e−2t

−t e−2t −e−2t(t− 1)


Hence

~xp(t) =

 e2t(1− t) −e2tt
e2tt e2t(t+ 1)

∫  e−2t(t+ 1) t e−2t

−t e−2t −e−2t(t− 1)

 −t2

2t

 dt

=

 e2t(1− t) −e2tt
e2tt e2t(t+ 1)

 e−2t(4t3+2t2+2t+1
)

8

− e−2t(4t3−2t2+6t+3
)

8


=

 1
2t+

1
8 +

3
4t

2

−1
4t

2 − t− 3
8
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Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=

 1
8 + ((−c1 − c2) t+ c1) e2t + 3t2

4 + t
2

−3
8 + ((c1 + c2) t+ c2) e2t − t2

4 − t


4.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or  x′
1(t)

x′
2(t)

 =

 1 −1
1 3

  x1(t)
x2(t)

+

 −t2

2t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det

 1 −1
1 3

− λ

 1 0
0 1

 = 0

Therefore

det

 1− λ −1
1 3− λ

 = 0

Which gives the characteristic equation

λ2 − 4λ+ 4 = 0
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The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes 1 −1
1 3

− (2)

 1 0
0 1

 v1

v2

 =

 0
0


 −1 −1

1 1

 v1

v2

 =

 0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is −1 −1 0

1 1 0



R2 = R2 +R1 =⇒

−1 −1 0
0 0 0


Therefore the system in Echelon form is −1 −1

0 0

 v1

v2

 =

 0
0


The free variables are {v2} and the leading variables are {v1}. Let v2 = t. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables gives equation {v1 = −t}

Hence the solution is  −t

t

 =

 −t

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as −t

t

 = t

 −1
1


Let t = 1 the eigenvector becomes −t

t

 =

 −1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 2 1 Yes

 −1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
2.There are two possible cases that can happen. This is illustrated in this diagram
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λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 24: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 1. This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector ~v2 by solving

(A− λI)~v2 = ~v1

Where ~v1 is the normal (rank 1) eigenvector found above. Hence we need to solve 1 −1
1 3

− (2)

 1 0
0 1

 v1

v2

 =

 −1
1


 −1 −1

1 1

 v1

v2

 =

 −1
1


Solving for ~v2 gives

~v2 =

 0
1
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We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis
solution associated with this eigenvalue are

~x1(t) = ~v1e
λt

=

 −1
1

 e2t

=

 −e2t

e2t


And

~x2(t) = (~v1t+ ~v2) eλt

=

 −1
1

 t+

 0
1

 e2t

=

 −e2tt
e2t(t+ 1)


Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t)

Which is written as  x1(t)
x2(t)

 = c1

 −e2t

e2t

+ c2

 −e2tt
e2t(t+ 1)


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =

 −e2t −e2tt
e2t e2t(t+ 1)


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt
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But

Φ−1 =

 −e−2t(t+ 1) −t e−2t

e−2t e−2t


Hence

~xp(t) =

 −e2t −e2tt
e2t e2t(t+ 1)

∫  −e−2t(t+ 1) −t e−2t

e−2t e−2t

 −t2

2t

 dt

=

 −e2t −e2tt
e2t e2t(t+ 1)

∫  e−2tt2(t− 1)
−e−2tt(t− 2)

 dt

=

 −e2t −e2tt
e2t e2t(t+ 1)

 − e−2t(4t3+2t2+2t+1
)

8(
2t2−2t−1

)
e−2t

4


=

 1
2t+

1
8 +

3
4t

2

−1
4t

2 − t− 3
8


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t) x1(t)
x2(t)

 =

 −c1e2t

c1e2t

+

 −c2e2tt
c2e2t(t+ 1)

+

 1
2t+

1
8 +

3
4t

2

−1
4t

2 − t− 3
8


Which becomes  x1(t)

x2(t)

 =

 1
8 + (−tc2 − c1) e2t + 3t2

4 + t
2

−3
8 + (tc2 + c1 + c2) e2t − t2

4 − t


4.10.3 Maple step by step solution

Let’s solve
[x′

1(t) = x1(t)− x2(t)− t2, x′
2(t) = x1(t) + 3x2(t) + 2t]

• Define vector
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→x__(t) =

 x1(t)
x2(t)


• Convert system into a vector equation

→x__
′
(t) =

 1 −1
1 3

 · →x__(t) +

 −t2

2t


• System to solve

→x__
′
(t) =

 1 −1
1 3

 · →x__(t) +

 −t2

2t


• Define the forcing function

→
f (t) =

 −t2

2t


• Define the coefficient matrix

A =

 1 −1
1 3


• Rewrite the system as

→x__
′
(t) = A · →x__(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A2,

 −1
1

 ,

2,
 0

0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 22,

 −1
1


• First solution from eigenvalue 2

→x__1(t) = e2t ·

 −1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 2 is the eigenvalue, and →
v is the eigenvector
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→x__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 2

• Substitute →x__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →x__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 2 1 −1

1 3

− 2 ·

 1 0
0 1

 · →p =

 −1
1


• Choice of →

p

→
p =

 1
0


• Second solution from eigenvalue 2

→x__2(t) = e2t ·

t ·

 −1
1

+

 1
0


• General solution of the system of ODEs can be written in terms of the particular solution →x__p(t)

→x__(t) = c1
→x__1(t) + c2

→x__2(t) +
→x__p(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =

 −e2t e2t(1− t)
e2t e2tt
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◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix
Φ(t) = φ(t) · 1

φ(0)

◦ Substitute the value of φ(t) and φ(0)

Φ(t) =

 −e2t e2t(1− t)
e2t e2tt

 · 1 −1 1
1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =

 −e2t(t− 1) −e2tt
e2tt e2t(t+ 1)


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→x__p(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→x__

′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→x__p(t) = Φ(t) ·
(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute
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→x__p(t) =

 (−2t−1)e2t
8 + 3t2

4 + t
2 +

1
8

e2t(2t+3)
8 − t2

4 − t− 3
8


• Plug particular solution back into general solution

→x__(t) = c1
→x__1(t) + c2

→x__2(t) +

 (−2t−1)e2t
8 + 3t2

4 + t
2 +

1
8

e2t(2t+3)
8 − t2

4 − t− 3
8


• Substitute in vector of dependent variables x1(t)

x2(t)

 =

 ((−8c2−2)t−8c1+8c2−1)e2t
8 + 3t2

4 + t
2 +

1
8

((8c2+2)t+8c1+3)e2t
8 − t2

4 − t− 3
8


• Solution to the system of ODEs{

x1(t) = ((−8c2−2)t−8c1+8c2−1)e2t
8 + 3t2

4 + t
2 +

1
8 , x2(t) = ((8c2+2)t+8c1+3)e2t

8 − t2

4 − t− 3
8

}

3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 63� �
dsolve([diff(x__1(t),t)=1*x__1(t)-1*x__2(t)-t^2,diff(x__2(t),t)=1*x__1(t)+3*x__2(t)+2*t],singsol=all)� �

x1(t) = c2e2t + e2ttc1 +
3t2
4 + t

2 + 1
8

x2(t) = −t2

4 − c2e2t − e2ttc1 − t− 3
8 − c1e2t

3 Solution by Mathematica
Time used: 0.27 (sec). Leaf size: 94� �
DSolve[{x1'[t]==1*x1[t]+3*x2[t]-t^2,x2'[t]==1*x1[t]+3*x2[t]+2*t},{x1[t],x2[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
128

(
−32t3 − 88t2 − 44t+ 32c1

(
e4t + 3

)
+ 96c2e4t − 11− 96c2

)
x2(t) → 1

384
(
32t3 + 120t2 − 132t+ 96c1

(
e4t − 1

)
+ 288c2e4t − 33 + 96c2

)
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4.11 problem 12
4.11.1 Solution using Matrix exponential method . . . . . . . . . . . . 462
4.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 464
4.11.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 474

Internal problem ID [1864]
Internal file name [OUTPUT/1865_Sunday_June_05_2022_02_35_58_AM_55583981/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + 3x2(t) + 2x3(t) + sin (t)

x′
2(t) = −x1(t) + 2x2(t) + x3(t)

x′
3(t) = 4x1(t)− x2(t)− x3(t)

4.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 3 2
−1 2 1
4 −1 −1




x1(t)
x2(t)
x3(t)

+


sin (t)
0
0


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


(
3 e5t+e3t+2

)
e−2t

6

(
3 e5t−2 e3t−1

)
e−2t

3 −
(
−3 e5t+e3t+2

)
e−2t

6

−
(
e3t−1

)
e−2t

3

(
4 e3t−1

)
e−2t

3

(
e3t−1

)
e−2t

3(
e5t+e3t−2

)
e−2t

2 (e5t − 2 e3t + 1) e−2t
(
e5t−e3t+2

)
e−2t

2


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


(
3 e5t+e3t+2

)
e−2t

6

(
3 e5t−2 e3t−1

)
e−2t

3 −
(
−3 e5t+e3t+2

)
e−2t

6

−
(
e3t−1

)
e−2t

3

(
4 e3t−1

)
e−2t

3

(
e3t−1

)
e−2t

3(
e5t+e3t−2

)
e−2t

2 (e5t − 2 e3t + 1) e−2t
(
e5t−e3t+2

)
e−2t

2




c1

c2

c3



=


(
3 e5t+e3t+2

)
e−2tc1

6 +
(
3 e5t−2 e3t−1

)
e−2tc2

3 −
(
−3 e5t+e3t+2

)
e−2tc3

6

−
(
e3t−1

)
e−2tc1

3 +
(
4 e3t−1

)
e−2tc2

3 +
(
e3t−1

)
e−2tc3

3(
e5t+e3t−2

)
e−2tc1

2 + (e5t − 2 e3t + 1) e−2tc2 +
(
e5t−e3t+2

)
e−2tc3

2



=


(
(c1−4c2−c3)e3t+(3c1+6c2+3c3)e5t+2c1−2c2−2c3

)
e−2t

6

−
(
(c1−4c2−c3)e3t−c1+c2+c3

)
e−2t

3(
(c1−4c2−c3)e3t+(c1+2c2+c3)e5t−2c1+2c2+2c3

)
e−2t

2


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


(
2 e5t+e2t+3

)
e−3t

6 −
(
e5t+2 e2t−3

)
e−3t

3 −
(
2 e5t+e2t−3

)
e−3t

6
e2t
3 − e−t

3
4 e−t

3 − e2t
3 − e2t

3 + e−t

3(
−2 e5t+e2t+1

)
e−3t

2 (e5t − 2 e2t + 1) e−3t −
(
−2 e5t+e2t−1

)
e−3t

2
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Hence

~xp(t) =


(
3 e5t+e3t+2

)
e−2t

6

(
3 e5t−2 e3t−1

)
e−2t

3 −
(
−3 e5t+e3t+2

)
e−2t

6

−
(
e3t−1

)
e−2t

3

(
4 e3t−1

)
e−2t

3

(
e3t−1

)
e−2t

3(
e5t+e3t−2

)
e−2t

2 (e5t − 2 e3t + 1) e−2t
(
e5t−e3t+2

)
e−2t

2


∫ 

(
2 e5t+e2t+3

)
e−3t

6 −
(
e5t+2 e2t−3

)
e−3t

3 −
(
2 e5t+e2t−3

)
e−3t

6
e2t
3 − e−t

3
4 e−t

3 − e2t
3 − e2t

3 + e−t

3(
−2 e5t+e2t+1

)
e−3t

2 (e5t − 2 e2t + 1) e−3t −
(
−2 e5t+e2t−1

)
e−3t

2




sin (t)
0
0

 dt

=


(
3 e5t+e3t+2

)
e−2t

6

(
3 e5t−2 e3t−1

)
e−2t

3 −
(
−3 e5t+e3t+2

)
e−2t

6

−
(
e3t−1

)
e−2t

3

(
4 e3t−1

)
e−2t

3

(
e3t−1

)
e−2t

3(
e5t+e3t−2

)
e−2t

2 (e5t − 2 e3t + 1) e−2t
(
e5t−e3t+2

)
e−2t

2




−

(
(cos(t)+sin(t))e2t+ 4(cos(t)−2 sin(t))e5t

5 + 3 cos(t)
5 + 9 sin(t)

5

)
e−3t

12
e−t(cos(t)+sin(t))

6 − e2t(cos(t)−2 sin(t))
15

−

(
(cos(t)+sin(t))e2t+ 4(− cos(t)+2 sin(t))e5t

5 + cos(t)
5 + 3 sin(t)

5

)
e−3t

4



=


− sin(t)

10 − cos(t)
5

3 sin(t)
10 + cos(t)

10

−4 sin(t)
5 − cos(t)

10


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=



(
(c1−4c2−c3)e

3t
3 +(c1+2c2+c3)e5t+ (− sin(t)−2 cos(t))e2t

5 + 2c1
3 − 2c2

3 − 2c3
3

)
e−2t

2

−
e−2t

(
(c1−4c2−c3)e3t+ 3(− cos(t)−3 sin(t))e2t

10 −c1+c2+c3

)
3(

(c1−4c2−c3)e3t+(c1+2c2+c3)e5t+ (−8 sin(t)−cos(t))e2t
5 −2c1+2c2+2c3

)
e−2t

2


4.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 3 2
−1 2 1
4 −1 −1




x1(t)
x2(t)
x3(t)

+


sin (t)
0
0


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 3 2
−1 2 1
4 −1 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1− λ 3 2
−1 2− λ 1
4 −1 −1− λ


 = 0

Which gives the characteristic equation

λ3 − 2λ2 − 5λ+ 6 = 0

The roots of the above are the eigenvalues.

λ1 = 3
λ2 = −2
λ3 = 1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

1 1 real eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 3 2
−1 2 1
4 −1 −1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




3 3 2
−1 4 1
4 −1 1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

3 3 2 0
−1 4 1 0
4 −1 1 0



R2 = R2 +
R1

3 =⇒


3 3 2 0
0 5 5

3 0

4 −1 1 0



R3 = R3 −
4R1

3 =⇒


3 3 2 0
0 5 5

3 0

0 −5 −5
3 0



R3 = R3 +R2 =⇒


3 3 2 0
0 5 5

3 0

0 0 0 0


Therefore the system in Echelon form is

3 3 2
0 5 5

3

0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = − t

3 , v2 = − t
3

}
Hence the solution is 

− t
3

− t
3

t

 =


− t

3

− t
3

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

− t
3

− t
3

t

 = t


−1

3

−1
3

1


Let t = 1 the eigenvector becomes

− t
3

− t
3

t

 =


−1

3

−1
3

1


Which is normalized to 

− t
3

− t
3

t

 =


−1
−1
3


Considering the eigenvalue λ2 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 3 2
−1 2 1
4 −1 −1

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 3 2
−1 1 1
4 −1 −2




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 3 2 0
−1 1 1 0
4 −1 −2 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 1 and row 2 gives

−1 1 1 0
0 3 2 0
4 −1 −2 0



R3 = R3 + 4R1 =⇒


−1 1 1 0
0 3 2 0
0 3 2 0



R3 = R3 −R2 =⇒


−1 1 1 0
0 3 2 0
0 0 0 0


Therefore the system in Echelon form is

−1 1 1
0 3 2
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

3 , v2 = −2t
3

}
Hence the solution is 

t
3

−2t
3

t

 =


t
3

−2t
3

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
3

−2t
3

t

 = t


1
3

−2
3

1


Let t = 1 the eigenvector becomes

t
3

−2t
3

t

 =


1
3

−2
3

1


Which is normalized to 

t
3

−2t
3

t

 =


1
−2
3


Considering the eigenvalue λ3 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 3 2
−1 2 1
4 −1 −1

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 3 2
−1 −1 1
4 −1 −4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 3 2 0
−1 −1 1 0
4 −1 −4 0



R2 = R2 −
R1

2 =⇒


−2 3 2 0
0 −5

2 0 0

4 −1 −4 0
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R3 = R3 + 2R1 =⇒


−2 3 2 0
0 −5

2 0 0

0 5 0 0



R3 = R3 + 2R2 =⇒


−2 3 2 0
0 −5

2 0 0

0 0 0 0


Therefore the system in Echelon form is

−2 3 2
0 −5

2 0

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = 0}

Hence the solution is 
t

0
t

 =


t

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
t

 = t


1
0
1


Let t = 1 the eigenvector becomes 

t

0
t

 =


1
0
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
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with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

3 1 1 No


1
0
1



−2 1 1 No


−1

3

−1
3

1



1 1 1 No


1
3

−2
3

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
3t

=


1
0
1

 e3t

Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−2t

=


−1

3

−1
3

1

 e−2t
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Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
t

=


1
3

−2
3

1

 et

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


e3t

0
e3t

+ c2


− e−2t

3

− e−2t

3

e−2t

+ c3


et
3

−2 et
3

et


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =


e3t − e−2t

3
et
3

0 − e−2t

3 −2 et
3

e3t e−2t et


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =


e−3t

2 e−3t e−3t

2

−e2t e2t e2t
e−t

2 −2 e−t − e−t

2
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Hence

~xp(t) =


e3t − e−2t

3
et
3

0 − e−2t

3 −2 et
3

e3t e−2t et


∫ 

e−3t

2 e−3t e−3t

2

−e2t e2t e2t
e−t

2 −2 e−t − e−t

2




sin (t)
0
0

 dt

=


e3t − e−2t

3
et
3

0 − e−2t

3 −2 et
3

e3t e−2t et


∫ 

e−3t sin(t)
2

−e2t sin (t)
e−t sin(t)

2

 dt

=


e3t − e−2t

3
et
3

0 − e−2t

3 −2 et
3

e3t e−2t et




− e−3t(cos(t)+3 sin(t))
20

e2t(cos(t)−2 sin(t))
5

− e−t(cos(t)+sin(t))
4



=


− sin(t)

10 − cos(t)
5

3 sin(t)
10 + cos(t)

10

−4 sin(t)
5 − cos(t)

10


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t)
x1(t)
x2(t)
x3(t)

 =


c1e3t

0
c1e3t

+


− c2e−2t

3

− c2e−2t

3

c2e−2t

+


c3et
3

−2c3et
3

c3et

+


− sin(t)

10 − cos(t)
5

3 sin(t)
10 + cos(t)

10

−4 sin(t)
5 − cos(t)

10


Which becomes


x1(t)
x2(t)
x3(t)

 =


e−2t

(
(− sin(t)−2 cos(t))e2t

10 + c1e5t + c3e3t
3 − c2

3

)
−

(
3(− cos(t)−3 sin(t))e2t

10 +2c3e3t+c2

)
e−2t

3

e−2t
((

−4 sin(t)
5 − cos(t)

10

)
e2t + c1e5t + c3e3t + c2

)
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4.11.3 Maple step by step solution

Let’s solve
[x′

1(t) = x1(t) + 3x2(t) + 2x3(t) + sin (t) , x′
2(t) = −x1(t) + 2x2(t) + x3(t) , x′

3(t) = 4x1(t)− x2(t)− x3(t)]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


1 3 2
−1 2 1
4 −1 −1

 · →x__(t) +


sin (t)
0
0


• System to solve

→x__
′
(t) =


1 3 2
−1 2 1
4 −1 −1

 · →x__(t) +


sin (t)
0
0


• Define the forcing function

→
f (t) =


sin (t)
0
0


• Define the coefficient matrix

A =


1 3 2
−1 2 1
4 −1 −1


• Rewrite the system as

→x__
′
(t) = A · →x__(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−2,


−1

3

−1
3

1


 ,

1,


1
3

−2
3

1


 ,

3,


1
0
1





• Consider eigenpair−2,


−1

3

−1
3

1




• Solution to homogeneous system from eigenpair

→x__1 = e−2t ·


−1

3

−1
3

1


• Consider eigenpair1,


1
3

−2
3

1




• Solution to homogeneous system from eigenpair

→x__2 = et ·


1
3

−2
3

1


• Consider eigenpair3,


1
0
1




• Solution to homogeneous system from eigenpair

→x__3 = e3t ·


1
0
1
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• General solution of the system of ODEs can be written in terms of the particular solution →x__p(t)
→x__(t) = c1

→x__1 + c2
→x__2 + c3

→x__3 +
→x__p(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =


− e−2t

3
et
3 e3t

− e−2t

3 −2 et
3 0

e−2t et e3t


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)

Φ(t) =


− e−2t

3
et
3 e3t

− e−2t

3 −2 et
3 0

e−2t et e3t

 · 1
−1

3
1
3 1

−1
3 −2

3 0

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =


(
3 e5t+e3t+2

)
e−2t

6

(
3 e5t−2 e3t−1

)
e−2t

3 −
(
−3 e5t+e3t+2

)
e−2t

6

−
(
e3t−1

)
e−2t

3

(
4 e3t−1

)
e−2t

3

(
e3t−1

)
e−2t

3(
e5t+e3t−2

)
e−2t

2 (e5t − 2 e3t + 1) e−2t
(
e5t−e3t+2

)
e−2t

2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→x__p(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→x__

′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)
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◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→x__p(t) = Φ(t) ·
(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→x__p(t) =


− e−2t(6 e2t sin(t)+12 e2t cos(t)−3 e5t−5 e3t−4

)
60(

e2t(cos(t)+3 sin(t))− 5 e3t
3 + 2

3

)
e−2t

10

−
(
(8 sin(t)+cos(t))e2t− 5 e3t

2 − e5t
2 +2

)
e−2t

10


• Plug particular solution back into general solution

→x__(t) = c1
→x__1 + c2

→x__2 + c3
→x__3 +


− e−2t(6 e2t sin(t)+12 e2t cos(t)−3 e5t−5 e3t−4

)
60(

e2t(cos(t)+3 sin(t))− 5 e3t
3 + 2

3

)
e−2t

10

−
(
(8 sin(t)+cos(t))e2t− 5 e3t

2 − e5t
2 +2

)
e−2t

10


• Substitute in vector of dependent variables

x1(t)
x2(t)
x3(t)

 =


−
(
−60c3e5t−3 e5t−20c2e3t+6 e2t sin(t)−5 e3t+12 e2t cos(t)+20c1−4

)
e−2t

60
(cos(t)+3 sin(t))e−2te2t

10 −
(
20c2e3t+10c1+5 e3t−2

)
e−2t

30

−
(
−20c3e5t−e5t−20c2e3t+16 e2t sin(t)−5 e3t+2 e2t cos(t)−20c1+4

)
e−2t

20


• Solution to the system of ODEs{

x1(t) = −
(
−60c3e5t−3 e5t−20c2e3t+6 e2t sin(t)−5 e3t+12 e2t cos(t)+20c1−4

)
e−2t

60 , x2(t) = (cos(t)+3 sin(t))e−2te2t
10 −

(
20c2e3t+10c1+5 e3t−2

)
e−2t

30 , x3(t) = −
(
−20c3e5t−e5t−20c2e3t+16 e2t sin(t)−5 e3t+2 e2t cos(t)−20c1+4

)
e−2t

20

}
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3 Solution by Maple
Time used: 0.14 (sec). Leaf size: 83� �
dsolve([diff(x__1(t),t)=1*x__1(t)+3*x__2(t)+2*x__3(t)+sin(t),diff(x__2(t),t)=-1*x__1(t)+2*x__2(t)+1*x__3(t),diff(x__3(t),t)=4*x__1(t)-1*x__2(t)-1*x__3(t)],singsol=all)� �

x1(t) = −sin (t)
10 − cos (t)

5 + c1e3t −
c2et
2 + c3e−2t

x2(t) = c3e−2t + c2et +
cos (t)
10 + 3 sin (t)

10
x3(t) = −4 sin (t)

5 − cos (t)
10 + c1e3t −

3c2et
2 − 3c3e−2t

3 Solution by Mathematica
Time used: 0.318 (sec). Leaf size: 211� �
DSolve[{x1'[t]==1*x1[t]+3*x2[t]+2*x3[t]+Sin[t],x2'[t]==-1*x1[t]+2*x2[t]+1*x3[t],x3'[t]==4*x1[t]-1*x2[t]-1*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �
x1(t) → 1

30
(
−3 sin(t)− 6 cos(t)

+ 5e−2t(c1(e3t + 3e5t + 2
)
+ c2

(
−4e3t + 6e5t − 2

)
+ c3

(
−e3t + 3e5t − 2

)))
x2(t) → 1

30
(
9 sin(t) + 3 cos(t)− 10e−2t(c1(e3t − 1

)
− 4c2e3t − c3e

3t + c2 + c3
))

x3(t) → 1
10

(
−8 sin(t)− cos(t)

+ 5e−2t(c1(e3t + e5t − 2
)
+ 2c2

(
−2e3t + e5t + 1

)
+ c3

(
−e3t + e5t + 2

)))
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4.12 problem 13
4.12.1 Solution using Matrix exponential method . . . . . . . . . . . . 479
4.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 481

Internal problem ID [1865]
Internal file name [OUTPUT/1866_Sunday_June_05_2022_02_36_02_AM_56441829/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + 2x2(t)− 3x3(t) + et

x′
2(t) = x1(t) + x2(t) + 2x3(t)

x′
3(t) = x1(t)− x2(t) + 4x3(t)− et

4.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 2 −3
1 1 2
1 −1 4




x1(t)
x2(t)
x3(t)

+


et

0
−et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
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of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


e2t(1− t) − e2t(t−4)t

2
e2tt(t−6)

2

e2tt e2t
(
1− t+ 1

2t
2) − e2t(t−4)t

2

e2tt e2tt(t−2)
2 e2t

(
1− 1

2t
2 + 2t

)


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e2t(1− t) − e2t(t−4)t

2
e2tt(t−6)

2

e2tt e2t
(
1− t+ 1

2t
2) − e2t(t−4)t

2

e2tt e2tt(t−2)
2 e2t

(
1− 1

2t
2 + 2t

)



c1

c2

c3



=


e2t(1− t) c1 − e2t(t−4)tc2

2 + e2tt(t−6)c3
2

e2ttc1 + e2t
(
1− t+ 1

2t
2) c2 − e2t(t−4)tc3

2

e2ttc1 + e2tt(t−2)c2
2 + e2t

(
1− 1

2t
2 + 2t

)
c3



=


−
(
(c2−c3)t2+(2c1−4c2+6c3)t−2c1

)
e2t

2(
(c2−c3)t2+(2c1−2c2+4c3)t+2c2

)
e2t

2(
(c2−c3)t2+(2c1−2c2+4c3)t+2c3

)
e2t

2


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


e−2t(t+ 1) − e−2tt(t+4)

2
e−2tt(t+6)

2

−t e−2t e−2t(t2+2t+2
)

2 − e−2tt(t+4)
2

−t e−2t e−2tt(2+t)
2 −

(
t2+4t−2

)
e−2t

2
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Hence

~xp(t) =


e2t(1− t) − e2t(t−4)t

2
e2tt(t−6)

2

e2tt e2t
(
1− t+ 1

2t
2) − e2t(t−4)t

2

e2tt e2tt(t−2)
2 e2t

(
1− 1

2t
2 + 2t

)

∫ 

e−2t(t+ 1) − e−2tt(t+4)
2

e−2tt(t+6)
2

−t e−2t e−2t(t2+2t+2
)

2 − e−2tt(t+4)
2

−t e−2t e−2tt(2+t)
2 −

(
t2+4t−2

)
e−2t

2




et

0
−et

 dt

=


e2t(1− t) − e2t(t−4)t

2
e2tt(t−6)

2

e2tt e2t
(
1− t+ 1

2t
2) − e2t(t−4)t

2

e2tt e2tt(t−2)
2 e2t

(
1− 1

2t
2 + 2t

)



e−t
(
t2+6t+4

)
2

− e−t(2+t)2
2

− e−t
(
t2+4t+2

)
2



=


2 et

−2 et

−et


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


(
(−c2+c3)t2+(−2c1+4c2−6c3)t+2c1

)
e2t

2 + 2 et(
(c2−c3)t2+(2c1−2c2+4c3)t+2c2

)
e2t

2 − 2 et(
(c2−c3)t2+(2c1−2c2+4c3)t+2c3

)
e2t

2 − et


4.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 2 −3
1 1 2
1 −1 4




x1(t)
x2(t)
x3(t)

+


et

0
−et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 2 −3
1 1 2
1 −1 4

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1− λ 2 −3
1 1− λ 2
1 −1 4− λ


 = 0

Which gives the characteristic equation

λ3 − 6λ2 + 12λ− 8 = 0

The roots of the above are the eigenvalues.

λ1 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = 2
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 2 −3
1 1 2
1 −1 4

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 2 −3
1 −1 2
1 −1 2




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 2 −3 0
1 −1 2 0
1 −1 2 0



R2 = R2 +R1 =⇒


−1 2 −3 0
0 1 −1 0
1 −1 2 0



R3 = R3 +R1 =⇒


−1 2 −3 0
0 1 −1 0
0 1 −1 0



R3 = R3 −R2 =⇒


−1 2 −3 0
0 1 −1 0
0 0 0 0


Therefore the system in Echelon form is

−1 2 −3
0 1 −1
0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = t}

Hence the solution is 
−t

t

t

 =


−t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

t

t

 = t


−1
1
1


Let t = 1 the eigenvector becomes

−t

t

t

 =


−1
1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 3 1 Yes


−1
1
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity
3.There are three possible cases that can happen. This is illustrated in this diagram

484



λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 3

case 1

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 2

x1 = eλtv1

x2 = eλtv2

x3 = eλtv3

The solution is

x = c1x1 + c2x2 + c3x3

The three possible cases for repeated eigenvalue of multiplicity 3

v3

✓

normal
eigenvector

Incomplete eigenvalue.
defect is 1

v3

?

generalized
eigenvector

v2

✓

normal
eigenvector

λ
eigenvectors

v1

✓

normal
eigenvector

Multiplicity 3

case 3

x1 = eλtv1

x2 = eλt (v1t+ v2)

x3 = eλt
(
v1

t2

2
+ v2t+ v1

)
Where we first solve for v2 from

(A− λI)v2 = v1

And next we solve for v3 from

(A− λI)v3 = v2

Hence the solution is

x = c1x1 + c2x2 + c3x3

Incomplete eigenvalue.
defect is 2

v3

?

generalized
eigenvector

v2

?

generalized
eigenvector

A− λI

zero vector
v1

A− λI

v2v3
rank 1 vectorrank 2 vectorrank 3 vector

A− λI

A− λI

zero vector
v1

A− λI
v2

v3

rank 2 vector

In this case, we need to solve for v3 from linear combination of
v1,v2.

(A− λ)v3 = αv1 + βv2

Where α, β ̸= 0 are any scalars.

u = αv1 + βv2

A− λI

x1 = eλtv1

x2 = eλtv2

x2 = eλt (ut+ v3)

Where u = αv1 +βv2 for nonzero α, β and
Solve for v3 from

(A− λI)v3 = u

Hence the solution is

x = c1x1 + c2x2 + c3x3

Figure 25: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3, and geometric multiplicity 1, therefore
this is defective eigenvalue. The defect is 2. This falls into case 3 shown above. First we
find generalized eigenvector ~v2 of rank 2 and then use this to find generalized eigenvector
~v3 of rank 3.~v2 is found by solving

(A− λI)~v2 = ~v1
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Where ~v1 is the normal (rank 1) eigenvector found above. Hence


1 2 −3
1 1 2
1 −1 4

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


−1
1
1




−1 2 −3
1 −1 2
1 −1 2




v1

v2

v3

 =


−1
1
1


Solving for ~v2 gives

~v2 =


0
1
1


Now ~v3 is found by solving

(A− λI)~v3 = ~v2

Where ~v2 is the (rank 2) generalized eigenvector found above. Hence


1 2 −3
1 1 2
1 −1 4

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
1
1




−1 2 −3
1 −1 2
1 −1 2




v1

v2

v3

 =


0
1
1


Solving for ~v3 gives

~v3 =


1
2
1


We have found three generalized eigenvectors for eigenvalue 2. Therefore the three basis
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solutions associated with this eigenvalue are

~x1(t) = ~v1e
λt

=


−1
1
1

 e2t

=


−e2t

e2t

e2t


And

~x2(t) = eλt(~v1t+ ~v2)

= e2t




−1
1
1

 t+


0
1
1




=


−e2tt

e2t(t+ 1)
e2t(t+ 1)


And

~x3(t) =
(
~v1

t2

2 + ~v2t+ ~v3

)
eλt

=




−1
1
1

 t2

2 +


0
1
1

 t+


1
2
1


 e2t

=


− e2t

(
t2−2

)
2

e2t
(
t2+2t+4

)
2

e2t
(
t2+2t+2

)
2


Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

487



Which is written as
x1(t)
x2(t)
x3(t)

 = c1


−e2t

e2t

e2t

+ c2


−e2tt

e2t(t+ 1)
e2t(t+ 1)

+ c3


e2t

(
1− t2

2

)
e2t

(1
2t

2 + t+ 2
)

e2t
(
t+ 1

2t
2 + 1

)


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =


−e2t −e2tt e2t

(
1− t2

2

)
e2t e2t(t+ 1) e2t

(1
2t

2 + t+ 2
)

e2t e2t(t+ 1) e2t
(
t+ 1

2t
2 + 1

)


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =


−e−2t(t+ 1) e−2t(t2+4t+2

)
2 −

(
t2+6t+2

)
e−2t

2

e−2t −e−2t(2 + t) e−2t(t+ 3)
0 e−2t −e−2t
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Hence

~xp(t) =


−e2t −e2tt e2t

(
1− t2

2

)
e2t e2t(t+ 1) e2t

(1
2t

2 + t+ 2
)

e2t e2t(t+ 1) e2t
(
t+ 1

2t
2 + 1

)

∫ 

−e−2t(t+ 1) e−2t(t2+4t+2
)

2 −
(
t2+6t+2

)
e−2t

2

e−2t −e−2t(2 + t) e−2t(t+ 3)
0 e−2t −e−2t




et

0
−et

 dt

=


−e2t −e2tt e2t

(
1− t2

2

)
e2t e2t(t+ 1) e2t

(1
2t

2 + t+ 2
)

e2t e2t(t+ 1) e2t
(
t+ 1

2t
2 + 1

)

∫ 

e−tt(t+4)
2

e−t(−t− 2)
e−t

 dt

=


−e2t −e2tt e2t

(
1− t2

2

)
e2t e2t(t+ 1) e2t

(1
2t

2 + t+ 2
)

e2t e2t(t+ 1) e2t
(
t+ 1

2t
2 + 1

)



− e−t
(
t2+6t+6

)
2

e−t(t+ 3)
−e−t



=


2 et

−2 et

−et


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t)
x1(t)
x2(t)
x3(t)

 =


−c1e2t

c1e2t

c1e2t

+


−c2e2tt

c2e2t(t+ 1)
c2e2t(t+ 1)

+


c3e2t

(
1− t2

2

)
c3e2t

(1
2t

2 + t+ 2
)

c3e2t
(
t+ 1

2t
2 + 1

)
+


2 et

−2 et

−et


Which becomes 

x1(t)
x2(t)
x3(t)

 =


(
−c3t2−2tc2−2c1+2c3

)
e2t

2 + 2 et((
t2+2t+4

)
c3+2tc2+2c1+2c2

)
e2t

2 − 2 et((
t2+2t+2

)
c3+2tc2+2c1+2c2

)
e2t

2 − et
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 123� �
dsolve([diff(x__1(t),t)=1*x__1(t)+2*x__2(t)-3*x__3(t)+exp(t),diff(x__2(t),t)=1*x__1(t)+1*x__2(t)+2*x__3(t),diff(x__3(t),t)=1*x__1(t)-1*x__2(t)+4*x__3(t)-exp(t)],singsol=all)� �

x1(t) = 2 et − c1e2t − c2e2tt+ c2e2t − e2tc3t2 + 2 e2tc3t+ 4c3e2t

x2(t) = −2 et + c1e2t + c2e2tt+ e2tc3t2

x3(t) = −et + c1e2t + c2e2tt+ e2tc3t2 − 2c3e2t

3 Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 133� �
DSolve[{x1'[t]==1*x1[t]+2*x2[t]-3*x3[t]+Exp[t],x2'[t]==1*x1[t]+1*x2[t]+2*x3[t],x3'[t]==1*x1[t]-1*x2[t]+4*x3[t]-Exp[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
2e

t
(
4 + et(−2c1(t− 1)− c2(t− 4)t+ c3(t− 6)t)

)
x2(t) → 1

2e
t
(
−4 + et

(
(c2 − c3)t2 + 2(c1 − c2 + 2c3)t+ 2c2

))
x3(t) → 1

2e
t
(
−2 + et

(
(c2 − c3)t2 + 2(c1 − c2 + 2c3)t+ 2c3

))
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4.13 problem 14
4.13.1 Solution using Matrix exponential method . . . . . . . . . . . . 491
4.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 493
4.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 502

Internal problem ID [1866]
Internal file name [OUTPUT/1867_Sunday_June_05_2022_02_36_05_AM_30052516/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = −x1(t)− x2(t) + 1

x′
2(t) = −4x2(t)− x3(t) + t

x′
3(t) = 5x2(t) + et

4.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−1 −1 0
0 −4 −1
0 5 0




x1(t)
x2(t)
x3(t)

+


1
t

et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


e−t − e−2t cos(t)

2 − 3 e−2t sin(t)
2 + e−t

2 − e−2t cos(t)
2 − e−2t sin(t)

2 + e−t

2

0 e−2t cos (t)− 2 e−2t sin (t) −e−2t sin (t)
0 5 e−2t sin (t) e−2t cos (t) + 2 e−2t sin (t)



=


e−t (− cos(t)−3 sin(t))e−2t

2 + e−t

2
(− cos(t)−sin(t))e−2t

2 + e−t

2

0 e−2t(cos (t)− 2 sin (t)) −e−2t sin (t)
0 5 e−2t sin (t) e−2t(cos (t) + 2 sin (t))


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


e−t (− cos(t)−3 sin(t))e−2t

2 + e−t

2
(− cos(t)−sin(t))e−2t

2 + e−t

2

0 e−2t(cos (t)− 2 sin (t)) −e−2t sin (t)
0 5 e−2t sin (t) e−2t(cos (t) + 2 sin (t))




c1

c2

c3



=


e−tc1 +

(
(− cos(t)−3 sin(t))e−2t

2 + e−t

2

)
c2 +

(
(− cos(t)−sin(t))e−2t

2 + e−t

2

)
c3

e−2t(cos (t)− 2 sin (t)) c2 − e−2t sin (t) c3
5 e−2t sin (t) c2 + e−2t(cos (t) + 2 sin (t)) c3



=


(
(−c2−c3) cos(t)−3

(
c2+ c3

3
)
sin(t)

)
e−2t

2 + e−t
(
c1 + c2

2 + c3
2

)
((−2c2 − c3) sin (t) + c2 cos (t)) e−2t

((5c2 + 2c3) sin (t) + c3 cos (t)) e−2t


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


et −

(
−1+et(−3 sin(t)+cos(t))

)
et

2 −
(
−1+(− sin(t)+cos(t))et

)
et

2

0 (cos (t) + 2 sin (t)) e2t e2t sin (t)
0 −5 e2t sin (t) e2t(cos (t)− 2 sin (t))
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Hence

~xp(t) =


e−t (− cos(t)−3 sin(t))e−2t

2 + e−t

2
(− cos(t)−sin(t))e−2t

2 + e−t

2

0 e−2t(cos (t)− 2 sin (t)) −e−2t sin (t)
0 5 e−2t sin (t) e−2t(cos (t) + 2 sin (t))


∫ 

et −
(
−1+et(−3 sin(t)+cos(t))

)
et

2 −
(
−1+(− sin(t)+cos(t))et

)
et

2

0 (cos (t) + 2 sin (t)) e2t e2t sin (t)
0 −5 e2t sin (t) e2t(cos (t)− 2 sin (t))




1
t

et

 dt

=


e−t (− cos(t)−3 sin(t))e−2t

2 + e−t

2
(− cos(t)−sin(t))e−2t

2 + e−t

2

0 e−2t(cos (t)− 2 sin (t)) −e−2t sin (t)
0 5 e−2t sin (t) e−2t(cos (t) + 2 sin (t))




−

(
−1+ (2 cos(t)−sin(t))e2t

5 +
((
t− 3

5
)
cos(t)− 1

2+
(
−t+ 1

5
)
sin(t)

)
et−t

)
et

2
((−2+5t) sin(t)+cos(t))e2t

5 − e3t(−3 sin(t)+cos(t))
10

((5t−4) cos(t)+(3−10t) sin(t))e2t
5 + e3t(− sin(t)+cos(t))

2



=


et
20 +

4
5

− et
10 +

1
5

et
2 + t− 4

5


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


e−2t(16 e2t+e3t+10(2c1+c2+c3)et+10(−c2−c3) cos(t)+10(−3c2−c3) sin(t)

)
20(

e2t
5 − e3t

10 + (−2c2 − c3) sin (t) + c2 cos (t)
)
e−2t((

−4
5 + t

)
e2t + e3t

2 + (5c2 + 2c3) sin (t) + c3 cos (t)
)
e−2t


4.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


−1 −1 0
0 −4 −1
0 5 0




x1(t)
x2(t)
x3(t)

+


1
t

et


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




−1 −1 0
0 −4 −1
0 5 0

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




−1− λ −1 0
0 −4− λ −1
0 5 −λ


 = 0

Which gives the characteristic equation

λ3 + 5λ2 + 9λ+ 5 = 0

The roots of the above are the eigenvalues.

λ1 = −2 + i

λ2 = −2− i

λ3 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

−2 + i 1 complex eigenvalue

−2− i 1 complex eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 −1 0
0 −4 −1
0 5 0

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 −1 0
0 −3 −1
0 5 1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 −1 0 0
0 −3 −1 0
0 5 1 0



R2 = R2 − 3R1 =⇒


0 −1 0 0
0 0 −1 0
0 5 1 0



R3 = R3 + 5R1 =⇒


0 −1 0 0
0 0 −1 0
0 0 1 0



R3 = R3 +R2 =⇒


0 −1 0 0
0 0 −1 0
0 0 0 0


Therefore the system in Echelon form is

0 −1 0
0 0 −1
0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v1} and the leading variables are {v2, v3}. Let v1 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v2 = 0, v3 = 0}

Hence the solution is 
t

0
0

 =


t

0
0


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

0
0

 = t


1
0
0


Let t = 1 the eigenvector becomes 

t

0
0

 =


1
0
0


Considering the eigenvalue λ2 = −2− i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 −1 0
0 −4 −1
0 5 0

− (−2− i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1 + i −1 0
0 −2 + i −1
0 5 2 + i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1 + i −1 0 0
0 −2 + i −1 0
0 5 2 + i 0
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R3 = R3 + (2 + i)R2 =⇒


1 + i −1 0 0
0 −2 + i −1 0
0 0 0 0


Therefore the system in Echelon form is

1 + i −1 0
0 −2 + i −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 =

(
− 3

10 +
i
10

)
t, v2 =

(
−2

5 −
i
5

)
t
}

Hence the solution is 
(
− 3

10 +
I
10

)
t(

−2
5 −

I
5

)
t

t

 =


(
− 3

10 +
i
10

)
t(

−2
5 −

i
5

)
t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(
− 3

10 +
I
10

)
t(

−2
5 −

I
5

)
t

t

 = t


− 3

10 +
i
10

−2
5 −

i
5

1


Let t = 1 the eigenvector becomes

(
− 3

10 +
I
10

)
t(

−2
5 −

I
5

)
t

t

 =


− 3

10 +
i
10

−2
5 −

i
5

1


Which is normalized to 

(
− 3

10 +
I
10

)
t(

−2
5 −

I
5

)
t

t

 =


−3 + i

−4− 2i
10
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Considering the eigenvalue λ3 = −2 + i

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


−1 −1 0
0 −4 −1
0 5 0

− (−2 + i)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




1− i −1 0
0 −2− i −1
0 5 2− i




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

1− i −1 0 0
0 −2− i −1 0
0 5 2− i 0



R3 = R3 + (2− i)R2 =⇒


1− i −1 0 0
0 −2− i −1 0
0 0 0 0


Therefore the system in Echelon form is

1− i −1 0
0 −2− i −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 =

(
− 3

10 −
i
10

)
t, v2 =

(
−2

5 +
i
5

)
t
}

Hence the solution is 
(
− 3

10 −
I
10

)
t(

−2
5 +

I
5

)
t

t

 =


(
− 3

10 −
i
10

)
t(

−2
5 +

i
5

)
t

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

(
− 3

10 −
I
10

)
t(

−2
5 +

I
5

)
t

t

 = t


− 3

10 −
i
10

−2
5 +

i
5

1


Let t = 1 the eigenvector becomes

(
− 3

10 −
I
10

)
t(

−2
5 +

I
5

)
t

t

 =


− 3

10 −
i
10

−2
5 +

i
5

1


Which is normalized to 

(
− 3

10 −
I
10

)
t(

−2
5 +

I
5

)
t

t

 =


−3− i

−4 + 2i
10


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

−2 + i 1 1 No


− 3

10 −
i
10

−2
5 +

i
5

1



−2− i 1 1 No


− 3

10 +
i
10

−2
5 −

i
5

1



−1 1 1 No


1
0
0


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue −1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
−t

=


1
0
0

 e−t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


(
− 3

10 −
i
10

)
e(−2+i)t(

−2
5 +

i
5

)
e(−2+i)t

e(−2+i)t

+ c2


(
− 3

10 +
i
10

)
e(−2−i)t(

−2
5 −

i
5

)
e(−2−i)t

e(−2−i)t

+ c3


e−t

0
0


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
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Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =


(
− 3

10 −
i
10

)
e(−2+i)t (

− 3
10 +

i
10

)
e(−2−i)t e−t(

−2
5 +

i
5

)
e(−2+i)t (

−2
5 −

i
5

)
e(−2−i)t 0

e(−2+i)t e(−2−i)t 0


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =


0 −5ie(2−i)t

2

(1
2 − i

)
e(2−i)t

0 5ie(2+i)t

2

(1
2 + i

)
e(2+i)t

et et
2

et
2


Hence

~xp(t) =


(
− 3

10 −
i
10

)
e(−2+i)t (

− 3
10 +

i
10

)
e(−2−i)t e−t(

−2
5 +

i
5

)
e(−2+i)t (

−2
5 −

i
5

)
e(−2−i)t 0

e(−2+i)t e(−2−i)t 0


∫ 

0 −5ie(2−i)t

2

(1
2 − i

)
e(2−i)t

0 5ie(2+i)t

2

(1
2 + i

)
e(2+i)t

et et
2

et
2




1
t

et

 dt

=


(
− 3

10 −
i
10

)
e(−2+i)t (

− 3
10 +

i
10

)
e(−2−i)t e−t(

−2
5 +

i
5

)
e(−2+i)t (

−2
5 −

i
5

)
e(−2−i)t 0

e(−2+i)t e(−2−i)t 0


∫ 

(1
2 − i

)
e(3−i)t − 5ie(2−i)tt

2(1
2 + i

)
e(3+i)t + 5ie(2+i)tt

2

et + t et
2 + e2t

2

 dt

=


(
− 3

10 −
i
10

)
e(−2+i)t (

− 3
10 +

i
10

)
e(−2−i)t e−t(

−2
5 +

i
5

)
e(−2+i)t (

−2
5 −

i
5

)
e(−2−i)t 0

e(−2+i)t e(−2−i)t 0




e(2−i)t(−4+3i+(5−10i)t)
10 +

(1
4 −

i
4

)
e(3−i)t

e(2+i)t(−4−3i+(5+10i)t)
10 +

(1
4 +

i
4

)
e(3+i)t

e2t
4 + (2t+2)et

4



=


et
20 +

4
5

− et
10 +

1
5

et
2 + t− 4

5
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Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t)
x1(t)
x2(t)
x3(t)

 =


(
− 3

10 −
i
10

)
c1e(−2+i)t(

−2
5 +

i
5

)
c1e(−2+i)t

c1e(−2+i)t

+


(
− 3

10 +
i
10

)
c2e(−2−i)t(

−2
5 −

i
5

)
c2e(−2−i)t

c2e(−2−i)t

+


c3e−t

0
0

+


et
20 +

4
5

− et
10 +

1
5

et
2 + t− 4

5


Which becomes

x1(t)
x2(t)
x3(t)

 =


(
− 3

10 −
i
10

)
c1e(−2+i)t +

(
− 3

10 +
i
10

)
c2e(−2−i)t + c3e−t + et

20 +
4
5(

−2
5 +

i
5

)
c1e(−2+i)t +

(
−2

5 −
i
5

)
c2e(−2−i)t − et

10 +
1
5

c1e(−2+i)t + c2e(−2−i)t + et
2 + t− 4

5


4.13.3 Maple step by step solution

Let’s solve
[x′

1(t) = −x1(t)− x2(t) + 1, x′
2(t) = −4x2(t)− x3(t) + t, x′

3(t) = 5x2(t) + et]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


−1 −1 0
0 −4 −1
0 5 0

 · →x__(t) +


1
t

et


• System to solve

→x__
′
(t) =


−1 −1 0
0 −4 −1
0 5 0

 · →x__(t) +


1
t

et


• Define the forcing function
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→
f (t) =


1
t

et


• Define the coefficient matrix

A =


−1 −1 0
0 −4 −1
0 5 0


• Rewrite the system as

→x__
′
(t) = A · →x__(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
0
0


 ,

−2− I,


− 3

10 +
I
10

−2
5 −

I
5

1


 ,

−2 + I,


− 3

10 −
I
10

−2
5 +

I
5

1





• Consider eigenpair−1,


1
0
0




• Solution to homogeneous system from eigenpair

→x__1 = e−t ·


1
0
0


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2− I,


− 3

10 +
I
10

−2
5 −

I
5

1




• Solution from eigenpair
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e(−2−I)t ·


− 3

10 +
I
10

−2
5 −

I
5

1


• Use Euler identity to write solution in terms of sin and cos

e−2t · (cos (t)− I sin (t)) ·


− 3

10 +
I
10

−2
5 −

I
5

1


• Simplify expression

e−2t ·


(
− 3

10 +
I
10

)
(cos (t)− I sin (t))(

−2
5 −

I
5

)
(cos (t)− I sin (t))

cos (t)− I sin (t)


• Both real and imaginary parts are solutions to the homogeneous system →x__2(t) = e−2t ·


−3 cos(t)

10 + sin(t)
10

−2 cos(t)
5 − sin(t)

5

cos (t)

 ,
→x__3(t) = e−2t ·


3 sin(t)

10 + cos(t)
10

2 sin(t)
5 − cos(t)

5

− sin (t)




• General solution of the system of ODEs can be written in terms of the particular solution →x__p(t)
→x__(t) = c1

→x__1 + c2
→x__2(t) + c3

→x__3(t) +
→x__p(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =


e−t e−2t

(
−3 cos(t)

10 + sin(t)
10

)
e−2t

(
3 sin(t)

10 + cos(t)
10

)
0 e−2t

(
−2 cos(t)

5 − sin(t)
5

)
e−2t

(
2 sin(t)

5 − cos(t)
5

)
0 e−2t cos (t) −e−2t sin (t)


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)
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Φ(t) =


e−t e−2t

(
−3 cos(t)

10 + sin(t)
10

)
e−2t

(
3 sin(t)

10 + cos(t)
10

)
0 e−2t

(
−2 cos(t)

5 − sin(t)
5

)
e−2t

(
2 sin(t)

5 − cos(t)
5

)
0 e−2t cos (t) −e−2t sin (t)

 · 1
1 − 3

10
1
10

0 −2
5 −1

5

0 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =


e−t (− cos(t)−3 sin(t))e−2t

2 + e−t

2
(− cos(t)−sin(t))e−2t

2 + e−t

2

0 e−2t(cos (t)− 2 sin (t)) −e−2t sin (t)
0 5 e−2t sin (t) e−2t(cos (t) + 2 sin (t))


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→x__p(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→x__

′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→x__p(t) = Φ(t) ·
(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

505



→x__p(t) =


(
e3t+16 e2t−15 et−2 cos(t)

)
e−2t

20

− e−2t(−2 e2t+e3t+cos(t)+sin(t)
)

10
e−2t(10 e2tt−8 e2t+3 cos(t)+sin(t)+5 e3t

)
10


• Plug particular solution back into general solution

→x__(t) = c1
→x__1 + c2

→x__2(t) + c3
→x__3(t) +


(
e3t+16 e2t−15 et−2 cos(t)

)
e−2t

20

− e−2t(−2 e2t+e3t+cos(t)+sin(t)
)

10
e−2t(10 e2tt−8 e2t+3 cos(t)+sin(t)+5 e3t

)
10


• Substitute in vector of dependent variables

x1(t)
x2(t)
x3(t)

 =


(
16 e2t+e3t+2(−1−3c2+c3) cos(t)+5(−3+4c1)et+2(c2+3c3) sin(t)

)
e−2t

20

−
2
(
− e2t

2 + e3t
4 +

(
c2+ c3

2 + 1
4
)
cos(t)+

( c2
2 −c3+ 1

4
)
sin(t)

)
e−2t

5
e−2t(10 e2tt+10c2 cos(t)−10c3 sin(t)−8 e2t+3 cos(t)+sin(t)+5 e3t

)
10


• Solution to the system of ODEs{

x1(t) =
(
16 e2t+e3t+2(−1−3c2+c3) cos(t)+5(−3+4c1)et+2(c2+3c3) sin(t)

)
e−2t

20 , x2(t) = −
2
(
− e2t

2 + e3t
4 +

(
c2+ c3

2 + 1
4
)
cos(t)+

( c2
2 −c3+ 1

4
)
sin(t)

)
e−2t

5 , x3(t) = e−2t(10 e2tt+10c2 cos(t)−10c3 sin(t)−8 e2t+3 cos(t)+sin(t)+5 e3t
)

10

}

3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 123� �
dsolve([diff(x__1(t),t)=-1*x__1(t)-1*x__2(t)+0*x__3(t)+1,diff(x__2(t),t)=0*x__1(t)-4*x__2(t)-1*x__3(t)+t,diff(x__3(t),t)=0*x__1(t)+5*x__2(t)-0*x__3(t)+exp(t)],singsol=all)� �
x1(t) = −c2e−2t sin (t)

2 + e−2t sin (t) c3
2 + c2e−2t cos (t)

2 + e−2t cos (t) c3
2 + et

20 + 4
5 + e−tc1

x2(t) = e−2t sin (t) c3 + c2e−2t cos (t) + 1
5 − et

10
x3(t) = −2 e−2t sin (t) c3 − e−2t cos (t) c3 − 2c2e−2t cos (t) + c2e−2t sin (t) + et

2 − 4
5 + t
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3 Solution by Mathematica
Time used: 1.816 (sec). Leaf size: 144� �
DSolve[{x1'[t]==-1*x1[t]-1*x2[t]+0*x3[t]+1,x2'[t]==0*x1[t]-4*x2[t]-1*x3[t]+t,x3'[t]==0*x1[t]+5*x2[t]-0*x3[t]+Exp[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �
x1(t)→ 1

20e
−2t(et(16et+e2t+10(2c1+c2+c3)

)
−10(c2+c3) cos(t)−10(3c2+c3) sin(t)

)
x2(t) → 1

10
(
2− et

)
+ c2e

−2t cos(t)− (2c2 + c3)e−2t sin(t)

x3(t) → t+ et

2 + c3e
−2t cos(t) + (5c2 + 2c3)e−2t sin(t)− 4

5
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4.14 problem 16
4.14.1 Solution using Matrix exponential method . . . . . . . . . . . . 508
4.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 510
4.14.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 520

Internal problem ID [1867]
Internal file name [OUTPUT/1868_Sunday_June_05_2022_02_36_09_AM_9581674/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t) + x2(t)− x3(t) + e2t

x′
2(t) = 2x1(t) + 3x2(t)− 4x3(t) + 2 e2t

x′
3(t) = 4x1(t) + x2(t)− 4x3(t) + e2t

4.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 1 −1
2 3 −4
4 1 −4




x1(t)
x2(t)
x3(t)

+


e2t

2 e2t

e2t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


−
(
4 e5t−15 e4t+1

)
e−3t

10 e2t − et −
(
6 e5t−5 e4t−1

)
e−3t

10

−
(
8 e5t−15 e4t+7

)
e−3t

10 2 e2t − et −
(
12 e5t−5 e4t−7

)
e−3t

10

−
(
4 e5t−15 e4t+11

)
e−3t

10 e2t − et −
(
6 e5t−5 e4t−11

)
e−3t

10


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


−
(
4 e5t−15 e4t+1

)
e−3t

10 e2t − et −
(
6 e5t−5 e4t−1

)
e−3t

10

−
(
8 e5t−15 e4t+7

)
e−3t

10 2 e2t − et −
(
12 e5t−5 e4t−7

)
e−3t

10

−
(
4 e5t−15 e4t+11

)
e−3t

10 e2t − et −
(
6 e5t−5 e4t−11

)
e−3t

10




c1

c2

c3



=


−
(
4 e5t−15 e4t+1

)
e−3tc1

10 + (e2t − et) c2 −
(
6 e5t−5 e4t−1

)
e−3tc3

10

−
(
8 e5t−15 e4t+7

)
e−3tc1

10 + (2 e2t − et) c2 −
(
12 e5t−5 e4t−7

)
e−3tc3

10

−
(
4 e5t−15 e4t+11

)
e−3tc1

10 + (e2t − et) c2 −
(
6 e5t−5 e4t−11

)
e−3tc3

10



=


3
((

c1− 2c2
3 + c3

3

)
e4t+

(
− 4c1

15 + 2c2
3 − 2c3

5

)
e5t− c1

15+
c3
15

)
e−3t

2

3
((

c1− 2c2
3 + c3

3

)
e4t+

(
− 8c1

15 + 4c2
3 − 4c3

5

)
e5t− 7c1

15 + 7c3
15

)
e−3t

2

3
((

c1− 2c2
3 + c3

3

)
e4t+

(
− 4c1

15 + 2c2
3 − 2c3

5

)
e5t− 11c1

15 + 11c3
15

)
e−3t

2


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


−
(
e5t−15 et+4

)
e−2t

10 −e−2t(et − 1)
(
e5t+5 et−6

)
e−2t

10

−
(
7 e5t−15 et+8

)
e−2t

10 −e−2t(et − 2)
(
7 e5t+5 et−12

)
e−2t

10

−
(
11 e5t−15 et+4

)
e−2t

10 −e−2t(et − 1)
(
11 e5t+5 et−6

)
e−2t

10
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Hence

~xp(t) =


−
(
4 e5t−15 e4t+1

)
e−3t

10 e2t − et −
(
6 e5t−5 e4t−1

)
e−3t

10

−
(
8 e5t−15 e4t+7

)
e−3t

10 2 e2t − et −
(
12 e5t−5 e4t−7

)
e−3t

10

−
(
4 e5t−15 e4t+11

)
e−3t

10 e2t − et −
(
6 e5t−5 e4t−11

)
e−3t

10


∫ 

−
(
e5t−15 et+4

)
e−2t

10 −e−2t(et − 1)
(
e5t+5 et−6

)
e−2t

10

−
(
7 e5t−15 et+8

)
e−2t

10 −e−2t(et − 2)
(
7 e5t+5 et−12

)
e−2t

10

−
(
11 e5t−15 et+4

)
e−2t

10 −e−2t(et − 1)
(
11 e5t+5 et−6

)
e−2t

10




e2t

2 e2t

e2t

 dt

=


−
(
4 e5t−15 e4t+1

)
e−3t

10 e2t − et −
(
6 e5t−5 e4t−1

)
e−3t

10

−
(
8 e5t−15 e4t+7

)
e−3t

10 2 e2t − et −
(
12 e5t−5 e4t−7

)
e−3t

10

−
(
4 e5t−15 e4t+11

)
e−3t

10 e2t − et −
(
6 e5t−5 e4t−11

)
e−3t

10




t

2t
t



=


e2tt
2 e2tt
e2tt


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


((
−2c1

5 + c2 − 3c3
5 + t

)
e5t +

(3c1
2 − c2 + c3

2

)
e4t − c1

10 +
c3
10

)
e−3t

2
((
−2c1

5 + c2 − 3c3
5 + t

)
e5t +

(3c1
4 − c2

2 + c3
4

)
e4t − 7c1

20 + 7c3
20

)
e−3t((

−2c1
5 + c2 − 3c3

5 + t
)
e5t +

(3c1
2 − c2 + c3

2

)
e4t − 11c1

10 + 11c3
10

)
e−3t


4.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 1 −1
2 3 −4
4 1 −4




x1(t)
x2(t)
x3(t)

+


e2t

2 e2t

e2t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.
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The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 1 −1
2 3 −4
4 1 −4

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1− λ 1 −1
2 3− λ −4
4 1 −4− λ


 = 0

Which gives the characteristic equation

λ3 − 7λ+ 6 = 0

The roots of the above are the eigenvalues.

λ1 = 1
λ2 = −3
λ3 = 2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

−3 1 real eigenvalue

2 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −3
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 1 −1
2 3 −4
4 1 −4

− (−3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




4 1 −1
2 6 −4
4 1 −1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

4 1 −1 0
2 6 −4 0
4 1 −1 0



R2 = R2 −
R1

2 =⇒


4 1 −1 0
0 11

2 −7
2 0

4 1 −1 0



R3 = R3 −R1 =⇒


4 1 −1 0
0 11

2 −7
2 0

0 0 0 0


Therefore the system in Echelon form is

4 1 −1
0 11

2 −7
2

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

11 , v2 =
7t
11

}
Hence the solution is 

t
11
7t
11

t

 =


t
11
7t
11

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
11
7t
11

t

 = t


1
11
7
11

1


Let t = 1 the eigenvector becomes

t
11
7t
11

t

 =


1
11
7
11

1


Which is normalized to 

t
11
7t
11

t

 =


1
7
11


Considering the eigenvalue λ2 = 1

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 1 −1
2 3 −4
4 1 −4

− (1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




0 1 −1
2 2 −4
4 1 −5




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

0 1 −1 0
2 2 −4 0
4 1 −5 0


Since the current pivot A(1, 1) is zero, then the current pivot row is replaced with a
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row with a non-zero pivot. Swapping row 1 and row 2 gives
2 2 −4 0
0 1 −1 0
4 1 −5 0



R3 = R3 − 2R1 =⇒


2 2 −4 0
0 1 −1 0
0 −3 3 0



R3 = R3 + 3R2 =⇒


2 2 −4 0
0 1 −1 0
0 0 0 0


Therefore the system in Echelon form is

2 2 −4
0 1 −1
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = t}

Hence the solution is 
t

t

t

 =


t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t

t

 = t


1
1
1
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Let t = 1 the eigenvector becomes 
t

t

t

 =


1
1
1


Considering the eigenvalue λ3 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 1 −1
2 3 −4
4 1 −4

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 1 −1
2 1 −4
4 1 −6




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 1 −1 0
2 1 −4 0
4 1 −6 0



R2 = R2 + 2R1 =⇒


−1 1 −1 0
0 3 −6 0
4 1 −6 0



R3 = R3 + 4R1 =⇒


−1 1 −1 0
0 3 −6 0
0 5 −10 0



R3 = R3 −
5R2

3 =⇒


−1 1 −1 0
0 3 −6 0
0 0 0 0
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Therefore the system in Echelon form is
−1 1 −1
0 3 −6
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = t, v2 = 2t}

Hence the solution is 
t

2t
t

 =


t

2t
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

2t
t

 = t


1
2
1


Let t = 1 the eigenvector becomes 

t

2t
t

 =


1
2
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

516



multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

1 1 1 No


1
1
1



−3 1 1 No


1
11

7
11

1



2 1 1 No


1
2
1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
t

=


1
1
1

 et

Since eigenvalue −3 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
−3t

=


1
11
7
11

1

 e−3t
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Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
2t

=


1
2
1

 e2t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


et

et

et

+ c2


e−3t

11
7 e−3t

11

e−3t

+ c3


e2t

2 e2t

e2t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =


et e−3t

11 e2t

et 7 e−3t

11 2 e2t

et e−3t e2t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =


3 e−t

2 −e−t e−t

2

−11 e3t
10 0 11 e3t

10

−2 e−2t

5 e−2t −3 e−2t

5
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Hence

~xp(t) =


et e−3t

11 e2t

et 7 e−3t

11 2 e2t

et e−3t e2t


∫ 

3 e−t

2 −e−t e−t

2

−11 e3t
10 0 11 e3t

10

−2 e−2t

5 e−2t −3 e−2t

5




e2t

2 e2t

e2t

 dt

=


et e−3t

11 e2t

et 7 e−3t

11 2 e2t

et e−3t e2t


∫ 

0
0
1

 dt

=


et e−3t

11 e2t

et 7 e−3t

11 2 e2t

et e−3t e2t




0
0
t



=


e2tt
2 e2tt
e2tt


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t)
x1(t)
x2(t)
x3(t)

 =


c1et

c1et

c1et

+


c2e−3t

11
7c2e−3t

11

c2e−3t

+


c3e2t

2c3e2t

c3e2t

+


e2tt
2 e2tt
e2tt


Which becomes 

x1(t)
x2(t)
x3(t)

 =


(
(c3 + t) e5t + c1e4t + c2

11

)
e−3t

2
(
(c3 + t) e5t + c1e4t

2 + 7c2
22

)
e−3t

((c3 + t) e5t + c1e4t + c2) e−3t
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4.14.3 Maple step by step solution

Let’s solve[
x′
1(t) = x1(t) + x2(t)− x3(t) + (et)2 , x′

2(t) = 2x1(t) + 3x2(t)− 4x3(t) + 2(et)2 , x′
3(t) = 4x1(t) + x2(t)− 4x3(t) + (et)2

]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


1 1 −1
2 3 −4
4 1 −4

 · →x__(t) +


(et)2

2(et)2

(et)2


• System to solve

→x__
′
(t) =


1 1 −1
2 3 −4
4 1 −4

 · →x__(t) +


(et)2

2(et)2

(et)2


• Define the forcing function

→
f (t) =


(et)2

2(et)2

(et)2


• Define the coefficient matrix

A =


1 1 −1
2 3 −4
4 1 −4


• Rewrite the system as

→x__
′
(t) = A · →x__(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−3,


1
11
7
11

1


 ,

1,


1
1
1


 ,

2,


1
2
1





• Consider eigenpair−3,


1
11
7
11

1




• Solution to homogeneous system from eigenpair

→x__1 = e−3t ·


1
11
7
11

1


• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→x__2 = et ·


1
1
1


• Consider eigenpair2,


1
2
1




• Solution to homogeneous system from eigenpair

→x__3 = e2t ·


1
2
1
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• General solution of the system of ODEs can be written in terms of the particular solution →x__p(t)
→x__(t) = c1

→x__1 + c2
→x__2 + c3

→x__3 +
→x__p(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =


e−3t

11 et e2t

7 e−3t

11 et 2 e2t

e−3t et e2t


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)

Φ(t) =


e−3t

11 et e2t

7 e−3t

11 et 2 e2t

e−3t et e2t

 · 1

1
11 1 1
7
11 1 2

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =


−
(
4 e5t−15 e4t+1

)
e−3t

10 e2t − et −
(
6 e5t−5 e4t−1

)
e−3t

10

−
(
8 e5t−15 e4t+7

)
e−3t

10 2 e2t − et −
(
12 e5t−5 e4t−7

)
e−3t

10

−
(
4 e5t−15 e4t+11

)
e−3t

10 e2t − et −
(
6 e5t−5 e4t−11

)
e−3t

10


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→x__p(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→x__

′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)
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◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→x__p(t) = Φ(t) ·
(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→x__p(t) =


e2tt
2 e2tt
e2tt


• Plug particular solution back into general solution

→x__(t) = c1
→x__1 + c2

→x__2 + c3
→x__3 +


e2tt
2 e2tt
e2tt


• Substitute in vector of dependent variables

x1(t)
x2(t)
x3(t)

 =


e−3t((c3 + t) e5t + c2e4t + c1

11

)
2
(
(c3 + t) e5t + c2e4t

2 + 7c1
22

)
e−3t

((c3 + t) e5t + c2e4t + c1) e−3t


• Solution to the system of ODEs{

x1(t) = e−3t((c3 + t) e5t + c2e4t + c1
11

)
, x2(t) = 2

(
(c3 + t) e5t + c2e4t

2 + 7c1
22

)
e−3t, x3(t) = ((c3 + t) e5t + c2e4t + c1) e−3t

}
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 84� �
dsolve([diff(x__1(t),t)=1*x__1(t)+1*x__2(t)-1*x__3(t)+exp(2*t),diff(x__2(t),t)=2*x__1(t)+3*x__2(t)-4*x__3(t)+2*exp(2*t),diff(x__3(t),t)=4*x__1(t)+1*x__2(t)-4*x__3(t)+exp(2*t)],singsol=all)� �

x1(t) = e2tt+ c1et + c2e−3t + c3e2t

x2(t) = 2 e2tt+ c1et + 7c2e−3t + 2c3e2t

x3(t) = e2tt+ c1et + 11c2e−3t + c3e2t

3 Solution by Mathematica
Time used: 0.128 (sec). Leaf size: 2491� �
DSolve[{x1'[t]==1*x1[t]+1*x2[t]-1*x3[t]+Exp[2*t],x2'[t]==2*x1[t]+3*x2[t]-4*x3[t]+2*Exp[2*t],x3'[t]==4*x1[t]-1*x2[t]-4*x3[t]+Exp[2*t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �
Too large to display
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4.15 problem 17
4.15.1 Solution using Matrix exponential method . . . . . . . . . . . . 525
4.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 527
4.15.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 537

Internal problem ID [1868]
Internal file name [OUTPUT/1869_Sunday_June_05_2022_02_36_13_AM_39046103/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = x1(t)− x2(t)− x3(t) + e3t

x′
2(t) = x1(t) + 3x2(t) + x3(t)− e3t

x′
3(t) = −3x1(t) + x2(t)− x3(t)− e3t

4.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 −1 −1
1 3 1
−3 1 −1




x1(t)
x2(t)
x3(t)

+


e3t

−e3t

−e3t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


−
(
e5t−5 e4t−1

)
e−2t

5 −e3t + e2t −
(
e5t−1

)
e−2t

5(
e5t−1

)
e−2t

5 e3t
(
e5t−1

)
e−2t

5(
e5t−5 e4t+4

)
e−2t

5 e3t − e2t
(
e5t+4

)
e−2t

5


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


−
(
e5t−5 e4t−1

)
e−2t

5 −e3t + e2t −
(
e5t−1

)
e−2t

5(
e5t−1

)
e−2t

5 e3t
(
e5t−1

)
e−2t

5(
e5t−5 e4t+4

)
e−2t

5 e3t − e2t
(
e5t+4

)
e−2t

5




c1

c2

c3



=


−
(
e5t−5 e4t−1

)
e−2tc1

5 + (−e3t + e2t) c2 −
(
e5t−1

)
e−2tc3

5(
e5t−1

)
e−2tc1

5 + e3tc2 +
(
e5t−1

)
e−2tc3

5(
e5t−5 e4t+4

)
e−2tc1

5 + (e3t − e2t) c2 +
(
e5t+4

)
e−2tc3

5



=


((
− c1

5 − c2 − c3
5

)
e5t + (c1 + c2) e4t + c1

5 + c3
5

)
e−2t

e−2t((c1+5c2+c3)e5t−c1−c3
)

5

−
((
− c1

5 − c2 − c3
5

)
e5t + (c1 + c2) e4t − 4c1

5 − 4c3
5

)
e−2t


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


e−3t(e5t+5 et−1

)
5 e−3t(et − 1)

(
e5t−1

)
e−3t

5

−
(
e5t−1

)
e−3t

5 e−3t −
(
e5t−1

)
e−3t

5
e−3t(4 e5t−5 et+1

)
5 −e−3t(et − 1)

(
4 e5t+1

)
e−3t

5
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Hence

~xp(t) =


−
(
e5t−5 e4t−1

)
e−2t

5 −e3t + e2t −
(
e5t−1

)
e−2t

5(
e5t−1

)
e−2t

5 e3t
(
e5t−1

)
e−2t

5(
e5t−5 e4t+4

)
e−2t

5 e3t − e2t
(
e5t+4

)
e−2t

5


∫ 

e−3t(e5t+5 et−1
)

5 e−3t(et − 1)
(
e5t−1

)
e−3t

5

−
(
e5t−1

)
e−3t

5 e−3t −
(
e5t−1

)
e−3t

5
e−3t(4 e5t−5 et+1

)
5 −e−3t(et − 1)

(
4 e5t+1

)
e−3t

5




e3t

−e3t

−e3t

 dt

=


−
(
e5t−5 e4t−1

)
e−2t

5 −e3t + e2t −
(
e5t−1

)
e−2t

5(
e5t−1

)
e−2t

5 e3t
(
e5t−1

)
e−2t

5(
e5t−5 e4t+4

)
e−2t

5 e3t − e2t
(
e5t+4

)
e−2t

5




t

−t

−t



=


e3tt
−e3tt
−e3tt


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


e−2t((− c1

5 − c2 − c3
5 + t

)
e5t + (c1 + c2) e4t + c1

5 + c3
5

)
−
((
− c1

5 − c2 − c3
5 + t

)
e5t + c1

5 + c3
5

)
e−2t

−
((
− c1

5 − c2 − c3
5 + t

)
e5t + (c1 + c2) e4t − 4c1

5 − 4c3
5

)
e−2t


4.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


1 −1 −1
1 3 1
−3 1 −1




x1(t)
x2(t)
x3(t)

+


e3t

−e3t

−e3t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)

Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

527



The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




1 −1 −1
1 3 1
−3 1 −1

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




1− λ −1 −1
1 3− λ 1
−3 1 −1− λ


 = 0

Which gives the characteristic equation

λ3 − 3λ2 − 4λ+ 12 = 0

The roots of the above are the eigenvalues.

λ1 = 2
λ2 = 3
λ3 = −2

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−2 1 real eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −2
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 −1
1 3 1
−3 1 −1

− (−2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




3 −1 −1
1 5 1
−3 1 1




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

3 −1 −1 0
1 5 1 0
−3 1 1 0



R2 = R2 −
R1

3 =⇒


3 −1 −1 0
0 16

3
4
3 0

−3 1 1 0



R3 = R3 +R1 =⇒


3 −1 −1 0
0 16

3
4
3 0

0 0 0 0


Therefore the system in Echelon form is

3 −1 −1
0 16

3
4
3

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t

4 , v2 = − t
4

}
Hence the solution is 

t
4

− t
4

t

 =


t
4

− t
4

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t
4

− t
4

t

 = t


1
4

−1
4

1


Let t = 1 the eigenvector becomes

t
4

− t
4

t

 =


1
4

−1
4

1


Which is normalized to 

t
4

− t
4

t

 =


1
−1
4


Considering the eigenvalue λ2 = 2

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 −1
1 3 1
−3 1 −1

− (2)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−1 −1 −1
1 1 1
−3 1 −3




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−1 −1 −1 0
1 1 1 0
−3 1 −3 0



R2 = R2 +R1 =⇒


−1 −1 −1 0
0 0 0 0
−3 1 −3 0



530



R3 = R3 − 3R1 =⇒


−1 −1 −1 0
0 0 0 0
0 4 0 0


Since the current pivot A(2, 2) is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

−1 −1 −1 0
0 4 0 0
0 0 0 0


Therefore the system in Echelon form is

−1 −1 −1
0 4 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = 0}

Hence the solution is 
−t

0
t

 =


−t

0
t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

0
t

 = t


−1
0
1


Let t = 1 the eigenvector becomes

−t

0
t

 =


−1
0
1
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Considering the eigenvalue λ3 = 3

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


1 −1 −1
1 3 1
−3 1 −1

− (3)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−2 −1 −1
1 0 1
−3 1 −4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−2 −1 −1 0
1 0 1 0
−3 1 −4 0



R2 = R2 +
R1

2 =⇒


−2 −1 −1 0
0 −1

2
1
2 0

−3 1 −4 0



R3 = R3 −
3R1

2 =⇒


−2 −1 −1 0
0 −1

2
1
2 0

0 5
2 −5

2 0



R3 = R3 + 5R2 =⇒


−2 −1 −1 0
0 −1

2
1
2 0

0 0 0 0


Therefore the system in Echelon form is

−2 −1 −1
0 −1

2
1
2

0 0 0




v1

v2

v3

 =


0
0
0
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The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation {v1 = −t, v2 = t}

Hence the solution is 
−t

t

t

 =


−t

t

t


Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

−t

t

t

 = t


−1
1
1


Let t = 1 the eigenvector becomes

−t

t

t

 =


−1
1
1


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

2 1 1 No


−1
0
1



3 1 1 No


−1
1
1



−2 1 1 No


1
4

−1
4

1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
2t

=


−1
0
1

 e2t

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

~x2(t) = ~v2e
3t

=


−1
1
1

 e3t
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Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

~x3(t) = ~v3e
−2t

=


1
4

−1
4

1

 e−2t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


−e2t

0
e2t

+ c2


−e3t

e3t

e3t

+ c3


e−2t

4

− e−2t

4

e−2t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =


−e2t −e3t e−2t

4

0 e3t − e−2t

4

e2t e3t e−2t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

But

Φ−1 =


−e−2t −e−2t 0
e−3t

5 e−3t e−3t

5
4 e2t
5 0 4 e2t

5
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Hence

~xp(t) =


−e2t −e3t e−2t

4

0 e3t − e−2t

4

e2t e3t e−2t


∫ 

−e−2t −e−2t 0
e−3t

5 e−3t e−3t

5
4 e2t
5 0 4 e2t

5




e3t

−e3t

−e3t

 dt

=


−e2t −e3t e−2t

4

0 e3t − e−2t

4

e2t e3t e−2t


∫ 

0
−1
0

 dt

=


−e2t −e3t e−2t

4

0 e3t − e−2t

4

e2t e3t e−2t




0
−t

0



=


e3tt
−e3tt
−e3tt


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t)
x1(t)
x2(t)
x3(t)

 =


−c1e2t

0
c1e2t

+


−c2e3t

c2e3t

c2e3t

+


c3e−2t

4

− c3e−2t

4

c3e−2t

+


e3tt
−e3tt
−e3tt


Which becomes 

x1(t)
x2(t)
x3(t)

 =


(
(−c2 + t) e5t − c1e4t + c3

4

)
e−2t

−
(
(−c2 + t) e5t + c3

4

)
e−2t

−((−c2 + t) e5t − c1e4t − c3) e−2t
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4.15.3 Maple step by step solution

Let’s solve[
x′
1(t) = x1(t)− x2(t)− x3(t) + (et)3 , x′

2(t) = x1(t) + 3x2(t) + x3(t)− (et)3 , x′
3(t) = −3x1(t) + x2(t)− x3(t)− (et)3

]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


1 −1 −1
1 3 1
−3 1 −1

 · →x__(t) +


(et)3

−(et)3

−(et)3


• System to solve

→x__
′
(t) =


1 −1 −1
1 3 1
−3 1 −1

 · →x__(t) +


(et)3

−(et)3

−(et)3


• Define the forcing function

→
f (t) =


(et)3

−(et)3

−(et)3


• Define the coefficient matrix

A =


1 −1 −1
1 3 1
−3 1 −1


• Rewrite the system as

→x__
′
(t) = A · →x__(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−2,


1
4

−1
4

1


 ,

2,


−1
0
1


 ,

3,


−1
1
1





• Consider eigenpair−2,


1
4

−1
4

1




• Solution to homogeneous system from eigenpair

→x__1 = e−2t ·


1
4

−1
4

1


• Consider eigenpair2,


−1
0
1




• Solution to homogeneous system from eigenpair

→x__2 = e2t ·


−1
0
1


• Consider eigenpair3,


−1
1
1




• Solution to homogeneous system from eigenpair

→x__3 = e3t ·


−1
1
1
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• General solution of the system of ODEs can be written in terms of the particular solution →x__p(t)
→x__(t) = c1

→x__1 + c2
→x__2 + c3

→x__3 +
→x__p(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =


e−2t

4 −e2t −e3t

− e−2t

4 0 e3t

e−2t e2t e3t


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix

Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)

Φ(t) =


e−2t

4 −e2t −e3t

− e−2t

4 0 e3t

e−2t e2t e3t

 · 1

1
4 −1 −1

−1
4 0 1

1 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =


−
(
e5t−5 e4t−1

)
e−2t

5 −e3t + e2t −
(
e5t−1

)
e−2t

5(
e5t−1

)
e−2t

5 e3t
(
e5t−1

)
e−2t

5(
e5t−5 e4t+4

)
e−2t

5 e3t − e2t
(
e5t+4

)
e−2t

5


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→x__p(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→x__

′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)
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◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→x__p(t) = Φ(t) ·
(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→x__p(t) =


e3tt
−e3tt
−e3tt


• Plug particular solution back into general solution

→x__(t) = c1
→x__1 + c2

→x__2 + c3
→x__3 +


e3tt
−e3tt
−e3tt


• Substitute in vector of dependent variables

x1(t)
x2(t)
x3(t)

 =


e−2t((−c3 + t) e5t − c2e4t + c1

4

)
−
(
(−c3 + t) e5t + c1

4

)
e−2t

−e−2t((−c3 + t) e5t − c2e4t − c1)


• Solution to the system of ODEs{

x1(t) = e−2t((−c3 + t) e5t − c2e4t + c1
4

)
, x2(t) = −

(
(−c3 + t) e5t + c1

4

)
e−2t, x3(t) = −e−2t((−c3 + t) e5t − c2e4t − c1)

}
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3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 87� �
dsolve([diff(x__1(t),t)=1*x__1(t)-1*x__2(t)-1*x__3(t)+exp(3*t),diff(x__2(t),t)=1*x__1(t)+3*x__2(t)+1*x__3(t)-1*exp(3*t),diff(x__3(t),t)=-3*x__1(t)+1*x__2(t)-1*x__3(t)-exp(3*t)],singsol=all)� �

x1(t) = e3tt+ c1e−2t + c2e2t + c3e3t

x2(t) = −e3tt− c1e−2t − c3e3t

x3(t) = −e3tt+ 4c1e−2t − c2e2t − c3e3t

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 142� �
DSolve[{x1'[t]==1*x1[t]-1*x2[t]-1*x3[t]+Exp[3*t],x2'[t]==1*x1[t]+3*x2[t]+1*x3[t]-Exp[3*t],x3'[t]==-3*x1[t]+1*x2[t]-1*x3[t]-Exp[3*t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
5e

−2t(5(c1 + c2)e4t + e5t(5t− c1 − 5c2 − c3) + c1 + c3
)

x2(t) → 1
5e

−2t(e5t(−5t+ c1 + 5c2 + c3)− c1 − c3
)

x3(t) → 1
5e

−2t(−5(c1 + c2)e4t + e5t(−5t+ c1 + 5c2 + c3) + 4(c1 + c3)
)

541



4.16 problem 18
4.16.1 Solution using Matrix exponential method . . . . . . . . . . . . 542
4.16.2 Solution using explicit Eigenvalue and Eigenvector method . . . 544
4.16.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 553

Internal problem ID [1869]
Internal file name [OUTPUT/1870_Sunday_June_05_2022_02_36_16_AM_64025338/index.tex]

Book: Differential equations and their applications, 4th ed., M. Braun
Section: Section 3.12, Systems of differential equations. The nonhomogeneous equation.
variation of parameters. Page 366
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"

Solve

x′
1(t) = 3x1(t) + 2x2(t) + 4x3(t) + 2 e8t

x′
2(t) = 2x1(t) + 2x3(t) + e8t

x′
3(t) = 4x1(t) + 2x2(t) + 3x3(t) + 2 e8t

4.16.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential eAt allready.
There are different methods to determine this but will not be shown here. This is a
system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


3 2 4
2 0 2
4 2 3




x1(t)
x2(t)
x3(t)

+


2 e8t

e8t

2 e8t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the
matrix exponential can be found to be

eAt =


5 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9 −4 e−t

9 + 4 e8t
9

−2 e−t

9 + 2 e8t
9

8 e−t

9 + e8t
9 −2 e−t

9 + 2 e8t
9

−4 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9

5 e−t

9 + 4 e8t
9


Therefore the homogeneous solution is

~xh(t) = eAt~c

=


5 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9 −4 e−t

9 + 4 e8t
9

−2 e−t

9 + 2 e8t
9

8 e−t

9 + e8t
9 −2 e−t

9 + 2 e8t
9

−4 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9

5 e−t

9 + 4 e8t
9




c1

c2

c3



=



(
5 e−t

9 + 4 e8t
9

)
c1 +

(
−2 e−t

9 + 2 e8t
9

)
c2 +

(
−4 e−t

9 + 4 e8t
9

)
c3(

−2 e−t

9 + 2 e8t
9

)
c1 +

(
8 e−t

9 + e8t
9

)
c2 +

(
−2 e−t

9 + 2 e8t
9

)
c3(

−4 e−t

9 + 4 e8t
9

)
c1 +

(
−2 e−t

9 + 2 e8t
9

)
c2 +

(
5 e−t

9 + 4 e8t
9

)
c3



=


(5c1−2c2−4c3)e−t

9 + 4
(
c1+ c2

2 +c3
)
e8t

9

(−2c1+8c2−2c3)e−t

9 + 2
(
c1+ c2

2 +c3
)
e8t

9

(−4c1−2c2+5c3)e−t

9 + 4
(
c1+ c2

2 +c3
)
e8t

9


The particular solution given by

~xp(t) = eAt

∫
e−At ~G(t) dt

But

e−At = (eAt)−1

=


(
5 e9t+4

)
e−8t

9 −2
(
e9t−1

)
e−8t

9 −4
(
e9t−1

)
e−8t

9

−2
(
e9t−1

)
e−8t

9

(
8 e9t+1

)
e−8t

9 −2
(
e9t−1

)
e−8t

9

−4
(
e9t−1

)
e−8t

9 −2
(
e9t−1

)
e−8t

9

(
5 e9t+4

)
e−8t

9
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Hence

~xp(t) =


5 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9 −4 e−t

9 + 4 e8t
9

−2 e−t

9 + 2 e8t
9

8 e−t

9 + e8t
9 −2 e−t

9 + 2 e8t
9

−4 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9

5 e−t

9 + 4 e8t
9


∫ 

(
5 e9t+4

)
e−8t

9 −2
(
e9t−1

)
e−8t

9 −4
(
e9t−1

)
e−8t

9

−2
(
e9t−1

)
e−8t

9

(
8 e9t+1

)
e−8t

9 −2
(
e9t−1

)
e−8t

9

−4
(
e9t−1

)
e−8t

9 −2
(
e9t−1

)
e−8t

9

(
5 e9t+4

)
e−8t

9




2 e8t

e8t

2 e8t

 dt

=


5 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9 −4 e−t

9 + 4 e8t
9

−2 e−t

9 + 2 e8t
9

8 e−t

9 + e8t
9 −2 e−t

9 + 2 e8t
9

−4 e−t

9 + 4 e8t
9 −2 e−t

9 + 2 e8t
9

5 e−t

9 + 4 e8t
9




2t
t

2t



=


2t e8t

t e8t

2t e8t


Hence the complete solution is

~x(t) = ~xh(t) + ~xp(t)

=


2(9t+2c1+c2+2c3)e8t

9 +
5
(
c1− 2c2

5 − 4c3
5

)
e−t

9
(9t+2c1+c2+2c3)e8t

9 − 2 e−t(c1−4c2+c3)
9

2(9t+2c1+c2+2c3)e8t
9 −

4
(
c1+ c2

2 − 5c3
4

)
e−t

9


4.16.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE’s given as

~x′(t) = A~x(t) + ~G(t)

Or 
x′
1(t)

x′
2(t)

x′
3(t)

 =


3 2 4
2 0 2
4 2 3




x1(t)
x2(t)
x3(t)

+


2 e8t

e8t

2 e8t


Since the system is nonhomogeneous, then the solution is given by

~x(t) = ~xh(t) + ~xp(t)
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Where ~xh(t) is the homogeneous solution to ~x′(t) = A~x(t) and ~xp(t) is a particular
solution to ~x′(t) = A~x(t) + ~G(t). The particular solution will be found using variation
of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of
A. This is done by solving the following equation for the eigenvalues λ

det (A− λI) = 0

Expanding gives

det




3 2 4
2 0 2
4 2 3

− λ


1 0 0
0 1 0
0 0 1


 = 0

Therefore

det




3− λ 2 4
2 −λ 2
4 2 3− λ


 = 0

Which gives the characteristic equation

λ3 − 6λ2 − 15λ− 8 = 0

The roots of the above are the eigenvalues.

λ1 = 8
λ2 = −1

This table summarises the above result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

8 1 real eigenvalue

Now the eigenvector for each eigenvalue are found.

Considering the eigenvalue λ1 = −1
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We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 2 4
2 0 2
4 2 3

− (−1)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




4 2 4
2 1 2
4 2 4




v1

v2

v3

 =


0
0
0


Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

4 2 4 0
2 1 2 0
4 2 4 0



R2 = R2 −
R1

2 =⇒


4 2 4 0
0 0 0 0
4 2 4 0



R3 = R3 −R1 =⇒


4 2 4 0
0 0 0 0
0 0 0 0


Therefore the system in Echelon form is

4 2 4
0 0 0
0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v2, v3} and the leading variables are {v1}. Let v2 = t. Let v3 = s.
Now we start back substitution. Solving the above equation for the leading variables
in terms of free variables gives equation

{
v1 = − t

2 − s
}

Hence the solution is 
− t

2 − s

t

s

 =


− t

2 − s

t

s
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Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

− t
2 − s

t

s

 =


− t

2

t

0

+


−s

0
s



= t


−1

2

1
0

+ s


−1
0
1


By letting t = 1 and s = 1 then the above becomes

− t
2 − s

t

s

 =


−1

2

1
0

+


−1
0
1


Hence the two eigenvectors associated with this eigenvalue are


−1

2

1
0

 ,


−1
0
1




Which are normalized to 


−1
2
0

 ,


−1
0
1




Considering the eigenvalue λ2 = 8

We need to solve A~v = λ~v or (A− λI)~v = ~0 which becomes


3 2 4
2 0 2
4 2 3

− (8)


1 0 0
0 1 0
0 0 1





v1

v2

v3

 =


0
0
0




−5 2 4
2 −8 2
4 2 −5




v1

v2

v3

 =


0
0
0
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Now forward elimination is applied to solve for the eigenvector ~v. The augmented
matrix is 

−5 2 4 0
2 −8 2 0
4 2 −5 0



R2 = R2 +
2R1

5 =⇒


−5 2 4 0
0 −36

5
18
5 0

4 2 −5 0



R3 = R3 +
4R1

5 =⇒


−5 2 4 0
0 −36

5
18
5 0

0 18
5 −9

5 0



R3 = R3 +
R2

2 =⇒


−5 2 4 0
0 −36

5
18
5 0

0 0 0 0


Therefore the system in Echelon form is

−5 2 4
0 −36

5
18
5

0 0 0




v1

v2

v3

 =


0
0
0


The free variables are {v3} and the leading variables are {v1, v2}. Let v3 = t. Now we
start back substitution. Solving the above equation for the leading variables in terms
of free variables gives equation

{
v1 = t, v2 = t

2

}
Hence the solution is 

t

t
2

t

 =


t

t
2

t
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Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

t

t
2

t

 = t


1
1
2

1


Let t = 1 the eigenvector becomes 

t

t
2

t

 =


1
1
2

1


Which is normalized to 

t

t
2

t

 =


2
1
2


The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicitym, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If m > k then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the
geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to
determine an additional m− k generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic m geometric k defective? eigenvectors

8 1 1 No


1
1
2

1



−1 2 2 No


−1

2 −1

1 0
0 1


Now that we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care
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of is if the eigenvalue is defective. Since eigenvalue 8 is real and distinct then the
corresponding eigenvector solution is

~x1(t) = ~v1e
8t

=


1
1
2

1

 e8t

eigenvalue −1 is real and repated eigenvalue of multiplicity 2.There are two possible
cases that can happen. This is illustrated in this diagram

λ
eigenvectors

v1 v2

✓ ✓ complete eigenvalue.
defect is zero

normal
eigenvector

normal
eigenvector

Multiplicity 2

case 1

λ
eigenvectors

v1 v2

✓ ? defective eigenvalue.
defect is 1.

normal
eigenvector

generalized
eigenvector

Multiplicity 2

case 2

x1 = eλtv1

x2 = eλtv2

The solution is

x = c1x1 + c2x2

x1 = eλtv1

x2 = eλt (v1t+ v2)

Solve for the generalized eigenvector v2

from

(A− λI)v2 = v1

Then the solution is

x = c1x1 + c2x2

The two possible cases for repeated eigenvalue of multiplicity 2

zero vectorv2 v1

A− λIA− λI

rank 1
vector

rank 2
vector

Figure 26: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2, then it is complete eigenvalue and this falls into case 1 shown above.
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Hence the corresponding eigenvector basis are

~x2(t) = ~v2e
−t

=


−1

2

1
0

 e−t

~x3(t) = ~v3e
−t

=


−1
0
1

 e−t

Therefore the homogeneous solution is

~xh(t) = c1~x1(t) + c2~x2(t) + c3~x3(t)

Which is written as
x1(t)
x2(t)
x3(t)

 = c1


e8t
e8t
2

e8t

+ c2


− e−t

2

e−t

0

+ c3


−e−t

0
e−t


Now that we found homogeneous solution above, we need to find a particular solution
~xp(t). We will use Variation of parameters. The fundamental matrix is

Φ =
[
~x1 ~x2 · · ·

]
Where ~xi are the solution basis found above. Therefore the fundamental matrix is

Φ(t) =


e8t − e−t

2 −e−t

e8t
2 e−t 0

e8t 0 e−t


The particular solution is then given by

~xp(t) = Φ
∫

Φ−1 ~G(t) dt

551



But

Φ−1 =


4 e−8t

9
2 e−8t

9
4 e−8t

9

−2 et
9

8 et
9 −2 et

9

−4 et
9 −2 et

9
5 et
9


Hence

~xp(t) =


e8t − e−t

2 −e−t

e8t
2 e−t 0

e8t 0 e−t


∫ 

4 e−8t

9
2 e−8t

9
4 e−8t

9

−2 et
9

8 et
9 −2 et

9

−4 et
9 −2 et

9
5 et
9




2 e8t

e8t

2 e8t

 dt

=


e8t − e−t

2 −e−t

e8t
2 e−t 0

e8t 0 e−t


∫ 

2
0
0

 dt

=


e8t − e−t

2 −e−t

e8t
2 e−t 0

e8t 0 e−t




2t
0
0



=


2t e8t

t e8t

2t e8t


Now that we found particular solution, the final solution is

~x(t) = ~xh(t) + ~xp(t)
x1(t)
x2(t)
x3(t)

 =


c1e8t
c1e8t
2

c1e8t

+


− c2e−t

2

c2e−t

0

+


−c3e−t

0
c3e−t

+


2t e8t

t e8t

2t e8t


Which becomes 

x1(t)
x2(t)
x3(t)

 =


(−c2−2c3)e−t

2 + 2
(
c1
2 + t

)
e8t

(c1+2t)e8t
2 + c2e−t

(c1 + 2t) e8t + c3e−t
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4.16.3 Maple step by step solution

Let’s solve[
x′
1(t) = 3x1(t) + 2x2(t) + 4x3(t) + 2(et)8 , x′

2(t) = 2x1(t) + 2x3(t) + (et)8 , x′
3(t) = 4x1(t) + 2x2(t) + 3x3(t) + 2(et)8

]
• Define vector

→x__(t) =


x1(t)
x2(t)
x3(t)


• Convert system into a vector equation

→x__
′
(t) =


3 2 4
2 0 2
4 2 3

 · →x__(t) +


2(et)8

(et)8

2(et)8


• System to solve

→x__
′
(t) =


3 2 4
2 0 2
4 2 3

 · →x__(t) +


2(et)8

(et)8

2(et)8


• Define the forcing function

→
f (t) =


2(et)8

(et)8

2(et)8


• Define the coefficient matrix

A =


3 2 4
2 0 2
4 2 3


• Rewrite the system as

→x__
′
(t) = A · →x__(t) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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−1,


−1

2

1
0


 ,

−1,


−1
0
1


 ,

8,


1
1
2

1





• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1,


−1

2

1
0




• First solution from eigenvalue − 1

→x__1(t) = e−t ·


−1

2

1
0


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1 is the eigenvalue, and →
v is the eigenvector

→x__2(t) = eλt
(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →x__2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →x__2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1
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3 2 4
2 0 2
4 2 3

− (−1) ·


1 0 0
0 1 0
0 0 1


 · →p =


−1

2

1
0


• Choice of →

p

→
p =


−1

8

0
0


• Second solution from eigenvalue − 1

→x__2(t) = e−t ·

t ·


−1

2

1
0

+


−1

8

0
0




• Consider eigenpair8,


1
1
2

1




• Solution to homogeneous system from eigenpair

→x__3 = e8t ·


1
1
2

1


• General solution of the system of ODEs can be written in terms of the particular solution →x__p(t)

→x__(t) = c1
→x__1(t) + c2

→x__2(t) + c3
→x__3 +

→x__p(t)

� Fundamental matrix
◦ Let φ(t) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(t) =


− e−t

2 e−t
(
− t

2 −
1
8

)
e8t

e−t t e−t e8t
2

0 0 e8t


◦ The fundamental matrix, Φ(t) is a normalized version of φ(t) satisfying Φ(0) = I where I is the identity matrix
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Φ(t) = φ(t) · 1
φ(0)

◦ Substitute the value of φ(t) and φ(0)

Φ(t) =


− e−t

2 e−t
(
− t

2 −
1
8

)
e8t

e−t t e−t e8t
2

0 0 e8t

 · 1
−1

2 −1
8 1

1 0 1
2

0 0 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(t) =


(4t+ 1) e−t 2t e−t (−5t− 1) e−t + e8t

−8t e−t e−t(1− 4t) − e−t

2 + 10t e−t + e8t
2

0 0 e8t


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (t) and solve for →

v (t)
→x__p(t) = Φ(t) · →v (t)

◦ Take the derivative of the particular solution
→x__

′
p(t) = Φ′(t) · →v (t) + Φ(t) · →v

′
(t)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(t) · →v (t) + Φ(t) · →v
′
(t) = A · Φ(t) · →v (t) +

→
f (t)

◦ Cancel like terms

Φ(t) · →v
′
(t) =

→
f (t)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(t) = 1

Φ(t) ·
→
f (t)

◦ Integrate to solve for →
v (t)

→
v (t) =

∫ t

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (t) into the equation for the particular solution

→x__p(t) = Φ(t) ·
(∫ t

0
1

Φ(s) ·
→
f (s) ds

)
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◦ Plug in the fundamental matrix and the forcing function and compute

→x__p(t) =


2t e8t

t e8t

2t e8t


• Plug particular solution back into general solution

→x__(t) = c1
→x__1(t) + c2

→x__2(t) + c3
→x__3 +


2t e8t

t e8t

2t e8t


• Substitute in vector of dependent variables

x1(t)
x2(t)
x3(t)

 =


((−4t−1)c2−4c1)e−t

8 + 2
(
c3
2 + t

)
e8t

(c2t+ c1) e−t +
(
c3
2 + t

)
e8t

e8t(c3 + 2t)


• Solution to the system of ODEs{

x1(t) = ((−4t−1)c2−4c1)e−t

8 + 2
(
c3
2 + t

)
e8t, x2(t) = (c2t+ c1) e−t +

(
c3
2 + t

)
e8t, x3(t) = e8t(c3 + 2t)

}

3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 87� �
dsolve([diff(x__1(t),t)=3*x__1(t)+2*x__2(t)+4*x__3(t)+2*exp(8*t),diff(x__2(t),t)=2*x__1(t)+0*x__2(t)+2*x__3(t)+exp(8*t),diff(x__3(t),t)=4*x__1(t)+2*x__2(t)+3*x__3(t)+2*exp(8*t)],singsol=all)� �

x1(t) = 2c3e−t + 2c2e8t + 2t e8t + e−tc1
x2(t) = c3e−t + c2e8t + t e8t

x3(t) = −5c3e−t

2 + 2c2e8t + 2t e8t − e−tc1
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3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 139� �
DSolve[{x1'[t]==3*x1[t]+2*x2[t]+4*x3[t]+2*Exp[8*t],x2'[t]==2*x1[t]+0*x2[t]+2*x3[t]+Exp[8*t],x3'[t]==4*x1[t]+2*x2[t]+3*x3[t]+2*Exp[8*t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]� �

x1(t) → 1
9e

−t
(
2e9t(9t+ 2c1 + c2 + 2c3) + 5c1 − 2(c2 + 2c3)

)
x2(t) → 1

9e
−t
(
e9t(9t+ 2c1 + c2 + 2c3)− 2(c1 − 4c2 + c3)

)
x3(t) → 1

9e
−t
(
2e9t(9t+ 2c1 + c2 + 2c3)− 4c1 − 2c2 + 5c3

)

558


	Section 3.8, Systems of differential equations. The eigenva1ue-eigenvector method. Page 339
	problem 1
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 2
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 3
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 4
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 5
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 6
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 7
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 8
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 9
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 10
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 11
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 12
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method


	Section 3.9, Systems of differential equations. Complex roots. Page 344
	problem 1
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 2
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 3
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 4
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 5
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 6
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 7
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 8
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method


	Section 3.10, Systems of differential equations. Equal roots. Page 352
	problem Example 1, page 348
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem Example 2, page 349
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 1
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 2
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 3
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 4
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 5
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 6
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 7
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 8
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method


	Section 3.12, Systems of differential equations. The nonhomogeneous equation. variation of parameters. Page 366
	problem Example 1, page 361
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem Example 2, page 364
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 1
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 2
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 3
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 4
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 5
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 6
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 10
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 11
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 12
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 13
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method

	problem 14
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 16
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 17
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution

	problem 18
	Solution using Matrix exponential method
	Solution using explicit Eigenvalue and Eigenvector method
	Maple step by step solution



