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Internal file name [OUTPUT/10764_Monday_September_11_2023_12_50_28_AM_43300585/index . tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separablel

tan (y) —y'cot (z) =0

1.1.1 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)
_ tan(y)
~ cot ()
Where f(z) = ﬁ(m) and g(y) = tan (y). Integrating both sides gives
1 1
tan @) Y = oot (7)

In (sin (y)) = —In(cos (z)) + &1
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Raising both side to exponential gives
The solution(s) found are the following

Which simplifies to
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Figure 1: Slope field plot
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Verification of solutions

Verified OK.



1.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, _ tan(y)
Y= ot (x)
y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - wzfy - wx§ — Wyn = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form 13 n
linear ode v = f(@)y(z) + g9(x) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode v =9g(y) 1 0
homogeneous ODEs of | ' = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —l—c’
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) z? zy
First order special | y' = g(z) M@+ + f(x) W f)e” fgb:;;)dz_h(m)
form ID 1

polynomial type ode

/ — amztbhiyta
Yy azz+bay+ca

a1basr—aobix—bica+bacy

a1bey—agbiy—aice—azcy

ai1ba—azb;

ai1ba—azb;

Bernoulli ode

Y = f(x)y+g(z)y"

e f(n—l)f(:z:)dwyn

Reduced Riccati

Y = fil@)y+ folz)y?

e~ J frdz




The above table shows that

§(z,y) = cot (z)
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, =4 1)

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

5= [ s
1

B / cot (z) de

S is found from

d

Which results in
S = —In(cos(x))

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

tan (y)
cot (z)

w(z,y) =



Evaluating all the partial derivatives gives

R, =0
R, =1
Sz = tan (z)
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

2 — cot(y) 24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

= cot (R)

S(R) =In(sin(R)) + 1 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—1In(cos(z)) =In(sin(y)) + &1
Which simplifies to
—1In (cos(z)) =In(sin(y)) + &1

Which gives

e
Yy = arcsin (—)
cos ()



The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . .

.. ) . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ tan(y) s __
de — cot(zx) dR — cot (R)
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The solution(s) found are the following

e
Yy = arcsin (—)
cos ()
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Figure 2: Slope field plot

Verification of solutions

ey

Yy = arcsin (

Verified OK.

1.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(x,y)£=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

&)
(@)
]
| y___z
= =S
i I
Sy +
]
T
8
=
[}
o

10



Comparing (A,B) shows that

But since 224 _ 0%

Bay = Byds then for the above to be valid, we require that

oM _ ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

1 Q{@)@‘QJW)“
(@) (i)

Comparing (1A) and (2A) shows that

Therefore

(24)

M(z,y) = _cotl(x)
Vo) =

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

oM _o( 1)
oy Oy \ cot(x)

Using result found above gives

11



And

N _ o 1
Or Oz \tan(y)

=0
Since %i; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

0p
—gx =M (1)
¢_N

Integrating (1) w.r.t. z gives

@dx=/de
ox

op . 1
%dx B /_cot (x) de

¢ = In (cos (z)) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
- — 4
a9y — 0t W) (4)
But equation (2) says that g—g’ = m Therefore equation (4) becomes
=0+ f(y) )
tanfy) Y
Solving equation (5) for f'(y) gives
1
/ —_—
f (y) - tan (y)
= cot (y)

12



Integrating the above w.r.t y results in

/ﬂw®=/@%@My

f(y) =In(sin(y)) + e

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ = In(cos (z)) + In (sin (y)) + c1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

¢; = In(cos (z)) + In (sin (y))

Summary
The solution(s) found are the following
In (cos (z)) + In (sin (y)) = 1 (1)
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Verification of solutions

Verified OK.

In (cos (z)) + In(sin (y)) = &1

1.1.4 Maple step by step solution

Maple trace

Let’s solve
tan (y) —y' cot () =0
Highest derivative means the order of the ODE is 1

/

Y

Separate variables

!

Y _ 1
tan(y) ~ cot(z)

Integrate both sides with respect to x
! _ 1

f taz(y) dz = f cot(z) dz + !

Evaluate integral

In (sin (y)) = —In (cos (z)) + a1

Solve for y

y = arcsin ( e >
cos(z)

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli
trying separable

<- separable successful’

14




v/ Solution by Maple
Time used: 0.203 (sec). Leaf size: 9

Ldsolve(tan(y(x))—cot(x)*diff(y(x),x)=0,y(x), singsol=all)

y(x) = arcsin (sec (z) ¢;)

v/ Solution by Mathematica
Time used: 4.745 (sec). Leaf size: 19

LDSolve[Tan[y[x]]—Cot[x]*y'[x]== ,y[x],x,IncludeSingularSolutions -> True]

y(z) — arcsin <%cl Sec(a:))

y(z) =0

15



1.2 problem Problem 2
1.2.1 Solving as homogeneousTypeMapleCode . . . . . . . .. .. .. 16}
1.2.2 Solving as first order ode lie symmetry calculated ode . . . . . . 201

Internal problem ID [12113]
Internal file name [OUTPUT/10765_Monday_September_11_2023_12_50_29_AM_54692774/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _rational, [_Abel, “2nd type,
class A~]]

6y + (b +2y —3)y = —12z+9

1.2.1 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + x then the above is transformed to new ode in Y (X)

iY(X) _ 3(4X +4mo +2Y(X) + 2y0 — 3)
dX © 5X +5z0+2Y (X) +2yo— 3

Solving for possible values of xg and yo which makes the above ode a homogeneous ode
results in

.’L‘O=O
_3
yo—2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d 3(4X +2Y (X))

ax Y X =—x 1oy (X)

16



In canonical form, the ODE is

=F(X,Y)
62X +Y) n
5X +2Y
An ode of the form Y’ = M&Y) i5 called homogeneous if the functions M(X,Y) and

NXY)
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = —12X — 6Y and N = 5X + 2Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution v = %,
or Y =uX. Hence

dY du
X " ax~ Tt
Applying the transformation Y = uX to the above ODE in (1) gives
du —6u —12
Py o e
X TUT ouys
du s~ ulX)
dx X
Or —6u(X)—12
dx) —- mos —UO _,
X X
Or p p
2 —u(X) ) Xu(X X)) X +2u(X)*+ 11u(X) +12 =
(qu( )) u( )+5<dX( )) +2u(X)” 4+ 11u(X) + 0
Or

12 4+ X (2u(X) + 5) ( di( (X)) + 2u(X)* + 11u(X) =0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

= F(X,u)

= f(X)g(u)
2u? 4+ 11u + 12
X (2u+5)

17



Where f(X) = —+ and g(u) = 211412 Integrating both sides gives

2u+5
1 1
20+ 11ut12 du = X dX
2u+5
1 1
/ 2 i = /_} aX
2u+5
21In (2 1 4
n(2u+3)  Shtd) —In(X) +c
5 5
The above can be written as
21n(2u+3);—31n(u—|—4) C (X))t e
2In (2u+3)+3ln(u+4) = (5) (—In(X) + ¢2)
= —5ln (X) + 502

Raising both side to exponential gives

e2 In(2u+3)+31n(u+4) _ e—5 In(X)+5¢2

Which simplifies to

3 9C
T X5
C3

~ X5

(2u+ 3)® (u + 4)

Which simplifies to

c3e5°2
X5

u(X) = RootOf (4_25 +60_Z' +345_27° — +940_ 7 +1200_Z + 576)

Now u in the above solution is replaced back by Y using u = % which results in the

solution

Y (X) = X RootOf (4_Z2°X° +60_Z'X° +345_Z°X° + 940_Z"X° — c3e°* + 1200_Z X° + 576X°)
Using the solution for Y'(X)

Y (X) = X RootOf (4_Z°X° +60_Z'X° +345_Z°X° + 940_Z"X° — c3e°? + 1200_Z X° + 576X°)

18



And replacing back terms in the above solution using

=Y+ %

Y
X

T + Xo

Or

3
2

Y=y+
=z

X

Then the solution in y becomes

_ 7+ 576z°)

5652 4+ 12002°

4 Px®+60_Z'x® +3452° 78 4+94025 722 —¢

z RootOf (

_3
¥y=3

Summary

The solution(s) found are the following

(1)

Z2 — 636562

+ 1200z°

4 2P2° + 60 _Z'x® + 3452° 7 + 9402°

z RootOf (
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Figure 4: Slope field plot
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Verification of solutions

Yy — ; = z RootOf (4_2°z° 4+ 60_Z"z° + 3452°_Z° + 9402°_Z° — c3e°* + 1200z°_Z
+ 576x5)

Verified OK.

1.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

;. 3(4r+2y-3)
 br+2y-—3
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Mo +w(ny — &) — W2§y —wz —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zay + yaz + ay (1E)

n = xbs + ybs + by (2E)

Where the unknown coeflicients are

{ala a2, as, b17 b27 b3}

Substituting equations (1E,2E) and w into (A) gives

3(4z +2y — 3) (bs —az)  9(4z + 2y — 3)*as
5z +2y — 3 ~ (5z+2y—3)°

12 60z + 30y — 45
_(_5x+2y—3 (5¢ + 2y — 3)°

- (_ 6 2w+12y-18

5c4+2y—3  (5z42y—3)°

by —

(5E)

) (zaz + yas + a1)

> (.’L‘bz +yb3 +b1) =0

Putting the above in normal form gives

60z2ay — 144x2%a3 + 31x2by — 60x2b3 + 48xyay — 144zyas + 20zyby — 48xybs + 12y2%ay — 42y2as + 4yby

=0

20



Setting the numerator to zero gives

60x%ay — 144x%a3 + 312%by — 602%bs + 48zyay — 144zyas + 20zyby — 48zybs (6E)
+12y2ay — 42y a3 + 4y°by — 12y°bs — 7209 + 21603 + 62b; — 302by + 811b3
— 6ya1 — 36ya2 + 117ya3 — 12yb2 + 36yb3 + 9a1 + 27(12 — 81(13 + 9b2 — 27b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{r =v,y = v}

The above PDE (6E) now becomes

60av] + 48a2v1v, + 12av5 — 144azv] — 144a3v,v; — 42a3v5
+ 31b21)% + 20b2’l)11)2 + 4b2’l}% - 60()3’0% - 48b3’l)1’02 - 12()31)% (7E)
— 6a1v9 — T2a9v; — 36avy + 216a3v; + 117a3v, + 6bv; — 30byvy
- 12b2’02 + 81b3’01 + 36b3’02 + 9(11 + 27(12 - 81&3 + 9b2 - 27b3 =0

Collecting the above on the terms v; introduced, and these are
{’Ul, ’U2}

Equation (7E) now becomes

(60ay — 144a3 + 31by — 60b3) v2 + (48ay — 144a3 + 20by — 48b3) v1vy (SE)
+ (—72a2 + 2160/3 + 6b1 - 30b2 + 81b3) U1 + (12@2 - 42(13 + 4b2 — 12b3) ’U%
+ (-6&1 - 36&2 + 117&3 - 12b2 + 36b3) Vg + 9(1,1 + 27&2 — 81@3 +9b2 — 27b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

12a3 — 42a3 + 4by — 12b5 =0

48as — 144a3 + 20by — 48b35 = 0

60ay, — 144a3 + 31by — 60b3 = 0

—6a; — 36as + 117a3 — 12b, + 36b3 = 0
9a; + 27as — 8laz + 9by — 27b3 =0
—T72a9 + 216a3 + 6b; — 30by + 81b3 = 0
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Solving the above equations for the unknowns gives

o = 3%
T2
11a
Ao = T3 + b3
as = as
3b
bi=—""
b2 = —60,3
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wzy)¢
_ 3+y— <_3(4x+2y—3)> ()

2 57 + 2y — 3
_ 242® + 22zy +4y® — 33z — 12y + 9
- 10z + 4y — 6

E=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, = (1)

The above comes from the requirements that (5 2 4+ n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x
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S is found from
5= [ Lay
n

L d
- 2412 ++22xy+4y? —33x—12y+9 Y
10z+4y—6

Which results in

_ 2In(3z+2y—3) +3ln(8x+2y—3)

5 ) 3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS Sy +w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

3(4z + 2y — 3)

R

Evaluating all the partial derivatives gives

R, =1
Ry =0
6 24
Sy = +
152 + 10y — 15 ' 40z + 10y — 15
4 6
Sy

= Iz +10y—15 40z + 10y — 15
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

0 (2A)

0
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

21n (3z + 2y — 3) + 3In (8z + 2y — 3)

5 5 -
Which simplifies to
2ln(3z+2y—3) 3In(8x+2y—3)
5 * 5 - A

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) ) )
.. ) : : ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ 3(4z+2y—3) as _
dz 5z+2y—3 dR —
R ARSI LR R R RRERR
YA R LR R R R R R R
RN R R R +
NN NN
NN S N NN SR
RN 1 AN N RN 2
R R R R R R R R IR R R R R R R
R AR AR RN R=x
B T
R Y SN S=2ln(3x+2y_3)+ e :
R N NN 5
X\&X\&&\L%&XJe\\\\\\\ 252
R R AR
R R R R R R IR
R R R R R R IR AR R
R R R R EEARRR #
R R R R R R R IR RRR
LI R R R T R A R TV A
Summary
The solution(s) found are the following
2ln(3z+2y—3) 3ln(8x+2y—3)
5 + 5 =C (1)
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Figure 5: Slope field plot

Verification of solutions

=Cl

3In (8z + 2y — 3)
)

_|_

2In (3z 4+ 2y — 3)
5

Verified OK.
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Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful”

N\

v/ Solution by Maple
Time used: 0.89 (sec). Leaf size: 44

‘dsolve((12*x+6*y(x)—9)+(5*x+2*y(x)—3)*diff(y(x),x)=0,y(x), singsol=all)

y(z) = — RootOf (128_Z%c;z° + 640_Z*%c;2° + 800_Z"c;2° — 1)5 x — 4z + g
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v/ Solution by Mathematica
Time used: 60.12 (sec). Leaf size: 1121

tDSolve [(12*x+6%y [x]-9) +(5*x+2xy [x]-3)*y ' [x]==0,y[x] ,x, IncludeSingularSolutionﬁs -> True]

y(z) = (3~ 52)

1

_|_
2Root [#1'% (11664210 + 11664601 ) — 972041528 — 108041727 + 3105#1°26 + 66641°75 — 42541

y@y+%@—5@

1

_|_
2Root [#1'% (11664210 + 11664801 ) — 972041578 — 108041727 + 3105#1°26 + 66641°75 — 42541

y@y+%@—5@

1

_|_
2Root [#1'% (11664210 + 11664601 ) — 97204 1%28 — 108041727 + 3105#1°26 + 66641°15 — 425#]

y@y+%@—5@

1

+
2Root [#1'% (11664210 + 11664601 ) — 972041528 — 108041727 + 3105#1°26 + 66641°25 — 425#]

y(z) = (3~ 52)

1

+
2Root [#1'% (11664210 + 11664601 ) — 972041528 — 108041727 + 3105#1°26 + 66641°75 — 42541

y@y+%@—5@

1

_|_
2Root [#1'% (11664210 + 11664601 ) — 972041578 — 108041727 + 3105#1°26 + 6664£1°75 — 42541

y@y+%@—5@

1

* 2Root [#1'% (11664210 + 11664601 ) — 97204 1%28 — 108041727 + 3105#1°26 + 66641°15 — 425#]

y(z) = (3~ 52)

1

+
2Root [#1'% (11664210 + 11664601 ) — 972041%28 — 108041727 + 3105#1°26 + 66641°25 — 425#]

y@y+%@—5@

1

_|_
2Root [#1'% (11664210 + 11664601 ) — 972041528 — 108041727 + 3105#1°26 + 66641°75 — 42541

y@y+%@—5@

1

_|_
2Root [#1' (11664210 + 11664601 )

In
Z

972041828 — 108041727 + 310541%26 + 666#1°25 — 4254



1.3 problem Problem 3

1.3.1 Solving as first order ode lie symmetry calculated ode . . . . . . 28]

Internal problem ID [12114]
Internal file name [OUTPUT/10766_Monday_September_11_2023_12_50_32_AM_68973649/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode_ lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

yr—y— V2 +y2=0

1.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

_y VAR

y =
x
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + W(ﬂy - Ez) - w2£y - wx€ — Wy = 0 (A)

The type of this ode is not in the lookup table. To determine &, n then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

£ =zas+yas + a (1E)
n = xbs +ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

s WEVEER) (—a) (V) e
2 - 2
T

T

1y EER
Y

_(1+W>(xb2+yb3+b1)=0

T

(5E)

) (xas + yas + aq)

Putting the above in normal form gives

(z? + yz)% as + r3as — 23b3 + 22%yas + 2ybs + y2az + V22 + y2 xby — V22 + Y2 ya, + zyb, — ylay

=0

Setting the numerator to zero gives

3

— (x2 + yz) 2 a3 — 23ay + 3b3 — 22%yas — x’ybs — yas (6E)

— Va2 +y2ab + /22 + y?yar — zyb + 9y =0
Simplifying the above gives
3
—(2®+9%)% a3+ (2* +9°) zbs — (2° + ¥°) yas — z°az — 2’yas — z’yby (6E)
2 2 2 2 2 2 2 2 —
—zy’bs+ (22 4+ ¥°) a1 — Va2 + y2zb + V22 + y?yas — 2°a; — zybs = 0

Since the PDE has radicals, simplifying gives

—z3ay + 235 — 2%\/22 + y2 a3 — 20%yas — 2’yby — /22 + y2 ylas
—ylaz — /22 + 2 by — zYby + /72 + y2ya; +y’a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{x,y,vx2+y2}
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The following substitution is now made to be able to collect on all terms with {z,y}
in them

{x:vl,y=vz,vw2+y2=v3}

The above PDE (6E) now becomes

—’U?ag - 2’0%’02013 — ’U%’U3G;3 — ’Ugag - ’U3’U§CL3 — ’U%’Ugbz (7E)
3 2
+ vibs 4+ v3a; + v3vaa; — v1V2by — v3U1by =0

Collecting the above on the terms v; introduced, and these are
{vla V2, ’03}

Equation (7E) now becomes

3 2 2
(b3 — CLQ) (%1 + (—2(13 — b2) VU2 — VU343 — ’U1’l)2b1 (8E)
3 2 2
— v3v1b; — v5a3 — vsvyas + vyaq + v3vaa; =0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 =0

—a3 =0
-b1=0
—2a3 — by =0
bs —ay =0

Solving the above equations for the unknowns gives

a1 =0
as = b3
a3 =0
by =0
b =0
bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=mn-wy)¢

_(y+VEP Y
x
= —\/ 712 + y2

§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

()

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n

The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n

1
= [ ————=d
/—\/:v2+y2 Y

S is found from

Which results in

S=—ln<y+ \/W)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sx +W($,y)Sy
dR R, +w(z,y)R,

(2)
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y+ vVl +y?

w(z,y) = -
Evaluating all the partial derivatives gives
R, =1
R, =0
g _ x
VTR V)
1
Sy =—

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds  2(Va?+yly+a®+yP) (24)
dR  zva?+ o (y+ Va2 +7)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives
as 2
dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —2In(R) + &1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—1n<y+\/x2+y>=—21n z)+ ¢

Which simplifies to

—ln<y+\/z2+y)——2ln x)+ ¢
Which gives

e—cl (6201 _ 1'2)
2

y=-
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ y+veity® as _ _ 2
de — T dR R
R R mrm A A A2 VN NN N e
RO VRV Vs U A A A A A A A mm A m A2 7 P VN N N e
NYNNNN NVttt Rt mmm A A2 AN N N e e
NYNNNNNV Lt mrm A A2 P VN N N e
\\\\\\ﬁﬁ&l??fffffff/ B PYY) AT B S S SV EN
\\\\\\Xxxif?ffff/f// PSSy f;&\\\\\\\\\
NNNNNNNNVNYE A AL el A A & AN R R
NNNNNNYNNNY TP AAA AR S bt A NN
ARARRRRRRR R IR R=zx w2 2P VN NN N e
NNNNNNNNNNAAAASA A A2 P NN N M e
SN SSNSNSW A A S F A A 5 — /v/_/';'l/'/’/_'/j/‘/; H E\\Q\\\&,\\
NN NN NN NN a—f ¥ T T T T 7 AT A — — A/ P P NN NP S Saata
\\\\\\\\\s»»»///x;//// S In (y +Vz+y > PP POV N IR \\R\\\a\\
D o R ) P O ////////L%&\\\\\\\\\
NN NN NN v T T T T ¥ T A /v/v/v/v////f ; \\\\\\\\\
N bt __7 = 7 _7 mmm A A2 AL VN N e
NIRRT mmrm A2 N N R e
N A —s—a s> v v v v ¥ ¥ mmm A A2 AN N N N e
NN A SA A —A bbb > T_T_T_T_T_T_T B OO B A R e
NN B —b BB b P T T _T_T_T mmm AR AAL SN VN N N N
Summary

The solution(s) found are the following

e—cl (e261 _ x2)
2

y=-
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Figure 6: Slope field plot

Verification of solutions

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 26

Ldsolve (x*diff (y(x) ,x)=y(x)+sqrt (x~2+y(x)~2),y(x), singsol=all) J
—c12® +y(x) + /[y (z)* + 22
1 . _0

v/ Solution by Mathematica
Time used: 0.603 (sec). Leaf size: 27

kDSolve [x*y' [x]==y [x]+Sqrt [x~2+y[x]~2],y[x],x,IncludeSingularSolutions -> True}]

y(x) — %e_‘” (—1 + e2°1:L'2)
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1.4 problem Problem 4

1.4.1 Solving aslinearode . . . . . .. ... ... ... ... 361
1.4.2 Solving as differentialTypeode . . . . ... ... ... ... .. 38}
1.4.3 Solving as first order ode lie symmetry lookup ode . .. .. .. 40}
1.44 Solvingasexactode . ... ... ... ... . .......... 44
1.4.5 Maple step by step solution . . . . ... ... ... ... ... 48

Internal problem ID [12115]
Internal file name [OUTPUT/10767_Monday_September_11_2023_12_50_34_AM_17149971/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differential Type",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

yz+y=2a°

1.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
p(z) = -
q(z) = 2°
Hence the ode is
y/ + y — 1172
T
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The integrating factor u is

’u:efidm

The ode becomes

%(uy) = (k) (+?)

2 (zy) = (&) (+*)

d(zy) = 23 dz

acyz/a:?’dx

1.4

acy=z+cl

Integrating gives

Dividing both sides by the integrating factor u = z results in

2

YTut

Summary
The solution(s) found are the following

3 o

VTats
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Figure 7: Slope field plot

Verification of solutions

1

x3

y:

Verified OK.

1.4.2 Solving as differentialType ode

Writing the ode as

(1)

Which becomes

(2)

But the RHS is complete differential because

(—z)dy + (2° —y) dz = d(iac‘1 — xy)

Hence (2) becomes

d(;lac4 - a:y>

38



(1)

+c
+c

4z
4z

xt +4c¢
x* +4c¢

T T T T T T T T T T T T e T — S — [

— e T T T T T T T T T T T T T S —— ——

— T T T T T T T T T T T T T T e e

e T e T e T T T e T T e e S S~ |

N N N N N N I O D .

Integrating both sides gives gives these solutions

The solution(s) found are the following

Summary
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Figure 8: Slope field plot
z* + 4c,

Verification of solutions

Verified OK.



1.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,__ T4y

X
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - 51:)

— Wy —wf —wyn =0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode vy = f()y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —g
Class C

homogeneous class D | y = £ + g(z) F(¥) z? zy
First order special | ¥ = g(z)e"®+% 4 f(z) E_IW;E# f@)e” f;g?dz_h(z)
form ID 1

polynomial type ode

/ _ a1zthiyta
Yy a2z+b2y—+ca

ai1boz—agbiz—bica+bacy

a1bay—agbiy—aica—ascs

a1ba—aszb;

a1bs—aszb;

Bernoulli ode

y = f(x)y+g(z)y"

e (n=Df(@)dryn

Reduced Riccati

Y = fi(z)y + folz) y?

e~ J frdz
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The above table shows that

£(z,y) =
1

M%w=5 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

F=y =48 1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

S is found from

I
<

)
I
—

8l =S| =

dy

I
—

Which results in
S=uzy

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—* 4y
T

W(iL', y) =
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Evaluating all the partial derivatives gives

R,=1
R,=0
Se =1y
Sy==z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

R3

4

am:%+q (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

xt N
T=—+c
Y 4 1
Which simplifies to
T = z* +c
yxr = 4 1
Which gives
B z* +4c
V= "1z
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Summary

The solution(s) found are the following

1)

z* + 4y

4z
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Figure 9: Slope field plot

Verification of solutions

zt + 4y

4z

Verified OK.

1.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)£=0

¢(z,y) =0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
d
dx

ode. Taking derivative of ¢ w.r.t. z gives

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (2 —y)dz
(—2° +y) dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —2° +y
N(z,y) =z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 3
o~y Y
And
ON 0
o~ 2™

45



Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o
— =M 1
p (1)
09
2 =N 2
o 2)

Integrating (1) w.r.t. = gives

@dx=/de
or

@dx=/—x3+ydz
0x

b=—37* +oy+ ) ®

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

0¢ /
a—y=$+f(?/) (4)

But equation (2) says that 22 = z. Therefore equation (4) becomes
Y y

z=z+ f'(y) (5)
Solving equation (5) for f'(y) gives
f'y)=0
Therefore
fly)=a

Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

1
¢=—Zx4+xy+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢, constants into new constant c; gives the solution as

e 1.'_
C X X
1 1 y
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Figure 10: Slope field plot
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The solution(s) found are the following

The solution becomes

Summary

Verification of solutions

Verified OK.



1.4.5 Maple step by step solution

Let’s solve
yrt+y=2a’
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

° The ODE is linear; multiply by an integrating factor u(x)
w(z) (v +¥) = p(z) 22

o Assume the lhs of the ODE is the total derivative - (u(z)y)
w) (v +2) = p(@)y+ p@)y

o Isolate 1/ (z)

W (z) = 22

° Solve to find the integrating factor
p(z) =z

° Integrate both sides with respect to x
[ (E(u(z)y)) de = [ p(z)2?dz + e

° Evaluate the integral on the lhs
p(@)y = [ p(z)z*ds + o

° Solve for y
y = [ M(x!);(cit)im+cl

) Substitute p(z) = x

_ [fdates

° Evaluate the integrals on the rhs
Y= é:a

° Simplify
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— 444y

Y 4z

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

‘dsolve(x*diff(y(x),x)+y(x)=x”3,y(x), singsol=all)

xt +4c¢
y(z) = 4z

v Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 19

LDSolve[x*y'[x]+y[x]==x‘3,y[x],x,IncludeSingularSolutions -> True]
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1.5 problem Problem 5
1.5.1 Solving as first order ode lie symmetry calculated ode . . . . . . B0l
1.5.2 Solvingasexactode . . ... ... ... ... .. ... .. ... %

Internal problem ID [12116]
Internal file name [OUTPUT/10768_Monday_September_11_2023_12_50_35_AM_98222464/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_ order__ode_ lie_ symmetry__calculated"
Maple gives the following as the ode type

[[_homogeneous, “class G'], _rational, [_Abel, ~2nd type’,
class B~ ]]

y—yz—yyz* =0

1.5.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y=_ Y
z (xy+1)
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gx) - w2€y - wx§ — Wy = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + o (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

b y(b3 — ay) yas
2+ - 2

r(zy+1)  22(zy+1)

2
y Y (5E)
_ (_x2 oy i D) — Y 1)2) (zaz + yas + a;)
1 Yy
_ — b by +b;) =

Putting the above in normal form gives

zty?by + 223yby + 129y2ay + 22y%bs + 22 y2as + 2z y2a; — by + yay

=0
22 (zy + 1)

Setting the numerator to zero gives
z*y2by + 223yby + 22?0y + 1%Y?bs + 2z y3as + 22 y%a; — xby +ya; =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}
The following substitution is now made to be able to collect on all terms with {z,y}
in them
{r =v1,y = v}

The above PDE (6E) now becomes

boviv2 + aguivi + 2a3v1v3 + 2byvivy + baviv2 + 2010103 + a1v; — bivy =0 (TE)
Collecting the above on the terms v; introduced, and these are

{v1,v2}
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Equation (7E) now becomes
bovivs + 2030305 + (ag + b3) V2v3 + 2a3v1v5 + 24,1105 — bivy + a0, =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0
by =0
2a; =0
2a3 =0
-b1=0
26 =0
as +b3=0

Solving the above equations for the unknowns gives

a; =0
ag = —bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

¢=—z
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)¢

Ty’ +2
zy+1

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dr _dy _
3 n

The above comes from the requirements that <§ 6% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==z

5= [ Ly
n
1

zy+1

S is found from

Which results in

In (y(zy + 2))
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Y

YOV = Sy

Evaluating all the partial derivatives gives

R,=1
R,=0
__ Y

2zy +4
_oxy+1
oy(ay+2)

T

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s _ 1
dR 2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
In(R
S(R) = n; ) 16, (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
In(y)  In(yr+2) In(x)
2 2 2 '@
Which simplifies to
1 1 +2 1
ny) Ilyz+2) )

2 2 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R,S)
. )
transformation

dy _ Yy as _ 1

dx z(zy+1) dR 2R
N e e P ; AI‘ 7; ;"/»»»—»-@»—»—» bbb —a ~a Na t‘; P S
——>—a—a_> > v 7 Y ——b ———b—b—b—aaa g P e e e
I i b A r oo oo s et “\|} Frrrrr s
BN S T B | [ B N S e S SN I
4—97»»/‘7/’ o\ \ii/v»»».‘a_._»_c.a R =7 ‘—b*&‘—b‘b\»\s\s\g\}; ;/»)»»»»»»
—_ N e e e e Sa bbb —— s aa P e B e e e
——>—s—a> s e 7 A\ 1} //x,v.».»—,» S — ln (y) ln (xy + 2) ——a—a——s—swaN \|f Ty
e il U B S T 2 ——s—w—a——awaN\| T
S 4 /_%4 L f A A > o> > -—p‘—b\»\»\‘»\s\s\s\g_éh f Ao o>
e e = | |t A s —swuN \|f T
RSN | | i B S
R R B ——a—a—s—s—wwua \{f T
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Summary

The solution(s) found are the following

In (y) 4 In (yz + 2) _ In (x)

2 2 g 1A
A A A R —
~ 2 7 AVNNNANNN ] 7o
ﬂﬂﬂﬂﬂﬂﬂ \\\ //))—»—-s__s__s__s__»
y(X) U D A T S e e
e TANNNNY, | 7
e NNV A
B A R R R .
AR
-3 -2 -1 0 1 2 3

Verification of solutions

In (y) + In (yz + 2) _ In (z)

Figure 11: Slope field plot

Verified OK.

2 2 g Ta

1.5.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M@w+N@wﬁ%=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—2’y —z) dy = (—y) dz
(y)dz +(—z2y — x) dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =y
N(z,y)=—-z’y—=z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM_ o,
ay ~ oy
=1
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And

oN_ 9,
dr Oz
=—2zy—1

—z?y — x)

Since %A;f # %—1;], then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L] (8M 8N>

- N Oy ox
1
= —m((l) — (—2zy - 1))
2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef —% dz
The result of integrating gives
b= 6—2 In(z)
1
T a2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%:0
dzx

() (72 &=

The following equations are now set up to solve for the function ¢(z,y)

0p —

_g“’ =M (1)
¢

ay =N (2)

Integrating (1) w.r.t. z gives

6=—-2+ 1) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9 1
= —— 4
5~ ot W (4)
But equation (2) says that —gg = =2=1_ Therefore equation (4) becomes

Wl 4 ) ®)

Solving equation (5) for f'(y) gives
flly)=—y
Integrating the above w.r.t y gives

[rwa= [ v

2

f(y)z—%‘i‘cl
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

2
¢=—y—y—+01
T 2

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

o= Y_ VU
! x 2
Summary
The solution(s) found are the following
2
y oy
_Z _Z 1
s g A (1)
N S IR R Ry e
A A AN —
“7 7 WNNNN\NN s
\\\\\\\ -\
y(x) 07 —_———— e = =~ >~ ] \\\ ﬂﬂﬂﬂﬂﬂﬂ
e TANNANN | 7
NN A
—]-_)))/»/////7»\1\l//////)
B A

Figure 12: Slope field plot

Verification of solutions

:cl

SERS
I

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous G

<- homogeneous successful’

v Solution by Maple
Time used: 0.078 (sec). Leaf size: 49

Ldsolve(y(x)-x*diff(y(x),x)=x‘2*y(x)*diff(y(x),x),y(x), singsol=all) J

—c1+ /¢ + z?
y(z) = .

(8]

—c; — £/ + 12
y(z) = ——+

1T

v/ Solution by Mathematica
Time used: 0.786 (sec). Leaf size: 68

‘DSolve[y[x]—x*y'[x]==x“2*y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True] ‘

14/ HzV1+ cia?

y(z) = — -
y(z) — —% + \/;\/1 + 122
y(x) =0
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1.6 problem Problem 6

1.6.1 Solving aslinearode . . . . . .. ... .. ... ... ... ... 611
1.6.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 631
1.6.3 Solvingasexactode . .. ... .. ................ 671
1.6.4 Maple step by step solution . . . . ... ... ... ....... [71l

Internal problem ID [12117]
Internal file name [OUTPUT/10769_Monday_September_11_2023_12_50_36_AM_52281106/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 6.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

' + 3z =e*

1.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

' +p(t)r = q(t)

Where here

Hence the ode is

61



The integrating factor u is
p=e J 3dt

3t

The ode becomes
i _ 2t
3 (o) = () (*)

£ (e%2) = (&) (%)
d(e*z) =™ dt

ey = / et dt

e5t

st €
T = 5 + ¢

Integrating gives

(&

Dividing both sides by the integrating factor u = e3 results in

e—3te5t

5 + e_3t61

Tr=

which simplifies to

o (e5t _|_ 501) e—3t
N 5

Summary
The solution(s) found are the following

(€% + 5cp) e3¢

T = 3 (1)
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Figure 13: Slope field plot

Verification of solutions

(e +5c1) e
)

Verified OK.

1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as
1= -3z +e*
' =w(t,x)
The condition of Lie symmetry is the linearized PDE given by
M+ Wi — &) — W — wif — wan =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt _do _
§ 1

as

1)

The above comes from the requirements that (f % + n%) S(t,x) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

s:/ldy
n
1
=/§dy

S = ez

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Sitw(t,z)S, @)
dR  R;+w(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,r) = =3z + &%

Evaluating all the partial derivatives gives

R;=1

R, =0

S, = 3edy
Sm=e3t

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

aR = © (2A)

We now need to express the RHS as function of R only. This is done by solving for ¢, x

in terms of R, S from the result obtained earlier and simplifying. This gives

as

@0 _ 3R

dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

5R

S(R) = % te (4)

To complete the solution, we just need to transform (4) back to ¢,z coordinates. This

results in
o5t

3t
xe’ = —+c
5 +
Which simplifies to
5t
3t _ ©
re" =—+¢
5 1

Which gives

(e +5c1) e

B 5
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . _
.. . . . ODE in canonical coordinates
Original ode in ¢, x coordinates coordinates (R, S)
transformation ’

d:E__ 2t ﬁ_ 5R

G =3z +e 45 —e
I A N N B N B Y
L R R RN D B o
L R A U U O U N B 4o 1
SRESRSAE SRS RS EEE N N oo ol
SERREE LIS BESEEE I B
O e T A s N 24
R e R Y A o 0 B I U N N B o
RARRRRRRRYS R=t DEESESEaE
\\}.\\\'\\\»;; ; i = 44?444‘%4_‘.»;
A A AT A E 3 A G~ T '
PEEEELFELLHLLY — 3t oo o e §
prrrrrrrtalttrntt S=e'x | oo i R
7“7“7“7“7‘7‘7‘7‘7“_2;1?1‘ EEE———
prtrttttrtp e te et 0 e =5t
trrrttrtr ettt e 0 e o f
ferttr ettt et L e Ny
trtrtr ettt ettt L e g f
trtrtrttetptet ettt L e ol f
LI A A A O A N e o 1

Summary
The solution(s) found are the following
5t —3t
e +5cy)e
e o)
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Figure 14: Slope field plot

Verification of solutions

(€% + Bcy) e 3

Verified OK.

1.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)ﬁ=0

¢(z,y) =0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
d
dx

ode. Taking derivative of ¢ w.r.t. = gives

Hence

67



Comparing (A,B) shows that

09
T M
Oz
9 _ n
Oy
But since ;ﬂ:gy = 8‘9; g; then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (—3z +€”)dt
(3z—€e*)dt+dz =0 (2A)

Comparing (1A) and (2A) shows that
M(t,z) = 3z — &*
N(t,z) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 o
o " T )
=3
And
ON 0
ot~ ot
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Since % # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Ao L(oM _oN
N\ Oz ot
=1((3) - (0)
=3
Since A does not depend on z, then it can be used to find an integrating factor. The

integrating factor p is
_ o Adt

— J3dt

I

The result of integrating gives

3t
p=e

— 3t

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
= &% (3z — %)

= (393 — th) e3t

And
N =uN
=e*(1)
— o3t

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
—  —dx
M+ N i 0
(82— ) ) + () S = 0

The following equations are now set up to solve for the function ¢(¢,x)

9 —
g_t_M (1)
6

=N @)
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Integrating (1) w.r.t. ¢ gives
99 4t / Madt
ot

0
En dt = / (3w — ezt) et dt

e5t

¢ = —?+e3tx+f(x) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t  gives

0t (@) @
But equation (2) says that 3¢ = e*. Therefore equation (4) becomes
e =e¥ + f'(x) (5)
Solving equation (5) for f'(z) gives
f'(z)=0
Therefore
f@)=ca

Where ¢; is constant of integration. Substituting this result for f(z) into equation (3)

gives ¢
5t

€
¢=—?+e3t$+01

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

5¢
c1=——+ez

5
The solution becomes
(e5t _|_ 501) e—3t
5

Tr=
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Summary

(1)

(e + 5¢;) e3¢

The solution(s) found are the following
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Figure 15: Slope field plot

Verification of solutions

(€% + 5ep) e3¢

Verified OK.

1.6.4 Maple step by step solution

Let’s solve

x4+ 3z =¢e?

Highest derivative means the order of the ODE is 1

Isolate the derivative
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¥ = -3z +e*

Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE
7' + 3z = e

The ODE is linear; multiply by an integrating factor u(t)
p(t) (2’ + 3z) = p(t) e

Assume the lhs of the ODE is the total derivative 4 (u(t) z)
pu(t) (&' +3x) = p'(t) = + p(t) '

Isolate p'(t)

w(t) = 3u(t)

Solve to find the integrating factor

p(t) =e*

Integrate both sides with respect to ¢

[ (L(uit)z))dt = [ pt)e*dt+c

Evaluate the integral on the lhs

u(t)z = [ ult) ¥dt +

Solve for z

_ [uletdtve
=T

Substitute pu(t) = €3

_ [e*te3tdtter
T = o3t

T

Evaluate the integrals on the rhs

o5t

— s ta
T ="
Simplify

_ (ePt45c)e 3t
- 5
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(diff(x(t),t)+3*x(t)=exp(2*t),x(t), singsol=all)

(€% + 5cp ) €73

z(t) = 3

v Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 23

LDSolve[x'[t]+3*x[t]==Exp[2*t],x[t],t,IncludeSingularSolutions -> True]

62t

.’L'(t) — ? + cie

-3t
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1.7 problem Problem 7

1.7.1 Solving aslinearode . . . . . .. ... ... ... [74
1.7.2  Solving as first order ode lie symmetry lookup ode . .. .. .. 761
1.7.3 Solvingasexactode . . ... ... .. .. ... ......... 801
1.7.4 Maple step by step solution . . . . ... ... ... ....... 8]

Internal problem ID [12118]
Internal file name [OUTPUT/10770_Tuesday_September_12_2023_08_51_39_AM_75656588/index.tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 7.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

sin (z)y +cos(z)y' =1

1.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here

Hence the ode is

y' + tan (z) y = sec (z)
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The integrating factor u is

o= ef tan(z)dz

cos (z)
Which simplifies to
p = sec ()
The ode becomes
= (uy) = (1) (sec (=)

= (sec (¢)y) = (see (2)) (sec (2)
d(sec () y) = sec (z)? dz

Integrating gives
sec(z)y = /sec (2)? dz
sec (z)y = tan (z) + 1
Dividing both sides by the integrating factor u = sec (z) results in
y = cos (z) tan (z) + ¢ cos (x)
which simplifies to
y = ¢ cos (z) + sin (z)

Summary
The solution(s) found are the following

y = ¢ cos (x) + sin (z) (1)
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Figure 16: Slope field plot

Verification of solutions

y = ¢y cos (z) + sin (z)
Verified OK.
1.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, _sin(z)y—1
cos ()

y =uw(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - é.x) - wzé.y - wx§ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = cos ()

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

7



canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

$= [ La
n
1
- / cos (x)dy

S is found from

Which results in

_ Y
cos ()

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_sin(z)y—1

wz,y) = cos (z)

Evaluating all the partial derivatives gives

R,=1

R,=0

Sy = sec(z)tan (z)y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates

dsS 2
JR = Sec (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds 2
JR = Se¢ (R)
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(4)

ODE in canonical coordinates
(R, 9)

B

N AN AN N TN N N N
NRNRNRNR RN Y
AN SN SN NN
LSS N N N NN NN

2o R N
NRNRNRRNRRNRNR R

CRANNRRNRNRRN
AN N N

B R S S s .

AN N T N
NRRNRRRRNRRY

[T T T T T I T R R W
RARRRRRNRY

CRECRRE RN
AN N T NN

d/d/d/d/d”bﬂ/d/d/d/d/
NRRNRRNRNRNRRY
RRRRRRRRRY
N N AN N T N N N

—

SR NN NN

omww s sl

ed s m
ANA AN NANANA NN N
AN NN N NN N N AN
uﬂf/«/f«/«/a/a/«/a/

e

e

tan (R) + ¢;
tan (z) + ¢
tan (z) + ¢;
tan (z) + ¢
sec (z)
Canonical
coordinates
transformation

S(R)
sec () y
sec(x)y

Original ode in x,y coordinates

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in
The following diagram shows solution curves of the original ode and how they transform

It converts an ode, no matter how complicated it is, to one that can be solved by
in the canonical coordinates space using the mapping shown.

sin(z)y—1
cos(z)

.8

—— > v v v _7 7
o T AT AAAAA
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R S S S

— > 7 X
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fffff e e
— v v v _7 7
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AR R R B A A

B e e S AN

RNKER YT ETT

=5 > o & J R et

LA ARERY

AAAAAT T T T

The above is a quadrature ode. This is the whole point of Lie symmetry method.

Which simplifies to

Which gives

1)

sec (x)

tan (z) + ¢
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The solution(s) found are the following

Summary
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Figure 17: Slope field plot

Verification of solutions

_ tan(z) 4+

Verified OK.

1.7.3 Solving as exact ode

sec (x)

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

M(z,y) + N(z,y) - =0

dzx

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

dz

Hence 96
oz +

94 hey) =0

06 dy _

8_ydx_0

80



Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(cos(z))dy = (—sin(z)y + 1)dz
(sin(z)y — 1)dz +(cos(z))dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) =sin(z)y — 1
N(z,y) = cos (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
= (s -1
oy = 5y @Y=
= sin (z)
And
ON 0
or &(COS (z))

= —sin ()
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Since %—M # %N , then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

1 /0M ON
(% )
= sec (z) ((sin (z)) — (—sin (z)))
= 2tan ()

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is

= el Ade
— oJ2tan(2)dz
The result of integrating gives
11 = e~2Mn(os(@)
= sec ()

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= sec (z)? (sin (z) y — 1)

= (sin (z)y — 1) sec (z)”

And

= sec ()” (cos (z))
= sec ()
Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
M+ N@ =0
dx

dy

A

((sin (x) y — 1) sec (z)?) + (sec (z)) e

The following equations are now set up to solve for the function ¢(z,y)

o¢ 1)

ﬁxzﬁ
06  —
8—y—N (2)
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Integrating (1) w.r.t. z gives

%dx = /de
ox

% dr = / (sin (z) y — 1) sec (z)* dz

¢ = sec(z)y — tan (z) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o =sec(2) + ) (@)
But equation (2) says that g—i = sec (). Therefore equation (4) becomes
sec (z) = sec (z) + f'(y) (5)
Solving equation (5) for f’(y) gives

fly)=0

Therefore
fy) =a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =sec(z)y — tan (z) + &1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

¢; = sec (z) y — tan (z)
The solution becomes

_ tan () +
sec (z)
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(1)

tan (z) + ¢
sec (z)

y:

The solution(s) found are the following

Summary
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Figure 18: Slope field plot
tan (z) + ¢;
sec (z)
84

Highest derivative means the order of the ODE is 1

sin (z)y +cos(z)y =1
Isolate the derivative

1.7.4 Maple step by step solution
Let’s solve

Verification of solutions
Verified OK.



_ sin(x)
y, - cos(:cil +

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y/ + sin(z)y __ 1

cos(z) ~ cos(z)

cos(:c)

The ODE is linear; multiply by an integrating factor u(x)
uie) (v + 53 ) = 43

Assume the lhs of the ODE is the total derivative - (u(z) y)
w(z) (v + 20) = (@) y + p(z)y

Isolate 1/ ()

() = K(z) sin(x)

" cos(z)

Solve to find the integrating factor

/,L(LI?) = cosl(x)

Integrate both sides with respect to x

f(dx('u'(z )dz_fcﬁé?z dz + ¢

Evaluate the integral on the lhs
z)y = [ 294y 4 ¢

cos(z)

Solve for y

f u(z) dx_j’_cl

cos(z)

Y= u@
Substitute p(z) = —L

cos(z)

= cos ( (f 1 _dx+ cl)

cos(x)
Evaluate the integrals on the rhs
y = cos (z) (tan (z) + ¢1)
Simplify
y = ¢y cos (z) + sin (z)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve(y(x)*sin(x)+diff(y(x),x)*cos(x)=1,y(x), singsol=all) J

y(x) = ¢y cos () + sin (x)

v/ Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 13

LDSolve[y[x]*Sin[x]+y'[x]*Cos[x]==1,y[x],x,IncludeSingularSolutions -> True] J

y(z) — sin(z) + ¢; cos(z)
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1.8 problem Problem 8

1.8.1 Solving as separableode . . . . . . ... ... ... ... .. 87
1.8.2 Solving as first order special form ID 1ode. . . . . . .. .. .. 89
1.8.3 Solving as first order ode lie symmetry lookup ode . .. .. .. 90
1.8.4 Solvingasexactode . ... ... ... ... ........... 94
1.8.5 Maple step by step solution . . . . ... ... ... .. .. ... O8]

Internal problem ID [12119]
Internal file name [OUTPUT/10771_Tuesday_September_12_2023_08_51_40_AM_30239279/index.tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 8.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

y —e Vt* =0

1.8.1 Solving as separable ode

In canonical form the ODE is

y/ = F(.’L‘,y)
= f(z)g(y)

=e Ye”

Where f(z) = €® and g(y) = e7Y. Integrating both sides gives

1
Tydy=e”d:r

e
1 T

e =e"+0;
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Which results in

Summary

y=In(e”+c)

The solution(s) found are the following

y=In(e”+¢c)

1—=———~ /7

Verification of solutions

Verified OK.
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Figure 19: Slope field plot

y=1In(e"+¢c)
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1.8.2 Solving as first order special form ID 1 ode
Writing the ode as

y/ — e—y—l—x
And using the substitution u = €Y then
ul — yley

The above shows that

_ w(z)
u
Substituting this in (1) gives
u'(z) e
v w
The above simplifies to
v (z) = €”

Now ode (2) is solved for u(x) Integrating both sides gives

u(z) = /e’” dz

=e"+¢
Substituting the solution found for u(z) in u = e¥ gives
y = In (u(z))

=In(e” + 1)
=In(e” + )

Summary
The solution(s) found are the following

y=In(e”+¢c)
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Figure 20: Slope field plot

Verification of solutions

y=In(e”+¢c)
Verified OK.
1.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y/ — e—y—l—x
Y = w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Ny + w(ny - gz) - wzfy - wzg —Wyn = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =e"

n(z,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y
S is found from
1
S = / —dzx
13
1
= [ —dz
e xT
Which results in
S=¢"

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =e ¥+

Evaluating all the partial derivatives gives

R, =0
R,=1
S, =¢"
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

aS g
E—e

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

e” (2A)
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =ef +¢; (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
e =e'+¢
Which simplifies to
e =e"+¢
Which gives
y=In(e” —c)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’
dy __ —y+z ds _ R
ar — © ar — ©
e e R AEE
2/ L AP
4 ettt [ Attt =t
bassvyity Beaasaswns AREE
——b—b—b—b—b ———e > v 7 A ————b—> 7 A
»»»»» I B R e DR 1
»»»»»»»» 2o P Y} Ay
S A pp N S I EEEN
»»»»»»»» A TR _ e oo AP
s i LV i i =Y e L B
Sacsenzt (AR INAR e Sacsuas s A INAY
44444 > 7 — —— > T 7
BESESSSFIY IERREE ¢ =R SRR
S AT RS RS REGEEE RS
R LA IR R R R T L L SR AR
A R I N N R I AR
e PP A oo A P
D AR N R NI ARE
oA A O O O O N I e s e A
AP EEEEEHEEEEY e L VAV
Summary
The solution(s) found are the following
y=In(e" - cy) &
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Figure 21: Slope field plot

Verification of solutions

y=In(e" —¢c)
Verified OK.

1.8.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,9) L =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%Qb(xa y) =0
Hence 8(15 8¢ p
ay
oz ay dz =0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(€*)dy = (¢") dz
(—e®)dz+(e?)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —€”
N(z,y) = e

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM _ 0
dy Oy
And
ON 0
= — (aY
dr Oz )
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p
¢
ay @

Integrating (1) w.r.t. = gives

@dx=/Mdz
or

oo . -
%daz—/—e dz

¢ =—e"+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

=0 ! 4
=0+ (@
But equation (2) says that g—‘z = e¥. Therefore equation (4) becomes

& =0+ /') 6)

Solving equation (5) for f’(y) gives
fly)=¢
Integrating the above w.r.t y gives
/ﬂw®=/WNy
fly) =€+
Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢
¢=—e"+e'+c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

The solution becomes

Summary

cp=—e"+¢¥

y=1In(e"+¢c)

The solution(s) found are the following

Verification of solutions

Verified OK.

y=In(e”+¢c)
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Figure 22: Slope field plot

y=In(e”+¢c)
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1.8.5 Maple step by step solution

Let’s solve
Yy —e ¥t =0

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
y/ey —

° Integrate both sides with respect to x
[y'evdz = [e"dz +

° Evaluate integral
ey =¢e"+¢
° Solve for y

y=In(e®"+c)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve(diff(y(x),x)=exp(x—y(X)),y(X), singsol=all)

y(xz) =In (e + ¢1)
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v/ Solution by Mathematica
Time used: 1.307 (sec). Leaf size: 12

-

kDSolve [y' [x]==Exp[x-y[x]],y[x],x,IncludeSingularSolutions -> True]

—

y(x) — log (e + 1)
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1.9 problem Problem 9

1.9.1 Solving aslinearode . . . . . .. . ... ... ... ... 100l
1.9.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 102l
1.9.3 Solvingasexactode . .. ... .. ... ... ..........
1.9.4 Maple step by step solution . . . . ... ... ... ... .... 110

Internal problem ID [12120]
Internal file name [OUTPUT/10772_Tuesday_September_12_2023_08_51_41_AM_93042087/index.tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 9.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

—z + 2’ =sin (t)

1.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

7' +p(t)z = q(t)

Where here

Hence the ode is

—x + 2’ =sin (t)
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The integrating factor u is

The ode becomes

Integrating gives

e ' = / e 'sin (t) dt

—t ¢ —t - ¢
oty — _© c;)s()_e s;n()_'_c1

t

Dividing both sides by the integrating factor u = e~ results in

—t ¢ —t ¢
x:et(—e cos(t) e s1n())+01et

2 2
which simplifies to

o= et — sin (f)  cos ()

2 2

Summary
The solution(s) found are the following

sin (f)  cos(t)
2 2

T =clet —
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Figure 23: Slope field plot

Verification of solutions

_ 4 sin(t) cos(t)
Ir = C1€e B 9

Verified OK.

1.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

M+ wne — &) — wé —wi€ —wn =10 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 16: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt _do _
§ 1

as

1)

The above comes from the requirements that (f % + n%) S(t,x) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=t

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Sitw(t,z)S, @)
dR  R;+w(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = x + sin (t)

Evaluating all the partial derivatives gives

R, =1
R.,=0
S, = —elz
Sy =¢e"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dsS
dR

We now need to express the RHS as function of R only. This is done by solving for ¢, x

in terms of R, S from the result obtained earlier and simplifying. This gives

ds
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

= e 'sin (t) (2A)

e " sin (R)
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

e % (cos (R; + sin (R)) (@)

To complete the solution, we just need to transform (4) back to ¢,z coordinates. This
results in

S(R) =C —

t in (t)) e
RO YOI Cad
Which simplifies to
t in (t)) e
e_tx:_(cos()—l—Qsm())e b

Which gives
e(e~tsin (t) + et cos (t) — 2¢1)
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

r = —

Canonical

. . . . ODE in canonical coordinates

Original ode in ¢,z coordinates coordinates (R, S)
transformation ’
dr __ as __ R
% = ¢ +sin (t) 9% = e sin (R)
PEEE Lttt Pttt trttt N T N .
T A A A A A 0 A A A A A A A T T R A B N N
SRR AR RN EREEING NS EEEaaat
T A A S S o A A A A A I A SV N B N
SRR TR SRR R P
AR ok VA A A NN I
A et VA A S S A et R S e —
ke VAl S A b _ L T I N B
VAl o e o el sl A A i N0 R=t Pl bl VN e oo
R N NG BRI 5ot R NN Ses Ensens:
~= NN N L AN =AY AN B R
\\\\\xxxx%\\\\\\\\x\ R T R B
NNN YAV VL VNN YN Y L LY PL L L VNS
R A Y I N N N Y Pl LY N r oot
R R I R Fyl by N
A G A I N RN DS
N A L PPV LN N e
R A DR AR R AN I
Summary

The solution(s) found are the following

. _e'(e'sin(t) + (;_t cos (t) — 2¢1) 1)
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Verification of solutions

xr=—

Verified OK.

Figure 24: Slope field plot

e(e"?sin (t) + e~ cos (t) — 2¢;)
2

1.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

"

M(z,y) + N(z,y)

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢

Hence

w.r.t. T gives
d

8(25 L9 0¢ dy

oz ' Oydx =0
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Comparing (A,B) shows that

09
T M
Oz
9 _ n
Oy
But since ;ﬂ:gy = 8‘9; g; then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (z +sin(t))dt
(—x —sin(t))dt+dz =0 (2A)

Comparing (1A) and (2A) shows that
M(t,z) = —x —sin (¢)
N(t,z) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 )
= %(—x — sin (t))
=1
And
ON 0
o0 o)
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Since % # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Ao L(oM _oN
N\ Oz ot
=1((=1) - (0))
=1
Since A does not depend on z, then it can be used to find an integrating factor. The

integrating factor p is
_ JAdt

— o —1dt

7

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
=e '(—z —sin (t))
= —e '(x +sin (t))

And

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

— _—dz

M+N—=0
HRET

(—e™*(z +sin (¢)) + (e7) i—f =0

The following equations are now set up to solve for the function ¢(¢,x)

9 —
g_t_M (1)
6

=N @)
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Integrating (1) w.r.t. ¢ gives

09 .. [+
Edt—/Mdt

%@:/ﬁgwwmmma
PRCALIOREII0 Cag 3)

Where f(x) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t x gives

o¢

0 = ¢+ @) (4)

But equation (2) says that % = e~ t. Therefore equation (4) becomes
et=e"+ f'(x) (5)

Solving equation (5) for f'(z) gives
f'(z) =0
Therefore
f@)=qa
Where ¢, is constant of integration. Substituting this result for f(z) into equation (3)
gives ¢

_ (2z+ cos (t) +sin (¢)) et
2

¢ +c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

(2z + cos (t) +sin (t)) e™*
2

C =

The solution becomes

e'(e~tsin (t) + et cos (t) — 2¢1)
2

T = —
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Summary
The solution(s) found are the following

e'(e~tsin (t) + e~ cos (t) — 2¢1)

Tr= — ].
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Figure 25: Slope field plot

Verification of solutions

e'(e~tsin (t) + et cos (t) — 2¢1)
2

Tr=—
Verified OK.

1.9.4 Maple step by step solution

Let’s solve
—x 4+ 2’ =sin (t)
° Highest derivative means the order of the ODE is 1
/

T

° Isolate the derivative
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' = x +sin(t)

Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE
—z 4+ 2’ = sin (¢)

The ODE is linear; multiply by an integrating factor u(t)
pu(t) (—z + ') = p(t) sin (t)

Assume the lhs of the ODE is the total derivative 4 (u(t) z)
u(t) (—z + ') = p'(t) z + p(t) '

Isolate p'(t)

w(t) = —p(t)

Solve to find the integrating factor

p(t) =e™*

Integrate both sides with respect to ¢

S (4 (uit)z))dt = [ p)sin (t)dt + e

Evaluate the integral on the lhs

p(t)z = [ p(t)sin (t) dt + ¢

Solve for z
[ p(t)sin(t)dt+c
="

Substitute u(t) = e™*

__ [e tsin(t)dt+c1
rT=""t

Evaluate the integrals on the rhs

_ et ;in(t) _ et ;os(t) +e
r = —t
e
Simplify
T = clet __sin(t) _ cos(t)

2 2
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(diff(x(t),t)=x(t)+sin(t),x(t), singsol=all)

2(t) = _cos2 t) sin2(t) Lo

v/ Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 24

LDSolve[x'[t]==x[t]+Sin[t],x[t],t,IncludeSingularSolutions -> True]

_sin(t)  cos(t)

9 9 + Clet

z(t) —
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1.10 problem Problem 10
1.10.1 Solving as first order ode lie symmetry calculated ode . . . . . . 113
1.10.2 Solvingasexactode . . ... ... ... ... ... ... ... 119

Internal problem ID [12121]
Internal file name [OUTPUT/10773_Tuesday_September_12_2023_08_51_42_AM_66891701/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 10.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "first__or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

z(ln(z) —In(y))y' —y =0

1.10.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y = Y
z (In (z) — In (y))
y, = w(x,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(’?y - gx) - w2€y —wf —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

g = zaz + yaz + a, (1E)
1 = xbs + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

y(bs —as) y2as
bs + z(In(z) —In(y)) 22(In(z) — In (y))* -
R S - Y xa as +a g
( 22(In(z) —In(y)) 22(In(z) —In (y))2) (zas +yas + a1)
1 1
~(cE@-ww (in(z) ~In (y)>2) (b2 + 4 +01) =0

Putting the above in normal form gives

In (2)? 2b, — 21n () In (y) 2b; + In (y)? 22b; — In (z) 22, + In (z) y2as + In (y) 22b, — In (y) y?as — In (x
22 (In (z) — In (y))*

=0

Setting the numerator to zero gives

In (2)? 2%b; — 21n () In (y) %63 + In (y)? 226, — In (z) 2%b, (6E)
+1n (z) y®a3 + In (y) 22y — In (y) y%as — In (z) 2b; + In (z) ya,
+1n (y) by — In (y) ya; — byx® + wyas — xybs — by +ya; =0
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y,In(z),In(y)}

The following substitution is now made to be able to collect on all terms with {z,y}
in them
{z=vi,y =v2,In(z) = v3,In (y) = v}

The above PDE (6E) now becomes

2.2 2 2.2 2 2 2 2
v307by — 20304v7be 4+ ViUTbe + V3V5a3 — VU503 — V3V he 4+ V4VTDy 4 vsV2a4 (7E)
2
— V4U201 + V1020 — V3V1b1 + V4011 — bavy — v1vebs +v2a1 — 1101 =0
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Collecting the above on the terms v; introduced, and these are
{Ul7 V2, Vs, 'U4}

Equation (7E) now becomes

VavIby — 2030402by — V3Vby + VIVTby + V4VTby — byv] + (—bs + ag) V1V, (8E)

2 2
- ’U3’Ulb1 + U4’Ulb1 — Ulbl + V3Vy03 — V4U503 + V3V2G1 — V4V20a1 + VoG = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

ar =0

a3 =0

by =0

by =0

—a; =0
—a3=0
-b=0
—2by =0
—by =0
—bs+ay;=0

Solving the above equations for the unknowns gives

a; =0
as = b3
a3 =0
by =0
b, =0
bs = b

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)é

e y N
=9 (ﬂmurdmmﬂ()
_ —y+yln(z)—In(y)y

In(z) — In(y)

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

Ui

1
- / —y+yIn(z)—In(y)y dy
In(z)—In(y)

S is found from

Which results in
S=In(y) —In(-1+In(z) —In(y))

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +W($,y)5y (2)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

. )
YY) = @ —hE)
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Evaluating all the partial derivatives gives

R, =1

R,=0

Sp=— !
z(—1+In(z) —In(y))
1 1

S, =+

y y(-1+4In(z)—In(y))
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0 (2A)

0

S(R) = ¢, (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(y) —In(—1+4+In(z) —In(y)) =
Which simplifies to

In(y) —In(—1+In(z)—In(y) =a
Which gives

__ . — LambertW (e_l_cl m) -1

y=e x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ y a5 —
dz ~ z(ln(z)—In(y)) dR —
By YV Vb
Ly vy v vy oot
R 4
SRR E
I N ]
R 2
VN p e
(e aee: R=x
e e e IR R R
Syl T x S=In(y) —In(-1+1In( R
ST NN - -
SRR
2200 VYN
VA T TR R
A T & #
fob vy vy vy
R R ERR'

Summary

The solution(s) found are the following

y:

— LambertW (e~ 17¢1z2)—1

T
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31 I
BERRN
VAV VLY
2- VAVAV VY
VAV
BER!
| R
VN 77/
PSS
yx)y -
Bt t A R
7770 VAV
7771 VNNV
2771 LV VNV Y
71 bV VNV VL
RN RN
=31 bV VAV VY
-3 -2 —1

= O

Figure 26: Slope field plot

Verification of solutions

Verified OK.

Y= e~ LambertW(e_l_Clm)—lx

1.10.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(x,y)£=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

d

09 , dpdy _

dr ' Oydz =0
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(z(In (z) —1In(y)))dy = (y) dz
(—y) dz +(z(In (z) — In (y))) dy = 0 (24)
Comparing (1A) and (2A) shows that
M(ﬂ?,y) =Y

N(z,y) = z(In(z) — In(y))

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz

Using result found above gives

oM_o,

0y Oy Y

=-1
And
ON 0

= a—x(x(ln () —In(y)))
=In(z) —In(y) +1
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Since %—J‘; # %, then the ODE is not exact. By inspection # is an integrating factor.
Therefore by multiplying M = —y and N = z(In (z) — ln (y)) by this integrating factor
the ode becomes exact. The new M, N are

M=—1
Yz
N — In (z) —2 In (y)
Yy
To solve an ode of the form
dy

dz

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06d
Y
— —_—— T B
Oox + Oy dx 0 (B)
Comparing (A,B) shows that
99
T M
ox
99
T _N
Oy
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

121



Therefore

1 In(z) —In(y) B
<—@) dz + (T) dy=0 (2A)
Comparing (1A) and (2A) shows that
M(x7y) = _é
N = 2000

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

OM _ ON
oy Oz
Using result found above gives
oM 0 1
dy  dy (Ty)
1
S ay?
And
ON 0 (In(z)—In(y)
Oz 0w (T)
1
S ay?

Since %i; = %%{, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
¢ _

5 =~ M (1)
09
oy N (2)

Integrating (1) w.r.t. z gives

0¢ .
adx—/de

%dx = /—idx
ox xy

6= —# T i) 3)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ _In(z)
8_y = + f'(y) (4)
In(z)—In(

But equation (2) says that g—i = 28()  Therefore equation (4) becomes

In(z) —In(y) In(x)

" = + ') (5)

Solving equation (5) for f'(y) gives

In (y)
y2

fly) =~

Integrating the above w.r.t y gives

/ fy)dy = / (_lny(2y)) dy

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

1 1 1
@) @) 1.,
) Y ()

b=
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

1 1 1
o= 0@ @) 1
Yy Y )

The solution becomes
LambertW (—c;e ')
C1

y:
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Summary

The solution(s) found are the following

(1)

LambertW (—c;e™!x)

&

= //
P e ~ v/
S S S )

1
1
1
1
1
1
|

—— =\

R S S s

P e e e

— =
N e~

X

Figure 27: Slope field plot

Verification of solutions

LambertW (—c;e~!x)

y:

&

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful’

v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 14

‘dsolve(x*(ln(x)-ln(y(x)))*diff(y(x),x)—y(x)=0,y(x), singsol=all)

_ LambertW (c;ze™?)
(4]

y(z)

v/ Solution by Mathematica
Time used: 7.587 (sec). Leaf size: 37

LDSolve[x*(Log[x]—Log[y[x]])*y'[x]—y[x]== ,y[x],x,IncludeSingularSolutions -> True]

y(z) = —e W (—e'"1)

y(z) = (3)6

y(z) = -
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1.11 problem Problem 11
1.11.1 Maple step by step solution . . . . ... ... ... ... .... 128

Internal problem ID [12122]
Internal file name [OUTPUT/10774_Tuesday_September_12_2023_08_51_44_AM_24737299/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 11.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "homogeneousTypeD2", "first_ order__ode_ lie_ symme-
try__lookup"

Maple gives the following as the ode type

[_separable]

zyy? — (22 + 7)Y +yz =0

Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

v = % M
V=2 @
Now each one of the above ODE is solved.
Solving equation (1)
In canonical form the ODE is
y = F(z,y)
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Where f(z) = L and g(y) = y. Integrating both sides gives

— dy = — dx
/ dy = / dx
z)+ ¢
y= (W)+01
=T
Summary
The solution(s) found are the following
Y=z
Verification of solutions
Yy=:Ccx
Verified OK.
Solving equation (2)
In canonical form the ODE is
y' = F(z,y)
= f(z)g(y)
_z
Yy

Where f(z) = z and g(y) = % Integrating both sides gives

&
<
I
8

.
8

\
Q=] = ] =
U
N
|
\
8
=W
8

N

o
| 8,
_|_
A

Which results in

= /22 + 2¢y
= —\Vx2+ 2c
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Summary
The solution(s) found are the following

y=Vz%+ 2c
y=—Vz%+2c

Verification of solutions

y=\Vz2+2c
Verified OK.
y=—vVr%+2c

Verified OK.

1.11.1 Maple step by step solution

Let’s solve

zyy”® — (2*+y*) Y +yz =0

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
y 1
Yy T
° Integrate both sides with respect to x
f%dmzf%dm+c1
. Evaluate integral

In(y) =In(z)+ ¢
° Solve for y

y =€z
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful
Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

Ldsolve(x*y(x)*diff(y(x),x)“2—(x‘2+y(x)‘2)*diff(y(x),x)+x*y(x)=0,y(x), singsoyfall)

v/ Solution by Mathematica
Time used: 0.17 (sec). Leaf size: 55

‘DSolve[x*y[x]*y'[x]”2-(x“2+y[x]“2)*y'[x]+x*y[x]==0,y[x],x,IncludeSingularSolu#ions -> True]

y(x) = az

y(z) = =22+ 201
y(x) = V2?4 2¢;
y(z) = -z

y(z) =z



1.12 problem Problem 12
1.12.1 Maple step by step solution . . . . ... ... .. ... ..... 131l

Internal problem ID [12123]
Internal file name [OUTPUT/10775_Tuesday_September_12_2023_08_51_44_AM_49389396/index.tex]|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 12.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y/2 _9y4 =0

Solving the given ode for y' results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y = -3y’ 1)
y =3y (2)
Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

1
/—3—y2dy:$+01

—=x+4+cC

Solving for y gives these solutions

- 3c1 + 3x
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Summary
The solution(s) found are the following

1
y= 301 + 3z
Verification of solutions
. 1
y= 301 + 3z

Verified OK.
Solving equation (2)

Integrating both sides gives

3y?
Loy
——=zx+4c
3y ?
Solving for y gives these solutions
B 1
h 3 (.'13 + Cz)
Summary
The solution(s) found are the following
. 1
Y=73 (x + o)
Verification of solutions
. 1
Y=73 (z + ¢2)

Verified OK.

1.12.1 Maple step by step solution

Let’s solve

y/2 _ 9y4 =0

° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables
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!
v =3

<

. Integrate both sides with respect to x

f;’—;dxzf3da:+cl

° Evaluate integral
—le =3z + C1
° Solve for y
_ 1
Y= T 3zt

Maple trace

-

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful

Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

-

Ldsolve(diff(y(x),x)‘2=9*y(x)‘4,y(x), singsol=all)

-/

1
y(.'L') - ¢y — 3x

1
y(-’l') N 3xr + (&1
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v/ Solution by Mathematica
Time used: 0.263 (sec). Leaf size: 34

kDSolve [y' [x]~2==9*y[x]~4,y[x] ,x,IncludeSingularSolutions -> True]
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1.13 problem Problem 13

1.13.1 Solving as homogeneousTypeD ode . . . . . . . ... ... ... 134
1.13.2 Solving as homogeneousTypeD2ode . .. ... ... ...... 136
1.13.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 138]

Internal problem ID [12124]
Internal file name [OUTPUT/10776_Tuesday_September_12_2023_08_51_44_AM_80572458/index.tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 13.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

x A
' —et —= =0
t

1.13.1 Solving as homogeneousTypeD ode
Writing the ode as

The given ode has the form

n

v =249 f(b2)" (1)

Where b is scalar and g(z) is function of x and n, m are integers. The solution is given
in Kamke page 20. Using the substitution y(z) = u(z) « then

@_du

dx_%w_'_u
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Hence the given ode becomes
du n
i tu=u + g(z) f(bu)
1 n
W = —g(z) f(ou) (2)

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = uxz. Comapring
the given ode (A) with the form (1) shows that

git) =1
b=1

T

Substituting the above in (2) results in the u(t) ode as

eu(t)

t

u'(t) =
Which is now solved as separable In canonical form the ODE is

u = F(t,u)
= f(t)g(u)

e

t

Where f(t) = } and g(u) = e“. Integrating both sides gives

1
—du=1dt
el t
1
/—du:/ldt
el t
—e ' =In(t)+c¢

The solution is
— ) _In(t) —¢; =0

Therefore the solution is found using z = ut. Hence

—e it — In(t)—c; =0
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Summary
The solution(s) found are the following

—e i —In(t)—c; =0 (1)
FANNNNNN N L 11111111
SONNNNN Y 11111117
~SONONNA ALY 11111117
o =N\ 111111177
==~ 1111711777
e S N 111117777
oo\ 11177777
s\
oSN
x(t) I T I I I NS s
J77777 7111 \N=—rr 7/
7777771111 \\N~——rr
N1 R
1111 LV VNN ~———
N EEEN R N
=20/ 1111111 bV N NN NS ——
11111111 LV N N NN~
1111111 SR TAANAVR N VO SO NEN
{11111 PV VN VN NN
-3 -2 -1 1 2 3

0
t
Figure 28: Slope field plot

Verification of solutions

—e it —In(t)—c; =0
Verified OK.
1.13.2 Solving as homogeneousTypeD2 ode
Using the change of variables = u(t)t on the above ode results in new ode in u(t)
()t —e*® =0
In canonical form the ODE is

u = F(t,u)
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_1

t

Where f(t)

The solution is

and g(u) = e*. Integrating both sides gives

1 1
—du=-dt
et t

/ldu=/1dt
el t

—e " =1In(t) + ¢

—e ) _1n () —co=0

Replacing u(t) in the above solution by ¥ results in the solution for z in implicit form

Summary

— i —In(t)—c; =0
— i —In(t)—c; =0

The solution(s) found are the following

—e it —In(t)—c; =0 (1)
SNNNNNV VY LY 11111011
SONNNNN VL 1111101171
~SOSONNNN NV 1111011171
—~~>NNNN L 111111177
——=~~NNN\\ it 1111177
———=~N\ 11117777

Jmm—====NN\ 0\ 11117777
s\
s ssmNN T 7777
|\777777772N1777777777
JI777 777N s s 77T
J7777 7711 \N—~—mrrr s
7777771111 \\N\~—rrrm”
777711111 VA NN~
71171111t LV A NN~
17111111 LV N NN SN ———
1t bV N NN S ==
11ttt PV VN NS~
1111 PV VNN NN
1111111t PV VN VNN
-3 -2 -1 1 2 3

t

Figure 29: Slope field plot
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Verification of solutions

—et —In (t)—ce=0
Verified OK.

1.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, eit+
ot
z =w(t,x)

T

The condition of Lie symmetry is the linearized PDE given by
e+ w(ne — &) — W€ — wi —wen =0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find &, 7
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Table 21: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

Et,z) =1
n(t,x) =tz

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt _do _
§ 1

as

1)

The above comes from the requirements that (f % + n%) S(t,x) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore

dz _ 1
dt ¢
tx
BT
xr

t
This is easily solved to give
T = cit

Where now the coordinate R is taken as the constant of integration. Hence

And S is found from

Integrating gives
dt
s- 7
1
Tt
Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating
ﬁ _ St + w(t,x)S, (2)
dR Ri+w(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

it
w(t, z) = e t—i— z
Evaluating all the partial derivatives gives
x
Ri=-2
1
R, =—
t
1
St == t_2
Sz =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

I8

ds _ e
dR  t

(24)

We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

s
— =_S(R)e !

iR (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

—R

S(R) = cy€° 4)

To complete the solution, we just need to transform (4) back to ¢,z coordinates. This
results in

8

—~ =ce®
: 1
Which simplifies to
1 %
—— =€
; 1

Which gives

- n(o(-2)
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ODE in canonical coordinates
(R, 9)

Canonical

coordinates
transformation
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Original ode in ¢,z coordinates

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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The solution(s) found are the following

Summary
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Figure 30: Slope field plot

Verification of solutions

o=t (1n

Verified OK.
Maple trace

C1

2)

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful”
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve(diff(x(t),t)=exp(x(t)/t)+x(t)/t,x(t), singsol=all)

() = In <_m) ¢

v Solution by Mathematica
Time used: 0.54 (sec). Leaf size: 18

LDSolve [x' [t]==Exp[x[t]/t]1+x[t]/t,x[t],t,IncludeSingularSolutions -> True]

z(t) — —tlog(—log(t) — c1)
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1.14 problem Problem 14
1.14.1 Maple step by step solution . . . . ... ... ... ... .... 146

Internal problem ID [12125]
Internal file name [OUTPUT/10777_Tuesday_September_12_2023_08_51_46_AM_91798504/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 14.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

y/2:_x2_|_1

Solving the given ode for ¢’ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y=v-22+1 (1)
Y= V=it @
Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

yz/\/—x2+1 dz
V—z?2+1x  arcsin(x)

= 9 + 9 4+

Summary
The solution(s) found are the following

— 2+1 3
y:\/ xz x_i_:':wcslzn(ac)_i_61 (1)
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Verification of solutions

vV—x24+1z arcsin(z
y= 9 + 9 ( )+C1

Verified OK.
Solving equation (2)

Integrating both sides gives

y=/—\/—x2+1dx

vV—z?+ 1z arcsin(z)
9 - 9 + co

Summary
The solution(s) found are the following

V—x?2+1x  arcsin ()
2 2

y=- C2

Verification of solutions

V—z?2+1x  arcsin ()
2 T2 °

y=- C2

Verified OK.

1.14.1 Maple step by step solution

Let’s solve
12

Yy =—-r2+1
° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to x
[y?%dz = [(—2®+1)dz + ¢

o Cannot compute integral

[y%de =z — 5% + ¢
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful”

v Solution by Maple
Time used: 0.063 (sec). Leaf size: 43

e

tdsolve(x‘2+diff(y(x),x)‘2=1,y(x), singsol=all)

L

zv/—22+1 arcsin(z
y(x) = + (z) +
2 2
zv/—2>+1 arcsin(z)

y(x) = — 5 5 Ta

v/ Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 85

LDSolve[x‘2+y'[x]‘2==1,y[x],x,IncludeSingularSolutions -> True]

V1—2x2 1
y(x) — —arctan (_x) + 5\/1 -2+

z+1

z+1

V1—2x2 1
y(x) — arctan (_x) - 5\/1 -2z + ¢
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1.15 problem Problem 15

1.15.1 Solving as separableode . . . . . . . ... ... ... ..... 148
1.15.2 Solving as homogeneousTypeD2ode . .. ... ... ...... 1501
1.15.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 152
1.15.4 Solving as bernoulliode . . ... ... ... .. .........
1.15.5 Solving asexactode . . ... . ... ... ... ... . ..., . 150
1.15.6 Maple step by step solution . . . . ... ... ... ....... 163

Internal problem ID [12126]
Internal file name [OUTPUT/10778_Tuesday_September_12_2023_08_51_46_AM_73155439/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 15.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

1
y—yz——-=0
Yy
1.15.1 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)9(y)
y' -1
=
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Where f(z) =% and g(y) = % Integrating both sides gives

T

In(y—1) +ln(y—|—1) B
2 2

The above can be written as

(%) (In(y — 1) +In(y + 1)) = In (2) + 26,

In(y—1)+In(y+1) = (2) (In(z) + 2¢1)
=2In(x) + 4

Raising both side to exponential gives

eln(y—1)+ln(y+1) — e21n(a:)-|—201

Which simplifies to

y? —1=2c2"

= CQiL‘2

The solution is

y? —1=coa?

Summary
The solution(s) found are the following

y? — 1 = coa?
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Figure 31: Slope field plot

Verification of solutions

y? —1=cox?
Verified OK.

1.15.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) « on the above ode results in new ode in u(z)

1

wz)z — (v(z) z +u(z)) z — =0

In canonical form the ODE is

v = F(z,u)

= f(z)g(v)
1

u 3

Where f(z) = —— and g(u) = -. Integrating both sides gives
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The solution is
u(z)® 1

R

Replacing u(z) in the above solution by £ results in the solution for y in implicit form

2
Y 1
22 g2 =0
2
Y 1
22 22 20
Summary
The solution(s) found are the following
2
Y 1
2z2 2x2 2 =0 (1)
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Figure 32: Slope field plot
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Verification of solutions

Verified OK.

1.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

/I y2 -1
y =

Ty
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - g-’l)) - w2£y - sz — Wyl = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

{(z,y) =2
n(z,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S is found from

1
S = / —dzx
3
= / lda:
z
Which results in
S =1In(z)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2
_y -l
("‘)("B ’ y) - Ty
Evaluating all the partial derivatives gives

R,=0
R, =1

1
Sy = —

x
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dsS Y
-~ 7 2A
drR y?>-1 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS R
dR R2-1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

(4)

gives
In(R—1) In(R+1
sy~ mE=D  mELD
2 2
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
In(y—1) 1 1
In (z) = n(y—1)  Iny+ )+c1
2 2
Which simplifies to
In(y—1) In(y+1
In (z) = (y2 ) (y2 ) "

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

In (z) = In(y—1) +ln(y+1)

The solution(s) found are the following

2 2 +
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Figure 33: Slope field plot

Verification of solutions

n(y—1)  In(y+1)

In(z) =
Verified OK.

1.15.4 Solving as bernoulli ode

In canonical form, the ODE is
y = F(z,y)
y’ -1
Ty

This is a Bernoulli ODE. 1 11

Yy =-y——-
z Ty
The standard Bernoulli ODE has the form

y' = fo(x)y + fi(x)y"
The first step is to divide the above equation by y™ which gives

g% = fol@y' ™ + fi(z)
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The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(z) Zé
fi(z) = —%
n=-1

Dividing both sides of ODE (1) by y" = , gives

/ y 1
= — = — 4
vy="_-_ (4)

Let

Taking derivative of equation (5) w.r.t z gives

w' = 2yy’ (6)

Substituting equations (5) and (6) into equation (4) gives

w() _w) 1
2 T T

The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is
w'(z) + p(z)w(z) = q(=)

Where here
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Hence the ode is

2 2
i) - 200 _ 2
x x
The integrating factor u is
o= ef—idz
1
T2

The ode becomes

Integrating gives

Dividing both sides by the integrating factor u = ;%2 results in
w(z) =z +1
Replacing w in the above by 3? using equation (5) gives the final solution.
V¥ =cz’+1

Solving for y gives

y(x) =Vezr?+1
y(xz) = —vex? + 1

Summary
The solution(s) found are the following

y=+vez2+1 (1)
y:

—vear2+1 (2)
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Verification of solutions

y=+eaz?+1
Verified OK.

y=—ear2+1
Verified OK.

1.15.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

M(z,y) + N(z,y) — =0

dz

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

dz
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Hence

0p  O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
0
T M
oz
09
T _N
Oy
But since aajgy = ;’: g’x then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
3¢ _ 8¢
ox0y ~ OyOx
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

is satisfied. If this condition is not satisfied then this method will not work

M(z,y)dz+N(z,y)dy =0 (1A)

(1) o= (5) e
(—%) dx+(y2y_1) dy =0 (24)

Comparing (1A) and (2A) shows that

Therefore

1
M(CL‘,y) = _E

N =
(x’ y) y2 _ 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM ON
By oz
Using result found above gives
oM 0 1
-5
=0
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And

ON _ 0 ( vy
oxr Or\y2—1

=0
Since %—A; = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
— =M 1
e (1)
o9
2 =N 2
o @)

Integrating (1) w.r.t. z gives

oo .
adx—/de

0¢ 1
¢ =—In(z) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

=0+ ) @
But equation (2) says that g—‘;’ = yzy_l. Therefore equation (4) becomes
=0+ (1) (5)
y?—1
Solving equation (5) for f'(y) gives
fly) = yzy_ 1

Integrating the above w.r.t y gives

/f’(y)dy=/(y2y_1) dy
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

In(y—1) +ln(y+1)

¢=—In(z)+ 5 5

+

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

+ln(y—1) +ln(y+1)

¢ =—1In(z)

2 2
Summary
The solution(s) found are the following

—1n(x)+ln(y2 1)+h“(y2+1)=c1 (1)
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Figure 35: Slope field plot

Verification of solutions

Cln(2) + In (y2— 1) N In (y2+ 1) _ o

Verified OK.

162



1.15.6 Maple step by step solution

Let’s solve
y—yz—5=0
° Highest derivative means the order of the ODE is 1

/

Y
) Separate variables
y 1
° Integrate both sides with respect to x

f_y%;dmzf—%dx+cl

° Evaluate integral
_ln(y2—1) i ln(y2+1) — —In (.’L’) T+
° Solve for y
(1)’ =/ (e°1) +(e1) 2 +a? (€°1)% 4/ (e°1) +(e1) 22 +a?
Y= Y =
(e51)2— /(1) +(e1) % (e51)%/(e1) +(e1) %

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 27

tdsolve(y(x)=x*diff(y(x),x)+1/y(x),y(x), singsol=all)

y(z) =Ver?+1
y(xz) = —vex? +1
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v/ Solution by Mathematica
Time used: 0.43 (sec). Leaf size: 53

-

kDSolve [y [x]==x*y' [x]+1/y[x],y[x] ,x,IncludeSingularSolutions -> Truel

—

y(z) = —V1+era?
y(x) — V1 + e2ig?
y(z) = -1

y(z) =1
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1.16 problem Problem 16
1.16.1 Maple step by step solution . . . . ... ... ... ....... 168

Internal problem ID [12127]
Internal file name [OUTPUT/10779_Tuesday_September_12_2023_08_51_48_AM_22632786/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 16.

ODE order: 1.

ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

—y +y = —z+2

Solving the given ode for y' results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

=

J = (—216 + 108z + 12v/81z2 — 324z + 312) 2
= 1
6 (—216 + 108z + 12V/81a? — 324z + 312)°
(1)
: /3
Y = (—216 + 108z + 12v/8122 — 324z + 312)° 1 N
- - 1
12 (—216 + 108z + 12v/81a? — 324z + 312)°
(2)
1 V3
J = (—216 + 108z + 12v/81z2 — 324z + 312)° 1
= 5 _ —

1
(—216 + 108z + 12v/8122 — 324z + 312)°
(3)

Now each one of the above ODE is solved.
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Solving equation (1)

Integrating both sides gives

dz

2
B / (—216 + 108z + 12/8127 — 324z + 312)° + 12

1
6 (—216 + 108z + 12+/8122 — 324z + 312)°

2
B / (—216 + 108z + 12v/81z% — 324z + 312) ® + 12
- 1
6 (—216 + 108z + 12+/8122 — 324z + 312)°

Summary

T+ C

The solution(s) found are the following

2
/ (—216 + 108z + 12v/8122 — 324z + 312)° + 12
= 1
6 (—216 + 108z + 12/8122 — 324z + 312)°

Verification of solutions

dx + ¢ (1)

Verified OK.
Solving equation (2)

Integrating both sides gives

2
B / (—216 + 108z + 12v/8122 — 324z + 312)° + 12
1
6 (—216 + 108z + 12v/81z% — 324z + 312)°

T+ c

2
— 324z + 312)* /3 — 12i+/3 — (—216 + 108z + 121/8122 — 324z + 31

/ z’(—216 + 108z + 12+/812
y =

1
12 (—216 + 108z + 12/81z% — 324z + 312)°

2
— 324z + 312)° /3 — 12iv/3 — (—216 + 108z + 12+/8122 — 324z + 31

B / i(—216 + 108z + 12v/81z2

Summary

1
12 (—216 + 108z + 12v/81z% — 324z + 312) 3

The solution(s) found are the following

Y

(1)

2
324z + 312)* /3 — 12iv/3 — (—216 + 108z + 121/81z% — 324z + 312

_/ i(—216 + 108z + 124/8122 —

+ co

12 (=216 + 108z + 12v/81a% — 324z + 312)°
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Verification of solutions

Y

2
/ i(—216 + 108z + 12v/812% — 324z + 312)° /3 — 12iv/3 — (—216 + 108z + 12v/8122 — 324z + 312
1
12 (—216 + 108z + 124/81z% — 324z + 312)°

+c

Verified OK.
Solving equation (3)

Integrating both sides gives

B / _i(—216 + 108z + 12/8122 — 324z + 312)§ V3 —12iv/3 + (—216 + 108z + 12v/8122 — 324z +
T 12 (—216 + 108z + 124/81z% — 324z + 312)%

B / (=216 + 108z + 12/812? — 324z + 312)§ V3 — 12i3/3 + (—216 + 108z + 12+/8122 — 324z +

- 12 (~216 + 108z + 12v/812% — 324z + 312)°

Summary
The solution(s) found are the following

v= | (1)

2
3

i(—216 + 108z + 12v/812% — 324z + 312)° /3 — 12iv/3 + (—216 + 108z + 12/8122 — 324z + 312)
1
12 (—216 + 108z + 12+/81z% — 324z + 312)°

+c3
Verification of solutions

-

2
i(—216 + 108z + 12v/812% — 324z + 312)° /3 — 12iv/3 + (—216 + 108z + 12v/8122 — 324z + 312)
1
12 (—216 + 108z + 12v/8122 — 324z + 312)°

+c3

Verified OK.
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1.16.1 Maple step by step solution

Let’s solve
-y +y = —z+2
° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to x
[(=y*+y)dz=[(-z+2)dz+c
o Cannot compute integral

[(=y?+y)de=—-1a2+ 22+ ¢

Maple trace

"Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful’
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 211

Ldsolve(x=diff(y(x),x)“3—diff(y(x),x)+2,y(x), singsol=all)

y(z)

2
3

2
—12i+/3+ (—216+108x+12\/ 81x2—324z+312) 3412

[ i3 (—216+108w+12\/81x2—324x+312)
1
<—216+108x+12\/81zz—324x+312) 3

dx)

12

2
f <i\/§—1) (—216+108x+12\/81m2—324x+312) 3 _12iv/3-12 p
x
1
(—216+108z+12\/81m2—324z+312> 8

y(z) = B + 1
2
(—216+108w+12\/81x2—324x+3l2) 3412
—dzx
(—216+108x+12\/81m2—324x+312) 3
y(r) = +e

6

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

kDSolve [x==y' [x]~3-y' [x]+2,y[x],x,IncludeSingularSolutions -> True]

Timed out
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1.17 problem Problem 17
1.17.1 Solving as first order ode lie symmetry calculated ode . . . . . . 17701
1.17.2 Solvingasexactode . . ... .. ... ... ... ... .. ... 175

Internal problem ID [12128]
Internal file name [OUTPUT/10780_Tuesday_September_12_2023_08_51_49_AM_54326988/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 17.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class G'], _rationall
Y — Y =0
r+y

1.17.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y= Y
v+ x
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
e+ w(ny — &) — W&y —w€ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + o (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{a'la aq, as, bl) b2, b3}

Substituting equations (1E,2E) and w into (A) gives

y(bs — a2) y’as y(zaz + yas + a1)

by + —
Tt (Pta)’ (13 + z)° (5E)
1 343
_ (y3+z _ (yBixf) (b + ybs + b)) = 0

Putting the above in normal form gives

y°by + 4 y°by — y'as + 3y'bs + 2y°by — xby + ya

2 =0
(y3 + )

Setting the numerator to zero gives
6 3 4 4 3 _
y by + 4z y°by — Yy as + 3y*bs + 2y°by — by +ya; =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =2}
The above PDE (6E) now becomes
bov§ — ayvy + 4byv1v3 + 3bgvs + 2b1v3 + a1vs — vy =0 (TE)
Collecting the above on the terms v; introduced, and these are
{vi, v2}
Equation (7E) now becomes

4b2’Ul’Ug — bl’Ul + bz’l)g + (—CLQ + 3b3) ’Ug + 261’1)3 + a1v9 = 0 (8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 =0
b =0
—b,=0
2b; =0
4by =0
—ao +3b5=0

Solving the above equations for the unknowns gives

a; =0
as = 3bs
as = as
by =0
b, =0
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§=y
n=20

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)§

—0- (4w

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

F=, = 1)
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n
1
:/ 2 dy

e

S is found from

Which results in

2
Yz
S=—-"4—
2 + Y
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Y
(.U(.’L' ’ y) - y3 +z
Evaluating all the partial derivatives gives
R, =1
R,=0
1
Sy = —
)
x
S, =—-y——
Y y2
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds
— =0 2A
iR (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

ar ="
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

)
2 + y =C
Which simplifies to
2
v ooz
9 + v C1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.
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Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
@ _ Y ﬁ 0
dz ~ y3+z dR —
S S 4
Y T T T T S(R]
AAAA AT v w2 o v > o o > 24
~NwNNN\ |} P
—»—»—va—b—u\»'\»\»\\ //v)—f,o_c»_»-‘»_»_c» -
—»-»_-z»—-u——a__z»»/v,d Y Sh ey y2 =3 > 5 vis
B e B P O VI N SN N NSO 2
e O P ) >
. NS .
Summary
The solution(s) found are the following
2
Y x
L+l 1)
2y
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Figure 36: Slope field plot

Verification of solutions

xr
+—-=0

NS,

Verified OK.

1.17.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,) + N(z,3) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
Yy _
or  Oydx 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(¥’ +2)dy = (y)dz
(—y)dz+(y* +z)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —y

N(z,y) =y’ +z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM_o,
oy oy "’
=-1
And
ON 0
o~ o)
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
“N(a—y‘%)
1
= (D - W)
2

v+

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

g 1(ON _om
- M\ oz Oy

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be y. Then

w= e/ Bdy
— el 3
The result of integrating gives
= 6_2 In(y)
1
%

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.
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And

N =uN
1

= E(y?’ﬂv)

_yte

="
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

. _dy
M —~Z =0
+ dzx

1 P +z\dy
( y)+( y? )dw_o

The following equations are now set up to solve for the function ¢(z,y)

9¢

6
3y = N (2)
Integrating (1) w.r.t. = gives
op . [—
/%dx = /de
op . 1
6= +50) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0
£=§+ﬂm (4)

But equation (2) says that g—‘z = sz{”” Therefore equation (4) becomes

2 T f'(y) (5)
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Solving equation (5) for f'(y) gives
f'ly) =y

Integrating the above w.r.t y gives

[rwa= [ way

2
f(y)=%+01

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

2
X
¢=——+y—+01
Y 2

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into new constant c¢; gives the solution as

2

- T, v
Cc = ” + 9
Summary
The solution(s) found are the following
2
y: oz
Z _Z = 1
2y € (1)

179



—_—— e >
—_——
P e i i e e
Pl P
VA PP PP PO e S S
V1717777777
~\\\\N\|\// /7
~~aNaN\L 1 ] ]
———— ] ] \, ARV e
7] ] ] 1 \,
R D S S P PPl
—_—— s T
_——
—_—— >

—_——— s > = > = = s e = = = = e = = = = =

Verification of solutions

Verified OK.
Maple trace

-3 -2 -1 0 1 2 3

Figure 37: Slope field plot

:cl

NS,
<8

"Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature
trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

<- 1st order linear successful

<- inverse linear successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 224

Ldsolve(diff(y(x),x)=y(x)/(x+y(x)“3),y(x), singsol=all)

2
(273: +3./24 1 81x2)  _6e

y(z) = ;
3 (270 +3\/24 +8127)
. i3 (2733 + &/W) C o 6ivEe + <27z n 3\/m)§ — 6ey
e 6 (270 +3/24c] + 813:2);'
Yo — NG (27x + 3\/m) o 6ivEe — (27z + 3\/m)g + 60

1
6 <27x +3,/243 + 81x2> ?

v/ Solution by Mathematica
Time used: 2.895 (sec). Leaf size: 263

LDSolve[y'[x]==y[x]/(x+y[x]‘3),y[x],x,IncludeSingularSolutions -> Truel

2 323¢; — V/3(—9z + /8122 + 24c;3) ¥/*
3(/—9z + \/81x2 + 24c¢;3
V3(1 - iv3) (—9z + /8127 + 24¢,%) 23 — 2V/3(V/3 + 3i) 1
66/—93: + /81x2 + 24¢,3
V3(1+14v3) (—9z + /B1z2 + 24c;3) 73 — 2v/3(V3 — 3i) 1
6</—9x + /8122 + 24c¢;3

y(z) =

y(z) =

y(z) =

y(x) =0
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1.18 problem Problem 18

1.18.1 Solving as quadratureode . . . . . . ... ... ... .. .... 182
1.18.2 Maple step by step solution . . . . .. ... ... ... ..... 183l

Internal problem ID [12129]
Internal file name [OUTPUT/10781_Tuesday_September_12_2023_08_51_50_AM_51096026/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 18.

ODE order: 1.

ODE degree: 4.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

y—y'+y’=—2

1.18.1 Solving as quadrature ode

Integrating both sides gives

1
/RootOf (_24—_23—y—2)dy:/dw
1

)
/ RootOf (_Z' —_Z*— _a—2)

d a=z+¢

Summary
The solution(s) found are the following

Y 1
/ RootOf(_Z4—_Z3__a_2)d_a=x+cl (1)

Verification of solutions

4 1
/ RootOf (_Z4 - 22— a-— 2)

d a=z+c¢

Verified OK.
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1.18.2 Maple step by step solution

Let’s solve
y—y* +y° =2
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
y -1
RootOf(_Z4—_Za—y—2>
° Integrate both sides with respect to x
y dr= [ ldx +c
‘f RootOf(_Z4—_Z8—y—2) f ta
° Evaluate integral
3R00t0f<_Z4—_Za—y—2)2 4Root0f<_Z4—_Za—y—2>3
° Solve for y
1
3
2oy (27+192cl+192x+24\/64c%:12801z+64x2+18c1+18z> N 0 1 +% -
8 (27+192c1 +192m+24\/64c%+12801 :c+64:v2+18f;1 +18w) 3
Yy= 1 4+

Maple trace

/

"Methods for first order ODEs:
**k*x Sublevel 2 **x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful’
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 247

Ldsolve (y(x)=diff (y(x),x)"4-diff (y(x),x)"3-2,y(x), singsol=all) J
y(z) = -2
y(z
i—C T T—C 2 r—C
12<1§gg4 4 GaretoVotyereatg)ema) | b o pye gyt y g—z> (27— 192¢; + 1920 + 2461

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve [y[x]==y' [x]"4-y' [x]"3-2,y[x],x,IncludeSingularSolutions -> True] J

Timed out
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1.19 problem Problem 26
1.19.1 Maple step by step solution . . . . . ... ... ... ...... 186

Internal problem ID [12130]
Internal file name [OUTPUT/10782_Tuesday_September_12_2023_08_51_52_AM_99008589/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 26.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

Yoty =4

Solving the given ode for y' results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

Yy =v4—y (1)
y'=—Vi—y (2)
Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

1
———dy=x+c
/ ’——y2+4y 1
n(3) -
arcsin 5 =r+c

Solving for y gives these solutions

Y1 =2sin(z 4+ ¢1)
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Summary
The solution(s) found are the following

y =2sin(z+ ;)

Verification of solutions

y =2sin(z+ ;)

Verified OK.
Solving equation (2)

Integrating both sides gives

[~y =a+
————dy=2x+c
—y2—|—4y 2

— arcsin (%) =+ Cy
Solving for y gives these solutions
y1 = —2sin (z + ¢2)

Summary
The solution(s) found are the following

y = —2sin (z + ¢)

Verification of solutions

y = —2sin (z + ¢2)
Verified OK.

1.19.1 Maple step by step solution

Let’s solve

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
v 1
Vi—y?
° Integrate both sides with respect to x
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f\/i’—Lde=f1dm+cl

° Evaluate integral
arcsin (%) =z+0c
° Solve for y

y=2sin(z+¢;)

Maple trace

"Methods for first order ODEs:
*k* Sublevel 2 **x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful’

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 31

-

Ldsolve(diff(y(x),x)‘2+y(x)‘2=4,y(x), singsol=all)

~—

y(z) = =2

y(z) =2

y(x) = —2sin (¢; — z)
y(xz) = 2sin(¢; — x)
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v/ Solution by Mathematica
Time used: 0.306 (sec). Leaf size: 43

p
kDSolve [y' [x]~2+y[x]"2==4,y[x] ,x,IncludeSingularSolutions -> Truel

—

x) — 2cos(z + ¢1)
x) — 2cos(a: —c)

y(z)
(z)
y(z) —
(z) =
(z)

<

y(z
y(x) — Interva,l[{ —2,2}]
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1.20 problem Problem 28
1.20.1 Solving as homogeneousTypeMapleCode . . . . . . . .. .. .. 189
1.20.2 Solving as first order ode lie symmetry calculated ode . . . . . . 193]

Internal problem ID [12131]
Internal file name [OUTPUT/10783_Tuesday_September_12_2023_08_51_52_AM_58373890/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 28.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_ order__ode_ lie_ symmetry__calculated"
Maple gives the following as the ode type

[[_homogeneous, “class C°], _rational, [_Abel, ~2nd type’,
class A~]]

2y—r—4
2r —y+5

!/

Y

1.20.1 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + z, then the above is transformed to new ode in Y (X)

d Y(X) = — 2Y(X)+2yo— X —z0— 4

dX  =2X -2+ Y (X)+yo—5
Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in

.'130=—2
yo=1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes
d 2Y (X)) - X

x X =—Sxyy (X)
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In canonical form, the ODE is

Y'=F(X,Y)
2Y — X

=Xy o

An ode of the form Y’ = % is called homogeneous if the functions M (X,Y’) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = 2Y — X and N = 2X — Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = %,

or Y =uX. Hence

dY du
ax T ax >t
Applying the transformation Y = uX to the above ODE in (1) gives
du —2u+1
x Xt
du o0 — u(X)
dx X
Or —2u(X)+1
iu(X) _ uELX)—2 — u(X) _0
dX X
Or p p
2 —
(qu(X)> Xu(X) 2(qu(X)>X+u(X) 1=0
Or

.X@Qﬁ—%(i%MXO%wmm2—l=0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

v = F(X,u)
= f(X)g(u)
our-1
X (u—2)
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Where f(X) = —+ and g(u) = “=L. Integrating both sides gives

In(u—1 3ln(u+1
— (2 ) (2 )——ln(X)+02
The above can be written as
_ln(u_1)+3ln(u+1)=—ln(X)+02

2
—In(u—1)+3n(u+1)=(2) (- In(X) + )
= —QIH(X) +202

Raising both side to exponential gives

e In(u—1)+3In(u+1) _ e—2ln(X)+202

Which simplifies to

(u+1)° 2
u—1 X2
C3

T X2

Which simplifies to

(w(X) + 1) _ cze’e
u(X)—1 X2

The solution is
(w(X) + 1)3 _ cge?
u(X)—1 X2

Now u in the above solution is replaced back by Y using u = % which results in the

3
Y (X)
(_X —+ 1) B 036262

Yx) 1 X2
X

solution
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Which simplifies to

(Y (X) + X)" _
Y+ X T

cs e262

Using the solution for Y (X)

Y(X)+X)* _
T oYX +x ®°

2co

And replacing back terms in the above solution using

Y=y+y
X =z+x

Y=y+1
X=z-2

Then the solution in y becomes

_@Hy+1)”
—y+3+z

2co

Summary
The solution(s) found are the following

z+y+1)° .
_(—yf3+i: = 5™ (1)
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Figure 38: Slope field plot

Verification of solutions

ey o
-y+3+z

Verified OK.

1.20.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

. 2y—xz—4
¥y= —2r+y—5
Yy =uw(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - w2§y —wz€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zas +yas + a; (1E)
n = xby + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(2y —x —4) (bs — as) B (2y—m—4)2a3

by —
2 —2z+y—>5 (—2z+y—5)°
1 2(2y—x—4)) (5E)
- — ras +yas + a
(—2m+y—5 (—2x—|—y—5)2 (zaz + yas 1)

2 2y —z—4
el + by +ybz +b1) =0
< —2x+y—>5 (—2x+y—5)2)( 2+ ybs + by)
Putting the above in normal form gives

2x2ay — x2az + x2by — 22%b3 — 2zyay + 4xyas — 4xyby + 22ybs + 2y%as — y2as + y2by — 2y%b3 + 10zas —
(22

=0

Setting the numerator to zero gives

2220y — xaz + 12by — 22°b3 — 2wyay + 4xyas — 4ryby + 22ybs + 2y%a, (6E)
— y%ag + y?by — 2y%bs + 10zay — 8zas — 3xby + 14xby — 13zbs + 3yay
- 14ya2 + 13ya3 - 10yb2 + 8yb3 - 3(11 + 20(12 - 16&3 - 6b1 + 25b2 - 20b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

2a21)f — 2a5v1V9 + 2a2v§ — a3v% + 4azv1v9 — agvg + bgv% — 4bovyvy + bgvg (TE)
- 2b3’U% + 2b3’01’02 - 2b3’U§ + 3a1v2 + 10@2’01 — 14a2v2 — 8a3’01 + 130,3’02 - 3b1’l}1
+ 14b2’01 - ].ObQ’Uz - 13b3’l}1 + 8b3’l}2 - 3a1 + 20&2 - 16&3 - 6b1 + 25b2 - 20[)3 =0
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Collecting the above on the terms v; introduced, and these are
{vla ’Uz}

Equation (7E) now becomes

(2(12 —az + b2 — 2b3) 'U% + (—262 + 4(13 - 4b2 + 2b3) V1V (SE)
+ (100,2 — 80,3 - 3b1 + 14b2 - 13b3) v+ (2&2 — as -+ b2 — 2b3) ’Ug
+ (3&1 — 14&2 + 13(13 — 10b2 +8b3) Vg — 3(1,1 +20a2 - 16@3 — 6b1 +25b2 - 20b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—2a9 + 4a3 — 4by + 2b3 =0

2a9 —az +by —2b5 =0

3a; — 14a, + 13a3 — 10by + 8b3 = 0

10ay — 8az — 3b; + 14by — 13b3 =0

—3a; + 20a; — 16a3 — 6b; + 25b; — 20b3 = 0

Solving the above equations for the unknowns gives

a1 = —by + 2b3
as = bs

az = by

by = 2by — b3
by = by

bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x+2
n=y—1
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=mn-w(y)é

=y—1—<—22:£:i>(x+m

—2r+y—35
-y’ +4r+2y+3
B 2r —y+5
£E=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
3 n

The above comes from the requirements that <§ 2 4+ n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

Sz/ldy
n

1
—/mdy

25—y+5

S is found from

Which results in
_3ln(z+y+1) In(y—-3-x)
- 2 - 2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

20 —x —4

oY) ="y =5

Evaluating all the partial derivatives gives

R, =1
Ry, =0

T

_ —2y+z+4
C(z+y+D(z+3-y)
g 2 —y+5
Y (z4+y+1D)(z+3—1y)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

- - 2A

T (24)
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

0

gives
S(R) =c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
3n(z+y+1) In(y—3-1z)
2 2

=cl

Which simplifies to
3ln(z+y+1) In(y—3-x)
2 a 2
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

=Cl

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ 2y—x—4 as __ 0
r —  —2z+y-5 dR —
SNOANNNNNNN Y Y e
SNNNNNNNN L A
SANNNYNNN VS e 4
\\\\\\xxf;//»»»$»w»»
SN NN e —— )
\\\\\\@@//A$A»XN\\\\ S(R]
R N / e 2 e~ ~a e~ a 24
NN Na N N\ Ny — s alNA A A A A A e A Sa S
R A R N D N R =
\\*474\\\\\\\\\\\\\\
e AR R IR - = : .
”/’j/‘ \,%\\\\\\3\\\3\\ S:31n($+y+1) _12 : Z ZR 4
R AR BERRARRIE S R  N 9
B AR B T I I e -
R R IN R R VR Ve N N
VA SR T R W VR W W W W Vi W W VW VO
N R TR R AR N Y A N N R Ve T N N
EEE R R R R AR RN RN g
IR N N R AT D R R ' VL N
R T A N N N Y Y e e
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Summary
The solution(s) found are the following

3n(z+y+1) In(y—-3-z)
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Figure 39: Slope field plot

Verification of solutions

3n(z+y+1) In(y—3-xz)
2 B 2 - A

Verified OK.
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Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful”

v/ Solution by Maple
Time used: 0.891 (sec). Leaf size: 117

Ldsolve(diff(y(x),x)=(2*y(x)—x—4)/(2*x—y(x)+5),y(x), singsol=all) J

y(z) =
(iv3—1) (3\/3 \/27(:% (z+2)° —1+42Tci(z + 2))

W

_32\/3—3+6<3\/§\/27c§(x+2)2—1+2‘

1
3

6 (3\/5 V276 (2 +2)° — 14 2Tc; (¢ + 2)) o

v Solution by Mathematica
Time used: 60.277 (sec). Leaf size: 1624

LDSolve[y'[x]==(2*y[x]—x—4)/(2*x—y[x]+5),y[x],x,IncludeSingularSolutions -> T?#e]

Too large to display
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1.21 problem Problem 29

1.21.1 Solving as first order ode lie symmetry lookup ode . .. .. .. 2001
1.21.2 Solving as bernoulliode . . . . . ... ... ... ... ..... 204
1.21.3 Solvingasexactode . . .. ... ... .. ... ... ..., 208}
1.21.4 Solving asriccatiode . . . . . . . . . ... ... ... .. 212

Internal problem ID [12132]
Internal file name [OUTPUT/10784_Tuesday_September_12_2023_08_51_55_AM_65763563/index.tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 29.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exact With-
IntegrationFactor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]
/ Yy 2
— + =0
Y z+1 y

1.21.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y = _Yeyty—1)
z+1

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €z) - w2€y —wz§ — wyn =10 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7
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Table 30: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode "= f(x)y + g(x) y"™ 0 e~ J(n=D)f(@)dzyn
Y Yyr+g\r)y Y
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
%
n(@y) = "5 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

Sz/ldy
n
1

z/yzdy

_x+1
]

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S is found from

Which results in

S =

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

ylzy+y—1)

Evaluating all the partial derivatives gives

R, =1
R,=0
1
So=—=
r+1
S =
Yy y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds
i | 2A
R-C (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
p=—R-1
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Original ode in x,y coordinates

The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

To complete the solution, we just need to transform (4) back to z,y coordinates. This
The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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The solution(s) found are the following

Summary
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P s - 5 - T T
=
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X
y(xzy +y—1)
z+1
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F(z,y)

Figure 40: Slope field plot
yl

1.21.2 Solving as bernoulli ode
In canonical form, the ODE is
This is a Bernoulli ODE.

Verification of solutions

Verified OK.



The standard Bernoulli ODE has the form
Y = fo(x)y + fi(z)y" (2)

The first step is to divide the above equation by y™ which gives

Y _ fh@y "+ i) 3)

<

The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fle) = —
filz) =-1
n=2

Dividing both sides of ODE (1) by y" = y? gives

1 1
= 1 4
Vv T @ty )

Let
w:yl—n

1
== 5
y (5)

Taking derivative of equation (5) w.r.t  gives

1
W=y (6)

Substituting equations (5) and (6) into equation (4) gives

oy w@)
w(z)—w+1 1
w
= — 1 7
v z+1+ (7)

The above now is a linear ODE in w(z) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(z)w(z) = q(z)

Where here
1
p(z) = z+1
q(z) =1
Hence the ode is
, w(z)
=1
w'(z) + 741
The integrating factor u is
p= ef %Hda:
=z+1
The ode becomes
d
a(ﬂw) =4

%((w+1)w)=z+1
d{(z+1)w) =z + 1dz

Integrating gives
(x+1)w=/z+1dx
L,
(z+Dw=-2"+x+0c

2
Dividing both sides by the integrating factor 4 = z + 1 results in

122+ 2 c
— 2 1
w(z) = z+1 +£L’+1
which simplifies to
(@) 22+ 2c; + 22
w(r) = ————
2z + 2

Replacing w in the above by i using equation (5) gives the final solution.

1 2242 +2z

y  2rx+2
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(1)
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The solution(s) found are the following

Summary

Or

N
_

X
2x + 2
72+ 2¢; + 2z
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Figure 41: Slope field plot
)

Verification of solutions

Verified OK.



1.21.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z+1)dy=(-y(zy +y—1))dz
(yzy+y—1))dz+(z+1)dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =y(zy +y—1)
N(z,y) =z +1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
By a—y(y(zy +y—1))
=-14+(2z+2)y
And
ON 0
=1

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L] (8M 8N>

T N\dy Oz

= -1 1)) — (1
w+1((wy+y +y(z+1)) — (1))

_ 2zy+2y—2

- r+1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

p— L(9N _oM
- M\ Oz Oy

1
TGy p Ty vl
2
Ty

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

w= e/ Bdy
= ef _g dy
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The result of integrating gives

= 6_2 In(y)

1
— 2

Y
M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.
M = uM
1
= E(y(wy +y—1))

_xyt+y—1

And

Y2
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

zy+y—1 x+1)\ dy
_ + _— =
Y y? ) dz

The following equations are now set up to solve for the function ¢(z,y)

0  —
oM M
0  —

Integrating (1) w.r.t. = gives
0p . [—
9 dx = /de
ox Y
-2+ (x+2)y)x
v 0

o=
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0p _(z+2)z (—2+(z+2)y)x+
oy 2 2y?

=%+f@

') (4)

But equation (2) says that g—Z’ = “‘y—";l Therefore equation (4) becomes

x;l - S+ W) (5)

Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

/f@ﬂy=/(%)MJ

f(y)=—§+01

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
(24 @=+2yz 1

? 2y Ty

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into new constant c¢; gives the solution as

o = (-2+(@=+2)yz 1
' 2y Yy

The solution becomes
2z +1)
—22 +2¢; — 2z

y:
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(1)

\ J T~

1
1
1
1
1
f
f
f
W \ J T ==
!
1
7
~

S AN
=7 I A\\\\\/ rr——mre—m——
,,,,,,, ~>~\ P SN
LLLLLLLL _— ——————————
\\\\\\ — =7 I ANNSNSNNN| /7~
\\\\\ =7 IANANANT /e
R R P
Rt B I O
b g A B N B B

The solution(s) found are the following

Summary

T T T T T T T
on N — ) — N on
|

X
+x+1

2

2(x +1)
—$2+261—2$
z+1
Y
r+1

y(xzy +y—1)
This is a Riccati ODE. Comparing the ODE to solve
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F(z,y)

Y’z

Figure 42: Slope field plot
yl

1.21.4 Solving as riccati ode
In canonical form the ODE is

Verification of solutions

Verified OK.



With Riccati ODE standard form

Y = fo(z) + fi(z)y + fo(2)y?

Shows that fo(z) =0, fi(z) = w+r1 and fo(x) = —1. Let

B fou

_u/

Y

—U

(1)

Using the above substitution in the given ODE results (after some simplification)in a

second order ODE to solve for u(x) which is

fau"(z) = (fz + ffo) W (@) + f3 fou(z) = 0

But
f3=0
1
fl f2 - _JJ——I-l
f3fo=0
Substituting the above terms back in equation (2) gives
v'(z)
"
_ -0
u'(z) + 711

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) = ¢ + oz + 1)

The above shows that
u(z)=2(z+1)c

Using the above in (1) gives the solution

. 2(.’)3 + 1) Co
a+c(z+1)°

2)

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
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1)

2r + 2
2+ec3+2x+1
2r + 2
22+c3+2x+1

Y
Y

] S s i

1
1
1
1
1
f
f
f
W \ J T ==
!
1
7
~

e A L .
\«\\\////// P S
,,,,,,, ~>~\ P SN
LLLLLLLL _— ——————————
\\\\\\ — =7 I ANNSNSNNN| /7~
\\\\\ =7 IANANANT /e
SR I I O
S A ER R

The solution(s) found are the following

Summary

T T T T T T T
on N — ) — N on
|

X
2x 4+ 2
2+ c3+2x+1
214

Figure 43: Slope field plot
Y

Verification of solutions

Verified OK.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

Ldsolve(diff(y(x),x)-y(x)/(1+x)+y(x)“2=0,y(x), singsol=all) J
(z) = 242z
y 2242 + 2z

v/ Solution by Mathematica
Time used: 0.297 (sec). Leaf size: 28

LDSolve[y'[x]—y[x]/(1+x)+y[x]“2== ,y[x],x,IncludeSingularSolutions -> True] J

2 4 22 + 2¢;

y(z) =0
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1.22 problem Problem 30
1.22.1 Existence and uniqueness analysis. . . . . . .. ... ... ... 216
1.22.2 Solving asriccatiode . . . . . . . . ... ... ... 217

Internal problem ID [12133]
Internal file name [OUTPUT/10785_Tuesday_September_12_2023_08_51_56_AM_4946144/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 30.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[[_Riccati, _speciall]

y'—y2=x

With initial conditions

[y(0) = 0]

1.22.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y = f(z,y)
=y2—|—x

The = domain of f(z,y) when y =0 is

{—00 <z < o0}

And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is

{—c0 <y < o0}
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And the point yo = 0 is inside this domain. Now we will look at the continuity of

of _ 9, 4
8y_8y(y —l-a:)

The y domain of % when z = 0 is
{—o00 <y < oo}
And the point yy = 0 is inside this domain. Therefore solution exists and is unique.

1.22.2 Solving as riccati ode
In canonical form the ODE is

y = F(z,y)

= y2 +x

This is a Riccati ODE. Comparing the ODE to solve

Y=y +z
With Riccati ODE standard form

Y = fo(@) + fi(@)y + fo(z)y”

Shows that fo(z) =z, fi(z) = 0 and fy(z) = 1. Let

_u/

v= f2u

= (1)

u

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" () = (f5 + frfa) w'(z) + f3 fou(z) = 0 (2)
But
f3=0
fifa=0
f22f0 =T
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Substituting the above terms back in equation (2) gives
u’(z) + zu(z) =0

Solving the above ODE (this ode solved using Maple, not this program), gives
u(z) = ¢ AiryAi (—z) + ¢ AiryBi (—z)
The above shows that
v/ (z) = —cy AiryAi (1, —x) — cp AiryBi (1, —z)
Using the above in (1) gives the solution

_ —a AiryAi (1, —z) — ¢ AiryBi (1, —z)
c1 AiryAi (—z) + ¢ AiryBi (—z)

y:

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
1

_ ¢ AiryAi (1, —z) 4+ AiryBi (1, —x)
c3 AiryAi (—z) + AiryBi (—z)

Initial conditions are used to solve for c3. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 30(2)*35 — 3T (2)” ¢330
236w+ 2mesds

C3:\/§

Substituting c; found above in the general solution gives

_ AiryAi (1, —z) v/3 + AiryBi (1, —z)
~ AiryAi(—z) v/3 4 AiryBi (—z)

Summary
The solution(s) found are the following

_ AiryAi(1,—z) v/3 + AiryBi (1, —z)

- AiryAi (—z) v/3 + AiryBi (—z) (1)
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Verification of solutions

_ AiryAi (1, —z) v/3 + AiryBi (1, —z)
~ AiryAi (—z) V3 + AiryBi (—z)

Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries
trying Riccati

trying Riccati Special

<- Riccati Special successful”
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v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 35

Ldsolve([diff(y(x),x)=x+y(x)‘2,y(0) = 0],y(x), singsol=all) J

(z) = V3 AiryAi (1, —z) + AiryBi (1, —z)
Y AiryAi (—z) + AiryBi (—z)

v Solution by Mathematica
Time used: 1.869 (sec). Leaf size: 80

kDSolve [{y' [x]==x+y[x]~2,{y[0]==0}},y[x],x,IncludeSingularSolutions -> Truel J

23/2 Bessel] (_g, #) — 13/2 Bessel] (%) #) + BesselJ (—%, 2z§/2>

223/2

y(z) = — 2 Bessel] (—é, 3 )
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1.23 problem Problem 31
1.23.1 Existence and uniqueness analysis. . . . . .. ... ... .... 221
1.23.2 Solving as abelFirstKindode . . ... .. ... ... .. .... 2272

Internal problem ID [12134]
Internal file name [OUTPUT/10786_Tuesday_September_12_2023_08_52_06_AM_59708118/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 31.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_Abell

Unable to solve or complete the solution.

With initial conditions

1.23.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

Y = f(z,y)
=J:y3—|—a:2

The = domain of f(z,y) when y =0 is

{—o0 <z < o0}

And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is

{—c0 <y < o0}
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And the point yo = 0 is inside this domain. Now we will look at the continuity of

of _ 0 5, 2
ay—ay(xy + z%)
=3zy?

The z domain of When y=0is
{—o0 <z < o0}

And the point zy = 0 is inside this domain. The y domain of g—i when z = 0 is
{—o00 <y < o0}

And the point yo = 0 is inside this domain. Therefore solution exists and is unique.

1.23.2 Solving as abelFirstKind ode
This is Abel first kind ODE, it has the form

¥ = fo(@) + fil@)y + fo(2)y” + f3(z)y°

Comparing the above to given ODE which is

y =y’z +a° (1)
Therefore
fo(z) = 2*
fl (.’L’) =0
fo(z) =0
fi(z) ==z

Since fa(x) = 0 then we check the Abel invariant to see if it depends on z or not. The
Abel invariant is given by

I3
f2fs

Which when evaluating gives
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Since the Abel invariant depends on x then unable to solve this ode at this time.

Maple trace

-

"Methods for first order ODEs:

-—- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

trying Abel

Looking for potential symmetries

Looking for potential symmetries

Looking for potential symmetries

trying inverse_Riccati

trying an equivalence to an Abel ODE

differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
-—- Trying Lie symmetry methods, 1st order ---

*, “-> Computing symmetries using: way = 3
°, "> Computing symmetries using: way = 4
*, ~-> Computing symmetries using: way = 2

trying symmetry patterns for 1st order ODEs

-> trying a symmetry pattern of the form [F(x)*G(y), O]

-> trying a symmetry pattern of the form [0, F(x)*G(y)]

-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]

-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]

-> trying

a
a
a

-> trying a symmetry pattern of the form [0, F(x)+G(y)]
a symmetry pattern of the form [F(x),G(x)*y+H(x)]
a

-> trying a symmetry pattern of conformal type"
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X Solution by Maple

Ldsolve([diff(y(x),x)=x*y(x)“3+x‘2,y(0) = 0],y(x), singsol=all) J

No solution found

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve[{y'[x]==x*y[x]‘3+x“2,{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]

Not solved
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1.24 problem Problem 35
1.24.1 Solving asriccatiode . . . . . . . . . ... ... ... 225

Internal problem ID [12135]
Internal file name [OUTPUT/10787_Tuesday_September_12_2023_08_52_06_AM_79625629/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 35.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

y/ + y2 — x2
1.24.1 Solving as riccati ode
In canonical form the ODE is
y = F(z,y)
— g2 y2

This is a Riccati ODE. Comparing the ODE to solve
y/ — 1172 _ y2
With Riccati ODE standard form

y' = fo(z) + fi(z)y + fa(z)y®

Shows that fo(z) = 22, fi(z) = 0 and fo(z) = —1. Let

_ul

B f2U

= (1)

—U

Y
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou" () = (f + frfa) w'(z) + f3 fou(z) = 0 (2)
But
f3=0
fifa=0
f22f0 =z’

Substituting the above terms back in equation (2) gives
—u"(z) + ’u(x) =0

Solving the above ODE (this ode solved using Maple, not this program), gives

1 z? 1 z?
u(z) = (BesselI <4 5 ) ¢1 + BesselK (4 5 ) ) VT

The above shows that

(2) = &} B 3 o
u'(x) = x2 <Bessell( 4,2)c1 BesselK (4,2 2

Using the above in (1) gives the solution

x(BesselI (—% %) ¢; — BesselK (
Bessell (

2
L2)e)
v= i %) c1 + BesselK (}l, ””2—2) Co
Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution

2

x(BesselI <—;‘°1’, %) c3 — BesselK (
Bessell (3, %) cs + BesselK (3,

y:

Summary
The solution(s) found are the following

2

(BesselI ( D5 > c3 — BesselK <

Bessell (3, ””2—2) cs + BesselK (3,
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Figure 45: Slope field plot

Verification of solutions

%)

) cs + BesselK (3,

z2
2

Bessell (7,

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries
trying Riccati

trying Riccati Special

<- Riccati Special successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 44

Ldsolve(diff(y(x),x)=x“2-y(x)“2,y(x), singsol=all)

x(BesselI < %) ¢; — BesselK (

3
4
y(z) = -

¢y Bessell

v/ Solution by Mathematica
Time used: 0.183 (sec). Leaf size: 197

1,2 ) + BesselK (1, 72)

LDSolve[y'[x]==x‘2—y[x]‘2,y[x],x,IncludeSingularSolutions -> True] J

y(z) —

—iz” (2 BesselJ (— ) +a <Besse1J <_Z’ ;) BesselJ <;‘°; ﬁ))) — ¢; BesselJ (—i, %)

2z (BesselJ (3, ”g ) + ¢1 BesselJ (—

ix? BesselJ (—%, ﬁ) — 42?2 BesselJ <;3£ %) + BesselJ (

1
1)
1
4

7))
7)

2
) — :
y(z) 2z BesselJ (—1, %)
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1.25 problem Problem 36
1.25.1 Solving as first order ode lie symmetry calculated ode . . . . . . 229

Internal problem ID [12136]
Internal file name [OUTPUT/10788_Tuesday_September_12_2023_08_52_15_AM_63960132/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 36.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode_ lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C'], _rational, [_Abel, “2nd type,
class A°]]

Y+ (r+y—2)y =—-2z+1

1.25.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

,:_2x+2y—1
y T+y—2
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(ny — &) — w2€y —wz§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

€ = xay +yaz + a (1E)
n= .’Eb2 + yb3 + bl (2E)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

2z +2y—1)(bs—a) (2z + 2y — 1) as

b
2 r+y—2 (z+y—2)°
2 2x+2y—1) (5E)
— | — zas + yas + a
( r+y—2 (w—l—y—2)2 (waz +yas 1)

2 2z 4+ 2y —1
—| - + by +ybz +b1) =0
(Corma Grgmap)
Putting the above in normal form gives

2x2ay — 4x%as + x2by — 22%b3 + 4xyas — 8xyas + 2xyby — 4xybs + 2y%as — 4y2as + y2by — 2y%bs — 8za, -
(z+y—2)°

=0

Setting the numerator to zero gives

22%ay — 42%a3 + 22by — 22%bs + 4xyas — Sxyas + 2xyby — drybs (6E)
+ 2y%ay — 4y%as + y?by — 2y°bs — 8xay + 4xag — Trby + 5bs
— 5ya2 + yas — 4yb2 + 2yb3 - 3(11 + 2(12 — as — 3b1 + 4b2 - 2b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

2a2v% + 4ayv1v9 + 2a2v§ — 4a3v% — 8asvivy — 4a31)§ + bzvf + 2byv1 V9 (TE)
+ bQU% - 2b3’U% — 4b3’01’l}2 - 2b31)% — 8a2v1 — 5(12’1)2 + 4a3v1 + asvs
- 7b2’l)1 - 4b2’02 + 5b3’l)1 + 2b3’l}2 - 3(11 + 2&2 — as — 3b1 + 4b2 - 2b3 =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(2a2 - 4a3 + b2 - 2b3) ’U% + (4(12 — 8a3 + 2b2 - 4b3) V1Ug (SE)
+ (—8a2 + 4(13 - 7b2 + 5b3) U1 + (2@2 - 4a3 + b2 - 2b3) ’Ug
+ (—5a2 + as — 4b2 + 2b3) Vg — 3a1 + 2a2 — asz — 3b1 + 4b2 - 2b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—8ay + 4a3 — 7by + 5b3 =0

—5ay + a3 — 4by +2b3 =0

2a9 — 4az + by — 2b3 =0

4as — 8az + 2by — 4b3 =0

—3a1 + 2a9 — a3 — 3by + 4by — 2b3 =0

Solving the above equations for the unknowns gives

ap = —b1 — Q9
a9 = a2

az = Qg

b =b

bz = —2a2

b3 = —202

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=-1
n=1
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(,y)§
oo (EEmd)

T+y—2
_—rz—y-—1
oz 4y-—2
£E=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
3 n

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==zx

1
S=/—dy
"
1
=/Ty—1dy

T+y—2

S is found from

Which results in
S=—y+3n(z+y+1)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)Ry

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
(z,1) 2r+2y —1
w(z,y) =——"""-
Y P

Evaluating all the partial derivatives gives

R, =1
R, =0
_ 3
x4y +1
3
S, =—1
Y r+y+1
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

2 (2A)

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = 2R+ ¢, (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—y+3ln(z+y+1)=22+¢
Which simplifies to

—y+3n(z+y+1)=2z+¢
Which gives

z4
y = —3 LambertW <—GST> —x—1

w‘,_‘?
wlm
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

ODE in canonical coordinates

ds
dR

AN N D S N
AN N St S NN
AN DN N s
AN N S N

2NN NS S S S S
RS S NN NN NN
AN N A N N N N NS
LRSS N NN NN

TSNS I S I I R I I I IR

AN D N NN

AR RN N N

ANSC S S S EC N U OO QN

AN N St S NN
AN D N NN
AN N N N N N SN

RS SN NN NN
N NN NN
PO TR IR R R R R

EEN W N
AN S SO C QNN
TR TN

S S S SR S S
SSSUC RN

NN N NN NN NSNS

AN S SN S XSS SN.SNA NSNS NS SN

SRR R
AS S NSNS NSNS NSNS SN
LSS NSNS NSNS NS SN

|
RS S NN NN NN

WS NN NS NSNS
LRSS S NN NN NN

AN SN SN NN NN N NN NN

AN DN N s
AN N S S NN

NN NN RNRNRNRNRNSN
2SS SN S S S SN

Canonical

—~
™0
[a
N—r
g8
8 =
% =~}
£ E
e
g
3 8
—
+

Original ode in z,y coordinates

2x+2y—1
z4+y—2

D)
Sk

D e e
D e P e

v v v v _v_v_v_>_o

T e v v v _>_»
v w v v v _v_v_v_v_b
v v _v_v_v_v_v_>_»

o v e v e o b

P SN

X
AN
v rss
} 22

v }

AAAAAAT

PN
\v\w\v\vlval/4 r/

\s\v\vlvAAw.M/A Y

BT RS F A
AAAAA A A
A A AT A

¥¥$fﬁ&\\\\§\\\\\\\\\

et

A oA A n A

— Xt A AN A A A A

VA

t
PAAAAAF A
PAAAAARAA

N
1
1

AAAAAAFIRAAAF

PAAAAAAATA R 7772

AAAAARATFF
AAAAAAAAAA

Summary

The solution(s) found are the following

1)

>_x_1

|

5l

J’_
3

%
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Figure 46: Slope field plot

Verification of solutions

) -z

—|

c
+5 -
3

z
3

y = —3 LambertW (_e

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful’

v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 21

‘dsolve((2*x+2*y(x)—1)+(x+y(x)-2)*diff(y(x),x)=0,y(x), singsol=all)

=

z__
c1e3

y(z) = —x — 3 LambertW (— 3 ) -1

v Solution by Mathematica
Time used: 5.15 (sec). Leaf size: 35

-

N
LDSolve [(2xx+2*xy [x]-1)+(x+y [x]-2) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> jl'rue]

y(z) = —3W(—es 1) —z — 1
ylx) > —x—1
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1.26 problem Problem 37
1.26.1 Maple step by step solution . . . . . ... ... ... ...... 239

Internal problem ID [12137]
Internal file name [OUTPUT/10789_Tuesday_September_12_2023_08_52_16_AM_73897234/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 37.

ODE order: 1.

ODE degree: 3.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

Solving the given ode for ¢’ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y' =0 (1)
y =e (2)
y =—e (3)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y:/de

Il
o
S

Summary
The solution(s) found are the following

y=a (1)
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Verification of solutions

Verified OK.
Solving equation (2)

Integrating both sides gives

y=/ezdx

=e” + Co
Summary
The solution(s) found are the following
y=-¢e"+cy
Verification of solutions
y=e€"+c

Verified OK.
Solving equation (3)

Integrating both sides gives

yz/—e“’dx

= —e” + C3
Summary
The solution(s) found are the following
y=—e"~+c3
Verification of solutions
y=—€"+c

Verified OK.

238



1.26.1 Maple step by step solution

Let’s solve
y/3 _ y/e2x =0
° Highest derivative means the order of the ODE is 1

/

Yy

° Integrate both sides with respect to x
i (y’3 —ye*)dz = [0dz + ¢;

o Cannot compute integral

[ (y° —ye®)dz=c

Maple trace

"Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables

<- differential order: 1; missing y(x) successful
Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 21

ldsolve(diff(y(x),x)“3—diff(y(x),x)*exp(2*x)=0,y(x), singsol=all)

y(z) = —€e"+ ¢
ylx)=¢€e"4+ 1
y(z) =a
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v/ Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 29

-

kDSolve [y' [x]~3-y' [x]*Exp[2*x]==0,y[x] ,x,IncludeSingularSolutions -> Truel

—

yx) =
y(x) > -+ ¢
y(x) > e+ ¢
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1.27 problem Problem 39
1.27.1 Solving as dAlembert ode . . . . ... ... ... ... ..... 24T]

Internal problem ID [12138]
Internal file name [OUTPUT/10790_Tuesday_September_12_2023_08_52_17_AM_10546755/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 39.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _dAlembert]

y—5yz+y” =0

1.27.1 Solving as dAlembert ode

Let p = ¢ the ode becomes
p? — 5pz + y=0
Solving for y from the above results in
y=—p*+5pzx (1A)
This has the form
y =zf(p) +9(p) *)

Where f, g are functions of p = y/'(z). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. = gives

p=f+(af +9) P
d;
p—f=(@f+d) (2)
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Comparing the form y = zf + g to (1A) shows that

Hence (2) becomes
—4p = (52 — 2p) p/(z) (24)

The singular solution is found by setting g—x = 0 in the above which gives

—4p =0
Solving for p from the above gives
p=0
Substituting these in (1A) gives
y=0

The general solution is found when $ # 0. From eq. (2A). This results in

4p(z)
/ [
This ODE is now solved for p(z).
Inverting the above ode gives
d _ 5z(p) —2p
o) =~ (@

This ODE is now solved for z(p).
Entering Linear first order ODE solver. In canonical form a linear first order is

2 2(6) + pD)a(s) = a(p)

Where here
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Hence the ode is

The integrating factor y is

The ode becomes

Integrating gives

C1

9 p
Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

5
4

5z + V2522 — 4y

2 2
b /2527 — 4y
i T —

Substituting the above in the solution for z found above gives

5t 2512 — 4 4c1v/2
+ y+ 1\/_

9 9 (102 + 2v/2527 — ) |

_ 5_:v B V25z2 — 4y n 4c14/2
9 9 (102 — 2¢/2527 — dy) &

T
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Summary
The solution(s) found are the following

y=0 (1)
L, e, VP tovd
) ) (102 + 2/252% — 4y) ¢
R ot VI 1c1v/2
9 9 (102 — 2¢/2527 — dy) *

Verification of solutions

y=0
Verified OK.
_ 5z V2527 — 4y N 4e1v/2
9 9 (102 + 2/252% — &) *
Verified OK.
- 5z V25x2 — 4y + 4c14/2
9 9 (102 — 2¢/2527 — dy) *
Verified OK.

Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful’
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v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 93

Ldsolve(y(x)=5*x*diff(y(x),x)—diff(y(x),x)‘2,y(x), singsol=all)

W2e 5+4—x+‘/m=0
<10m —2,/2527 — 4y (gc)>Z 0 0

4/2¢ +4_$_\/m:0
(0 +2yBF - @) 9

v/ Solution by Mathematica
Time used: 60.449 (sec). Leaf size: 2233

tDSolve[y[x]==5*x*y'[x]—y'[x]‘2,y[x],x,IncludeSingularSolutions -> True]

Too large to display
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1.28 problem Problem 40
1.28.1 Existence and uniqueness analysis . . . . . .. ... ... .... 246
1.28.2 Solving asriccatiode . . . . . . . . .. ... ... 247

Internal problem ID [12139]
Internal file name [OUTPUT/10791_Tuesday_September_12_2023_08_53_19_AM_27305349/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 40.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[[_Riccati, _speciall]

y+y'=2z

With initial conditions

[y(1) = 0]

1.28.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

Y = f(z,y)
= —y2 +x

The = domain of f(z,y) when y =0 is

{—00 <z < o0}

And the point zo = 1 is inside this domain. The y domain of f(z,y) when x =1 is

{—c0 <y < o0}
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And the point yo = 0 is inside this domain. Now we will look at the continuity of

of _ 0, ,
8y_8y( y +x)

The y domain of g_f when z =1 is
y
{00 <y < oo}
And the point yy = 0 is inside this domain. Therefore solution exists and is unique.

1.28.2 Solving as riccati ode
In canonical form the ODE is
y =F(z,y)
=-y’+z
This is a Riccati ODE. Comparing the ODE to solve
y=-y'+a
With Riccati ODE standard form

y' = fo(z) + fi(z)y + fa(z)y®

Shows that fo(x) =z, fi(z) = 0 and fo(z) = —1. Let

_u/

v= f2U

= (1)

—Uu

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou"(x) = (fo + fufa) W' (z) + f5 fou(z) = 0 (2)
But
f3=0
fifa=0
f22f0 =T
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Substituting the above terms back in equation (2) gives
—u"(z) + zu(z) =0

Solving the above ODE (this ode solved using Maple, not this program), gives
u(z) = ¢ AiryAi (z) + ¢ AiryBi ()
The above shows that
u'(z) = ¢ AiryAi (1, z) + ¢ AiryBi (1, z)
Using the above in (1) gives the solution

_caAiryAi(1,z) + cp AiryBi (1, z)
¢ AiryAi(z) + ¢z AiryBi ()

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
1

_ cgAiryAi (1,z) + AiryBi (1, z)
c3 AiryAi (z) + AiryBi (z)

Initial conditions are used to solve for c3. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

_ ¢ AiryAi(1,1) 4+ AiryBi (1,1)
c3 AiryAi (1) + AiryBi(1)

__AiryBi(1,1)
T AiryAi(1,1)

Substituting cs found above in the general solution gives

_AiryBi (1, z) AiryAi (1,1) — AiryBi (1, 1) AiryAi (1, )
~ AiryBi (z) AiryAi (1, 1) — AiryBi (1, 1) AiryAi (z)

Summary
The solution(s) found are the following

_AiryBi (1, z) AiryAi (1,1) — AiryBi (1, 1) AiryAi (1, ) 1)
~ AiryBi(z) AiryAi (1,1) — AiryBi (1, 1) AiryAi (z)
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4 PEbLbb bbb bbb bbb reb by
PEbLbb bbb r bbb bbby
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PR E bbb bbb bbb bbby
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1.5 VYUV VYV VAN ANANNNNN~T 7/
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X X
(a) Solution plot (b) Slope field plot

Verification of solutions

_AiryBi (1, z) AiryAi (1,1) — AiryBi (1, 1) AiryAi (1, )
~ AiryBi (z) AiryAi (1, 1) — AiryBi (1, 1) AiryAi (z)

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries
trying Riccati

trying Riccati Special

<- Riccati Special successful~
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v/ Solution by Maple
Time used: 0.125 (sec). Leaf size: 37

Ldsolve([diff(y(x),x)=x—y(x)‘2,y(1) = 0],y(x), singsol=all) J

(2) = AiryBi (1,1) AiryAi (1, z) — AiryBi (1, z) AiryAi (1,1)
Y= T AlyBi (1, 1) AiryAi (z) — AiryBi (z) AiryAi (1, 1)

v/ Solution by Mathematica
Time used: 0.206 (sec). Leaf size: 229

LDSolve [{y' [x]==x-y[x]"2,{y[1]1==0}},y[x],x,IncludeSingularSolutions -> Truel J

y(z)

i(z%/% (— BesselJ (—3,%) +iBessel] (—3, %) + BesselJ (2,%)) BesselJ (—2, 2 2%/%) + z%/? Bessel] (
1
3

= 33
) BesselJ (— %zx?’/ 2) + (— BesselJ (-3, 2

z (2Bessel] (-2, %
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1.29 problem Problem 42
1.29.1 Solving as first order ode lie symmetry calculated ode . . . . . . 2511

Internal problem ID [12140)]
Internal file name [OUTPUT/10792_Tuesday_September_12_2023_08_53_28_AM_81792238/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 42.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode_ lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _dAlembert]

W=

Yy —(z—5y) =2

1.29.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

=

y = (z—5y)% +2
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gx) - w2§y - wx§ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zay +yaz +a (1E)
n = xbs +ybs + by (2E)

Where the unknown coeflicients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

by + ((z — By)’ + 2) (b3 — az) — ((x — 5y)’ + 2>2a3

_xa2+ya3+a1+%+%+% 4

(5E)

Putting the above in normal form gives

Wl

as + 6(z — 5y)% as + 12a3(x — 5y)% — 3bo(z — 5y)§ —6(x — 5y)§ bs + 4zas + 12a3x — 5xby
3(z — 5y)

3(z — 5y)

=0

Setting the numerator to zero gives

—3(z— 5y)% as—6(z— 5y)% az —12a3(z — 5y)% +3by(x — 5y)§ +6(x— 5y)% bs (6E)
— 4xas — 12asx + 5xbs + 3bsx + 15a2y + 59yaz — 10ybs — a; + 5b; =0

Simplifying the above gives

—3(x — 5y)% az — 3(z — 5y) ag — 12(x — by) a3 + 3(z — 5y) bs
—6(z — 5y)% as — 12a3(z — 5y)% + 3ba(z — 5y)%
+6(z — 5y)% bs — zag + 5xby — yaz + dybs — a; + 5b; =0

(6E)

Since the PDE has radicals, simplifying gives

1 2 2 2 2
—3(z — 5y)3 azz — 6(z — 5y)? ag — 12a3(x — 5y)3 + 3be(z — 5y)3 + 6(z — 5y)3 bs
+15(m—5y)% a3y —4xas —12a3x+5xbs +3b3x + 1502y +59yasz — 10ybs —a; +5b; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
1 2
{23, @=59)%, (- 5p)* |

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{.’IJ =U1,Y = Vg, (.’IJ - 5y)% = Us, (x - 5y)% = ’U4}
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The above PDE (6E) now becomes

—3’030,3’01 + 15’03(1,3’1)2 — 4’01@2 + 15@2’02 — 6'04(1,2 — 120,3’01 + 59’02(1,3 (7E)
— 12&3’04 + 5’Ulb2 + 3b2’U4 + 3b3’l)1 — 10’02b3 + 6'04b3 — a1+ 5b1 =0

Collecting the above on the terms v; introduced, and these are
{vla V2, U3, 1)4}

Equation (7E) now becomes

—3vsazv; + (—4as — 12a3 + 5by + 3bs3) v1 + 15v3a3v, (8E)
+ (15@2 + 59(13 — 10b3) Vg + (—6a2 — 12&3 + 362 + 6b3) Uy — Q1 + 5b1 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—3a3 =0
15(13 =0
—a; + 5b1 =0

15012 + 59&3 — 10b3 =0
—6&2 - 12a3 + 3b2 + 6b3 =0
—4a2 - 12&3 + 5b2 + 3b3 =0

Solving the above equations for the unknowns gives

a; = 5b;
a, =0
a3 =0
by =0b;
by =0
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=5
n=1
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wxy)
—1- ((x — 5y)s + 2) (5)
= —9—5(z — 5y)3
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

F=y =48 1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n

1
_/—9—5(x—5y) W

S is found from

=

Which results in

W=

o _ 81In(729 +125c — 625y) _27(x —5y)* _81In (25(z —54)° — 45(z — 5y)

+ 81) 1621n (5(9[,-

625 125 625

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

=

w(z,y) = (z — 5y)° +2
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Evaluating all the partial derivatives gives

R,=1
R, =0
1
Sy = -
95 (z — 5y)3 + 45
1
S, = T
—9—5(xz —by)?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

-~ 2A

dR 5 (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR~ 5

The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —}g te @)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

=

2
811n (729 + 1250 — 625y)  27(z —5y)s  Slln (25(96 —5y)* — 45(z — 5y)

+81)  1621n (5(z — 5y

625 B 125 B 625 +

Which simplifies to

=

811n (729 + 125z — 625y)  27(z —5y)s Siln (25(x —5y)° — 45(z — 5y)

625

+ 81) 1621n (5(:c — 5y

625 T 135 625 +
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
.. ) ) i ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ i ds _ 1
4 DS DS,
y(x) 1 ;9 N
21 S O S X S O o ST
ey R=z DRGSR NS,
RN RN NN 811n (729 + 125z — € — oot Lot i@ =5
NN EN NN S = U E—
fffff/‘ff/‘_%ffffffffff 625 S S S SYCICICICIC N
AR L N N N B
LN A A A N A A A A S A A A N A e
A A A A S A = 1 S A A A S A A S A B
A S R O A A I A A A O N B i
Summary
The solution(s) found are the following
1
811In (729 + 1252 — 625y)  27(zx — 5y)?3
625 125
2 1
811n (25(z — 5y)5 — 45(z — 5y)3 + 81) W
625
1
3 2
+1621n<5(x—5y)3+9> JECEL
= —— Cl
625 50 5
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27(z — by)

Figure 48: Slope field plot

/
/
f
/
/
f
f
/
811n (729 + 125z — 625y)

Verification of solutions

_ T,
--%+a

50

125
1
45(z — 5y)3 + 81>

625

3(z — 5y)

3 _
3+9>+
257

625
811n (25(x — 5y)
625

1621n (5(x _ 5y)

Verified OK.



Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE", diff(y(x), x) = 1/5, y(x)°
Methods for first order ODEs:
-—— Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful

<- homogeneous successful”

N\

*%*x Subl

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 80

Ldsolve(diff(y(x),x)=(x—5*y(x))“(1/3)+2,y(x), singsol=all)

=

n 811In (729 — 625y(z) + 125z)  27(z — 5y(x))

125 25
811n (25(1‘ _5y(x))f — 45(z — 5y(2))F + 81)
- 125
162in (945~ 59()) 31z - sy’
+ 195 + 10 —C =

v/ Solution by Mathematica
Time used: 0.347 (sec). Leaf size: 70

evel 2 kkx

tDSolve[y'[x]==(x-5*y[x])‘(1/3)+2,y[x],x,IncludeSingularSolutions -> True]

Solve [5y(x) +5 <—y(x) + 5—?;)(x — 5y(z))?® — 12775 Yz — 5y(z)
+ glog (5m+9> + g) = C1,y(a:)}

625
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1.30 problem Problem 43

1.30.1 Solving as homogeneousTypeD2ode . .. ... ... .. .... 259
1.30.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 2611
1.30.3 Solving as bernoulliode . . .. .. ... ... .......... 265)
1.30.4 Solvingasexactode . . ... ... ... ... .......... 269
1.30.5 Solving asriccatiode. . . . . . ... ... .. ... .. ..... 274

Internal problem ID [12141]
Internal file name [OUTPUT/10793_Tuesday_September_12_2023_08_53_29_AM_30062239/index.tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 43.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactByIn-

spection", "homogeneousTypeD2", "first_ order__ode__lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _rational, _Bernoulli]

y(—y+z)— 2’y =0

1.30.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
u(z) z(—u(z) z + z) — 22 (W' (x)  + u(x)) = 0

In canonical form the ODE is
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Where f(z) = —1 and g(u) = u®. Integrating both sides gives

1

—Qdu = —ldz

U T

1

/—2du=/—1dx
U
1
——=—In(z)+c
The solution is
1

—W-FID(.’L')—CQ:O

Replacing u(z) in the above solution by £ results in the solution for y in implicit form

T
—— +In(z)—co=0
” (z) —co

x
—§+ln(m)—02=0

Summary
The solution(s) found are the following

—§—|—ln(w)—02=0 (1)
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NNV VL PV VNN~ ——
A RRREEN bV VA NS———
‘AR RARRARER bV N NSN————

ANNNN VYL A
NANNNV VYL | \ N\ ~——
NANNNANN N Y V N\~
ddddddd ~\ —— = = = s

S I — DA Ty —
— 1 /////)—*\\ \ \ \ \\\\\\
——=—=——==\\ | EERRRRRR

—2{ ===\ | EARERARRRRR
———=~N\\ EEEARRRRN
——=~N\\\ || EERBERRRR

=37 —==>xN\\ L\ L PRV VYV
-3 -2 -1 0 1 2 3

Figure 49: Slope field plot

Verification of solutions

—§+ln(m)—02=0

Verified OK.

1.30.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yly—=z

y:_( 2)
X

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny - &) — W2€y —we§ —wyn =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

261



Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
%
n(z,y) =~ (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x
S is found from
1
S= [ —dy
n
1
Which results in
g—_%
Y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

y(y — )
w(z,y) = T2
Evaluating all the partial derivatives gives
R, =1
R,=0
1
Se=——
Yy
x
Sy = "

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS 1

D 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR~ R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) =

—JD(R)+01

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

Which simplifies to

Which gives

y:l

T
=—In(z)+c
" (z) +a

=—In(z)+ ¢
n(z)—c

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

.. ) . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ _yy—=) ds _ 1
r 2 dR~ R

NNV YV YR PV N e R ettt AV A I BEAVANENONCES
AR R R R EEEE IR E R s w7 A AN N e e
\zzéiéxgt ti\\‘44»» »»»»/ﬂ//;;i:\\\x\\‘»
e e v > — T _T_7 A e e S
~ S NN 3‘ ; 21 3‘\4/«,)»»»» »»»»/ﬂ//’/?‘x A e
~~aaNN Ny Y NPT > R ettt O A I
- | —wrrrr 77 AL N N e e e
A O S A W \J NN SN asae y > > v v v 7 7 AT f x ARV VS & S C TN
P \3_24 ; VNN N N N /’/’/’/’/’/’/"/’/_%X NN e e e e e
o e\ | I A R ettt A B
e\ [ A R ettt N I BN C S
Gmam N R Y A B} EGneata it S IR AE
===\ Y —wrw o rr 7 A7 PN N
===\ A I o rrm A N N e
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Summary
The solution(s) found are the following

x
Y In(z) — (1)
ANVYNV VL PV VNSNS~
MARAREERE, bV NN ———
MARRERRE, b AN~
2ANNNNVV VYL bV AN~
NANNNV YL L AN~
SANNNNN Y f N\~

——====\\ | EERRRARRR
=2 ===\ | ERRERRRRR
———==~\\ | | EERRRRRN
——=>\\\ || LV VYV
=3 ==~V AR RRRRE
-3 -2 —1 1 2 3

Figure 50: Slope field plot

Verification of solutions

_ x
Y (x) —a
Verified OK.
1.30.3 Solving as bernoulli ode
In canonical form, the ODE is
y =F(z,y)
_ _yly—=)
=—=0
This is a Bernoulli ODE.
/ 1 1 2
Y =-y— 3y (1)
x x
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The standard Bernoulli ODE has the form
y' = fo(z)y + fi(z)y" (2)
The first step is to divide the above equation by y™ which gives

Y _ fh@y "+ i) 3)

<

The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

folw) = -
1
fi(z) = )
n=2

= 4
YT w2 @
Let
w = yl—n
1
== 5
” (5)
Taking derivative of equation (5) w.r.t  gives
1
wl — _;y/ (6)
Substituting equations (5) and (6) into equation (4) gives
(z) = 2@ L
w'(z) = = 2
p w1
=——+4+ = 7
w=-—+ (7)

The above now is a linear ODE in w(z) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(r)w(z) = q(z)

Where here
1
p(z) = -
1
q(z) = o
Hence the ode is
iy @ _ 1
w'(z) + pra
The integrating factor u is
L= ef %dx
=z

The ode becomes

Integrating gives

wz =In(z) + ¢

Dividing both sides by the integrating factor y = x results in

1
x x
which simplifies to
1
w(z) = 2@ o (T 2

Replacing w in the above by i using equation (5) gives the final solution.

1 In(z)+c

Y T
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. T
v= In(z)+c;
Summary
The solution(s) found are the following
T

y In(z) + ¢
JINNVVVLV L bhV A NN~——
NYNVV VL bV N NS ———
NAYNNVV YL bV NSN————
A NNNNV VL bV AN~
NANNNN VYL AT
- AN Vi VAN \ \ \ \‘\_x)/////
y(x) O _—\_—s—-s——s—-s_):::l\\\\ \\\\\\\
—14 /////)_»\\' L \ \ NN NN N
SN B R NN
SN A S S EEENNNN
=21 ————=~\'\ | EEBRRRRRN
——=—=~N\\ | EERBRRRRN
——=~\\\ | EERERERRARN
—3—*\\\\\\\¢l HERRRRRR
-3 -2 -1 1 23

Verification of solutions

Verified OK.

Figure 51: Slope field plot
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1.30.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—2?) dy = (~y(~y +z)) dz
(y(—y +2))dz+(-2*)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = y(~y + )
N(z,y) = —z*
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

OM _ ON

oy Oz
Using result found above gives

T CR)

=x—2y
And
ON 0 9
& ")
= -2

Since %—A; # %%’, then the ODE is not exact. By inspection # is an integrating factor.
Therefore by multiplying M = y(—y + z) and N = —z? by this integrating factor the
ode becomes exact. The new M, N are

M = -y+z
Ty
T
N = —E
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

8_;1/ =N
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But since % = % then for the above to be valid, we require that
Y yox

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(_yw;m> dx+(—§) dy =0 (2A)

Comparing (1A) and (2A) shows that

-yt+z
M(z,y) = —2
Ty
T

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

oy Oy\ wzy
1
Ty
And
ON _0( =z
oxr Oz \ y?
1
T2
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—x—M (1)
¢ _

=N @)

Integrating (1) w.r.t. = gives

@dxz/de
or

%dx=/_y+xdx
or Ty

¢=—1n<x>+§+f<y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99 T
s 4
L) @
But equation (2) says that g—dy’ = —.%- Therefore equation (4) becomes
x x ,
_E:_E—i_f(y) (5)
Solving equation (5) for f'(y) gives
f'y) =0
Therefore
fly)=a

Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
x
¢=—In(z)+ ” +c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

x
a=—-In(z)+ -
1 @)+

The solution becomes

Summary
The solution(s) found are the following

T 1)

YT () + 1

HANNVVYVV VL bhV A NSN~——
ARARRRERE, bV A NS———
MARAREEEE, AT D e
2ANNNNV VL b VA N————
NANNNA N VL A e
NSANNNNN YL b\~

1_ SONNNNN Y \ N
~SSNNNN \——
ddddddd —~ N\ o e S Y
y('x) 01 ——*——*——*——»—»_»))/*l\\\ \\\\\\\
SN A A AR EENNNN

e BN AR R R EEENNN
N S A A A AR RN
NN R A AR R RS R RRNN
SNV
-3 -2 —1 0 1 2 3

Figure 52: Slope field plot

Verification of solutions

B x
v= In(x)+ 1

Verified OK.
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1.30.5 Solving as riccati ode

In canonical form the ODE is

y =F(z,y)
y(y — =)
)
This is a Riccati ODE. Comparing the ODE to solve

2
y=-5+2
T T

With Riccati ODE standard form

Y = fo(z) + fi(z)y + foz)y®

Shows that fo(z) =0, fi(z) = L and fo(z) = —2. Let

_ul

v= fQU
- (1)

2

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou"(x) — (fy + fufo) W' (z) + f3 fou(z) = 0 (2)
But
, 2
f2 = E
fif =
f2fo=0

Substituting the above terms back in equation (2) gives

u'(z)  U(z)

)

2 3

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) =c +1n(z)co
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The above shows that

() = 2
() = &
Using the above in (1) gives the solution
. CoX
y= c1+In(z)c

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
1

B z
v= c3 + In(z)
Summary
The solution(s) found are the following
. T
v= c3 + In(z)
ANV V LY LV VN N~——
NVYAVVV L Ly N N~———
NNYNNVVY VYL L VN NN~
2ANNNN VYL LV \AN—=————
NSNNNAN NN LY L \~——
y(¥) O ST

e \
)/////)—s\
e \

\, \ NN~
NOANNNN

—————

Figure 53: Slope field plot
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Verification of solutions

X

v= cs+In(x)

Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve((x—y(x))*y(x)—x‘2*diff(y(x),x)=0,y(x), singsol=all) J

v Solution by Mathematica
Time used: 0.231 (sec). Leaf size: 19

LDSolve[(x—y[x])*y[x]—x‘Q*y'[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(@) = log(z) + ¢

y(z) =0
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1.31 problem Problem 45

1.31.1 Existence and uniqueness analysis. . . . . .. ... ... .... VAl
1.31.2 Solving aslinearode . . . . . .. . .. ... ... ... ... 278
1.31.3 Solving as homogeneousTypeD2ode . .. ... ... ...... 280
1.31.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 2&T]
1.31.5 Solvingasexactode . .. ... .. ... ... .......... 285]
1.31.6 Maple step by step solution . . . . ... ... ... ....... 290

Internal problem ID [12142]
Internal file name [OUTPUT/10794_Tuesday_September_12_2023_08_53_30_AM_12814526/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 45.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exact WithIntegrationFactor", "first_ order__ode__lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, ~class A-]]

2+ 5z =10t +2

With initial conditions

1.31.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

' +p(t)z = q(t)

Where here
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Hence the ode is
' +5z =10t +2
The domain of p(t) =5 is

{—00 <t < o0}

And the point ¢y = 1 is inside this domain. The domain of ¢(t) = 10t + 2 is

{—o0 <t < o0}

And the point ¢ty = 1 is also inside this domain. Hence solution exists and is unique.

1.31.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

uzef5dt

— Bt

The ode becomes

< (u) = () (10t +2)

d 5t ) _ (.5t
&(e z) = () (10t + 2)

d(e%z) = (10t +2) ™) dt
Integrating gives
e’y = /(10t +2) e dt
ety =2te® + ¢
Dividing both sides by the integrating factor u = e results in
z =2e7%e’ + cie™™
which simplifies to

z=2t+ce ™
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Initial conditions are used to solve for c;. Substituting ¢ = 1 and z = 2 in the above

solution gives an equation to solve for the constant of integration.

2=2+ce?

Cl=0

Substituting c¢; found above in the general solution gives

r =2t

The solution(s) found are the following

Summary

(1)

r =2t

35

25

15

0.5

(b) Slope field plot

(a) Solution plot

Verification of solutions

r =2t

Verified OK.
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1.31.3 Solving as homogeneousTypeD2 ode
Using the change of variables = u(t) ¢t on the above ode results in new ode in u(t)
u'(t) t + u(t) + du(t)t = 10t + 2
In canonical form the ODE is
u' = F(t,u)

= f(t)g(u)
_ (5t +1) (—u+2)
t

Where f(t) = % and g(u) = —u + 2. Integrating both sides gives

1
du 5t+1dt
—u+ 2

/ /5t+1dt
u+2

—In(u—2)=5t+1n(t)+c

Raising both side to exponential gives

1 — e5t+ln(t)+c2
u—2

Which simplifies to

1 5t-+1n(t)
u—2 = C3€

Which simplifies to
(2cze®te + 1) e Ste™

u(t
(t) = ot
Therefore the solution z is
T = ut
(20365tt e + 1) e e
C3

Initial conditions are used to solve for cy. Substituting ¢ = 1 and z = 2 in the above
solution gives an equation to solve for the constant of integration.
2 e5+cze—5—czc3 + e—5—cz

C3

9 —
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. . . . . 2czedttec2+1)eSte 2
Unable to solve for constant of integration. Since lim,, _,, gives x = (2¢5 ) =

Summary ”
The solution(s) found are the following

x = 2t and this result satisfies the given initial condition.

z=2t

8 DLV LRV PV VNN—
STL LRV VYV VAN

7 AR ERRARE A
AP PPV LEL LV VY VNNNSA

| PLE L LYV VYV VNV NNNNZ 77
6 A VPV VNV VYV ANNNNSA
VUL LV VYV VYNNNNAZ 77

51 JVVV VYV VNV NNNNSNZ 7]
T NS

N7

x(t) 4 X s VL LV UVNNS AT
VAYVANNNNSZZ 7111

3 SV VVNNNSZ7Z
VAYNNN~Z7 7111

A VNNNSZ7 71ttt

2 VAN~Z77 7111111110111 11
ANN~Z7 /711111110111 1111

1 UN=771101111 111111111
=700 0000ttt

A7ttt

0 05 1 15 25 3 35 4 0 1 2 3 4

t t
(a) Solution plot (b) Slope field plot

Verification of solutions

Verified OK.

1.31.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

' = -5z + 10t + 2
' = w(t, )

The condition of Lie symmetry is the linearized PDE given by
M+ Wi — &) — W — wif — wan =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 35: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt _do _
§ 1

as

1)

The above comes from the requirements that (f % + n%) S(t,x) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

282



canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

s:/ldy
n
1
=/§dy

S = ez

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Sitw(t,z)S, @)
dR  R;+w(t,z)R,

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

w(t,z) = —5x + 10t + 2

Evaluating all the partial derivatives gives

R;=1
R, =0
S, = 5edx
Sm=e5t

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 5t

iR- (10t +2)e (2A)
We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

s
= -1 ) 5R
iR (10R+2)e

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =2e"ER +¢; (4)

To complete the solution, we just need to transform (4) back to ¢,z coordinates. This
results in

ey = 2te + ¢
Which simplifies to
eSlx = 2te® + ¢
Which gives
= (2te”+c1)e™

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) ] _
. . . : ODE in canonical coordinates
Original ode in ¢,z coordinates coordinates (R, S)
transformation ’
dr _ s _ 5R
% = —9r + 10t + 2 2% = (10R+2)e
R IR AN SN —
A N O Y G e e i
O O i O N B el
L O O O T e B $
Wit | EE 3
I R A o A A T N 24t
HtUHH %%%%%%%%%% ;
L Rt e
—4 - A7 > ] B 7
EEAVIEERE N G D '
RS IINEER S=e"z | oI i
LL&\)‘_%ATT N S O R I S ——
N L I O O R A i
ViNA P O O A R N I $
vbb vttt N N S et
bbb R I Y (S — o
R B 1L N N N O S [ (NG '
VLNt t NN

Initial conditions are used to solve for c;. Substituting ¢ = 1 and z = 2 in the above
solution gives an equation to solve for the constant of integration.

2=2+ce?
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6120

Substituting c; found above in the general solution gives

r =2t

Summary

The solution(s) found are the following

1)

r =2t

35

25

15

05

(b) Slope field plot

(a) Solution plot

Verification of solutions

r =2t

Entering Exact first order ODE solver. (Form one type)

1.31.5 Solving as exact ode
To solve an ode of the form

Verified OK.

d
M(z,y) + N(@,y) 2 = 0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

¢(z,y) =0

d
dz
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Hence

0p  O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
99 _
or
99 _
oy
But since aajgy = ;’: 6¢x then for the above to be valid, we require that
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)
Therefore

dz = (—5z + 10t + 2) dt
(bz — 10t — 2)dt+dz =0 (2A)

Comparing (1A) and (2A) shows that

M(t,z) =5z — 10t — 2
N(t,z)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ ON
ox Ot
Using result found above gives

oM

0

=95
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And

ON 0
ot~ otV
=0

Since %—Af # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

L L(oM _oN
N\ Oz ot
=1((5) - (0))
=35
Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is
= el Adt
— J5dt

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= (5 — 10t — 2)
= (5z — 10t — 2) ™

And

N = uN

=e(1)

— oot
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N-—-=0
MR

dz

((5z — 10t — 2) &™) + (&™) il
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The following equations are now set up to solve for the function ¢(¢, x)

-
g—t_M (1)
¢_~
=N @

Integrating (1) w.r.t. ¢t gives
@mzfﬁa
ot

9 . _ 5t
5t dt—/(Sx 10t — 2) e>* dt

¢ = (=2t +z)e” + f(z) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t x gives

¢

D= f(2) @

But equation (2) says that % = e%. Therefore equation (4) becomes

e = e + f'(x) (5)

Solving equation (5) for f'(z) gives
fi(z)=0

Therefore
f@)=a
Where ¢; is constant of integration. Substituting this result for f(z) into equation (3)
gives ¢
¢=(—2t+z)e” +c

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

c1 = (=2t +)e”
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The solution becomes

= (2te” +¢) e

Initial conditions are used to solve for c¢;. Substituting ¢ = 1 and x = 2 in the above

solution gives an equation to solve for the constant of integration.

2=2 +cle_5

0120

Substituting ¢; found above in the general solution gives

T =2t

Summary

The solution(s) found are the following

(1)

T =2t

35

25

05

15

(b) Slope field plot

(a) Solution plot

Verification of solutions

T =2t

Verified OK.
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1.31.6 Maple step by step solution

Let’s solve
[z + 5z = 10t + 2, z(1) = 2]
° Highest derivative means the order of the ODE is 1
z
° Isolate the derivative
' = —bx+ 10t + 2
° Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE
x' + 5z =10t + 2
° The ODE is linear; multiply by an integrating factor u(t)
w(t) (2 + 5x) = p(t) (10t + 2)
o Assume the lhs of the ODE is the total derivative 4 (u(t) z)
pu(t) (&' +5z) = p'(t) = + p(t) '
e  Isolate p/(t)
w(t) = du(t)
° Solve to find the integrating factor
p(t) = e
° Integrate both sides with respect to ¢
(& (uit)z))dt = [ p@) (10t +2) dt + ¢
° Evaluate the integral on the lhs
p(t)z = [ p(t) (10t +2) dt + ¢

° Solve for z
[ p(®)(10t+2)dt+c
T =
u(t)

e  Substitute pu(t) = €

_ J(10t+2)ePtdt+cr
xr = T

° Evaluate the integrals on the rhs
85 C
g =Hegta
° Simplify

x =2t +cie”®
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o Use initial condition z(1) = 2

2=2+ce?
° Solve for ¢;
=0
° Substitute ¢c; = 0 into general solution and simplify
Tz =2t
° Solution to the IVP
T =2t

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 7

Ldsolve([diff(x(t),t)+5*x(t)=10*t+2,x(1) = 2],x(t), singsol=all) J

z(t) =2t

v Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 8

LDSolve[{x'[t]+5*x[t]==10*t+2,{x[1]==2}},x[t],t,IncludeSingularSolutions -> T??e]

z(t) —> 2t
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1.32 problem Problem 46

1.32.1 Existence and uniqueness analysis . . . . . ... ... .. .... 293]
1.32.2 Solving as homogeneousTypeD2ode . .. ... ... ...... 293]
1.32.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 295]
1.32.4 Solving as bernoulliode . . .. ... ... ... ......... 300
1.32.5 Solvingasexactode . ... ... ... ... ...........
1.32.6 Solving asriccatiode. . . . . . . ... ... ... ... ... ..

Internal problem ID [12143]
Internal file name [OUTPUT/10795_Tuesday_September_12_2023_08_53_31_AM_95298020/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 46.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_ order__ode_ lie_sym-
metry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class D°], _rational, _Bernoulli]
2
T T
r—-—=—-—""=0
t

With initial conditions

292



1.32.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

x’ = f(ta .Z')
z(t? + 1)
= t—3
The ¢ domain of f(¢,z) when x =4 is

{t<0VvOo<t}

And the point ¢, = 2 is inside this domain. The z domain of f(¢,z) when ¢t = 2 is

{—00 <z < o0}

And the point zy = 4 is inside this domain. Now we will look at the continuity of

of _ 0 (x(t’+=)
or Oz t3
?*+z
~ e Tp

The ¢t domain of %5 when £ =4 is

{t<0VvO0<t}

And the point ty = 2 is inside this domain. The z domain of % when t = 2 is

{—o0 <z < o0}

And the point zy = 4 is inside this domain. Therefore solution exists and is unique.

1.32.2 Solving as homogeneousTypeD2 ode

Using the change of variables = u(t) ¢t on the above ode results in new ode in u(t)

u(t)®

u'(t)t — :

=0
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In canonical form the ODE is

' = F(t,u)
= f(t)g(u)

_’LL
2

Where f(t) = & and g(u) = u?. Integrating both sides gives

1 1

1 1
1— 1+c
u ot 2
The solution is
1 1
T 4 T =0
w 1@

Replacing u(t) in the above solution by ¥ results in the solution for z in implicit form

—— 4+ —-—=c=0
:v+t ©

t 1
—— 4+ —-—c=0
x t

Substituting initial conditions and solving for cs; gives c; = 0. Hence the solution
becomes Solving for x from the above gives

z =t

Summary
The solution(s) found are the following

r =t (1)
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251

20

101 10
75
5 5]
25
0.
0 05 1 15 2 25 3 35 4 45 5 0 1 2 3 4 5
t t
(a) Solution plot (b) Slope field plot
Verification of solutions
z =t

Verified OK.

1.32.3 Solving as first order ode lie symmetry lookup ode
Writing the ode as

2

o z(t? + )
3

' = w(t,z)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(ne — &) — w2€w —wi —wen=0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &,
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Table 38: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

E(t,z) =0

2

n(t,z) = — (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

di _do _
§

The above comes from the requirements that (£2 +n2) S(¢,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

ds (1)
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t
S is found from
n
e
T
Which results in
g=_1
z

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dsS . St+W(t, .’I,')Sx

Lo p
dR~ R, +w(t 2)R, )

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

z(t? + )
w(t,z) = 5
Evaluating all the partial derivatives gives
Rt =
R,=0
St = —
x
t
Sy = o

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
wo_ = 2A
dR t2 (24)
We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

ds _ 1
dR R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

(4)

gives
S(R) = —~ +
=——+4c
R 1
To complete the solution, we just need to transform (4) back to ¢,z coordinates. This
results in
! +
—_—— = —— C
T t !
Which simplifies to
t 1 +
—_—— = —— C
z t !
Which gives
ﬁ
_”_Qt—l

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

.. ) ) i ODE in canonical coordinates

Original ode in ¢, x coordinates coordinates (R, S)

transformation ’

dz _ o(t*+w) s _ 1

¢ — 3 dR ~ R?
ARRRREREEE trtrrrrA e nanan el e e g
ARRRREEER] tterrrrzrrr NN P01 || Y P ——
SNNSNNNYNVV V4t e I & B
NMhaNNNN YL ttt 27777 R nanan el e e
\\\\\\%@L ttt 2 s 4*»4*j@§/?f//»»44»44
SN X\ ! ttrr s~ S Vi i | N I S
~~aNNNN LSNP S S 0 | L Iy - S .
I OV N W VR [l atad e Il B e
e e O WY P Ao — t e I B I
wormmmam— QI e A»»»a»ﬂ/L%ff/ﬁ»w»»»»
P OO AN I S S OO VC R ——w—sbo o r 7 fH A A oo oo
AAAAA TN\ $ = NN e R A I B
AAAAA TN A P N e N ——s—r e e A L Ao
AAAAAANY IS 0 " W R e L B I
AAFAAA=NY IS S B W e A kB B T
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Initial conditions are used to solve for c;. Substituting ¢ = 2 and z = 4 in the above
solution gives an equation to solve for the constant of integration.

_ 4
201—1

01:0

Substituting ¢; found above in the general solution gives

=1t
Summary
The solution(s) found are the following
T =t (1)
25
25 ]
201
201
17.51
151 15
x(1) 1257 x(1)
10 10
75
5 5
25
0.
0 05 1 15 2 25 3 35 4 45 5 0 1 2 3 4 5
t t
(a) Solution plot (b) Slope field plot
Verification of solutions
z =t

Verified OK.
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1.32.4 Solving as bernoulli ode

In canonical form, the ODE is

z' = F(t,z)
z(t* + )
This is a Bernoulli ODE.
= 1:1: + lx2 (1)
i 3
The standard Bernoulli ODE has the form
' = fo(t)z + f1(t)z" (2)
The first step is to divide the above equation by 2™ which gives
xl
= ho®F "+ fi() 3)

The next step is use the substitution w = z'™" in equation (3) which generates a new
ODE in w(t) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution z(t) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

folt) =
fl(t)=t13
n=2

Dividing both sides of ODE (1) by z™ = 2 gives

1 1 1
/
S 4
z? itz + t3 )
Let
w = xl—n
1
== 5
: ®)
Taking derivative of equation (5) w.r.t ¢ gives
1
w = —;z' (6)
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Substituting equations (5) and (6) into equation (4) gives
1
3

) w(t)

—w' @) = =2
we w_1
ot 3

The above now is a linear ODE in w(t) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w'(t) +p(t)w(t) = q(t)

Where here
1
) ==
p(t) =1
1
q(t) = 5
Hence the ode is
) w(t) 1
)+ —~7 — _—
The integrating factor u is
p=e [ Ldt
=t

The ode becomes

Integrating gives

Dividing both sides by the integrating factor u = ¢ results in
C1

1
==+ —=
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Replacing w in the above by 1 using equation (5) gives the final solution.

1 1

z 2t
Or

_ 1

B

Initial conditions are used to solve for c;. Substituting ¢ = 2 and z = 4 in the above
solution gives an equation to solve for the constant of integration.

4
20 +1
C1 = 0
Substituting ¢; found above in the general solution gives
T =t
Summary
The solution(s) found are the following
r =t (1)
25
254
22.5
201
201
17.5
157 151
x() 1257 x(1)
101 10
7.57
5 5
2.5
0 "
0 05 1 15 2 25 3 35 4 45 5 0 i 2 3 4 5
t t
(a) Solution plot (b) Slope field plot
Verification of solutions
z =t

Verified OK.
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1.32.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

(t*) dz = (z(t* + z)) dt
(—z(t®*+z))dt+(t*)dz =0 (2A)

Comparing (1A) and (2A) shows that

M(t,z) = —z(* + z)
N(t,z) =3
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
ox Ot
Using result found above gives
oM 0
57 g(—ﬂﬂ(t2 +z))
=t -2z
And
ON 0
a o)
= 3¢t?

Since ‘%{ %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

am k(2o

T N\ozr ot
1

= (-2 - 20) — (3¢))
—4t% — 2z

t3

Since A depends on z, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

1 /ON OM
B = M(E‘E)
1
= —m((?’tz) — (=t*—2z))
_ —4t? — 2
(82 +2)

Since B depends on t, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

ON _ oM
— _O0Ot oz
M —yN
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R is now checked to see if it is a function of only ¢ = tx. Therefore

ON _ M
R = ot oz
xM —yN

(3t?) — (—t* — 2x)
t (;x (24 x)) —z(t3)

tr

Replacing all powers of terms tz by ¢ gives

R=-2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be u then

= el Rt
= (-7t
The result of integrating gives
= 2l
_1
£2
Now t is replaced back with tx giving
1
B g2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = uM
1
= 53 (—z(t’ +2))

—t?—z
t2x

And
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A modified ODE is now obtained from the original ODE, which is exact and can solved.

The modified ODE is
—dzx

M+NE =
+dt0

—t*—z + i d_x_()
t2x 22 ) dt

The following equations are now set up to solve for the function ¢(¢, x)

o6
g_t_M (1)
¢ _

%_N 2

Integrating (1) w.r.t. ¢ gives
9 41 — / Mdt
ot

0o —t?—z
—dt = dt
ot / t2x

b= 2T pa) 3)

tx

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

dp 1 4z

ot iz + f'(z) (4)
=%+f@)

But equation (2) says that % = L. Therefore equation (4) becomes

— =t f(z) (5)
Solving equation (5) for f'(z) gives
fi(x)=0
Therefore
f@)=qa
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Where ¢, is constant of integration. Substituting this result for f(z) into equation (3)
gives ¢
—t?+x
.
tx
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and c; constants into new constant c; gives the solution as

—t2+z

C1 =
tr

The solution becomes
t2
B Clt -1

Initial conditions are used to solve for c;. Substituting ¢ = 2 and z = 4 in the above
solution gives an equation to solve for the constant of integration.

4
261—1

01=0

Substituting ¢; found above in the general solution gives

z =t

Summary
The solution(s) found are the following

r =t (1)
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251

20

0 05 1 15 2 25 3 35 4 45 5 0 1 2 3
t t

(a) Solution plot (b) Slope field plot

Verification of solutions

x =t
Verified OK.

1.32.6 Solving as riccati ode
In canonical form the ODE is

7' = F(t,z)
z(t* + )
fng t—3
This is a Riccati ODE. Comparing the ODE to solve

T 1172

/__ —
rT=Eit e

With Riccati ODE standard form
' = fo(t) + fit)z + f2(t)2?
Shows that fy(t) =0, fi(t) = 1 and fo(t) = . Let

_ul

fou

xr=

Tle
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Using the above substitution in the given ODE results (after some simplification)in a

(2)

second order ODE to solve for u(z) which is
fau"(t) = (fo + fifo) W' (t) + f5 fou(t) = 0

But
, 3
fz = _t_4
1
=g
f3fo=0

Substituting the above terms back in equation (2) gives
u(t) | 2u'(t) 0

3 t

Solving the above ODE (this ode solved using Maple, not this program), gives

u(t) =c + @
t

The above shows that
(6)

Using the above in (1) gives the solution
. t02

Tr = o
Cl+7

Dividing both numerator and denominator by c; gives, after renaming the constant

£2 = ¢3 the following solution

c

Initial conditions are used to solve for c3. Substituting ¢ = 2 and z = 4 in the above

solution gives an equation to solve for the constant of integration
4

4 =
203+1
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C3=O

Substituting cs found above in the general solution gives

z =t
Summary
The solution(s) found are the following
z =t
25
25 23]
201
201
17.5
15 5]
x(t) 1254 x(2)
10 101
75
5 5]
25
0_
0 05 1 15 2 25 3 35 4 45 5 0 1 2 3
t ¢
(a) Solution plot (b) Slope field plot
Verification of solutions
z =t

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 7

Ldsolve([diff (x(t),t)=x(t) /t+x(£)~2/t"3,x(2) = 4],x(t), singsol=all) J

x(t) = t*

v/ Solution by Mathematica
Time used: 0.264 (sec). Leaf size: 8

LDSolve[{x'[t]==x[t]/t+x[t]“2/t‘3,{x[2]==4}},x[t],t,IncludeSingularSolutions ff True]

z(t) — 2

311



1.33 problem Problem 47
1.33.1 Solving as clairautode . . . . . . .. ... ... ... ...

Internal problem ID [12144]
Internal file name [OUTPUT/10796_Tuesday_September_12_2023_08_53_33_AM_23258082/index.tex]

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 47.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _Clairaut]

y—yz—y* =0

With initial conditions
[y(2) = —1]

1.33.1 Solving as clairaut ode

This is Clairaut ODE. It has the form
y=yz+9()
Where g is function of y'(z). Let p = ¢/ the ode becomes
—p*—pr4+y=0
Solving for y from the above results in

y=p" +pz (1A)
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The above ode is a Clairaut ode which is now solved. We start by replacing y' by p
which gives

y=p’+pz
=p’ +pz
Writing the ode as
y =pz +g(p)

We now write g = g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of . Hence the above becomes

y=pr+g (1)

Then we see that

Taking derivative of (1) w.r.t. z gives

—i(z +9)

_ dp ,dp
P= (“‘”dx) * (g dw)

dp
— l QR
p—p+(w+g)dx
dp
_ AN
0—(w+9)dm

Where ¢’ is derivative of g(p) w.r.t. p. The general solution is given by

dp
L _p
dz
b=

Substituting this in (1) gives the general solution as

2
y=ct+ax

The singular solution is found from solving for p from

r+4(p)=0
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And substituting the result back in (1). Since we found above that g = p?, then the
above equation becomes

z+4(p)=z+2p
=0
Solving the above for p results in
x
P = D)
Substituting the above back in (1) results in

$2

y1=—z

Initial conditions are used to solve for ¢;. Substituting x = 2 and y = —1 in the above
solution gives an equation to solve for the constant of integration.

—1= C%+201

Cci = —1
Substituting ¢; found above in the general solution gives

y=1—=z

Summary
The solution(s) found are the following

y=1-z (1)
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Figure 63: Solution plot

Verification of solutions

Verified OK.

Verified OK.
Maple trace

"Methods for first order ODEs:
**kk Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful’

315



v/ Solution by Maple
Time used: 1.422 (sec). Leaf size: 17

Ldsolve( [y (x)=x*diff (y(x),x)+diff (y(x),x)"2,y(2) = -1],y(x), singsol=all) J
y@)=1-=z
2
x
y(z) = 4

v/ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 21

LDSolve {y [x]==xxy' [x]+y' [x]~2,{y[2]==-1}},y[x] ,x,IncludeSingularSolutions -> jl'rue]

y(z) > 1—=z

2
T
y(z) — 1
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1.34 problem Problem 48
1.34.1 Solving as clairautode . . . . . . .. .. ... ... ... ... 317

Internal problem ID [12145]
Internal file name [OUTPUT/10797 _Thursday_September_21_2023_05_46_02_AM_75656588/index . tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 48.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _Clairaut]

y—yz—y* =0

With initial conditions
[y(1) = —1]

1.34.1 Solving as clairaut ode

This is Clairaut ODE. It has the form
y=yz+9()
Where g is function of y'(z). Let p = ¢/ the ode becomes
—p*—pr4+y=0
Solving for y from the above results in

y=p" +pz (1A)

317



The above ode is a Clairaut ode which is now solved. We start by replacing y' by p
which gives

y=p’+pz
=p’ +pz
Writing the ode as
y =pz +g(p)

We now write g = g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of . Hence the above becomes

y=pr+g (1)

Then we see that

Taking derivative of (1) w.r.t. z gives

—i(z +9)

_ dp ,dp
P= (“‘”dx) * (g dw)

dp
— l QR
p—p+(w+g)dx
dp
_ AN
0—(w+9)dm

Where ¢’ is derivative of g(p) w.r.t. p. The general solution is given by

dp
L _p
dz
b=

Substituting this in (1) gives the general solution as

2
y=ct+ax

The singular solution is found from solving for p from

r+4(p)=0
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And substituting the result back in (1). Since we found above that g = p?, then the
above equation becomes

z+g(p)=z+2p
=0
Solving the above for p results in
x
= D)

Substituting the above back in (1) results in

$2

y1=—z

Initial conditions are used to solve for ¢;. Substituting x = 1 and y = —1 in the above
solution gives an equation to solve for the constant of integration.

~1=c+¢
oo L3
T2 2

Summary
The solution(s) found are the following

__ 1 i3 = iV3a (1)
vy= 272 2 2

X
_ 2
Y 1 (2)
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Figure 64: Solution plot

Verification of solutions

Y=79 T 9 T3 T

1 W3 =z 1W/3x
1 V3

Verified OK.

Warning, solution could not be verified

Maple trace

"Methods for first order ODEs:
*** Sublevel 2 **x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful’
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v/ Solution by Maple
Time used: 0.391 (sec). Leaf size: 66

Ldsolve([y(x)=x*diff(y(x),x)+diff(y(x),x)‘2,y(1) = -1],y(x), singsol=all) J
1 i(-142)V3 g
A
1414v/3) (ivV3 -2z +1
o) = (V8 (V8= 2 41
iW3—-1) (ivV3+2z -1
o) - (8=1) 648+ 20 )

v/ Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 38

LDSolve {y [x]==xxy' [x]+y' [x]~2,{y[1]==-1}},y[x] ,x,IncludeSingularSolutions -> jl'rue]

y(z) = (-1 — T
y(z) — \3/—_1(\3/—_11: - 1)
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1.35 problem Problem 49
1.35.1 Solving as first order ode lie symmetry calculated ode . . . . . .

Internal problem ID [12146]
Internal file name [OUTPUT/10798_Thursday_September_21_2023_05_46_04_AM_77594040/index.tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 49.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode_ lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C'], _rational, [_Abel, “2nd type,
class A~]]

, Sr—4y—2

—— =0
3r —4y — 3

Y

1.35.1 Solving as first order ode lie symmetry calculated ode
Writing the ode as

, =3z +4y+2
vy= —3x+4y+3

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Ne +w(ny — &) — w2€y —wef —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + o (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(=3 +4y+2)(bs—a2) (“3z+4y+ 2)% ag

by +
? ~3z+4y+3 (=3 + 4y + 3)
3 —9x+12y+6> (5E)
- | — + Taz + yaz + a
( —3r+4y+3  (—3z+4y+3)° (waz +yas + 1)
4 4(—3x+4y+2))
_ - zby +ybs +b1) =0
(—3w+4y+3 (301 4y 137 ) T TV b

Putting the above in normal form gives

_9x2a2 + 9z2%a3 — 9x2by — 92%b3 — 24zyas — 24xyas + 24xyby + 24xybs + 16y%as + 16y2as — 1692y — 1
(3x

=0

Setting the numerator to zero gives

—92%ay — 92%a3 + 922y + 922bs + 24xya, + 24xyas — 24xyby — 24xybs (6E)
— 16y%ay — 16y2as + 16y2by + 16y°bs + 18zay + 12xas — 22xby — 15zbs
- 2Oya2 - 13y03 + 24yb2 + 16yb3 + 3(11 - 6a2 - 4a3 - 4b1 + 9b2 + 6b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

—9a2vf + 24a9v1v9 — lﬁagvg — 9a3v% + 24a3v1v9 — 16a3v§ + 9b2v% — 24byv1v (TE)
+ 16b2’l}g + 9b3U% — 24b3’l}1’l)2 + 16b3’l}§ + 18&2’01 - 20(12’1)2 + 12a3v1 - 130,3’02
- 22()21)1 + 24b2’l}2 — 15b3’01 + 16()3’02 + 3&1 - 6a2 — 4(13 — 4b1 + 9b2 + 6b3 =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(—9(12 - 9(13 + 9b2 + 9b3) ’U% + (24&2 + 24(13 - 24b2 - 24b3) V1V (8E)
+ (18(12 + 12&3 - 22b2 - 15b3) v+ (—16(12 - 16&3 + 16b2 + 16b3) ’U%
+ (—2002 - 13&3 + 24b2 + 16b3) Vg + 3&1 - 6(12 - 4&3 - 4b1 + 9b2 + 6b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—20ay — 13a3 + 24b, + 16b3 = 0
—16ay — 16a3 + 16by + 16b3 = 0

—9ay — 9as 4+ 9b; + 963 =0

18as + 12a3 — 22by — 15b3 = 0

24a9 + 24a3 — 24by — 24b3 =0

3a; — 6as — 4az — 4b; + 9by + 6b3 = 0

Solving the above equations for the unknowns gives

a1 = ap
as = —9a; + 12b;
a3z = 12a; — 16b;
by =0,
by = —9a; + 12b,
bs = 12a; — 16b,

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

& =12z — 16y
n=12z — 16y +1
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=mn-w(y)é

—3r+4y+2
=12z —16y+1— ———=—— | (122 — 16
Ty (—3x+4y+3>( z = 169)
9z +12y—3
- 3rx—4y—3

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S is found from

= / %m—iﬂdy
3a—4y—3
Which results in
g__Y_ In(—-1- 3z +4y)
3 3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by
—3r+4y+2

W(T.9) = 3 a3
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Evaluating all the partial derivatives gives

R, =1
R,=0
1
S = —1—-3z+4y
1 4
Sy=—-+

3 92—-12y+3
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

-~ 2A

dR 3 (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds 1

drR 3
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

R
S(R)=—§+cl (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
y In(-1-3z+4y)

v __Zy.
3 3 - 31

Which simplifies to

Which gives
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.
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Canonical . . .
. . ) i ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ —3z+4y+42 as _ 1
dx —3z+4y+3 drR — 3
ARPPRARASAANF SRS e e
R R R R R B
FAPAPIAIIHNA S AP AAAAA B I
//////ﬁﬁ//////////»f \s\\\s\s\sm\s\s\s\s\s\s\s\s\s\s\s\s
AAFF7F P AAAAAAAATNS S S N T S S T T T
APAAAAAAAAANAAAA—= PPN S e I )
//////v,,f /_2{/ ///////// \s\s\s\s\s\s\s\s\s_?\s\s\s\s\s\s\s\s\s\s
AR PP PP NAAAAARAAAAS S S S e N G T e S
ANP PP B R
PAPAPIAAAAS SRS AP R Bl
Summary
The solution(s) found are the following
3z ei 311 1
y= + LambertW 1 + 1 (1)
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Figure 65: Slope field plot

Verification of solutions

3 §-3a—% 1
y= Zx + LambertW (%) + 1

Verified OK.
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Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE", diff(y(x), x) = 3/4, y(x)°
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful

<- homogeneous successful”

**x*x Sublevel 2 **x

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 19

e

Ldsolve(diff(y(x),x)=(3*x-4*y(x)-2)/(3*X-4*y(x)-3),y(x), singsol=all)

~—

3 —it
y(z) = Zx + LambertW (CleT4> +

L)

B~

v/ Solution by Mathematica
Time used: 5.353 (sec). Leaf size: 41

-

.
LDSolve[y'[x]==(3*x-4*y[x]-2)/(3*x-4*y[x]-3),y[x],x,IncludeSingularSolutions -f True]

o 1
y(z) = W (—es ) + ??Tx + 1

y(z) = i(i&w +1)
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1.36 problem Problem 50

1.36.1 Solving aslinearode . . . . . .. ... ... ... ... ..... 330
1.36.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 332
1.36.3 Solvingasexactode . ... ... ... ... ... ........ 336
1.36.4 Maple step by step solution . . . . . ... ... ... ... ... 340

Internal problem ID [12147]
Internal file name [OUTPUT/10799_Thursday_September_21_2023_05_46_05_AM_44492199/index. tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 50.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

z' — x cot (t) = 4sin (¢)

1.36.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
'+ p(t)r = q(t)
Where here

p(t) = —cot (?)
q(t) = 4sin (¢)

Hence the ode is

x' — zcot (t) = 4sin (t)
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The integrating factor u is

b= ef—cot(t)dt

_
~ sin(t)

Which simplifies to

p = csc (t)

The ode becomes
d )
a(uw) = (u) (4sin (2))

%(csc (t) z) = (csc(t)) (4sin (1))
d(csc (t) z) = 4dt

Integrating gives
csc (t)x = /4dt
csc(t)x =4t + ¢
Dividing both sides by the integrating factor yu = csc (t) results in
x = 4sin (t) t + ¢ sin (t)
which simplifies to
z =sin (t) (4t + c1)

Summary
The solution(s) found are the following

x = sin (¢) (4t + ¢1)
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Figure 66: Slope field plot

Verification of solutions

x =sin (t) (4t + ¢1)

Verified OK.

1.36.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

z cot (t) + 4sin (t)

' =w(t,z)

=

The condition of Lie symmetry is the linearized PDE given by

e+ w(ne — &) — W — wi€ — wyn =0

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 40: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt _do _
§ 1

as

1)

The above comes from the requirements that (f % + n%) S(t,x) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

S=/1dy
n
1
‘/m@@

Y0

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

@ . St—}-w(t,x)Sz (2)
dR  R;+w(t,z)R,

Where in the above Ry, R, S, S, are all partial derivatives and w(t, x) is the right hand
side of the original ode given by

w(t, z) = z cot (t) + 4sin (2)

Evaluating all the partial derivatives gives

R, =1

R, =0

Sy = —cot (t) csc (t) z
Sz = csc (t)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for ¢, x

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

4 (2A)

4
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

(4)

Sua:=4R-FQ
To complete the solution, we just need to transform (4) back to ¢,z coordinates. This

results in

csc(t)x =4t + ¢

Which simplifies to

csc(t)x =4t + ¢

Which gives

a4+

csc (t)

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

ODE in canonical coordinates

(R,5)

=4

ds
dR

R N S A A AN AR S N R

e e e e e e e e S S e S T S S S S

PN AR R R R N N RN S AR N S A N .

e e e e e e e e S S e S T S S S S

c/ol&/c/ol&/c/ol&/f‘/ﬁﬁlololﬁlololdlol

A AR S N N S A N R AR S N S .

o~

P T U v v e

e e e e e e e e S S e S T S S S S

R A S S N N S R A R R N N N N .

e e e e e e e e S S e S T S S S S

P AT N R SR

P AR S N N S A N L N S R S .

A R N s, SO AR A N R N S R
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e e e T I T T T T[S S S S e S S S S

[%)

R AR S R N AR N A R N S

A R N A A A A N S R .

e e e e e e e e S S e S T S S S S

A/A/AIA/A/AIA/A/AlﬁlvAM»—AlﬁlA/A/fA/A/A/A/

e e e e e e e e e S S e S T S S S S

R N S A A AN AR S N R

Canonical

coordinates
transformation

t

R =

csc (t) x

S =

Original ode in ¢,z coordinates

> > > > v o v b

o e v v v v v _»|

SRXA PSS

I

L v v _v_v_v_v_v_v_v_v

S>> > > > v T w Sttt

A AAP PR X NS

L NG NG NN N N N N AR A A A N N N A

e T e T T T TR S T W S R S R W

A T SR U 2 e
e e

e Fe > v v vl

SR |

A SN

A AR TN N

I T T S e S e S

[N L ——
\\\X\»/L/f

> v > v v v v v _v_v

B T B T T T R R R

Summary

The solution(s) found are the following

1)

4t+61

csc (t)

335



\ \_ A N N N N e e e et I

R e L i e e N e I
e e e N N N N N N N N NS S S S S S S S N

,,,,,,, S—c—c—sSSNNN N A T

1111111 ~~~~\\// e}

——— e - - = - 7 / ~—————— e —— |

e = = = - = - = - = > - =~ > _~_~ |
e i A

P i e e

PP Pl PP e i

——~~~\\l /i
_—m—— e N / - = =~
Rt N — _0 — ] &)
I I

—_

~

~—

=

t

Figure 67: Slope field plot

Verification of solutions

4¢ + C1
csc (t)

Verified OK.

1.36.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(z,y) 52 =0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

0

d(z,y) =

a
dzx
99

Hence
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Comparing (A,B) shows that
0¢ _
or
0% _
dy

But since 832g = a a then for the above to be valid, we require that
Oy yox

OM ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = ﬁ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

dz = (z cot (t) + 4sin (¢)) d¢
(—x cot (t) —4sin (t))dt+dx =0 (2A)

Comparing (1A) and (2A) shows that
M(t,x) = —x cot (t) — 4sin (t)
N(t,z) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0 .
. %(—x cot (t) — 4sin (t))
= — cot (?)
And
ON
5 = o
= 0
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then the ODE is not exact. Since the ODE is not exact, we will try to

Since % # %—JZ,
find an integrating factor to make it exact. Let
Ao (oM _oN
N\ Oz ot
= 1((=cot (¢)) - (0))
= — cot (?)

Since A does not depend on z, then it can be used to find an integrating factor. The

integrating factor p is
_ o Adt

— ef — cot(t)dt

7

The result of integrating gives
p= 6—ln(sin(t))

= csc (t)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
= csc (t) (—z cot (t) — 4sin (2))

= —4 —cot (t)csc(t) x

And
N =uN

= csc (¢) (1)

= csc (t)
Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
—dz

M+ N —
TN %

dz

a =0

(—4 — cot (t) csc (t) ) + (csc (2))

The following equations are now set up to solve for the function ¢(¢,x)

¢

.
¢ -
5. =N 2)
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Integrating (1) w.r.t. ¢ gives
9 41 — / M dt
ot

% dt = / —4 — cot (t) csc (t) xz dt

¢ = —4t +csc(t)x + f(x) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t z gives

09 :
20 = e (t) + /(@) @
But equation (2) says that 22 = csc (¢). Therefore equation (4) becomes
oz
csc (t) = csc () + f'(z) (5)

Solving equation (5) for f'(z) gives
f'z)=0
Therefore
f@)=a
Where c; is constant of integration. Substituting this result for f(z) into equation (3)

gives ¢
¢p=—4t+csc(t)z+

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and cy constants into new constant c¢; gives the solution as

c1=—4t+csc(t)x

The solution becomes
4t +c
csc (t)

Tr=
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1)

4t —|— C1
csc (t)

LLLLLLLL - \ N T~ —~—~—~—~——
7 AN NSNS —
YA T T N N N N N
A N N A
B e e e e i e )
//////////// A
//////// A S N e N N
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11111111 R N A
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P

t
4t + ¢
csc (t)
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The solution(s) found are the following

Summary

Figure 68: Slope field plot

Highest derivative means the order of the ODE is 1

x' — xcot (t) = 4sin (t)
Isolate the derivative

1.36.4 Maple step by step solution
Let’s solve

Verification of solutions
Verified OK.



x’ = z cot (t) + 4sin (¢)

° Group terms with z on the lhs of the ODE and the rest on the rhs of the ODE
x’ — z cot (t) = 4sin (2)

° The ODE is linear; multiply by an integrating factor u(t)
w(t) (2" — z cot (t)) = 4u(t) sin (¢)

o Assume the lhs of the ODE is the total derivative 4 (u(t) z)
u(t) (z" — zcot (8)) = p'(t) x + p(t) «'

e  Isolate p/(t)
' (t) = —p(t) cot (t)

° Solve to find the integrating factor
pt) = @mm

° Integrate both sides with respect to ¢
[ (4(ut)z))dt = [4pt)sin(t)dt+ e

° Evaluate the integral on the lhs
p(t)z = [4u(t)sin () dt + ¢

° Solve for z

[ 4p(@)sin(t)dt+c
T

o Substitute u(t) = @
z =sin (t) ([ 4dt + c1)
° Evaluate the integrals on the rhs

x =sin (t) (4t + 1)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve (diff (x(t),t)-x(t)*cot(t)=4*sin(t) ,x(t), singsol=all) J

z(t) = (4t + ¢1) sin (t)

v/ Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 14

LDSolve [x' [t]-x[t]*Cot [t]==4#Sin[t] ,x[t],t,IncludeSingularSolutions -> True] J

z(t) = (4t + c1) sin(t)
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1.37 problem Problem 51

Internal problem ID [12148]
Internal file name [OUTPUT/10800_Thursday_September_21_2023_05_46_06_AM_18357711/index.tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 51.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class G ]]

12
y—2y'r—%=m2

Solving the given ode for y' results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

Yy = =2z + /222 + 2y (1)
Yy =—-2x — /222 + 2y (2)
Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

Yy = =2z + /222 + 2y

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - 5:1:) - w2€y —wg€ — Wyl = 0 (A)
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The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + a (1E)
1 = xby + ybs + by (2E)

Where the unknown coefficients are
{ala az,as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

2
b + (—Qx + /222 + 2y> (bs — ag) — (—2x + /222 + 2y> as (5E)

( 2+ 22 >(xa + yas + ay) oy tybs+ b1 _
V2x?% 4 2y 2TV TG V2iT ¥ 2y

Putting the above in normal form gives

(2% + 2y)% as + 4222 + 2y x%a3 — 8x3a3 — 44/222 + 2y way + 24/22% + 2y b3 — 24/22% + 2y yas + 4
V2z? + 2y

=0

Setting the numerator to zero gives

3
—(22® + 2y) % a3 — 4v/222 + 2y z’az + 8z°az + 41/ 2% + 2y zay (6E)
— 21/222 + 2y xbs + 21/222 + 2y yas — 4x2ay + 22%bs + 6zyas

+24/222 4+ 2y a; + by/ 222 + 2y — 2xa; — xby — 2yas + ybs — by =0

Simplifying the above gives

—(2x2 + 2y)% as + 4(2x2 + 2y) zasz — 4/2x2 + 2y zaz — (21‘2 + 2y) as (6E)
+ (22° + 2y) bs + 41/222 4 2y zas — 2+/222 + 2y wbs + 2+/23% + 2y yas

—22%ay — 2zyas +2+/2x2 + 2y a1 +ban/ 222 + 2y — 2xaq — by —ybs —by =0

344



Since the PDE has radicals, simplifying gives

8z3a3 — 6/222 + 2y x’as — 4x%ay + 2x°bs + 4/222 + 2y xas — 2+/222 + 2y xbs
+ 6zyaz — 2xa; — by + 21/2x2 + 2y a1 + bar/222 4+ 2y — 2yas +ybz3 — by =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{x, Y, \/ 222 + 2y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them
{x =1,y = Vo, \/ 222+ 2y = ’03}

The above PDE (6E) now becomes

811{’0,3 — 61)31)%&3 — 41)%(12 + 4vgvias + 6v1v203 + ZUfbg — 2u3v1 b3 (7E)
— 2u1a1 + 2vsa; — 2v9a9 — V1by + bavz + Vb3 — by = 0
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3}
Equation (7E) now becomes
8vias — 6vsviaz + (—4ag + 2b3) v} + 6v1v2a3 + (4ay — 2b3) vV1vs (8E)

+ (—2a; — by) v1 + (—2a2 + bs3) va + (2a1 + ba) v3 — by =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—6as =0
6as =0
8az =10
-b=0

—2a1 — by, =0
2a; +b, =0
—4ags +2b3 =0
—2a9 +b3=0
4ays — 2b3 =0
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Solving the above equations for the unknowns gives

a1 = ap

Az = a2

a3 =0

by =0

by = —2a,
b3 = 2a,

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=1
n=-—-2z
Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-w(y)¢
= -2z — (—2.’IJ + /222 + 2y> (1)
= —/222 + 2y
£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that (ﬁ a% + 77(%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

[ 3
n

1
4
/ VoY

S is found from

S
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Which results in

S=—/2x2+2y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = =2z + /222 + 2y

Evaluating all the partial derivatives gives

R, =1
R,=0
g ___ 2
Y V2P 2y
P
Y V22 2y
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
-~ -1 2A
dR (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

-1

S(R)=—-R+¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

V222 +2y=—z+¢,
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Which simplifies to

V222 +2y=—z+0c,

Which gives

1 1
Yy = 50% — C1T — 51’2
Summary
The solution(s) found are the following
1 1
y= ﬁcf -z — §x2 (1)
Verification of solutions
1
Yy=-c —car— éxz

Verified OK.
Solving equation (2)

Writing the ode as

Yy = —2x — /222 + 2y
y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
e+ w(ny — &) — W&y —w€ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zax +yaz + a1 (1E)
1 = wby +ybs + by (2E)

Where the unknown coeflicients are

{01, as, as, by, b2a 53}

Substituting equations (1E,2E) and w into (A) gives

by + (—235 — /222 F 2y> (bs — ag) — (—2:1: — /222 + 2y>2 as (5E)

( 2 2z )(za + ya +a)+x62+ybg+b1_
V2x% + 2y 2T YA TG V222 + 2y
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Putting the above in normal form gives

(222 + 2y)% az + 4222 + 2y x%a3 + 8x3a3 — 4v/22% + 2y Tay + 2v/2x% + 2y xb3 — 2/22% + 2y yaz — 4
V2x2% 4 2y

=0

Setting the numerator to zero gives

3
—(22% + 2y) ? a3 — 4v/222 + 2y x’a3 — 8z°az + 41/ 2% + 2y zay (6E)
— 24/222 4+ 2y xbs + 21/222 + 2y yas + 4x’ay — 22%bs — 6zyas

+ 24/222 4+ 2y a1 + bar/ 222 + 2y + 2za; + xby + 2yas — ybs +b; =0

Simplifying the above gives

3
—(2x2 + 2y) Zas — 4(2:132 + 2y) Tasz — 4+/2x2 + 2y z2as + (21‘2 + 2y) as (6E)
— (22% + 2y) bs + 41/23% + 2y zas — 21/222 + 2y xbs + 2+/222 + 2y yas
+ 2225 + 2zyas +2+/2x2 + 2y a1 + bar/222 + 2y + 2za; + by +ybs +b; =0

Since the PDE has radicals, simplifying gives

—8z3a3 — 61/222 + 2y 2%as + 4x%ay — 22°bs + 41/222 + 2y xas — 2+/222 + 2y xbs
— 6zyaz + 2za; + xby + 2/222 + 2y aq + ba\/ 222 + 2y + 2yas — ybs + by =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{:c, Y,/ 222 + Qy}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{x = v,y = Vg, /202 + 2y = ’03}
The above PDE (6E) now becomes

—8vfa3 — 6v3vfa3 + 411%&2 + 4vsvias — 6v1V203 — 2v%b3 — 2v3v1 b3 (7E)

+ 2v1a1 + 2v301 + 2v2a2 + v1bg + bavg — vebs + b1 =0
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Collecting the above on the terms v; introduced, and these are
{'Ula V2, ’03}

Equation (7E) now becomes

—8viaz — 6usviaz + (dag — 2b3) vi — 6v Va3 + (dag — 2b3) v1v3 (8E)
+ (20,1 + bz) U1 + (20,2 — bg) Vg + (2&1 + bg) v3+b; =0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

—8az =0
—6asz =0
2a; + by =0
2ao — b3 =0
4ays — 2b3 =0

Solving the above equations for the unknowns gives

a1 = ap

a2 = a2
a3 =0

by =0

by = —2a,
bs = 2as

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

n=-2z
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)¢
= —2r — <—2x — \/M) (1)

= /222 + 2y
£E=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dr dy
& n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

[ 3
n

1
—d
/\/2:11:2 + 2y v

S is found from

S

Which results in

S =+2x%+2y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sp+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = -2z — /222 + 2y

Evaluating all the partial derivatives gives

R, =1
R,=0

_ 2x
V2P +2y
g _ 1
YoVt
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

-1 (2A)

-1

gives
S(R)=—-R+ ¢ 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

\/2-’E2+2y:—$+01

Which simplifies to

\/2$2+2y=—w+cl

Which gives

1 1
Yy = 50% —C1T — 5.’172
Summary
The solution(s) found are the following
1 1
y= écf -z — §x2 (1)
Verification of solutions
1
y=—-c —cx— éxz

Verified OK.

352



Maple trace

“Methods for first order ODEs:
*k* Sublevel 2 **x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
*xx Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful
* Tackling next ODE.
*x*x Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.062 (sec). Leaf size: 79

Ldsolve (y(x)=x"2+2*diff (y(x) ,x)*x+(diff (y(x),x)"2)/2,y(x), singsol=all) J
y(z) = -2’
(z) = HEIE P
Y - % 1 % 1
y(x) = —§$2 —caz+ éc%
1 1
y(x) = —§z2 —cazr+ éc%
1 1
y(z) = —§x2 + 1z + ch

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve [y [x]==x"2+2xy"' [x]*x+(y' [x]~2)/2,y[x],x,IncludeSingularSolutions -> True]

Timed out
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1.38 problem Problem 52

1.38.1 Solving as first order ode lie symmetry lookup ode . .. .. ..
1.38.2 Solving as bernoulliode . . . .. ... ... .. ......... 359
1.38.3 Solving asriccatiode. . . . . . .. ... ... ... ... .... 363

Internal problem ID [12149]
Internal file name [OUTPUT/10801_Thursday_September_21_2023_05_46_07_AM_93917829/index.tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 52.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type

[[_homogeneous, “class G°], _rational, _Bernoulli]
3
yl _ ;y + y2$3 =0

1.38.1 Solving as first order ode lie symmetry lookup ode
Writing the ode as
y(z'y —3)

T
Y =w(z,y)

Yy =-

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - fz) - w2€y - wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 43: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode "= f(x)y + g(x) y"™ 0 e~ J(n=D)f(@)dzyn
Y Yyr+g\r)y Y
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
%
n(z,y) = 5 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R==x

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Spt+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

4
-3
wla,y) = ALY
x
Evaluating all the partial derivatives gives
R, =1
R,=0
5 32
’ y
3
x
Sy = E

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as

2 - _RS
dR R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
R?

S(R) = —7+C1 (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

23 7

—; = +c
Which simplifies to

23 7

—; =T +c

Which gives
723
G

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _  y(z*y—3) s __ 6
de — T dR ~ R
trr vttt Ve
trr vt \ e
INEEEIIEEEER! \ A |
ERSS{INREES o b,
SeaBIERRRS StR) L\
INEREIIEARER! L 24— )
IREARIEATER \ e
A AR R R=zx L~ |
s ; s
4 -~ N —4 -2 Y TEOTTTE Y 4
SN AR RIS __r IR I g g
NEENIIEEREREE Y \ e
‘T"i‘fL%A&H«H« S
ISR EERE \ e
ISR EEER e I
INEESIIEEEEE, |
IR IR \ —ag—e—a |
ISl EEEEE Py ===
LR R R O R £ O A by
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(1)

B Tx?
—x7+ Ty

y:

The solution(s) found are the following

Summary

17—
LLLLLLL - —————]
LLLLLL —_— N r————
L S —
== INNNNN\N\/ rr—m————
111111 ~~~\/———
11111111 ~\,/————

~——

— N~ —
LLLLLLL \\ //,1111111
\\\\\ ——__ \ / N T ———————~—
~~N\N/ 7777 N N ————————
11111 N4 AN
1111111 ~ / N / N T~
11111111 NN ~—

i A — S — A_ﬂ a_a
—_
=
=~

1)

X
_ Tx®
—z7 + Ty
F(z,y)
y(z'y — 3)
359

/

Figure 69: Slope field plot
Y

1.38.2 Solving as bernoulli ode
In canonical form, the ODE is
This is a Bernoulli ODE.

Verification of solutions

Verified OK.



The standard Bernoulli ODE has the form
Y = fo(x)y + fi(z)y" (2)

The first step is to divide the above equation by y™ which gives

Y _ fh@y "+ i) 3)

<

The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

folw) = >
filz) = —2°
n=2

Dividing both sides of ODE (1) by y™ = y? gives
13

3
y —_—_ = — =2 4
iy (4)
Let
w = yl—n
1
== 5
y ()
Taking derivative of equation (5) w.r.t  gives
1
w' = _Ey, (6)

Substituting equations (5) and (6) into equation (4) gives

—w(z) = 3wx(x) _ 3
W == 448 (")

The above now is a linear ODE in w(z) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(z)w(z) = q(z)

Where here
3

p(z) = o

q(z) = 2°
Hence the ode is

3
w'(z) + _w(x) =23
T

The integrating factor u is

b= ef %dm

frd x3

The ode becomes

Integrating gives

2w = /x6dx

3 z’
zw=7+cl

Dividing both sides by the integrating factor u = 3 results in

2 o

Replacing w in the above by i using equation (5) gives the final solution.

y 7 x3
Or
1
Y=
cE
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(1)

T3
7+ Tcy
T3
7+ Tc

1
LLLLLLLL yd A ) |
LLLLLLL 1N ——————
lllll =7 1\\N/ r————————
== 7 INN\N\N\\\/ i~
7777777 ~ / \ P N
11111111 ~\/—————

~——

— N~ —
LLLLLLL - \ / T~
\\\\\\ -7 \ / N S —————————
—\N\/ 7777 NN ————————
11111 N4 IS
1111111 ~ / \ / N —————
11111111 NN ~—

a IS — S — IS a

The solution(s) found are the following

Which is simplified to

Summary

Figure 70: Slope field plot
723
7+ Tc
362

Verification of solutions

Verified OK.



1.38.3 Solving as riccati ode

In canonical form the ODE is

Y =F(z,y)
y(zty — 3)
a

This is a Riccati ODE. Comparing the ODE to solve

3
y'=—y—y2x
T

3

With Riccati ODE standard form

y' = folz) + fi(z)y + fo(z)y?

Shows that fo(z) =0, fi(z) = 2 and fa(z) = —23. Let

y =
fau
_u,

= 1)

—z3u

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou"(2) = (fo + fufa) w'(z) + f5 fou(z) = 0 (2)
But
fi =32
fifs = =327
f2fo=0

Substituting the above terms back in equation (2) gives
—2*u"(z) + 622/ (z) = 0
Solving the above ODE (this ode solved using Maple, not this program), gives
u(z) = oz’ + ¢
The above shows that

u'(z) = Tepx®
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(1)

T3
7+ c3
T3
x7 + c3

cox” + ¢

Teox?

y:

cs the following solution

Dividing both numerator and denominator by c; gives, after renaming the constant

Using the above in (1) gives the solution
The solution(s) found are the following

Summary

2 —

C1

17—
LLLLLLL - —————]
LLLLLL — N r————
A ——
== INNNNN\N\/ rimr—m—————
111111 ~~~\/———
11111111 ~\/———— =

~——

— N~ —
LLLLLLL \\ ///,1111111
\\\\\ ——__ \ / N T —— ——~—
—~N\ /7 7777 AN
11111 N1 AN
1111111 // \ / N T
11111111 NN ~—

a I — = — «_/_ «_ﬂ
—_
=
=~

X
T3
7+ c3

Figure 71: Slope field plot
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Verification of solutions

Verified OK.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(diff(y(x),x)-3*y(x)/x+x‘3*y(x)‘2=0,y(x), singsol=all) J
723
y(z) = 7+ Tc

v/ Solution by Mathematica
Time used: 0.238 (sec). Leaf size: 25

tDSolve[y'[x]—3*y[x]/x+x‘3*y[x]‘2==0,y[x],x,IncludeSingularSolutions -> True] J

3
7+ Tc

y(z) =0
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1.39 problem Problem 53
1.39.1 Maple step by step solution . . . . . ... ... ... ...... 367

Internal problem ID [12150]
Internal file name [OUTPUT/10802_Thursday_September_21_2023_05_46_08_AM_55045757/index . tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 53.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y(y’2+ 1) =a

Solving the given ode for y' results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

, V-yly—a)

y-yry=e )
y/=_\/_y:'(Jy_a) (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

/\/mdy:/dx

y_ﬂ
a arctan < 2 )
Vay—y?

—Vay —y*+ 5 =z+c

366



Summary
The solution(s) found are the following

y_E
a arctan < 2 2)

—Vay —y?+ 5 WY/ —x+4¢ (1)
Verification of solutions
a arctan < —2 2)
—Vay —y*+ YV =z +a

Verified OK.
Solving equation (2)

Integrating both sides gives

[-mEt-

y— a
a arctan ( 2 )

Vay—y?
2

ay —y? — =x+c

Summary
The solution(s) found are the following

y_ﬂ
a arctan ( 2 2)

Vay —y? — 5 WYL =x+c (1)

Verification of solutions

y— a
a arctan ( 2 2)

vay —y? — 5 e =z+c

Verified OK.

1.39.1 Maple step by step solution

Let’s solve

y(y?+1) =a
° Highest derivative means the order of the ODE is 1

/

Y
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° Separate variables

y'y =1
V—y(y—a)
° Integrate both sides with respect to x
VY de—
S \/de [ldz + ¢
. Evaluate integral

aarctan( v—% >
_ /—ay — y2 + 2\/a’y—'y2 B ¢

Maple trace

"Methods for first order ODEs:
*kx Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful’
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v/ Solution by Maple
Time used: 0.094 (sec). Leaf size: 339

Ldsolve(y(x)*(1+diff (y(x),x)"2)=a,y(x), singsol=all) J
y(z) =
y(x)
_ (RootOf ((cos(_2Z)a+ _Za+2c; —2z) (—cos(_Z)a+ _Za+2c; —2x)) a — 2z + 2¢;) tan (RootOf |
2
L
2
y(z)
_ (=RootOf ((cos (_2)a+__Za+ 2c; — 2x) (—cos(_Z)a+ _Za+ 2c; — 2x)) a + 2z — 2¢;) tan (RootC
Lo :
2
y(z)
_ (RootOf ((cos(_Z)a—_Za+2c; —2z) (—cos(_2Z)a—_Za+2c; — 2z)) a + 2z — 2¢;) tan (RootOf |
Lo 2
2
y(z)
( RootOf ((cos (_2Z)a —_Za+2¢c; — 2x) (—cos (_Z)a — _Za+ 2¢; — 2x)) a — 2x + 2¢;) tan (RootC
2
La
2
v/ Solution by Mathematica
Time used: 0.661 (sec). Leaf size: 106
LDSolve [y[x]*(1+y' [x]"2)==a,y[x],x,IncludeSingularSolutions -> True] J

y(z) — InverseFunction {a arctan (\/%) —V#1/a — #1&] [—2 + ci]

y(x) — InverseFunction {a arctan (%) —V#1/a - #1&} [z + c1]

y(z) > a
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1.40 problem Problem 54
1.40.1 Solving asexactode . . ... .. ... ... ... .. ..., . 3701

Internal problem ID [12151]
Internal file name [OUTPUT/10803_Thursday_September_21_2023_05_46_08_AM_83126452/index.tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 54.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[_rationall

—y+ (2%’ + z)y = —2

1.40.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form
dy
dx

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

M(z,y) + N(z,y) >= =0 (A)

d
Hence 96 06d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

o¢

P M

o¢

3y N

370



But since 22 = 24 then for the above to be valid, we require that

ozxdy ~ Oyoz

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘9; g’y = g; a¢w is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(2*y* +z)dy = (—2° +y) dz
(27 —y)dz+(z*y’ +z)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =2~y
N(z,y) =2 +=x
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
oy “ay\" Y
=-1
And
ON 0
il G )
=2zy*+1

Since %i; # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 o)

- N Oy oz
1
= s (D - (e +1))
__2
oz
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p= efAda:
—e J —% dz
The result of integrating gives
w= 6_2 In(z)
1
Tz

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And

= (%Y + z)

_zyt+1
oz

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N-—=2=0
+ dzx

22—y zy?+1) dy
() (57 e

The following equations are now set up to solve for the function ¢(z,y)

0 _
_ai =M (1)
9 -
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Integrating (1) w.r.t. z gives

0¢ [
B_mdx_/de

2 _
@dx:/x ydx

O0x x?
b=+ +f) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

2
oy -z I W (4)

T
But equation (2) says that g—i = # Therefore equation (4) becomes

zy’+1 1
r oz

+ f'(v) ()
Solving equation (5) for f'(y) gives
f'ly) =y

Integrating the above w.r.t y gives

/f’(y) dy=/(y2) dy

3

f(y)=y§+01

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
3
p=x+ L c1
r 3
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

3
61=$+g+y_
T 3
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Summary

The solution(s) found are the following

Verification of solutions

Verified OK.

3
Yy .y
T+ I + 3 C1
AAAAAAA )// 1 1 J T
ﬂﬂﬂﬂﬂﬂ -] 1 1 J s
\\\\\\ /// l 1 //)——s—x@—xﬂ\
~~~~~~ ] 7 s
NOANNNNNS |||/
RN EZEEE AR
AT 777NN 7=\
11777777=N7~~NNN\N N
1177777777 NSNNNNNNN
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-3 -2 -1 0 1 2 3
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Figure 72: Slope field plot
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 346

Ldsolve((x‘2—y(x))+(x‘2*y(x)‘2+x)*diff(y(x),x)=0,y(x), singsol=all)

2

3
1 9c223+18x4cq +925+4
23<<—361(E—3Z2+\/ cfzo+ zxc1+ 94 >$2>
+

2 T
y(z) = — 1
((—301$ _ 332 + \/90§x3+18x;01+9$5+4> 1_2) 31:
y(z)
2
3
((1 + ’l\/g) 2% ((_3011. _ 3.’1]2 + \/90%x3+18x:c1+9z5+4) $2> + 22\/31; _ 21;> 2%
== T
4((—301.’13 — 322 + \/90%x3+18x:01+9z5+4) a:2) 2
2
3
(iv3—1) 23 ((—3c1x — 3224/ 90%“”3'*18”;“*9””5“) x2) +2(1+iv/3) 252
y(z) =

T
9c2z3+18zc; +925+4 3
4((—3clx — 322+ \/ At A ) mz) x
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v/ Solution by Mathematica
Time used: 56.22 (sec). Leaf size: 400

kDSolve [(x~2-y[x])+(x"2*y[x] "2+x) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> jl‘rue]

—2¥2x + (—6x4 + 612 + 24/23 (925 — 18c1zt + 9ci 223 + 4)) 2/3

y(z) —
2x</—3x4 + 3cy23 + \/333 (925 — 18cyx* + 9¢1 223 + 4)
y(z)
i(V3+1) (60" + 6e10® +2/27 (927 — 180,07 + 90,77 +4) ) ¥+ V2(2+ 2i3) o
_>
4z {’/—3354 4+ 3cy23 + \/x3 (92% — 18c1z* 4 9¢1223 4 4)
y(z)

(—1 = iv/3) (60" + 6e1a® + 2/27 (927 — 18cya® + 9c,%0% + 4)) 24+ V2(2 - 2v/3) @
_)

4z </—3x4 + 3cy23 + \/ac3 (92% — 18¢1z* 4 9¢1 223 4 4)
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1.41 problem Problem 55
1.41.1 Solving as first order ode lie symmetry calculated ode . . . . . . 377

Internal problem ID [12152]
Internal file name [OUTPUT/10804_Thursday_September_21_2023_05_46_09_AM_79245405/index.tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 55.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode_ lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class G'], _rationall

3y +2y(y’—3z)y ==

1.41.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

R et
2y (y* — 3z)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €x) - w2€y —wz€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + o (1E)
n = xby + ybs + by (2E)
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Where the unknown coeflicients are

{(11, a2, as, b17 b2, b3}

Substituting equations (1E,2E) and w into (A) gives

3y’ —z)(bs—as)  (3y*— )’ as
2y (12 — 3z) 442 (32 — 3)°

_ 1 _ 3(3y2—a;) a ra
<2y(y2—3z) 2y(y2_3$)2>( 2+ yas + a1)

3 3y: —=x 3y’ —x
— (- by +ybs +b1) =0
< =3z " 2y (4 - 30) (y? — 32) (wbs +yba +b1)

bz—(

(5E)

Putting the above in normal form gives

B —415by + 30z y*by — 6ySas + 12y°b3 — 242%y?by + 4z y3as — 8z y3bs — Tytas + 6y*b; + 623by — 62%yas

4y (—y? + 3z)°
=0

Setting the numerator to zero gives

4980y — 30z by +6y° ag — 12y°bs + 2422 y2by — 4z Y2 ao + 8z y>bs + Tyt as — 6y by (6E)
— 623by + 62%yay — 1222ybs + 62 y2as — 122 y?b, + 16y°a; — 2%as — 622b; = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

4bzvg + 6a21)3 — 30bzvlv§ — 12bgv§’ — 4a2v1v§’ + 7agv§l — 6b1v§l + 24bzva§ (7E)
+ 8b3v1v§ + 16a1v§’ + 6@1}%’02 + 6a3vlv§ — 12blvlv§ — 6b2vi‘ — 12b31)fv2 — agfvf
- 6b1’U% =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

—6byv3 + 24byviv3 + (6ay — 12b3) vivy + (—as — 6by) v3
— 30byv1v5 + (—4ag + 8b3) v1V3 + (6az — 12b;) v1v3
+ 4byv§ + (6ay — 12b3) v5 + (Taz — 6b;) vy + 16a,v5 = 0

(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

16a; =0

—30b, =0
—6by =0

4by =0

24b, =0

—4ay 4+ 83 =0
6ay — 12b5 =0
—az —6b; =0
6as — 12b; =0
Tag —6b; =0

Solving the above equations for the unknowns gives

ar =0
as = 2bs
a3 =0
by =0
by =0
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£ =2x
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(,y)¢
3y’ — =2
=y—|(——F—7=](2
Y < 2y (y* — 396)) ()
—yt + 22
—y3 + 3zy
£€=0
The next step is to determine the canonical coordinates R, .S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n
1
= / e W

—y3+3zy

S is found from

Which results in
In (y* — )
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S=In(y’"+z) -

ﬁ _ Satw(z,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

3y’ —=x

W(.’L',y) = _2y (y2 _ 3%)
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Evaluating all the partial derivatives gives

R, =1
R,=0

-3y +x
T oty g2
g _ Y +3ay
Y _y4+x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

0 (2A)

0

gives
S(R)=c (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
ln(w+y2) —M =
Which simplifies to
In(z +y*) — In (—x2+ v) _ c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R,5)

dy _

3y’ —z

dr —  2y(y2—3x)

— e e e e e A TA A A A A a a Na Sa e N N\
e e e S S S e Ve N %

D 16 A NN bt

“NN Y S

———e—a—a—a—a~a~a e %\ R
e e e N A B e

o e VOV VY
Sa N N N N N N e NN

.

S S S N N A N N

AT

o v v T v T v 7T

TP v

Rt

et e i L AR N N
B it S (VA BNV VCECN
Attt S SR O O POV I SN
B e B B RO B BN
B ettt S Y P P POV ?
B ettt B PP
B e e P P P P

Summary

The solution(s) found are the following

In (r+y2) —

In (-2 +3°)

2
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Verification of solutions

-3 -2 —1 0 ] 2

w

Figure 73: Slope field plot

In (-2 +3°)

ln(x+y2)——=cl

Verified OK.
Maple trace

2

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature
trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear
trying homogeneous types:
trying homogeneous G

<- homogeneous successful”
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v/ Solution by Maple
Time used: 0.156 (sec). Leaf size: 101

Ldsolve((3*y(x)“2—x)+(2*y(x))*(y(x)‘2—3*x)*diff(y(x) ,x)=0,y(x), singsol=all) J

\/201 —2y/c1(c1 — 8z) — 4z
y(z) = — 5
\/201 —2y/c1(cp — 8x) — 4z
y(z) = 5

\/2cl+2 c1 (c1 — 8z) — 4x
y(z) = — 5

\/201 +24/c1 (c1 — 8z) — 4z
y(z) = 5

v/ Solution by Mathematica
Time used: 15.503 (sec). Leaf size: 185

LDSolve [(B*xy [x] ~2-x)+(2*y [x] ) * (y [x] "2-3*x) *xy ' [x]==0,y[x],x, IncludeSingularSolu}ions -> True]

\/—2x —e7/Br + e — et

y(z) = 7
\/—2m —e7/8z + e — e
y(z) = 7
\/—23: +e7/8x + e — et
y(z) = - NG
\/—2x + e%\/m — e
y(z) = 7

384



1.42 problem Problem 56

1.42.1 Solving as homogeneousTypeD2ode . .. ... ... .. .. ..
1.42.2 Solving as first order ode lie symmetry lookup ode . . . .. ..
1.42.3 Solving as bernoulliode . . . ... ... ... ... .......
1.42.4 Solvingasexactode . . ... ... ... ... .......... 395
1.42.5 Solving asriccatiode. . . . . . . . .. ... ... ... ..... 4001

Internal problem ID [12153]
Internal file name [OUTPUT/10805_Thursday_September_21_2023_05_46_10_AM_44523640/index. tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 56.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactByIn-

spection", "homogeneousTypeD2", "first_ order__ode__lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _rational, _Bernoulli]

y(—y+z)— 2’y =0

1.42.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
u(z) z(—u(z) z + z) — 22 (W' (x)  + u(x)) = 0

In canonical form the ODE is
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Where f(z) = —1 and g(u) = u®. Integrating both sides gives

1

—Qdu = —ldz

U T

1

/—2du=/—1dx
U
1
——=—In(z)+c
The solution is
1

—W-FID(.’L')—CQ:O

Replacing u(z) in the above solution by £ results in the solution for y in implicit form

T
—— +In(z)—co=0
” (z) —co

x
—§+ln(m)—02=0

Summary
The solution(s) found are the following

—§—|—ln(w)—02=0 (1)
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Figure 74: Slope field plot

Verification of solutions

—§+ln(m)—02=0

Verified OK.

1.42.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yly—=z

y:_( 2)
X

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny - &) — W2€y —we§ —wyn =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

387



Table 46: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
%
n(z,y) =~ (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x
S is found from
1
S= [ —dy
n
1
Which results in
g—_%
Y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

y(y — )
w(z,y) = T2
Evaluating all the partial derivatives gives
R, =1
R,=0
1
Se=——
Yy
x
Sy = "

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS 1

D 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR~ R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) =

—JD(R)+01

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

Which simplifies to

Which gives

y:l

T
=—In(z)+c
" (z) +a

=—In(z)+ ¢
n(z)—c

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

.. ) . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ _yy—=) ds _ 1
r 2 dR~ R

NNV YV YR PV N e R ettt AV A I BEAVANENONCES
AR R R R EEEE IR E R s w7 A AN N e e
\zzéiéxgt ti\\‘44»» »»»»/ﬂ//;;i:\\\x\\‘»
e e v > — T _T_7 A e e S
~ S NN 3‘ ; 21 3‘\4/«,)»»»» »»»»/ﬂ//’/?‘x A e
~~aaNN Ny Y NPT > R ettt O A I
- | —wrrrr 77 AL N N e e e
A O S A W \J NN SN asae y > > v v v 7 7 AT f x ARV VS & S C TN
P \3_24 ; VNN N N N /’/’/’/’/’/’/"/’/_%X NN e e e e e
o e\ | I A R ettt A B
e\ [ A R ettt N I BN C S
Gmam N R Y A B} EGneata it S IR AE
===\ Y —wrw o rr 7 A7 PN N
===\ A I o rrm A N N e
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Summary
The solution(s) found are the following

x
Y In(z) — (1)
ANVYNV VL PV VNSNS~
MARAREERE, bV NN ———
MARRERRE, b AN~
2ANNNNVV VYL bV AN~
NANNNV YL L AN~
SANNNNN Y f N\~

——====\\ | EERRRARRR
=2 ===\ | ERRERRRRR
———==~\\ | | EERRRRRN
——=>\\\ || LV VYV
=3 ==~V AR RRRRE
-3 -2 —1 1 2 3

Figure 75: Slope field plot

Verification of solutions

_ x
Y (x) —a
Verified OK.
1.42.3 Solving as bernoulli ode
In canonical form, the ODE is
y =F(z,y)
_ _yly—=)
=—=0
This is a Bernoulli ODE.
/ 1 1 2
Y =-y— 3y (1)
x x
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The standard Bernoulli ODE has the form
y' = fo(z)y + fi(z)y" (2)
The first step is to divide the above equation by y™ which gives

Y _ fh@y "+ i) 3)

<

The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

folw) = -
1
fi(z) = )
n=2

= 4
YT w2 @
Let
w = yl—n
1
== 5
” (5)
Taking derivative of equation (5) w.r.t  gives
1
wl — _;y/ (6)
Substituting equations (5) and (6) into equation (4) gives
(z) = 2@ L
w'(z) = = 2
p w1
=——+4+ = 7
w=-—+ (7)

The above now is a linear ODE in w(z) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(r)w(z) = q(z)

Where here
1
p(z) = -
1
q(z) = o
Hence the ode is
iy @ _ 1
w'(z) + pra
The integrating factor u is
L= ef %dx
=z

The ode becomes

Integrating gives

wz =In(z) + ¢

Dividing both sides by the integrating factor y = x results in

1
x x
which simplifies to
1
w(z) = 2@ o (T 2

Replacing w in the above by i using equation (5) gives the final solution.

1 In(z)+c

Y T
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. T
v= In(z)+c;
Summary
The solution(s) found are the following
T

y In(z) + ¢
JINNVVVLV L bhV A NN~——
NYNVV VL bV N NS ———
NAYNNVV YL bV NSN————
A NNNNV VL bV AN~
NANNNN VYL AT
- AN Vi VAN \ \ \ \‘\_x)/////
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—3—*\\\\\\\¢l HERRRRRR
-3 -2 -1 1 23

Verification of solutions

Verified OK.

Figure 76: Slope field plot
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1.42.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—2?) dy = (~y(~y +z)) dz
(y(—y +2))dz+(-2*)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = y(~y + )
N(z,y) = —z*
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

OM _ ON

oy Oz
Using result found above gives

T CR)

=x—2y
And
ON 0 9
& ")
= -2

Since %—A; # %%’, then the ODE is not exact. By inspection # is an integrating factor.
Therefore by multiplying M = y(—y + z) and N = —z? by this integrating factor the
ode becomes exact. The new M, N are

M = -y+z
Ty
T
N = —E
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

8_;1/ =N

396



But since % = % then for the above to be valid, we require that
Y yox

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(_yw;m> dx+(—§) dy =0 (2A)

Comparing (1A) and (2A) shows that

-yt+z
M(z,y) = —2
Ty
T

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

oy Oy\ wzy
1
Ty
And
ON _0( =z
oxr Oz \ y?
1
T2
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—x—M (1)
¢ _

=N @)

Integrating (1) w.r.t. = gives

@dxz/de
or

%dx=/_y+xdx
or Ty

¢=—1n<x>+§+f<y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99 T
s 4
L) @
But equation (2) says that g—dy’ = —.%- Therefore equation (4) becomes
x x ,
_E:_E—i_f(y) (5)
Solving equation (5) for f'(y) gives
f'y) =0
Therefore
fly)=a

Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
x
¢=—In(z)+ ” +c

398



But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

x
a=—-In(z)+ -
1 @)+

The solution becomes

Summary
The solution(s) found are the following

T 1)

YT () + 1
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Figure 77: Slope field plot

Verification of solutions

B x
v= In(x)+ 1

Verified OK.
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1.42.5 Solving as riccati ode

In canonical form the ODE is

y =F(z,y)
y(y — =)
)
This is a Riccati ODE. Comparing the ODE to solve

2
y=-5+2
T T

With Riccati ODE standard form

Y = fo(z) + fi(z)y + foz)y®

Shows that fo(z) =0, fi(z) = L and fo(z) = —2. Let

_ul

v= fQU
- (1)

2

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou"(x) — (fy + fufo) W' (z) + f3 fou(z) = 0 (2)
But
, 2
f2 = E
fif =
f2fo=0

Substituting the above terms back in equation (2) gives

u'(z)  U(z)

)

2 3

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) =c +1n(z)co
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The above shows that

() = 2
() = &
Using the above in (1) gives the solution
. CoX
y= c1+In(z)c

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
1

B z
v= c3 + In(z)
Summary
The solution(s) found are the following
. T
v= c3 + In(z)
ANV V LY LV VN N~——
NVYAVVV L Ly N N~———
NNYNNVVY VYL L VN NN~
2ANNNN VYL LV \AN—=————
NSNNNAN NN LY L \~——
y(¥) O ST

e \
)/////)—s\
e \

\, \ NN~
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—————

Figure 78: Slope field plot
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Verification of solutions

X

v= cs+In(x)

Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve((x—y(x))*y(x)— x"2%diff (y(x),x)=0,y(x), singsol=all) J

v Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 19

LDSolve[(x—y[x])*y[x]— x"2*y' [x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(@) = log(z) + ¢

y(z) =0
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1.43 problem Problem 57

1.43.1 Solving as differentialTypeode . . . . .. ... ... ... ... 403]
1.43.2 Solving as homogeneousTypeMapleCode . . . . . . . .. .. .. 405
1.43.3 Solving as first order ode lie symmetry calculated ode . . . . . . 408]
1.43.4 Solvingasexactode . . .. ... ... ... . ... ..... AT3]

Internal problem ID [12154]
Internal file name [OUTPUT/10806_Thursday_September_21_2023_05_46_11_AM_52519551/index. tex|

Book: Differential equations and the calculus of variations by L. EISGOLTS. MIR PUB-
LISHERS, MOSCOW, Third printing 1977.

Section: Chapter 1, First-Order Differential Equations. Problems page 88

Problem number: Problem 57.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeMapleC", "first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class C°], _rational, [_Abel, “2nd type’,
class A~]]

y_Tty=3_,
l—-z+y

1.43.1 Solving as differentialType ode
Writing the ode as

,_m+y—3
Y o1 21y (1)
Which becomes
(—y—1dy=(-z)dy+ (-z—y+3)dz (2)

But the RHS is complete differential because

—x)dy+ (—x—y+3)dr=d —la:2—a:y+3a:
(~2) X
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Hence (2) becomes

(

—y—1)dy = d<—%x2 - xy+3:c)

Integrating both sides gives gives these solutions
y=z—14+1222—-2¢; -8z +1+¢
y=2—1-—1222—-2¢; -8z +1+¢

Summary

The solution(s) found are the following

y=z—1+222—2¢; —8z+1+¢c,
y=2—-1—1/222-2¢c; -8+ 1+¢;

[u—

Verification of solutions

y:

Verified OK.
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Figure 79: Slope field plot

T—14 222 —2c —8z+1+¢

y=2—-1—1/222-2¢c; -8+ 1+¢;

Verified OK.
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1.43.2 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + z, then the above is transformed to new ode in Y (X)

d X Y (X —
4 yix) = + 2o+ Y (X) +yo—3
dX 1-X—z0+Y (X)+w
Solving for possible values of xg and yo which makes the above ode a homogeneous ode
results in
Tog = 2
Yo=1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d X+Y(X)
—Y(X)=—F
dX (X) -X+Y(X)
In canonical form, the ODE is
Y =F(X,Y)

X+Y
== - 1
-X+Y (1)

An ode of the form Y’ = %g}};)) is called homogeneous if the functions M(X,Y) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = —X —Y and N = X — Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution v = ¥

X
or Y =uX. Hence
dx  dXx
Applying the transformation Y = uX to the above ODE in (1) gives
du u—+1
ax Xt
du s — u(X)
dx X
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Or

u(X)+1
d wWX)—1 u(X)
d—Xu(X) — e 0
Or p p
(500 ) Xu(x) = (000 ) X+ u(x)* = 2u(X) =1 =0
Or

X(u(X)-1) (diXu(X)> +u(X) —2u(X)—1=0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u' = F(X,u)

= f(X)g(w)

u? —2u—1
X (u—1)

u?—2u—1

Where f(X) = —+ and g(u) = “=2%=1. Integrating both sides gives

1 1
—“2;%'1_1 du = —Y dXxX
1 1
| 2 _2u—1
n (u u )=—ln(X)—|-C2

2

Raising both side to exponential gives

Vuz—2u—1=e" In(X)+c2

Which simplifies to

Which simplifies to

The solution is
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Now u in the above solution is replaced back by Y using u = % which results in the

solution

Y (X)) 2¥(X) | e
X2 X X

Using the solution for Y'(X)

Y(X)?—2Y (X)X — X2 cge®
X2 X

And replacing back terms in the above solution using

Y=y+uw
X=£13+CL'0
Or
Y=y+1
X=z+2

Then the solution in y becomes

\/(y—1)2—2(y—1)(96—2)—(96—2)2 e

(w—2)2 T —2

Summary
The solution(s) found are the following

\/(y—1)2—2(y—1)(w—2)—(x—2)2: e
(z —2)° z —2
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Figure 80: Slope field plot

Verification of solutions

\/(y—1)2—2(y—1)(96—2)—(x—2)2: e
(z —2)° z—2

Verified OK.

1.43.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as
,_x+y—3
l—-z+y
y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fz) - w2€y - wx€ — Wy = 0 (A)
The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
§ = zas +yas + a; (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(@+y—3)(hs—as) (z+y—3) as

by +
i l-z+y (1-z+y)
1 x+y—3> (5E)
- xras + yas + a
<1—:c+y (1—x—|—y)2 (waz +yas 1)
1 x+y—3)
— — xby +ybs +b1) =0
(1—x—|—y (1—x+y)2 ( 2 T Y03 1)

Putting the above in normal form gives

z2ay — x2a3 + 3x%by — 22bs — 2zyas — 2zxyas — 2xyby + 2xybs — y2as — 3y’as + y2by + y2bs — 2zas + 6z
(-14+z—

=0

Setting the numerator to zero gives

r2ay — x%a3 + 3x2by — 2°b3 — 2xyay — 2zyas — 2xyby + 2xybs — ylay (6E)
— 3y2a3 + y2b2 + y2b3 — 2zag + 6zas + 2xb; — 6xby + 4xbs — 2ya,
+ 2ya2 + 8ya3 + 2yb2 — 6yb3 + 2(11 + 3&2 — 9&3 — 4b1 =+ b2 — 3b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

agv% — 2a9U1V9 — azvg — a3v% — 2a3v1v9 — 3a3v% + 3621)% — 2byv1v9 + bgvg (TE)
— b3’U% + 2b3v1v9 + b3’U; — 2a1v9 — 2a9v1 + 20202 + 6a3v; + 8azvy + 2by1vq
- 6b2’01 + 2b2’02 + 4b3’l}1 - 6()3’1)2 + 2a1 + 3&2 - 9(13 - 4b1 + b2 - 3b3 =0
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Collecting the above on the terms v; introduced, and these are
{’Ul, UZ}

Equation (7E) now becomes

(ag —as+ 3b2 — bg) ’U% + (—2&2 - 2a3 — 2b2 + 2b3) V1V (SE)
+ (—2(12 + 6a3 + 2b1 — 6b2 + 4b3) U1 + (—a2 - 3(13 + bz + b3) ’Ug
+ (—2&1 + 2a2 + 8a3 + 2b2 — 6b3) Vg + 2a1 + 3&2 - 9(13 - 4b1 + b2 - 3b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve
—2a9 — 2a3 — 2by + 2b3 =0
—ay —3a3+by+b3=0
as —az+ 3by — b3 =0
—2a1 + 2a5 + 8az + 2by — 6b3 = 0
—2ay + 6a3 + 2b; — 6by + 4b3 =0
2a1 + 3ay — 9a3 — 4b; + by — 3b3 =0

Solving the above equations for the unknowns gives

a1 = 3by — 2b3
ag = —2by + b3
as = by
by = —2by — b3
by = by
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x—-2
n=y—1
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(,y)§
:y—l—(LH)(m—2)

l—-z+y
2y —y -6 —2y+7
B —1+z—y
£E=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
&

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

= ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S is found from

S dy

I | =

dy

z24-2zy— y2 6x—2y+7
—14+z—y

/
-/

Which results in
In(—2%—2zy + 9> + 62+ 2y —7)
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

w(x,y) =

Evaluating all the partial derivatives gives

z+y—3
l-z+y

R, =1

R,=0

g - z+y—3
24+ (2y—6)z—y2—2y+7

g —-1l+z—y
Yoo+ u—6)z—y2—2y+7
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

R 0 (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
In(—2?+4+ (—2y+6)z+y*+2y—7)
2

= Cl
Which simplifies to

In(—z?+4+ (—2y+6)z+y*+2y—7)
2
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

:cl

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ xz+y-3 as _
— z+y=3 =0

i l1—z+y dR
SCEREN— Ao g p Y
N YRR
NCRE S e e B A A A I 4
A A e e —a—l—e_v _7 \
A VRV NG 2 N I SN 27
I R D S N S = TR
DR Y N ROV R=xzx
R I i e 2

h iy S — —_ =7 =7 2 T

RN SRS LI 1 3 S S _ In(—z