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Internal problem ID [2544]
Internal file name [OUTPUT/2036_Sunday_June_05_2022_02_45_45_AM_37514662/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 2yx = 0

1.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= 2xy
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Where f(x) = 2x and g(y) = y. Integrating both sides gives

1
y
dy = 2x dx∫ 1

y
dy =

∫
2x dx

ln (y) = x2 + c1

y = ex2+c1

= c1ex
2

Summary
The solution(s) found are the following

(1)y = c1ex
2

Figure 1: Slope field plot

Verification of solutions

y = c1ex
2

Verified OK.
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1.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2x
q(x) = 0

Hence the ode is

y′ − 2yx = 0

The integrating factor µ is

µ = e
∫
−2xdx

= e−x2

The ode becomes

d
dxµy = 0

d
dx

(
y e−x2

)
= 0

Integrating gives

y e−x2 = c1

Dividing both sides by the integrating factor µ = e−x2 results in

y = c1ex
2

Summary
The solution(s) found are the following

(1)y = c1ex
2
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Figure 2: Slope field plot

Verification of solutions

y = c1ex
2

Verified OK.

1.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− 2u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(2x2 − 1)
x
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Where f(x) = 2x2−1
x

and g(u) = u. Integrating both sides gives

1
u
du = 2x2 − 1

x
dx∫ 1

u
du =

∫ 2x2 − 1
x

dx

ln (u) = x2 − ln (x) + c2

u = ex2−ln(x)+c2

= c2ex
2−ln(x)

Which simplifies to

u(x) = c2ex
2

x

Therefore the solution y is

y = xu

= c2ex
2

Summary
The solution(s) found are the following

(1)y = c2ex
2
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Figure 3: Slope field plot

Verification of solutions

y = c2ex
2

Verified OK.

1.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex2 dy

Which results in

S = y e−x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −2yx e−x2

Sy = e−x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y e−x2 = c1

Which simplifies to

y e−x2 = c1

Which gives

y = c1ex
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2xy dS
dR

= 0

R = x

S = y e−x2

Summary
The solution(s) found are the following

(1)y = c1ex
2
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Figure 4: Slope field plot

Verification of solutions

y = c1ex
2

Verified OK.

1.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
2y

)
dy = (x) dx

(−x) dx+
(

1
2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And

∂N

∂x
= ∂

∂x

(
1
2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2y . Therefore equation (4) becomes

(5)1
2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
2y

)
dy

f(y) = ln (y)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + ln (y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ln (y)
2

The solution becomes
y = ex2+2c1

Summary
The solution(s) found are the following

(1)y = ex2+2c1
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Figure 5: Slope field plot

Verification of solutions

y = ex2+2c1

Verified OK.

1.1.6 Maple step by step solution

Let’s solve
y′ − 2yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 2x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
2xdx+ c1

• Evaluate integral
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ln (y) = x2 + c1

• Solve for y
y = ex2+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(y(x),x)=2*x*y(x),y(x), singsol=all)� �

y(x) = ex2
c1

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 18� �
DSolve[y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x2

y(x) → 0
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Internal problem ID [2545]
Internal file name [OUTPUT/2037_Sunday_June_05_2022_02_45_47_AM_26852723/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − y2

x2 + 1 = 0

1.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2

x2 + 1
Where f(x) = 1

x2+1 and g(y) = y2. Integrating both sides gives

1
y2

dy = 1
x2 + 1 dx∫ 1

y2
dy =

∫ 1
x2 + 1 dx
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−1
y
= arctan (x) + c1

Which results in

y = − 1
arctan (x) + c1

Summary
The solution(s) found are the following

(1)y = − 1
arctan (x) + c1

Figure 6: Slope field plot

Verification of solutions

y = − 1
arctan (x) + c1

Verified OK.
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1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2

x2 + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2 + 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2 + 1dx

Which results in

S = arctan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2

x2 + 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan (x) = −1
y
+ c1

Which simplifies to

arctan (x) = −1
y
+ c1

Which gives

y = − 1
arctan (x)− c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2

x2+1
dS
dR

= 1
R2

R = y

S = arctan (x)

Summary
The solution(s) found are the following

(1)y = − 1
arctan (x)− c1
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Figure 7: Slope field plot

Verification of solutions

y = − 1
arctan (x)− c1

Verified OK.

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y2

)
dy =

(
1

x2 + 1

)
dx(

− 1
x2 + 1

)
dx+

(
1
y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2 + 1

N(x, y) = 1
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 + 1 dx

(3)φ = − arctan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2
. Therefore equation (4) becomes

(5)1
y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2

)
dy

f(y) = −1
y
+ c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arctan (x)− 1
y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arctan (x)− 1
y

Summary
The solution(s) found are the following

(1)− arctan (x)− 1
y
= c1

Figure 8: Slope field plot

Verification of solutions

− arctan (x)− 1
y
= c1

Verified OK.
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1.2.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2

x2 + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

x2 + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = 0 and f2(x) = 1
x2+1 . Let

y = −u′

f2u

= −u′

u
x2+1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2x

(x2 + 1)2

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

u′′(x)
x2 + 1 + 2xu′(x)

(x2 + 1)2
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + c2 arctan (x)
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The above shows that
u′(x) = c2

x2 + 1

Using the above in (1) gives the solution

y = − c2
c1 + c2 arctan (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 1
c3 + arctan (x)

Summary
The solution(s) found are the following

(1)y = − 1
c3 + arctan (x)

Figure 9: Slope field plot
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Verification of solutions

y = − 1
c3 + arctan (x)

Verified OK.

1.2.5 Maple step by step solution

Let’s solve

y′ − y2

x2+1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2
= 1

x2+1

• Integrate both sides with respect to x∫
y′

y2
dx =

∫ 1
x2+1dx+ c1

• Evaluate integral
− 1

y
= arctan (x) + c1

• Solve for y
y = − 1

arctan(x)+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=y(x)^2/(x^2+1),y(x), singsol=all)� �

y(x) = 1
− arctan (x) + c1

3 Solution by Mathematica
Time used: 0.147 (sec). Leaf size: 19� �
DSolve[y'[x]==y[x]^2/(x^2+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
arctan(x) + c1

y(x) → 0
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1.3 problem 3
1.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 32
1.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 34
1.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 38
1.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 42

Internal problem ID [2546]
Internal file name [OUTPUT/2038_Sunday_June_05_2022_02_45_49_AM_68088448/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

ey+xy′ = 1

1.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= e−ye−x

Where f(x) = e−x and g(y) = e−y. Integrating both sides gives

1
e−y

dy = e−x dx∫ 1
e−y

dy =
∫

e−x dx

ey = −e−x + c1
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Which results in
y = ln (−1 + c1ex)− x

Summary
The solution(s) found are the following

(1)y = ln (−1 + c1ex)− x

Figure 10: Slope field plot

Verification of solutions

y = ln (−1 + c1ex)− x

Verified OK.
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1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = e−y−x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = ex

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

exdx

Which results in

S = −e−x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = e−y−x

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = e−x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ey (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−e−x = ey + c1

Which simplifies to

−e−x = ey + c1

Which gives

y = ln (−c1ex − 1)− x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= e−y−x dS
dR

= eR

R = y

S = −e−x

Summary
The solution(s) found are the following

(1)y = ln (−c1ex − 1)− x
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Figure 11: Slope field plot

Verification of solutions

y = ln (−c1ex − 1)− x

Verified OK.

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(ey) dy =
(
e−x
)
dx(

−e−x
)
dx+(ey) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −e−x

N(x, y) = ey

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−e−x

)
= 0

And
∂N

∂x
= ∂

∂x
(ey)

= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−x dx

(3)φ = e−x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= ey. Therefore equation (4) becomes

(5)ey = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = ey

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(ey) dy

f(y) = ey + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = e−x + ey + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = e−x + ey

The solution becomes
y = ln (−1 + c1ex)− x

Summary
The solution(s) found are the following

(1)y = ln (−1 + c1ex)− x

Figure 12: Slope field plot

Verification of solutions

y = ln (−1 + c1ex)− x

Verified OK.
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1.3.4 Maple step by step solution

Let’s solve
ey+xy′ = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ey = 1

ex

• Integrate both sides with respect to x∫
y′eydx =

∫ 1
exdx+ c1

• Evaluate integral
ey = − 1

ex + c1

• Solve for y
y = ln (−1 + c1ex)− x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(exp(x+y(x))*diff(y(x),x)-1=0,y(x), singsol=all)� �

y(x) = ln (exc1 − 1)− x
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3 Solution by Mathematica
Time used: 0.089 (sec). Leaf size: 16� �
DSolve[Exp[x+y[x]]*y'[x]-1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log
(
−e−x + c1

)
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Internal problem ID [2547]
Internal file name [OUTPUT/2039_Sunday_June_05_2022_02_45_52_AM_89899606/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − y

ln (x)x = 0

1.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

ln (x)x
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Where f(x) = 1
ln(x)x and g(y) = y. Integrating both sides gives

1
y
dy = 1

ln (x)x dx∫ 1
y
dy =

∫ 1
ln (x)x dx

ln (y) = ln (ln (x)) + c1

y = eln(ln(x))+c1

= c1 ln (x)

Summary
The solution(s) found are the following

(1)y = c1 ln (x)

Figure 13: Slope field plot

Verification of solutions

y = c1 ln (x)

Verified OK.
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1.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
ln (x)x

q(x) = 0

Hence the ode is

y′ − y

ln (x)x = 0

The integrating factor µ is

µ = e
∫
− 1

ln(x)xdx

= 1
ln (x)

The ode becomes

d
dxµy = 0

d
dx

(
y

ln (x)

)
= 0

Integrating gives
y

ln (x) = c1

Dividing both sides by the integrating factor µ = 1
ln(x) results in

y = c1 ln (x)

Summary
The solution(s) found are the following

(1)y = c1 ln (x)

46



Figure 14: Slope field plot

Verification of solutions

y = c1 ln (x)

Verified OK.

1.4.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)
ln (x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(ln (x)− 1)
ln (x)x
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Where f(x) = − ln(x)−1
ln(x)x and g(u) = u. Integrating both sides gives

1
u
du = − ln (x)− 1

ln (x)x dx∫ 1
u
du =

∫
− ln (x)− 1

ln (x)x dx

ln (u) = − ln (x) + ln (ln (x)) + c2

u = e− ln(x)+ln(ln(x))+c2

= c2e− ln(x)+ln(ln(x))

Which simplifies to

u(x) = c2 ln (x)
x

Therefore the solution y is

y = xu

= c2 ln (x)
Summary
The solution(s) found are the following

(1)y = c2 ln (x)

Figure 15: Slope field plot

48



Verification of solutions

y = c2 ln (x)

Verified OK.

1.4.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y

ln (x)x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ln (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ln (x)dy

Which results in

S = y

ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

ln (x)x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

ln (x)2 x

Sy =
1

ln (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

ln (x) = c1

Which simplifies to
y

ln (x) = c1

Which gives

y = c1 ln (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
ln(x)x

dS
dR

= 0

R = x

S = y

ln (x)

Summary
The solution(s) found are the following

(1)y = c1 ln (x)
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Figure 16: Slope field plot

Verification of solutions

y = c1 ln (x)

Verified OK.

1.4.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
1

ln (x)x

)
dx(

− 1
ln (x)x

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
ln (x)x

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
ln (x)x

)
= 0

54



And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
ln (x)x dx

(3)φ = − ln (ln (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (ln (x)) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (ln (x)) + ln (y)

The solution becomes
y = ec1 ln (x)

Summary
The solution(s) found are the following

(1)y = ec1 ln (x)

Figure 17: Slope field plot

Verification of solutions

y = ec1 ln (x)

Verified OK.
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1.4.6 Maple step by step solution

Let’s solve
y′ − y

ln(x)x = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

ln(x)x

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
ln(x)xdx+ c1

• Evaluate integral
ln (y) = ln (ln (x)) + c1

• Solve for y
y = ec1 ln (x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 8� �
dsolve(diff(y(x),x)=y(x)/(x*ln(x)),y(x), singsol=all)� �

y(x) = ln (x) c1
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3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 15� �
DSolve[y'[x]==y[x]/(x*Log[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 log(x)
y(x) → 0
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Internal problem ID [2548]
Internal file name [OUTPUT/2040_Sunday_June_05_2022_02_45_54_AM_15637451/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "ho-
mogeneousTypeD2", "homogeneousTypeMapleC", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_separable]

y − (x− 2) y′ = 0

1.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x− 2
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Where f(x) = 1
x−2 and g(y) = y. Integrating both sides gives

1
y
dy = 1

x− 2 dx∫ 1
y
dy =

∫ 1
x− 2 dx

ln (y) = ln (x− 2) + c1

y = eln(x−2)+c1

= c1(x− 2)

Summary
The solution(s) found are the following

(1)y = c1(x− 2)

Figure 18: Slope field plot

Verification of solutions

y = c1(x− 2)

Verified OK.

60



1.5.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x− 2

q(x) = 0

Hence the ode is

y′ − y

x− 2 = 0

The integrating factor µ is

µ = e
∫
− 1

x−2dx

= 1
x− 2

The ode becomes

d
dxµy = 0

d
dx

(
y

x− 2

)
= 0

Integrating gives
y

x− 2 = c1

Dividing both sides by the integrating factor µ = 1
x−2 results in

y = c1(x− 2)

Summary
The solution(s) found are the following

(1)y = c1(x− 2)
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Figure 19: Slope field plot

Verification of solutions

y = c1(x− 2)

Verified OK.

1.5.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x− (x− 2) (u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2u
x (x− 2)
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Where f(x) = 2
(x−2)x and g(u) = u. Integrating both sides gives

1
u
du = 2

(x− 2)x dx∫ 1
u
du =

∫ 2
(x− 2)x dx

ln (u) = ln (x− 2)− ln (x) + c2

u = eln(x−2)−ln(x)+c2

= c2eln(x−2)−ln(x)

Which simplifies to

u(x) = c2

(
1− 2

x

)

Therefore the solution y is

y = ux

= xc2

(
1− 2

x

)
Summary
The solution(s) found are the following

(1)y = xc2

(
1− 2

x

)
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Figure 20: Slope field plot

Verification of solutions

y = xc2

(
1− 2

x

)
Verified OK.

1.5.4 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)
d

dX
Y (X) = Y (X) + y0

X + x0 − 2
Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 2
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = Y (X)

X
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In canonical form, the ODE is

Y ′ = F (X,Y )

= Y

X
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u

du
dX = 0

Or
d

dX
u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). Integrating
both sides gives

u(X) =
∫

0 dX

= c2

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = Xc2

Using the solution for Y (X)

Y (X) = Xc2
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And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x+ 2

Then the solution in y becomes

y = c2(x− 2)

Summary
The solution(s) found are the following

(1)y = c2(x− 2)

Figure 21: Slope field plot

Verification of solutions

y = c2(x− 2)

Verified OK.
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1.5.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y

x− 2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = x− 2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x− 2dy

Which results in

S = y

x− 2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

x− 2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(x− 2)2

Sy =
1

x− 2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x− 2 = c1

Which simplifies to
y

x− 2 = c1

Which gives

y = c1(x− 2)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
x−2

dS
dR

= 0

R = x

S = y

x− 2

Summary
The solution(s) found are the following

(1)y = c1(x− 2)
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Figure 22: Slope field plot

Verification of solutions

y = c1(x− 2)

Verified OK.

1.5.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

71



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
1

x− 2

)
dx(

− 1
x− 2

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x− 2

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x− 2

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x− 2 dx

(3)φ = − ln (x− 2) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x− 2) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x− 2) + ln (y)

The solution becomes
y = ec1(x− 2)

Summary
The solution(s) found are the following

(1)y = ec1(x− 2)

Figure 23: Slope field plot

Verification of solutions

y = ec1(x− 2)

Verified OK.
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1.5.7 Maple step by step solution

Let’s solve
y − (x− 2) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

x−2

• Integrate both sides with respect to x∫
y′

y
dx =

∫ 1
x−2dx+ c1

• Evaluate integral
ln (y) = ln (x− 2) + c1

• Solve for y
y = ec1(x− 2)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(y(x)-(x-2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1(−2 + x)
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3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 16� �
DSolve[y[x]-(x-2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1(x− 2)
y(x) → 0
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Internal problem ID [2549]
Internal file name [OUTPUT/2041_Sunday_June_05_2022_02_45_55_AM_40885883/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − 2x(y − 1)
x2 + 3 = 0

1.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(2y − 2)
x2 + 3

Where f(x) = x
x2+3 and g(y) = 2y − 2. Integrating both sides gives

1
2y − 2 dy = x

x2 + 3 dx∫ 1
2y − 2 dy =

∫
x

x2 + 3 dx
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ln (y − 1)
2 = ln (x2 + 3)

2 + c1

Raising both side to exponential gives√
y − 1 = e

ln
(
x2+3

)
2 +c1

Which simplifies to √
y − 1 = c2

√
x2 + 3

Which simplifies to
y = c22

(
x2 + 3

)
e2c1 + 1

Summary
The solution(s) found are the following

(1)y = c22
(
x2 + 3

)
e2c1 + 1

Figure 24: Slope field plot

Verification of solutions

y = c22
(
x2 + 3

)
e2c1 + 1

Verified OK.
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1.6.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 2x
x2 + 3

q(x) = − 2x
x2 + 3

Hence the ode is

y′ − 2xy
x2 + 3 = − 2x

x2 + 3
The integrating factor µ is

µ = e
∫
− 2x

x2+3dx

= 1
x2 + 3

The ode becomes

d
dx(µy) = (µ)

(
− 2x
x2 + 3

)
d
dx

(
y

x2 + 3

)
=
(

1
x2 + 3

)(
− 2x
x2 + 3

)
d
(

y

x2 + 3

)
=
(
− 2x
(x2 + 3)2

)
dx

Integrating gives

y

x2 + 3 =
∫

− 2x
(x2 + 3)2

dx

y

x2 + 3 = 1
x2 + 3 + c1

Dividing both sides by the integrating factor µ = 1
x2+3 results in

y = 1 + c1
(
x2 + 3

)
Summary
The solution(s) found are the following

(1)y = 1 + c1
(
x2 + 3

)
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Figure 25: Slope field plot

Verification of solutions

y = 1 + c1
(
x2 + 3

)
Verified OK.

1.6.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2x(y − 1)
x2 + 3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

80



Table 16: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x2 + 3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

81



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2 + 3dy

Which results in

S = y

x2 + 3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x(y − 1)
x2 + 3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2yx
(x2 + 3)2

Sy =
1

x2 + 3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 2x

(x2 + 3)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2R

(R2 + 3)2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
R2 + 3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x2 + 3 = 1
x2 + 3 + c1

Which simplifies to
y

x2 + 3 = 1
x2 + 3 + c1

Which gives

y = c1x
2 + 3c1 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x(y−1)
x2+3

dS
dR

= − 2R
(R2+3)2

R = x

S = y

x2 + 3

Summary
The solution(s) found are the following

(1)y = c1x
2 + 3c1 + 1
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Figure 26: Slope field plot

Verification of solutions

y = c1x
2 + 3c1 + 1

Verified OK.

1.6.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

2y − 2

)
dy =

(
x

x2 + 3

)
dx(

− x

x2 + 3

)
dx+

(
1

2y − 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 + 3
N(x, y) = 1

2y − 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x2 + 3

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

2y − 2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 + 3 dx

(3)φ = − ln (x2 + 3)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
2y−2 . Therefore equation (4) becomes

(5)1
2y − 2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
2y − 2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
2y − 2

)
dy

f(y) = ln (y − 1)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + 3)
2 + ln (y − 1)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + 3)
2 + ln (y − 1)

2

The solution becomes
y = e2c1x2 + 3 e2c1 + 1

Summary
The solution(s) found are the following

(1)y = e2c1x2 + 3 e2c1 + 1
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Figure 27: Slope field plot

Verification of solutions

y = e2c1x2 + 3 e2c1 + 1

Verified OK.

1.6.5 Maple step by step solution

Let’s solve
y′ − 2x(y−1)

x2+3 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y−1 = 2x
x2+3

• Integrate both sides with respect to x∫
y′

y−1dx =
∫ 2x

x2+3dx+ c1

• Evaluate integral
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ln (y − 1) = ln (x2 + 3) + c1

• Solve for y
y = ec1x2 + 3 ec1 + 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)=(2*x*(y(x)-1))/(x^2+3),y(x), singsol=all)� �

y(x) = c1x
2 + 3c1 + 1

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 20� �
DSolve[y'[x]==(2*x*(y[x]-1))/(x^2+3),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1 + c1
(
x2 + 3

)
y(x) → 1
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1.7 problem 7
1.7.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 90
1.7.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 92
1.7.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 94
1.7.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 98
1.7.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 102

Internal problem ID [2550]
Internal file name [OUTPUT/2042_Sunday_June_05_2022_02_45_57_AM_62513362/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y − xy′ + 2y′x2 = 3

1.7.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y + 3
x (2x− 1)

Where f(x) = 1
x(2x−1) and g(y) = −y + 3. Integrating both sides gives

1
−y + 3 dy = 1

x (2x− 1) dx∫ 1
−y + 3 dy =

∫ 1
x (2x− 1) dx

− ln (y − 3) = ln (2x− 1)− ln (x) + c1
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Raising both side to exponential gives

1
y − 3 = eln(2x−1)−ln(x)+c1

Which simplifies to

1
y − 3 = c2eln(2x−1)−ln(x)

Which simplifies to

y =
3c2
(
2 ec1 − ec1

x

)
+ 1

c2
(
2 ec1 − ec1

x

)
Summary
The solution(s) found are the following

(1)y =
3c2
(
2 ec1 − ec1

x

)
+ 1

c2
(
2 ec1 − ec1

x

)

Figure 28: Slope field plot
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Verification of solutions

y =
3c2
(
2 ec1 − ec1

x

)
+ 1

c2
(
2 ec1 − ec1

x

)
Verified OK.

1.7.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x (2x− 1)

q(x) = 3
x (2x− 1)

Hence the ode is

y′ + y

x (2x− 1) = 3
x (2x− 1)

The integrating factor µ is

µ = e
∫ 1

x(2x−1)dx

= eln(2x−1)−ln(x)

Which simplifies to

µ = 2x− 1
x

The ode becomes
d
dx(µy) = (µ)

(
3

x (2x− 1)

)
d
dx

(
(2x− 1) y

x

)
=
(
2x− 1

x

)(
3

x (2x− 1)

)
d
(
(2x− 1) y

x

)
=
(

3
x2

)
dx

Integrating gives
(2x− 1) y

x
=
∫ 3

x2 dx

(2x− 1) y
x

= −3
x
+ c1
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Dividing both sides by the integrating factor µ = 2x−1
x

results in

y = − 3
2x− 1 + c1x

2x− 1

which simplifies to

y = c1x− 3
2x− 1

Summary
The solution(s) found are the following

(1)y = c1x− 3
2x− 1

Figure 29: Slope field plot

Verification of solutions

y = c1x− 3
2x− 1

Verified OK.
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1.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y − 3
x (2x− 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 19: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e− ln(2x−1)+ln(x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(2x−1)+ln(x)dy

Which results in

S = (2x− 1) y
x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y − 3
x (2x− 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

x2

Sy =
2x− 1

x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 3
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(2x− 1) y
x

= −3
x
+ c1

Which simplifies to

(2x− 1) y
x

= −3
x
+ c1

Which gives

y = c1x− 3
2x− 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y−3
x(2x−1)

dS
dR

= 3
R2

R = x

S = (2x− 1) y
x

Summary
The solution(s) found are the following

(1)y = c1x− 3
2x− 1
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Figure 30: Slope field plot

Verification of solutions

y = c1x− 3
2x− 1

Verified OK.

1.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−y + 3

)
dy =

(
1

x (2x− 1)

)
dx(

− 1
x (2x− 1)

)
dx+

(
1

−y + 3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x (2x− 1)

N(x, y) = 1
−y + 3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x (2x− 1)

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

−y + 3

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x (2x− 1) dx

(3)φ = − ln (2x− 1) + ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
−y+3 . Therefore equation (4) becomes

(5)1
−y + 3 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y − 3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
y − 3

)
dy

f(y) = − ln (y − 3) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (2x− 1) + ln (x)− ln (y − 3) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (2x− 1) + ln (x)− ln (y − 3)

The solution becomes

y = (6 ec1x− 3 ec1 + x) e−c1

2x− 1

Summary
The solution(s) found are the following

(1)y = (6 ec1x− 3 ec1 + x) e−c1

2x− 1

Figure 31: Slope field plot
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Verification of solutions

y = (6 ec1x− 3 ec1 + x) e−c1

2x− 1

Verified OK.

1.7.5 Maple step by step solution

Let’s solve
y − xy′ + 2y′x2 = 3

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y+3 = 1
2x2−x

• Integrate both sides with respect to x∫
y′

−y+3dx =
∫ 1

2x2−x
dx+ c1

• Evaluate integral
− ln (−y + 3) = ln (2x− 1)− ln (x) + c1

• Solve for y
y = 6 ec1x−3 ec1−x

ec1 (2x−1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(y(x)-x*diff(y(x),x)=3-2*x^2*diff(y(x),x),y(x), singsol=all)� �

y(x) = c1x− 3
2x− 1
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3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 24� �
DSolve[y[x]-x*y'[x]==3-2*x^2*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3 + c1x

1− 2x
y(x) → 3
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1.8 problem 8
1.8.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 104
1.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 106
1.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 110

Internal problem ID [2551]
Internal file name [OUTPUT/2043_Sunday_June_05_2022_02_46_00_AM_71161820/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − cos (−y + x)
sin (x) sin (y) = −1

1.8.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= cos (x) cot (y)
sin (x)

Where f(x) = cos(x)
sin(x) and g(y) = cot (y). Integrating both sides gives

1
cot (y) dy = cos (x)

sin (x) dx∫ 1
cot (y) dy =

∫ cos (x)
sin (x) dx

− ln (cos (y)) = ln (sin (x)) + c1
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Raising both side to exponential gives

1
cos (y) = eln(sin(x))+c1

Which simplifies to

sec (y) = c2 sin (x)

Summary
The solution(s) found are the following

(1)y = arcsec (c2ec1 sin (x))

Figure 32: Slope field plot

Verification of solutions

y = arcsec (c2ec1 sin (x))

Verified OK.
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1.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −sin (x) sin (y)− cos (−y + x)
sin (x) sin (y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 22: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = sin (x)
cos (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

sin(x)
cos(x)

dx

Which results in

S = ln (sin (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −sin (x) sin (y)− cos (−y + x)
sin (x) sin (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = cot (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x) sin (y)

− sin (x) sin (y) + cos (−y + x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (sin (x)) = − ln (cos (y)) + c1

Which simplifies to

ln (sin (x)) = − ln (cos (y)) + c1

Which gives

y = arccos
(

ec1
sin (x)

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − sin(x) sin(y)−cos(−y+x)
sin(x) sin(y)

dS
dR

= tan (R)

R = y

S = ln (sin (x))

Summary
The solution(s) found are the following

(1)y = arccos
(

ec1
sin (x)

)
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Figure 33: Slope field plot

Verification of solutions

y = arccos
(

ec1
sin (x)

)
Verified OK.

1.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
sin (y)
cos (y)

)
dy =

(
cos (x)
sin (x)

)
dx(

−cos (x)
sin (x)

)
dx+

(
sin (y)
cos (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −cos (x)
sin (x)

N(x, y) = sin (y)
cos (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−cos (x)
sin (x)

)
= 0
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And

∂N

∂x
= ∂

∂x

(
sin (y)
cos (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−cos (x)
sin (x) dx

(3)φ = − ln (sin (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= sin(y)
cos(y) . Therefore equation (4) becomes

(5)sin (y)
cos (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = sin (y)
cos (y)

= tan (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(tan (y)) dy

f(y) = − ln (cos (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (sin (x))− ln (cos (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sin (x))− ln (cos (y))

Summary
The solution(s) found are the following

(1)− ln (sin (x))− ln (cos (y)) = c1

Figure 34: Slope field plot
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Verification of solutions

− ln (sin (x))− ln (cos (y)) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.14 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)=(cos(x-y(x)))/(sin(x)*sin(y(x)))-1,y(x), singsol=all)� �

y(x) = arccos
(
csc (x)
c1

)
3 Solution by Mathematica
Time used: 5.76 (sec). Leaf size: 47� �
DSolve[y'[x]==(Cos[x-y[x]])/(Sin[x]*Sin[y[x]])-1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arccos
(
−1
2c1 csc(x)

)
y(x) → arccos

(
−1
2c1 csc(x)

)
y(x) → −π

2
y(x) → π

2
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1.9 problem 9
1.9.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 115
1.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 117
1.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 121
1.9.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 125
1.9.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 128

Internal problem ID [2552]
Internal file name [OUTPUT/2044_Sunday_June_05_2022_02_46_04_AM_54947365/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − x(y2 − 1)
2 (x− 2) (x− 1) = 0

1.9.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
x
(

y2

2 − 1
2

)
(x− 2) (x− 1)

Where f(x) = x
(x−2)(x−1) and g(y) = y2

2 − 1
2 . Integrating both sides gives

1
y2

2 − 1
2

dy = x

(x− 2) (x− 1) dx

115



∫ 1
y2

2 − 1
2

dy =
∫

x

(x− 2) (x− 1) dx

−2 arctanh (y) = − ln (x− 1) + 2 ln (x− 2) + c1

Which results in

y = − tanh
(
− ln (x− 1)

2 + ln (x− 2) + c1
2

)
Summary
The solution(s) found are the following

(1)y = − tanh
(
− ln (x− 1)

2 + ln (x− 2) + c1
2

)

Figure 35: Slope field plot

Verification of solutions

y = − tanh
(
− ln (x− 1)

2 + ln (x− 2) + c1
2

)
Verified OK.
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1.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(y2 − 1)
2 (x− 2) (x− 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = (x− 2) (x− 1)
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

(x−2)(x−1)
x

dx

Which results in

S = − ln (x− 1) + 2 ln (x− 2)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(y2 − 1)
2 (x− 2) (x− 1)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x

(x− 2) (x− 1)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2

y2 − 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

R2 − 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 arctanh (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x− 1) + 2 ln (x− 2) = −2 arctanh (y) + c1

Which simplifies to

− ln (x− 1) + 2 ln (x− 2) = −2 arctanh (y) + c1

Which gives

y = tanh
(
ln (x− 1)

2 − ln (x− 2) + c1
2

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x
(
y2−1

)
2(x−2)(x−1)

dS
dR

= 2
R2−1

R = y

S = − ln (x− 1) + 2 ln (x− 2)

Summary
The solution(s) found are the following

(1)y = tanh
(
ln (x− 1)

2 − ln (x− 2) + c1
2

)
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Figure 36: Slope field plot

Verification of solutions

y = tanh
(
ln (x− 1)

2 − ln (x− 2) + c1
2

)
Verified OK.

1.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2

2 − 1
2

)
dy =

(
x

(x− 2) (x− 1)

)
dx

(
− x

(x− 2) (x− 1)

)
dx+

(
1

y2

2 − 1
2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

(x− 2) (x− 1)

N(x, y) = 1
y2

2 − 1
2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

(x− 2) (x− 1)

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

y2

2 − 1
2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

(x− 2) (x− 1) dx

(3)φ = ln (x− 1)− 2 ln (x− 2) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2
2 − 1

2
. Therefore equation (4) becomes

(5)1
y2

2 − 1
2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2
y2 − 1
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 2
y2 − 1

)
dy

f(y) = −2 arctanh (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x− 1)− 2 ln (x− 2)− 2 arctanh (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (x− 1)− 2 ln (x− 2)− 2 arctanh (y)

The solution becomes

y = − tanh
(
− ln (x− 1)

2 + ln (x− 2) + c1
2

)

Summary
The solution(s) found are the following

(1)y = − tanh
(
− ln (x− 1)

2 + ln (x− 2) + c1
2

)
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Figure 37: Slope field plot

Verification of solutions

y = − tanh
(
− ln (x− 1)

2 + ln (x− 2) + c1
2

)
Verified OK.

1.9.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x(y2 − 1)
2 (x− 2) (x− 1)

This is a Riccati ODE. Comparing the ODE to solve

y′ = x y2

2 (x− 2) (x− 1) −
x

2 (x− 2) (x− 1)

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = − x
2(x−2)(x−1) , f1(x) = 0 and f2(x) = x

2(x−2)(x−1) . Let

y = −u′

f2u

= −u′

xu
2(x−2)(x−1)

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

1
2 (x− 2) (x− 1) −

x

2 (x− 2)2 (x− 1)
− x

2 (x− 2) (x− 1)2

f1f2 = 0

f 2
2 f0 = − x3

8 (x− 2)3 (x− 1)3

Substituting the above terms back in equation (2) gives

xu′′(x)
2 (x− 2) (x− 1) −

(
1

2 (x− 2) (x− 1) −
x

2 (x− 2)2 (x− 1)
− x

2 (x− 2) (x− 1)2
)
u′(x)− x3u(x)

8 (x− 2)3 (x− 1)3
= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sinh
(
− ln (x− 1)

2 + ln (x− 2)
)
+ c2 cosh

(
− ln (x− 1)

2 + ln (x− 2)
)

The above shows that

u′(x) =
x
(
c1 cosh

(
− ln(x−1)

2 + ln (x− 2)
)
+ c2 sinh

(
− ln(x−1)

2 + ln (x− 2)
))

2 (x− 2) (x− 1)

Using the above in (1) gives the solution

y = −
c1 cosh

(
− ln(x−1)

2 + ln (x− 2)
)
+ c2 sinh

(
− ln(x−1)

2 + ln (x− 2)
)

c1 sinh
(
− ln(x−1)

2 + ln (x− 2)
)
+ c2 cosh

(
− ln(x−1)

2 + ln (x− 2)
)
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Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
−c3 cosh

(
− ln(x−1)

2 + ln (x− 2)
)
− sinh

(
− ln(x−1)

2 + ln (x− 2)
)

c3 sinh
(
− ln(x−1)

2 + ln (x− 2)
)
+ cosh

(
− ln(x−1)

2 + ln (x− 2)
)

Summary
The solution(s) found are the following

(1)y =
−c3 cosh

(
− ln(x−1)

2 + ln (x− 2)
)
− sinh

(
− ln(x−1)

2 + ln (x− 2)
)

c3 sinh
(
− ln(x−1)

2 + ln (x− 2)
)
+ cosh

(
− ln(x−1)

2 + ln (x− 2)
)

Figure 38: Slope field plot

Verification of solutions

y =
−c3 cosh

(
− ln(x−1)

2 + ln (x− 2)
)
− sinh

(
− ln(x−1)

2 + ln (x− 2)
)

c3 sinh
(
− ln(x−1)

2 + ln (x− 2)
)
+ cosh

(
− ln(x−1)

2 + ln (x− 2)
)

Verified OK.
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1.9.5 Maple step by step solution

Let’s solve

y′ − x
(
y2−1

)
2(x−2)(x−1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y2−1 = x
2(x−2)(x−1)

• Integrate both sides with respect to x∫
y′

y2−1dx =
∫

x
2(x−2)(x−1)dx+ c1

• Evaluate integral
−arctanh(y) = − ln(x−1)

2 + ln (x− 2) + c1

• Solve for y

y = − tanh
(
− ln(x−1)

2 + ln (x− 2) + c1
)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)=(x*( y(x)^2-1))/(2*(x-2)*(x-1)),y(x), singsol=all)� �

y(x) = − tanh
(
ln (−2 + x)− ln (x− 1)

2 + c1
2

)
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3 Solution by Mathematica
Time used: 0.942 (sec). Leaf size: 51� �
DSolve[y'[x]==(x*( y[x]^2-1))/(2*(x-2)*(x-1)),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − x+ e2c1(x− 2)2 − 1
−x+ e2c1(x− 2)2 + 1

y(x) → −1
y(x) → 1
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1.10 problem 10
1.10.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 130
1.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 132
1.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 137
1.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 142

Internal problem ID [2553]
Internal file name [OUTPUT/2045_Sunday_June_05_2022_02_46_06_AM_99634586/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − x2y − 32
−x2 + 16 = 32

1.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x2

x2 − 16

q(x) = 32x2 − 480
x2 − 16

Hence the ode is

y′ + x2y

x2 − 16 = 32x2 − 480
x2 − 16
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The integrating factor µ is

µ = e
∫

x2
x2−16dx

= ex−2 ln(x+4)+2 ln(x−4)

Which simplifies to

µ = (x− 4)2 ex

(x+ 4)2

The ode becomes

d
dx(µy) = (µ)

(
32x2 − 480
x2 − 16

)
d
dx

(
(x− 4)2 exy
(x+ 4)2

)
=
(
(x− 4)2 ex

(x+ 4)2

)(
32x2 − 480
x2 − 16

)

d
(
(x− 4)2 exy
(x+ 4)2

)
=
(
32 ex(x− 4) (x2 − 15)

(x+ 4)3
)

dx

Integrating gives

(x− 4)2 exy
(x+ 4)2

=
∫ 32 ex(x− 4) (x2 − 15)

(x+ 4)3
dx

(x− 4)2 exy
(x+ 4)2

= 32 ex + 128 ex

(x+ 4)2
− 1952 ex

x+ 4 − 1440 e−4 expIntegral1 (−x− 4) + c1

Dividing both sides by the integrating factor µ = (x−4)2ex
(x+4)2 results in

y =
(x+ 4)2 e−x

(
32 ex + 128 ex

(x+4)2 −
1952 ex
x+4 − 1440 e−4 expIntegral1 (−x− 4)

)
(x− 4)2

+ c1(x+ 4)2 e−x

(x− 4)2

which simplifies to

y = −1440 e−x−4(x+ 4)2 expIntegral1 (−x− 4) + c1(x+ 4)2 e−x + 32x2 − 1696x− 7168
(x− 4)2

Summary
The solution(s) found are the following
y

= −1440 e−x−4(x+ 4)2 expIntegral1 (−x− 4) + c1(x+ 4)2 e−x + 32x2 − 1696x− 7168
(x− 4)2

(1)
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Figure 39: Slope field plot

Verification of solutions

y= −1440 e−x−4(x+ 4)2 expIntegral1 (−x− 4) + c1(x+ 4)2 e−x + 32x2 − 1696x− 7168
(x− 4)2

Verified OK.

1.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2y − 32x2 + 480
x2 − 16

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 27: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x+2 ln(x+4)−2 ln(x−4) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

133



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x+2 ln(x+4)−2 ln(x−4)dy

Which results in

S = (x− 4)2 exy
(x+ 4)2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2y − 32x2 + 480
x2 − 16

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = (x− 4) exy x2

(x+ 4)3

Sy =
(x− 4)2 ex

(x+ 4)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 32 ex(x− 4) (x2 − 15)

(x+ 4)3
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 32 eR(R− 4) (R2 − 15)

(R + 4)3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 32 eR + 128 eR

(R + 4)2
− 1952 eR

R + 4 − 1440 e−4 expIntegral1 (−4−R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− 4)2 exy
(x+ 4)2

= 32 ex + 128 ex

(x+ 4)2
− 1952 ex

x+ 4 − 1440 e−4 expIntegral1 (−x− 4) + c1

Which simplifies to

(x− 4)2 exy
(x+ 4)2

= 32 ex + 128 ex

(x+ 4)2
− 1952 ex

x+ 4 − 1440 e−4 expIntegral1 (−x− 4) + c1

Which gives

y = (−1440 e−4 expIntegral1 (−x− 4)x2 + 32x2ex − 11520 e−4 expIntegral1 (−x− 4)x+ c1x
2 − 1696x ex − 23040 e−4 expIntegral1 (−x− 4) + 8c1x− 7168 ex + 16c1) e−x

x2 − 8x+ 16

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2y−32x2+480
x2−16

dS
dR

= 32 eR(R−4)
(
R2−15

)
(R+4)3

R = x

S = (x− 4)2 exy
(x+ 4)2
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Summary
The solution(s) found are the following

(1)y

= (−1440 e−4 expIntegral1 (−x− 4)x2 + 32x2ex − 11520 e−4 expIntegral1 (−x− 4)x+ c1x
2 − 1696x ex − 23040 e−4 expIntegral1 (−x− 4) + 8c1x− 7168 ex + 16c1) e−x

x2 − 8x+ 16

Figure 40: Slope field plot

Verification of solutions
y

= (−1440 e−4 expIntegral1 (−x− 4)x2 + 32x2ex − 11520 e−4 expIntegral1 (−x− 4)x+ c1x
2 − 1696x ex − 23040 e−4 expIntegral1 (−x− 4) + 8c1x− 7168 ex + 16c1) e−x

x2 − 8x+ 16

Verified OK.
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1.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
x2y − 32
−x2 + 16 + 32

)
dx(

− x2y − 32
−x2 + 16 − 32

)
dx+dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − x2y − 32
−x2 + 16 − 32

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x2y − 32
−x2 + 16 − 32

)
= x2

x2 − 16
And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

− x2

−x2 + 16

)
− (0)

)
= x2

x2 − 16
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫

x2
x2−16 dx

The result of integrating gives

µ = ex−2 ln(x+4)+2 ln(x−4)

= (x− 4)2 ex

(x+ 4)2
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= (x− 4)2 ex

(x+ 4)2
(
− x2y − 32
−x2 + 16 − 32

)
= ex(x− 4) (480 + (y − 32)x2)

(x+ 4)3

And

N = µN

= (x− 4)2 ex

(x+ 4)2
(1)

= (x− 4)2 ex

(x+ 4)2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

ex(x− 4) (480 + (y − 32)x2)
(x+ 4)3

)
+
(
(x− 4)2 ex

(x+ 4)2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ ex(x− 4) (480 + (y − 32)x2)
(x+ 4)3

dx

(3)φ

= 1440 e−4(x+ 4)2 expIntegral1 (−x− 4) + ((y − 32)x2 + (−8y + 1696)x+ 16y + 7168) ex

(x+ 4)2
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex(x2 − 8x+ 16)

(x+ 4)2
+ f ′(y)

= (x− 4)2 ex

(x+ 4)2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= (x−4)2ex
(x+4)2 . Therefore equation (4) becomes

(5)(x− 4)2 ex

(x+ 4)2
= (x− 4)2 ex

(x+ 4)2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ

= 1440 e−4(x+ 4)2 expIntegral1 (−x− 4) + ((y − 32)x2 + (−8y + 1696)x+ 16y + 7168) ex

(x+ 4)2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1

= 1440 e−4(x+ 4)2 expIntegral1 (−x− 4) + ((y − 32)x2 + (−8y + 1696)x+ 16y + 7168) ex

(x+ 4)2

The solution becomes

y

= (−1440 e−4 expIntegral1 (−x− 4)x2 + 32x2ex − 11520 e−4 expIntegral1 (−x− 4)x+ c1x
2 − 1696x ex − 23040 e−4 expIntegral1 (−x− 4) + 8c1x− 7168 ex + 16c1) e−x

x2 − 8x+ 16
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Summary
The solution(s) found are the following

(1)y

= (−1440 e−4 expIntegral1 (−x− 4)x2 + 32x2ex − 11520 e−4 expIntegral1 (−x− 4)x+ c1x
2 − 1696x ex − 23040 e−4 expIntegral1 (−x− 4) + 8c1x− 7168 ex + 16c1) e−x

x2 − 8x+ 16

Figure 41: Slope field plot

Verification of solutions
y

= (−1440 e−4 expIntegral1 (−x− 4)x2 + 32x2ex − 11520 e−4 expIntegral1 (−x− 4)x+ c1x
2 − 1696x ex − 23040 e−4 expIntegral1 (−x− 4) + 8c1x− 7168 ex + 16c1) e−x

x2 − 8x+ 16

Verified OK.
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1.10.4 Maple step by step solution

Let’s solve

y′ − x2y−32
−x2+16 = 32

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = − x2y
x2−16 +

32
(
x2−15

)
x2−16

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + x2y
x2−16 = 32

(
x2−15

)
x2−16

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + x2y

x2−16

)
= 32µ(x)

(
x2−15

)
x2−16

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + x2y

x2−16

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = µ(x)x2

x2−16

• Solve to find the integrating factor
µ(x) = ex−2 ln(x+4)+2 ln(x−4)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 32µ(x)
(
x2−15

)
x2−16 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ 32µ(x)

(
x2−15

)
x2−16 dx+ c1

• Solve for y

y =
∫ 32µ(x)

(
x2−15

)
x2−16 dx+c1

µ(x)

• Substitute µ(x) = ex−2 ln(x+4)+2 ln(x−4)

y =
∫ 32 ex−2 ln(x+4)+2 ln(x−4)(x2−15

)
x2−16 dx+c1

ex−2 ln(x+4)+2 ln(x−4)

• Evaluate the integrals on the rhs
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y =
32 ex+ 128 ex

(x+4)2
− 1952 ex

x+4 −1440 e−4Ei1(−x−4)+c1

ex−2 ln(x+4)+2 ln(x−4)

• Simplify

y = −1440 e−x−4(x+4)2Ei1(−x−4)+c1(x+4)2e−x+32x2−1696x−7168
(x−4)2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 51� �
dsolve(diff(y(x),x)=(x^2*y(x)-32)/(16-x^2) + 32,y(x), singsol=all)� �
y(x)= −1440 e−4−x(x+ 4)2 expIntegral1 (−4− x) + c1(x+ 4)2 e−x + 32x2 − 1696x− 7168

(x− 4)2

3 Solution by Mathematica
Time used: 0.204 (sec). Leaf size: 56� �
DSolve[y'[x]==(x^2*y[x]-32)/(16-x^2) + 32,y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ e−x−4(1440(x+ 4)2 ExpIntegralEi(x+ 4) + e4(32ex(x2 − 53x− 224) + c1(x+ 4)2))

(x− 4)2
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1.11 problem 11
1.11.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 144
1.11.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 145
1.11.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 146
1.11.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 149
1.11.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 152

Internal problem ID [2554]
Internal file name [OUTPUT/2046_Sunday_June_05_2022_02_46_08_AM_33689551/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x− a) (x− b) y′ − y = −c

1.11.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y − c

(−x+ a) (−x+ b)

Where f(x) = 1
(−x+a)(−x+b) and g(y) = y − c. Integrating both sides gives

1
y − c

dy = 1
(−x+ a) (−x+ b) dx∫ 1

y − c
dy =

∫ 1
(−x+ a) (−x+ b) dx
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ln (y − c) = − ln (x− b)
−b+ a

+ ln (x− a)
−b+ a

+ c1

Raising both side to exponential gives

y − c = e−
ln(x−b)
−b+a

+ ln(x−a)
−b+a

+c1

Which simplifies to

y − c = c2e−
ln(x−b)
−b+a

+ ln(x−a)
−b+a

Which simplifies to

y = c2(x− b)−
1

−b+a (x− a)
1

−b+a ec1 + c

Summary
The solution(s) found are the following

(1)y = c2(x− b)−
1

−b+a (x− a)
1

−b+a ec1 + c

Verification of solutions

y = c2(x− b)−
1

−b+a (x− a)
1

−b+a ec1 + c

Verified OK.

1.11.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
(−x+ a) (−x+ b)

q(x) = − c

(−x+ a) (−x+ b)

Hence the ode is

y′ − y

(−x+ a) (−x+ b) = − c

(−x+ a) (−x+ b)

The integrating factor µ is

µ = e
∫
− 1

(−x+a)(−x+b)dx

= e
ln(x−b)
−b+a

− ln(x−a)
−b+a
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Which simplifies to

µ = (x− b)
1

−b+a (x− a)−
1

−b+a

The ode becomes

d
dx(µy) = (µ)

(
− c

(−x+ a) (−x+ b)

)
d
dx

(
(x− b)

1
−b+a (x− a)−

1
−b+a y

)
=
(
(x− b)

1
−b+a (x− a)−

1
−b+a

)(
− c

(−x+ a) (−x+ b)

)
d
(
(x− b)

1
−b+a (x− a)−

1
−b+a y

)
=
(
−c(x− b)

b−a+1
−b+a (x− a)

b−a−1
−b+a

)
dx

Integrating gives

(x− b)
1

−b+a (x− a)−
1

−b+a y =
∫

−c(x− b)
b−a+1
−b+a (x− a)

b−a−1
−b+a dx

(x− b)
1

−b+a (x− a)−
1

−b+a y = c(x− a)1−
−b+a+1
−b+a (x− b)1−

−b+a−1
−b+a + c1

Dividing both sides by the integrating factor µ = (x− b)
1

−b+a (x− a)−
1

−b+a results in

y = (x− b)−
1

−b+a (x− a)
1

−b+a c(x− a)1−
−b+a+1
−b+a (x− b)1−

−b+a−1
−b+a + c1(x− b)−

1
−b+a (x− a)

1
−b+a

which simplifies to

y = c+ c1(x− b)−
1

−b+a (x− a)
1

−b+a

Summary
The solution(s) found are the following

(1)y = c+ c1(x− b)−
1

−b+a (x− a)
1

−b+a

Verification of solutions

y = c+ c1(x− b)−
1

−b+a (x− a)
1

−b+a

Verified OK.

1.11.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y − c

(−x+ a) (−x+ b)
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 30: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−
ln(x−b)
−b+a

+ ln(x−a)
−b+a (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
ln(x−b)
−b+a

+ ln(x−a)
−b+a

dy

Which results in

S = e
ln(x−b)−ln(x−a)

−b+a y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y − c

(−x+ a) (−x+ b)
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
y
(
(x− b)

b−a+1
−b+a (x− a)−

1
−b+a − (x− b)

1
−b+a (x− a)

b−a−1
−b+a

)
−b+ a

Sy = (x− b)
1

−b+a (x− a)−
1

−b+a

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

(
−(−y + c) (−b+ a) (x− b)

b−a+1
−b+a − y(x− b)

1
−b+a

)
(x− a)

b−a−1
−b+a + (x− a)−

1
−b+a (x− b)

b−a+1
−b+a y

−b+ a
(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −(R− a)

b−a−1
−b+a (R− b)

b−a+1
−b+a c

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c(R− a)−
1

−b+a (R− b)
1

−b+a + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− b)
1

−b+a (x− a)−
1

−b+a y = c(x− b)
1

−b+a (x− a)−
1

−b+a + c1

Which simplifies to

−(x− b)
1

−b+a (−y + c) (x− a)−
1

−b+a − c1 = 0

Which gives

y =
(
c(x− b)

1
−b+a (x− a)−

1
−b+a + c1

)
(x− b)−

1
−b+a (x− a)

1
−b+a

Summary
The solution(s) found are the following

(1)y =
(
c(x− b)

1
−b+a (x− a)−

1
−b+a + c1

)
(x− b)−

1
−b+a (x− a)

1
−b+a

Verification of solutions

y =
(
c(x− b)

1
−b+a (x− a)−

1
−b+a + c1

)
(x− b)−

1
−b+a (x− a)

1
−b+a

Verified OK.

1.11.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)
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We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y − c

)
dy =

(
1

(−x+ a) (−x+ b)

)
dx(

− 1
(−x+ a) (−x+ b)

)
dx+

(
1

y − c

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
(−x+ a) (−x+ b)

N(x, y) = 1
y − c

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
(−x+ a) (−x+ b)

)
= 0

And
∂N

∂x
= ∂

∂x

(
1

y − c

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
(−x+ a) (−x+ b) dx

(3)φ = ln (x− b)− ln (x− a)
−b+ a

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y−c

. Therefore equation (4) becomes

(5)1
y − c

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
−y + c
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
−y + c

)
dy

f(y) = ln (−y + c) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x− b)− ln (x− a)
−b+ a

+ ln (−y + c) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x− b)− ln (x− a)

−b+ a
+ ln (−y + c)

The solution becomes

y = −e−
−c1a+c1b+ln(x−b)−ln(x−a)

−b+a + c

Summary
The solution(s) found are the following

(1)y = −e−
−c1a+c1b+ln(x−b)−ln(x−a)

−b+a + c

Verification of solutions

y = −e−
−c1a+c1b+ln(x−b)−ln(x−a)

−b+a + c

Verified OK.

1.11.5 Maple step by step solution

Let’s solve
(x− a) (x− b) y′ − y = −c

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′

y−c
= 1

(x−a)(x−b)

• Integrate both sides with respect to x∫
y′

y−c
dx =

∫ 1
(x−a)(x−b)dx+ c1

• Evaluate integral
ln (y − c) = − ln(x−b)

−b+a
+ ln(x−a)

−b+a
+ c1

• Solve for y

y = e−
−c1a+c1b+ln

( −x+b
−x+a

)
−b+a + c

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
dsolve((x-a)*(x-b)*diff(y(x),x)-(y(x)-c)=0,y(x), singsol=all)� �

y(x) = c+ (x− b)−
1

a−b (x− a)
1

a−b c1

3 Solution by Mathematica
Time used: 0.287 (sec). Leaf size: 41� �
DSolve[(x-a)*(x-b)*y'[x]-(y[x]-c)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c+ c1(x− b)
1

b−a (x− a)
1

a−b

y(x) → c
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Internal problem ID [2555]
Internal file name [OUTPUT/2047_Sunday_June_05_2022_02_46_11_AM_44380788/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 1

)
y′ + y2 = −1

With initial conditions

[y(0) = 1]

1.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= −y2 + 1
x2 + 1

The x domain of f(x, y) when y = 1 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−y2 + 1
x2 + 1

)
= − 2y

x2 + 1

The x domain of ∂f
∂y

when y = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

1.12.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y2 − 1
x2 + 1

Where f(x) = 1
x2+1 and g(y) = −y2 − 1. Integrating both sides gives

1
−y2 − 1 dy = 1

x2 + 1 dx∫ 1
−y2 − 1 dy =

∫ 1
x2 + 1 dx

− arctan (y) = arctan (x) + c1

Which results in
y = − tan (arctan (x) + c1)
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = − tan (c1)

c1 = −π

4

Substituting c1 found above in the general solution gives

y = 1− x

x+ 1

Summary
The solution(s) found are the following

(1)y = 1− x

x+ 1

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1− x

x+ 1

Verified OK.
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1.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2 + 1
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2 + 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2 + 1dx

Which results in

S = arctan (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2 + 1
x2 + 1
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x2 + 1

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan (x) = − arctan (y) + c1

Which simplifies to

arctan (x) = − arctan (y) + c1

Which gives

y = tan (− arctan (x) + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2+1
x2+1

dS
dR

= − 1
R2+1

R = y

S = arctan (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = tan (c1)

c1 =
π

4

Substituting c1 found above in the general solution gives

y = 1− x

x+ 1

Summary
The solution(s) found are the following

(1)y = 1− x

x+ 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1− x

x+ 1

Verified OK.

1.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−y2 − 1

)
dy =

(
1

x2 + 1

)
dx(

− 1
x2 + 1

)
dx+

(
1

−y2 − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x2 + 1

N(x, y) = 1
−y2 − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x2 + 1

)
= 0

And

∂N

∂x
= ∂

∂x

(
1

−y2 − 1

)
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x2 + 1 dx

(3)φ = − arctan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
−y2−1 . Therefore equation (4) becomes

(5)1
−y2 − 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
y2 + 1

)
dy

f(y) = − arctan (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − arctan (x)− arctan (y) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − arctan (x)− arctan (y)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

−π

4 = c1

c1 = −π

4
Substituting c1 found above in the general solution gives

− arctan (x)− arctan (y) = −π

4
Solving for y from the above gives

y = cot
(
arctan (x) + π

4

)
Summary
The solution(s) found are the following

(1)y = cot
(
arctan (x) + π

4

)

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = cot
(
arctan (x) + π

4

)
Verified OK.

1.12.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y2 + 1
x2 + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = − y2

x2 + 1 − 1
x2 + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = − 1
x2+1 , f1(x) = 0 and f2(x) = − 1

x2+1 . Let

y = −u′

f2u

= −u′

− u
x2+1

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 =

2x
(x2 + 1)2

f1f2 = 0

f 2
2 f0 = − 1

(x2 + 1)3

Substituting the above terms back in equation (2) gives

− u′′(x)
x2 + 1 − 2xu′(x)

(x2 + 1)2
− u(x)

(x2 + 1)3
= 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2√
x2 + 1

The above shows that

u′(x) = −c2x+ c1

(x2 + 1)
3
2

Using the above in (1) gives the solution

y = −c2x+ c1
c1x+ c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = c3 − x

c3x+ 1

Initial conditions are used to solve for c3. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c3

c3 = 1

Substituting c3 found above in the general solution gives

y = −x− 1
x+ 1

Summary
The solution(s) found are the following

(1)y = −x− 1
x+ 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −x− 1
x+ 1

Verified OK.

1.12.6 Maple step by step solution

Let’s solve
[(x2 + 1) y′ + y2 = −1, y(0) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−y2−1 = 1
x2+1

• Integrate both sides with respect to x∫
y′

−y2−1dx =
∫ 1

x2+1dx+ c1

• Evaluate integral
− arctan (y) = arctan (x) + c1

• Solve for y
y = − tan (arctan (x) + c1)
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• Use initial condition y(0) = 1
1 = − tan (c1)

• Solve for c1
c1 = −π

4

• Substitute c1 = −π
4 into general solution and simplify

y = cot
(
arctan (x) + π

4

)
• Solution to the IVP

y = cot
(
arctan (x) + π

4

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 11� �
dsolve([(x^2+1)*diff(y(x),x)+y(x)^2=-1,y(0) = 1],y(x), singsol=all)� �

y(x) = cot
(
arctan (x) + π

4

)
3 Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 14� �
DSolve[{(x^2+1)*y'[x]+y[x]^2==-1,y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cot
(
arctan(x) + π

4

)
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Internal problem ID [2556]
Internal file name [OUTPUT/2048_Sunday_June_05_2022_02_46_13_AM_4917224/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
−x2 + 1

)
y′ + yx = ax

With initial conditions

[y(0) = 2a]

1.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 − 1
q(x) = − ax

x2 − 1
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Hence the ode is

y′ − xy

x2 − 1 = − ax

x2 − 1

The domain of p(x) = − x
x2−1 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = − ax
x2−1 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.13.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(−a+ y)
x2 − 1

Where f(x) = x
x2−1 and g(y) = −a+ y. Integrating both sides gives

1
−a+ y

dy = x

x2 − 1 dx∫ 1
−a+ y

dy =
∫

x

x2 − 1 dx

ln (−a+ y) = ln (x− 1)
2 + ln (x+ 1)

2 + c1

Raising both side to exponential gives

−a+ y = e
ln(x−1)

2 + ln(x+1)
2 +c1

Which simplifies to

−a+ y = c2e
ln(x−1)

2 + ln(x+1)
2
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Which can be simplified to become

y = c2
√
x− 1

√
x+ 1 ec1 + a

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2a in the above
solution gives an equation to solve for the constant of integration.

2a = iec1c2 + a

c1 = ln
(
−ia

c2

)
Substituting c1 found above in the general solution gives

y = −i
√
x− 1

√
x+ 1 a+ a

Summary
The solution(s) found are the following

(1)y = −i
√
x− 1

√
x+ 1 a+ a

Verification of solutions

y = −i
√
x− 1

√
x+ 1 a+ a

Verified OK.

1.13.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− x

x2−1dx

= e−
ln(x−1)

2 − ln(x+1)
2

Which simplifies to

µ = 1√
x− 1

√
x+ 1

The ode becomes
d
dx(µy) = (µ)

(
− ax

x2 − 1

)
d
dx

(
y√

x− 1
√
x+ 1

)
=
(

1√
x− 1

√
x+ 1

)(
− ax

x2 − 1

)
d
(

y√
x− 1

√
x+ 1

)
=
(
− ax

(x2 − 1)
√
x− 1

√
x+ 1

)
dx
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Integrating gives

y√
x− 1

√
x+ 1

=
∫

− ax

(x2 − 1)
√
x− 1

√
x+ 1

dx

y√
x− 1

√
x+ 1

=
√
x− 1

√
x+ 1 a

x2 − 1 + c1

Dividing both sides by the integrating factor µ = 1√
x−1

√
x+1 results in

y = (x− 1) (x+ 1) a
x2 − 1 + c1

√
x− 1

√
x+ 1

which simplifies to

y = a+ c1
√
x− 1

√
x+ 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2a in the above
solution gives an equation to solve for the constant of integration.

2a = c1i+ a

c1 = −ia

Substituting c1 found above in the general solution gives

y = −i
√
x− 1

√
x+ 1 a+ a

Summary
The solution(s) found are the following

(1)y = −i
√
x− 1

√
x+ 1 a+ a

Verification of solutions

y = −i
√
x− 1

√
x+ 1 a+ a

Verified OK.

1.13.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(−a+ y)
x2 − 1

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 36: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln(x−1)

2 + ln(x+1)
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln(x−1)

2 + ln(x+1)
2

dy

Which results in

S = eln
(

1√
x−1

)
+ln

(
1√
x+1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(−a+ y)
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − yx

(x− 1)
3
2 (x+ 1)

3
2

Sy =
1√

x− 1
√
x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − ax

(x− 1)
3
2 (x+ 1)

3
2

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − aR

(R− 1)
3
2 (R + 1)

3
2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = a√
R− 1

√
R + 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x− 1

√
x+ 1

= a√
x− 1

√
x+ 1

+ c1

Which simplifies to
y√

x− 1
√
x+ 1

= a√
x− 1

√
x+ 1

+ c1

Which gives

y = a+ c1
√
x− 1

√
x+ 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2a in the above
solution gives an equation to solve for the constant of integration.

2a = c1i+ a

c1 = −ia

Substituting c1 found above in the general solution gives

y = −i
√
x− 1

√
x+ 1 a+ a

Summary
The solution(s) found are the following

(1)y = −i
√
x− 1

√
x+ 1 a+ a

Verification of solutions

y = −i
√
x− 1

√
x+ 1 a+ a

Verified OK.
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1.13.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−a+ y

)
dy =

(
x

x2 − 1

)
dx(

− x

x2 − 1

)
dx+

(
1

−a+ y

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 − 1
N(x, y) = 1

−a+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− x

x2 − 1

)
= 0

And
∂N

∂x
= ∂

∂x

(
1

−a+ y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 − 1 dx

(3)φ = − ln (x− 1)
2 − ln (x+ 1)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= 1
−a+y

. Therefore equation (4) becomes

(5)1
−a+ y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
a− y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
a− y

)
dy

f(y) = ln (a− y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x− 1)
2 − ln (x+ 1)

2 + ln (a− y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x− 1)
2 − ln (x+ 1)

2 + ln (a− y)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 2a in the above
solution gives an equation to solve for the constant of integration.

−iπ

2 + ln (−a) = c1

c1 = −iπ

2 + ln (−a)

Substituting c1 found above in the general solution gives

− ln (x− 1)
2 − ln (x+ 1)

2 + ln (a− y) = −iπ

2 + ln (−a)
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Solving for y from the above gives

y =
(
−i

√
x− 1

√
x+ 1 + 1

)
a

Summary
The solution(s) found are the following

(1)y =
(
−i

√
x− 1

√
x+ 1 + 1

)
a

Verification of solutions

y =
(
−i

√
x− 1

√
x+ 1 + 1

)
a

Verified OK. {positive}

1.13.6 Maple step by step solution

Let’s solve
[(−x2 + 1) y′ + yx = ax, y(0) = 2a]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

a−y
= − x

(x−1)(x+1)

• Integrate both sides with respect to x∫
y′

a−y
dx =

∫
− x

(x−1)(x+1)dx+ c1

• Evaluate integral
− ln (a− y) = − ln((x−1)(x+1))

2 + c1

• Solve for y

y = −e
ln((x−1)(x+1))

2 −c1 + a

• Use initial condition y(0) = 2a

2a = −e Iπ
2 −c1 + a

• Solve for c1
c1 = Iπ

2 − ln (−a)

• Substitute c1 = Iπ
2 − ln (−a) into general solution and simplify
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y = a
(
1− I

√
x2 − 1

)
• Solution to the IVP

y = a
(
1− I

√
x2 − 1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 20� �
dsolve([(1-x^2)*diff(y(x),x)+x*y(x)=a*x,y(0) = 2*a],y(x), singsol=all)� �

y(x) = a
(
1− i

√
x− 1

√
x+ 1

)
3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 21� �
DSolve[{(1-x^2)*y'[x]+x*y[x]==a*x,y[0]==2*a},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → a− ia
√
x2 − 1
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Internal problem ID [2557]
Internal file name [OUTPUT/2049_Sunday_June_05_2022_02_46_15_AM_48430184/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + sin (y + x)
sin (y) cos (x) = 1

With initial conditions [
y
(π
4

)
= π

4

]
1.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= cos (x) sin (y)− sin (y + x)
sin (y) cos (x)

The x domain of f(x, y) when y = π
4 is{

x <
1
2π + π_Z140∨ 1

2π + π_Z140 < x

}
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And the point x0 = π
4 is inside this domain. The y domain of f(x, y) when x = π

4 is

{y < π_Z141∨ π_Z141 < y}

And the point y0 = π
4 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
cos (x) sin (y)− sin (y + x)

sin (y) cos (x)

)
= cos (x) cos (y)− cos (y + x)

sin (y) cos (x) − (cos (x) sin (y)− sin (y + x)) cos (y)
sin (y)2 cos (x)

The x domain of ∂f
∂y

when y = π
4 is

{
x <

1
2π + π_Z140∨ 1

2π + π_Z140 < x

}

And the point x0 = π
4 is inside this domain. The y domain of ∂f

∂y
when x = π

4 is

{y < π_Z141∨ π_Z141 < y}

And the point y0 = π
4 is inside this domain. Therefore solution exists and is unique.

1.14.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −sin (x) cot (y)
cos (x)

Where f(x) = − sin(x)
cos(x) and g(y) = cot (y). Integrating both sides gives

1
cot (y) dy = − sin (x)

cos (x) dx∫ 1
cot (y) dy =

∫
− sin (x)
cos (x) dx

− ln (cos (y)) = ln (cos (x)) + c1
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Raising both side to exponential gives

1
cos (y) = eln(cos(x))+c1

Which simplifies to

sec (y) = c2 cos (x)

Initial conditions are used to solve for c1. Substituting x = π
4 and y = π

4 in the above
solution gives an equation to solve for the constant of integration.

π

4 = π

2 − arcsin
(√

2 e−c1

c2

)

c1 = − ln
(c2
2

)
Substituting c1 found above in the general solution gives

y = π

2 − arcsin
(

1
2 cos (x)

)
Summary
The solution(s) found are the following

(1)y = π

2 − arcsin
(

1
2 cos (x)

)

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = π

2 − arcsin
(

1
2 cos (x)

)
Verified OK.

1.14.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = cos (x) sin (y)− sin (y + x)
sin (y) cos (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 39: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −cos (x)
sin (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− cos(x)
sin(x)

dx

Which results in

S = ln (cos (x))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = cos (x) sin (y)− sin (y + x)
sin (y) cos (x)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = − tan (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (cos (x)) = − ln (cos (y)) + c1

Which simplifies to

ln (cos (x)) = − ln (cos (y)) + c1

Which gives

y = arccos
(

ec1
cos (x)

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= cos(x) sin(y)−sin(y+x)
sin(y) cos(x)

dS
dR

= tan (R)

R = y

S = ln (cos (x))

Initial conditions are used to solve for c1. Substituting x = π
4 and y = π

4 in the above
solution gives an equation to solve for the constant of integration.

π

4 = π

2 − arcsin
(√

2 ec1
)
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c1 = − ln (2)

Substituting c1 found above in the general solution gives

y = π

2 − arcsin
(

1
2 cos (x)

)
Summary
The solution(s) found are the following

(1)y = π

2 − arcsin
(

1
2 cos (x)

)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = π

2 − arcsin
(

1
2 cos (x)

)
Verified OK.
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1.14.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− sin (y)
cos (y)

)
dy =

(
sin (x)
cos (x)

)
dx(

− sin (x)
cos (x)

)
dx+

(
− sin (y)
cos (y)

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)
cos (x)

N(x, y) = − sin (y)
cos (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− sin (x)
cos (x)

)
= 0

And
∂N

∂x
= ∂

∂x

(
− sin (y)
cos (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x)
cos (x) dx

(3)φ = ln (cos (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= − sin(y)
cos(y) . Therefore equation (4) becomes

(5)− sin (y)
cos (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − sin (y)
cos (y)

= − tan (y)

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(− tan (y)) dy

f(y) = ln (cos (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (cos (x)) + ln (cos (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (cos (x)) + ln (cos (y))

Initial conditions are used to solve for c1. Substituting x = π
4 and y = π

4 in the above
solution gives an equation to solve for the constant of integration.

− ln (2) = c1

c1 = − ln (2)

Substituting c1 found above in the general solution gives

ln (cos (x)) + ln (cos (y)) = − ln (2)
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Solving for y from the above gives

y = arccos
(
sec (x)

2

)
Summary
The solution(s) found are the following

(1)y = arccos
(
sec (x)

2

)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = arccos
(
sec (x)

2

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.312 (sec). Leaf size: 9� �
dsolve([diff(y(x),x)=1- (sin(x+y(x)))/(sin(y(x))*cos(x)),y(1/4*Pi) = 1/4*Pi],y(x), singsol=all)� �

y(x) = π

2 − arcsin
(
sec (x)

2

)
3 Solution by Mathematica
Time used: 6.234 (sec). Leaf size: 12� �
DSolve[{y'[x]==1- Sin[x+y[x]]/(Sin[y[x]]*Cos[x]),y[Pi/4]==Pi/4},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arccos
(
sec(x)

2

)
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1.15 problem 15
1.15.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 194
1.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 196
1.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 200
1.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 204

Internal problem ID [2558]
Internal file name [OUTPUT/2050_Sunday_June_05_2022_02_46_22_AM_38738506/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − y3 sin (x) = 0

1.15.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= y3 sin (x)

Where f(x) = sin (x) and g(y) = y3. Integrating both sides gives

1
y3

dy = sin (x) dx∫ 1
y3

dy =
∫

sin (x) dx

− 1
2y2 = − cos (x) + c1
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Which results in

y = − 1√
−2c1 + 2 cos (x)

y = 1√
−2c1 + 2 cos (x)

Summary
The solution(s) found are the following

(1)y = − 1√
−2c1 + 2 cos (x)

(2)y = 1√
−2c1 + 2 cos (x)

Figure 49: Slope field plot
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Verification of solutions

y = − 1√
−2c1 + 2 cos (x)

Verified OK.

y = 1√
−2c1 + 2 cos (x)

Verified OK.

1.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y3 sin (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
sin (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
sin(x)

dx

Which results in

S = − cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y3 sin (x)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = sin (x)
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y3
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
2R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− cos (x) = − 1
2y2 + c1

Which simplifies to

− cos (x) = − 1
2y2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y3 sin (x) dS
dR

= 1
R3

R = y

S = − cos (x)

Summary
The solution(s) found are the following

(1)− cos (x) = − 1
2y2 + c1
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Figure 50: Slope field plot

Verification of solutions

− cos (x) = − 1
2y2 + c1

Verified OK.

1.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y3

)
dy = (sin (x)) dx

(− sin (x)) dx+
(

1
y3

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)

N(x, y) = 1
y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(− sin (x))

= 0
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And
∂N

∂x
= ∂

∂x

(
1
y3

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x) dx

(3)φ = cos (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y3
. Therefore equation (4) becomes

(5)1
y3

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y3

)
dy

f(y) = − 1
2y2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = cos (x)− 1
2y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (x)− 1
2y2

Summary
The solution(s) found are the following

(1)cos (x)− 1
2y2 = c1

Figure 51: Slope field plot

Verification of solutions

cos (x)− 1
2y2 = c1

Verified OK.
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1.15.4 Maple step by step solution

Let’s solve
y′ − y3 sin (x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y3
= sin (x)

• Integrate both sides with respect to x∫
y′

y3
dx =

∫
sin (x) dx+ c1

• Evaluate integral
− 1

2y2 = − cos (x) + c1

• Solve for y{
y = 1√

−2c1+2 cos(x) , y = − 1√
−2c1+2 cos(x)

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x)=y(x)^3*sin(x),y(x), singsol=all)� �

y(x) = 1√
c1 + 2 cos (x)

y(x) = − 1√
c1 + 2 cos (x)
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3 Solution by Mathematica
Time used: 0.207 (sec). Leaf size: 49� �
DSolve[y'[x]==y[x]^3*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
2
√

cos(x)− c1

y(x) → 1√
2
√

cos(x)− c1
y(x) → 0
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2.1 problem 1
2.1.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 207
2.1.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 209
2.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 213
2.1.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 217

Internal problem ID [2559]
Internal file name [OUTPUT/2051_Sunday_June_05_2022_02_46_25_AM_77727377/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − y = e2x

2.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
q(x) = e2x

Hence the ode is

y′ − y = e2x

The integrating factor µ is

µ = e
∫
(−1)dx

= e−x
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The ode becomes

d
dx(µy) = (µ)

(
e2x
)

d
dx
(
e−xy

)
=
(
e−x
) (

e2x
)

d
(
e−xy

)
= ex dx

Integrating gives

e−xy =
∫

ex dx

e−xy = ex + c1

Dividing both sides by the integrating factor µ = e−x results in

y = e2x + c1ex

Summary
The solution(s) found are the following

(1)y = e2x + c1ex

Figure 52: Slope field plot
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Verification of solutions

y = e2x + c1ex

Verified OK.

2.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y + e2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 44: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

exdy

Which results in

S = e−xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + e2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −e−xy

Sy = e−x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−xy = ex + c1

Which simplifies to

e−xy = ex + c1

Which gives

y = ex(ex + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y + e2x dS
dR

= eR

R = x

S = e−xy

Summary
The solution(s) found are the following

(1)y = ex(ex + c1)
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Figure 53: Slope field plot

Verification of solutions

y = ex(ex + c1)

Verified OK.

2.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
y + e2x

)
dx(

−y − e2x
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y − e2x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y − e2x

)
= −1

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−1)− (0))
= −1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−1 dx

The result of integrating gives

µ = e−x

= e−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x
(
−y − e2x

)
= −e−xy − ex

And

N = µN

= e−x(1)
= e−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−xy − ex
)
+
(
e−x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−xy − ex dx

(3)φ = e−xy − ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−x + f ′(y)

But equation (2) says that ∂φ
∂y

= e−x. Therefore equation (4) becomes

(5)e−x = e−x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = e−xy − ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = e−xy − ex

The solution becomes
y = ex(ex + c1)

Summary
The solution(s) found are the following

(1)y = ex(ex + c1)
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Figure 54: Slope field plot

Verification of solutions

y = ex(ex + c1)

Verified OK.

2.1.4 Maple step by step solution

Let’s solve
y′ − y = e2x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y + e2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y = e2x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y) = µ(x) e2x
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• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

• Solve to find the integrating factor
µ(x) = e−x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) e2xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) e2xdx+ c1

• Solve for y

y =
∫
µ(x)e2xdx+c1

µ(x)

• Substitute µ(x) = e−x

y =
∫
e2xe−xdx+c1

e−x

• Evaluate the integrals on the rhs
y = ex+c1

e−x

• Simplify
y = ex(ex + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �

218



3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)-y(x)=exp(2*x),y(x), singsol=all)� �

y(x) = (ex + c1) ex

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 15� �
DSolve[y'[x]-y[x]==Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(ex + c1)

219



2.2 problem 2
2.2.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 220
2.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 222
2.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 226
2.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 231

Internal problem ID [2560]
Internal file name [OUTPUT/2052_Sunday_June_05_2022_02_46_27_AM_62150205/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′x2 − 4yx = x7 sin (x)

2.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −4
x

q(x) = x5 sin (x)

Hence the ode is

y′ − 4y
x

= x5 sin (x)
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The integrating factor µ is

µ = e
∫
− 4

x
dx

= 1
x4

The ode becomes

d
dx(µy) = (µ)

(
x5 sin (x)

)
d
dx

( y

x4

)
=
(

1
x4

)(
x5 sin (x)

)
d
( y

x4

)
= (x sin (x)) dx

Integrating gives

y

x4 =
∫

x sin (x) dx
y

x4 = sin (x)− cos (x)x+ c1

Dividing both sides by the integrating factor µ = 1
x4 results in

y = x4(sin (x)− cos (x)x) + c1x
4

which simplifies to

y = x4(sin (x)− cos (x)x+ c1)

Summary
The solution(s) found are the following

(1)y = x4(sin (x)− cos (x)x+ c1)
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Figure 55: Slope field plot

Verification of solutions

y = x4(sin (x)− cos (x)x+ c1)

Verified OK.

2.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (x)x6 + 4y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 47: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x4 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x4dy

Which results in

S = y

x4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x)x6 + 4y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −4y
x5

Sy =
1
x4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x sin (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R sin (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (R)−R cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x4 = sin (x)− cos (x)x+ c1

Which simplifies to
y

x4 = sin (x)− cos (x)x+ c1

Which gives

y = x4(sin (x)− cos (x)x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin(x)x6+4y
x

dS
dR

= R sin (R)

R = x

S = y

x4

Summary
The solution(s) found are the following

(1)y = x4(sin (x)− cos (x)x+ c1)
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Figure 56: Slope field plot

Verification of solutions

y = x4(sin (x)− cos (x)x+ c1)

Verified OK.

2.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

226



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy =

(
4xy + x7 sin (x)

)
dx(

−x7 sin (x)− 4xy
)
dx+

(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x7 sin (x)− 4xy
N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x7 sin (x)− 4xy

)
= −4x

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 ((−4x)− (2x))

= −6
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 6

x
dx

The result of integrating gives

µ = e−6 ln(x)

= 1
x6

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x6

(
−x7 sin (x)− 4xy

)
= − sin (x)x6 − 4y

x5

And

N = µN

= 1
x6

(
x2)

= 1
x4

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− sin (x)x6 − 4y
x5

)
+
(

1
x4

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x)x6 − 4y

x5 dx

(3)φ = − sin (x) + cos (x)x+ y

x4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x4 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x4 . Therefore equation (4) becomes

(5)1
x4 = 1

x4 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − sin (x) + cos (x)x+ y

x4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sin (x) + cos (x)x+ y

x4
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The solution becomes
y = x4(sin (x)− cos (x)x+ c1)

Summary
The solution(s) found are the following

(1)y = x4(sin (x)− cos (x)x+ c1)

Figure 57: Slope field plot

Verification of solutions

y = x4(sin (x)− cos (x)x+ c1)

Verified OK.
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2.2.4 Maple step by step solution

Let’s solve
y′x2 − 4yx = x7 sin (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 4y

x
+ x5 sin (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 4y

x
= x5 sin (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − 4y

x

)
= µ(x)x5 sin (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 4y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −4µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x4

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x5 sin (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x5 sin (x) dx+ c1

• Solve for y

y =
∫
µ(x)x5 sin(x)dx+c1

µ(x)

• Substitute µ(x) = 1
x4

y = x4(∫ x sin (x) dx+ c1
)

• Evaluate the integrals on the rhs
y = x4(sin (x)− cos (x)x+ c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(x^2*diff(y(x),x)-4*x*y(x)=x^7*sin(x),y(x), singsol=all)� �

y(x) = (−x cos (x) + sin (x) + c1)x4

3 Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 19� �
DSolve[x^2*y'[x]-4*x*y[x]==x^7*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x4(sin(x)− x cos(x) + c1)

232



2.3 problem 3
2.3.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 233
2.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 235
2.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 239
2.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 243

Internal problem ID [2561]
Internal file name [OUTPUT/2053_Sunday_June_05_2022_02_46_29_AM_73525458/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 2yx = 2x3

2.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
q(x) = 2x3

Hence the ode is

y′ + 2yx = 2x3

The integrating factor µ is

µ = e
∫
2xdx

= ex2
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The ode becomes
d
dx(µy) = (µ)

(
2x3)

d
dx

(
ex2

y
)
=
(
ex2
) (

2x3)
d
(
ex2

y
)
=
(
2x3ex2

)
dx

Integrating gives

ex2
y =

∫
2x3ex2 dx

ex2
y =

(
x2 − 1

)
ex2 + c1

Dividing both sides by the integrating factor µ = ex2 results in

y = e−x2(
x2 − 1

)
ex2 + c1e−x2

which simplifies to

y = x2 − 1 + c1e−x2

Summary
The solution(s) found are the following

(1)y = x2 − 1 + c1e−x2

Figure 58: Slope field plot
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Verification of solutions

y = x2 − 1 + c1e−x2

Verified OK.

2.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2x3 − 2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 50: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x2 dy

Which results in

S = ex2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x3 − 2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2x ex2

y

Sy = ex2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x3ex2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R3eR2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
(
R2 − 1

)
eR2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex2
y =

(
x2 − 1

)
ex2 + c1

Which simplifies to

ex2
y =

(
x2 − 1

)
ex2 + c1

Which gives

y =
(
x2ex2 − ex2 + c1

)
e−x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x3 − 2xy dS
dR

= 2R3eR2

R = x

S = ex2
y

Summary
The solution(s) found are the following

(1)y =
(
x2ex2 − ex2 + c1

)
e−x2
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Figure 59: Slope field plot

Verification of solutions

y =
(
x2ex2 − ex2 + c1

)
e−x2

Verified OK.

2.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
2x3 − 2xy

)
dx(

−2x3 + 2xy
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x3 + 2xy
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2x3 + 2xy

)
= 2x

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((2x)− (0))
= 2x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2xdx

The result of integrating gives

µ = ex
2

= ex2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex2(−2x3 + 2xy
)

= −2x
(
x2 − y

)
ex2

And

N = µN

= ex2(1)
= ex2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2x
(
x2 − y

)
ex2
)
+
(
ex2
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x

(
x2 − y

)
ex2 dx

(3)φ = −
(
x2 − y − 1

)
ex2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex2 + f ′(y)

But equation (2) says that ∂φ
∂y

= ex2 . Therefore equation (4) becomes

(5)ex2 = ex2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
(
x2 − y − 1

)
ex2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
(
x2 − y − 1

)
ex2

The solution becomes

y =
(
x2ex2 − ex2 + c1

)
e−x2
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Summary
The solution(s) found are the following

(1)y =
(
x2ex2 − ex2 + c1

)
e−x2

Figure 60: Slope field plot

Verification of solutions

y =
(
x2ex2 − ex2 + c1

)
e−x2

Verified OK.

2.3.4 Maple step by step solution

Let’s solve
y′ + 2yx = 2x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2yx+ 2x3
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2yx = 2x3

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + 2yx) = 2µ(x)x3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + 2yx) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)x

• Solve to find the integrating factor
µ(x) = ex2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
2µ(x)x3dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
2µ(x)x3dx+ c1

• Solve for y

y =
∫
2µ(x)x3dx+c1

µ(x)

• Substitute µ(x) = ex2

y =
∫
2x3ex2dx+c1

ex2

• Evaluate the integrals on the rhs

y =
(
x2−1

)
ex2+c1

ex2

• Simplify
y = x2 − 1 + c1e−x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)+2*x*y(x)=2*x^3,y(x), singsol=all)� �

y(x) = x2 − 1 + c1e−x2

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 20� �
DSolve[y'[x]+2*x*y[x]==2*x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + c1e
−x2 − 1
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2.4 problem 4
2.4.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 246
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Internal problem ID [2562]
Internal file name [OUTPUT/2054_Sunday_June_05_2022_02_46_32_AM_34693024/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 2xy
x2 + 1 = 4x

2.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 + 1

q(x) = 4x

Hence the ode is

y′ + 2xy
x2 + 1 = 4x
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The integrating factor µ is

µ = e
∫ 2x

x2+1dx

= x2 + 1

The ode becomes

d
dx(µy) = (µ) (4x)

d
dx
((
x2 + 1

)
y
)
=
(
x2 + 1

)
(4x)

d
((
x2 + 1

)
y
)
=
(
4x
(
x2 + 1

))
dx

Integrating gives (
x2 + 1

)
y =

∫
4x
(
x2 + 1

)
dx(

x2 + 1
)
y =

(
x2 + 1

)2 + c1

Dividing both sides by the integrating factor µ = x2 + 1 results in

y = x2 + 1 + c1
x2 + 1

Summary
The solution(s) found are the following

(1)y = x2 + 1 + c1
x2 + 1
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Figure 61: Slope field plot

Verification of solutions

y = x2 + 1 + c1
x2 + 1

Verified OK.

2.4.2 Solving as differentialType ode

Writing the ode as

y′ = − 2xy
x2 + 1 + 4x (1)

Which becomes

0 =
(
−x2 − 1

)
dy +

(
2x
(
2x2 − y + 2

))
dx (2)

But the RHS is complete differential because

(
−x2 − 1

)
dy +

(
2x
(
2x2 − y + 2

))
dx = d

(
(−2x2 + y − 2)2

4 − y2

4

)
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Hence (2) becomes

0 = d

(
(−2x2 + y − 2)2

4 − y2

4

)

Integrating both sides gives gives these solutions

y = x4 + 2x2 + c1 + 1
x2 + 1 + c1

Summary
The solution(s) found are the following

(1)y = x4 + 2x2 + c1 + 1
x2 + 1 + c1

Figure 62: Slope field plot

Verification of solutions

y = x4 + 2x2 + c1 + 1
x2 + 1 + c1

Verified OK.
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2.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x(−2x2 + y − 2)
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 53: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2+1

dy

Which results in

S =
(
x2 + 1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x(−2x2 + y − 2)
x2 + 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 4x3 + 4x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 4R3 + 4R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
(
R2 + 1

)2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x2 + 1
)
y =

(
x2 + 1

)2 + c1

Which simplifies to (
x2 + 1

)
y =

(
x2 + 1

)2 + c1

Which gives

y = x4 + 2x2 + c1 + 1
x2 + 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x
(
−2x2+y−2

)
x2+1

dS
dR

= 4R3 + 4R

R = x

S =
(
x2 + 1

)
y

Summary
The solution(s) found are the following

(1)y = x4 + 2x2 + c1 + 1
x2 + 1
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Figure 63: Slope field plot

Verification of solutions

y = x4 + 2x2 + c1 + 1
x2 + 1

Verified OK.

2.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy =

(
−2x

(
−2x2 + y − 2

))
dx(

2x
(
−2x2 + y − 2

))
dx+

(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x
(
−2x2 + y − 2

)
N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2x
(
−2x2 + y − 2

))
= 2x

And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2x
(
−2x2 + y − 2

)
dx

(3)φ = −(2x2 − y + 2)2

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 − y

2 + 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 + 1. Therefore equation (4) becomes

(5)x2 + 1 = x2 − y

2 + 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (y
2

)
dy

f(y) = y2

4 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −(2x2 − y + 2)2

4 + y2

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(2x2 − y + 2)2

4 + y2

4

The solution becomes

y = x4 + 2x2 + c1 + 1
x2 + 1

Summary
The solution(s) found are the following

(1)y = x4 + 2x2 + c1 + 1
x2 + 1

Figure 64: Slope field plot
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Verification of solutions

y = x4 + 2x2 + c1 + 1
x2 + 1

Verified OK.

2.4.5 Maple step by step solution

Let’s solve
y′ + 2xy

x2+1 = 4x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 2xy

x2+1 + 4x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2xy

x2+1 = 4x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2xy

x2+1

)
= 4µ(x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
4µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
4µ(x)xdx+ c1

• Solve for y

y =
∫
4µ(x)xdx+c1

µ(x)

• Substitute µ(x) = x2 + 1
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y =
∫
4x

(
x2+1

)
dx+c1

x2+1

• Evaluate the integrals on the rhs

y =
(
x2+1

)2+c1
x2+1

• Simplify
y = x4+2x2+c1+1

x2+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x)+2*x/(1+x^2)*y(x)=4*x,y(x), singsol=all)� �

y(x) = x2 + 1 + c1
x2 + 1

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 24� �
DSolve[y'[x]+2*x/(1+x^2)*y[x]==4*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x4 + 2x2 + c1
x2 + 1
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2.5 problem 5
2.5.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 260
2.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 262
2.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 266
2.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 271

Internal problem ID [2563]
Internal file name [OUTPUT/2055_Sunday_June_05_2022_02_46_34_AM_26089267/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 2xy
x2 + 1 = 4

(x2 + 1)2

2.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 + 1

q(x) = 4
(x2 + 1)2

Hence the ode is

y′ + 2xy
x2 + 1 = 4

(x2 + 1)2
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The integrating factor µ is

µ = e
∫ 2x

x2+1dx

= x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
4

(x2 + 1)2
)

d
dx
((
x2 + 1

)
y
)
=
(
x2 + 1

)( 4
(x2 + 1)2

)
d
((
x2 + 1

)
y
)
=
(

4
x2 + 1

)
dx

Integrating gives (
x2 + 1

)
y =

∫ 4
x2 + 1 dx(

x2 + 1
)
y = 4arctan (x) + c1

Dividing both sides by the integrating factor µ = x2 + 1 results in

y = 4arctan (x)
x2 + 1 + c1

x2 + 1

which simplifies to

y = 4arctan (x) + c1
x2 + 1

Summary
The solution(s) found are the following

(1)y = 4arctan (x) + c1
x2 + 1
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Figure 65: Slope field plot

Verification of solutions

y = 4arctan (x) + c1
x2 + 1

Verified OK.

2.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2(x3y + xy − 2)
(x2 + 1)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 56: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2+1

dy

Which results in

S =
(
x2 + 1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2(x3y + xy − 2)
(x2 + 1)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 4

x2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 4

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 4 arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x2 + 1
)
y = 4arctan (x) + c1

Which simplifies to (
x2 + 1

)
y = 4arctan (x) + c1

Which gives

y = 4arctan (x) + c1
x2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2
(
x3y+xy−2

)
(x2+1)2

dS
dR

= 4
R2+1

R = x

S =
(
x2 + 1

)
y

Summary
The solution(s) found are the following

(1)y = 4arctan (x) + c1
x2 + 1
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Figure 66: Slope field plot

Verification of solutions

y = 4arctan (x) + c1
x2 + 1

Verified OK.

2.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
− 2xy
x2 + 1 + 4

(x2 + 1)2
)
dx(

2xy
x2 + 1 − 4

(x2 + 1)2
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2xy
x2 + 1 − 4

(x2 + 1)2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
2xy

x2 + 1 − 4
(x2 + 1)2

)
= 2x

x2 + 1
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And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

2x
x2 + 1

)
− (0)

)
= 2x

x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 2x

x2+1 dx

The result of integrating gives

µ = eln
(
x2+1

)
= x2 + 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x2 + 1
(

2xy
x2 + 1 − 4

(x2 + 1)2
)

= 2x3y + 2xy − 4
x2 + 1

And

N = µN

= x2 + 1(1)
= x2 + 1
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

2x3y + 2xy − 4
x2 + 1

)
+
(
x2 + 1

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x3y + 2xy − 4
x2 + 1 dx

(3)φ = x2y − 4 arctan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 + 1. Therefore equation (4) becomes

(5)x2 + 1 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2y − 4 arctan (x) + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2y − 4 arctan (x) + y

Summary
The solution(s) found are the following

(1)x2y − 4 arctan (x) + y = c1

Figure 67: Slope field plot

Verification of solutions

x2y − 4 arctan (x) + y = c1

Verified OK.
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2.5.4 Maple step by step solution

Let’s solve
y′ + 2xy

x2+1 = 4
(x2+1)2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 2xy

x2+1 +
4

(x2+1)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2xy

x2+1 = 4
(x2+1)2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2xy

x2+1

)
= 4µ(x)

(x2+1)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 4µ(x)
(x2+1)2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ 4µ(x)
(x2+1)2dx+ c1

• Solve for y

y =
∫ 4µ(x)(

x2+1
)2 dx+c1

µ(x)

• Substitute µ(x) = x2 + 1

y =
∫ 4

x2+1dx+c1

x2+1

• Evaluate the integrals on the rhs
y = 4 arctan(x)+c1

x2+1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 18� �
dsolve(diff(y(x),x)+2*x/(1+x^2)*y(x)=4/(1+x^2)^2,y(x), singsol=all)� �

y(x) = 4 arctan (x) + c1
x2 + 1

3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 20� �
DSolve[y'[x]+2*x/(1+x^2)*y[x]==4/(1+x^2)^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 4 arctan(x) + c1
x2 + 1
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2.6 problem 6
2.6.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 273
2.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 275
2.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 279
2.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 284

Internal problem ID [2564]
Internal file name [OUTPUT/2056_Sunday_June_05_2022_02_46_36_AM_61261930/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2 cos (x)2 y′ + y sin (2x) = 4 cos (x)4

2.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = 2 cos (x)2

Hence the ode is

y′ + y tan (x) = 2 cos (x)2

The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)
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Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ)

(
2 cos (x)2

)
d
dx(sec (x) y) = (sec (x))

(
2 cos (x)2

)
d(sec (x) y) = (2 cos (x)) dx

Integrating gives

sec (x) y =
∫

2 cos (x) dx

sec (x) y = 2 sin (x) + c1

Dividing both sides by the integrating factor µ = sec (x) results in

y = 2 sin (x) cos (x) + c1 cos (x)

which simplifies to

y = cos (x) (2 sin (x) + c1)

Summary
The solution(s) found are the following

(1)y = cos (x) (2 sin (x) + c1)
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Figure 68: Slope field plot

Verification of solutions

y = cos (x) (2 sin (x) + c1)

Verified OK.

2.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y sin (2x) + 4 cos (x)4

2 cos (x)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 59: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y sin (2x) + 4 cos (x)4

2 cos (x)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sec (x) tan (x) y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2 cos (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2 cos (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 sin (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

sec (x) y = 2 sin (x) + c1

Which simplifies to

sec (x) y = 2 sin (x) + c1

Which gives

y = 2 sin (x) + c1
sec (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y sin(2x)+4 cos(x)4

2 cos(x)2
dS
dR

= 2 cos (R)

R = x

S = sec (x) y

Summary
The solution(s) found are the following

(1)y = 2 sin (x) + c1
sec (x)
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Figure 69: Slope field plot

Verification of solutions

y = 2 sin (x) + c1
sec (x)

Verified OK.

2.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
2 cos (x)2

)
dy =

(
−y sin (2x) + 4 cos (x)4

)
dx(

y sin (2x)− 4 cos (x)4
)
dx+

(
2 cos (x)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y sin (2x)− 4 cos (x)4

N(x, y) = 2 cos (x)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y sin (2x)− 4 cos (x)4

)
= sin (2x)

And
∂N

∂x
= ∂

∂x

(
2 cos (x)2

)
= −2 sin (2x)
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= sec (x)2

2 ((sin (2x))− (−4 sin (x) cos (x)))

= 3 tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
3 tan(x) dx

The result of integrating gives

µ = e−3 ln(cos(x))

= sec (x)3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x)3
(
y sin (2x)− 4 cos (x)4

)
= −4 cos (x) + 2 sec (x) tan (x) y

And

N = µN

= sec (x)3
(
2 cos (x)2

)
= 2 sec (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(−4 cos (x) + 2 sec (x) tan (x) y) + (2 sec (x)) dydx = 0

281



The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−4 cos (x) + 2 sec (x) tan (x) y dx

(3)φ = 2 sec (x) y − 4 sin (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2 sec (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= 2 sec (x). Therefore equation (4) becomes

(5)2 sec (x) = 2 sec (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2 sec (x) y − 4 sin (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 2 sec (x) y − 4 sin (x)
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The solution becomes

y = 4 sin (x) + c1
2 sec (x)

Summary
The solution(s) found are the following

(1)y = 4 sin (x) + c1
2 sec (x)

Figure 70: Slope field plot

Verification of solutions

y = 4 sin (x) + c1
2 sec (x)

Verified OK.
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2.6.4 Maple step by step solution

Let’s solve
2 cos (x)2 y′ + y sin (2x) = 4 cos (x)4

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − sin(2x)y

2 cos(x)2 + 2 cos (x)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + sin(2x)y

2 cos(x)2 = 2 cos (x)2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + sin(2x)y

2 cos(x)2

)
= 2µ(x) cos (x)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + sin(2x)y

2 cos(x)2

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) sin(2x)

2 cos(x)2

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
2µ(x) cos (x)2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
2µ(x) cos (x)2 dx+ c1

• Solve for y

y =
∫
2µ(x) cos(x)2dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫

2 cos (x) dx+ c1
)

• Evaluate the integrals on the rhs
y = cos (x) (2 sin (x) + c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(2*cos(x)^2*diff(y(x),x)+y(x)*sin(2*x)=4*cos(x)^4,y(x), singsol=all)� �

y(x) = (2 sin (x) + c1) cos (x)

3 Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 15� �
DSolve[2*Cos[x]^2*y'[x]+y[x]*Sin[2*x]==4*Cos[x]^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos(x)(2 sin(x) + c1)
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2.7 problem 7
2.7.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 286
2.7.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 288
2.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 292
2.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 297

Internal problem ID [2565]
Internal file name [OUTPUT/2057_Sunday_June_05_2022_02_46_38_AM_20398170/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y

ln (x)x = 9x2

2.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
ln (x)x

q(x) = 9x2

Hence the ode is

y′ + y

ln (x)x = 9x2
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The integrating factor µ is

µ = e
∫ 1

ln(x)xdx

= ln (x)

The ode becomes

d
dx(µy) = (µ)

(
9x2)

d
dx(ln (x) y) = (ln (x))

(
9x2)

d(ln (x) y) =
(
9 ln (x)x2) dx

Integrating gives

ln (x) y =
∫

9 ln (x)x2 dx

ln (x) y = 3x3 ln (x)− x3 + c1

Dividing both sides by the integrating factor µ = ln (x) results in

y = 3x3 ln (x)− x3

ln (x) + c1
ln (x)

which simplifies to

y = 3x3 ln (x)− x3 + c1
ln (x)

Summary
The solution(s) found are the following

(1)y = 3x3 ln (x)− x3 + c1
ln (x)
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Figure 71: Slope field plot

Verification of solutions

y = 3x3 ln (x)− x3 + c1
ln (x)

Verified OK.

2.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−9x3 ln (x) + y

ln (x)x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
ln (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
ln(x)

dy

Which results in

S = ln (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−9x3 ln (x) + y

ln (x)x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

x
Sy = ln (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 9 ln (x)x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 9 ln (R)R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 3R3 ln (R)−R3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y ln (x) = 3x3 ln (x)− x3 + c1

Which simplifies to

y ln (x) = 3x3 ln (x)− x3 + c1

Which gives

y = 3x3 ln (x)− x3 + c1
ln (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−9x3 ln(x)+y
ln(x)x

dS
dR

= 9 ln (R)R2

R = x

S = ln (x) y

Summary
The solution(s) found are the following

(1)y = 3x3 ln (x)− x3 + c1
ln (x)
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Figure 72: Slope field plot

Verification of solutions

y = 3x3 ln (x)− x3 + c1
ln (x)

Verified OK.

2.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
− y

ln (x)x + 9x2
)
dx(

−9x2 + y

ln (x)x

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −9x2 + y

ln (x)x
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−9x2 + y

ln (x)x

)
= 1

ln (x)x
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And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

1
ln (x)x

)
− (0)

)
= 1

ln (x)x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

ln(x)x dx

The result of integrating gives

µ = eln(ln(x))

= ln (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ln (x)
(
−9x2 + y

ln (x)x

)
= −9x3 ln (x) + y

x

And

N = µN

= ln (x) (1)
= ln (x)
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−9x3 ln (x) + y

x

)
+ (ln (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−9x3 ln (x) + y

x
dx

(3)φ =
(
−3x3 + y

)
ln (x) + x3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ln (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= ln (x). Therefore equation (4) becomes

(5)ln (x) = ln (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
−3x3 + y

)
ln (x) + x3 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
−3x3 + y

)
ln (x) + x3

The solution becomes

y = 3x3 ln (x)− x3 + c1
ln (x)

Summary
The solution(s) found are the following

(1)y = 3x3 ln (x)− x3 + c1
ln (x)

Figure 73: Slope field plot

Verification of solutions

y = 3x3 ln (x)− x3 + c1
ln (x)

Verified OK.
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2.7.4 Maple step by step solution

Let’s solve
y′ + y

ln(x)x = 9x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

ln(x)x + 9x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

ln(x)x = 9x2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

ln(x)x

)
= 9µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

ln(x)x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

ln(x)x

• Solve to find the integrating factor
µ(x) = ln (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
9µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
9µ(x)x2dx+ c1

• Solve for y

y =
∫
9µ(x)x2dx+c1

µ(x)

• Substitute µ(x) = ln (x)

y =
∫
9 ln(x)x2dx+c1

ln(x)

• Evaluate the integrals on the rhs

y = 3x3 ln(x)−x3+c1
ln(x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)+1/(x*ln(x))*y(x)=9*x^2,y(x), singsol=all)� �

y(x) = 3x3 ln (x)− x3 + c1
ln (x)

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 25� �
DSolve[y'[x]+1/(x*Log[x])*y[x]==9*x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x3 + 3x3 log(x) + c1
log(x)
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2.8 problem 8
2.8.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 299
2.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 301
2.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 305
2.8.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 309

Internal problem ID [2566]
Internal file name [OUTPUT/2058_Sunday_June_05_2022_02_46_40_AM_61184153/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y tan (x) = 8 sin (x)3

2.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − tan (x)
q(x) = 8 sin (x)3

Hence the ode is

y′ − y tan (x) = 8 sin (x)3

The integrating factor µ is

µ = e
∫
− tan(x)dx

= cos (x)
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The ode becomes
d
dx(µy) = (µ)

(
8 sin (x)3

)
d
dx(cos (x) y) = (cos (x))

(
8 sin (x)3

)
d(cos (x) y) =

(
8 sin (x)3 cos (x)

)
dx

Integrating gives

cos (x) y =
∫

8 sin (x)3 cos (x) dx

cos (x) y = 2 sin (x)4 + c1

Dividing both sides by the integrating factor µ = cos (x) results in

y = 2 sec (x) sin (x)4 + c1 sec (x)

which simplifies to

y = sec (x)
(
2 sin (x)4 + c1

)
Summary
The solution(s) found are the following

(1)y = sec (x)
(
2 sin (x)4 + c1

)

Figure 74: Slope field plot
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Verification of solutions

y = sec (x)
(
2 sin (x)4 + c1

)
Verified OK.

2.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = tan (x) y + 8 sin (x)3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 65: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)

dy

Which results in

S = cos (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = tan (x) y + 8 sin (x)3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − sin (x) y
Sy = cos (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 8 sin (x)3 cos (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 8 sin (R)3 cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 sin (R)4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (x) y = 2 sin (x)4 + c1

Which simplifies to

cos (x) y = 2 sin (x)4 + c1

Which gives

y = 2 sin (x)4 + c1
cos (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= tan (x) y + 8 sin (x)3 dS
dR

= 8 sin (R)3 cos (R)

R = x

S = cos (x) y

Summary
The solution(s) found are the following

(1)y = 2 sin (x)4 + c1
cos (x)
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Figure 75: Slope field plot

Verification of solutions

y = 2 sin (x)4 + c1
cos (x)

Verified OK.

2.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
tan (x) y + 8 sin (x)3

)
dx(

− tan (x) y − 8 sin (x)3
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − tan (x) y − 8 sin (x)3

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− tan (x) y − 8 sin (x)3

)
= − tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− tan (x))− (0))
= − tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− tan(x) dx

The result of integrating gives

µ = eln(cos(x))

= cos (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (x)
(
− tan (x) y − 8 sin (x)3

)
= sin (x)

(
−8 sin (x)2 cos (x)− y

)
And

N = µN

= cos (x) (1)
= cos (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

sin (x)
(
−8 sin (x)2 cos (x)− y

))
+ (cos (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sin (x)

(
−8 sin (x)2 cos (x)− y

)
dx

(3)φ = cos (x)
(
−2 cos (x)3 + 4 cos (x) + y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (x). Therefore equation (4) becomes

(5)cos (x) = cos (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cos (x)
(
−2 cos (x)3 + 4 cos (x) + y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (x)
(
−2 cos (x)3 + 4 cos (x) + y

)
The solution becomes

y = 2 cos (x)4 − 4 cos (x)2 + c1
cos (x)
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Summary
The solution(s) found are the following

(1)y = 2 cos (x)4 − 4 cos (x)2 + c1
cos (x)

Figure 76: Slope field plot

Verification of solutions

y = 2 cos (x)4 − 4 cos (x)2 + c1
cos (x)

Verified OK.

2.8.4 Maple step by step solution

Let’s solve
y′ − y tan (x) = 8 sin (x)3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = y tan (x) + 8 sin (x)3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y tan (x) = 8 sin (x)3

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y tan (x)) = 8µ(x) sin (x)3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = cos (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
8µ(x) sin (x)3 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
8µ(x) sin (x)3 dx+ c1

• Solve for y

y =
∫
8µ(x) sin(x)3dx+c1

µ(x)

• Substitute µ(x) = cos (x)

y =
∫
8 sin(x)3 cos(x)dx+c1

cos(x)

• Evaluate the integrals on the rhs

y = 2 sin(x)4+c1
cos(x)

• Simplify
y = sec (x)

(
2 sin (x)4 + c1

)

310



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(diff(y(x),x)-y(x)*tan(x)=8*sin(x)^3,y(x), singsol=all)� �

y(x) = 2 cos (x)3 − 4 cos (x) + sec (x) (4c1 + 5)
4

3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 19� �
DSolve[y'[x]-y[x]*Tan[x]==8*Sin[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 sin3(x) tan(x) + c1 sec(x)
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2.9 problem 9
2.9.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 312
2.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 314
2.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 318
2.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 323

Internal problem ID [2567]
Internal file name [OUTPUT/2059_Sunday_June_05_2022_02_46_43_AM_51064587/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x′t+ 2x = 4 et

2.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

x′ + p(t)x = q(t)

Where here

p(t) = 2
t

q(t) = 4 et
t

Hence the ode is

x′ + 2x
t

= 4 et
t
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The integrating factor µ is

µ = e
∫ 2

t
dt

= t2

The ode becomes

d
dt(µx) = (µ)

(
4 et
t

)
d
dt
(
t2x
)
=
(
t2
)(4 et

t

)
d
(
t2x
)
=
(
4 ett

)
dt

Integrating gives

t2x =
∫

4 ett dt

t2x = 4(t− 1) et + c1

Dividing both sides by the integrating factor µ = t2 results in

x = 4(t− 1) et
t2

+ c1
t2

which simplifies to

x = (4t− 4) et + c1
t2

Summary
The solution(s) found are the following

(1)x = (4t− 4) et + c1
t2
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Figure 77: Slope field plot

Verification of solutions

x = (4t− 4) et + c1
t2

Verified OK.

2.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

x′ = −2x+ 4 et
t

x′ = ω(t, x)

The condition of Lie symmetry is the linearized PDE given by

ηt + ω(ηx − ξt)− ω2ξx − ωtξ − ωxη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 68: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(t, x) = 0

η(t, x) = 1
t2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (t, x) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt

ξ
= dx

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂t
+ η ∂

∂x

)
S(t, x) = 1. Starting with the

first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = t

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
t2

dy

Which results in

S = t2x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= St + ω(t, x)Sx

Rt + ω(t, x)Rx
(2)

Where in the above Rt, Rx, St, Sx are all partial derivatives and ω(t, x) is the right hand
side of the original ode given by

ω(t, x) = −2x+ 4 et
t

Evaluating all the partial derivatives gives

Rt = 1
Rx = 0
St = 2tx
Sx = t2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 4 ett (2A)

We now need to express the RHS as function of R only. This is done by solving for t, x
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 4 eRR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 4(R− 1) eR + c1 (4)

To complete the solution, we just need to transform (4) back to t, x coordinates. This
results in

t2x = 4(t− 1) et + c1

Which simplifies to

t2x = 4(t− 1) et + c1

Which gives

x = 4 ett− 4 et + c1
t2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dx
dt

= −2x+4 et
t

dS
dR

= 4 eRR

R = t

S = t2x

Summary
The solution(s) found are the following

(1)x = 4 ett− 4 et + c1
t2
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Figure 78: Slope field plot

Verification of solutions

x = 4 ett− 4 et + c1
t2

Verified OK.

2.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t, x) dt+N(t, x) dx = 0 (1A)

Therefore

(t) dx =
(
−2x+ 4 et

)
dt(

2x− 4 et
)
dt+(t) dx = 0 (2A)

Comparing (1A) and (2A) shows that

M(t, x) = 2x− 4 et

N(t, x) = t

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂x
= ∂N

∂t

Using result found above gives
∂M

∂x
= ∂

∂x

(
2x− 4 et

)
= 2

And
∂N

∂t
= ∂

∂t
(t)

= 1
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Since ∂M
∂x

6= ∂N
∂t
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂x
− ∂N

∂t

)
= 1

t
((2)− (1))

= 1
t

Since A does not depend on x, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dt

= e
∫ 1

t
dt

The result of integrating gives

µ = eln(t)

= t

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= t
(
2x− 4 et

)
= 2t

(
x− 2 et

)
And

N = µN

= t(t)
= t2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dx
dt = 0(

2t
(
x− 2 et

))
+
(
t2
) dx
dt = 0
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The following equations are now set up to solve for the function φ(t, x)

∂φ

∂t
= M (1)

∂φ

∂x
= N (2)

Integrating (1) w.r.t. t gives∫
∂φ

∂t
dt =

∫
M dt∫

∂φ

∂t
dt =

∫
2t
(
x− 2 et

)
dt

(3)φ = (−4t+ 4) et + t2x+ f(x)

Where f(x) is used for the constant of integration since φ is a function of both t and x.
Taking derivative of equation (3) w.r.t x gives

(4)∂φ

∂x
= t2 + f ′(x)

But equation (2) says that ∂φ
∂x

= t2. Therefore equation (4) becomes

(5)t2 = t2 + f ′(x)

Solving equation (5) for f ′(x) gives

f ′(x) = 0

Therefore
f(x) = c1

Where c1 is constant of integration. Substituting this result for f(x) into equation (3)
gives φ

φ = (−4t+ 4) et + t2x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (−4t+ 4) et + t2x
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The solution becomes

x = 4 ett− 4 et + c1
t2

Summary
The solution(s) found are the following

(1)x = 4 ett− 4 et + c1
t2

Figure 79: Slope field plot

Verification of solutions

x = 4 ett− 4 et + c1
t2

Verified OK.
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2.9.4 Maple step by step solution

Let’s solve
x′t+ 2x = 4 et

• Highest derivative means the order of the ODE is 1
x′

• Isolate the derivative
x′ = −2x

t
+ 4 et

t

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
x′ + 2x

t
= 4 et

t

• The ODE is linear; multiply by an integrating factor µ(t)

µ(t)
(
x′ + 2x

t

)
= 4µ(t)et

t

• Assume the lhs of the ODE is the total derivative d
dt
(µ(t)x)

µ(t)
(
x′ + 2x

t

)
= µ′(t)x+ µ(t)x′

• Isolate µ′(t)
µ′(t) = 2µ(t)

t

• Solve to find the integrating factor
µ(t) = t2

• Integrate both sides with respect to t∫ (
d
dt
(µ(t)x)

)
dt =

∫ 4µ(t)et
t

dt+ c1

• Evaluate the integral on the lhs

µ(t)x =
∫ 4µ(t)et

t
dt+ c1

• Solve for x

x =
∫ 4µ(t)et

t
dt+c1

µ(t)

• Substitute µ(t) = t2

x =
∫
4 ettdt+c1

t2

• Evaluate the integrals on the rhs

x = 4(t−1)et+c1
t2

• Simplify
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x = (4t−4)et+c1
t2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(t*diff(x(t),t)+2*x(t)=4*exp(t),x(t), singsol=all)� �

x(t) = (4t− 4) et + c1
t2

3 Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 20� �
DSolve[t*x'[t]+2*x[t]==4*Exp[t],x[t],t,IncludeSingularSolutions -> True]� �

x(t) → 4et(t− 1) + c1
t2
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2.10 problem 10
2.10.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 325
2.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 327
2.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 331
2.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 335

Internal problem ID [2568]
Internal file name [OUTPUT/2060_Sunday_June_05_2022_02_46_45_AM_32706070/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − sin (x) (y sec (x)− 2) = 0

2.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − tan (x)
q(x) = −2 sin (x)

Hence the ode is

y′ − y tan (x) = −2 sin (x)

The integrating factor µ is

µ = e
∫
− tan(x)dx

= cos (x)
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The ode becomes

d
dx(µy) = (µ) (−2 sin (x))

d
dx(cos (x) y) = (cos (x)) (−2 sin (x))

d(cos (x) y) = (− sin (2x)) dx

Integrating gives

cos (x) y =
∫

− sin (2x) dx

cos (x) y = cos (2x)
2 + c1

Dividing both sides by the integrating factor µ = cos (x) results in

y = sec (x) cos (2x)
2 + c1 sec (x)

which simplifies to

y = cos (x)− sec (x)
2 + c1 sec (x)

Summary
The solution(s) found are the following

(1)y = cos (x)− sec (x)
2 + c1 sec (x)
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Figure 80: Slope field plot

Verification of solutions

y = cos (x)− sec (x)
2 + c1 sec (x)

Verified OK.

2.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (x) (sec (x) y − 2)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 71: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)

dy

Which results in

S = cos (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x) (sec (x) y − 2)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − sin (x) y
Sy = cos (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − sin (2x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − sin (2R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cos (2R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

cos (x) y = cos (2x)
2 + c1

Which simplifies to

cos (x) y = cos (2x)
2 + c1

Which gives

y = cos (2x) + 2c1
2 cos (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin (x) (sec (x) y − 2) dS
dR

= − sin (2R)

R = x

S = cos (x) y

Summary
The solution(s) found are the following

(1)y = cos (2x) + 2c1
2 cos (x)
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Figure 81: Slope field plot

Verification of solutions

y = cos (2x) + 2c1
2 cos (x)

Verified OK.

2.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (sin (x) (sec (x) y − 2)) dx
(− sin (x) (sec (x) y − 2)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x) (sec (x) y − 2)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sin (x) (sec (x) y − 2))

= − tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− sec (x) sin (x))− (0))
= − tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− tan(x) dx

The result of integrating gives

µ = eln(cos(x))

= cos (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (x) (− sin (x) (sec (x) y − 2))
= − sin (x) (y − 2 cos (x))

And

N = µN

= cos (x) (1)
= cos (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(− sin (x) (y − 2 cos (x))) + (cos (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x) (y − 2 cos (x)) dx

(3)φ = cos (x) (− cos (x) + y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (x). Therefore equation (4) becomes

(5)cos (x) = cos (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cos (x) (− cos (x) + y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cos (x) (− cos (x) + y)

The solution becomes

y = cos (x)2 + c1
cos (x)

334



Summary
The solution(s) found are the following

(1)y = cos (x)2 + c1
cos (x)

Figure 82: Slope field plot

Verification of solutions

y = cos (x)2 + c1
cos (x)

Verified OK.

2.10.4 Maple step by step solution

Let’s solve
y′ − sin (x) (y sec (x)− 2) = 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = sin (x) y sec (x)− 2 sin (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

− sin (x) y sec (x) + y′ = −2 sin (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (− sin (x) y sec (x) + y′) = −2µ(x) sin (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (− sin (x) y sec (x) + y′) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) sec (x) sin (x)

• Solve to find the integrating factor
µ(x) = 1

sec(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−2µ(x) sin (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−2µ(x) sin (x) dx+ c1

• Solve for y

y =
∫
−2µ(x) sin(x)dx+c1

µ(x)

• Substitute µ(x) = 1
sec(x)

y = sec (x)
(∫

−2 sin(x)
sec(x) dx+ c1

)
• Evaluate the integrals on the rhs

y = sec (x)
(
− sin (x)2 + c1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)=sin(x)*(y(x)*sec(x)-2),y(x), singsol=all)� �

y(x) = cos (x)− sec (x)
2 + sec (x) c1

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 20� �
DSolve[y'[x]==Sin[x]*(y[x]*Sec[x]-2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2 sec(x)(cos(2x) + 2c1)
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2.11 problem 11
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Internal problem ID [2569]
Internal file name [OUTPUT/2061_Sunday_June_05_2022_02_46_48_AM_66628410/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

−y sin (x)− y′ cos (x) = −1

2.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = sec (x)

Hence the ode is

y′ + y tan (x) = sec (x)

The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)
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Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ) (sec (x))

d
dx(sec (x) y) = (sec (x)) (sec (x))

d(sec (x) y) = sec (x)2 dx

Integrating gives

sec (x) y =
∫

sec (x)2 dx

sec (x) y = tan (x) + c1

Dividing both sides by the integrating factor µ = sec (x) results in

y = tan (x) cos (x) + c1 cos (x)

which simplifies to

y = c1 cos (x) + sin (x)

Summary
The solution(s) found are the following

(1)y = c1 cos (x) + sin (x)

339



Figure 83: Slope field plot

Verification of solutions

y = c1 cos (x) + sin (x)

Verified OK.

2.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−1 + sin (x) y
cos (x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 74: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

341



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos (x)dy

Which results in

S = y

cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−1 + sin (x) y
cos (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sec (x) tan (x) y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sec (x)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sec (R)2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = tan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sec (x) = tan (x) + c1

Which simplifies to

y sec (x) = tan (x) + c1

Which gives

y = tan (x) + c1
sec (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−1+sin(x)y
cos(x)

dS
dR

= sec (R)2

R = x

S = sec (x) y

Summary
The solution(s) found are the following

(1)y = tan (x) + c1
sec (x)

343



Figure 84: Slope field plot

Verification of solutions

y = tan (x) + c1
sec (x)

Verified OK.

2.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(− cos (x)) dy = (−1 + sin (x) y) dx
(− sin (x) y + 1) dx+(− cos (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x) y + 1
N(x, y) = − cos (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sin (x) y + 1)

= − sin (x)

And
∂N

∂x
= ∂

∂x
(− cos (x))

= sin (x)

345



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − sec (x) ((− sin (x))− (sin (x)))
= 2 tan (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2 tan(x) dx

The result of integrating gives

µ = e−2 ln(cos(x))

= sec (x)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x)2 (− sin (x) y + 1)
= (− sin (x) y + 1) sec (x)2

And

N = µN

= sec (x)2 (− cos (x))
= − sec (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(− sin (x) y + 1) sec (x)2
)
+ (− sec (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(− sin (x) y + 1) sec (x)2 dx

(3)φ = − sec (x) y + tan (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − sec (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= − sec (x). Therefore equation (4) becomes

(5)− sec (x) = − sec (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − sec (x) y + tan (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sec (x) y + tan (x)

The solution becomes

y = tan (x)− c1
sec (x)
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Summary
The solution(s) found are the following

(1)y = tan (x)− c1
sec (x)

Figure 85: Slope field plot

Verification of solutions

y = tan (x)− c1
sec (x)

Verified OK.

2.11.4 Maple step by step solution

Let’s solve
−y sin (x)− y′ cos (x) = −1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = − sin(x)y
cos(x) + 1

cos(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + sin(x)y

cos(x) = 1
cos(x)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + sin(x)y

cos(x)

)
= µ(x)

cos(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + sin(x)y

cos(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) sin(x)

cos(x)

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
cos(x)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
cos(x)dx+ c1

• Solve for y

y =
∫ µ(x)

cos(x)dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫ 1

cos(x)2dx+ c1
)

• Evaluate the integrals on the rhs
y = cos (x) (tan (x) + c1)

• Simplify
y = c1 cos (x) + sin (x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve((1-y(x)*sin(x))-cos(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = cos (x) c1 + sin (x)

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 13� �
DSolve[(1-y[x]*Sin[x])-Cos[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x) + c1 cos(x)
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2.12 problem 12
2.12.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 351
2.12.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 353
2.12.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 354
2.12.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 358
2.12.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 363

Internal problem ID [2570]
Internal file name [OUTPUT/2062_Sunday_June_05_2022_02_46_50_AM_96056443/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y

x
= 2 ln (x)x2

2.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = 2 ln (x)x2

Hence the ode is

y′ − y

x
= 2 ln (x)x2
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ)

(
2 ln (x)x2)

d
dx

(y
x

)
=
(
1
x

)(
2 ln (x)x2)

d
(y
x

)
= (2 ln (x)x) dx

Integrating gives

y

x
=
∫

2 ln (x)x dx

y

x
= ln (x)x2 − x2

2 + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = x

(
ln (x)x2 − x2

2

)
+ c1x

which simplifies to

y = x3 ln (x)− x3

2 + c1x

Summary
The solution(s) found are the following

(1)y = x3 ln (x)− x3

2 + c1x
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Figure 86: Slope field plot

Verification of solutions

y = x3 ln (x)− x3

2 + c1x

Verified OK.

2.12.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x = 2 ln (x)x2

Integrating both sides gives

u(x) =
∫

2 ln (x)x dx

= ln (x)x2 − x2

2 + c2

Therefore the solution y is

y = xu

= x

(
ln (x)x2 − x2

2 + c2

)
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Summary
The solution(s) found are the following

(1)y = x

(
ln (x)x2 − x2

2 + c2

)

Figure 87: Slope field plot

Verification of solutions

y = x

(
ln (x)x2 − x2

2 + c2

)
Verified OK.

2.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2x3 ln (x) + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 77: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2x3 ln (x) + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2 ln (x)x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2 ln (R)R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 ln (R)− R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= ln (x)x2 − x2

2 + c1

Which simplifies to

y

x
= ln (x)x2 − x2

2 + c1

Which gives

y = x(2 ln (x)x2 − x2 + 2c1)
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2x3 ln(x)+y
x

dS
dR

= 2 ln (R)R

R = x

S = y

x
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Summary
The solution(s) found are the following

(1)y = x(2 ln (x)x2 − x2 + 2c1)
2

Figure 88: Slope field plot

Verification of solutions

y = x(2 ln (x)x2 − x2 + 2c1)
2

Verified OK.

2.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

358



Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(y
x
+ 2 ln (x)x2

)
dx(

−y

x
− 2 ln (x)x2

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y

x
− 2 ln (x)x2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y

x
− 2 ln (x)x2

)
= −1

x
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

−1
x

)
− (0)

)
= −1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x

(
−y

x
− 2 ln (x)x2

)
= −2x3 ln (x)− y

x2

And

N = µN

= 1
x
(1)

= 1
x

360



Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2x3 ln (x)− y

x2

)
+
(
1
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x3 ln (x)− y

x2 dx

(3)φ = − ln (x)x2 + x2

2 + y

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x)x2 + x2

2 + y

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)x2 + x2

2 + y

x

The solution becomes

y = x(2 ln (x)x2 − x2 + 2c1)
2

Summary
The solution(s) found are the following

(1)y = x(2 ln (x)x2 − x2 + 2c1)
2

Figure 89: Slope field plot
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Verification of solutions

y = x(2 ln (x)x2 − x2 + 2c1)
2

Verified OK.

2.12.5 Maple step by step solution

Let’s solve
y′ − y

x
= 2 ln (x)x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
+ 2 ln (x)x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= 2 ln (x)x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= 2µ(x) ln (x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
2µ(x) ln (x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
2µ(x) ln (x)x2dx+ c1

• Solve for y

y =
∫
2µ(x) ln(x)x2dx+c1

µ(x)

• Substitute µ(x) = 1
x
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y = x
(∫

2 ln (x)xdx+ c1
)

• Evaluate the integrals on the rhs

y =
(
ln (x)x2 − x2

2 + c1
)
x

• Simplify
y = x3 ln (x)− x3

2 + c1x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)-y(x)/x=2*x^2*ln(x),y(x), singsol=all)� �

y(x) = x3 ln (x)− x3

2 + c1x

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 23� �
DSolve[y'[x]-y[x]/x==2*x^2*Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x3

2 + x3 log(x) + c1x
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2.13 problem 13
2.13.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 365
2.13.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 366
2.13.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 369
2.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 373

Internal problem ID [2571]
Internal file name [OUTPUT/2063_Sunday_June_05_2022_02_46_52_AM_32115168/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ + αy = eβx

2.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = α

q(x) = eβx

Hence the ode is

y′ + αy = eβx

The integrating factor µ is

µ = e
∫
αdx

= eαx
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The ode becomes
d
dx(µy) = (µ)

(
eβx
)

d
dx(e

αxy) = (eαx)
(
eβx
)

d(eαxy) = ex(α+β) dx

Integrating gives

eαxy =
∫

ex(α+β) dx

eαxy = ex(α+β)

α + β
+ c1

Dividing both sides by the integrating factor µ = eαx results in

y = e−αxex(α+β)

α + β
+ c1e−αx

which simplifies to

y = c1(α + β) e−αx + eβx
α + β

Summary
The solution(s) found are the following

(1)y = c1(α + β) e−αx + eβx
α + β

Verification of solutions

y = c1(α + β) e−αx + eβx
α + β

Verified OK.

2.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −αy + eβx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 80: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−αx (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−αx
dy

Which results in

S = eαxy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −αy + eβx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = α eαxy
Sy = eαx

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex(α+β) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR(α+β)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR(α+β)

α + β
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

eαxy = ex(α+β)

α + β
+ c1

Which simplifies to

eαxy = ex(α+β)

α + β
+ c1

Which gives

y =
(
αc1 + βc1 + ex(α+β)) e−αx

α + β

Summary
The solution(s) found are the following

(1)y =
(
αc1 + βc1 + ex(α+β)) e−αx

α + β

Verification of solutions

y =
(
αc1 + βc1 + ex(α+β)) e−αx

α + β

Verified OK.

2.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−αy + eβx

)
dx(

αy − eβx
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = αy − eβx

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
αy − eβx

)
= α
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((α)− (0))
= α

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
αdx

The result of integrating gives

µ = eαx

= eαx

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= eαx
(
αy − eβx

)
=
(
αy − eβx

)
eαx

And

N = µN

= eαx(1)
= eαx

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

αy − eβx
)
eαx
)
+ (eαx) dydx = 0

371



The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
αy − eβx

)
eαx dx

(3)φ = −ex(α+β) + y(α + β) eαx
α + β

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= eαx + f ′(y)

But equation (2) says that ∂φ
∂y

= eαx. Therefore equation (4) becomes

(5)eαx = eαx + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −ex(α+β) + y(α + β) eαx
α + β

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−ex(α+β) + y(α + β) eαx

α + β
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The solution becomes

y =
(
αc1 + βc1 + ex(α+β)) e−αx

α + β

Summary
The solution(s) found are the following

(1)y =
(
αc1 + βc1 + ex(α+β)) e−αx

α + β

Verification of solutions

y =
(
αc1 + βc1 + ex(α+β)) e−αx

α + β

Verified OK.

2.13.4 Maple step by step solution

Let’s solve
y′ + αy = eβx

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −αy + eβx

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + αy = eβx

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + αy) = µ(x) eβx

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + αy) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)α

• Solve to find the integrating factor
µ(x) = eαx

• Integrate both sides with respect to x
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∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) eβxdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) eβxdx+ c1

• Solve for y

y =
∫
µ(x)eβxdx+c1

µ(x)

• Substitute µ(x) = eαx

y =
∫
eβxeαxdx+c1

eαx

• Evaluate the integrals on the rhs

y =
eαx+βx

α+β
+c1

eαx

• Simplify

y =
(
ex(α+β)+(α+β)c1

)
e−αx

α+β

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x)+alpha*y(x)=exp(beta*x),y(x), singsol=all)� �

y(x) =
e−αx

(
ex(α+β) + c1(α + β)

)
α + β
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3 Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 31� �
DSolve[y'[x]+\[Alpha]*y[x]==Exp[\[Beta]*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
eα(−x)(ex(α+β) + c1(α + β)

)
α + β
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2.14 problem 14
2.14.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 376
2.14.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 377

Internal problem ID [2572]
Internal file name [OUTPUT/2064_Sunday_June_05_2022_02_46_55_AM_66233644/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = −m

x
+ ln (x)

2.14.1 Solving as quadrature ode

Integrating both sides gives

y =
∫ ln (x)x−m

x
dx

= ln (x)x− x−m ln (x) + c1

Summary
The solution(s) found are the following

(1)y = ln (x)x− x−m ln (x) + c1

Verification of solutions

y = ln (x)x− x−m ln (x) + c1

Verified OK.
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2.14.2 Maple step by step solution

Let’s solve
y′ = −m

x
+ ln (x)

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫ (
−m

x
+ ln (x)

)
dx+ c1

• Evaluate integral
y = ln (x)x− x−m ln (x) + c1

• Solve for y
y = ln (x)x− x−m ln (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)+m/x=ln(x),y(x), singsol=all)� �

y(x) = (−m+ x) ln (x) + c1 − x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 19� �
DSolve[y'[x]+m/x==Log[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x−m) log(x)− x+ c1
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3.1 problem 9
3.1.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 379
3.1.2 Solving as first order ode lie symmetry calculated ode . . . . . . 381
3.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 386

Internal problem ID [2573]
Internal file name [OUTPUT/2065_Sunday_June_05_2022_02_46_57_AM_25630428/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(3x− y) y′ − 3y = 0

3.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(3x− u(x)x) (u′(x)x+ u(x))− 3u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2

(u− 3)x
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Where f(x) = − 1
x
and g(u) = u2

u−3 . Integrating both sides gives

1
u2

u−3
du = −1

x
dx

∫ 1
u2

u−3
du =

∫
−1
x
dx

3
u
+ ln (u) = − ln (x) + c2

The solution is
3

u (x) + ln (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

3x
y

+ ln
(y
x

)
+ ln (x)− c2 = 0

3x
y

+ ln
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)3x
y

+ ln
(y
x

)
+ ln (x)− c2 = 0
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Figure 90: Slope field plot

Verification of solutions

3x
y

+ ln
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

3.1.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 3y
−3x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
3y(b3 − a2)
−3x+ y

− 9y2a3
(−3x+ y)2

+ 9y(xa2 + ya3 + a1)
(−3x+ y)2

−
(
− 3
−3x+ y

+ 3y
(−3x+ y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−6xyb2 − 3y2a2 − y2b2 + 3y2b3 + 9xb1 − 9ya1
(3x− y)2

= 0

Setting the numerator to zero gives

(6E)−6xyb2 + 3y2a2 + y2b2 − 3y2b3 − 9xb1 + 9ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)3a2v22 − 6b2v1v2 + b2v
2
2 − 3b3v22 + 9a1v2 − 9b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−6b2v1v2 − 9b1v1 + (3a2 + b2 − 3b3) v22 + 9a1v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

9a1 = 0
−9b1 = 0
−6b2 = 0

3a2 + b2 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = a3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 3y
−3x+ y

)
(x)

= − y2

3x− y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y2

3x−y

dy

Which results in

S = 3x
y

+ ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 3y
−3x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3
y

Sy =
−3x+ y

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y) y + 3x
y

= c1

Which simplifies to
ln (y) y + 3x

y
= c1

Which gives

y = eLambertW
(
−3x e−c1

)
+c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 3y
−3x+y

dS
dR

= 0

R = x

S = ln (y) y + 3x
y

Summary
The solution(s) found are the following

(1)y = eLambertW
(
−3x e−c1

)
+c1
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Figure 91: Slope field plot

Verification of solutions

y = eLambertW
(
−3x e−c1

)
+c1

Verified OK.

3.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(3x− y) dy = (3y) dx
(−3y) dx+(3x− y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −3y
N(x, y) = 3x− y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−3y)

= −3

And
∂N

∂x
= ∂

∂x
(3x− y)

= 3
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x− y
((−3)− (3))

= − 6
3x− y

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

3y ((3)− (−3))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−3y)

= −3
y

And

N = µN

= 1
y2

(3x− y)

= 3x− y

y2
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−3
y

)
+
(
3x− y

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−3
y
dx

(3)φ = −3x
y

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 3x−y
y2

. Therefore equation (4) becomes

(5)3x− y

y2
= 3x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −3x
y

− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −3x
y

− ln (y)

The solution becomes
y = eLambertW(−3 ec1x)−c1

Summary
The solution(s) found are the following

(1)y = eLambertW(−3 ec1x)−c1
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Figure 92: Slope field plot

Verification of solutions

y = eLambertW(−3 ec1x)−c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �

391



3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve((3*x-y(x))*diff(y(x),x)=3*y(x),y(x), singsol=all)� �

y(x) = − 3x
LambertW (−3x e−3c1)

3 Solution by Mathematica
Time used: 6.016 (sec). Leaf size: 25� �
DSolve[(3*x-y[x])*y'[x]==3*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 3x
W (−3e−c1x)

y(x) → 0

392



3.2 problem 10
3.2.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 393
3.2.2 Solving as first order ode lie symmetry calculated ode . . . . . . 395
3.2.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 400

Internal problem ID [2574]
Internal file name [OUTPUT/2066_Sunday_June_05_2022_02_47_00_AM_18701538/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′ − (y + x)2

2x2 = 0

3.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− (u(x)x+ x)2

2x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
u2

2 + 1
2

x
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Where f(x) = 1
x
and g(u) = u2

2 + 1
2 . Integrating both sides gives

1
u2

2 + 1
2
du = 1

x
dx

∫ 1
u2

2 + 1
2
du =

∫ 1
x
dx

2 arctan (u) = ln (x) + c2

The solution is
2 arctan (u(x))− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

2 arctan
(y
x

)
− ln (x)− c2 = 0

2 arctan
(y
x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)2 arctan
(y
x

)
− ln (x)− c2 = 0

Figure 93: Slope field plot
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Verification of solutions

2 arctan
(y
x

)
− ln (x)− c2 = 0

Verified OK.

3.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = (y + x)2

2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(y + x)2 (b3 − a2)

2x2 − (y + x)4 a3
4x4

−

(
y + x

x2 − (y + x)2

x3

)
(xa2 + ya3 + a1)−

(y + x) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−2x4a2 + x4a3 − 2x4b3 + 4x3ya3 + 4x3yb2 − 2x2y2a2 + 2x2y2a3 + 2x2y2b3 + y4a3 + 4x3b1 − 4x2ya1 + 4x2yb1 − 4x y2a1
4x4

= 0
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Setting the numerator to zero gives

(6E)−2x4a2 − x4a3 + 2x4b3 − 4x3ya3 − 4x3yb2 + 2x2y2a2 − 2x2y2a3
− 2x2y2b3 − y4a3 − 4x3b1 + 4x2ya1 − 4x2yb1 + 4x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v41 + 2a2v21v22 − a3v
4
1 − 4a3v31v2 − 2a3v21v22 − a3v

4
2 − 4b2v31v2

+ 2b3v41 − 2b3v21v22 + 4a1v21v2 + 4a1v1v22 − 4b1v31 − 4b1v21v2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2 − a3 + 2b3) v41 + (−4a3 − 4b2) v31v2 − 4b1v31
+ (2a2 − 2a3 − 2b3) v21v22 + (4a1 − 4b1) v21v2 + 4a1v1v22 − a3v

4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a1 = 0
−a3 = 0
−4b1 = 0

4a1 − 4b1 = 0
−4a3 − 4b2 = 0

−2a2 − a3 + 2b3 = 0
2a2 − 2a3 − 2b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
(y + x)2

2x2

)
(x)

= −x2 − y2

2x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−y2

2x

dy
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Which results in

S = −2 arctan
(y
x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (y + x)2

2x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y
x2 + y2

Sy = − 2x
x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2 arctan
(y
x

)
= − ln (x) + c1
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Which simplifies to

−2 arctan
(y
x

)
= − ln (x) + c1

Which gives

y = − tan
(
− ln (x)

2 + c1
2

)
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (y+x)2
2x2

dS
dR

= − 1
R

R = x

S = −2 arctan
(y
x

)

Summary
The solution(s) found are the following

(1)y = − tan
(
− ln (x)

2 + c1
2

)
x
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Figure 94: Slope field plot

Verification of solutions

y = − tan
(
− ln (x)

2 + c1
2

)
x

Verified OK.

3.2.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= (y + x)2

2x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 1
2 + y

x
+ y2

2x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 1
2 , f1(x) =

1
x
and f2(x) = 1

2x2 . Let

y = −u′

f2u

= −u′

u
2x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1

x3

f1f2 =
1
2x3

f 2
2 f0 =

1
8x4

Substituting the above terms back in equation (2) gives

u′′(x)
2x2 + u′(x)

2x3 + u(x)
8x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(
ln (x)
2

)
+ c2 cos

(
ln (x)
2

)
The above shows that

u′(x) =
c1 cos

(
ln(x)
2

)
− c2 sin

(
ln(x)
2

)
2x

Using the above in (1) gives the solution

y = −
x
(
c1 cos

(
ln(x)
2

)
− c2 sin

(
ln(x)
2

))
c1 sin

(
ln(x)
2

)
+ c2 cos

(
ln(x)
2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y =

(
−c3 cos

(
ln(x)
2

)
+ sin

(
ln(x)
2

))
x

c3 sin
(

ln(x)
2

)
+ cos

(
ln(x)
2

)
Summary
The solution(s) found are the following

(1)y =

(
−c3 cos

(
ln(x)
2

)
+ sin

(
ln(x)
2

))
x

c3 sin
(

ln(x)
2

)
+ cos

(
ln(x)
2

)

Figure 95: Slope field plot

Verification of solutions

y =

(
−c3 cos

(
ln(x)
2

)
+ sin

(
ln(x)
2

))
x

c3 sin
(

ln(x)
2

)
+ cos

(
ln(x)
2

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)=(x+y(x))^2/(2*x^2),y(x), singsol=all)� �

y(x) = tan
(
ln (x)
2 + c1

2

)
x

3 Solution by Mathematica
Time used: 0.234 (sec). Leaf size: 17� �
DSolve[y'[x]==(x+y[x])^2/(2*x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x tan
(
log(x)

2 + c1

)
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3.3 problem 11
3.3.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 404
3.3.2 Solving as first order ode lie symmetry calculated ode . . . . . . 406
3.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 412

Internal problem ID [2575]
Internal file name [OUTPUT/2067_Sunday_June_05_2022_02_47_02_AM_4957607/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

sin
(y
x

)
(xy′ − y)− x cos

(y
x

)
= 0

3.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

sin (u(x)) (x(u′(x)x+ u(x))− u(x)x)− x cos (u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= cot (u)
x
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Where f(x) = 1
x
and g(u) = cot (u). Integrating both sides gives

1
cot (u) du = 1

x
dx∫ 1

cot (u) du =
∫ 1

x
dx

− ln (cos (u)) = ln (x) + c2

Raising both side to exponential gives

1
cos (u) = eln(x)+c2

Which simplifies to

sec (u) = c3x

Therefore the solution y is

y = xu

= x arcsec (c3ec2x)

Summary
The solution(s) found are the following

(1)y = x arcsec (c3ec2x)
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Figure 96: Slope field plot

Verification of solutions

y = x arcsec (c3ec2x)

Verified OK.

3.3.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
x cos

(
y
x

)
+ sin

(
y
x

)
y

sin
(
y
x

)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
x cos

(
y
x

)
+ sin

(
y
x

)
y
)
(b3 − a2)

sin
(
y
x

)
x

−
(
x cos

(
y
x

)
+ sin

(
y
x

)
y
)2

a3

sin
(
y
x

)2
x2

−

(
cos
(
y
x

)
+ y sin

( y
x

)
x

− y2 cos
( y
x

)
x2

sin
(
y
x

)
x

+
(
x cos

(
y
x

)
+ sin

(
y
x

)
y
)
y cos

(
y
x

)
sin
(
y
x

)2
x3

−
x cos

(
y
x

)
+ sin

(
y
x

)
y

sin
(
y
x

)
x2

)
(xa2 + ya3 + a1)

−

(
cos
(
y
x

)
y

x2 sin
(
y
x

) − (x cos ( yx)+ sin
(
y
x

)
y
)
cos
(
y
x

)
sin
(
y
x

)2
x2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−
cos
(
y
x

)2
x2a3 − cos

(
y
x

)2
x2b2 + cos

(
y
x

)2
xya2 − cos

(
y
x

)2
xyb3 + cos

(
y
x

)2
y2a3 + cos

(
y
x

)
sin
(
y
x

)
x2a2 − cos

(
y
x

)
sin
(
y
x

)
x2b3 + 2 cos

(
y
x

)
sin
(
y
x

)
xya3 − b2 sin

(
y
x

)2
x2 + sin

(
y
x

)2
xya2 − sin

(
y
x

)2
xyb3 + sin

(
y
x

)2
y2a3 − cos

(
y
x

)2
xb1 + cos

(
y
x

)2
ya1

x2 sin
(
y
x

)2
= 0

Setting the numerator to zero gives

(6E)

− cos
(y
x

)2
x2a3 + cos

(y
x

)2
x2b2 − cos

(y
x

)2
xya2 + cos

(y
x

)2
xyb3

− cos
(y
x

)2
y2a3 − cos

(y
x

)
sin
(y
x

)
x2a2 + cos

(y
x

)
sin
(y
x

)
x2b3

− 2 cos
(y
x

)
sin
(y
x

)
xya3 + b2 sin

(y
x

)2
x2 − sin

(y
x

)2
xya2

+ sin
(y
x

)2
xyb3 − sin

(y
x

)2
y2a3 + cos

(y
x

)2
xb1 − cos

(y
x

)2
ya1 = 0

Simplifying the above gives

(6E)−
x
(
x2a2 sin

(2y
x

)
− x2b3 sin

(2y
x

)
+ 2xya3 sin

(2y
x

)
+ x2a3 cos

(2y
x

)
− xb1 cos

(2y
x

)
+ ya1 cos

(2y
x

)
+ x2a3 − 2x2b2 + 2xya2 − 2xyb3 + 2y2a3 − xb1 + ya1

)
2

= 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y, cos

(
2y
x

)
, sin

(
2y
x

)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, cos
(
2y
x

)
= v3, sin

(
2y
x

)
= v4

}

The above PDE (6E) now becomes

(7E)−v1(v21a2v4 + v21a3v3 + 2v1v2a3v4 − v21b3v4 + v2a1v3 + 2v1v2a2 + v21a3 + 2v22a3 − v1b1v3 − 2v21b2 − 2v1v2b3 + v2a1 − v1b1)
2

= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)
(
−a3

2 + b2
)
v31 −

a3v3v
3
1

2 +
(
−a2

2 + b3
2

)
v4v

3
1 +

b1v
2
1

2 + (b3 − a2) v2v21

+ b1v3v
2
1

2 − a3v4v2v
2
1 − a3v

2
2v1 −

a1v2v1
2 − a1v2v3v1

2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a1
2 = 0

−a3 = 0

−a3
2 = 0
b1
2 = 0

−a2
2 + b3

2 = 0

−a3
2 + b2 = 0

b3 − a2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
x cos

(
y
x

)
+ sin

(
y
x

)
y

sin
(
y
x

)
x

)
(x)

= −
cos
(
y
x

)
x

sin
(
y
x

)
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

409



S is found from

S =
∫ 1

η
dy

=
∫ 1

− cos
( y
x

)
x

sin
( y
x

) dy

Which results in

S = ln
(
cos
(y
x

))
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
x cos

(
y
x

)
+ sin

(
y
x

)
y

sin
(
y
x

)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
tan

(
y
x

)
y

x2

Sy = −
tan

(
y
x

)
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
cos
(y
x

))
= − ln (x) + c1

Which simplifies to

ln
(
cos
(y
x

))
= − ln (x) + c1

Which gives

y = x arccos
(
ec1
x

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x cos
( y
x

)
+sin

( y
x

)
y

sin
( y
x

)
x

dS
dR

= − 1
R

R = x

S = ln
(
cos
(y
x

))

Summary
The solution(s) found are the following

(1)y = x arccos
(
ec1
x

)
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Figure 97: Slope field plot

Verification of solutions

y = x arccos
(
ec1
x

)
Verified OK.

3.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
sin
(y
x

)
x
)
dy =

(
x cos

(y
x

)
+ sin

(y
x

)
y
)
dx(

−x cos
(y
x

)
− sin

(y
x

)
y
)
dx+

(
sin
(y
x

)
x
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x cos
(y
x

)
− sin

(y
x

)
y

N(x, y) = sin
(y
x

)
x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x cos

(y
x

)
− sin

(y
x

)
y
)

= −
cos
(
y
x

)
y

x
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And
∂N

∂x
= ∂

∂x

(
sin
(y
x

)
x
)

= −
cos
(
y
x

)
y

x
+ sin

(y
x

)
Since ∂M

∂y
6= ∂N

∂x
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
=

csc
(
y
x

)
x

((
−
cos
(
y
x

)
y

x

)
−

(
−
cos
(
y
x

)
y

x
+ sin

(y
x

)))
= −1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x

(
−x cos

(y
x

)
− sin

(y
x

)
y
)

=
−x cos

(
y
x

)
− sin

(
y
x

)
y

x

And

N = µN

= 1
x

(
sin
(y
x

)
x
)

= sin
(y
x

)
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x cos
(
y
x

)
− sin

(
y
x

)
y

x

)
+
(
sin
(y
x

)) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ −x cos
(
y
x

)
− sin

(
y
x

)
y

x
dx

(3)φ = −x cos
(y
x

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin

(y
x

)
+ f ′(y)

But equation (2) says that ∂φ
∂y

= sin
(
y
x

)
. Therefore equation (4) becomes

(5)sin
(y
x

)
= sin

(y
x

)
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x cos
(y
x

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x cos
(y
x

)
Summary
The solution(s) found are the following

(1)−x cos
(y
x

)
= c1

Figure 98: Slope field plot

Verification of solutions

−x cos
(y
x

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(sin(y(x)/x)*(x*diff(y(x),x)-y(x))=x*cos(y(x)/x),y(x), singsol=all)� �

y(x) = x arccos
(

1
c1x

)
3 Solution by Mathematica
Time used: 25.589 (sec). Leaf size: 56� �
DSolve[Sin[y[x]/x]*(x*y'[x]-y[x])==x*Cos[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x arccos
(
e−c1

x

)
y(x) → x arccos

(
e−c1

x

)
y(x) → −πx

2
y(x) → πx

2
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3.4 problem 12
3.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 418

Internal problem ID [2576]
Internal file name [OUTPUT/2068_Sunday_June_05_2022_02_47_07_AM_35449455/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′ −
√
16x2 − y2 − y = 0

3.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
√
16x2 − y2 + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(√

16x2 − y2 + y
)
(b3 − a2)

x
−
(√

16x2 − y2 + y
)2

a3

x2

−
(

16√
16x2 − y2

−
√
16x2 − y2 + y

x2

)
(xa2 + ya3 + a1)

−

(
− y√

16x2−y2
+ 1
)
(xb2 + yb3 + b1)

x
= 0

Putting the above in normal form gives

−(16x2 − y2)
3
2 a3 + 16x3a2 − 16x3b3 + 32x2ya3 − x2yb2 − y3a3 +

√
16x2 − y2 xb1 −

√
16x2 − y2 ya1 − xyb1 + y2a1√

16x2 − y2 x2

= 0

Setting the numerator to zero gives

(6E)−
(
16x2 − y2

) 3
2 a3 − 16x3a2 + 16x3b3 − 32x2ya3 + x2yb2 + y3a3

−
√

16x2 − y2 xb1 +
√
16x2 − y2 ya1 + xyb1 − y2a1 = 0

Simplifying the above gives

(6E)−
(
16x2 − y2

) 3
2 a3 +

(
16x2 − y2

)
xb3 −

(
16x2 − y2

)
ya3

− 16x3a2 − 16x2ya3 + x2yb2 + x y2b3 +
(
16x2 − y2

)
a1

−
√

16x2 − y2 xb1 +
√
16x2 − y2 ya1 − 16x2a1 + xyb1 = 0

Since the PDE has radicals, simplifying gives

−16x3a2 + 16x3b3 − 16x2
√

16x2 − y2 a3 − 32x2ya3 + x2yb2 +
√

16x2 − y2 y2a3

+ y3a3 −
√

16x2 − y2 xb1 + xyb1 +
√

16x2 − y2 ya1 − y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
16x2 − y2

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

16x2 − y2 = v3
}

The above PDE (6E) now becomes

(7E)−16v31a2 − 32v21v2a3 − 16v21v3a3 + v32a3 + v3v
2
2a3 + v21v2b2

+ 16v31b3 − v22a1 + v3v2a1 + v1v2b1 − v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(−16a2 + 16b3) v31 + (−32a3 + b2) v21v2 − 16v21v3a3
+ v1v2b1 − v3v1b1 + v32a3 + v3v

2
2a3 − v22a1 + v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
b1 = 0

−a1 = 0
−16a3 = 0

−b1 = 0
−16a2 + 16b3 = 0
−32a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(√

16x2 − y2 + y

x

)
(x)

= −
√

16x2 − y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
16x2 − y2

dy

Which results in

S = − arctan
(

y√
16x2 − y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
16x2 − y2 + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y√
16x2 − y2 x

Sy = − 1√
16x2 − y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− arctan
(

y√
16x2 − y2

)
= − ln (x) + c1

Which simplifies to

− arctan
(

y√
16x2 − y2

)
= − ln (x) + c1

Which gives

y = −4 tan (− ln (x) + c1)
√

x2

tan (− ln (x) + c1)2 + 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
√

16x2−y2+y
x

dS
dR

= − 1
R

R = x

S = − arctan
(

y√
16x2 − y2

)

Summary
The solution(s) found are the following

(1)y = −4 tan (− ln (x) + c1)
√

x2

tan (− ln (x) + c1)2 + 1
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Figure 99: Slope field plot

Verification of solutions

y = −4 tan (− ln (x) + c1)
√

x2

tan (− ln (x) + c1)2 + 1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �

424



3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(x*diff(y(x),x)=sqrt(16*x^2-y(x)^2)+y(x),y(x), singsol=all)� �

− arctan

 y(x)√
16x2 − y (x)2

+ ln (x)− c1 = 0

3 Solution by Mathematica
Time used: 0.43 (sec). Leaf size: 18� �
DSolve[x*y'[x]==Sqrt[16*x^2-y[x]^2]+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4x cosh(i log(x) + c1)
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3.5 problem 13
3.5.1 Solving as first order ode lie symmetry calculated ode . . . . . . 426

Internal problem ID [2577]
Internal file name [OUTPUT/2069_Sunday_June_05_2022_02_47_11_AM_32996207/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′ − y −
√

9x2 + y2 = 0

3.5.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y +
√
9x2 + y2

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
y +

√
9x2 + y2

)
(b3 − a2)

x
−
(
y +

√
9x2 + y2

)2
a3

x2

−
(

9√
9x2 + y2

− y +
√
9x2 + y2

x2

)
(xa2 + ya3 + a1)

−

(
1 + y√

9x2+y2

)
(xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−(9x2 + y2)
3
2 a3 + 9x3a2 − 9x3b3 + 18x2ya3 + x2yb2 + y3a3 +

√
9x2 + y2 xb1 −

√
9x2 + y2 ya1 + xyb1 − y2a1√

9x2 + y2 x2

= 0

Setting the numerator to zero gives

(6E)−
(
9x2 + y2

) 3
2 a3 − 9x3a2 + 9x3b3 − 18x2ya3 − x2yb2 − y3a3

−
√

9x2 + y2 xb1 +
√

9x2 + y2 ya1 − xyb1 + y2a1 = 0

Simplifying the above gives

(6E)−
(
9x2 + y2

) 3
2 a3 +

(
9x2 + y2

)
xb3 −

(
9x2 + y2

)
ya3 − 9x3a2 − 9x2ya3 − x2yb2

−x y2b3+
(
9x2+y2

)
a1−

√
9x2 + y2 xb1+

√
9x2 + y2 ya1−9x2a1−xyb1 = 0

Since the PDE has radicals, simplifying gives

−9x3a2 + 9x3b3 − 9x2
√

9x2 + y2 a3 − 18x2ya3 − x2yb2 −
√
9x2 + y2 y2a3

− y3a3 −
√

9x2 + y2 xb1 − xyb1 +
√
9x2 + y2 ya1 + y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
9x2 + y2

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
9x2 + y2 = v3

}
The above PDE (6E) now becomes

(7E)−9v31a2 − 18v21v2a3 − 9v21v3a3 − v32a3 − v3v
2
2a3 − v21v2b2

+ 9v31b3 + v22a1 + v3v2a1 − v1v2b1 − v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(−9a2 + 9b3) v31 + (−18a3 − b2) v21v2 − 9v21v3a3 − v1v2b1
− v3v1b1 − v32a3 − v3v

2
2a3 + v22a1 + v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−9a3 = 0
−a3 = 0
−b1 = 0

−9a2 + 9b3 = 0
−18a3 − b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y +

√
9x2 + y2

x

)
(x)

= −
√

9x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
9x2 + y2

dy

Which results in

S = − ln
(
y +

√
9x2 + y2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y +
√
9x2 + y2

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 9x√
9x2 + y2

(
y +

√
9x2 + y2

)
Sy = − 1√

9x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

2
(√

9x2 + y2 y + 9x2 + y2
)

x
√
9x2 + y2

(
y +

√
9x2 + y2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
y +

√
9x2 + y2

)
= −2 ln (x) + c1

Which simplifies to

− ln
(
y +

√
9x2 + y2

)
= −2 ln (x) + c1

Which gives

y = −e−c1(9 e2c1 − x2)
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+
√

9x2+y2

x
dS
dR

= − 2
R

R = x

S = − ln
(
y +

√
9x2 + y2

)

Summary
The solution(s) found are the following

(1)y = −e−c1(9 e2c1 − x2)
2
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Figure 100: Slope field plot

Verification of solutions

y = −e−c1(9 e2c1 − x2)
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve(x*diff(y(x),x)-y(x)=sqrt(9*x^2+y(x)^2),y(x), singsol=all)� �

−c1x
2 +

√
9x2 + y (x)2 + y(x)

x2 = 0

3 Solution by Mathematica
Time used: 0.376 (sec). Leaf size: 27� �
DSolve[x*y'[x]-y[x]==Sqrt[9*x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 9ec1x2

2 − e−c1

2
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3.6 problem 14
3.6.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 434
3.6.2 Solving as first order ode lie symmetry calculated ode . . . . . . 436

Internal problem ID [2578]
Internal file name [OUTPUT/2070_Sunday_June_05_2022_02_47_16_AM_42539443/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

x
(
x2 − y2

)
− x
(
y2 + x2) y′ = 0

3.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
x2 − u(x)2 x2)− x

(
u(x)2 x2 + x2) (u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u3 + u2 + u− 1
(u2 + 1)x

Where f(x) = − 1
x
and g(u) = u3+u2+u−1

u2+1 . Integrating both sides gives

1
u3+u2+u−1

u2+1
du = −1

x
dx
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∫ 1
u3+u2+u−1

u2+1
du =

∫
−1
x
dx

∫ u _a2 + 1
_a3 + _a2 + _a− 1d_a = − ln (x) + c2

Which results in ∫ u _a2 + 1
_a3 + _a2 + _a− 1d_a = − ln (x) + c2

The solution is ∫ u(x) _a2 + 1
_a3 + _a2 + _a− 1d_a+ ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form∫ y

x _a2 + 1
_a3 + _a2 + _a− 1d_a+ ln (x)− c2 = 0∫ y

x _a2 + 1
_a3 + _a2 + _a− 1d_a+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
∫ y

x _a2 + 1
_a3 + _a2 + _a− 1d_a+ ln (x)− c2 = 0
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Figure 101: Slope field plot

Verification of solutions∫ y
x _a2 + 1
_a3 + _a2 + _a− 1d_a+ ln (x)− c2 = 0

Verified OK.

3.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−x2 + y2

x2 + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−x2 + y2) (b3 − a2)

x2 + y2
− (−x2 + y2)2 a3

(x2 + y2)2

−
(

2x
x2 + y2

+ 2(−x2 + y2)x
(x2 + y2)2

)
(xa2 + ya3 + a1)

−
(
− 2y
x2 + y2

+ 2(−x2 + y2) y
(x2 + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a2 + x4a3 − x4b2 − x4b3 − 4x3yb2 + 4x2y2a2 − 2x2y2a3 − 2x2y2b2 − 4x2y2b3 + 4x y3a3 − y4a2 + y4a3 − y4b2 + y4b3 − 4x2yb1 + 4x y2a1
(x2 + y2)2

= 0

Setting the numerator to zero gives

(6E)−x4a2 − x4a3 + x4b2 + x4b3 + 4x3yb2 − 4x2y2a2 + 2x2y2a3 + 2x2y2b2
+ 4x2y2b3 − 4x y3a3 + y4a2 − y4a3 + y4b2 − y4b3 + 4x2yb1 − 4x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
4
1 − 4a2v21v22 + a2v

4
2 − a3v

4
1 + 2a3v21v22 − 4a3v1v32 − a3v

4
2 + b2v

4
1 + 4b2v31v2

+ 2b2v21v22 + b2v
4
2 + b3v

4
1 + 4b3v21v22 − b3v

4
2 − 4a1v1v22 + 4b1v21v2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 + b2 + b3) v41 + 4b2v31v2 + (−4a2 + 2a3 + 2b2 + 4b3) v21v22
+ 4b1v21v2 − 4a3v1v32 − 4a1v1v22 + (a2 − a3 + b2 − b3) v42 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
−4a3 = 0
4b1 = 0
4b2 = 0

−4a2 + 2a3 + 2b2 + 4b3 = 0
−a2 − a3 + b2 + b3 = 0
a2 − a3 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

x

= y

x

This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x

And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x2 + y2

x2 + y2
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Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x(x2 + y2)

x3 − x2y − x y2 − y3
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R2 − 1

R3 +R2 +R− 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− R2 + 1
R3 +R2 +R− 1dR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y

x

− _a2 + 1
_a3 + _a2 + _a− 1d_a+ c1

Which simplifies to

ln (x) =
∫ y

x

− _a2 + 1
_a3 + _a2 + _a− 1d_a+ c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x2+y2

x2+y2
dS
dR

= −R2−1
R3+R2+R−1

R = y

x
S = ln (x)

Summary
The solution(s) found are the following

(1)ln (x) =
∫ y

x

− _a2 + 1
_a3 + _a2 + _a− 1d_a+ c1
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Figure 102: Slope field plot

Verification of solutions

ln (x) =
∫ y

x

− _a2 + 1
_a3 + _a2 + _a− 1d_a+ c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 32� �
dsolve(x*(x^2-y(x)^2)-x*(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = RootOf
(∫ _Z _a2 + 1

_a3 + _a2 + _a− 1d_a+ ln (x) + c1

)
x

3 Solution by Mathematica
Time used: 0.133 (sec). Leaf size: 71� �
DSolve[x*(x^2-y[x]^2)-x*(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

RootSum
#13 +#12 +#1

− 1&,
#12 log

(
y(x)
x

−#1
)
+ log

(
y(x)
x

−#1
)

3#12 + 2#1 + 1
&

 = − log(x) + c1, y(x)


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3.7 problem 15
3.7.1 Solving as first order ode lie symmetry calculated ode . . . . . . 444
3.7.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 450

Internal problem ID [2579]
Internal file name [OUTPUT/2071_Sunday_June_05_2022_02_47_18_AM_35225455/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ + y ln (x)− y ln (y) = 0

3.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(ln (x)− ln (y))
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

y(ln (x)− ln (y)) (b3 − a2)
x

− y2(ln (x)− ln (y))2 a3
x2

−
(
− y

x2 + y(ln (x)− ln (y))
x2

)
(xa2 + ya3 + a1)

−
(
− ln (x)− ln (y)

x
+ 1

x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

− ln (x)2 y2a3 − 2 ln (x) ln (y) y2a3 + ln (y)2 y2a3 − ln (x)x2b2 + ln (x) y2a3 + ln (y)x2b2 − ln (y) y2a3 − ln (x)xb1 + ln (x) ya1 + ln (y)xb1 − ln (y) ya1 − xya2 + xyb3 − y2a3 + xb1 − ya1
x2

= 0

Setting the numerator to zero gives

(6E)− ln (x)2 y2a3 + 2 ln (x) ln (y) y2a3 − ln (y)2 y2a3 + ln (x)x2b2
− ln (x) y2a3 − ln (y)x2b2 + ln (y) y2a3 + ln (x)xb1 − ln (x) ya1
− ln (y)xb1 + ln (y) ya1 + xya2 − xyb3 + y2a3 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ln (x) , ln (y)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ln (x) = v3, ln (y) = v4}

The above PDE (6E) now becomes

(7E)−v23v
2
2a3 + 2v3v4v22a3 − v24v

2
2a3 − v3v

2
2a3 + v4v

2
2a3 + v3v

2
1b2 − v4v

2
1b2 − v3v2a1

+ v4v2a1 + v1v2a2 + v22a3 + v3v1b1 − v4v1b1 − v1v2b3 + v2a1 − v1b1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)v3v
2
1b2 − v4v

2
1b2 + (−b3 + a2) v1v2 + v3v1b1 − v4v1b1 − v1b1 − v23v

2
2a3

+ 2v3v4v22a3 − v3v
2
2a3 − v24v

2
2a3 + v4v

2
2a3 + v22a3 − v3v2a1 + v4v2a1 + v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
b1 = 0
b2 = 0

−a1 = 0
−a3 = 0
2a3 = 0
−b1 = 0
−b2 = 0

−b3 + a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−y(ln (x)− ln (y))

x

)
(x)

= ln (x) y − ln (y) y + y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ln (x) y − ln (y) y + y
dy

Which results in

S = − ln (ln (x)− ln (y) + 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(ln (x)− ln (y))
x

447



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
x (ln (x)− ln (y) + 1)

Sy =
1

y (ln (x)− ln (y) + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (ln (x)− ln (y) + 1) = − ln (x) + c1

Which simplifies to

− ln (ln (x)− ln (y) + 1) = − ln (x) + c1

Which gives

y = e(ec1 ln(x)+ec1−x)e−c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(ln(x)−ln(y))
x

dS
dR

= − 1
R

R = x

S = − ln (ln (x)− ln (y) + 1)

Summary
The solution(s) found are the following

(1)y = e(ec1 ln(x)+ec1−x)e−c1
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Figure 103: Slope field plot

Verification of solutions

y = e(ec1 ln(x)+ec1−x)e−c1

Verified OK.

3.7.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (− ln (x) y + ln (y) y) dx
(ln (x) y − ln (y) y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = ln (x) y − ln (y) y
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(ln (x) y − ln (y) y)

= −1 + ln (x)− ln (y)

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2y

is an integrating factor.
Therefore by multiplying M = y ln (x)− y ln (y) and N = x by this integrating factor
the ode becomes exact. The new M,N are

M = y ln (x)− y ln (y)
x2y

N = 1
xy

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
1
xy

)
dy =

(
− ln (x) y − ln (y) y

x2y

)
dx(

ln (x) y − ln (y) y
x2y

)
dx+

(
1
xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = ln (x) y − ln (y) y
x2y

N(x, y) = 1
xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
ln (x) y − ln (y) y

x2y

)
= − 1

x2y

And
∂N

∂x
= ∂

∂x

(
1
xy

)
= − 1

x2y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ ln (x) y − ln (y) y
x2y

dx

(3)φ = − ln (x) + ln (y)− 1
x

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

xy
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
xy
. Therefore equation (4) becomes

(5)1
xy

= 1
xy

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − ln (x) + ln (y)− 1
x

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
− ln (x) + ln (y)− 1

x

The solution becomes
y = ec1x+1x

Summary
The solution(s) found are the following

(1)y = ec1x+1x
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Figure 104: Slope field plot

Verification of solutions

y = ec1x+1x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)+y(x)*ln(x)=y(x)*ln(y(x)),y(x), singsol=all)� �

y(x) = x ec1x+1

3 Solution by Mathematica
Time used: 0.264 (sec). Leaf size: 24� �
DSolve[x*y'[x]+y[x]*Log[x]==y[x]*Log[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xe1+ec1x

y(x) → ex
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3.8 problem 16
3.8.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 457
3.8.2 Solving as first order ode lie symmetry calculated ode . . . . . . 459

Internal problem ID [2580]
Internal file name [OUTPUT/2072_Sunday_June_05_2022_02_47_23_AM_6298508/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

y′ − y2 + 2yx− 2x2

x2 − yx+ y2
= 0

3.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)2 x2 + 2u(x)x2 − 2x2

x2 − u (x)x2 + u (x)2 x2
= 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u3 − 2u2 − u+ 2
x (u2 − u+ 1)
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Where f(x) = − 1
x
and g(u) = u3−2u2−u+2

u2−u+1 . Integrating both sides gives

1
u3−2u2−u+2

u2−u+1
du = −1

x
dx

∫ 1
u3−2u2−u+2

u2−u+1
du =

∫
−1
x
dx

ln (u+ 1)
2 − ln (u− 1)

2 + ln (u− 2) = − ln (x) + c2

Raising both side to exponential gives

e
ln(u+1)

2 − ln(u−1)
2 +ln(u−2) = e− ln(x)+c2

Which simplifies to
√
u+ 1 (u− 2)√

u− 1
= c3

x

The solution is √
u (x) + 1 (u(x)− 2)√

u (x)− 1
= c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y
x
+ 1

(
y
x
− 2
)√

y
x
− 1

= c3
x√

y+x
x

(−2x+ y)√
y−x
x

x
= c3

x

Which simplifies to

(−2x+ y)
√

y+x
x√

y−x
x

= c3

Summary
The solution(s) found are the following

(1)
(−2x+ y)

√
y+x
x√

y−x
x

= c3
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Figure 105: Slope field plot

Verification of solutions

(−2x+ y)
√

y+x
x√

y−x
x

= c3

Verified OK.

3.8.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x2 + 2xy + y2

x2 − xy + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−2x2 + 2xy + y2) (b3 − a2)

x2 − xy + y2
− (−2x2 + 2xy + y2)2 a3

(x2 − xy + y2)2

−
(

−4x+ 2y
x2 − xy + y2

− (−2x2 + 2xy + y2) (2x− y)
(x2 − xy + y2)2

)
(xa2 + ya3 + a1)

−
(

2x+ 2y
x2 − xy + y2

− (−2x2 + 2xy + y2) (−x+ 2y)
(x2 − xy + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x4a2 − 4x4a3 + x4b2 − 2x4b3 − 4x3ya2 + 8x3ya3 − 8x3yb2 + 4x3yb3 + 9x2y2a2 + 6x2y2b2 − 9x2y2b3 − 4x y3a2 + 2x y3a3 − 2x y3b2 + 4x y3b3 − y4a2 − 4y4a3 + y4b2 + y4b3 − 6x2yb1 + 6x y2a1 + 3x y2b1 − 3y3a1
(x2 − xy + y2)2

= 0

Setting the numerator to zero gives

(6E)2x4a2 − 4x4a3 + x4b2 − 2x4b3 − 4x3ya2 + 8x3ya3 − 8x3yb2 + 4x3yb3
+ 9x2y2a2 + 6x2y2b2 − 9x2y2b3 − 4x y3a2 + 2x y3a3 − 2x y3b2 + 4x y3b3
− y4a2 − 4y4a3 + y4b2 + y4b3 − 6x2yb1 + 6x y2a1 + 3x y2b1 − 3y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)2a2v41 − 4a2v31v2 + 9a2v21v22 − 4a2v1v32 − a2v
4
2 − 4a3v41 + 8a3v31v2 + 2a3v1v32

− 4a3v42 + b2v
4
1 − 8b2v31v2 + 6b2v21v22 − 2b2v1v32 + b2v

4
2 − 2b3v41 + 4b3v31v2

− 9b3v21v22 + 4b3v1v32 + b3v
4
2 + 6a1v1v22 − 3a1v32 − 6b1v21v2 + 3b1v1v22 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(2a2 − 4a3 + b2 − 2b3) v41 + (−4a2 + 8a3 − 8b2 + 4b3) v31v2
+ (9a2 + 6b2 − 9b3) v21v22 − 6b1v21v2 + (−4a2 + 2a3 − 2b2 + 4b3) v1v32
+ (6a1 + 3b1) v1v22 + (−a2 − 4a3 + b2 + b3) v42 − 3a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−3a1 = 0
−6b1 = 0

6a1 + 3b1 = 0
9a2 + 6b2 − 9b3 = 0

−4a2 + 2a3 − 2b2 + 4b3 = 0
−4a2 + 8a3 − 8b2 + 4b3 = 0

−a2 − 4a3 + b2 + b3 = 0
2a2 − 4a3 + b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

461



Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−2x2 + 2xy + y2

x2 − xy + y2

)
(x)

= 2x3 − x2y − 2x y2 + y3

x2 − xy + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x3−x2y−2x y2+y3

x2−xy+y2

dy

Which results in

S = ln (y + x)
2 − ln (y − x)

2 + ln (−2x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x2 + 2xy + y2

x2 − xy + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
2x+ 2y − 1

2x− 2y − 2
−2x+ y

Sy =
1

2x+ 2y + 1
2x− 2y + 1

−2x+ y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y + x)
2 − ln (y − x)

2 + ln (−2x+ y) = c1

Which simplifies to

ln (y + x)
2 − ln (y − x)

2 + ln (−2x+ y) = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x2+2xy+y2

x2−xy+y2
dS
dR

= 0

R = x

S = ln (y + x)
2 − ln (y − x)

2 + ln (−2x+ y)

Summary
The solution(s) found are the following

(1)ln (y + x)
2 − ln (y − x)

2 + ln (−2x+ y) = c1

464



Figure 106: Slope field plot

Verification of solutions

ln (y + x)
2 − ln (y − x)

2 + ln (−2x+ y) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.86 (sec). Leaf size: 80� �
dsolve(diff(y(x),x)= (y(x)^2+2*x*y(x)-2*x^2)/(x^2-x*y(x)+y(x)^2),y(x), singsol=all)� �

y(x) =
x
(
−RootOf

(
2_Z6 + (9c1x2 − 1)_Z4 − 6x2c1_Z2 + c1x

2)2 + 1
)

RootOf
(
2_Z6 + (9c1x2 − 1)_Z4 − 6x2c1_Z2 + c1x2

)2
3 Solution by Mathematica
Time used: 60.179 (sec). Leaf size: 373� �
DSolve[y'[x]== (y[x]^2+2*x*y[x]-2*x^2)/(x^2-x*y[x]+y[x]^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3
√

−54x3 + 2
√
729x6 + (−9x2 + 3e2c1) 3

3 3
√
2

−
3
√
2(−3x2 + e2c1)

3
√

−54x3 + 2
√
729x6 + (−9x2 + 3e2c1) 3

+ x

y(x) →
(
−1 + i

√
3
) 3
√
−54x3 + 2

√
729x6 + (−9x2 + 3e2c1) 3

6 3
√
2

+
(
1 + i

√
3
)
(−3x2 + e2c1)

22/3 3
√

−54x3 + 2
√
729x6 + (−9x2 + 3e2c1) 3

+ x

y(x) → −
(
1 + i

√
3
) 3
√
−54x3 + 2

√
729x6 + (−9x2 + 3e2c1) 3

6 3
√
2

+
(
1− i

√
3
)
(−3x2 + e2c1)

22/3 3
√

−54x3 + 2
√
729x6 + (−9x2 + 3e2c1) 3

+ x
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3.9 problem 17
3.9.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 467
3.9.2 Solving as first order ode lie symmetry calculated ode . . . . . . 469

Internal problem ID [2581]
Internal file name [OUTPUT/2073_Sunday_June_05_2022_02_47_27_AM_56589216/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`]]

2xyy′ − x2e−
y2

x2 − 2y2 = 0

3.9.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2x2u(x) (u′(x)x+ u(x))− x2e−u(x)2 − 2u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= e−u2

2ux

Where f(x) = 1
2x and g(u) = e−u2

u
. Integrating both sides gives

1
e−u2

u

du = 1
2x dx
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∫ 1
e−u2

u

du =
∫ 1

2x dx

eu2

2 = ln (x)
2 + c2

The solution is
eu(x)2

2 − ln (x)
2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

e
y2

x2

2 − ln (x)
2 − c2 = 0

e
y2

x2

2 − ln (x)
2 − c2 = 0

Summary
The solution(s) found are the following

(1)e
y2

x2

2 − ln (x)
2 − c2 = 0

Figure 107: Slope field plot
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Verification of solutions

e
y2

x2

2 − ln (x)
2 − c2 = 0

Verified OK.

3.9.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2e−
y2

x2 + 2y2
2xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +

(
x2e−

y2

x2 + 2y2
)
(b3 − a2)

2xy −

(
x2e−

y2

x2 + 2y2
)2

a3

4x2y2

−

2x e−
y2

x2 + 2y2e−
y2
x2

x

2xy − x2e−
y2

x2 + 2y2
2x2y

 (xa2 + ya3 + a1)

−

−2y e−
y2

x2 + 4y
2xy − x2e−

y2

x2 + 2y2
2x y2

 (xb2 + yb3 + b1) = 0
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Putting the above in normal form gives

−e−
2y2

x2 x4a3 − 2 e−
y2

x2 x4b2 + 4 e−
y2

x2 x3ya2 − 4 e−
y2

x2 x3yb3 + 6 e−
y2

x2 x2y2a3 − 4 e−
y2

x2 x2y2b2 + 4 e−
y2

x2 x y3a2 − 4 e−
y2

x2 x y3b3 + 4 e−
y2

x2 y4a3 − 2 e−
y2

x2 x3b1 + 2 e−
y2

x2 x2ya1 − 4 e−
y2

x2 x y2b1 + 4 e−
y2

x2 y3a1 + 4x y2b1 − 4y3a1
4y2x2

= 0

Setting the numerator to zero gives

(6E)−e−
2y2

x2 x4a3 + 2 e−
y2

x2 x4b2 − 4 e−
y2

x2 x3ya2 + 4 e−
y2

x2 x3yb3 − 6 e−
y2

x2 x2y2a3

+ 4 e−
y2

x2 x2y2b2 − 4 e−
y2

x2 x y3a2 + 4 e−
y2

x2 x y3b3 − 4 e−
y2

x2 y4a3 + 2 e−
y2

x2 x3b1

− 2 e−
y2

x2 x2ya1 + 4 e−
y2

x2 x y2b1 − 4 e−
y2

x2 y3a1 − 4x y2b1 + 4y3a1 = 0

Simplifying the above gives

(6E)−e−
2y2

x2 x4a3 + 2 e−
y2

x2 x4b2 − 4 e−
y2

x2 x3ya2 + 4 e−
y2

x2 x3yb3 − 6 e−
y2

x2 x2y2a3

+ 4 e−
y2

x2 x2y2b2 − 4 e−
y2

x2 x y3a2 + 4 e−
y2

x2 x y3b3 − 4 e−
y2

x2 y4a3 + 2 e−
y2

x2 x3b1

− 2 e−
y2

x2 x2ya1 + 4 e−
y2

x2 x y2b1 − 4 e−
y2

x2 y3a1 − 4x y2b1 + 4y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y, e−

2y2

x2 , e−
y2

x2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, e−
2y2

x2 = v3, e−
y2

x2 = v4

}
The above PDE (6E) now becomes

(7E)−4v4v31v2a2 − 4v4v1v32a2 − v3v
4
1a3 − 6v4v21v22a3 − 4v4v42a3

+ 2v4v41b2 + 4v4v21v22b2 + 4v4v31v2b3 + 4v4v1v32b3 − 2v4v21v2a1
− 4v4v32a1 + 2v4v31b1 + 4v4v1v22b1 + 4v32a1 − 4v1v22b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}
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Equation (7E) now becomes

(8E)−v3v
4
1a3 + 2v4v41b2 + (−4a2 + 4b3) v31v2v4 + 2v4v31b1

+ (−6a3 + 4b2) v21v22v4 − 2v4v21v2a1 + (−4a2 + 4b3) v1v32v4
+ 4v4v1v22b1 − 4v1v22b1 − 4v4v42a3 − 4v4v32a1 + 4v32a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 = 0
−2a1 = 0
4a1 = 0

−4a3 = 0
−a3 = 0
−4b1 = 0
2b1 = 0
4b1 = 0
2b2 = 0

−4a2 + 4b3 = 0
−6a3 + 4b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

471



Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

x2e−
y2

x2 + 2y2
2xy

 (x)

= −x2e−
y2

x2

2y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2e−
y2
x2

2y

dy

Which results in

S = −e
y2

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2e−
y2

x2 + 2y2
2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2y2e
y2

x2

x3

Sy = −2 e
y2

x2 y

x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−e
y2

x2 = − ln (x) + c1

Which simplifies to

−e
y2

x2 = − ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2e−
y2
x2 +2y2
2xy

dS
dR

= − 1
R

R = x

S = −e
y2

x2

Summary
The solution(s) found are the following

(1)−e
y2

x2 = − ln (x) + c1
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Figure 108: Slope field plot

Verification of solutions

−e
y2

x2 = − ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 26� �
dsolve(2*x*y(x)*diff(y(x),x)-(x^2*exp(-y(x)^2/x^2)+2*y(x)^2)=0,y(x), singsol=all)� �

y(x) =
√

ln (ln (x) + c1)x
y(x) = −

√
ln (ln (x) + c1)x

3 Solution by Mathematica
Time used: 2.155 (sec). Leaf size: 38� �
DSolve[2*x*y[x]*y'[x]-(x^2*Exp[-y[x]^2/x^2]+2*y[x]^2)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x
√
log(log(x) + 2c1)

y(x) → x
√
log(log(x) + 2c1)
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3.10 problem 18
3.10.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 477
3.10.2 Solving as first order ode lie symmetry calculated ode . . . . . . 479
3.10.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 485

Internal problem ID [2582]
Internal file name [OUTPUT/2074_Sunday_June_05_2022_02_47_31_AM_12116909/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Riccati]

y′x2 − y2 − 3yx = x2

3.10.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − u(x)2 x2 − 3u(x)x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 + 2u+ 1
x

Where f(x) = 1
x
and g(u) = u2 + 2u+ 1. Integrating both sides gives

1
u2 + 2u+ 1 du = 1

x
dx
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∫ 1
u2 + 2u+ 1 du =

∫ 1
x
dx

− 1
u+ 1 = ln (x) + c2

The solution is

− 1
u (x) + 1 − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− 1
y
x
+ 1 − ln (x)− c2 = 0

(−c2 − ln (x)) y − x(c2 + ln (x) + 1)
y + x

= 0

Which simplifies to

−y ln (x) + c2y + ln (x)x+ c2x+ x

y + x
= 0

Summary
The solution(s) found are the following

(1)−y ln (x) + c2y + ln (x)x+ c2x+ x

y + x
= 0
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Figure 109: Slope field plot

Verification of solutions

−y ln (x) + c2y + ln (x)x+ c2x+ x

y + x
= 0

Verified OK.

3.10.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 + 3xy + y2

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(x2 + 3xy + y2) (b3 − a2)
x2 − (x2 + 3xy + y2)2 a3

x4

−
(
2x+ 3y

x2 − 2(x2 + 3xy + y2)
x3

)
(xa2 + ya3 + a1)

− (3x+ 2y) (xb2 + yb3 + b1)
x2 = 0

Putting the above in normal form gives

−x4a2 + x4a3 + 2b2x4 − x4b3 + 6x3ya3 + 2x3yb2 − x2y2a2 + 8x2y2a3 + x2y2b3 + 4x y3a3 + y4a3 + 3x3b1 − 3x2ya1 + 2x2yb1 − 2x y2a1
x4

= 0

Setting the numerator to zero gives

(6E)−x4a2 − x4a3 − 2b2x4 + x4b3 − 6x3ya3 − 2x3yb2 + x2y2a2 − 8x2y2a3
− x2y2b3 − 4x y3a3 − y4a3 − 3x3b1 + 3x2ya1 − 2x2yb1 + 2x y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
4
1 + a2v

2
1v

2
2 − a3v

4
1 − 6a3v31v2 − 8a3v21v22 − 4a3v1v32 − a3v

4
2 − 2b2v41

− 2b2v31v2 + b3v
4
1 − b3v

2
1v

2
2 + 3a1v21v2 + 2a1v1v22 − 3b1v31 − 2b1v21v2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 − 2b2 + b3) v41 + (−6a3 − 2b2) v31v2 − 3b1v31 + (a2 − 8a3 − b3) v21v22
+ (3a1 − 2b1) v21v2 − 4a3v1v32 + 2a1v1v22 − a3v

4
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−4a3 = 0
−a3 = 0
−3b1 = 0

3a1 − 2b1 = 0
−6a3 − 2b2 = 0

a2 − 8a3 − b3 = 0
−a2 − a3 − 2b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2 + 3xy + y2

x2

)
(x)

= −x2 − 2xy − y2

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−2xy−y2

x

dy

Which results in

S = x

y + x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + 3xy + y2

x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

(y + x)2

Sy = − x

(y + x)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x

y + x
= − ln (x) + c1

Which simplifies to
x

y + x
= − ln (x) + c1

Which gives

y = −x(ln (x)− c1 + 1)
ln (x)− c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+3xy+y2

x2
dS
dR

= − 1
R

R = x

S = x

y + x

Summary
The solution(s) found are the following

(1)y = −x(ln (x)− c1 + 1)
ln (x)− c1
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Figure 110: Slope field plot

Verification of solutions

y = −x(ln (x)− c1 + 1)
ln (x)− c1

Verified OK.

3.10.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2 + 3xy + y2

x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 1 + 3y
x

+ y2

x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 1, f1(x) = 3
x
and f2(x) = 1

x2 . Let

y = −u′

f2u

= −u′

u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

x3

f1f2 =
3
x3

f 2
2 f0 =

1
x4

Substituting the above terms back in equation (2) gives

u′′(x)
x2 − u′(x)

x3 + u(x)
x4 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = x(ln (x) c2 + c1)

The above shows that
u′(x) = ln (x) c2 + c1 + c2

Using the above in (1) gives the solution

y = −(ln (x) c2 + c1 + c2)x
ln (x) c2 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = −(ln (x) + c3 + 1)x
ln (x) + c3

486



Summary
The solution(s) found are the following

(1)y = −(ln (x) + c3 + 1)x
ln (x) + c3

Figure 111: Slope field plot

Verification of solutions

y = −(ln (x) + c3 + 1)x
ln (x) + c3

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x^2*diff(y(x),x)=y(x)^2+3*x*y(x)+x^2,y(x), singsol=all)� �

y(x) = −x(ln (x) + c1 + 1)
ln (x) + c1

3 Solution by Mathematica
Time used: 0.145 (sec). Leaf size: 28� �
DSolve[x^2*y'[x]==y[x]^2+3*x*y[x]+x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x(log(x) + 1 + c1)
log(x) + c1

y(x) → −x
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3.11 problem 19
3.11.1 Solving as first order ode lie symmetry calculated ode . . . . . . 489

Internal problem ID [2583]
Internal file name [OUTPUT/2075_Sunday_June_05_2022_02_47_34_AM_41897557/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

yy′ −
√
y2 + x2 = −x

3.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
√
x2 + y2 − x

y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(√

x2 + y2 − x
)
(b3 − a2)

y
−
(√

x2 + y2 − x
)2

a3

y2

−

(
x√

x2+y2
− 1
)
(xa2 + ya3 + a1)
y

−
(

1√
x2 + y2

−
√
x2 + y2 − x

y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−(x2 + y2)
3
2 a3 +

√
x2 + y2 x2a3 +

√
x2 + y2 x2b2 − 2

√
x2 + y2 xya2 + 2

√
x2 + y2 xyb3 −

√
x2 + y2 y2a3 − b2

√
x2 + y2 y2 − 2x3a3 − x3b2 + 2x2ya2 − 2x2yb3 − x y2a3 + y3a2 − y3b3 +

√
x2 + y2 xb1 −

√
x2 + y2 ya1 − x2b1 + xya1√

x2 + y2 y2

= 0

Setting the numerator to zero gives

(6E)
−
(
x2 + y2

) 3
2 a3 −

√
x2 + y2 x2a3 −

√
x2 + y2 x2b2 + 2

√
x2 + y2 xya2

− 2
√

x2 + y2 xyb3 +
√

x2 + y2 y2a3 + b2
√

x2 + y2 y2

+ 2x3a3 + x3b2 − 2x2ya2 + 2x2yb3 + x y2a3 − y3a2 + y3b3

−
√

x2 + y2 xb1 +
√

x2 + y2 ya1 + x2b1 − xya1 = 0

Simplifying the above gives

(6E)

−
(
x2 + y2

) 3
2 a3 + 2

(
x2 + y2

)
xa3 +

(
x2 + y2

)
xb2 −

(
x2 + y2

)
ya2

+ 2
(
x2 + y2

)
yb3 −

√
x2 + y2 x2a3 −

√
x2 + y2 x2b2

+ 2
√

x2 + y2 xya2 − 2
√

x2 + y2 xyb3 +
√
x2 + y2 y2a3

+ b2
√
x2 + y2 y2 − x2ya2 − x y2a3 − x y2b2 − y3b3 +

(
x2 + y2

)
b1

−
√

x2 + y2 xb1 +
√

x2 + y2 ya1 − xya1 − y2b1 = 0

Since the PDE has radicals, simplifying gives

2x3a3 + x3b2 − 2
√

x2 + y2 x2a3 −
√

x2 + y2 x2b2 − 2x2ya2 + 2x2yb3

+ 2
√

x2 + y2 xya2 − 2
√

x2 + y2 xyb3 + x y2a3 + b2
√
x2 + y2 y2

− y3a2 + y3b3 + x2b1 −
√

x2 + y2 xb1 − xya1 +
√

x2 + y2 ya1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x2 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y2 = v3

}
The above PDE (6E) now becomes

(7E)−2v21v2a2 + 2v3v1v2a2 − v32a2 + 2v31a3 − 2v3v21a3 + v1v
2
2a3 + v31b2 − v3v

2
1b2

+ b2v3v
2
2 + 2v21v2b3 − 2v3v1v2b3 + v32b3 − v1v2a1 + v3v2a1 + v21b1 − v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(2a3 + b2) v31 + (−2a2 + 2b3) v21v2 + (−2a3 − b2) v21v3 + v21b1 + v1v
2
2a3

+ (2a2 − 2b3) v1v2v3 − v1v2a1 − v3v1b1 + (b3 − a2) v32 + b2v3v
2
2 + v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
b1 = 0
b2 = 0

−a1 = 0
−b1 = 0

−2a2 + 2b3 = 0
2a2 − 2b3 = 0
−2a3 − b2 = 0
2a3 + b2 = 0
b3 − a2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(√

x2 + y2 − x

y

)
(x)

= x2 − x
√
x2 + y2 + y2

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2−x
√

x2+y2+y2

y

dy
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Which results in

S = ln (y)−
x ln

(
2x2+2

√
x2

√
x2+y2

y

)
√
x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
x2 + y2 − x

y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −
√
x2 + y2 + x

x
√
x2 + y2

Sy =
2x2 + y2 + 2x

√
x2 + y2

y
√
x2 + y2

(√
x2 + y2 + x

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − x

√
x2 + y2 + x2 + y2

x
√
x2 + y2

(√
x2 + y2 + x

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)
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Which gives

y = e
ln(2)
2 + ln

(
2 ec1+2x

)
2 + c1

2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
√

x2+y2−x
y

dS
dR

= − 1
R

R = x

S = 2 ln (y)− ln (2)− ln (x)− ln
(√

x2 + y2 + x
)

Summary
The solution(s) found are the following

(1)y = e
ln(2)
2 + ln

(
2 ec1+2x

)
2 + c1

2
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Figure 112: Slope field plot

Verification of solutions

y = e
ln(2)
2 + ln

(
2 ec1+2x

)
2 + c1

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 27� �
dsolve(y(x)*diff(y(x),x)=sqrt(x^2+y(x)^2)-x,y(x), singsol=all)� �

−c1y(x)2 +
√
x2 + y (x)2 + x

y (x)2
= 0

3 Solution by Mathematica
Time used: 0.432 (sec). Leaf size: 57� �
DSolve[y[x]*y'[x]==Sqrt[x^2+y[x]^2]-x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e
c1
2
√
2x+ ec1

y(x) → e
c1
2
√
2x+ ec1

y(x) → 0
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3.12 problem 20
3.12.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 497
3.12.2 Solving as first order ode lie symmetry calculated ode . . . . . . 499
3.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 505

Internal problem ID [2584]
Internal file name [OUTPUT/2076_Sunday_June_05_2022_02_47_39_AM_18342098/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

2x(y + 2x) y′ − y(4x− y) = 0

3.12.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2x(u(x)x+ 2x) (u′(x)x+ u(x))− u(x)x(4x− u(x)x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 3u2

2x (u+ 2)
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Where f(x) = − 3
2x and g(u) = u2

u+2 . Integrating both sides gives

1
u2

u+2
du = − 3

2x dx

∫ 1
u2

u+2
du =

∫
− 3
2x dx

−2
u
+ ln (u) = −3 ln (x)

2 + c2

The solution is

− 2
u (x) + ln (u(x)) + 3 ln (x)

2 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−2x
y

+ ln
(y
x

)
+ 3 ln (x)

2 − c2 = 0

−2x
y

+ ln
(y
x

)
+ 3 ln (x)

2 − c2 = 0

Summary
The solution(s) found are the following

(1)−2x
y

+ ln
(y
x

)
+ 3 ln (x)

2 − c2 = 0
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Figure 113: Slope field plot

Verification of solutions

−2x
y

+ ln
(y
x

)
+ 3 ln (x)

2 − c2 = 0

Verified OK.

3.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(−4x+ y)
2x (2x+ y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(−4x+ y) (b3 − a2)

2x (2x+ y) − y2(−4x+ y)2 a3
4x2 (2x+ y)2

−
(

2y
x (2x+ y) +

y(−4x+ y)
2x2 (2x+ y) +

y(−4x+ y)
x (2x+ y)2

)
(xa2 + ya3 + a1)

−
(
− −4x+ y

2x (2x+ y) −
y

2x (2x+ y) +
y(−4x+ y)
2x (2x+ y)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

24x3yb2 − 12x2y2a2 + 6x2y2b2 + 12x2y2b3 − 3y4a3 − 16x3b1 + 16x2ya1 + 8x2yb1 − 8x y2a1 + 2x y2b1 − 2y3a1
4x2 (2x+ y)2

= 0

Setting the numerator to zero gives

(6E)24x3yb2 − 12x2y2a2 + 6x2y2b2 + 12x2y2b3 − 3y4a3 − 16x3b1
+ 16x2ya1 + 8x2yb1 − 8x y2a1 + 2x y2b1 − 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−12a2v21v22 − 3a3v42 + 24b2v31v2 + 6b2v21v22 + 12b3v21v22 + 16a1v21v2
− 8a1v1v22 − 2a1v32 − 16b1v31 + 8b1v21v2 + 2b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)24b2v31v2 − 16b1v31 + (−12a2 + 6b2 + 12b3) v21v22
+ (16a1 + 8b1) v21v2 + (−8a1 + 2b1) v1v22 − 3a3v42 − 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
−3a3 = 0
−16b1 = 0
24b2 = 0

−8a1 + 2b1 = 0
16a1 + 8b1 = 0

−12a2 + 6b2 + 12b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−y(−4x+ y)
2x (2x+ y)

)
(x)

= 3y2
2y + 4x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3y2
2y+4x

dy

Which results in

S = −4x
3y + 2 ln (y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(−4x+ y)
2x (2x+ y)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4
3y

Sy =
2y + 4x
3y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

3x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2y ln (y)− 4x
3y = − ln (x)

3 + c1

Which simplifies to

2y ln (y)− 4x
3y = − ln (x)

3 + c1

Which gives

y = e
LambertW

(
2x e

ln(x)
2 − 3c1

2

)
− ln(x)

2 + 3c1
2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(−4x+y)
2x(2x+y)

dS
dR

= − 1
3R

R = x

S = 2 ln (y) y − 4x
3y

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
2x e

ln(x)
2 − 3c1

2

)
− ln(x)

2 + 3c1
2
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Figure 114: Slope field plot

Verification of solutions

y = e
LambertW

(
2x e

ln(x)
2 − 3c1

2

)
− ln(x)

2 + 3c1
2

Verified OK.

3.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2x(2x+ y)) dy = (y(4x− y)) dx
(−y(4x− y)) dx+(2x(2x+ y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y(4x− y)
N(x, y) = 2x(2x+ y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y(4x− y))

= −4x+ 2y

And
∂N

∂x
= ∂

∂x
(2x(2x+ y))

= 8x+ 2y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
xy2

is an integrating factor.
Therefore by multiplying M = −y(4x− y) and N = 2x(y + 2x) by this integrating
factor the ode becomes exact. The new M,N are

M = −4x− y

xy

N = 2y + 4x
y2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
2y + 4x

y2

)
dy =

(
4x− y

xy

)
dx(

−4x− y

xy

)
dx+

(
2y + 4x

y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4x− y

xy

N(x, y) = 2y + 4x
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−4x− y

xy

)
= 4

y2

And
∂N

∂x
= ∂

∂x

(
2y + 4x

y2

)
= 4

y2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−4x− y

xy
dx

(3)φ = ln (x)− 4x
y

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 4x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2y+4x
y2

. Therefore equation (4) becomes

(5)2y + 4x
y2

= 4x
y2

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (2
y

)
dy

f(y) = 2 ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x)− 4x
y

+ 2 ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (x)− 4x
y

+ 2 ln (y)

The solution becomes

y = e
LambertW

(
2x e

ln(x)
2 − c1

2

)
− ln(x)

2 + c1
2

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
2x e

ln(x)
2 − c1

2

)
− ln(x)

2 + c1
2
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Figure 115: Slope field plot

Verification of solutions

y = e
LambertW

(
2x e

ln(x)
2 − c1

2

)
− ln(x)

2 + c1
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 19� �
dsolve(2*x*(y(x)+2*x)*diff(y(x),x)=y(x)*(4*x-y(x)),y(x), singsol=all)� �

y(x) = 2x
LambertW

(
2 e

3c1
2 x

3
2

)
3 Solution by Mathematica
Time used: 5.384 (sec). Leaf size: 29� �
DSolve[2*x*(y[x]+2*x)*y'[x]==y[x]*(4*x-y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x
W (2e−c1x3/2)

y(x) → 0
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3.13 problem 21
3.13.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 512
3.13.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 514
3.13.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 516

Internal problem ID [2585]
Internal file name [OUTPUT/2077_Sunday_June_05_2022_02_47_42_AM_65586110/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − x tan
(y
x

)
− y = 0

3.13.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = tan
(y
x

)
+ y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes
du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)
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The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = 1
b = 1

f

(
bx

y

)
= tan

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = tan (u(x))
x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= tan (u)
x

Where f(x) = 1
x
and g(u) = tan (u). Integrating both sides gives

1
tan (u) du = 1

x
dx∫ 1

tan (u) du =
∫ 1

x
dx

ln (sin (u)) = ln (x) + c1

Raising both side to exponential gives

sin (u) = eln(x)+c1

Which simplifies to

sin (u) = c2x

Therefore the solution is

y = ux

= x arcsin (c2ec1x)
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Summary
The solution(s) found are the following

(1)y = x arcsin (c2ec1x)

Figure 116: Slope field plot

Verification of solutions

y = x arcsin (c2ec1x)

Verified OK.

3.13.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− x tan (u(x))− u(x)x = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= tan (u)
x
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Where f(x) = 1
x
and g(u) = tan (u). Integrating both sides gives

1
tan (u) du = 1

x
dx∫ 1

tan (u) du =
∫ 1

x
dx

ln (sin (u)) = ln (x) + c2

Raising both side to exponential gives

sin (u) = eln(x)+c2

Which simplifies to

sin (u) = c3x

Therefore the solution y is

y = xu

= x arcsin (c3ec2x)

Summary
The solution(s) found are the following

(1)y = x arcsin (c3ec2x)

515



Figure 117: Slope field plot

Verification of solutions

y = x arcsin (c3ec2x)

Verified OK.

3.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
x tan

(
y
x

)
+ y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 84: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
x tan

(
y
x

)
+ y

x
Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

cot
(
y
x

)
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − cot (R)S(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1
sin (R) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1

sin
(
y
x

)
Which simplifies to

−1
x
= c1

sin
(
y
x

)
Which gives

y = − arcsin (c1x)x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x tan
( y
x

)
+y

x
dS
dR

= − cot (R)S(R)

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = − arcsin (c1x)x
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Figure 118: Slope field plot

Verification of solutions

y = − arcsin (c1x)x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 10� �
dsolve(x*diff(y(x),x)=x*tan(y(x)/x)+y(x),y(x), singsol=all)� �

y(x) = arcsin (c1x)x

3 Solution by Mathematica
Time used: 4.369 (sec). Leaf size: 19� �
DSolve[x*y'[x]==x*Tan[y[x]/x]+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x arcsin (ec1x)
y(x) → 0
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3.14 problem 22
3.14.1 Solving as first order ode lie symmetry calculated ode . . . . . . 523

Internal problem ID [2586]
Internal file name [OUTPUT/2078_Sunday_June_05_2022_02_47_45_AM_59997785/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

y′ − x
√
y2 + x2 + y2

yx
= 0

3.14.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x
√
x2 + y2 + y2

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
x
√
x2 + y2 + y2

)
(b3 − a2)

yx
−
(
x
√
x2 + y2 + y2

)2
a3

y2x2

−

√
x2 + y2 + x2√

x2+y2

yx
− x

√
x2 + y2 + y2

y x2

 (xa2 + ya3 + a1)

−

( xy√
x2+y2

+ 2y
yx

− x
√
x2 + y2 + y2

y2x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−(x2 + y2)
3
2 x2a3 − x5b2 + 2x4ya2 − 2x4yb3 + 3x3y2a3 + x2y3a2 − x2y3b3 + 2x y4a3 +

√
x2 + y2 x y2b1 −

√
x2 + y2 y3a1 − x4b1 + x3ya1√

x2 + y2 y2x2

= 0

Setting the numerator to zero gives

(6E)−
(
x2 + y2

) 3
2 x2a3 + x5b2 − 2x4ya2 + 2x4yb3 − 3x3y2a3 − x2y3a2 + x2y3b3

− 2x y4a3 −
√

x2 + y2 x y2b1 +
√

x2 + y2 y3a1 + x4b1 − x3ya1 = 0

Simplifying the above gives

(6E)−
(
x2 + y2

) 3
2 x2a3 +

(
x2 + y2

)
x3b2 −

(
x2 + y2

)
x2ya2 + 2

(
x2 + y2

)
x2yb3

− 2
(
x2 + y2

)
x y2a3 − x4ya2 − x3y2a3 − x3y2b2 − x2y3b3 +

(
x2 + y2

)
x2b1

−
√

x2 + y2 x y2b1 +
√

x2 + y2 y3a1 − x3ya1 − x2y2b1 = 0

Since the PDE has radicals, simplifying gives

x5b2 − x4
√

x2 + y2 a3 − 2x4ya2 + 2x4yb3 − 3x3y2a3 − x2
√
x2 + y2 y2a3 − x2y3a2

+ x2y3b3 − 2x y4a3 + x4b1 − x3ya1 −
√

x2 + y2 x y2b1 +
√
x2 + y2 y3a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y2 = v3

}
The above PDE (6E) now becomes

(7E)−2v41v2a2 − v21v
3
2a2 − v41v3a3 − 3v31v22a3 − v21v3v

2
2a3 − 2v1v42a3 + v51b2

+ 2v41v2b3 + v21v
3
2b3 − v31v2a1 + v3v

3
2a1 + v41b1 − v3v1v

2
2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)v51b2 + (−2a2 + 2b3) v41v2 − v41v3a3 + v41b1 − 3v31v22a3 − v31v2a1
+ (b3 − a2) v21v32 − v21v3v

2
2a3 − 2v1v42a3 − v3v1v

2
2b1 + v3v

3
2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0
b2 = 0

−a1 = 0
−3a3 = 0
−2a3 = 0
−a3 = 0
−b1 = 0

−2a2 + 2b3 = 0
b3 − a2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x
√
x2 + y2 + y2

yx

)
(x)

= −x
√
x2 + y2

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x
√

x2+y2

y

dy
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Which results in

S = −
√
x2 + y2

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x
√
x2 + y2 + y2

yx

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y2

x2
√
x2 + y2

Sy = − y

x
√
x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
√
y2 + x2

x
= − ln (x) + c1
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Which simplifies to

−
√
y2 + x2

x
= − ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x
√

x2+y2+y2

yx
dS
dR

= − 1
R

R = x

S = −
√
x2 + y2

x

Summary
The solution(s) found are the following

(1)−
√
y2 + x2

x
= − ln (x) + c1
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Figure 119: Slope field plot

Verification of solutions

−
√
y2 + x2

x
= − ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
dsolve(diff(y(x),x)=(x*sqrt(x^2+y(x)^2)+y(x)^2)/(x*y(x)),y(x), singsol=all)� �

x ln (x)− c1x−
√
x2 + y (x)2

x
= 0

3 Solution by Mathematica
Time used: 0.283 (sec). Leaf size: 54� �
DSolve[y'[x]==(x*Sqrt[x^2+y[x]^2]+y[x]^2)/(x*y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x
√

log2(x) + 2c1 log(x)− 1 + c12

y(x) → x
√

log2(x) + 2c1 log(x)− 1 + c12
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