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Internal problem ID [2544]
Internal file name [OUTPUT/2036_Sunday_June_05_2022_02_45_45_AM_37514662/index. tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

y —2yz =0
1.1.1 Solving as separable ode
In canonical form the ODE is
y =F(z,y)
= f(2)9(v)
=2y



(1)

y. Integrating both sides gives

Where f(z) = 2z and g(y)
The solution(s) found are the following

Summary
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Figure 1: Slope field plot
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Verification of solutions

Verified OK.



1.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z) = -2z
q(z) =0
Hence the ode is
v —2yr =0
The integrating factor u is
p=e [ —2zdz
— e
The ode becomes
LMY= 0
o (ve)
el ) —
dz \Y°
Integrating gives
.2
ye ¥ =¢

Dividing both sides by the integrating factor yu = e~ results in
z2
Y = c€

Summary
The solution(s) found are the following

y=ce® (1)
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ul

v (z) x4+ u(z) — 2u(z) 2> =0

1.1.3 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

In canonical form the ODE is

Verification of solutions

Verified OK.



Where f(z) = 2= and g(u) = u. Integrating both sides gives

—du—2x —1d

/ du_/2x—1d

In (u) = z? —ln(z)—l—cz

— e 2—In(z)+c2
— C2ezz—ln(w)
Which simplifies to
2
coe”
u(z) = 2
Therefore the solution y is
Yy =2zu
:132
= C9€
Summary
The solution(s) found are the following
y= cr6” (1)
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Figure 3: Slope field plot

Verification of solutions

2
ce”

y:

Verified OK.

1.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y = 2y

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - gz) - wzéy —wg€ — Wy

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £, 7



Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~/ bf(@)de—h(z)
9(z)

f(q;)e_ f bf(z)dz—h(z)
9(z)

polynomial type ode

/a1 z+b1y+c1
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—azcs

a1b2—agby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

e/ (=D f@)dzyn

Reduced Riccati

Y = fi(z)y + folz) y?

e J frdz

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

as

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the




canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S= [ —dy
n
1
Which results in
S=ye

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Set+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = 2zy

Evaluating all the partial derivatives gives

R, =1

R,=0

Sy = —2yx e’
Sy = e

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

0 (2A)

0

10



integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ye " =0
Which simplifies to

Y e =¢
Which gives

y= cre”

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’
dy _ das _
& = 2Ty ar =0
Vbbb bbbb Attt
PLed bbby bNg2t ettty
I R 4
IR
SRR RN RERDRERY S(R]
PLL UL b VYN 24
L R A o O O A ¢
VYV Y VNN R=
YAV NMNNN NN Na—efe v 7 g A A f A -
S TS P NN § =y SR et
R EE RN MR SRR =ye L
IR AR 52l
trrt A ANVVE L L
trtr e et aANVE VLV LV
ttttt ANy LE L
IR A 4
SRR ERA R EE R
IR AR
Summary
The solution(s) found are the following
1:2
y = cie (1)

11
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Figure 4: Slope field plot
dz

d
Aﬂ%w+N@whﬁ=0

Entering Exact first order ODE solver. (Form one type)

1.1.5 Solving as exact ode
ode. Taking derivative of ¢ w.r.t. x gives

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
Hence

To solve an ode of the form

Verification of solutions

Verified OK.



Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz +N(z,y)dy =0 (1A)

Therefore

(%) dy = (z) dz
)

(—z)dz+ (% dy =0 (24)

Comparing (1A) and (2A) shows that

T2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy  Ox
Using result found above gives
oM_ o
dy Oy
=0

13



And

oN_o(1
ox  O0r\2y

=0
Since %i; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
— =M 1
o (1)
o
2 =N 2
5 2

Integrating (1) w.r.t. z gives

@dx=/Mdm
or

0¢ .
%dx— /—zdx

2

b=—-5 +fW) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)

But equation (2) says that g—i = ﬁ Therefore equation (4) becomes

% — 0+ f(y) (5)

Solving equation (5) for f'(y) gives

14



Integrating the above w.r.t y gives

/f'(y) dy = / (%) dy

f(y)=¥+01

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

z>  In(y)

=5 T

+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

S 1)
T2 T2
The solution becomes
Y= e:c2+2cl
Summary
The solution(s) found are the following
y=e" (1)

15
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Figure 5: Slope field plot
0

2z
dz = [2zdz + ¢

Highest derivative means the order of the ODE is 1
yl
y

/

Integrate both sides with respect to x

Separate variables
Evaluate integral

Let’s solve
Yy — 2uyx

Yy
v _
y
J

Maple step by step solution
[ J

Verification of solutions

Verified OK.

1.1.6



In(y) =2°+ ¢

° Solve for y

y = er’te

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

Ldsolve(diff(y(x),x)=2*x*y(x),y(x), singsol=all)

y(x) = e"”201

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 18

LDSolve[y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions -> True]

17



1.2 problem 2

1.2.1 Solving as separableode . . . . . . . ... ... ... ... ... 18]
1.2.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 201
1.2.3 Solvingasexactode . . ... ... .. ... ... ... ... . 27
1.2.4 Solving asriccatiode . . . . . . . . ... ... ... 28]
1.2.5 Maple step by step solution . . . . . .. ... ... .. ... .. 301

Internal problem ID [2545]
Internal file name [OUTPUT/2037_Sunday_June_05_2022_02_45_47_AM_26852723/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_ order__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type
[_separablel

2
/ Y
S A
Yo +1
1.2.1 Solving as separable ode
In canonical form the ODE is
y =F(z,y)
= f(2)9(v)
_ v
x2+1
Where f(z) = x21+1 and g(y) = y2. Integrating both sides gives
1 1
—dy = d
y2 Y 1’2 + 1 z
1

1
/?dy_/x‘zﬂdx

18



1
—— =arctan (z) + ¢;
Y

Which results in
1

arctan (z) + ¢

y=-

Summary
The solution(s) found are the following

1
v arctan (z) + ¢ (1)
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Figure 6: Slope field plot

Verification of solutions

1
arctan (z) + ¢

y=-

Verified OK.

19



1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

2

yo Y
2 +1
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - é.m) - w2€y - sz —Wyn = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢/ = £ 4 g(z) F (%) x? xy

First order
form ID 1

special

Y = g(z) " + f(x)

Q

o— [ bf(@)de—h(z)
9(z)

f(w)e_ Jof (z)dz—h(z)
g(x)

polynomial type ode

/ _ a1zt+bhiyta
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—ascr

a1b2—azby

a1ba—azby

Bernoulli ode

y = f(z)y+g(x)y"

e~ f(n—l)f(w)d:cyn

Reduced Riccati

Y = fi(z)y + folz) y?

e J frdz

20




The above table shows that

E(r,y) =22 +1
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, =4 1)

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1
S:/—da:
§
1
_/xz—i-ldx

S = arctan ()

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2

4
w(x’y) = x2+1

21



Evaluating all the partial derivatives gives

R,=0
R,=1

1
Sx_xz—l—l
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
-~ 2A
dR 2 (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR R?
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —}1% te @)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

arctan (z) = —— + ¢
Which simplifies to
arctan (z) = = +c
Which gives
1
y =

~arctan (z) — ¢;

22



The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical ) . .

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ _y° s _ L
dx z2+1 d R?
AR IR, et I e
AR IR R RN R e
AR RN NN O et
w oy TAAF AARAA T B A oo
B e A 4-».»...4»»/; ; ; ;/»».—,...»—»—.
B e e B B e = O 4 e T
=y > —»./(Z/’ 5 T S t —»-»_-z-»,a/v_,fj; ? ; ;j/i/v»-»j»_»—»
S PR — arctan (z G -
—->—> > v o v v 7 AANAA T T o s> ( ) > > > v 7 f f f f Ao
e e P Y f_§<f fP AT > N 4 /_%<T P B -
B e ttr A A7 R ey I A B
PP YNERERILEE NN R A L [ . S —.
AR IR oo e A AN S oo
AR IR R RN e L
YRR R IR RN R L
Summary

The solution(s) found are the following

y=—

1

arctan () — ¢

23
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Verification of solutions

Verified OK.
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Figure 7: Slope field plot

1
arctan () — ¢

Yy=-

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(@,y) 2 = 0

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence

< owy) =0

09 , Db dy _

dr ' Oydzx =0

24



Comparing (A,B) shows that

09
M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
2 2
8‘5; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

() o= (751)
<_x2#+1) dx—l—(%) dy =0 (24)

Comparing (1A) and (2A) shows that

Therefore

1
241

1
N.’L’,y = 5
(z,y) /2

M(:I?,y) = -

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM _0( 1
oy Oy\ 2241
=0

25



And

ON 0 (1
EZ%(?)
=0
oM _ 9N

Since By = oz’ then the ODE is exact The following equations are now set up to solve
for the function ¢(zx,y)

3(;5_
g—x_M (1)
¢ _
8_y_N (2)

Integrating (1) w.r.t. z gives

@dx=/Mdz

oz

0¢ B 1
%dw_/_ﬁ-l—ldz

¢ = —arctan () + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

3y =0 f') (4)
But equation (2) says that g—‘z = y—12 Therefore equation (4) becomes
1 /
=04 1) )
Solving equation (5) for f’'(y) gives
f'ly) = %

Integrating the above w.r.t y gives

26



Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

1
¢ = —arctan (z) — — + 1
Y

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

1
c; = —arctan (x) — ;

Summary
The solution(s) found are the following

—arctan (z) — — = (1)
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Figure 8: Slope field plot

Verification of solutions

—arctan (z) — — =¢

y
Verified OK.
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1.2.4 Solving as riccati ode

In canonical form the ODE is

y =F(z,y)

y2

:x2+1

This is a Riccati ODE. Comparing the ODE to solve

With Riccati ODE standard form

Y = fo(z) + fi(z)y + foz)y®

Shows that fo(z) =0, fi(z) =0 and fo(z) = 5. Let

J— _u,
v= f2u
- (1)

_u_
241

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" () = (f + frfa) w'(2) + f3 fou(z) = 0 (2)
But
p 2z
1= (z2+1)°
fifa=0
f3fo=0

Substituting the above terms back in equation (2) gives

u'(z) | 2xu(z)

2+1 " (z2+1)?

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) = ¢1 + ¢ arctan (z)

28



The above shows that

o (z) =

z2+1
Using the above in (1) gives the solution

C2

¢1 + cp arctan (z)

Dividing both numerator and denominator by c; gives, after renaming the constant
i—j = ¢3 the following solution

1
c3 + arctan (z)

y=-

Summary
The solution(s) found are the following

1
y c3 + arctan (z) (1)
Hso77 700000ttty
s7777 00000ty
so777 10NNt
oo 7NN s
o777 s
///////////////////)

—_——— > > = 7 T T s =

_P)))///////////////))

)
777NN S s
N7
so777 0NNl
sr77 700NNl rssss
=777 7 110100000101 1r7777
-3 -2 —1 0 1 2 3

Figure 9: Slope field plot
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Verification of solutions

Verified OK.

1
~ ¢3 + arctan (z)

y:

1.2.5 Maple step by step solution

Maple trace

Let’s solve
2
y, - zg-i-l = 0

Highest derivative means the order of the ODE is 1

/

Y

Separate variables

y 1

v = ?A

Integrate both sides with respect to x
f;’—;dx=fm%ﬂdx+cl

Evaluate integral

— = arctan (z) + ¢

Solve for y

- 1
y= arctan(z)+c1

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(x),x)=y(x)“2/(x“2+1),y(x), singsol=all)

1
— arctan (z) + ¢;

y(z) =

v/ Solution by Mathematica
Time used: 0.147 (sec). Leaf size: 19

LDSolve[y'[x]==y[x]‘2/(x‘2+1),y[x],x,IncludeSingularSolutions -> Truel

1
arctan(z) + ¢
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1.3 problem 3

1.3.1 Solving as separableode . . . . . . .. .. ... ... ... ...
1.3.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 134
1.3.3 Solvingasexactode . .. ... ... ... .. .......... 381
1.3.4 Maple step by step solution . . . . .. ... ... ... ..... 42]

Internal problem ID [2546]
Internal file name [OUTPUT/2038_Sunday_June_05_2022_02_45_49_AM_68088448/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type

[_separablel

eVt =1

1.3.1 Solving as separable ode
In canonical form the ODE is
Y = F(z,y)
= f(z)g(y)

=e Ve ”

Where f(z) = e™* and g(y) = e V. Integrating both sides gives

—dy—e Tdr
/—dy /e_”dw
=—e z+Cl
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Which results in

Summary

y=In(-1+ce)—x

The solution(s) found are the following

Verification of solutions

Verified OK.

y=In(-1+ce") -z

/////))—_s

////)))_)

7
/
/
/
!
f
f
f
f

Figure 10: Slope field plot

y=In(-1+4ce") —x

33




1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y/ — g VT

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

§(z,y) =€
n(@,y) =0 (A1)
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
& n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y
S is found from
S = / %dx
= ldav
Which results in
S=—-e"

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
as _ S +w(z,y)S, @)
dR R, +w(z,y)R,
Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =e¥7"

Evaluating all the partial derivatives gives

R,=0
R, =1
S,=¢e"*
Sy =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

E—e

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

e’ (2A)

gives
S(R) =ef +¢; (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—e “=¢e'+ ¢
Which simplifies to

—e “=¢e'+ ¢
Which gives

y=In(—ce*—1)—z
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) ] _
. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
W _ o-y-z dS _ R
dc — € r=e
s —r—e—errr o Ar L
F I B e B . ————N————————.—...,_ /'/7/// f f f
f/d//"/’/v—»—v ééééééé "/'/“"//‘fff
= T
Vallat — e [ e = A
T?ff/d/’chtj"'*" aaaaaaaaaaaaaaa /V/'//‘fff
tttr o frArrea——a———— sesesr» R
tttrr /o lrerr—esrees Ry | - oo AP
A A ln i dmdmmna =Y e VAV B B B
AR IEE e s e e L AR B
I R A Uttt e =—e % | e et AR
fTTT_%Aff/‘/’/’/’/’”—’» 4444444 gl Pt
TTTT ?ff/‘/’/’/’»—»-» 44444 "&’V"/V/'/ffff
ttrtttr A IS P B S
tttrtt A e > Y RN
R L e A e piets ARRN!
IDEERIIEREEREE Rt I R B
L N B . N I e AR R RN
Summary
The solution(s) found are the following
y=In(—e®—-1)—=x (1)
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Verification of solutions

Verified OK.
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Figure 11: Slope field plot

y=In(—ce—1)—x

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

M(.’E,y)-i—N(iE,y)%

=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

d

%Qb(xa y) =0
0¢p  Opdy _
oz ay dr
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(e*)dy = (e7*) dz
(—e™®)dz+(e?)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —e7®
N(z,y) = e

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 _w
oy~
=0
And
ON 0
= — (aY
dr Oz )
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p
g—m_M (1)
o
o= ()

Integrating (1) w.r.t. z gives

op .
%dx—/de

0¢ _x
%dx—/—e dx

¢=e"+f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

20 ! 4
=0+ 1) @
But equation (2) says that ‘g—z = e¥. Therefore equation (4) becomes

e’ =0+ f'(y) ()

Solving equation (5) for f'(y) gives
f'ly) =¢
Integrating the above w.r.t y gives
/ﬂw®=/WNy
fly) =€+

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

p=e"+e +c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

co=e*+4+¢eY

The solution becomes
y=In(—1+ce”) —

Summary
The solution(s) found are the following

y=In(-1+4c¢e") —x (1)
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Figure 12: Slope field plot

Verification of solutions

y=1In(-14 c1e%) —

Verified OK.
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1.3.4 Maple step by step solution

Let’s solve
evtry =1

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
yel = &
° Integrate both sides with respect to x
[yevde = [ Zdz+c
° Evaluate integral
ey==-§;%-01
° Solve for y

y=In(—1+4ce*)—z

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve(exp(x+y(x))*diff(y(x),x)-1=0,y(x), singsol=all)

y(z) =ln(ec; — 1) — =z
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v/ Solution by Mathematica
Time used: 0.089 (sec). Leaf size: 16

-

kDSolve [Exp [x+y [x]]*y' [x]-1==0,y[x] ,x,IncludeSingularSolutions -> True]

—

y(z) — log (—e™* + ¢1)
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1.4 problem 4

1.4.1 Solving as separableode . . . . . .. ... ... ... ..., 44
1.4.2 Solving aslinearode . . . . . .. ... ... ... ..., 46l
1.4.3 Solving as homogeneousTypeD2ode . .. ... ... ...... 4T
1.4.4 Solving as first order ode lie symmetry lookup ode . .. .. .. 49]
1.45 Solvingasexactode ... ... .. .. ... . ... ..... 53
1.4.6 Maple step by step solution . . . . ... ... ... ....... ¥

Internal problem ID [2547]
Internal file name [OUTPUT/2039_Sunday_June_05_2022_02_45_52_AM_89899606/index . tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

Y
/ — =
Y "h (x)z 0
1.4.1 Solving as separable ode
In canonical form the ODE is
y =F(z,y)
= f(2)9(y)
_ Y
In(z)z
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Where f(z) = m and g(y) = y. Integrating both sides gives

1 1

;dy= In(z)z

Jyt= ] wa

In(y) =ln(ln(z)) + ¢
y= eln(ln(x))—i—cl

dz

= ¢ In(x)

Summary
The solution(s) found are the following

y=cln(x)
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Figure 13: Slope field plot

Verification of solutions

y=c In(z)

Verified OK.
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1.4.2 Solving as linear ode

Entering Linear first order ODE solver.

In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z
q(z)
Hence the ode is
y’ —

The integrating factor u is

The ode becomes

Integrating gives

vy _ _ c
In(z)
Dividing both sides by the integrating factor p = m results in

y=cln(x)

Summary
The solution(s) found are the following

y=c ln(x)
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Figure 14: Slope field plot

Verification of solutions

y=c n(z)
Verified OK.

1.4.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

v (z) z + u(z) — 11;((9;)) =0
In canonical form the ODE is
u' = F(z,u)
= f(z)g(u)
_ _u(ln(z) — 1)
In(z)z
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Where f(z) = —h@=1 4nq g(u) = u. Integrating both sides gives

In(z)z
ldu _ _In(z) -1
u In(z)z

/%duz/—%dm

In(u)=—In(z)+1In(In(z)) + ¢
z)+In(In(z))+c2

dx

u=e
= cye~ @) +in(in())
Which simplifies to
_ cIn(2)

u(z)

x
Therefore the solution vy is
Y =zU
= ¢y ln ()

Summary
The solution(s) found are the following

y=cyln(x)
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Figure 15: Slope field plot
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Verification of solutions

y = cyln(z)
Verified OK.

1.4.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y= Y
In(z)z
y =uw(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - €z) - w2€y —wg€ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) =In(z)

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

1
Sz/—dy
n
_ 1

/ I () Y

Y

In (z)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_ Y
w(m,y) - In (.’L‘).’L‘
Evaluating all the partial derivatives gives
R, =1
Ry=0
Y
Sy =—
In(z)z
1
5= (@)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

y _
In(z) “
Which simplifies to
vy _ _
n(z)
Which gives
y=cIn(x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates
(R, 9)

y as _ 0
In(z)z dR

'S

Pt ad
Pt tad 24

NN N e e e e e s
YO%ON N e e Nataa

e e

i
{
{
+
{
i
<
|
|
N
IS

NN e e e

— e Y[ e
e e | ae e —>
e e e s /.\JA

bbb Na | 4ttt Gt oo
P /k,(

Summary
The solution(s) found are the following

y=cln(x) (1)
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Verification of solutions

Verified OK.

y=c n(z)

1.4.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

M(z,y) + N(z,y) — =0

dz

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

dz

oz

dm%w=o

99  dpdy _

a_ydx N
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Comparing (A,B) shows that

o¢
M
ox
o¢
T _N
Ay
But since % = % then for the above to be valid, we require that
0y yOx
oM _ oN
oy  Ox

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
2 2
8‘5; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy=0 (1A)

Therefore

1 1
(“mgys ) do+ () =0 (2A)
Comparing (1A) and (2A) shows that

M(.’E,y)=—

1
N(z,y) = -
(z.9) =7

In(z)z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

oMo 1)
oy Oy\ In(z)z

Using result found above gives
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And

oN _ 0 (1
or Ox\y

=0
Since %—A; = ‘:’%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
e (1)
09
— =N 2
o 2)

Integrating (1) w.r.t. z gives

%dx:/de
ox

op . 1
%dx— /_ln(x)xdz
¢ =—In(In(z)) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢

A 4

=0+ @
But equation (2) says that g—z = % Therefore equation (4) becomes

1 /

, = 0w (5)

Solving equation (5) for f'(y) gives
1
flly) =~
W)=

Integrating the above w.r.t y gives

[row=[(5)e

fly)=In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
¢=—In(In(z))+In(y) +c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

¢ = —In(In(z)) + In ()

The solution becomes
y =€ In(z)

Summary
The solution(s) found are the following

y = e In(z) (1)
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Figure 17: Slope field plot

Verification of solutions

y =€ 1n(z)

Verified OK.
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1.4.6 Maple step by step solution

Let’s solve
y/ - ln(?:{c)x =0
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables

y _ 1

y  In(z)z

. Integrate both sides with respect to x
Jhdr = [ gidr+a

° Evaluate integral
In(y) =In(ln(z)) + ¢

° Solve for y

y =¢e%In(z)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

Ldsolve (diff (y(x) ,x)=y(x)/(x*1n(x)),y(x), singsol=all)

y(z) =In(z)
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v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 15

-

kDSolve [y' [x]==y[x]/(x*Log[x]),y[x],x,IncludeSingularSolutions -> True]

—

y(x) — c1log(x)
y(x) =0
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1.5 problem 5

1.5.1 Solving as separableode . . . . . . ... ... ... ... ... HOl
1.5.2 Solving aslinearode . . . . . .. . .. ... ... ... 611
1.5.3 Solving as homogeneousTypeD2ode . .. ... ... ...... 62]
1.5.4 Solving as homogeneousTypeMapleCode . . . . . . ... .. .. 64
1.5.5 Solving as first order ode lie symmetry lookup ode . . ... .. 671
1.5.6 Solvingasexactode . . ... ... ... ... ... .. ... [71]
1.5.7 Maple step by step solution . . . . .. ... ... ... .. ... 751

Internal problem ID [2548]
Internal file name [OUTPUT/2040_Sunday_June_05_2022_02_45_54_AM_15637451/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "ho-
mogeneousTypeD2", "homogeneousTypeMapleC", "first_ order__ode__lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_separable]

y—(z-2)y =0

1.5.1 Solving as separable ode

In canonical form the ODE is

y/ = F(l‘,y)
= f(z)g(y)
Yy
oz —2
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Where f(z) = -L5 and g(y) = y. Integrating both sides gives

1
—dy = L dx
] Tz —2

/ldy:/ L dx
Y z—2

In(y)=ln(z—2)+¢

y = eln(z—2)+cl
=c(z—2)
Summary
The solution(s) found are the following
y=-ci(z—2)
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Figure 18: Slope field plot

Verification of solutions

y=ci(z—2)

Verified OK.
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1.5.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
q(z) =0
Hence the ode is
' Y
_ -0
y r—2
The integrating factor u is
ph=e [ —15de
1
=2
The ode becomes
d
S w=0
dz ©y
d Y
@ =0
dz (x — 2)
Integrating gives
y_ _ c
r— 2 !

Dividing both sides by the integrating factor u = ﬁ results in

y=ci(z—2)
Summary
The solution(s) found are the following
y=oal-2) (1)

61



B NONNONNNNNNNN NNV VLT
SONNONNNNNNNNN NNV LTS
SONSONNONNNNNNN NV VLT

I N N T O o A B B Ay
SNONONONSONOSOSNNNNNNN N VT 7
S SSSOSNSOSNNNNN NN VT 77

1_\\\\\\\\\x\\\\\\\\\\\\'1///'
\\\\\ \\\\\\\\\\\\\\\\1 1 ///
\\\\\\\\\\ \\\\\\\\ } ///

—_——\u S

y(X) U A
—14 /////////////// / ‘, \\\
///////////////,L\\\
///////////////1L\\\
o777 777 701 VNN
o777 77700V VN

oo 77777 7770V
3777777770000V

-3 =2 -1 0 1 2 3

X

Figure 19: Slope field plot

Verification of solutions

y=ci(z—2)

Verified OK.

1.5.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
u(z)z — (z - 2) (v(z) z + u(z)) = 0
In canonical form the ODE is

v = F(z,u)

= f(z)g(v)
_ 2u
Cz(r—2)
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Where f(z) = ﬁ and g(u) = u. Integrating both sides gives

1 2
Edu_ (x—2)z

/%du=/ﬁdw

In(u) =In(z—2) —In(z) + ¢
In(z—2)—In(x)+c2

dx

u==e

— CQGIn(x—2)—ln(x)

Which simplifies to

Therefore the solution y is

Summary
The solution(s) found are the following

y = s (1 - ;) (1)
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2
yzxcz(l——>
x

1.5.4 Solving as homogeneousTypeMapleC ode

Verification of solutions

Verified OK.

Let Y =y + yo and X = x + x then the above is transformed to new ode in Y (X)

d }«Xy+%
—Y(X)=—7———"—
dX () .X+I0—2
Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in
Tog =
Y% =0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d Y (X)
ax Y X) =%
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In canonical form, the ODE is
Y'=F(X,Y)
- — 1
~ M)

An ode of the form Y’ = %g}};)) is called homogeneous if the functions M(X,Y) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

f(tnXa tny) = tnf(X> Y)

In this case, it can be seen that both M =Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = ¥

X Or
Y = uX. Hence

dY duw
- _ 7y
ax “ax
Applying the transformation Y = uX to the above ODE in (1) gives
du
du
ax ="
Or p
ZulX) =

Which is now solved as separable in u(X). Which is now solved in u(X). Integrating
both sides gives

u(X)z/O dx

Now u in the above solution is replaced back by Y using u = % which results in the
solution

Y(X) = X
Using the solution for Y (X)

Y(X) = Xe
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And replacing back terms in the above solution using

Y=y+uy
X=z+ i)
Or
Y=y
X=zx+2
Then the solution in y becomes
y=c(z—2)

Summary
The solution(s) found are the following

y=cz—2)
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Figure 21: Slope field plot

Verification of solutions

y=co(z—2)

Verified OK.

66

Wl ——rrr 2/ /LN N NN NN N

[\S]



1.5.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

r_ Y
y r—2

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(ny — &) — w2§y —we§ —wyn =0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(2)y(z) + g9(x) 0 el fdz
separable ode Yy = f(z) g(y) % 0
quadrature ode y = f(z) 0 1
quadrature ode Yy =9g(y) 1 0
homogeneous ODEs of | ¥/ = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —l—c’
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) z? zy

. . z — [ bf(z)dz—h(=) — [ bf(z)dz—h(z)
First order special | y' = g(z) M@+ + f(z) —— fz)e @)
form ID 1

polynomial type ode

/ — smztbhiyta
Yy a2z+bay+ca

a1basr—aobix—bica+bacy

a1bey—agbiy—aico—azcy

a1ba—aszb1

a1ba—aszb1

Bernoulli ode

y = f(x)y+g(z)y"

e f(n—l)f(:z:)dwyn

Reduced Riccati

Y = fil@)y+ folz)y?

e~ J frdz
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The above table shows that

§(z,y) =0
n(z,y) =z —2 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, =4 1)

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S=/—dy
n
1
_/a:—2dy

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Y
r—2

w(w,y) =
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Evaluating all the partial derivatives gives

R, =1

R,=0

Sp=——1

T (-2
1

Sy_x—Q

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS
B 2A
ar = (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
>~ -0

dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

y _ c
Tz —2 !
Which simplifies to
T g 2~ “
Which gives
y=ci(z—2)
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical ) ) .
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ y a5 —
r ~ -2 dR —
SONNNNNNNNMV LV VLS
R e D R AR T A B A A
D e R A ¢
\\\\\\\\\\\Eit;;;;//
~a e Sa e NN ANV I Vvl Y
\\,\\\\ﬂ:@\\\\ \V it rAAS SRl
e S Y S R R g R =
——b——b—b—b—b—b—b b —aa | T > —>—> -
“"":‘2("’""—;["’*’0’””/’ /i\\ﬁﬂ{rﬁ.—; y = = 5 rig
B e S S L P P A RSO VO — R
S P I I IS NN r—2
»/?/V/V/V/'/V/’/"_jt//‘ AN NN g
R O O O W VA A B NNV N VW
B OV VA B B UV W
R O W VA VA B SRRV WA
AAAA AR APV VN NN #
AAAAZAAZ2 APV VNN
AAFZAAAAAAME PPV VNN
Summary
The solution(s) found are the following
y=c(z—2) (1)
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2_

Verification of solutions

Verified OK.
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Figure 22: Slope field plot

y=ci(z—2)

1.5.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(ﬂs,y)£=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

d
E;M%y)_o
op  O¢dy _,
or  Oydx
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Comparing (A,B) shows that

09
h Y /s
oz
9 _ n
Oy
But since aa;gy = 8‘9; ;’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘?: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—xi2> dx+<%) dy =0 (2A)

Comparing (1A) and (2A) shows that

1
r— 2

M(‘T?y) ==

1
N(z,y) = -
(z,y) y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
0y Oz

oM _o( 1)
oy Oy\ z-—2

Using result found above gives
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And

ON _ 0 (1
or  Ox\y

=0
Since %’I = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
— =M 1
o (1)
99
— =N 2
o )

Integrating (1) w.r.t. z gives

0¢ B
%dz—/de

%dxz/— 1 dz

or z—2
¢=—-In(z—-2)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ /() (4)

But equation (2) says that g—‘z = zl/ Therefore equation (4) becomes
1 /
~=0+f(y) (5)
Y
Solving equation (5) for f'(y) gives
1
f'ly) =~
W)=

Integrating the above w.r.t y gives

[row=[(5)e

fly)=In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

d=—In(z—2)+In(y) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

ci=—In(x—2)+1n(y)

The solution becomes
y=e%(z—2)

Summary
The solution(s) found are the following

y=e%(z —2) (1)
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Figure 23: Slope field plot

Verification of solutions

y=e%(z —2)

Verified OK.
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1.5.7 Maple step by step solution

Let’s solve

y—(2—-2)y' =0
° Highest derivative means the order of the ODE is 1

Yy

° Separate variables
yE/ = ziQ

. Integrate both sides with respect to x
f%dacz [ Sdz+a

° Evaluate integral
In(y)=ln(z—2)+¢

° Solve for y
y=e"(z—-2)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve(y(x)-(x-2)*diff(y(x),x)=0,y(x), singsol=all)

y(x) =c1(—2+1x)
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v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 16

-

kDSolve [y [x]-(x-2)*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

—

y(x) = c(z —2)
y(x) =0
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1.6 problem 6

1.6.1 Solving as separableode . . . . . ... ... ... ... ..... (77
1.6.2 Solving aslinearode . . . . . .. . ... ... ... ... ... 79]
1.6.3 Solving as first order ode lie symmetry lookup ode . .. .. .. 80
1.6.4 Solvingasexactode . ... ... .... ... .......... ¥
1.6.5 Maple step by step solution . . . . ... ... .. ... ... .. 88|

Internal problem ID [2549]
Internal file name [OUTPUT/2041_Sunday_June_05_2022_02_45_55_AM_40885883/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_ order__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type
[_separable]

,_22(y—1) =0
z2+3
1.6.1 Solving as separable ode
In canonical form the ODE is
y =F(z,y)
= f()9(y)
_ x(2y—2)
T z2+3

Where f(z) = ;%5 and g(y) = 2y — 2. Integrating both sides gives

1 du — T
2y — 2 y_x2—|—3

1 T
dy = d
/2y—2 y /x2—|—3 o

7

dz




In(y —1 In(2?+3
=D @+,

Raising both side to exponential gives

In z2+3)

\/m = e%“l

Which simplifies to
Vi—1=c/a 53

Which simplifies to
y=c3(z?+3)e* +1

Summary
The solution(s) found are the following

y=cs (m2 + 3) e 41 (1)
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Figure 24: Slope field plot

Verification of solutions

y=c (" +3)e™ +1

Verified OK.
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1.6.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Where here

Hence the ode is

Y +p(z)y = q(z)

2z
PO)="12 3
2z
, 2zy 2z

The integrating factor y is

The ode becomes

Integrating gives

2
QLZ/__%'W
2+ 3 (22 + 3)

y 1
Z+3 2+3 O

Dividing both sides by the integrating factor u = z++3 results in

Summary

y=1—|—cl(x2—|-3)

The solution(s) found are the following

y=1+c(a*+3) (1)
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Figure 25: Slope field plot

Verification of solutions

y=1+c (z>+3)
Verified OK.
1.6.3 Solving as first order ode lie symmetry lookup ode
Writing the ode as

- 2:I7(y - 1)
243
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fz) - w2€y —wz§ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 16: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(“)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
n(z,y) =z>+3 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x
S is found from
1
S = / —dy
n
1
= d
/ 22 +3%
Which results in
Y
§= 2+ 3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2z(y — 1)
w(x’ y) - .'1:2 + 3
Evaluating all the partial derivatives gives

R, =1
R, =0
2yx
(22 + 3)
1
Y x2 43

r =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS 2z

ﬁ = - (IL‘2 n 3)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s _ 2R
dR  (R?+3)°
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

R2+3

1
+c

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

1
+c

=x2+3

1

gives
S(R) =
results in
Y
243
Which simplifies to
Yy
22+ 3

Which gives

= c
a:2+3+ !

y=clx2+3cl+1

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
.. ) . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’

dy __ 2x(y—1) as _ _ 2R _

r ~  x243 dR (R2+3)?
NNAMNNNNNNN 2 frprpry S
NANNNNNNNS e ppp A p N D,
NNNNNNNNNW T A AL A S TG N R
D R NN S D S N
NN N NN N NFIAF A ——— > — bbb bbb —>
AR A st D1 S
~ a2 > 7 T v v v v v = IS -~ R
bbb b bbbt —b—b—b R =z bbb > b > > > B b—b—b—b—b—b—B—D—b—b
e T ¥ T _T_T v bla~a~aa A AT a—a b bbb BB Db ——b
PN R SRS AT NOUCTON Y B S e
AFAAAAA A 2N NN N N N NN —>——b— b > > b —b—n—s ———b—s
AAAAA A A A A NN N N N N N N 224+ 3 S B, S
AAAPAAL AN NN N N N N Y N
AAAAAP P22 NN N NN NN NN > > > bbb
NN NNV B e
PEPPLPEPEAANNYNY LY YN N NN A BN
P I N I I A 3 NNV NN NN DI,

Summary

The solution(s) found are the following

y=c1z?+3c; +1
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Figure 26: Slope field plot

Verification of solutions

y=clz2—|—3cl—|—1

Verified OK.

1.6.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
M(z,) + N(z,y) 22 = 0 (4)
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

< o(ay) =0

Hence
09 dpdy _

dor ' dydz 0 (B)
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Comparing (A,B) shows that

99
M
ox
% _ n
Oy
But since % = (,;9; g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
2¢ _ 8¢
Ozdy ~ Oydzx
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

is satisfied. If this condition is not satisfied then this method will not work

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
1 T
() o= () @
x 1
<_m2+3) dw+(2y_2> dy =0 (2A)

Comparing (1A) and (2A) shows that

X
M(.’L’,y) :_.'132+3
1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM _0( s
oy Oy\ 2243
=0
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And

oN_0( 1
oxr Oz \2y—2
=0
oM _

Since Sy = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

0p

g—x =M (1)
¢ N

dy 2

Integrating (1) w.r.t. z gives

op .
de—/de

0¢ z
G_wdxz/_x2+3dx
o= -2 | g Q@

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

99
=0 ! 4
= 0+1W) (@
But equation (2) says that g—i = 21}%2 Therefore equation (4) becomes
0+ f(y) (5)
w—2 Y

Solving equation (5) for f'(y) gives

1

f'ly) = -2
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Integrating the above w.r.t y gives

[rwa=[(555)

fo =20

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
In (2% + 3) 4 In(y—1)

b=—"7> 2

+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

In (22 + 3) +ln(y—1)
2 2

Cl = —

The solution becomes
y =e*z% +3e* + 1

Summary
The solution(s) found are the following

y =e*1z% +3e*1 + 1 (1)
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Figure 27: Slope field plot

Verification of solutions

y=e* 'z’ +3e* +1
Verified OK.

1.6.5 Maple step by step solution

Let’s solve
2w(y—1
¥ - g;gy+3) =0

° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
y  _ 2z
y—1 — 2243
° Integrate both sides with respect to x
f%dmz[ﬁ—%dﬂH—cl
. Evaluate integral
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In(y—1)=In(z?+3)+ ¢
° Solve for y

y=e%2?+3e" +1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

tdsolve(diff (y(x),x)=(2*x*(y(x)-1))/(x~2+3) ,y(x), singsol=all) J

y(z) = c12% + 3¢, + 1

v/ Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 20

LDSolve[y'[x]==(2*x*(y[x]-1))/(x“2+3),y[x],x,IncludeSingularSolutions -> True]J

y(z) = 1+ c1(z® +3)
y(z) > 1
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1.7 problem 7

1.7.1 Solving as separableode . . . . . . .. ... ... ... ..., 901
1.72 Solving aslinearode . . . . . .. . .. ... ... 92]
1.7.3 Solving as first order ode lie symmetry lookup ode . .. .. .. 94
1.74 Solvingasexactode . . ... ... .. ... .. ......... O8]
1.7.5 Maple step by step solution . . . . ... ... ... .. ... .. 102

Internal problem ID [2550]
Internal file name [OUTPUT/2042_Sunday_June_05_2022_02_45_57_AM_62513362/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 7.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_ order__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y—axy +2x? =3

1.7.1 Solving as separable ode

In canonical form the ODE is

Yy = F(z,y)
= f(z)g(y)
. —y+3
S x(2r—1)
Where f(z) = ﬁ and g(y) = —y + 3. Integrating both sides gives
1 1

—y+3dy:x(2w—l)dx

1 1
/—y+3dy_/x(2a:—l)dx

—In(y—3)=In2z—-1)—In(z)+¢
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Raising both side to exponential gives

1 — eln(2¢—1)—1n(x)+cl
y—3
Which simplifies to
1
Il C2eln(21—1)—ln(x)
y—3
Which simplifies to
_ 3cp(2e — =) +1
(26—

Summary
The solution(s) found are the following

32t — =) +1

y_

& (2o — )
3

AAAAAAA )// \ P NN
))2//////1 ]/////))
y(X) 07 ——— 7 ] 1 ]/
-7 ] 117777
7 )] 11/ 777>
Ny 7 1 117777 =
////////I 1///////
77 117777
277 ] 1///////
771 11777 -~~
777 117777 ~-~
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Figure 28: Slope field plot
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Verification of solutions

Verified OK.

1.7.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y' +p(z)y = q(z)

Where here
1
p(z) = z(2z — 1)
3
ale) = z(2x — 1)
Hence the ode is
3
W

The integrating factor u is
w= ef mdm
— eln(2x—1)—ln(z)

Which simplifies to

2¢ — 1
N:

T

The ode becomes
d 3

S22~ () (ca=)

Integrating gives
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Dividing both sides by the integrating factor p = 221 results in

which simplifies to

Summary

The solution(s) found are the following

_ 3 + 1z
Y= T 1w —1

_cazx—3

Y= 9r—1

_azx—3

Y= 9r—1
AAAAAA —_—_ e~ s
AAAAA —_——_= / P

—_—— e s > > > 7 /

—_———— 7 ]

L)
Vol
Loy
Vol
V)
A
N\
NN
NN

—_—— 7 ]
—_— 7 7 /
——— 7]

/ J
/////)))

Verification of solutions

Verified OK.
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Figure 29: Slope field plot

caxr —3

Y= 9r -1
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1.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y = Y73
z(2z—1)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(ny — &) — w2§y —we§ —wyn =0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 19: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form 13 n
linear ode Yy = f(2)y(z) + g9(x) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =9g(y) 1 0
homogeneous ODEs of | 3/ = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —l—c’
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) z? zy
First order special | y' = g(z) M@+ + f(x) W f)e” fgb:;;)dzih(m)
form ID 1

polynomial type ode

/ — smztbhiyta
Yy az2z+bay+ca

a1basr—aobix—bica+bacy

a1bey—agbiy—aico—azcy

ai1ba—azb;

ai1ba—azb;

Bernoulli ode

y = f(x)y+g(z)y"

e~ f(n—l)f(:z:)dwyn

Reduced Riccati

Y = fil@)y+ folz)y?

e~ J frdz
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The above table shows that

§(z,y) =0
’I’](.’E, y) —e In(2z—1)+In(z) (Al)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, =4 1)

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n

1
= / e~ In(2z—1)+In(z) dy

S is found from

Which results in

o 2r—1)y

T

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Set+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

y—3
w(z,y) z_x(T—l)
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Evaluating all the partial derivatives gives

R, =1
R, =0
Y
Sx=§
2r—1
Sy = -

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 3

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 3

dR R?
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —% te @)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2z — 1 3
(@z=1)y =——+40
x
Which simplifies to
2z — 1 3
@e-Yy_ 3,
x
Which gives
_ar—3
C2r—1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates
(R, 9)

dy _

y—3

de —  z(2z—1)

N
s |
———b——b—b—s—b—a
— b —> ]
€3
—— b = A
—— > —> > T ?‘
——>—>—>—> > > T 7 f
——>—> > > > v 7 7 f

——>—> > > v v 7 A

f \,\\\s\»—»—»—»—»
f N e
‘r \ N —b—b—b—b—b—b
fF N
j NN
\ s
j‘ A
| P
f e

f Ao o>

S
> o 7 7
s> o v 7 Af
—— > v 7 A f
- > o v 7 J ]
——> v v A
——s e v 77 A

f
b
t
|
t
t
4
t
t

e
3
L
)
4
|
|

A w v o> > >
A A o>
Ao
AA oo

f
f
t
t
t
t
t
t
t
t

— e e A A e Na N
N
N\
\
v
y
Y
4

as _ 3

dR = RZ2
B f 44 f A
oo 7 f fp Ao
B e P f 21 f f Ao
v 7 f ft A oo
——s v 7 A f] ftp Ao
e e P f_‘A fp Ao o>
——s v 7 A f] ftp Ao
- > v o v AN f_4< f PAF s

Summary
The solution(s) found are the following

caxr —3

2z —1
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Figure 30: Slope field plot

Verification of solutions

_azx—3
2 —1

Y

Verified OK.

1.7.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
E;ﬂ%y)_o
Hence

0p L 0bdy _
8z+8ydz_0 (B)
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Comparing (A,B) shows that

o¢
M
ox
o¢
T _N
Ay
But since % = % then for the above to be valid, we require that
0y yOx
oM _ oN
oy  Ox

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
2 2
8‘5; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
1 1
dy=(——)d
(—y+3) v (x(2x— 1)> v
1 1
- - = 2A
(rmn) () w0 -
Comparing (1A) and (2A) shows that
M(z,y) = b
Y= z(2z —1)
1
N =
(z,9) ——

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
omMm_o( 1
oy Oy\ z(2z-1)

=0
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And

N _o( 1
oxr Oz \—-y+3

=0
Since %—A; = ‘:’%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
e (1)
09
— =N 2
o 2)

Integrating (1) w.r.t. z gives

o9 .
8_xdx_/de

0¢p 1
%dx= /_x(2x— 1) de
¢p=—-In(2z—1)+1n(z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

0¢ :
- 4
2 =0+ 1) (@)
But equation (2) says that g—z = ﬁ Therefore equation (4) becomes
=0+ /(y) (5)
—y+3 Y
Solving equation (5) for f'(y) gives
1
, = —_———

Integrating the above w.r.t y gives

/f’(y) dy:/(—y%) dy

fly)=-In(y—-3)+a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢p=—In2z—1)+In(z)—In(y—3)+ a1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

cg=—In(2z—-1)+In(z) —In(y — 3)

The solution becomes
(6erx —3e +1z)e ™
2z —1

y:

Summary
The solution(s) found are the following

(6erx —3e +1)e ™

y 5e — 1 (1)
3
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Figure 31: Slope field plot
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Verification of solutions

(6e 'z —3e +1x)e™ ™
2z — 1

y =
Verified OK.
1.7.5 Maple step by step solution

Let’s solve
y—xy +2y'z? =3
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
y 1
—y+3 T 2z2-—2z
° Integrate both sides with respect to x
J —5;-3‘13” = [ gmzdzta
° Evaluate integral
—In(—y+3)=mn(2z—-1)—In(z) + &
° Solve for y

__ 6eflx—3efl—z
Y= "& (2z—-1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(y(x)—x*diff(y(x),x)=3—2*x‘2*diff(y(x),x),y(x), singsol=all)

_ar—3
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v/ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 24

-

N
kDSolve [y [x]-x*y' [x]==3-2%x"2*y' [x] ,y[x] ,x,IncludeSingularSolutions -> True] J

(CL’) 3+ 1T
y 1- 2z
y(z) — 3
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1.8 problem 8

1.8.1 Solving as separableode . . . . . . ... ... ... ... ... 104!
1.8.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 106
1.8.3 Solvingasexactode . .. ... .. ... ... .......... 110

Internal problem ID [2551]
Internal file name [OUTPUT/2043_Sunday_June_05_2022_02_46_00_AM_71161820/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 8.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_ or-
der__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

, cos(—y+x)

~ sin (z)sin (y) =1

1.8.1 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)
cos (z) cot (y)
sin ()

Where f(z) = cos(@) and 9(y) = cot (y). Integrating both sides gives

sin(z)

1 _ cos(z)
cot (y) Y= sin (x)

—In(cos(y)) =In(sin(z)) + ¢

dx

104



(1)

eln(sin(x))+cl
cosin (z)

arcsec (coe sin (z))

1
cos (y)
sec (y)

Y

Raising both side to exponential gives
The solution(s) found are the following

Which simplifies to

Summary
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arcsec (coe sin (z))
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Figure 32: Slope field plot
Y

Verification of solutions

Verified OK.



1.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, __sin(z)sin (y) — cos (—y + z)

sin () sin (y)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - wzfy - wx§ — Wyn = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 22: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form 13 n
linear ode v = f(@)y(z) + g9(x) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode v =9g(y) 1 0
homogeneous ODEs of | ' = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —l—c’
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) z? zy
First order special | y' = g(z) M@+ + f(x) W f)e” fgb:;;)dz_h(m)
form ID 1

polynomial type ode

/ — amztbhiyta
Yy azz+bay+ca

a1basr—aobix—bica+bacy

a1bey—agbiy—aice—azcy

ai1ba—azb;

ai1ba—azb;

Bernoulli ode

Y = f(x)y+g(z)y"

e f(n—l)f(:z:)dwyn

Reduced Riccati

Y = fil@)y+ folz)y?

e~ J frdz
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The above table shows that

_ sin ()
£(z,9) = cos ()
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

F=, = 1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since 7 = 0 then in this special case

R=y

Sz/édm
_ [ L

- / sin(x) dz

cos(z)

S is found from

Which results in
S =1In(sin (z))

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sz +CU(.’L',y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

sin (z) sin (y) — cos (—y + x)
sin (z) sin (y)

W(.’E,y) = -
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Evaluating all the partial derivatives gives

R, =0
R, =1
Sy = cot (z)
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _ cos (z) sin (y)
dR  —sin(z)sin (y) + cos (—y + z)

(24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
Fioi tan (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —In(cos(R)) + 1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In (sin (z)) = —In(cos (y)) + &1
Which simplifies to
In (sin (z)) = —In(cos (y)) + &1

Which gives

el
= arccos | ———
e ( <w>>
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy __ sin(z)sin(y)—cos(—y+x) s __

dx — sin(z) sin(y) dR — tan (R)
o A\~ A\ e N\ (~a—> PANS—=F N~ P\ N
e\ e\ e\ A e FAN—== AN AN S
/\s\\f/’/\s\%/‘/ﬂ\s\\/‘/»\s Py N A N P N A
/\\aiff/’\\a IR Y E RN I e B e g R I AR
NoP lﬁ NIRRT ARERE Y £y N ;RS,\\»/?X\\-»/f\
\»/f;Q’ AR I IR L. AN R TN Ty
e 7 N\ a7 H N\ ~a—oe v 7\~ FA N~ VN P\ N~ 2
e e U PANS= A AN 2 AN A
=N\ P AN AN e R=— fF AN AN\ e 7
AN AN | A i A =Y NG N B NN S B\
DTS | sone ARSSTA IR 1
R S ey N n(mn(x» f&\\)/f&\\»/f¥¢§»/f¥
——a N\ f e =a )| S T\ s f AN~} x\_jé/"/f VN
=N\ P A=\ P A==\ P AN LN\ =
ANVU P ANV HE P ANV PN R R N BT S Sl B
NP PR AN~ AN A A I e R e g R I
= AN A N | e FAN—~= 7 A\ N A f A\ N A
——r e A N e AN e T (e R R A R e
e\ e N e\ e FAN—== /AN AN

Summary
The solution(s) found are the following

e
Y = arccos ( , )
sin (z)
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Figure 33: Slope field plot
Y = arccos ( -

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)
ode. Taking derivative of ¢ w.r.t. x gives

1.8.3 Solving as exact ode
To solve an ode of the form

Verification of solutions

Verified OK.
Hence



Comparing (A,B) shows that

. 324 __ 92¢
But since 520y — Dyox

then for the above to be valid, we require that

oM  ON

oy Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = 8‘9; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

()
() oo+t =0 o

Comparing (1A) and (2A) shows that

e )= -5
o= 28

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
0y Oz

Using result found above gives

oM 8 (_Cos(:v))

Ay \ sin (z)

6_y_6y
=0
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And

ON _ 0 (sin(y)
Or Oz \ cos(y)
=0
Since %i; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

0p

g—x =M (1)
¢_N

dy 2

Integrating (1) w.r.t. z gives

@dx=/Mdm
or

%dx = /—COS (=) dz

or = sin (z)

¢ = —In(sin (2)) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

99
=0 ! 4
=0+ 1 (@)
But equation (2) says that g—ﬁ = (S:E;EZ)) Therefore equation (4) becomes
sin (y) :
=0 5
=041 )

Solving equation (5) for f'(y) gives

7y) = 22

cos (y)
— tan (y)
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Integrating the above w.r.t y results in

l/ﬂw®=/ﬂw@»®

f(y) = —In(cos (y)) + a1

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ = —In(sin(z)) — In (cos (y)) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

¢ = —In (sin (z)) — In (cos (y))

Summary
The solution(s) found are the following

—In (sin (z)) — In (cos (y)) = 1 (1)
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Figure 34: Slope field plot
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Verification of solutions

—In (sin (z)) — In(cos (y)) = 1

Verified OK.
Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.14 (sec). Leaf size: 11

‘ dsolve(diff (y(x),x)=(cos(x-y(x)))/(sin(x)*sin(y(x)))-1,y(x), singsol=all) ‘

y(x) = arccos (M)

&1

v Solution by Mathematica
Time used: 5.76 (sec). Leaf size: 47

LDSolve [y' [x]==(Cos[x-y[x]])/(Sin[x]*Sin[y[x]])-1,y[x],x, IncludeSingularSolutiﬂons -> True]

y(x) — — arccos (—%cl csc(x))
y(x) — arccos (—%cl csc(x))

e

_> _—

y(x) 5
v

y(z) — By
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1.9 problem 9

1.9.1 Solving as separableode . . . . . . ... ... ... ... ...
1.9.2 Solving as first order ode lie symmetry lookup ode . .. .. ..
1.9.3 Solvingasexactode . .. ... .. ... ... ..........
1.94 Solving asriccatiode. . . . .. .. ... ... ... ... ....
1.9.5 Maple step by step solution . . . . . ... ... ... ... ...

Internal problem ID [2552]

Internal file name [OUTPUT/2044_Sunday_June_05_2022_02_46_04_AM_54947365/index. tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000

Section: 1.4, page 36
Problem number: 9.
ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",

"first_ order__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type

[_separable]

o :L.(y2 - 1)

a-2) @1 "

1.9.1 Solving as separable ode
In canonical form the ODE is

y/ = F(J?,y)
= f(z)9(y)

2
¥ _ 1
(5 -3)
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/ﬁdy:/(z—z)x(z—ndx

—2 arctanh (y) = —In(z - 1)+ 2In(z - 2) + ¢
Which results in

In(z—1
y = —tanh —M—}—ln(m—2)+c—1
2 2
Summary
The solution(s) found are the following

In(z—1)

= —tanh | —
Y tan( 2

+In(z—2)+

|2
S~

(1)
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Figure 35: Slope field plot

Verification of solutions

In(z—1)
2

+1n(x—2)+ﬂ>

= —tanh | —
Y tan( 2

Verified OK.
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1.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

r_ x(y2 - 1)

2(z—2)(z—1)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ny + w(ny - €z) - w2€y —wg€ — Wyt = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form 13 n
linear ode vy = f(@)y(z) + g(z) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode y = f(z) 0 1
quadrature ode vy =9g(y) 1 0
homogeneous ODEs of | ' = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bx + cy)% 1 —g
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy
First order special | y' = g(z) M@+ + f(z) e_fbf;?# fz)e” '[;?;;)d%h(z)
form ID 1

polynomial type ode

/ — sztbhiyta
Yy az2z+bay+ca

a1bar—aobix—bica+bacy

a1bey—agbiy—aico—azcy

ai1ba—azb;

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

e f(n—l)f(x)dacyn

Reduced Riccati

Y = fi(z)y + fa(x) y?

e~ J frdz
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The above table shows that

£loy) = (x — 2)x(:v -1)

n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

F=y =48 1)

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

Sz/%dx
o

= / e

S=—-In(z—1)+2In(z—2)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

z(y® —1)
2(z—-2)(z-1)

w(a:,y) =
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Evaluating all the partial derivatives gives

R, =0
R, =1

z
Sz_(ac—2)(a:—1)
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 2

AR~ -1 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds 2
dR R2-1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —2 arctanh (R) + ¢; 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—In(z—1)+2In(z —2) = —2 arctanh (y) + ¢,
Which simplifies to
—In(z—1)+2In(z —2) = —2 arctanh (y) + ¢,

Which gives

y = tanh (W—lm(m—?)—k%)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .

.. ) . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ 2’1 ds _ _2
z — 2(z—2)(z—1) dR = R2-1

NANNNNNNNNN ALttt e 2O NN N IS
SONNNNNNNNN APttt et S RN N GiGmtnantd
NN NNNN NN N AL e U I It AN B SR
NN NNNNNNN AP LS R e N R
\\\.\\\)ZQQ\\/’T vyttt A2z o7 RN IR B S
—~ e S A A I \ \4\1 \ fp Ao s
ﬂﬂﬂﬂﬂ xx\xkjﬁit;///;; »»»”»/;;iiti;;/ﬂﬂd»»
> A v oo > I 4 T o > o
N e R _ —w—ww s v At \\|]\| AT
NN N
— 2N M aTpe—s B e
i wnnn | S=-h@-1)+2h( N s
S R R A ekt R el BN N I
ECIOE S b SRR B A A B e R A B e
RSO NS RN DRSS TN N B
NN NNNNNNN ALt D O O N R I
D N I N I S DGR N N S
NNNNNNNNNN APttt R = 5 N AN I
NNNNNNYNNYNN ALt R e Y BN AR S e

Summary
The solution(s) found are the following

-1
y=tanh(%—ln(x—2)+
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Figure 36: Slope field plot

Verification of solutions

1 -1
y=tanh(¥—ln(x—2)+%)

Verified OK.

1.9.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy

M(w,y)+N(w,y)£

=0 (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Eﬁ@ﬂ%zo
Hence 8¢ 6¢ i
ay
0z ' dydr (B)
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Comparing (A,B) shows that

09
T M
oz
9 _ n
Oy
But since aajgy = 5’; ;’x then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
(,;9; 6¢y = (,;9; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(_(x—2)x(x—1))d‘”+<%2l_%)dy: (2A)

Comparing (1A) and (2A) shows that

(x—2)(x—1)
1

v
2

M(.’E,y) ==

N(z,y) =

N [—=

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

%_A;:a%(‘@—mm(x—n)

=0
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And

8_N_3< 1 )

or Or\¥ _1

2 2
=0

Since %]y” = am , then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢ _

g_”" - M (1)
0¢

=N 2)

Integrating (1) w.r.t. z gives

@dx=/Mdz
or

dx—/ (x —2) m—l)
¢=In(z—1)—2In(z —2)+ f(y)

3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ /() (4)

. Therefore equation (4) becomes

But equation (2) says that g—z = % T

21 =0+f/(y)

v _ 1
2 2

Solving equation (5) for f'(y) gives
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Integrating the above w.r.t y gives

/f’(y)dy=/(y22_1) dy

f(y) = —2 arctanh (y) + ¢;

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢p=In(x—1)—2In(x — 2) — 2 arctanh (y) + ¢1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

ci =In(z—1) —2In(z — 2) — 2 arctanh (y)

The solution becomes

In(z—1)

= —tanh [ —
Y tan( 5

+1n(x—2)+ﬂ>

Summary
The solution(s) found are the following

y = — tanh (—MT_D+IH(93—2)+E> (1)
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Figure 37: Slope field plot
Verification of solutions
y = — tanh (—M+ln(x—2)+ﬂ>
2 2
Verified OK.
1.9.4 Solving as riccati ode
In canonical form the ODE is
y, = F(I,y)
_ z(yP-1)
C2(z—-2)(z—1)

This is a Riccati ODE. Comparing the ODE to solve

. z y? B T
Yo o0@-2@-1 2@-2)(z-1)

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®
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Shows that fo(.’L‘) = —m, fl(.’ﬂ) =0 and fQ(.’E) = m Let
/

—U

v fau
- % (1)

Tu
2(z—2)(z—1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" () — (fy + fufo) W' (z) + f3 fou(z) = 0 (2)
But
= 1 _ T _ T
*T2@-9@-1) 2@-2@-1) 2@-2) (-1
fifa=0
foO = _8($ . 2)3 (x _ 1)3

Substituting the above terms back in equation (2) gives

zu”(z) B < 1 B z B T ) (@) — z3u(z)
2(z-2)(z—-1) \2(-2)(z—-1) 2@x-2°@@-1) 2@=-2)(x-1)° 8(z—2)° (z —

Solving the above ODE (this ode solved using Maple, not this program), gives

In(x—1)
2

In(z—1)

u(z) = ¢; sinh (— +In(z — 2)) + ¢ cosh (—T +In(x — 2))

The above shows that

x(cl cosh (—@ +1In(z— 2)) + ¢y sinh (—w +1In(z— 2)>>
2(z—2)(z—1)

u'(z) =

Using the above in (1) gives the solution

. _01 cosh (—@ +In(z — 2))) + ¢y sinh (—% +In(z — 2);

¢p sinh <—M +In(z—2)

5 + c2 cosh (—@—I—ln(m—@
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Dividing both numerator and denominator by c; gives, after renaming the constant
2 = c3 the following solution

—c3 cosh (—@ +1In(z— 2)) — sinh (—w +1In(z— 2))
c3 sinh (—% +In(z — 2)) + cosh (—% +In(z — 2))

y:

Summary
The solution(s) found are the following

—c3 cosh <—w +In(x — 2)) — sinh (—ln(“’;l) +In(z — 2))

c3 sinh (—w +In(z— 2)) + cosh (—% +In(z— 2))
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Figure 38: Slope field plot

Verification of solutions

—c3 cosh (—@ +In(z — 2)> — sinh (—% +In(z — 2))

cs sinh (—w +1In(z— 2)) + cosh <_# +In(z — 2))

y:

Verified OK.
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1.9.5 Maple step by step solution

Let’s solve
a(y’-1) _
y - 5w-2)@-1) — 0

° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables
yl

21 Z(z—2§(x—1)

° Integrate both sides with respect to x
/ ;;—lew =/ 5e=2)(@=1) dr 4 ¢
° Evaluate integral

—arctanh(y) = —% +In(z—2)+¢
° Solve for y

y = — tanh (—@—i—ln(z—%—l—cl)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

-

dsolve(diff (y(x),x)=(x*( y(x)~2-1))/(2%(x-2)*(x-1)),y(x), singsol=all)

N\

y(z) = — tanh (ln(—2+x) _ w +%)
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v/ Solution by Mathematica
Time used: 0.942 (sec). Leaf size: 51

-

kDSolve [y' [x]==(x*( y[x]"2-1))/(2*(x-2)*(x-1)),y[x],x, IncludeSingularSolutions\J -> True]

T+ e (r—2)? -1
y(@) = C—ztea(z—2)2+1
y(z) = -1

y(z) =1
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1.10 problem 10

1.10.1 Solving aslinearode . . . . . .. ... ... ... ... ... . 1301
1.10.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 1321
1.10.3 Solvingasexactode . . .. ... ... ... .. ... ... . 137
1.10.4 Maple step by step solution . . . . . ... ... ... ...... 142

Internal problem ID [2553]
Internal file name [OUTPUT/2045_Sunday_June_05_2022_02_46_06_AM_99634586/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 10.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

. Ty —32 _
—z2 + 16

1.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
2
T
(z) = 3222 — 480
A= z2 —16

Hence the ode is

’y  32z® — 480

/
Yt e 16" 22-16
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The integrating factor u is

2
T
w= ef 216

— e:p—21n(x-|—4)+2 In(z—4)
Which simplifies to
(z —4)%e”

T @t ey

The ode becomes
d 3222 — 480
a(uy) = (1) (TIG)
d ((z- ety  [(z—4)%e” (32m2 - 480)
dz\ (z+4)? ) \ (z+4)° z2 — 16

d((x—4)2e:y> _ (32e””(x—4) (9;2 — 15)) dz
(z+4) (x +4)

Integrating gives

(z —4)%e*y _ / 32e”(z — 4) (% — 15) dz

(z +4)° (z +4)°
(z —4)% ey 128e*  1952e” i
— = =32e"+ — — 1440 e * explntegral, (—z — 4) + ¢
(z+4)° (z+4)° z+4 plntegral, )+
Dividing both sides by the integrating factor yu = % results in

(z+4)%e™ (32 e” + 2o, — 199297 _ 1440 e~ explntegral, (—z — 4)) c(z+4)e™

(z+4)? a+4

(z—4)° (z—4)°

y:

which simplifies to

—1440 e *~*(z + 4)” expIntegral, (—z — 4) + c1(z + 4)> e~* + 3222 — 1696z — 7168
(o= 47

y:

Summary
The solution(s) found are the following

)
—1440 e~*4(z + 4)® explntegral, (—z — 4) + ¢1(z + 4)* €% + 3222 — 16962 — 7168

(z—4)*

(1)
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Figure 39: Slope field plot

Verification of solutions

y— —1440 e **(z + 4)® expIntegral, (—z — 4) + ¢1(z + 4)> e~ + 322> — 1696z — 7168
- (z — 4)*

Verified OK.

1.10.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

,_ x’y— 323”4480
- z2 —16
¥ =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(’?y - 5:1:) - w2€y - Wx€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 27: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
n(z,y) =

e—:z:-l—2 In(z+4)—21n(z—4)

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R==x

S is found from

1
e—z+2In(z+4)—2In(z—4) dy
Which results in
(z—4)"ey
(z + 4)2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sp+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

_ z?y — 3227 +480

w(@,y) = z?2 — 16
Evaluating all the partial derivatives gives
R,=1
R,=0
_ (z—4)etya?
T @+ a)]
_(z— 4)* e*
YT (@ +4)?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dsS _ 32e"(z—4)(2* - 15)
dR (z +4)°

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS _ 32e"(R—4) (R*—15)
dR (R+4)°

(24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

128ef 1952 e®

S(R) = 32¢" -
B =B ey~ R+d

— 1440 e *explntegral, (—4 — R) +¢;  (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2 T X T
(x —4) e2y=32e’”+ 128e 2_1952e
(x +4) (x+4) z+4

Which simplifies to

— 1440 e * explntegral, (—z — 4) + c;

(z —4)%e"y o 128" 1952¢°
(z +4)° (z+4)? z+4

Which gives

— 1440 e~ * explntegral, (—z — 4) + ¢,

_ (—1440 e * explntegral, (—z — 4) 2 + 32z%e” — 11520 e * expIntegral, (—z — 4)  + c,2* — 1696z €’
z? — 8z + 16

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’
dy _  2%y—3222+480 ds _ 32e"(R—4)(R?-15)
dr z2—-16 dR — (R+4)3
t ? ttf—=t
t ? ttft—=t
t 4 4 ttt—t
Pzl
yﬂxb SR;) Pttt
} A t A Prizd
| R=z P1t—t
e SR
N _ > A S:(x )" €%y B b ZfRffzf
! 4)2 1=t
. ! (z+4) 3 Phpt
t ttt—t
t ttf—t
t ttt ttr—=t
i — 4 ttt —4 ttt—t
i ttt ttfr—t
t frfrtrrttr ettty t [ A O O A A A A |
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Summary
The solution(s) found are the following

y 1)
_ (—1440 e * explntegral, (—z — 4) 2 + 32z%” — 11520 e~* explntegral, (—z — 4) z + c,z? — 1696z e” -
B x? — 8z + 16
3_
f f f f
2_
f f f f
H f f f
yx) o f f f f
1 f f f f
=211 1 f f f f
_3—
-3 -2 -1 0 1 2 3
X

Figure 40: Slope field plot

Verification of solutions

Y
_ (—1440 e * explntegral, (—z — 4) 22 + 32z%” — 11520 e~* explntegral, (—z — 4) z + c,z? — 1696z e” -
B z? — 8z + 16

Verified OK.
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1.10.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

z?y — 32
— _— 2
dy (—x2+16+3>dx

z?y — 32
% 39 = 2A
( 16 3)dx—|—dy 0 (2A)
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Comparing (1A) and (2A) shows that

T’y — 32

— — 32
22+ 16

M(z,y) =
N(:E:y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

2, _
3_M=2<_L32_32>

oy Oy\ —-x2+16
22 -16
And
ON
1
B = ( )

Since %—Aj # %—2’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

OM ON
A= (a—y - %)

(=) -0)

72
2216

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is

ll/:efAdm

2
= efz;i—ledz

The result of integrating gives

b= et~ 2In(z+4)+21n(z—4)

_ (=9’
(z +4)°
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
(z—4)%e T’y —-32
C (z+4) ( —22 + 16 32)
_e"(x —4) (480 + (y — 32) 2°)
- (z+4)°
And
N =uN
_(x—4)
=W
_(x—4)2e””
(z +4)°

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+NY — o
dz
<e“"(w —4) (480 + (y — 32) x2)) (z —4)%e” | dy
3 Sl Bmreal B e
(z+4) (z+4) dzx
The following equations are now set up to solve for the function ¢(z,y)
0p —
— =M 1
o (1)
0p —
— =N 2
5 )

Integrating (1) w.r.t. z gives

—dx—/de

08, _ [€(@—4)(480+(y—32)a?)
335 / (z +4)° de
(3)

¢
z? + (—8y + 1696) = + 16y + 7168) ®

_ 1440e *(z + 4)? explIntegral, (—z — 4) + ((y — 32)

(x + 4)2
+ f(v)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0p _ & (z° — 8z +16)

A @
_(z— 4)2 e? ,
= @t + f'(y)

But equation (2) says that g—‘;’ = %}w. Therefore equation (4) becomes

(z —4)%e” _ (z —4)%e”
(z+4°  (@+4)’

+ () ()

Solving equation (5) for f'(y) gives
f'y) =0
Therefore
fly)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢

¢
_ 1440e~(z + 4)? explntegral; (—z — 4) + ((y — 32) 22 + (=8y + 1696) z + 16y + 7168) &

(z +4)°

+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

1
_ 1440e*(z + 4)? expIntegral, (—z — 4) + ((y — 32) 2% + (—8y + 1696) x + 16y + 7168) e”
(z+4)°
The solution becomes
)
(—1440 e~* explIntegral, (—x — 4) 2 + 32z%® — 11520 e~* expIntegral, (—z — 4)  + ¢;2° — 1696z €” -

2 —8x + 16
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Summary
The solution(s) found are the following

y 1)
_ (—1440 e * explntegral, (—z — 4) 2 + 32z%” — 11520 e~* explntegral, (—z — 4) z + c,z? — 1696z e” -
B x? — 8z + 16
3_
f f f f
2_
f f f f
H f f f
yx) o f f f f
1 f f f f
=211 1 f f f f
_3—
-3 -2 -1 0 1 2 3
X

Figure 41: Slope field plot

Verification of solutions

Y
_ (—1440 e * explntegral, (—z — 4) 22 + 32z%” — 11520 e~* explntegral, (—z — 4) z + c,z? — 1696z e” -
B z? — 8z + 16

Verified OK.
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1.10.4 Maple step by step solution

Let’s solve

2
/_ zty=32 __
—z24+16 32

° Highest derivative means the order of the ODE is 1

/

Y
° Isolate the derivative
_ 32(z%—15)
y = z2 T o

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

_ 32(z2-15)
Y+ w2 = ot 6

° The ODE is linear; multiply by an integrating factor u(x)

32 2_15
p(z )(y + 2 16) = M(g(—xm )

o Assume the lhs of the ODE is the total derivative - (u(z) y)

@) (v + 5% = W@y + ua)y

o Isolate ()

w(z) = wg 16
° Solve to find the integrating factor

/,l;(l') — ez—2 In(z+4)+21In(z—4)

° Integrate both sides with respect to x

J (& (u(z)y)) dz = [ 2T g 4,

° Evaluate the integral on the lhs

xT .’1:2—
o)y = [ 201 gy e

° Solve for y

32u(z) (22 —15
f - 22(—2916 )d.’II-"-Cl

y= e)
° Substitute ,U,(CL') — ez—2ln(z+4)+2 In(z—4)
32— 21In(z+4)+21n(z—4) (z2_15)
216 dz+c1
y = ez—21In(z+4)+21In(z—4)
° Evaluate the integrals on the rhs
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x x .
8267+ 2E Ly — s —1440e By (—a—4)+a1

y = er—2In(z+4)+21In(z—4)

° Simplify

_ —1440e~*~4(2+4)%EBis (—z—4)+c1 (z+4)2e~ 43222 —16962—7168
o (z—4)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 51

Ldsolve (diff (y(x) ,x)=(x"2*y(x)-32)/(16-x"2) + 32,y(x), singsol=all) J

_ —1440e *"%(z + 4)” expIntegral; (—4 — z) + ¢ (z + 4)° e~® + 3222 — 1696z — 7168
- (z—4)°

y(z)

v/ Solution by Mathematica
Time used: 0.204 (sec). Leaf size: 56

‘DSolve[y'[x]==(x“2*y[x]-32)/(16-x“2) + 32,y[x],x,IncludeSingularSolutions -> True]

y(z) = e *"4(1440(z + 4)? ExplntegralEi(z + 4) + ¢*(32e*(z? — 53z — 224) + ¢1(z + 4)?))
(z —4)
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1.11 problem 11

1.11.1 Solving as separableode . . . . . . .. ... ... ... ..... 144
1.11.2 Solving as linearode . . . . . . . . .. ... ... ... .. 145]
1.11.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 146}
1.11.4 Solvingasexactode . . ... ... ... ... . ......... 149
1.11.5 Maple step by step solution . . . . . .. ... ... ... ... 1521

Internal problem ID [2554]
Internal file name [OUTPUT/2046_Sunday_June_05_2022_02_46_08_AM_33689551/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 11.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_ order__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type

[_separable]

(z—a)(@—b)y —y=—c

1.11.1 Solving as separable ode

In canonical form the ODE is

y =F(z,y)
= f(2)9(v)
_ y—c
(—x+a)(—z+0b)
Where f(z) = Wl(—z—f-b) and ¢g(y) = y — c. Integrating both sides gives
1 1
dy = d
y—c Y (—z +a)(—x + ) v

/yicdy:/(—m+a)1(—x+b) dz
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In(z—b) In(zx—a)

In(y—c)=—
n(y—c) —b+a —b+a “
Raising both side to exponential gives
R
Which simplifies to
Yy—c= 626_1%:;:)"'1{(?;3)
Which simplifies to
y=coz— b)_ﬁ (x — a)ﬁ e +c
Summary
The solution(s) found are the following
yzcz(x—b)_ﬁ (x—a)ﬁ e +c (1)

Verification of solutions

y = co(r — b)_ﬁ (x — a)ﬁ e +c¢
Verified OK.

1.11.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
p(z) = T (—z+a)(—z+b)
(z) = — ‘
A s Y e
Hence the ode is
/ ) C

Y Ceta)(—z+b) (z+a)(—z+b)

The integrating factor y is
p=el I

In(z—b) In(z—a)
= e “b+a  —b+ta
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Which simplifies to

1

p=(z—b)7% (x —a)
The ode becomes
d c
; )

S (@-p) 7 @) T y) = (@) (2 —a)

d((z - b)fﬂ (x — a)_%ﬂ y) = <—c(x —b) e (x — a)%> dz

Integrating gives

b—a+1 b—a—1

(z—b)™ (z —a) ey = /_c(x—b) -t (z—a) e dz

(z — b)ﬁ (z— a)_ﬁ y=clx—a)'"” S (z —b)"~ = 4o

Dividing both sides by the integrating factor p = (z — b)fﬂ (x — a)_ﬁ results in

y=(z— b)_fﬂ (x — a)ﬁ c(x — a)l__itizl (x — b)l__b+i;1 +ci(z — b)_ﬁ (x — a)ﬁ

which simplifies to
y=c+c(z— b)_fﬂ (x — a)%ﬂ

Summary
The solution(s) found are the following

y:c—i-cl(a:—b)_%ﬂ (w—a)ﬁ (1)

Verification of solutions

y=c+c(zr— b)_ﬁ (x — a)ﬁ
Verified OK.

1.11.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as
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The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - €z) - w2€y - wz§ — Wyl = 0 (A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 30: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(@)y(z) + g(z) 0 el fdz
separable ode Yy = f(z)g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A
homogeneous ODEs of | i/ = (a + bz + cy)™ 1 —!
Class C
homogeneous class D | y = £ 4 g(z) F(¥) x? xY
First order special | ¥’ = g() eh@+by 4 f (z) e_fbf;?;d)z_h(m) foe- f;z‘;?)dz—h(w)
form ID 1
polynomial type ode | ¢/ = ﬁ“ﬁiiéyig “le”‘;’f,‘,’;f;j;f atbacy alb?y_zg;::ifz_am
Bernoulli ode Y =fx)y+g(z)y" 0 e~ J(n=Df(@)dzyn
Reduced Riccati Y = fi(z)y + fo(z) ¥ 0 e~/ hdz
The above table shows that
§(z,y) =0
In(z—b) , In(z—a)
n(x,y) = e —bta + bt (Al)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dr dy
&
The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

= dS 1)

R=zx

S is found from

I|
dlr—‘

/ _In(z—b) | In(z—a) dy

—b+a + —b+a

Which results in

In(z—b)—In(z—a)

S=e tta gy

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, + w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y—-c
(—x+a)(—z+0b)

Evaluating all the partial derivatives gives

w(z,y) =

R, =1
R, =0

y((-’” —b) 7 (3 —a)” ¥ — (z — b) 7 (3 a) b—‘ﬁﬁ)
S, =

—b+a
S, = (z — b) =% (z — a) s

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

is  (~(cy+o)(-b+a) @ =) —yz—5)7% ) (z - a) T +(z—a) = (@ —b) T y

dR —b+a

(24)
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives
ds b—a—1 b—atl

5 =—(B-a) “ota (R —b) b+ ¢

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = ¢(R — a)~ =7 (R — b) =% + ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

(z — b)ﬁ (z— a)_ﬁ y=c(z— b)ﬁ (z — a)_ﬁ +c
Which simplifies to
~(@ =) (~y+) (@ —a) T —er =0
Which gives
y=(cle-b7 (@—a) 7% +) (c—b) 7 (@ — )

Summary
The solution(s) found are the following

Y= <c(x—b)f+a (w—a)_ﬁ +cl> (x—b)_ﬁ (:c—a)ﬁ (1)

Verification of solutions

Y= <c(x - b)ﬁ (x — a)‘ﬁ + C1> (z — b)—ﬁ (z — a)ﬁ
Verified OK.

1.11.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,) + N(z,y) S =0 )
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We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06 d
o9 o9ay _
Oxr Oydx 0 (B)

Comparing (A,B) shows that

9¢ _
or
¢
a_y_N
¢ _ %9

But since =%

Bay = Byds then for the above to be valid, we require that

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

<yic)d - ((—x+a>1<—w+b>)dx

1 1
- d —— )dy=0 2A
(CCramn) e i) v 2N
Comparing (1A) and (2A) shows that

Therefore

1
(—z +a)(—x + )
1
y—c
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

M(x7y) = -

N(x’y) =

oM _ oN
oy Oz
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Using result found above gives

oMo
Oy Oy\ (—z+a)(—x+b)
=0
And
ON 90 ( 1
Oxr Oz
=0
Since %’I = %%[, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
9 - M (1)
09
2 - N 2
o @)

Integrating (1) w.r.t. = gives

%dx:/de
/_d _/_ —a:+a)1(—x+b)dx

In(z — b_)b—+11; (x — a) + ) 3)

o=

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

=0+ @
But equation (2) says that 8¢ = —. Therefore equation (4) becomes
=0+ f() )
y—c
Solving equation (5) for f'(y) gives
1
fly) =—— —
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Integrating the above w.r.t y gives

/ﬂw@:/ﬁljm)w

f@)=In(-y+c)+ca

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

In(z—b)—In(x —a)

= —b+a

+In(-y+c)+a

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into new constant c¢; gives the solution as

In(z —b) —In(x —a)

“b+a Fln(=y+o)

C1 =

The solution becomes
_ —cjatcybtin(z—b)—In(z—a)
y = —e —b+a + C

Summary
The solution(s) found are the following

—cpa+cyb+In(z—b)—In(z—a)

y=—e e +c (1)
Verification of solutions
_ —cjatcibtin(z—b)—In(z—a)
y = —e —b+a _|_ C

Verified OK.

1.11.5 Maple step by step solution

Let’s solve

(z—a)(z-b)y —y=—c
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables
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!

v -1
y—c — @=a)(@b)
° Integrate both sides with respect to x
! _ 1
| i5dz = [ gepde + o

° Evaluate integral

In(y—¢) = "G50 + G e

° Solve for y

_ —cja+cy b+ln( ::j:z )

y=e —bta +c

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 36

Ldsolve((x—a)*(x—b)*diff(y(x),x)—(y(x)—c)=0,y(x), singsol=all) J

y(x) =c+ (x — b)_ﬁ (x — a)ﬁ 1

v/ Solution by Mathematica
Time used: 0.287 (sec). Leaf size: 41

LDSolve[(x-a)*(x—b)*y'[x]-(y[x]—c)==0,y[x],x,IncludeSingularSolutions -> True]J

‘ =
o

y(z) = c+ c1(z — b)ra (z — a) o
y(z) = ¢
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1.12 problem 12

1.12.1 Existence and uniqueness analysis. . . . . . . . ... ... ... 154
1.12.2 Solving as separableode . . . . . . .. ... ... ... ..... 155]
1.12.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 157
1.12.4 Solvingasexactode . . ... ... .. ... .. ......... 161l
1.12.5 Solving asriccatiode. . . . . . . . .. ... ... ... ..... 1651
1.12.6 Maple step by step solution . . . . ... ... ... ....... 167

Internal problem ID [2555]
Internal file name [OUTPUT/2047_Sunday_June_05_2022_02_46_11_AM_44380788/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 12.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

(w2+1)y'—|—y2=—1

With initial conditions

[y(0) =1]

1.12.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
Y = f(z,y)

¥y +1
241

The = domain of f(z,y) when y =1 is

{—c0 <z < o0}
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And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is

{—o00 <y < oo}

And the point yy = 1 is inside this domain. Now we will look at the continuity of

of 0 ( y*+1

55‘&X}ﬂ+1)
%
__x2—|-1

The z domain of % when y =1 is
{—00 <z < o0}

And the point zo = 0 is inside this domain. The y domain of %5 when z = 0 is
{—o0 <y < o0}

And the point yy = 1 is inside this domain. Therefore solution exists and is unique.

1.12.2 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)g(y)
_y-l
o241

Where f(z) = z2—1+1 and g(y) = —y? — 1. Integrating both sides gives

1]
—y? -1 y_x2+1

1 1
/_y2_1dy=/w2+1dx

— arctan (y) = arctan (z) + ¢

dz

Which results in
y = — tan (arctan (z) + ¢;)
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Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = —tan(c)

™
Ci = ——

4

Substituting ¢; found above in the general solution gives

_ 1—z
vy= r+1
Summary
The solution(s) found are the following
1—2z
= 1
Y=y +1 (1)
3 NNV VLY
4 NANNN VYL
AANNNNN N
3 SONNNNN Y
~SNNONNNN
2 29 ~~~>~NN\\ L\
1 B an NN N N N RN N NN e e
\\\\\\ SN
0 0 ———
ﬂﬂﬂﬂﬂﬂ SOOI NS
y(x) —1 y(x) R N N N N N N N N
— 2 — 29~~~ N\ \{
SN
-3 SN
—4NNNN
-4 NANNV YL
—5 NNV LY
=67\ NV VAV VL
— 67 NAYVL VLY
] VWAL
-2 -1 0 1 2 3 -3 -2 -1
(a) Solution plot (b) Slope field plot
Verification of solutions
_ 1—=x
y_x+1

Verified OK.
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1.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

) y?+1
Y =—=
2 +1
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - é.m) - w2€y - sz —Wyn = 0

(A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢/ = £ 4 g(z) F (%) x? xy

First order
form ID 1

special

Y = g(z) " + f(x)

Q

o— [ bf(@)de—h(z)
9(z)

f(w)e_ Jof (z)dz—h(z)
g(x)

polynomial type ode

/ _ a1zt+bhiyta
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—ascr

a1b2—azby

a1ba—azby

Bernoulli ode

y = f(z)y+g(x)y"

e~ f(n—l)f(w)d:cyn

Reduced Riccati

Y = fi(z)y + folz) y?

e J frdz
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The above table shows that

E(r,y) =22 +1
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, =4 1)

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1
S:/—da:
§
1
_/xz—i-ldx

S = arctan ()

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Y’ +1
x2+1

w(m’ y) =
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Evaluating all the partial derivatives gives

R,=0
R,=1

1
Sx_xz—l—l
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
T (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

a _ 1
dR  R2+1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —arctan (R) + ¢; (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

arctan () = —arctan (y) + ¢;
Which simplifies to

arctan (z) = — arctan (y) + ¢
Which gives

y = tan (— arctan (z) + ¢)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

.. ) . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ _y’+l s _ _ _1_
de = z241 dR — = RZH1

AV T O A N A W U VR NN SIS ¥ D
A A \J ; L j‘, j‘, L L \13‘\‘\\\\ ——p——s—b—a—awa [\ M w—a—s——b—>—>—b
~N NN\ \ ; L j‘, 4)7 j‘, L ; \ ARV VO VN ——s—s—s—b—a—aw N %\ e —a——b——>—b
\\\\\\\q \4 i i t i i \\\\\\\ ——s—s—p—s—a—aa N [\ M
O YN N N e ——b—s—b—p NN s
\“\\\\\y\xxé VAL LY N e ﬂﬂﬂ»ﬂﬁ&,\\\\\s\sﬂﬂwﬂﬂa
i e O R %‘ x A e bbb —b b ~aNa ‘2{\ Na A bbb
N e Y T T e ——p—s—a—b—a—waa [\ M
——e—p—r——aa N 4\ N e S = arctan (IL‘) b ~a “a N/ Na b bbb
e T A T ——s—s—p—s—a—aaa [\ M
——a~a~a~aa X\ \_% VLN N e A
=~ N Ny Y [ o s~ a N N[\ N m—s s>
S S O A N A e B B e e R N s a |\ N a bbb
VO N R VN S A A A W N W NN VN e N\ e e
~N NN NN Y \, L_4L j‘, \, VNN N e —— s~ Nt e e —>—>
A T ; ; L j, j, L L \,\‘\q\\\\. ——s—s—p—s—a—aaa [\ M
VU VUV N VS S S A N A A W VR N NN T N

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 =tan(c)

Ci = —

m
4

Substituting c¢; found above in the general solution gives

y:

Summary
The solution(s) found are the following

y:

1—=zx
r+1

1—=2z
z+1
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s I R
RRARAAA AR EERERERRARR RN
-3 SOONNAN LY L VAN
SANANNNV AL L LRV VNN
4 A AR EEEEREEERRRN
_s AR RERE AR ERERR RN
SENNVVV LR LRV VYV NN
—61 NAYVYVLELERLEE RV LYV VN
_ VAYVY LV LRV
-2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
(a) Solution plot (b) Slope field plot
Verification of solutions
11—z
y_x+1
Verified OK.
1.12.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy
M(z,y) + N(z,y) %2 = 0 (4)

dx
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
Yy _
ox  Oydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

o =V
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But since 22 _ ¢

Bay = Byds then for the above to be valid, we require that

oM _on
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
(96;: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

1 1
(z7=1) = ()

(—z2i_1>dx+(_y21_1)dy=0 (24)

Comparing (1A) and (2A) shows that

Therefore

M(xay) :_1112+1
1

Nz,y) = ———
(x’y) _y2_1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

oM_o( 1
oy Oy\ 2241

Using result found above gives

ON _ 0 ( 1
oxr Oz \—y2—1

=0

And
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Since %M = 5. N then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
¢

=M (1)
¢
oy =V 2)

Integrating (1) w.r.t. z gives

/%dx=/de

a¢ /_ 1 d
893 2 +1 o

¢ = —arctan (z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

09
= 4

5y~ 0 tW) (4)
But equation (2) says that a¢ = ) becomes

=0+ () )

—y2—1 - y
Solving equation (5) for f'(y) gives
1
! — —

Integrating the above w.r.t y gives

/f dy_/( 2+1>dy

f(y) = —arctan (y) + c

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
¢ = —arctan (z) — arctan (y) + ¢
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

c1 = — arctan (z) — arctan (y)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

T
4
m
Ci = ——
4

Substituting c¢; found above in the general solution gives

—arctan () — arctan (y) = _T

Solving for y from the above gives

m
y = cot <arctan (z) + Z>

Summary
The solution(s) found are the following

y = cot <arctan (x) + —)

1)

5
4-
3-
2_
1-
0-
y(x) —1
. RN
MYV VLV VNN
—3 A EEEEREERRRR
—ANNNNN VL LYV VNN
—4 NSNANNYAV Y VPRV VNN
_s NAYNMVYVV RPN
NNV VLR VYN N
—61 NYVYVL LR LRV VN
s MAYVVVL LR R RV VvV
-2 1 0 1 2 3 23 Sy o ' 2 3

(a) Solution plot
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Verification of solutions

y = cot (arctan (z) + —)
Verified OK.

1.12.5 Solving as riccati ode

In canonical form the ODE is

y =F(z,y)
__y+l
o ox241
This is a Riccati ODE. Comparing the ODE to solve
) = y’ 1

241 2241
With Riccati ODE standard form

y' = folz) + fi(z)y + fo(z)y?

Shows that fo(x) = —m2—1+1, fi(z) =0 and fo(z) = —w21+1. Let
. fau
i 1)
241

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou"(x) = (fo + fufa) v/ (z) + f3 fou(z) = 0 (2)
But
;L 2x
1= (22 +1)°
fifa=0
20 _ 1
fafo= (2% + 1)3

Substituting the above terms back in equation (2) gives

u'(z)  2zu(z)  u(z)

T2+l (22417 @2+1)7°

165



Solving the above ODE (this ode solved using Maple, not this program), gives

T+ ¢

W=

The above shows that

, —CT + ¢
u(r) = —"75
@2+ 1)}
Using the above in (1) gives the solution
_ —CT+C
o 1T + ¢

Dividing both numerator and denominator by c; gives, after renaming the constant
£ = c3 the following solution

c1

C3 — T
csx+1

Y

Initial conditions are used to solve for cs. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1=C3

C3=].

Substituting cs found above in the general solution gives

oz —1
v= z+1
Summary
The solution(s) found are the following
rz—1
= — 1
v z+1 (1)
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RRARAAARAREERERRRAR R R
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(a) Solution plot (b) Slope field plot

Verification of solutions

r—1
r+1

y =
Verified OK.

1.12.6 Maple step by step solution

Let’s solve
[(z* + 1)y +y* = —1,9(0) = 1]
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
Yy _ 1
—y2—-1 = z2+1
° Integrate both sides with respect to x
i _yyz'_ldx = w2—1+1dx +c
° Evaluate integral
—arctan (y) = arctan (z) + ¢;
° Solve for y

y = —tan (arctan (z) + ¢1)
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o Use initial condition y(0) =1

1=—tan(c)
° Solve for ¢;
e =—7
° Substitute ¢; = —7 into general solution and simplify

™

y = cot (arctan (z) + Z)
° Solution to the IVP
y = cot (arctan (z) + )

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 11

Ldsolve([(x“2+1)*diff(y(x),x)+y(x)“2=—1,y(0) = 1],y(x), singsol=all) J

y(z) = cot (arctan (z) + %)

v/ Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 14

LDSolve[{(x‘2+1)*y'[x]+y[x]‘2==—1,y[0]==1},y[x],x,IncludeSingularSolutions -> True]

y(z) — cot (arctan(m) + %)
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1.13 problem 13

1.13.1 Existence and uniqueness analysis . . . . . .. ... ... .... 169
1.13.2 Solving as separableode . . . . . . ... ... ... .. ..... 1701
1.13.3 Solving as linearode . . . . . . . . ... ... ... ... ..., Ival
1.13.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 172
1.13.5 Solvingasexactode . . ... ... ... ... .......... 176}
1.13.6 Maple step by step solution . . . . . ... ... ... ...... 179

Internal problem ID [2556]
Internal file name [QUTPUT/2048_Sunday_June_05_2022_02_46_13_AM_4917224/index . tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 13.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

(—-2*+1)y +yz=az

With initial conditions

[y(0) = 2d]

1.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(2)

Where here
T
p(w) - _x2 _ 1
ar
q(x) - _x2 _ 1
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Hence the ode is

, Ty azx

y_$2—1=_$2—1

The domain of p(z) = — =%

is
{—o<z<-1,-l<z<],l1<z< o0}

ax
z2—1

And the point zy = 0 is inside this domain. The domain of ¢(x) = — is

{—o<z<-1,-1l<z< 1<z < o0}
And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

1.13.2 Solving as separable ode
In canonical form the ODE is
y = F(z,y)
= f(z)9(y)

_ z(—a+y)
o2 —1

Where f(z) = "5 and g(y) = —a + y. Integrating both sides gives

2 2 !

Raising both side to exponential gives

In(z—1)

—a+y=e 2

+iet 4o

Which simplifies to

In(z—1) + ln(12+1)

—a+y=-ce 2
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Which can be simplified to become
y=cvr—1vr+1le” +a
Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 2a in the above

solution gives an equation to solve for the constant of integration.

2a = 1€*cy + a

cp=1In (—g)

Substituting ¢; found above in the general solution gives

y=—-twvr—1vx+la+a

Summary
The solution(s) found are the following

y=—ivr—1vVz+la+a (1)

Verification of solutions

y=—-tvr—1vVz+1la+a
Verified OK.

1.13.3 Solving as linear ode
Entering Linear first order ODE solver. The integrating factor u is
M = e‘[‘_p%ldz
_In(z—1) In(z+1)
= e 2 2
Which simplifies to
1

p= vr—1y/x+1

The ode becomes

%(uy) = (1) (—xzaf 1)
%(mym) - <m1m> <_w2af 1>

d(mym) <‘<x2 - w%\/m) 4
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Integrating gives

Y azx
= [ - d
VT—1vz 1 / @—Dvz—1vorl
Y _Vz—1lvz+1la
VZ—1vVz+1 z2—1

Dividing both sides by the integrating factor u = ﬁm results in

C1

Y= (ac—l)(x+1)a_|_c1 e IVa Tl

2 -1

which simplifies to
y=a+cver—1vzr+1

Initial conditions are used to solve for ¢;. Substituting z = 0 and y = 2a in the above
solution gives an equation to solve for the constant of integration.

2a =c1i+a

c1 = —ia
Substituting c¢; found above in the general solution gives

y=—-tvr—1lvx+la+a

Summary
The solution(s) found are the following

y=—ivr—1vVz+la+a (1)

Verification of solutions

y=—-tvr—1vVz+1la+a
Verified OK.

1.13.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y/ — x(—a + y)
2 —1
Y = w(z,y)
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The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - €z) - w2€y - wz§ — Wyl = 0 (A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 36: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(@)y(z) + g(z) 0 el fdz
separable ode Yy = f(z)g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A
homogeneous ODEs of | i/ = (a + bz + cy)™ 1 —!
Class C
homogeneous class D | y = £ 4 g(z) F(¥) x? xY
First order special | ¥ = g(x)e"®*% 4 f(z) e=[of :E;d)m—h(m) f(@)e” f;’g;”dz‘h(””)
form ID 1
polynomial type ode | ¢/ = —“ﬁiﬁ;yig “lbz’”‘;’fl‘,’;i;j;f atbacy alb?y_zg;::ifz_am
Bernoulli ode "= f(z)y + g(z) y™ 0 e~ J(n=Df(@)dzyn
Y YyTg\r)y Y
Reduced Riccati Y = fi(z)y + fo(z) ¥ 0 e~/ hdz
The above table shows that
§(z,y) =0
n@,y) =e z o7 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n
_ 1

In(z—1 In(x+1
/ e (2 ! (2 !

~ 1 Vin( 21—

S = e‘“(m)““(m)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sitw(z,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
_z(—a+y)
UJ(.'L', y) - :L'2 _ 1

Evaluating all the partial derivatives gives

R, =1
R,=0
Sy = — :3yx 3
(x—1)2(x+1)2
g _ 1
YV —1vz+1
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dsS ax

E=_(317—1)%(ac+1)% 2A)
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as aRl

dR~ (R— 1)} (R+1)}

The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

a

vR—-1v/R+1

To complete the solution, we just need to transform (4) back to z,y coordinates. This

S(R) = +a (4)

results in

Y a
= —|— C
vVer—1+/xz+1 vVer—1+/xz+1 !
Which simplifies to

Y a
= +C
vVer—1+/xz+1 vVer—1+/xz+1 !
Which gives

y=a-|—cl\/mm

Initial conditions are used to solve for ¢;. Substituting z = 0 and y = 2a in the above
solution gives an equation to solve for the constant of integration.

2a=cit+a

c1 = —ia
Substituting ¢; found above in the general solution gives

y=—-twvr—1lvx+la+a

Summary
The solution(s) found are the following

y=—-ivz—1lvz+la+a (1)

Verification of solutions

y=—-twvr—1vz+1la+a

Verified OK.
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1.13.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
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Comparing (1A) and (2A) shows that

Xz
M(way)z_xz_l

1
N(z,y) = ——

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

OM ON

oy Oz

Using result found above gives

oM_0(
oy Oy\ z2-1

=0
And
ON 0 1
or Or\—a+y
=0
Since %’I = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
LM 1
e (1)
99
— =N 2
o ©

Integrating (1) w.r.t. = gives

%dx=/de
ox

%dxzf— 7 dz

or 2 -1
b= In (x2— 1) In (x2+ 1) + ) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)
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But equation (2) says that g—‘z = fﬂ Therefore equation (4) becomes

1
—a+y

=0+ f'(y) (5)

Solving equation (5) for f'(y) gives

1

f’(y)=—a_y

Integrating the above w.r.t y gives

/f’(y)dy=/(—aiy> dy
f

(y)=ln(a—y)+ca

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ = _ln(xz_ 2 - ln(w2+ 4 +hn(a-y)+a

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

In(z—1) In(z+1)
22

c1 = —+ In (a — y)
Initial conditions are used to solve for ¢;. Substituting z = 0 and y = 2a in the above
solution gives an equation to solve for the constant of integration.

—% +In(—a)=¢

¢ = —% +In(—a)

Substituting c¢; found above in the general solution gives

_n (:132— ) _In (:c2—|— D) +In(a—y) = —%T +In(—a)
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Solving for y from the above gives
Y= (—z'\/:c—lx/w—i-l—i-l)a

Summary
The solution(s) found are the following

y = (—i\/m\/erl)a (1)

Verification of solutions

Y= <—i\/$—1\/x+1—|—1>a
Verified OK. {positive}

1.13.6 Maple step by step solution

Let’s solve
(=22 + 1)y + yz = az,y(0) = 2d]
° Highest derivative means the order of the ODE is 1

!/

Y

° Separate variables
a—y —  (@=D(@+1)

° Integrate both sides with respect to z
J a?iydx =/ ~ oD@ dr + ¢

° Evaluate integral

° Solve for y

In((z—1)(z+1))
2

' +a

o Use initial condition y(0) = 2a
2= —e3 " 4aq

° Solve for ¢;
=2 —In(—a)

° Substitute ¢; = Z — In (—a) into general solution and simplify
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y=a(l-Ivz2-1)
° Solution to the IVP

y=a(l-Ivz2-1)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 20

Ldsolve([(1-x‘2)*diff(y(x),x)+x*y(x)=a*x,y(0) = 2*a],y(x), singsol=all) J

y(z) = a(l —z\/ﬁﬁ)

v/ Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 21

LDsolve[{(1-x*2)*y'[x]+x*y[x]==a*x,y[o]==2*a},y[x],x,IncludeSingularSolutions<f> True]

y(x) = a—iava?—1
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1.14 problem 14

1.14.1 Existence and uniqueness analysis. . . . . . . .. ... .. ... 181
1.14.2 Solving as separableode . . . . . . ... ... ... ... ..., 182
1.14.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 184
1.14.4 Solvingasexactode . . ... ... ... ... ... ..... 189

Internal problem ID [2557]
Internal file name [OUTPUT/2049_Sunday_June_05_2022_02_46_15_AM_48430184/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 14.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type
[_separable]

,  sin(y+zx) _
sin (y) cos (x)

With initial conditions
¥(3) -1

1.14.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
Y = f(z,y)

_ cos (z)sin (y) — sin (y + z)
sin (y) cos (x)

The z domain of f(z,y) when y = 7 is

{x < %w +7 Z140V %71’ +7 7140 < w}
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And the point 2y = 7 is inside this domain. The y domain of f(z,y) when z = 7 is

{y<m_Z141V n_Z141 < y}

And the point yo = 7 is inside this domain. Now we will look at the continuity of

of _ i (cos (x) sin (y) — sin (y + x))
Oy Oy sin (y) cos (z)
_ cos(z)cos(y) —cos(y+z) (cos(z)sin(y) —sin(y + z)) cos (y)

sin (y) cos (z) sin (y)* cos (x)

The z domain of % when y = 7 is
1 1
{x < 577 +7_Z140V 571‘ +7_ 7140 < x}

And the point zo = 7 is inside this domain. The y domain of g—?’; when z = 7 is
{y<n_Z141 v n_Z7141 < y}

And the point yo = 7 is inside this domain. Therefore solution exists and is unique.

1.14.2 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)
_ _sin (x) cot (y)
cos ()

Where f(z) = —2) and g(y) = cot (y). Integrating both sides gives

cos(x)

1 _ sin(x)

cot (y) Y= " cos (z)

[ =]

—1In (cos (y)) =In(cos (z)) + 1
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Raising both side to exponential gives

1

— eln(cos(z))+cl
05 (9)

Which simplifies to
sec (y) = ¢z cos (z)

Initial conditions are used to solve for c;. Substituting z = 7 and y = 7 in the above
solution gives an equation to solve for the constant of integration.

T_T arcsi \/ie_cl
— = — — arcsin
4 2 Cy

a=-n(3)

Substituting c¢; found above in the general solution gives

=T arcsin L
¥=3 2cos ()

Summary
The solution(s) found are the following

y = g — arcsin (L> 1)

2 cos ()

; e e
2751 TP VNN~ bbbV N=71
250 FA LA NN=7T 1L AN—=71

T VNAN=71 1T}V VNN=//
225 TTAVNNSN=7 11} VN \NN—="/

, 711 VNNS=77 1LV AN~—7

1 A7 LT NNNS==7 7 [ ] AN N~— s
1.75- /ﬁ: \ \\\—-/‘//54 b‘\\\—‘)/

() 1 50] »(x) AN, ==

~\ |/ J S

1.254 NN\ )7 ] 7
N [777=~\

0.751 ViV 1777\
| VL 1177=\\
i I
0257 ol 1111 REERNE
-2 =050 05 1 1.5 2 2.5 3 35 2 - 2 3 4

X X
(a) Solution plot (b) Slope field plot
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Verification of solutions

T . 1
= — — arcsin
Y= 2 cos ()

Verified OK.

1.14.3 Solving as first order ode lie symmetry lookup ode
Writing the ode as

) _ Cos (z)sin (y) —sin (y + )
sin (y) cos (x)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - fz) - w2€y - wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 39: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
cos ()
g(xa y) - sin (CL’)
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dz _dy _

ds
§ n

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

Sz/%dac
Y

/ __cos(x) dx

sin(z)

S is found from

Which results in
S = In(cos (z))

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_ cos (a)sin y) — sin (y + o)
o) = T s )

Evaluating all the partial derivatives gives

R, =0
R,=1
Sy = —tan ()
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

b tan (R)

= tan (y) (24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —In(cos (R)) + 1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In (cos (z)) = —1In(cos (y)) + c1
Which simplifies to
In (cos (z)) = —In(cos (y)) + 1

et
W)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Which gives

Y = arccos <

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ cos(z)sin(y)—sin(y+x) ds __
dxz sin(y) cos(z) dR — tan (R)
AN T A (e I (e AN P AN AN AN 7
NS e\ P m e~ F T ———a \ P AN VAN~ A\ e
B R R N R FANS—=/ 1 ANt N
VEA ANV E PP ANV P Ny R e R S e AR I P AR
RS AR f\,\\»»/;R\\»/M\»»/’M
fx\»»/%x\»»/f;\»»/fx fx\»»/g;\»»/fx\»»/f&
AN AN A A N N PN P AN s N
NS e\ e\ e\ FAN=—= A AN~ P\ N
B L e Nt A R— FANS—= P AN~ P A N 1
AN T O 0 W A W =Y PAN——= s f A Ndr f f AN 2 f )
FINT I TV 7 T QAN h T A== VN7 oNn=—=4 ]}
AN P AN A A e A S:ln(cos(];)) FANS—= P AN A\ Nge N
A A NN BN 4 VRN 4 N P AN VN~ N N
N N FANS— A A\ b 7 A N
R R R FANS—=A P AN/ P AN 1
VP ANVt P ANV L P ANV R R S i AN P A
fhANAP AN~ ANt I R e A N
FAN=—= AN A\ e FA N AN f A
AN et T N —a—t| > > T (—a—e— > P AN VN~ N
NS e\ e\ e\ N ! \,\\/V/f x\\»/f\a\\»/f\a
Initial conditions are used to solve for c;. Substituting z = 7 and y = 7 in the above

solution gives an equation to solve for the constant of mtegratlon.
T m

- _ ; c1
4 B arcsin (\/5 € )
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g =—1In(2)

Substituting c¢; found above in the general solution gives

() )

. 1
arcsin
2 cos

The solution(s) found are the following

T
2

y:

Summary

1)

)

1
2cos (z

arcsin (

T_
2

y:

e —~—~—~—

\N\NN~——~77 |

—— =~~~

JINNS———=/ ] |\ NS
A I e A B

|
1
1
!
f
/
!
!

—————— N\

e

N e N )
N e N

T T
o N

" 050 05 1 15 2 25 3 35

1.757

2.75
2.50
225
Y(X) 501

1.251
0.75
0.50
0.25

(b) Slope field plot

)

(a) Solution plot

Verification of solutions

1
2 cos (x

arcsin (

™

5~

y:

Verified OK.
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1.14.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(o) 2 () = o)
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Comparing (1A) and (2A) shows that

e -2
o= -220)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

oM B (_sin(z))

By 9y \ cos(z)
=0
And
ON _ 0 ( siny)
Or  Or\ cos(y)
=0
Since %i; = %’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
— =M 1
e (1)
09
2 =N 2
o @)

Integrating (1) w.r.t. z gives

%dx:/de
or

0¢ / sin (z)
d — dz

9z T cos ()

¢ = In (cos (z)) + f(v) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)
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But equation (2) says that g—‘z = —%Eyy)). Therefore equation (4) becomes

_ sin(y)
cos (y)

=0+ f'(y) (5)

Solving equation (5) for f’'(y) gives

Integrating the above w.r.t y results in

/f’(y) dy:/(—tan (v)) dy

f(y) =In(cos (y)) +

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
¢ =In(cos(x)) +1n(cos(y)) + c1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

¢1 = In (cos (x)) + In (cos (y))

Initial conditions are used to solve for c;. Substituting z = 7 and y = 7 in the above
solution gives an equation to solve for the constant of integration.

—In(2) =¢

g =—1n(2)
Substituting c; found above in the general solution gives

In (cos (z)) + In (cos (y)) = —1n (2)
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Solving for y from the above gives

Summary

S
Y = arccos (

The solution(s) found are the following

2.75
2.50
2.251

1.757
y(x) 1.504

1.254

0.757
0.50
0.257

Verification of solutions

Verified OK.
Maple trace

602(96) )

) [ e ————

N———_

—~——_>

———————~\\ |

———e— N~ | e —

(sec (x))
Y = arccos
2
H
11
11
11
11
2z
275
v(x) |27
~\
N
RN
\
VL
\
Vol
Ll
of V|
-2 =050 05 1 15 225 3 35 =2
X
(a) Solution plot
(sec (:c))
Y = arccos 5

(b) Slope field plot

"Methods for first order ODEs:
-—- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli
trying separable

<- separable successful’
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v/ Solution by Maple
Time used: 0.312 (sec). Leaf size: 9

Ldsolve([diff(y(x),x)=1— (sin(x+y(x)))/(sin(y(x))*cos(x)),y(1/4%Pi) = 1/4%Pi] ,y(x), singsol=a

y(x) = g — arcsin <

v Solution by Mathematica
Time used: 6.234 (sec). Leaf size: 12

LDSolve [{y' [x]==1- Sin[x+y[x]]/(8in[y[x]]1*Cos[x]),y[Pi/4]==Pi/4},y[x],x, Includ}aSingularSoluti

sec(z) )

y(x) — arccos ( 5
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1.15 problem 15

1.15.1 Solving as separableode . . . . . . . ... ... ... ..... 194
1.15.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 196
1.15.3 Solvingasexactode . . ... ... ... ... ... ..., 2001
1.15.4 Maple step by step solution . . . . . ... ... ... ... ... 204

Internal problem ID [2558]
Internal file name [OUTPUT/2050_Sunday_June_05_2022_02_46_22_AM_38738506/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.4, page 36

Problem number: 15.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type
[_separable]

y —y’sin(z) =0

1.15.1 Solving as separable ode

In canonical form the ODE is

y/ = F(.’L',y)
= f(z)g(y)

= y3sin (x)

Where f(z) = sin (z) and g(y) = y>. Integrating both sides gives

1 :
— dy = sin () dzx

Y

1d = [ si d

7 y= [ sin(z) dz
1

“27 = —cos(z) + ¢
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(1)
(2)

1
v/ —2¢1 +2cos (z)

v/ —2¢1 + 2cos (z)

v/ —2¢1 + 2cos (z)

v/ —2¢1 +2cos (z)

Y
Y

The solution(s) found are the following

Which results in
Summary

\ 1 111
11111 /4// »— ._ \\\\\I»\VL
11111 ~NA\ 17 7--——————
11111 ~~\ 1 /7=
11111 ~~ A\ |
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———=~~\ 11 1177
—~>~>N\A\ A1 1117 77—
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L\VI»\V\\(\\ .‘ »— /4/// 11111
Sl 8 8 I I NN
LLLLL —~ 71 NSNS —————
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|IV||I\|V\\V\1\1\\ .N »— //// 11111
L\VI»\V\\(\\ .‘ »— /4/// 11111
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Figure 49: Slope field plot
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Verification of solutions

1
V= _\/—2c1 + 2cos (z)
Verified OK.
_ 1
Y v/ —2¢1 + 2 cos (z)
Verified OK.

1.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = y’sin (z)
y =uw(z,y)

The condition of Lie symmetry is the linearized PDE given by
e +w(ny — &) — w?Ey — web —wyn =0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
1
z,Y) = —
€l@,y) = @)
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

ds
§ N

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1
Sz/—dm
§
1
=/ —dx
sin(z)

S = —cos ()

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +w(x,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = y’sin (z)

Evaluating all the partial derivatives gives

R,=0
R,=1
Sz = sin (z)
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

= 2A
dR 3 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR R3
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=—-%5;+a (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—cos (z) = ~2g2 +c

Which simplifies to

—cos(z) = +

2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
.. ) ) : ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ .3 4: as _ 1
2 =y’ sin () =
BRI S U TR 2k T T N B o s o -\
IO R OO ERR, —e e for————e—
ttrtyblbyist ettt il e N4t
RS S S IR R RS0 S I Rea st BOA| praatasae:
?ffM.Lyi!xt)L\ffff‘ff&&LL ***** B N e e
S N 0 A A A VR e ~\ 3|t
PRZNNNNST /77 7NN HHHHH—H»\: ;/' »»»»»»»
AT T v AN T T F PN | S e ——aa T ——b
— —— : R = y e S ) I —
\—Zl > 5 4,/ S 494934«,—;—»_7\2: ;/,2-»-»»744
\i\q\\/ffff/\\\‘\q\x\/f/f ——COS(.’L') ﬂﬂﬂﬂﬂﬂﬂ -\ f/»z———c»aa
VAN AN VNN s ST e
Pivverrravidianeeer | e ~Vit s
R I S o N N R IEeEe s S\ s
Phbbrereetbbddbbverrr | e S\ s
S 1 O O O e e A s
R N R O N NI Eeis e V[ 7 s
S S\ A s
Summary
The solution(s) found are the following
—cos (z) = ~27 +c (1)
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Figure 50: Slope field plot

Verification of solutions

2+Cl

—cos(z) = —

Verified OK.

1.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(w,y)£=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

0

P(z,y) =

a
dx

Hence
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz +N(z,y)dy =0 (1A)
Therefore
1 :
(E) dy = (sin (z)) dz
(—sin (z)) dz—}-(%) dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —sin (2)
1
N(z,y) = —
(z,y) 7
The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied

oM _oN
oy  Ox
Using result found above gives
oM 0 .
By 8_y(_ sin (z))
=0
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And
ON 0 (1
oz $(5>
=0

Since %i; = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(zx,y)

3(;5_
g—x_M (1)
¢ _
8_y_N (2)

Integrating (1) w.r.t. z gives

@dm=/Mdz
or

%dmz/—sin(ax)dx

¢ = cos (z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1" (y) (4)

But equation (2) says that g—‘z = y—13 Therefore equation (4) becomes

]‘ !/

g -0tS () (5)
Solving equation (5) for f’'(y) gives
1
u3

fly) =

Integrating the above w.r.t y gives
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

1
¢=cos(x)—2—y2+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

cl=cos(ac)—2iy2
Summary
The solution(s) found are the following
1
cos(ac)—2—y2=cl (1)
ANVVLRE RV ERNIr et
Myl bbb bbVyNAarr ettt
NVYV LRV V VAN Z et/
ANVEVVVVVANNZT Tttt s
NSANVVVYNNNNAZ 7
SNNNNNNNNS—7 7717~
HSINNNNNN\NN~—F 7 7 ) 7 7=
SN NNNNNNNmNe S S
y(x) o

N S A S G U O

e P A g e S N NN U e

Figure 51: Slope field plot

Verification of solutions

Verified OK.
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1.15.4 Maple step by step solution

Let’s solve
Yy —y3sin(z) =0
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
¥ = sin (z)

Y

. Integrate both sides with respect to x

f;’—;dxz [sin (z)dz + ¢

° Evaluate integral
—# = —cos(z) + ¢
° Solve for y

— 1 N S
{y T \/—2c1+2cos(z)’ y= v/—2c1+2 cos(z) }

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

|dsolve(diff (y(x),x)=y(x)"3*sin(x),y(x), singsol=all)

1

¢1 + 2cos ()
1

c1 + 2cos (z)

204



v/ Solution by Mathematica
Time used: 0.207 (sec). Leaf size: 49

kDSolve [y' [x]==y[x]~3*Sin[x],y[x],x,IncludeSingularSolutions -> Truel
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2 1.6, page 50

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

problem 1
problem 2
problem 3
problem 4
problem 5
problem 6
problem 7
problem 8
problem 9
problem 10
problem 11
problem 12
problem 13
problem 14
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2.1 problem 1

2.1.1 Solving as linearode . . . . .. ... ... ... ... 207
2.1.2 Solving as first order ode lie symmetry lookup ode . . ... .. 209
2.1.3 Solvingasexactode . ... ... ... ... ... ... 213}
2.1.4 Maple step by step solution . . . . . ... ... 217

Internal problem ID [2559]
Internal file name [OUTPUT/2051_Sunday_June_05_2022_02_46_25_AM_77727377/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 1.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, ~class A~]]

yl_y:eZ:c

2.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z) =-1
q(x) — e2x
Hence the ode is
yl —y= eQm
The integrating factor u is
= e_a:
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The ode becomes

d
S(ey) = (€7) ()
d(e ””y) =e"dx

Integrating gives
ey = / e’ dx
e ’y=¢e"+¢

Dividing both sides by the integrating factor u = e™* results in
y = e* + cie”

Summary
The solution(s) found are the following

y = e + cie” (1)
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Figure 52: Slope field plot

208



Verification of solutions

Y= 62:1: ‘l‘ Clex
Verified OK.

2.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yl — y + e2z
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fx) - wzé.y - wx§ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 44: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S=/—dy

n

1

S=e"%y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =y +e*

Evaluating all the partial derivatives gives

R, =1
R,=0

Sy =—e "%y
Sy=e"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

aS g
E—e

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

e” (2A)
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = eR + C1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ely=€e"4+0¢
Which simplifies to

e fy=¢€e"4+¢
Which gives

y=¢€"(e"+c)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
.. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’
dy _ 2 dS _ R
T=y+e” 45— o
frerrrrrtr it IS P R R S
R R N B e TR
prrtrrrrbArttIILLLLY | s Bl ARy
AREERRRRRIIRe: e
B A
ffffffy/?xéfff‘ff 444444 P EERN
PRFIAALILLALN DEGOEGEEEYY RN
FAAAAAALAIE L D At
AAAAAAAASAE Reg | === e e AR
P riIER xr | e s s BV ERE
\s\s_\'a\s\s\a_'\z\»—e-,gf;; ; h W S —z 4949_4'&4-»-»_'_7»//6;; ; ;i; ]
NN N N N N B .y
NN T ey | TEEEE TR
SN W DOGGSEEEE NS
N T Y 20 1 U T N B e e e AAr bt
N N S S S O BESG R
R N BEGGSSEEl AR
[ R N N I U O R s TR RE
I N S S S S S S ] BEEGy VR
R BESGSSEEl RN
Summary
The solution(s) found are the following
y=¢€"(e"+c) (1)
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Verification of solutions

Verified OK.
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Figure 53: Slope field plot

y=¢e"(e"+c)

2.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(ﬂs,y)£=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence

d
%Qb(xa y) =0

2 dvdy _,
or  Oydx
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (y +€*)dz
(—y—e*)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —y —e*
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 o
o~y
=-1
And
oN _ 2
oxr Oz
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L L(oM_oN
N\ Oy Oz
=1((-1) - (0))
=-1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

— ef—lda:

I

The result of integrating gives

n=e
= e_m
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M =uM

— e—z(_y _ e?af:)

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N@=0
dz

(—e "y —e”) + (e )azo

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~
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Integrating (1) w.r.t. z gives

0p . [+
%dx—/de

9¢

adx=/—e_zy—e”dm

p=e"y—e"+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9 _

G = W) @

But equation (2) says that g—z = e~*. Therefore equation (4) becomes
e " =e"+f(y) ()
Solving equation (5) for f'(y) gives
f'ly) =0
Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
¢:e_my—e’”+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

co=ey—e®

The solution becomes
y=¢e"(e"+c)

Summary
The solution(s) found are the following

y=e"(e" +c1) (1)
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Figure 54: Slope field plot

Verification of solutions

y=¢e"(e"+c)
Verified OK.

2.1.4 Maple step by step solution

Let’s solve
y/ —y= eZac
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y—y=e*

° The ODE is linear; multiply by an integrating factor u(x)
(@) (¥ —y) = p(z)e*
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o Assume the lhs of the ODE is the total derivative - (u(z)y)

w(z) (Y —y) =w(z)y+ p@)y
o Isolate 1/ ()

w(z) = —p(z)

° Solve to find the integrating factor
p(z) =e*

° Integrate both sides with respect to x

[ (L(u(z)y)) dz = [ p(z) ede +c;
o Evaluate the integral on the lhs
w@)y = [ p(z)e*dz + ¢

° Solve for y

_ Ju@)e**dater
Y="uw

o Substitute p(z) = e™*

_ [e*®e %dz+cy

y —
° Evaluate the integrals on the rhs
y ==
° Simplify

y=e"(e"+c1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve(diff(y(x),x)—y(x)=exp(2*x),y(x), singsol=all)

y(z) = (" + 1) e

v/ Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 15

LDSolve [y' [x]-y[x]==Exp[2*x],y[x] ,x,IncludeSingularSolutions -> Truel

y(z) = e*(e” + 1)
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2.2 problem 2

2.2.1 Solving as linearode . . . . . . ... ... ... ... 2200
2.2.2  Solving as first order ode lie symmetry lookup ode . . ... .. 2272
2.2.3 Solvingasexactode . .. ... ... ... ... .. ..... 226
2.2.4 Maple step by step solution . . . . . ... ..o 2311

Internal problem ID [2560)]
Internal file name [OUTPUT/2052_Sunday_June_05_2022_02_46_27_AM_62150205/index . tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

7

y'z? — dyx = " sin (z)

2.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here

Hence the ode is
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The integrating factor u is

The ode becomes

Integrating gives

Y .
i /xsm(:c) dz
% = sin (z) — cos (z) x + ¢

Dividing both sides by the integrating factor u = x%l results in
y = 2*(sin () — cos (z) x) + c;z*
which simplifies to
y = z*(sin (z) — cos (z) z + ¢1)

Summary
The solution(s) found are the following

y = z*(sin (z) — cos (z) z + c1) (1)
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Figure 55: Slope field plot

Verification of solutions

y = z*(sin (z) — cos (z) z + c1)
Verified OK.

2.2.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

,  sin(z) 2%+ 4y
v= T
y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - €z) - w2€y - wzf — Wyl = 0 (A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 47: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = z*

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Satw(z,y)Sy (2)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

sin (z) 2% + 4y
T

W(l’,y) =

Evaluating all the partial derivatives gives

R, =1
R,=0
4y
&__E
1
Sy_F

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
;l—; = zsin (z) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds :
R Rsin (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) =sin(R) — Rcos(R) + ¢

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in
)
4
Which simplifies to
Y
4

Which gives

= =sin(z) —cos(z)z+ 1

= =sin(z) —cos (z) z + &1

y = z*(sin (z) — cos (z)  + ¢1)

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates
(R, S)

dy __ sin(z)z5+4y

dx T
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Summary

The solution(s) found are the following

y = z*(sin () — cos (z) z + ¢;)
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Figure 56: Slope field plot

Verification of solutions

y = z*(sin (z) — cos (z) z + c1)
Verified OK.

2.2.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
M(z,) + N(z,y) 22 = 0 (4)
x
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

< o(ay) =0

Hence
09 dpdy _

dor ' dydz 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z*) dy = (4zy + 2" sin (z)) dz
(—z"sin (z) — 4zy) dz +(2*) dy = 0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —x" sin (z) — 4zy
N(z,y) =2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
%—J\; = %(—ﬂ sin (z) — 4zy)
=4z

And

ON 0

o ")

=2z
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Smce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an 1ntegrat1ng factor to make it exact. Let

oM ON
4= (a—y‘%)

=~ ((~42) - (20))

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

= el Ads
_ -t
The result of integrating gives
= e~61@
_ 1
26

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
1
=% (—2z"sin (z) — 4zy)
—sin (z) 5 — 4y
And
N = uN
1
26 (=°)
1
Tt

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

H+J_V
(—sin (x)5:c6 —4y> . (l)

228

< <



The following equations are now set up to solve for the function ¢(z,y)

o¢

Oz =M (1)
0p  —
3_y_N (2)

Integrating (1) w.r.t. z gives

@dx: /de
or

—gi 6 _
@dx =/ sin (z) z° — 4y e
Oz x®

¢ = —sin (z) + cos (z) z + % +fy) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9 1
a—y——+f(y) (4)

xrd

But equation (2) says that g—‘z = ;. Therefore equation (4) becomes

1 1
— =+ (5)
Solving equation (5) for f'(y) gives
flly)=0
Therefore
fly)=a

Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = —sin (z) + cos (z) z + % +c
x
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

c1 =—sin(:c)+cos(z)z+%
T

229



1)

z*(sin (z) — cos (z) z + c1)
z*(sin (z) — cos (z) z + c1)

Y
Y

~——————————

The solution(s) found are the following

The solution becomes

Summary

X

z*(sin (z) — cos (z)  + ¢1)
230

Figure 57: Slope field plot

Y

Verification of solutions

Verified OK.



2.2.4 Maple step by step solution

Let’s solve

7

y'z? — 4yz = 1" sin (x)

° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
y =% + z5sin (z)
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y — % = z5sin (z)
° The ODE is linear; multiply by an integrating factor u(x)
p(z) (v — ) = w(z) 2 sin ()
o Assume the lhs of the ODE is the total derivative - (u(z)y)
p(z) (v —2) = w(x)y + ple)y
o Isolate 1/ ()
w(z) = 4#(98

° Solve to find the integrating factor

wx) = &

° Integrate both sides with respect to x
[ (E(u(z)y)) dz = [ p(z) 2®sin (z)dz + ¢t
° Evaluate the integral on the lhs

wz)y = [ p(z)z’sin (z) dz + ¢

° Solve for y

[ p(z)2® sin(z)dz+er
y= ()

° Substitute p(z) = m%
y=a*([zsin(z)dz +c)

° Evaluate the integrals on the rhs

y = z(sin () — cos (z) z + ¢1)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(x“2*diff(y(x),x)-4*x*y(x)=x“7*sin(x),y(x), singsol=all) J

y(z) = (—z cos (z) +sin (z) + ¢;) z*

v/ Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 19

LDSolve[x‘Q*y'[x]—4*x*y[x]==x‘7*Sin[x],y[x],x,IncludeSingularSolutions -> Trug?

y(x) — z*(sin(x) — x cos(z) + ¢;)
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2.3 problem 3

2.3.1 Solving aslinearode . . . . .. ... ... ... ... ... 233]
2.3.2 Solving as first order ode lie symmetry lookup ode . . ... .. 235
2.3.3 Solvingasexactode . . ... ... ... ... . ...... 239
2.3.4 Maple step by step solution . . . .. ... ... ... .. ... 243

Internal problem ID [2561]
Internal file name [OUTPUT/2053_Sunday_June_05_2022_02_46_29_AM_73525458/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 3.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

v + 2y = 223

2.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here

p(z) =2z

q(z) = 22°
Hence the ode is

Y + 2y = 223

The integrating factor y is

p=e [ 2zdx

m?
=e
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(1)

(w) (22°)

(x2 — 1) e® +¢
2 —1+ cle_m2
z2—1+ cle_””2

/ 223¢”” dx

)
Y

2

e”y

2

e’y

y= e (m2 - 1) e + cre™®

——_—t— S ———— ——~—

!

— T ————

—_— = = =

Dividing both sides by the integrating factor p = e results in

The solution(s) found are the following

Integrating gives

which simplifies to
Summary

The ode becomes

X

234
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Figure 58: Slope field plot




Verification of solutions

y=a°—-1 + cre™®

Verified OK.

2.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y =223 — 2xy
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €z) - wzéy —wz§ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 50: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

dsS
§ 7

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
Sz/—dy
n
1
=/_2dy
ez

S=e"y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Set+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = 22° — 2y

Evaluating all the partial derivatives gives

R, =1
R,=0

Sy = 2xe’”2y
Sy =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

;l—; = 223" (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS_ 3R2
KR—2RG

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)= (R*-1) e + ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ey = (2 —1) e” + o
Which simplifies to
ey = (- 1) e + ¢
Which gives
y= <9102ez2 —e” 4+ cl> e

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)

transformation

2
45 — 9R3eR

vy _ 9.3
&= 2x° — 2xy i

u
8

| e
————
.
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e o

e

>

=
-

)

!
~

L

®

|
TR AR S
S S Y Y B
B e T N L B e o

=
nn
Il
(¢]
8
N
e
{
)
~a
=

bbb a2\ [ & e s

e e e | e
——b—b—b—b—b—>—b—b—b—b—b—b—b—B—b—b—B—b A
>
~Na

it e S g /Y N ee e

et e

N

Summary
The solution(s) found are the following

y= (mze’”2 —e” + cl> e (1)
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Figure 59: Slope field plot

Verification of solutions

2

y = (xze””2 — e + cl> e ”
Verified OK.

2.3.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) B =0 ()

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

< oa,9) =0

Hence 06 06 d
o¢ 994y _
Or Oydx 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

dy = (21:3 — ny) dx
(—22° + 2zy) dz +dy = 0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —22° + 2zy
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
— = (22 +2
o ay( z° + 2zy)
=2z
And
oN _ 2
oxr Oz
=0
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Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
A 1 /0M ON
N\ Oy Oz

=1((2z) — (0))
=2
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is
p=e JAdz
— ef 2z dx

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= e:E2 (—2:173 _" 2.’1:y)

2

= —2x (mz - y) e
And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
—dy

M+N-—2=0
+ dzx

(—230(302 —y) ex2> + (e’”2> j—i =0

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~
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Integrating (1) w.r.t. z gives

0p —
%dx:/de
%dm=/—2x(r2—y) e dz
¢=—(a" —y—1)e" +f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9 _

3 e + f'(y) (4)

But equation (2) says that g—ﬁ = e”’. Therefore equation (4) becomes

2

e” = e + f'(y) (5)
Solving equation (5) for f'(y) gives

fly)=0

Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=—(2"—y— l)ew2 +c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c1 =—(w2—y—1)e”c2

The solution becomes

2 2 2
y= (x2ex —e” —|—cl>e z
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1)

2 2 .2
y= (wQe“’ —e” +cl>e v

The solution(s) found are the following

Summary
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Figure 60: Slope field plot

Maple step by step solution
Highest derivative means the order of the ODE is 1

Verification of solutions
Let’s solve
Y + 2yx = 223
Isolate the derivative
y = —2yz + 223

234
°
°

Verified OK.



° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y + 2y = 223

° The ODE is linear; multiply by an integrating factor u(x)
(@) (v + 2yz) = 2p(z) 2°

o Assume the lhs of the ODE is the total derivative £ (u(z) y)
u(z) (v +2yz) = ' (2)y + w(@) y'

e  Isolate p/(x)
W (z) = 2p(z)

° Solve to find the integrating factor
wa) = e

° Integrate both sides with respect to x
[ (L (u@)y) do = [ 2u(@) s*da +

° Evaluate the integral on the lhs

u@)y = [2p(z)2’dz +

° Solve for y
[ 2u(x)z3dz+cr
Y= @
o Substitute u(z) = e*’
3 a? T+-C
y = f2 e;zzd + 1
° Evaluate the integrals on the rhs
o (zz—l)ezz—f-cl
y= o
° Simplify

2

y=2z%—1+4cie”

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

Ldsolve(diff(y(x),x)+2*x*y(x)=2*x“3,y(x), singsol=all)

z2

y(z) =2° — 1+ ce”

v/ Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 20

LDSolve[y'[x]+2*x*y[x]==2*x“3,y[x],x,IncludeSingularSolutions -> True]

y(z) > 2+ cre™® — 1
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2.4 problem 4

24.1 Solving as linearode . . . . .. . ... ... L. 246
2.4.2 Solving as differentialTypeode . . . ... ... ... ... ... 248]
2.4.3 Solving as first order ode lie symmetry lookup ode . . .. . .. 250
244 Solvingasexactode . .. ... ... ... .. ... ... ... 254
2.4.5 Maple step by step solution . . . . .. .. ... 258

Internal problem ID [2562]
Internal file name [OUTPUT/2054_Sunday_June_05_2022_02_46_32_AM_34693024/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_ order__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type

[_linear]

;o 2xy

=4
y+x2+1 v

2.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
2z

q(z) =4z

Hence the ode is
2zy
/
&y
+ 24+ 1 T
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The integrating factor u is
o= ef mgifrldz
=z +1

The ode becomes

d _

3z ) = (1) (42)

%((mz + 1) y) = (a:2 + 1) (4z)

d((z*+1)y) = (4z(z*+1)) d=

Integrating gives
(®+1)y= /4x(x2 +1) dz
(®+1)y= (x2+1)2+cl

Dividing both sides by the integrating factor u = x2 + 1 results in

z?2+1
Summary
The solution(s) found are the following
214 1
y=x"+1+ 241 (1)
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Figure 61: Slope field plot
()

0= (—x2 — 1) dy + (2x(2x2 — y+2)) dx

2.4.2 Solving as differentialType ode
But the RHS is complete differential because

Verification of solutions
Writing the ode as

Verified OK.
Which becomes



(1)

+c

2 +1

2+ 2224+ +1
2+ 222 4+c; +1

y:
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Figure 62: Slope field plot
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Integrating both sides gives gives these solutions

The solution(s) found are the following

Hence (2) becomes

Summary

Verification of solutions

Verified OK.



2.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, 2z(—22% +y —2)

Yy =-

/

Yy =w(z,y)

2 +1

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - é.m) - w2€y - sz —Wyn = 0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 53: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢/ = £ 4 g(z) F (%) x? xy

First order
form ID 1

special

Y = g(z) " + f(x)

Q

o— [ bf(@)de—h(z)
9(z)

f(w)e_ Jof (z)dz—h(z)
g(x)

polynomial type ode

/ _ a1zt+bhiyta
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—ascr

a1b2—azby

a1ba—azby

Bernoulli ode

y = f(z)y+g(x)y"

e~ f(n—l)f(w)d:cyn

Reduced Riccati

Y = fi(z)y + folz) y?

e J frdz
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The above table shows that

£(z,y) =0
1

241 (AD)

n(z,y) =

The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=y =48 1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S=/—dy
n
1
:/ 1 dy
z2+1

S=(m2+1)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, + w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by
22(—22% +y — 2)

z2+1

W(l', y) = -
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Evaluating all the partial derivatives gives

R, =1
R,=0
Sz = 2xy
S, =z>+1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
— =42+ 4 2A
qp =t (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
2 —4R*+4
o5 = 4R*+4R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (B2 +1) +¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

@ +1)y=(®+1)° +a
Which simplifies to

@ +1)y=(®+1)° +a
Which gives

'+ 2% o+ 1
B z2+1
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

— bbb > bl

>—5 5> > > > b5 5
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S

The solution(s) found are the following

Summary

1)

2+ 222+ +1

2 +1

y:
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Figure 63: Slope field plot

Verification of solutions

2+ 2224+ + 1

2 +1

y:

Verified OK.

2.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(w,y)£=0

d(z,y) =0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
d
dx

ode. Taking derivative of ¢ w.r.t. z gives

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(:c2 + 1) dy = (—2x(—2x2 +y-— 2)) dx
(2z(-22°+y—2))dz+(z*+1)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = 2z(-22° +y — 2)
N(z,y) =2 +1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
— = (2z(-22*+y—2
o = o (2a(-20" 1y -2))
=2z
And
ON 0 ,,
5 ~as” T
=2z
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—x—M (1)
¢ _

=N @)

Integrating (1) w.r.t. = gives

op .
a—xdx—/de

%dx=/2x(—2x2+y—2)dx
2 _ 2
R @

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

¢ 2 Y

9 _ 2 Y gy 4
9y~ % g t1tfW (4)

But equation (2) says that g—‘z = 22 + 1. Therefore equation (4) becomes
x2+1:x2—g+1+f’(y) (5)

Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

/f’(y) dy:/(g) dy

2
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Figure 64: Slope field plot
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Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and c; constants into new constant c; gives the solution as

The solution(s) found are the following

The solution becomes

Summary




Verification of solutions

222+ +1
vy= 2 +1

Verified OK.

2.4.5 Maple step by step solution

Let’s solve

/ 2z
y + —x2f_’1 =4z

° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

/__2zy
Y =—gm5 4z

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

/ 2z
y + —xzfl =4z

° The ODE is linear; multiply by an integrating factor u(x)
pa) (y + 2) = 4p(e)

o Assume the lhs of the ODE is the total derivative - (u(z) y)
W) (v + 255) = w(@)y + u(z)y’

e  Isolate y/(x)

W) =2

° Solve to find the integrating factor
plr)=22+1

° Integrate both sides with respect to x
[ () )) dz = [ 4p(z) zdz +

° Evaluate the integral on the lhs
w)y = [4p(z) zdz + ¢

° Solve for y
y= / 4#(2)(9;)1%61

e  Substitute u(z) =22 +1
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[ 4z (ar:2+1)da:-|—c1

y= z2+1
° Evaluate the integrals on the rhs
(224+1)*+e1
- z2+1
° Simplify
y= x4+1x22_'-_|—101+1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(diff(y(x),x)+2*x/(1+x”2)*y(x)=4*x,y(x), singsol=all) J

&
24+ 1

y(x) =2* +1+

v Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 24

LDSolve[y'[x]+2*x/(1+x‘2)*y[x]==4*x,y[x],x,IncludeSingularSolutions -> True] J

x4+ 222 + ¢

y(z) = z2+1
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2.5 problem 5

2.5.1 Solving aslinearode . . . . . . ... ... ... ... 260
2.5.2 Solving as first order ode lie symmetry lookup ode . . ... .. 262
2.5.3 Solvingasexactode . . ... ... ... ... ......
2.5.4 Maple step by step solution . . . . . ... ... ... ... ... 271l

Internal problem ID [2563]
Internal file name [OUTPUT/2055_Sunday_June_05_2022_02_46_34_AM_26089267/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 5.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

2.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here
2z
p(z) = 2 +1
4
x frd
) (2 +1)°
Hence the ode is
J + 2zy 4
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The integrating factor u is
I mgifrldz

p=e
=z +1

The ode becomes

Integrating gives

4
(a:2+1)y=/w2+1dx

(2 + 1) y = 4arctan (z) + c1

Dividing both sides by the integrating factor u = x2 + 1 results in

_ 4arctan () ¢
2241 22 + 1

which simplifies to

_4arctan (z) + ¢,
B z2+1

Summary
The solution(s) found are the following

_ 4arctan (z) + ¢ (1)
N z2+1
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Figure 65: Slope field plot

Verification of solutions

4arctan (z) + ¢;
B z2+1

Verified OK.

2.5.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as
/ _2($3y+$y_2)
(2 +1)°
Yy =uw(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ﬂy - fz) - w2§y —w§ —wyn=0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 56: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~/ bf(@)de—h(z)
9(z)

f(q;)e_ f bf(z)dz—h(z)
9(z)

polynomial type ode

/a1 z+b1y+c1
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—azcs

a1b2—agby

a1ba—azby

Bernoulli ode v =fx)y+g(z)y" 0 e~ f("—l)f(w)dwyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~ J fds
The above table shows that
§(z,y) =0
W) = e (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

5= [ Lay
U]
1
= / T
z2+1

S=(z"+1)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sz +CU(.’L',y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2(z%y + Ty — 2)

w(z,y) =—
() (@ + 1)
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy = 2zy
S, =z+1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 4

E:x2+1 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s 4
dR R2+1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
S(R) = 4arctan (R) + ¢; 4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
(£ +1) y = 4arctan (z) + ¢1
Which simplifies to
(” + 1) y = 4arctan (z) + 1
Which gives
_ 4arctan (z) + ¢
B x2+1
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )

. . ) . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R,S)

transformation ’
dy _ _2($3y+zy—2) ds _ 4
de (z2+1)° dR — R211
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AFAAZZA N N N N N e o e A Af PP A s
B PO PN AR RS S S S TP YU N R
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\\\\\\\\/’ff/‘f/‘/gz/"/’// z°+ )y v e e g pp R f A e
SNNNNNNN2 PSS Y f_;lf PP AA s
NNNNNNNNNAMP PP LSS YT N B 1L I e
NNNNNNNNNM PP PP S S S P YU NN I I
NNNNNAN VN ARttt r DN Nt
NNNNNNNAVNAr LRy e PN A I L L Ay W O O

Summary
The solution(s) found are the following

4arctan (z) + ¢

= 1
4 241 (1)

265



N/ NN NN N NN
J77 77101101 7-NNNN NN\
J77 77011010107 75NNN NN NN
HAZ 7777711011 7N NN NN\
J777 77110 7=NNNNNNN
777777111 7NN\
{77777 7 7 DT 7NN NN
s 777 1T NN
—_—— 7 ] P
y(x) 07 —x—s—x——*)//// 7 / / VP
NNN\N\~~—~ TSNS
THNSNNNNN~AT NI
NNNNN\N\~—=/ 1S SS 7777
NNNNNN\N\~/ 11111717777
—2INNNNNNN\~/ ST A1 7777
NNNNNNNNAS 11777
NNNNNNNNAT 777
=3HANNNNNNNN—S 1777
-3 -2 -1 0 1 2 3
X
Figure 66: Slope field plot
Verification of solutions
4arctan (z) + ¢;
o 2 +1
Verified OK.
2.5.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(z,y) 2 =0 (A)

dz

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%ﬁb("ra y) =0

Hence 96 0d
y =
or + Oy dx 0
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Comparing (A,B) shows that

o
M
oz
9 _ n
Oy
But since ;;gy = ;; g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66—;% = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

2y 4
dy=|— + d
Y ( r2+1 (22 + 1)2) v

2zy 4
— dzr+dy = 2A
(x2+1 (:c2-|—1)2> z+dy=0 (2A)

Comparing (1A) and (2A) shows that

2y _ 4
2+1  (2+1)°
N(z,y) =1

M(z,y) =

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM _o (i)
dy  Oy\z®+1 (22+41)°
2z
2 +1
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And

Since 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

oM ON
A= (8_y - %)

- (&%) -0)

2z
o241

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

o= efAdm
= e ;22171 d
The result of integrating gives
pw= eln(a:2+1)
=241

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

2y 4
=z2+1 -
v 2+1  (2241)°

22y +2zy — 4
B x2+1

And

N = uN
=z’ +1(1)
=z>+1
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Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

M+W%:O
dx
223y + 2xy — 4 0 dy
( + 2 )+(x 41 =g
The following equations are now set up to solve for the function ¢(z,y)

06 —
A v 1
% (1)
00 —
PN 2
o ®)

Integrating (1) w.r.t. z gives

¢ _/2r3y—|—2my—4
x dx
2 +1

¢ = 2’y — 4arctan (z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t y gives

a¢ 2 !
5§=w+f@) (4)

But equation (2) says that gz = 12 + 1. Therefore equation (4) becomes

?+1=2"+ f'(y)

Solving equation (5) for f'(y) gives
flly)=1

Integrating the above w.r.t y gives

/ﬂw@=/m@

fly)=y+a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ = 2%y — 4arctan (z) +y + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

c1 = r’y — 4arctan (z) +y

Summary
The solution(s) found are the following

r?y — 4arctan (z) +y = ¢; (1)
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Figure 67: Slope field plot

Verification of solutions

ry — darctan (z) +y = ¢;

Verified OK.
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2.5.4 Maple step by step solution

Let’s solve

/ 2xy 4
Y T2 T ey

° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
2
yl = _z2af1 + (.'17211)2

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

/ 2xy 4
Y T2 T ey

° The ODE is linear; multiply by an integrating factor u(x)
uz) (v + 2) = o

o Assume the lhs of the ODE is the total derivative & (u(z) y)
pa) (Y + 25) = W@y + u@)y

o Isolate ()

W (z) = 2

° Solve to find the integrating factor
plr)=22+1

° Integrate both sides with respect to x

[ (E(u()y)de= [ %dm +a
° Evaluate the integral on the lhs
)y = [ 20 dr 4+ ¢

(2+1)*
° Solve for y
V="

e  Substitute u(z) = z2 + 1

J ﬁdz+cl

y = (132+1
° Evaluate the integrals on the rhs
4
y = arctxazr:(_a;)—i-cl
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 18

Ldsolve(diff(y(x),x)+2*x/(1+x“2)*y(x)=4/(1+x”2)“2,y(x), singsol=all) J

4arctan (z) + ¢;

v Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 20

LDSolve[y'[x]+2*x/(1+x‘2)*y[x]==4/(1+x‘2)‘2,y[x],x,IncludeSingularSolutions —>JTrue]

4arctan(z) + ¢;
z2+1

y(z) =
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2.6 problem 6

2.6.1 Solving aslinearode . . . . .. ... ... ... ... L. 2773
2.6.2 Solving as first order ode lie symmetry lookup ode . . ... .. 2775
2.6.3 Solvingasexactode .. ... ... ... ... .......... 2779
2.6.4 Maple step by step solution . . . .. .. ... ... ... ... 284

Internal problem ID [2564]
Internal file name [OUTPUT/2056_Sunday_June_05_2022_02_46_36_AM_61261930/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 6.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

2cos (z)*y/ + ysin (2z) = 4 cos (z)*

2.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
y +p(@)y = q(z)

Where here

p(z) = tan (z)
q(z) = 2cos ()

Hence the ode is
y' + ytan (z) = 2cos (11:)2

The integrating factor u is
o= ef tan(z)dz

1
cos (z)
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Which simplifies to
p = sec ()

The ode becomes

£ (uy) = (1) (208 2)?)

%(sec (z)y) = (sec (z)) (2cos (z)?)

d(sec (z)y) = (2cos (z)) dz
Integrating gives
sec(z)y = /2 cos (z) dz
sec(z)y = 2sin (z) + ¢;
Dividing both sides by the integrating factor u = sec () results in
y = 2sin (z) cos (z) + ¢; cos (z)
which simplifies to
y = cos (z) (2sin (z) + ¢1)

Summary
The solution(s) found are the following

y = cos (z) (2sin (z) + ¢1) (1)
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Figure 68: Slope field plot
cos (z) (2sin (z) + ¢1)
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The type of this ode is known. It is of type 1inear. Therefore we do not need to solve

2.6.2 Solving as first order ode lie symmetry lookup ode
the PDE (A), and can just use the lookup table shown below to find £,

The condition of Lie symmetry is the linearized PDE given by

Verification of solutions
Verified OK.
Writing the ode as



Table 59: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = cos ()

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

$= [ La
n
1
- / cos (x)dy

S is found from

Which results in

_ Y
cos ()

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—ysin (2z) 4 4 cos (z)*
2 cos (z)*

w(z,y) =

Evaluating all the partial derivatives gives

R,=1

R,=0

Sy =sec(z)tan (z)y
S, = sec ()

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates

ds
R 2 cos () (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

=29
IR cos (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
S(R) =2sin (R) + 1 4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
sec(z)y = 2sin (z) + ¢;
Which simplifies to
sec (z)y = 2sin (z) + ¢
Which gives
_ 2sin(z) + ¢
- sec(z)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ —ysin(2x)+4cos(z)* ds __
dz 2 cos(z)? 4B — 2 cos (R)

Pttt vttt Vit =it NN N NS A A NN e
L A A T T A A o R T Y A e R A ¢ ANNN NSNS A A 7NN e
A A T A P O A T NN N N A2 NN N e
I A N B P A B A A ASNNNY NN S 2NN NN e
AN RN AN E RS PR RN VA AN N
L?ff/\L?ff/\L?ff/\Lf ~~N NN N 227 7~N NN N
VPP A ANV E LRI ANV AN NN NN AT S NN N e
[ A A VAR NE T Y AN ASNNN NS A NN N e
NPAPA=NE AN =N =N R= P N T e N N N N
NSAPLPPANI P ANI PPN = NN N N A A A N N N N e
TS Nt AR hy S PSS | AR NN N

— — —. — a0\ A4 a0\ A4
RRGVE R R A sec (2) y SN sy NN
IR YA AR VA B A I NN NN AL A N Y N e
PANAZ PN 2L EINA I NN N N A A NN N N
PLNArtbANAr Pt LN NN N N A A A NN N e
tiN rttiNAr PNttt ANNNY NSNS S A NN N e
tiNv it ttiN Attt NN N AL 2 NN N N N e
tdvrttb Attt vttt NN NN A2 2 SN N Y e
tlbyv—=fttivArttivs 1t e R D e e R

Summary
The solution(s) found are the following

_ 2sin(z) + ¢
- sec(x)
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Figure 69: Slope field plot

Verification of solutions

2sin (z) + ¢

sec (x)

Verified OK.

2.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y)+ N(@,y) 2 = 0

[}

= M
+~ ~—
wn

[b]
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wn
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wn

z
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(2cos (z)?) dy = (—ysin (2z) + 4cos (z)*) dz
(ysin (2z) — 4 cos ()*) dz +(2cos (z)*) dy = 0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = ysin (2z) — 4 cos (z)*
N(z,y) = 2cos (z)?

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 4
T2 = 2 (ysin (2z) — 4
9y — oy (ysin (2z) — 4 cos (z)*)
= sin (2z)
And
ON 0 2
B = £(2cos(x) )
= —2sin (2z)
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am (o _om)
N\ oy Oz

sec (z)*

==

= 3tan (z)

((sin (2z)) — (—4sin (z) cos (x)))

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e [Adz
— ef3tan(x) dz
The result of integrating gives
p= e—31n(cos(x))

= sec ()"

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
= sec ()" (ysin (2z) — 4 cos (a:)4)
= —4cos (z) + 2sec (z) tan (z) y

And

= sec (z)® (2cos (z)?)

= 2sec ()

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

H+N3—Z =0
(—4 cos (z) + 2sec (z) tan (z) y) + (2sec (z)) j—z =0
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The following equations are now set up to solve for the function ¢(z,y)

o¢ 1)

or M
0 —
oy = N (2)
Integrating (1) w.r.t. = gives

— dx = / M dx

0¢

e dz = / —4 cos (z) + 2sec (z) tan (z) ydz

(3)

¢ = 2sec (x)y — 4sin (z) + f(y)

Where f(y) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t y gives

99 /
e 2sec(z) + f'(y) (4)

But equation (2) says that a¢ = 2sec (z). Therefore equation (4) becomes

2sec (z) = 2sec (z) + f'(y) (5)

Solving equation (5) for f’(y) gives

fy)=0

Therefore
fy)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
¢ =2sec(z)y —4sin(z) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining ¢; and c; constants into new constant c; gives the solution as

c1 = 2sec(x)y — 4sin (z)
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(1)

4sin () + 1
2sec ()
4sin (z) + ¢
2sec (z)
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Figure 70: Slope field plot
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The solution(s) found are the following

The solution becomes

Summary

T T T T T T T
on N — ) — N on

—~

=

~—r

~

Verification of solutions

Verified OK.



2.6.4 Maple step by step solution

Let’s solve
2cos (2)?y + ysin (2z) = 4 cos (z)*
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
yl — __sin(2z)y U 1 9cos (x)2

2 cos(z)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

Yy + ;1:0(:(?;’ = 2cos (z)°

° The ODE is linear; multiply by an integrating factor u(x)
u(@) (o + 525t ) = 2u(z) cos (z)”

o Assume the lhs of the ODE is the total derivative - (u(z) y)
w(a) (v + 2280 ) = (@) y + p(z)

o Isolate 1/ ()

() = e

° Solve to find the integrating factor

/,1,(117) = cosl(x)

° Integrate both sides with respect to x

[ () ) de = [ 2(z) cos (2)* dz + e
° Evaluate the integral on the lhs

w(z)y = [ 2u(z)cos (x) dz + ¢
° Solve for y

[ 2p(z) cos(z)?dz+c1
y= ()

o Substitute u(z) = —Cosl(m)

y = cos (z) ([ 2cos (z) dz + c1)

° Evaluate the integrals on the rhs

y = cos () (2sin (z) + ¢1)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve(2*cos(x)“2*diff(y(x),x)+y(x)*sin(2*x)=4*cos(x)“4,y(x), singsol=all) J

y(x) = (2sin (x) + ¢1) cos (z)

v/ Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 15

LDSolve[Q*Cos[x]‘2*y'[x]+y[x]*Sin[2*x]==4*Cos[x]“4,y[x],x,IncludeSingularSoluﬁﬁons -> True]

y(z) — cos(z)(2sin(z) + ¢1)
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2.7 problem 7

2.7.1 Solving as linearode . . . . . . ... ... ... .. ...
2.7.2  Solving as first order ode lie symmetry lookup ode . . ... .. 288]
2.7.3 Solvingasexactode . .. ... ... .. ... ... . .....
2.7.4 Maple step by step solution . . . . ... ... ... ... .... 297

Internal problem ID [2565]
Internal file name [OUTPUT/2057_Sunday_June_05_2022_02_46_38_AM_20398170/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 7.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

2.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
p(z) = In(z)z
q(z) = 92
Hence the ode is
/ Yy 2
=9
Yt () x N
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The integrating factor u is

1
l’l’ — ef ln(z)zdw

=In (z)
The ode becomes
L (1) = () (9?)
dx

L (In(2)y) = (in (2)) (92*)
d(In(z)y) = (91In(z) 2z*) dz

Integrating gives

In(z)y = /9111 (z) 2% dz

In(z)y =32%In(z) —2° + ¢
Dividing both sides by the integrating factor u = In (x) results in

_ 32%In(z) —2° 1
B In (z) * In (z)

which simplifies to

_3*In(z) —2* + o
v= In (z)

Summary
The solution(s) found are the following

_32In(z)—2*+a

In (z) (1)
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Figure 71: Slope field plot

Verification of solutions

32 In(z) —2® +¢
B In (z)

Verified OK.

2.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,__—92°Iln(z) +y
B In(z)x
y =uw(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(ny — &) — w2€y —wz§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
1

n(z,y) = n (z) (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x
S is found from
n
1
A
In(z)
Which results in
S=In(z)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +UJ(.’E,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—92%1In (z) +y

w(z,y) = - In(z)z

Evaluating all the partial derivatives gives

R, =1

Ry =0

S, =2
T

Sy =1n(z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 5
bl 9In (z)z (2A)

We now need to express the RHS as function of R only. This is done by solving for =,y
in terms of R, S from the result obtained earlier and simplifying. This gives

o5 =9I(R)R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=3R*In(R) - R*+¢, 4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

yln(z) = 3z°In(z) — 2% + ¢,
Which simplifies to
yln(z) = 32%In (z) — 2° + ¢
Which gives
_32In(z) -2 +a
In (z)
The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation

dy _ _ —92%In(x)+ ds _ 2

—
—

t

D | e
— bbb —b—b—b—b—b—b—b—b—B—b—b—b A 4
oy
|
8
A A A AL A AL A A A AL AL
VoAV reeed

I S S e B e R SN
e T T
1

et a— o i bbb bbb —b

Summary
The solution(s) found are the following

3z%In (z) — 2% + ¢

y= In (z) (1)

291



3 11
110
TV
2 T\
111y
111N
. 11171
1111
711
y(x) o 1;511
Y
. \~/
\N~1 1
VAN
Vv
—2 LV
LV
LVl
—3 bV
-3 -2 =1 0 1 2 3
X

Figure 72: Slope field plot

Verification of solutions

32 In(z) —2® +¢
B In (z)

Verified OK.

2.7.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,) + N(z,y) 2 =0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06 d
op 994y _
Oxr Oydx 0 (B)
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Comparing (A,B) shows that

o
M
ox
o9
T _N
9y
But since % = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

_(__Y 2
dy-( ln(z)z—i_gz)dx

<—9x2 + - (yx) w) dz +dy =0 (2A)

Comparing (1A) and (2A) shows that

Y

. __Qn2

N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
0y Oz

Using result found above gives
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And

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

oM ON
A= (a?‘%)

- (=) @)

1
" In(x)x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

p=e [Adz
The result of integrating gives
p= eln(ln(w))

= In (z)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And

294



Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M + N% =0
dz
—9z31n(z) +y dy
] = =
(ZREEY) s @) §E =0
The following equations are now set up to solve for the function ¢(z,y)
0p —
9 - M (1)
0p —
— =N 2
5 )

Integrating (1) w.r.t. = gives

0p . [+
%dx—/de

a3
8¢dx:/ Oz ln(x)—i-ydx

X

ox
¢ = (-32°+y)In(z) +2° + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

5 =In(z)+ f(y) (4)
But equation (2) says that g—Z’ = In (). Therefore equation (4) becomes

In (z) = In (z) + f'(y) (5)

Solving equation (5) for f'(y) gives
f'y) =0
Therefore
fly)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢= (-3 +y)In(z) +z° +
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

a=(-32°+y)In(z) + 2°
The solution becomes

3z%In (z) — 2%+ ¢
In (z)

Summary
The solution(s) found are the following

32 In(z) —2® + o

In (x) (1)
3 11101
11\
1141
2 11\
111\
TN
N 11171
1111
2l
y(x) o i
N7
\~/
- VN~
VA
Vv
=27 VAV VT
VAV LT
LV
—3 LVl
-3 -2 —1 0 1 2 3
X

Figure 73: Slope field plot

Verification of solutions

3z%In (z) — 2% + ¢
In (z)

Verified OK.
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2.7.4 Maple step by step solution

Let’s solve
yl + ln(?jv):c = 927

° Highest derivative means the order of the ODE is 1

/

Yy

° Isolate the derivative
Y= _m(‘i)z +92°

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y, + ln(yx)ac = 9%2

° The ODE is linear; multiply by an integrating factor u(x)
p(x) (y + m(‘;)z> = 9u(z) z*

o Assume the lhs of the ODE is the total derivative £ (u(z) y)
p(z) (y’ + m(i)w) = p(@)y+p(@)y

e  Isolate y/(x)

w(z) = lﬁ((;))x

° Solve to find the integrating factor
pu(z) = In (z)

° Integrate both sides with respect to x
J (G (u(@)y)) dz = [Ip(z) 2%dz + &

° Evaluate the integral on the lhs
wz)y = [9u(z) 2%dz + ¢

° Solve for y
y = f9u(z:z:)da:+cl

o Substitute p(z) = In (z)

_ [9In(z)z%dz+c
y= In(z) :

° Evaluate the integrals on the rhs

323 In(z)—x3+c1

y= In(z)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

Ldsolve(diff(y(x),x)+1/(x*ln(x))*y(x)=9*x“2,y(x), singsol=all) J

() = 3z°In (lxn)(;)x + ¢

v Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 25

LDSolve[y'[x]+1/(x*Log[x])*y[x]==9*x“2,y[x],x,IncludeSingularSolutions -> Trug?

-3 + 323 log(z) + 1
log(z)

y(z) =
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2.8 problem 8

2.8.1 Solving aslinearode . . . . ... ... ... ... ... 299
2.8.2 Solving as first order ode lie symmetry lookup ode . . ... .. 3011
2.8.3 Solvingasexactode ... ... .... .. ... ......
2.8.4 Maple step by step solution . . . . . ... ... ... ... ... 309

Internal problem ID [2566]
Internal file name [OUTPUT/2058_Sunday_June_05_2022_02_46_40_AM_61184153/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 8.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y' — ytan (z) = 8sin (z)°

2.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(@)y = q(z)

Where here

p(z) = — tan (z)
q(x) = 8sin (z)°

Hence the ode is
y' — ytan (z) = 8sin (z)°
The integrating factor u is

L= ef—tan(x)dx

= cos (z)
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The ode becomes
<L () = (1) (85in (2"
<L (cos (2)9) = (cos (2)) (8sin (2)")
d(cos (z) y) = (8sin (z)° cos (z)) dz

Integrating gives

cos (z)y = / 8sin (z)° cos (z) dz
cos (z)y = 2sin (z)* + ¢
Dividing both sides by the integrating factor u = cos (x) results in
y = 2sec (z) sin (z)* + ¢; sec (z)
which simplifies to
y = sec (z) (2sin (z)* +¢1)

Summary

The solution(s) found are the following

y = sec (z) (2 sin (oc)4 + cl) (1)
Hos==1 L VWS T ==\~
=T VWS T Vs
“ASNNT L VAV 7~
H=NNT LV ANN~=7 11\ 7~~
NN VNN~ N 7=~
N7V \\N~=/ 1IN /=~
H==NAN VW NN~=/ 111/ 7=~
—~\\ NV \NN~=/711111/——
N R ANTRA S R R A
_\\ —_—— —_—
JCHRN RN S A NI I PO
=\ VWV N\NSN—=—~7 111 7=
=NV N7 17 11 17~
I e R A B R e A Il B B A
~\\V |/ \\N=—==//\111/7—
~\\V | | I\NN\N=—~=/ 7\ 111/~
“2~\\ VL INN——~~ 7\ |/~
~\ VL INSNo~~~/ V17~
S\ VI ~=r~—=—~ 11 ]~
“HNN\ V== NN~ | I/~
-3 -2 -1 0 1 2 3

X

Figure 74: Slope field plot
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Verification of solutions

y = sec (z) (2sin (z)* + ¢;)
Verified OK.

2.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as
y' = tan (z) y + 8sin (z)°
y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W€y — we€ —wyn =10 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 65: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
1
= —" Al
n(z,y) = — @ (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S=/—dy

n

1
=/ 1 dy

cos(z)

S is found from

Which results in
S =cos(z)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+t w(z,y)S,
dR R, +w(z,y)R,

(2)

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = tan (z) y + 8sin (z)°

Evaluating all the partial derivatives gives

R,=1

R,=0

Sy =—sin(x)y
Sy = cos (z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS . 3
Fioi 8sin (x)” cos (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s . 3
R= 8sin (R)” cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

303



(4)

AARIA TR T A
NIRRT
AN S DN N NN

IBOUEEEREE!
frettttttt

AARITI T T A
AARITI T T A
AN A N Y
AN e D N S NN

L O O

S e
NN NN
20 e O N N

IDEEEEEREE!
Fatttttttt

PO PP PPY P
[P w777 o757
B T T T TR T R R R S
N NN NN

L O O

(R,S)
8sin (R)® cos (R)

das
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2sin (R)* + ¢,
cos ()

2sin (z)* + ¢,

S(R)
cos (z)y
cos (z)y

integration when the ode is in the canonical coordiates R, S. Integrating the above
To complete the solution, we just need to transform (4) back to z,y coordinates. This
The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

gives

results in

Which simplifies to
Which gives

=
— 2 8 =
g <5 S
o m m ~—
m or— — %
<] 1m rm 8 O
S 8% I
[} m K& O
+~

% $$$$$$$$$$$ o J R e

Lnlm oy | T B e

=} -~ A SN LY 4 fAA A AH oo e oo

= A S S S R R [

= A A IR T TR S N N NN N

Qo o= A AL R RN NS e

m 0 \vl.w\v\v\w\q/dldlt/u«mu. fffffffff

= © AIAIAIAIAIA/AII/» o>

» R S, RSN C QN

8] = NS NN N N e N O 0 Y A A0

a ~ FAFR/7VE TP T RANNRRX

.~ /W\ ¥¥¥¥¥¥¥ e S Y.V ERN LN

o | T s \w\qwq/clA/A/Altl

o) w .«ldlA/A/Mh/\\q\t\vwv_.\blw $$$$$$$

o -} S N N N g

= | T I S T Y B A A e

o \\\\ﬂ\\wﬂaﬂﬂﬂ///////

o D 8 AP NN N A A e e e

WO IS lvlvlw\v\v\axalf.«/u fffffffff

Or ???????? S N .

1)
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2sin (z)* + ¢,
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The solution(s) found are the following

Summary



Verification of solutions
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Figure 75: Slope field plot

_ 2sin (2)* + ¢
~ cos(x)

Verified OK.

2.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(x,y)£=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

Hence

d

%Qb(xay) =0
99  9ddy _
oxr  Oydx
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (tan (z)y + 8sin (z)°) dz
(—tan (z)y — 8sin (z)*) dz +dy = 0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —tan (z)y — 8sin (z)°
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 . 3
By 8y( tan (z) y — 8sin (z)°)
= —tan ()
And
oN _ 2
or Oz
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Since %i; # %—N, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
Ao 1 /0M ON

N\ 0y Oz

= 1((—tan (z)) — (0))

= — tan (z)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

— ef—tan(:z:) dz

I

The result of integrating gives

1 = elneos(@))
= cos (z)

M and N are multiplied by this integrating factor, giving new M and new N which

are called M and N for now so not to confuse them with the original M and N.

M = uM
= cos (x) (— tan (z) y — 8sin ($)3>
= sin (z) (—8sin (z)* cos (z) — y)

And
N = uN
= cos (z) (1)
= cos ()
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
M+ Nj—y =0

(sin () (—8sin (z)? cos (z) — y)) + (cos (z)) j—z =0

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~
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Integrating (1) w.r.t. z gives

@dx = /de
or

oo = | sin (@) (~8sin (@) cos &) — y) d

¢ = cos () (—2cos (z)* + 4cos (z) + y) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ /
oy o8 (z) + f'(y) (4)

But equation (2) says that g—i’ = cos (). Therefore equation (4) becomes
cos (z) = cos () + f'(y) (5)
Solving equation (5) for f'(y) gives

fy)=0

Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = cos (z) (—2cos (z)* + 4 cos (z) +y) + &1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c1 = cos () (—2cos (z)* + 4 cos (z) + y)

The solution becomes

2cos (2)* — 4cos (z)* + ¢
y =

cos ()
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Summary

1)

2cos (z)* — 4cos (2)* + ¢
cos ()

y:

The solution(s) found are the following
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Figure 76: Slope field plot

Verification of solutions

2cos (z)* — 4cos (2)° + ¢

cos ()

Verified OK.

2.8.4 Maple step by step solution

Let’s solve

y — ytan (z) = 8sin (z)

Highest derivative means the order of the ODE is 1

Isolate the derivative
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y = ytan (z) + 8sin (z)°

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y — ytan (z) = 8sin (z)°

The ODE is linear; multiply by an integrating factor u(x)
(@) (y — ytan (2)) = 8u(z) sin (2)°

Assume the lhs of the ODE is the total derivative - (u(z) y)
u(z) (v — ytan (z) = p'(z) y + p(z) y'

Isolate ()

p'(z) = —p(z) tan (z)

Solve to find the integrating factor

p(z) = cos (z)

Integrate both sides with respect to x

| (£ (ulz)w)) de = [ 8u(z)sin («)* d +

Evaluate the integral on the lhs

u(@)y = [ 8u(a) sin (2)° de + ¢,

Solve for y
__ [ 8u(z)sin(z)3dzci
vy= H(@)
Substitute pu(z) = cos (x)
__ [8sin(z)? cos(z)dz+c1
y= cos(z)
Evaluate the integrals on the rhs
y = Bt
Simplify

y = sec (z) (2sin (z)* + )
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

Ldsolve(diff(y(x),x)-y(x)*tan(x)=8*sin(x)“3,y(x), singsol=all) J

sec () (4¢; + 5)
4

y(z) = 2cos (z)® — 4cos (z) +

v/ Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 19

LDSolve[y'[x]—y[x]*Tan[x]==8*Sin[x]‘3,y[x],x,IncludeSingularSolutions -> True]J

y(z) — 2sin®(z) tan(z) + c; sec(x)
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2.9 problem 9

2.9.1 Solving aslinearode . . . . .. ... ... ... ...
2.9.2 Solving as first order ode lie symmetry lookup ode . . ... .. 3141
2.9.3 Solvingasexactode . .. ... ... .. ... ... . ...... 318
2.9.4 Maple step by step solution . . . . ... ... ... ... . ... 323

Internal problem ID [2567]
Internal file name [OUTPUT/2059_Sunday_June_05_2022_02_46_43_AM_51064587/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 9.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

't +2x =4¢ét

2.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

7' +p(t)z = q(t)

Where here
2
t) = —
p(t) =
4 ¢t
)= —
q(t) =~
Hence the ode is
o 2z 4¢'
t ot
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The integrating factor u is

The ode becomes

Integrating gives
t’r = / 4e'tdt
tr=4(t—-1)e' +c

Dividing both sides by the integrating factor p = 2 results in

4t —-1)e" ¢
e Te

which simplifies to
s (4t —4) et + ¢

t2

Summary
The solution(s) found are the following

(4t —4) et + ¢
t2

xTr =
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Figure 77: Slope field plot

Verification of solutions

(4t —4) et + ¢
12

x fry
Verified OK.

2.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,  —2x+4e
r=—
t
' = w(t,z)

The condition of Lie symmetry is the linearized PDE given by
M+ w(e — &) — W — wi€ —wen =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 68: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(t,7) = 0
n(6,7) = 5 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,x) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt _do _
§ 1

The above comes from the requirements that (£2 +n2) S(¢,z) = 1. Starting with the
first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

ds (1)
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t
S is found from
1
S = / —dy
n
1
t2
Which results in
S =tz

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dsS . St+W(t,$)Sx

Rl 2
dR Rt +W(t, "L‘)Rw ( )

Where in the above Ry, R, S;, S, are all partial derivatives and w(t, z) is the right hand
side of the original ode given by

wit,z) = —2x;|—4et
Evaluating all the partial derivatives gives
R, =1
R, =0
S; = 2tx
Sy =17

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s

We now need to express the RHS as function of R only. This is done by solving for ¢, x
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
= —4eR
dR 'R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=4(R—1)e"+c (4)

To complete the solution, we just need to transform (4) back to ¢,z coordinates. This
results in

tr=4(t—-1)e' +c
Which simplifies to

tr=4(t—1)e' +c
Which gives

4ett —4et +c
r=
ﬁ

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
.. ) . . ODE in canonical coordinates
Original ode in ¢,z coordinates coordinates (R, S)
transformation ’

dx _ —2zx+4et ds __ R

dt ¢ iz —4e"R
VA A A O U I A R O t e S O N N R
VA A R A R B A | t ——=~NN NN NNt
A A R A S S Rt
AR TR

—— S N N\ Na)

Y YE R IR BERRN NN
AP RESRNNRNR A
mar AR A A AN BN )
S S SO L I R— ==~ NN Y]
e \NiiEEEE =1 NNV A XX
Segemaaa Ny BT T BT i 9 SR YN Y i 2 i
R SN R O A S = t°x A R N R
R SN A ——a—~m N NN NN
\\\\\\auL{HHT e D RN
NNNNNN YV Lttt ——= NN N N NN
SNNNN YLVt t ——=~NaNa NN NN A
NNNNYN VYVttt e S RN
NNNNY NV L Lttt e D N R
R R R R EEE RIS t e VO NV NN B |
A e e e IR IR AR AR R AN | t S N R I

Summary
The solution(s) found are the following

_deéft—4e'
= -

T
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Figure 78: Slope field plot

Verification of solutions

4ett —4et + ¢

t2

Verified OK.

2.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)ﬁ=0

¢(z,y) =0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
d
dx

ode. Taking derivative of ¢ w.r.t. z gives

Hence
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Comparing (A,B) shows that

09
T M
Oz
9 _ n
Oy
But since ;ﬂ:gy = 8‘9; g; then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,z)dt+N(t,z)dz =0 (1A)

Therefore

(t)dz = (—2z+4¢€") dt
(2z —4€') dt+(t)dz =0 (2A)

Comparing (1A) and (2A) shows that
M(t,z) =2z — 4¢'
N(t,x) =t

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oxr Ot
Using result found above gives
oM 0
= = (2z—4é
ox ax( o © )
=2
And
ON 0
ot o)
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Since % # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

L L(oM _oN
N\ oz ot

((2) = (@)

S S

Since A does not depend on z, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdt
The result of integrating gives
b= eln(t)
=t

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
=t(2z — 4¢€)
= 2t(z — 2¢€)

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+Nd—w=0

dt
(2t(z —26") + (22) L&

@
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The following equations are now set up to solve for the function ¢(¢, x)

-
g—t_M (1)
¢_~
=N @

Integrating (1) w.r.t. ¢t gives
09 .. [+
ot dt = /Mdt
99
3¢ 4t = /Qt(ac —2¢")dt
¢=(—4t+4)e' +t’z + f(2) (3)

Where f(z) is used for the constant of integration since ¢ is a function of both ¢ and z.
Taking derivative of equation (3) w.r.t x gives

a¢ 2 !
o =1+ f(2) @

But equation (2) says that % = t2. Therefore equation (4) becomes

t? =t* + f'(z) (5)
Solving equation (5) for f'(z) gives
fi(x)=0
Therefore
f(z)=a

Where ¢; is constant of integration. Substituting this result for f(z) into equation (3)
gives ¢
¢=(—4t+4)e' +t’z+c;

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

a = (—4t+4)e' +t’z
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The solution(s) found are the following

The solution becomes

Summary
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Figure 79: Slope field plot

Verification of solutions

Verified OK.



2.9.4 Maple step by step solution

Let’s solve
't + 2z = 4¢
° Highest derivative means the order of the ODE is 1

/

T
° Isolate the derivative
dm st

° Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
N

° The ODE is linear; multiply by an integrating factor u(t)
u(t) (a/ + %) = 2Q=

o Assume the lhs of the ODE is the total derivative 2 (u(t) z)
u) (@ + %) = (O + ult) @

o Isolate p'(t)
w(t) =20

° Solve to find the integrating factor
p(t) =t

° Integrate both sides with respect to ¢

[ (L(u(t)z)) dt = [ 2O gt 4 )

° Evaluate the integral on the lhs
pt)z=[ %dt +c
° Solve for x

f 74u(:)et dt+c;
(t)
e  Substitute u(t) = t?

_ [4ettdt+er

xr=

° Evaluate the integrals on the rhs
7= ‘l(t—lt#
° Simplify
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__ (4t—4)et+c1
r="—7p3

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(t*diff(x(t),t)+2*x(t)=4*exp(t),x(t), singsol=all)

4t — 4) et + ¢

v/ Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 20

LDSolve[t*x'[t]+2*x[t]==4*Exp[t],x[t],t,IncludeSingularSolutions -> True]

4et(t— 1)+ ¢

z(t) — v
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2.10 problem 10

2.10.1 Solving as linearode . . . . . . ... ... ... ... ...
2.10.2 Solving as first order ode lie symmetry lookup ode . . .. . ..
2.10.3 Solvingasexactode . . . ... ... ... ... ... 3311
2.10.4 Maple step by step solution . . . . . ... ... 335

Internal problem ID [2568]
Internal file name [OUTPUT/2060_Sunday_June_05_2022_02_46_45_AM_32706070/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 10.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y' —sin (z) (ysec(z) —2) =0

2.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(2)

Where here

Hence the ode is
y' —ytan (z) = —2sin (z)
The integrating factor u is

L= ef—tan(x)dx

= cos (z)
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The ode becomes

Integrating gives

cos (z)y = /—sin (2z) dx

2
cos (z)y = cosé z) +ca

Dividing both sides by the integrating factor u = cos (x) results in

which simplifies to

Summary

__ sec (x) cos (2x)

The solution(s) found are the following

5 + c1sec ()
y = cos(z) — % + c1 sec ()
y = cos (z) — % + c1sec ()
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Figure 80: Slope field plot

Verification of solutions

sec (x)

y = cos (x) — + ¢y sec (x)

Verified OK.

2.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = sin (z) (sec (z) y — 2)
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - é..’ll) - w2€y —w€ — Wy = 0 (A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 71: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
1
= —" Al
n(z,y) = — @ (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S=/—dy

n

1
=/ 1 dy

cos(z)

S is found from

Which results in
S =cos(z)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+t w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = sin (z) (sec (z)y — 2)

Evaluating all the partial derivatives gives

R,=1

R,=0

Sy =—sin(x)y
Sy = cos (z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
s
BR- sin (2z) (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds .
Jp = i (2R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
cos (2R
sy = 2B L, @

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2
cos (z)y = w +c
Which simplifies to
2
cos(z)y = w +a

Which gives
_cos (2z) + 2¢;
~ 2cos(x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x,y coordinates

Canonical
coordinates
transformation

ODE in canoni
(R,

cal coordinates

5)

gl&
I

sin (z) (sec () y — 2)

. - T

SINA Y R LS EY Y

A S GG
v v VA AN I R A NN NN

N EEEOTN (NP , S
\\\\\\Lj////«r

e a—a— e sy bbb
S BN N N NN

NNNNV VN VAV AW A oo
PR E TR MR N

«(////{L\

ooy
«rykyrrr////i\\\\\\\

N VS
\»\\\\\J/k///«(«y«««
e eeaaao|y e b—b—b—b—b—b—>
e e e
NNV Y A o
M EEERRRIA R R R DTN
et [
——e—e bbb w4 et

e e e s

R—
S =cos(x)y

45 — —sin (2R)

drR —

D P NS PP
N A TNy a7 A
a7 TN\ T A
N T e
R W Valud!
\///\¢@§//
AN AN Y
N7 TN a7
R N PPl
~Na P T\ a7

B e N N
~a N a7 T TN N T
R T g N N N
R N
~a N a7 T TN N T
~a N SN T TN e
R O e N N
R A NN
~a N N T TN e T
R At D v

S 7NN ]
N TN a7
N T\ e
\//ﬂ\\\/Lf
N7 TN T
D N N e
A A N PPl
N TN T g
N7 TN e S
a7 TN T

~ N Ny T
~a N w T BT N N e
R N N N
~a N a7 T N N T
~a N a7 7N N e T
B N g N N N
~a N ST T N N e T
~a N a7 T 7N N e T
~a N a7 T TN e T
R e N N

Summary

The solution(s) found are the following

_ cos (2r) 4 2c;

2 cos (z)
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Figure 81: Slope field plot

Verification of solutions

Verified OK.

_ cos (2) 4 2c;
~ 2cos ()

2.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y)+ N(@,y) 2 = 0

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

< ow9) =0

09 09 dy _

dr ' Oydzx =0
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (sin (z) (sec (z)y — 2)) dz
(—sin(z) (sec(z)y — 2))dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —sin (z) (sec (z) y — 2)
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 .
By 8_y(_ sin (z) (sec (z)y — 2))
= —tan ()
And
oN _ 2
oxr Oz
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Since %i; # %—N, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
a- L (3_M _ 3_N>
N\ oy Oz

= 1((—sec (z) sin (x)) — (0))

= — tan (z)
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
— ol Adz

— ef—tan(:z:) dz

I

The result of integrating gives

1 = elneos(@))
= cos (z)

M and N are multiplied by this integrating factor, giving new M and new N which

are called M and N for now so not to confuse them with the original M and N.

= cos (z) (—sin (z) (sec (z) y — 2))
= —sin (z) (y — 2 cos (z))

And

= cos (z) (1)

= cos ()
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+Nd—y=0
dzx

(—sin (z) (y — 2 cos (x))) + (cos (x)) g—i =0

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~
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Integrating (1) w.r.t. z gives

@dx: /de
ox

98 gy — [ —sin(a) (- 2eos (o) e

¢ = cos (z) (—cos () +y) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99 /
oy o8 (z) + f'(y) (4)

o _

But equation (2) says that 32 = cos (z). Therefore equation (4) becomes

cos (z) = cos (z) + f'(y) (5)

Solving equation (5) for f’(y) gives
f'y) =0

Therefore
fy) =a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = cos(z) (—cos (z) +y) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

c1 = cos (z) (—cos (z) + y)
The solution becomes

_cos(z)’+a
~ cos(z)
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Summary

The solution(s) found are the following
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Figure 82: Slope field plot

Verification of solutions

—
Q
+\l/
pIyRsS
[¢2]
&l
[¢2]
Q
(5]
|
S

Verified OK.

2.10.4 Maple step by step solution

Let’s solve

y' —sin (z) (ysec (z) —2) =0

Highest derivative means the order of the ODE is 1

Isolate the derivative
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y' = sin (z) ysec (z) — 2sin (z)
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
—sin (z) ysec (z) +y = —2sin (z)
° The ODE is linear; multiply by an integrating factor u(x)
p(z) (—sin (z) ysec (z) +y') = —2u(x) sin (z)
o Assume the lhs of the ODE is the total derivative - (u(z) y)
pu(z) (—sin (z) ysec(z) +y') = p'(z) y + p(z) ¥
e  Isolate y/(x)
' (z) = —p(z) sec (z) sin (z)

° Solve to find the integrating factor

/,1,(117) = secl(x)

° Integrate both sides with respect to x

[ (£(u(z)y)) dr = [ —2u(z)sin(z)dz + 1
° Evaluate the integral on the lhs

u(e)y = [ —2p(z)sin («) da + o

° Solve for y

| —2p(=) sin(z)dz+c1
vy= ()

o Substitute u(z) =

sec(x)
_ __ 2sin(x)
y =sec(z) ( [ -5 dz +a
° Evaluate the integrals on the rhs

y = sec (z) (—sin (z)* +¢;)

Maple trace

p

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve (diff (y(x) ,x)=sin(x)*(y(x)*sec(x)-2),y(x), singsol=all) J
sec (z)
y(x) = cos (z) — 5 + sec (z) ¢

v/ Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 20

e B

kDSolve [y' [x]==Sin[x]*(y[x]*Sec[x]-2),y[x],x,IncludeSingularSolutions -> True]J

y(z) — %sec(x) (cos(2z) + 2¢1)
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2.11 problem 11

2.11.1 Solving as linearode . . . . . . . .. ... ... ... ... .. 338
2.11.2 Solving as first order ode lie symmetry lookup ode . . ... .. 340
2.11.3 Solvingasexactode . . . ... .. ... ... ... ... [344]
2.11.4 Maple step by step solution . . . . . .. ... ... 348

Internal problem ID [2569]
Internal file name [OUTPUT/2061_Sunday_June_05_2022_02_46_48_AM_66628410/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 11.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

—ysin (z) — y' cos (z) = —1

2.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
y' +p(z)y = q(z)

Where here

p(z) = tan (z)

Hence the ode is
Y + ytan (z) = sec (z)

The integrating factor u is
o= ef tan(z)dz

1
cos (z)
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Which simplifies to
p = sec ()

The ode becomes

2 () = (1) (sec (2))

L (sec (z) ) = (sec (¢)) (sec (2))
d(sec () y) = sec (z)? dz

Integrating gives
sec(z)y = /sec (z)? dz
sec (z)y = tan (z) + ¢
Dividing both sides by the integrating factor u = sec () results in
y = tan () cos (z) + ¢; cos ()
which simplifies to
y = ¢ cos (x) + sin ()

Summary
The solution(s) found are the following

y = ¢; cos (z) + sin (z) (1)
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Figure 83: Slope field plot

Verification of solutions

y = ¢y cos (z) + sin (z)
Verified OK.

2.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, —1+sin(x)y
Y=—"_"7"75N
cos ()
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - é.x) - wzé.y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 74: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = cos ()

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

$= [ La
n
1
- / cos (x)dy

S is found from

Which results in

_ Y
cos ()

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_ —1+sin(z)y
(AJ(IL‘,y) - COoS (x)
Evaluating all the partial derivatives gives
R,=1
R,=0
Sy = sec(z)tan (z)y
Sy = sec (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates

dsS 2
JR = Sec (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds 2
JR = Se¢ (R)
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—1+sin(z)y

Original ode in x,y coordinates

integration when the ode is in the canonical coordiates R, S. Integrating the above
To complete the solution, we just need to transform (4) back to z,y coordinates. This

It converts an ode, no matter how complicated it is, to one that can be solved by
The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

results in
Which gives

gives
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The above is a quadrature ode. This is the whole point of Lie symmetry method.

Which simplifies to

1)

tan (z) + ¢
sec (x)
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The solution(s) found are the following

Summary
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Figure 84: Slope field plot

Verification of solutions

_ tan(z) 4+

Verified OK.

2.11.3 Solving as exact ode

sec (x)

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy

M(z,y) + N(z,y) - =0

dzx

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

dz

Hence 96
oz +

94 hey) =0

06 dy _

8_ydx_0
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—cos(z))dy = (—1+sin(z)y)dz
(—sin(z)y +1)dz +(—cos(z))dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —sin(z)y + 1
N(z,y) = —cos (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN

oy Oz
Using result found above gives

M
S = sy Csm@y D
= —sin (z)

And

ON 0
or = 6_x(_ cos ()

= sin (z)
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Since %i; # %—N, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

am k(2 o)

- N Oy or
= —sec (z) ((—sin (z)) — (sin (z)))
= 2tan (z)

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is

= el Ade
— oJ2tan(2)dz
The result of integrating gives
11 = e~2Mn(os(@)
= sec ()

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= sec (z)® (—sin (z) y + 1)
= (—sin (z)y + 1) sec (z)?

And

= sec (z)° (— cos (z))

= —sec ()
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N@=0
dzx
d
Y_o

((=sin (z) y + 1) sec (z)*) + (- sec (z)) =
The following equations are now set up to solve for the function ¢(z,y)

o¢ 1)

ﬁxzﬁ
06  —
8—y—N (2)
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Integrating (1) w.r.t. z gives

@dx: /de
or

9¢

. dr = / (—sin (z)y + 1) sec (z)* dz

¢ = —sec(z)y + tan () + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢

5y~ @+ "(y) (4)
But equation (2) says that g—i = —sec (z). Therefore equation (4) becomes
—sec (z) = —sec (z) + f'(y) (5)

Solving equation (5) for f’(y) gives
f'y) =0
Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
¢ = —sec(z)y+tan(z) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

c1 = —sec (z) y + tan (z)

The solution becomes
_tan(z) — e

sec (z)
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(1)

tan (z) — ¢
sec (z)

y:

The solution(s) found are the following

Summary

J 7777777777777 777777
\\Vt1 Y S
—~~>~>~X\ A VA Pt
11111 ~\S——————— -
—_——— e~ N —————
e 7 N NSNS —
Va4 ENANANAN N NG NG NS
2 A I T U W N A N NG N N N NG NG NN N
NONN N NN NN NN |
SONONONNNNNNNNNNNNNNNN N
SNSSSOSOSOSNSINNNNNNANANY T T 7
—————— NN\ N\NA\ S
111111 ~~~~~\| /T
111111111111 /\\\\I»\V\V.
LLLLLLLLLL \I\i\i//l’/’/’l’
\\\\\\ —— 7] A //////l
s, 777777 AN
SIS
I

& & T 5 =
_

x
tan (z) — ¢
sec (z)

Figure 85: Slope field plot
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Highest derivative means the order of the ODE is 1

—ysin (z) —y'cos(z) = —1

Isolate the derivative

2.11.4 Maple step by step solution
Let’s solve

Verification of solutions
Verified OK.



_ sin(x)
y, - cos(:cil +

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y/ + sin(z)y __ 1

cos(z) ~ cos(z)

cos(:c)

The ODE is linear; multiply by an integrating factor u(x)
uie) (v + 53 ) = 43

Assume the lhs of the ODE is the total derivative - (u(z) y)
w(z) (v + 20) = (@) y + p(z)y

Isolate 1/ ()

() = K(z) sin(x)

" cos(z)

Solve to find the integrating factor

/,L(LI?) = cosl(x)

Integrate both sides with respect to x

f(dx('u'(z )dz_fcﬁé?z dz + ¢

Evaluate the integral on the lhs
z)y = [ 294y 4 ¢

cos(z)

Solve for y

f u(z) dx_j’_cl

cos(z)

Y= u@
Substitute p(z) = —L

cos(z)

= cos ( (f 1 _dx+ cl)

cos(x)
Evaluate the integrals on the rhs
y = cos (z) (tan (z) + ¢1)
Simplify
y = ¢y cos (z) + sin (z)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve((1-y(x)*sin(x))-cos(x)*diff(y(x),x)=0,y(x), singsol=all) J

y(x) = cos (z) ¢; + sin (x)

v/ Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 13

LDSolve[(l-y[x]*Sin[x])—Cos[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> Truel

y(z) — sin(z) + ¢; cos(z)
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2.12 problem 12

2.12.1 Solving as linearode . . . . . . . .. ... ... ... ... 351
2.12.2 Solving as homogeneousTypeD2ode . . ... ... .. .. ... 353]
2.12.3 Solving as first order ode lie symmetry lookup ode . . .. . .. 3541
2.12.4 Solvingasexactode . . . ... ... ... .. ... ... 358]
2.12.5 Maple step by step solution . . . . .. ... ... 0oL

Internal problem ID [2570]
Internal file name [OUTPUT/2062_Sunday_June_05_2022_02_46_50_AM_96056443/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 12.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exact WithIntegrationFactor", "first_ order_ ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

/ Yy 2
Yy . n(x)x

2.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1

p(z) = Tz

q(z) = 21In () 2
Hence the ode is

/ Yy 2
—Z =921
Y n(x)x
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The integrating factor u is

The ode becomes

Integrating gives

:/2ln(w)wdx

=1n(z)m2—%+cl

|8l 8w

Dividing both sides by the integrating factor u = % results in

2
y:x(ln(x)xz— %) + iz

which simplifies to

3

y=x3ln(x)—%—|—clx

Summary
The solution(s) found are the following
3

y=x3ln(x)—%+clx (1)
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Figure 86: Slope field plot

Verification of solutions

3

y:x3ln(x)—%+61x

Verified OK.

2.12.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

v (z) z = 21n (z) 2?

Integrating both sides gives

u(z) =/2ln(:c):c dz
=ln(x)x2—%+cz

Therefore the solution y is

353



Summary
The solution(s) found are the following

2
y:w(ln(x)x2—%+02)
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Figure 87: Slope field plot

Verification of solutions

Verified OK.

2.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, 22%In(z)+vy
y=—""—"—""
x
y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(’?y - fac) - w2€y - wxf - Wy"? =0
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The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 77: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form I3 n
linear ode vy = f(@)y(z) + g(z) 0 el fde
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | y = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a4 bz + cy)™ 1 —2
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . z e— J bf(z)dz—h(x) — Jbf(z)de—h(z)

First order special | ' = g(z) M@+ + f(x) e fz)e @)
form ID 1

polynomial type ode

! amzt+bhiyta
Yy az2z+bay—+ca

ai1boz—agbiz—bica+bacy

a1bey—agbiy—aice—azcy

a1ba—aszb1

a1ba—aszb;

Bernoulli ode

Y = f(x)y+g(z)y"

e~/ (=D f@)dzyn

Reduced Riccati

¥ = fi(@)y+ folz)y?

e~ J frdz

The above table shows that

£(z,y) =0

n(z,y) ==

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n
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as

1)




The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S:/—dy

n

T

s=2

T

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy ©)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

223 1In (z) +
w(z,y) = 2z°In () +y

Evaluating all the partial derivatives gives

R, =1

R,=0
_ Y
e= g

1

Sy =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as
Fi 2In(z)x (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

ds
o7 =2(R)R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

2

R
S(R) = R*In (R) — - +c 4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2

=ln(z)z2—%—|—cl

SEES

Which simplifies to

2

=1n(x)x2—%+cl

Which gives

_ z(2In(z)2® — 2 + 2¢1)
B 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates

(R, S)

223 In(z
4y _ 2 nta)ty 45 _9ln(R)R

N~ f
N~ f
T~~~/
NS
ST N
Ta~~/
N~ f
NS
NS

IS

[}

N~
NS
e f
_24\\‘/}“
NS
N~ f
e S
—4{ A f
NS
N~ f

» @
I

=
8|le &
|
|

R e O I e i
—S bbb bbb —b—B—b—b—B—B—B—B—b—b—b—b
£
e e e S S S N e e S
— bbb —E e bbb b bbb bbb
— bbb bbb bbb —b—b—b—b—b—b
——b—b—b—b—b—b—b b —b—b—b—b—B—b—b—b—b
——b—b—b—b—B—D—D—D—D—D—D—D—D—D—D—D—D—D—b
——b—b—b—b—b—B—b—b—B—b—b—B—b—B—B—b—b—b—b

|

IS

|

[3S]

h f=}
PP | W i Y
s Y N
P A A E R R N R S S S e

——>—b—b—b—b
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Summary
The solution(s) found are the following

z(2In (z) 22 — 22 + 2¢1)

Y 5 (1)

3 {1171 11111
11717111111

11771011111
2 117771111
117711111

f177701 1111
1 (77771111
177771111

St T

y(x) o NNS~—=/ 1111
\VNN=/17111

| VAN~ 111
-1 LAYNNA7 11
LVNN—7 11 ]
LANN=7 111

—21 LVNN—=7 1111
PV NN~7 111
LV VNS T

-3 PVVNNZ T

-3 -2 —1 0 1 2 3

Figure 88: Slope field plot

Verification of solutions

z(2In (z) 2° — 2% + 2¢1)
Y= B

Verified OK.

2.12.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. = gives

d
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Hence

09 Opdy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
99
T M
ox
09
YT _N
Ay
But since aajgy = 8‘9—;% then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
gj gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz +N(z,y)dy =0 (1A)
Therefore
— (¥ 2
dy = (m +2In(z)z )dz
(—% —2In(x) z2> dz+dy=0 (2A)
Comparing (1A) and (2A) shows that

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM 0/ vy 9
—=—(—-=-=21
Oy 6y< x n(z)e )
__1
oz
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And

Since 7é 9N ' then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

-3

oy Oz
(()-e)
_ !

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef —i dz
The result of integrating gives
p=e" In(z)
1
oz

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
1y 2
= 5(—5 —2In(z)z >
—22%In(z) —y
- =~
And
N =uN
1
=)
_1
oz
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+NY _g
dz

(—2x3lr;2(x)—y) .\ (1) fii .

The following equations are now set up to solve for the function ¢(z,y)

0p —
g—x—M (1)
6
=N @)

Integrating (1) w.r.t. = gives

0p . [~
%dx—/Mda}
— 923 —
/—d _/ 2wln2(w) Y de
x

s=-m@a*+ 5+ 4 f) ®

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

8(;51

=W @

But equation (2) says that g—‘g = 1. Therefore equation (4) becomes

L= 1) ©
Solving equation (5) for f'(y) gives

f'ly) =0
Therefore

fy) =a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

2
Z
b=-l@)a’+ 5+ +a

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and c; constants into new constant c; gives the solution as

72
¢ =—ln(x)x2—|—?+

<

T
The solution becomes

z(21n (z) 22 — 2% + 2¢)
2

y:

Summary
The solution(s) found are the following

z(2In (z) 22 — 22 + 2¢1)

y 5 (1)
3 (117111111
11171111
11771111
] 1177111111
117771111
(1771111
1 17777111
1777711111
=
yx) o NN~—/ 11111
WNN=/ 71111
] VANSZ 711
1 LANNST T
VANN—T 1T
LANN—7 ]
—2 PAANN—=7 111
PLAVN~7 111
PV AVNSZ T
_3 PN
-3 -2 —1 0 1 2 3

Figure 89: Slope field plot
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Verification of solutions

z(2ln (z) 22 — 22 + 2¢1)
2

y frd
Verified OK.

2.12.5 Maple step by step solution

Let’s solve
Yy —%L=2In(z)2?

° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
Yy =Y +2In(z)a?
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y —Y=2In(z)2?
° The ODE is linear; multiply by an integrating factor u(x)
p(z) (v —¥) = 2u(z) In (z) 22
o Assume the lhs of the ODE is the total derivative - (u(z) y)
wa) (v —2) =p(@)y+p@)y
o Isolate ()

p(z) = -2

° Solve to find the integrating factor
we) =3

° Integrate both sides with respect to x

[ (E(u(z)y)) dr = [2p(z)In(z) z%dz + 1
° Evaluate the integral on the lhs
u(@)y = [ 2p(z)In () 2dz + 1

° Solve for y

[ 2u(z) In(z)z?dz+c
v= u(z)

o Substitute p(z) = %
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y=2z(/2n(z)zds + c1)

° Evaluate the integrals on the rhs
y= (ln(x)x2 -z +cl> T
° Simplify

y=2In(z) - L +cz

Maple trace

e N

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve (diff (y(x),x)-y(x)/x=2*x"2%1n(x),y(x), singsol=all) J

3

y(z) = 2°In(z) — % +azx

v/ Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 23

-

N
LDSolve[y'[x]—y[x]/x==2*x‘2*Log[x],y[x],x,IncludeSingularSolutions -> True] J

3
y(z) — —% + 2% log(z) + 1z
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2.13 problem 13

2.13.1 Solving as linearode . . . . . . ... ... ... ... ... ..
2.13.2 Solving as first order ode lie symmetry lookup ode . . .. . .. 366]
2.13.3 Solvingasexactode . . . ... ... ... ... ... 369
2.13.4 Maple step by step solution . . . . . ... ... 373l

Internal problem ID [2571]
Internal file name [OUTPUT/2063_Sunday_June_05_2022_02_46_52_AM_32115168/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 13.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

y +ay=e"

2.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here

p(z) = a

q(z) =&
Hence the ode is

Y +oay=e"

The integrating factor u is

4= of o

= eaz
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The ode becomes
d _ Bz
- (1) = (1) (&)
d ar __ (.aT Bz
L (emy) = (=) ()
d(e*y) = @A) dg
Integrating gives

ey = / e*@+h) 4z

ew(a"',@)

€ y:a+ﬁ+cl

Dividing both sides by the integrating factor u = e** results in

e—aze$(a+ﬂ)

= —— 4+ e
Yy at g8 1

axr

which simplifies to

_ala+p)e™® + ehx
a+pf

Summary
The solution(s) found are the following

. ci(a+ B)e 2% + ef*
a+p

Verification of solutions

_ala+B)e ™ +ef"
a+p

Verified OK.
2.13.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

y = —ay +e”
y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - 5:1:) - w2€y - wx€ — Wyl = 0 (A)
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The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 80: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form I3 n
linear ode vy = f(@)y(z) + g(z) 0 el fde
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | y = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a4 bz + cy)™ 1 —2
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . z e— J bf(z)dz—h(x) — Jbf(z)de—h(z)

First order special | ' = g(z) M@+ + f(x) e fz)e @)
form ID 1

polynomial type ode

! amzt+bhiyta
Yy az2z+bay—+ca

ai1boz—agbiz—bica+bacy

a1bey—agbiy—aice—azcy

a1ba—aszb1

a1ba—aszb;

Bernoulli ode

Y = f(x)y+g(z)y"

e~/ (=D f@)dzyn

Reduced Riccati

¥ = fi(@)y+ folz)y?

e~ J frdz

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n
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as

1)




The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S:/ldy
U
1
—/e_mdy

S =e*y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —ay + e~

Evaluating all the partial derivatives gives

R, =1
R,=0

Sy = ae*®y
Sy =e™*

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

2 ez(ath) 2A
dr ~° (24)

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as

_ R(ath)
dr ¢
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

eR(OH'ﬁ)

S(R)Z Oé-l-ﬂ +cC (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

o ez(a'i‘ﬁ)
ey = atp +c
Which simplifies to
e RACEYO)
ey = atp +ca

Which gives

(acl + ,301 + ew("”"’ﬁ)) e *
a+p

Summary
The solution(s) found are the following

. (occl + 501 + e’”("‘*ﬁ)) e *
N a+p

Verification of solutions

(acl + ,601 + e’”(‘”ﬁ)) e *
a+p

Verified OK.

2.13.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 3 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (—ay + ) dz
(ay —e")dz+dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = ay — &
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
- -7 PNCE
3y~ oy (ay e )
=«
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And

Slnce 7$ , then the ODE is not exact. Since the ODE is not exact, we will try to
find an 1ntegrat1ng factor to make it exact. Let

oM ON
A= -7 2t
( Ay &v)
= 1((e) - (0))
=«
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
p=e [Adz
—e Jadz

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
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The following equations are now set up to solve for the function ¢(z,y)

9¢

5 =M 1)
8¢
o =" 2)

Integrating (1) w.r.t. z gives
% dxr = / M dz
ox
8¢ _ Bz azx
%dx—/(ay e’*) e** dzx

—e”@) + y(a + B) e

6= e + 1) 6

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99

S =+ 1) @

But equation (2) says that g—Z’ = e¢*®. Therefore equation (4) becomes

eax — eOt(l) + f/(y) (5)

Solving equation (5) for f'(y) gives

flly) =0
Therefore

fy)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
- + y(a + B) e®

a+p

¢= +a

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

—e?@H8)  y(a + B) e>®
a+p

CcC =
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The solution becomes
(O{Cl + ,801 + ex(‘”ﬂ)) e
a+p

Summary
The solution(s) found are the following

_ (ac1 4 Bey +emth)) emom 0
y= a+p

Verification of solutions

(ac1 + Ber + @) emow
a+p

Verified OK.

2.13.4 Maple step by step solution

Let’s solve
Yy +ay =e”
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
Yy = —ay+e”

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Yy +ay =e”
° The ODE is linear; multiply by an integrating factor u(x)
p(@) (¥ + ay) = p(z) e
o Assume the lhs of the ODE is the total derivative £ (u(z) y)
w(z) (v + ay) = p'(z)y + ple)y
) Isolate ()
w(z) = p(z) o
° Solve to find the integrating factor
p(z) = e

° Integrate both sides with respect to x
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[ (E(u(z)y)) de = [ p(z) e’ dz + a1

° Evaluate the integral on the lhs
w(e)y = [ () eHoda +c,
° Solve for y
_ Jp@)efrdzte
Y= """ uw
) Substitute u(z) = e**
_ [ eBTeTdztcy
° Evaluate the integrals on the rhs
y = Sata
eaz
° Simplify
. (ex(a+ﬂ)+(a+ﬁ)cl)e—az
= id

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

Ldsolve (diff (y(x) ,x)+alpha*y (x)=exp(beta*x),y(x), singsol=all)

e~ (e”h) 4 ¢1(a + )
a+f

y(z) =
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v/ Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 31

kDSolve [y' [x]+\ [Alpha] *y [x]==Exp [\ [Beta] *x] ,y[x] ,x,IncludeSingularSolutions ->J True]

ea(_x) (ex(a‘i‘ﬂ) + c1 (a + IB))
a+p

y(z) —
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2.14 problem 14

2.14.1 Solving as quadratureode . . . . . . ... ... ... ...
2.14.2 Maple step by step solution . . . . . . ... ... ... ..... 377

Internal problem ID [2572]
Internal file name [OUTPUT/2064_Sunday_June_05_2022_02_46_55_AM_66233644/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.6, page 50

Problem number: 14.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

r__m
y=- +In(x)

2.14.1 Solving as quadrature ode

Integrating both sides gives

yz/ln(x)x—mdx

X

=ln(z)z—z—mln(z) + ¢

Summary
The solution(s) found are the following

y=In(z)z—z—mln(z)+ ¢ (1)

Verification of solutions

y=ln(z)x—z—mln(z)+ ¢

Verified OK.

376



2.14.2 Maple step by step solution

Let’s solve
Yy =—-2+In(x)
° Highest derivative means the order of the ODE is 1

/

Yy

° Integrate both sides with respect to x
[ydz = [ (-2 +In(z))dz+

° Evaluate integral

y=In(z)r—z—mln(z)+ ¢
° Solve for y

y=ln(z)z—z—mln(z)+ ¢

Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(diff(y(x),x)+m/x=1n(x),y(x), singsol=all)

yxz)=(—m+z)ln(z)+c; —

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 19

-

tDSolve[y'[x]+m/x==Log[x],y[x],x,IncludeSingularSolutions -> True]

e—

y(@) = (z —m)log(z) —z +a
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3 1.8, page 68

3.1 problem 9

3.2 problem 10
3.3 problem 11
3.4 problem 12
3.5 problem 13
3.6 problem 14
3.7 problem 15
3.8 problem 16
3.9 problem 17
3.10 problem 18
3.11 problem 19
3.12 problem 20
3.13 problem 21
3.14 problem 22
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3.1 problem 9

3.1.1 Solving as homogeneousTypeD2ode . . ... ... ....... 379
3.1.2 Solving as first order ode lie symmetry calculated ode . . . . . . 38T
3.1.3 Solvingasexactode ... ... .................. 386

Internal problem ID [2573]
Internal file name [OUTPUT/2065_Sunday_June_05_2022_02_46_57_AM_25630428/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 9.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, [_Abel, ~2nd type ,
class A~]]

Bz—y)y —3y=0

3.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
3z —u(z) z) (W' (z) z + u(z)) — 3u(z)z =0
In canonical form the ODE is

v = F(z,u)
= f(2)g(u)
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Where f(z) = —1 and g(u) = u“—_23 Integrating both sides gives

The solution is

3
w (@) +In(u(z)) +In(z) —c2=0

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

35+1n<%> +In(z) —c=0

354—111(%) +In(z)—c; =0

Summary
The solution(s) found are the following

?+ln<%)+ln(x)—62=0 1)
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Figure 90: Slope field plot

Verification of solutions

35+1n(%) +In(z)—cy =0

Verified OK.

3.1.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

J = — 33y
—3r+y
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - wzé.y —wz€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = xby + ybs + by (2E)
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Where the unknown coeflicients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by — 3y(bs — az) B 9y%as 9y(zas + yas + ay)
-3z +vy (—3z +1)? (—3z +y)?
3 3y )
il + xby +ybs +b1) =0
( 3r+y (—3$—|-y)2 (zb2 + ybs 1)

Putting the above in normal form gives

_ 6ayby — 3y%ay — y%by + 3y2bs + 9zb; — Yyay

4 =0
3z —y)

Setting the numerator to zero gives

—6zyby + 3y2as + y2by — 3y?bs — 92b; + Yya; =0

(5E)

(6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{z=v,y=0}
The above PDE (6E) now becomes
3a2v§ — 6byvyvy + bgvg — 3b3v§ + 9a,v2 — 9, =0
Collecting the above on the terms v; introduced, and these are
{v1,v2}
Equation (7E) now becomes

—6bov1ve — 9byv1 + (3az + b — 3b3) v% +9a1v, =0
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Setting each coefficients in (8E) to zero gives the following equations to solve

9a1 =0
-9, =0
—6by =0

3a2+b2—3b3=0

Solving the above equations for the unknowns gives

a; =0
az = b3
az = as
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(,y)§

y2

_3x—y
£€=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

F=, = (1)
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

1
Sz/—dy

n

1
:/ v2 dy

3z
S=—+In(y)
)
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S is found from

Which results in

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = _%

Evaluating all the partial derivatives gives

R,=1

R,=0

5 ?

Y

S, —3:;:— Y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
% — 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

ar ="
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(y)y+ 3z
)
Which simplifies to
In(y)y+ 3z
T — cl

Which gives

y= eLambertW(—3z e~ °l)+cy

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’

dy _ _ 3y s _
dr ~ = —3z+y dR —
ARARARARRR IR E RSN E A
ERARARARRE AR E BRI
SOONNNNNNNAN VPR E S s 4
\\\\\\\\\tit;;;f////
N NN NN N PAAAS
\\\\\\TQ\\z\;i,ff/’/’/’//’/ S(R]
s SSONNRTL e e ;
— =N\ S
e e S N L P R =
——p—b—b—b—b—b—b N\ f s>
el | N e v — - - : '
wm A AAFL] f_{\ ARV VE VR S SV ) ok
AAAFFLAN NONON NN N NN a e
A28 81 WY N N N N e e
AZZ7 70V N N N e
2227 P AN N NN N N %
A2 VN NN N e
222NN N N N N
Summary
The solution(s) found are the following
y = eLambertW(—Sxe_°1)+c1 (1)
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Figure 91: Slope field plot
Verification of solutions
y= eLambertW(—3ze_C1)+cl
Verified OK.
3.1.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(z,y) 22 =0 (8)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06 d
0¢ , 0ddy _

dor ' dydz 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

3z —y)dy = (3y)dz
(—3y)dz+Bx —y)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = -3y
N (.’IJ ) y) =3z — Y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
T (-3
By 8y( Y)
= -3
And
ON 0
oz = 0s 0" Y
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

oo L(oM_on
N\ dy Oz

1
= 5= (9 =)
6

_3:L'—y

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B 1 /ON OM
- M\ oz Oy
1
=——(3)— (-3
3 (@) = (=)
__2
)
Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

p= e/ Bdy
— /iy
The result of integrating gives
L e 2In(y)
_1
=

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M = uM
1
= —(=3y)
__3
)
And
N =uN
1
= E(?)x_y)
3z —y
=
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M+N%=0
dzx

3 3r—y\dy
<y>+( y? >dx_0

The following equations are now set up to solve for the function ¢(z,y)

9¢
oz
9¢
Oy

I
<

(1)

I
=1
~~
=

Integrating (1) w.r.t. z gives

%dx = /de
or

@dm=/—§dx
or Y

o= —3?”” + W) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

o 3z
= 4
ay 2 T f'(y) (4)
3”;;”. Therefore equation (4) becomes

But equation (2) says that g_i =

3xr — 3
""yz Y- y—ﬁ + f'(y) (5)

Solving equation (5) for f'(y) gives
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Integrating the above w.r.t y gives

fros=[ (L)

fy)=-In(y) +a

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
3z

6=-""-In@)+e

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

cg=———1In
1 y (v)

The solution becomes

y = eLambertW(—3 elz)—cy

Summary
The solution(s) found are the following

y = eLambertVV(—3 elz)—cy (1)
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Verification of solutions

Verified OK.
Maple trace

Figure 92: Slope field plot

y = eLambertW(—S elz)—cy

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature
trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

<- 1st order linear successful
<- inverse linear successful"

391



v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

Ldsolve((3*x—y(x))*diff(y(x),x)=3*y(x),y(x), singsol=all)

_ 3z
LambertW (—3z e3)

y(z) =

v/ Solution by Mathematica
Time used: 6.016 (sec). Leaf size: 25

LDSolve[(3*x—y[X])*y'[x]==3*y[x],y[x],x,IncludeSingularSolutions -> True]
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3.2 problem 10

3.2.1 Solving as homogeneousTypeD2ode . . ... ... ... .... 393]
3.2.2 Solving as first order ode lie symmetry calculated ode . . . . . . 395
3.2.3 Solvingasriccatiode. . . . . ... ... ... ... ... 400

Internal problem ID [2574]
Internal file name [OUTPUT/2066_Sunday_June_05_2022_02_47_00_AM_18701538/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 10.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _rational, _Riccatil
2
222

3.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

2
v (z) z + u(z) — W =0
In canonical form the ODE is
v = F(z,u)
= f(z)g(u)
x
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Where f(z) = L and g(u) = % + L. Integrating both sides gives

1 1
ﬁdu=—dx
2 T2 x

1
- du—/ldx
L+_ x

2arctan (u) = In (z) + ¢
The solution is
2arctan (u(z)) —In(z) —c2 =0
Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form
2arctan <%> —In(z) —ce=0

2arctan (%) —In(z) —cp=0
Summary
The solution(s) found are the following

Y

2 arctan (:c) In(z) —c2=0 (1)
Ho———s 7t 1177

————— 7y

***** =7/ 1 11177777
7 D =71 (11177777

****** -7 1117177777

S — “IWN L rrrzszzzz
H-— 7 117777777

el B Y WV A4

D Y A N A A O
e S
y(x) Norrrrrrs s mrrrr s r -
s 77 e

A e
W, 7777711 S -
77777111 ] -
7777771111 |
21777711111 e
777111 /7
77711111 (B
—}///777711 (N
-3 -2 1 0 1 2 3

Figure 93: Slope field plot
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Verification of solutions

2 arctan (%) —In(z) —cy=0

Verified OK.

3.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

= wra)
2x2
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny —&) — w2€y —wf —wyn=0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

é- = zaz + yaz + a; (1E)
n = xbs + ybs + by (2E)

Where the unknown coeflicients are

{a'la aq, as, bl) b2, b3}

Substituting equations (1E,2E) and w into (A) gives

(y+2)? (bs — as) w4+ z)* as
22* dz! (5E)

2
. <y+x_ (v+2) >(xa2+ya3+al)_ (v +2) (zby +yby +51) _

by +

0

x? x3 x?
Putting the above in normal form gives

2ztay + ztag — 22%bs + 4x3yas + 423yby — 222y%ay + 22%y%as + 22%y%bs + ytas + 423, — 42%ya; + 4z
B 4zt

=0
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Setting the numerator to zero gives

—2z%a, — xtag + 22b; — 42Pyas — 4z3yby + 22%y2as — 22%y%as (6E)
— 22%%b5 — ylas — 42°by + 422ya; — 42%yby + 4z y%a =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{z =v,y = v}

The above PDE (6E) now becomes

4 2,2 4 3 2,2 4 3
—2a9v] + 2a9v7v5 — azv; — 4azvivy — 2a307v; — azvy — 4bavi v, (7E)
+ 2b3v] — 2b307v3 + 4a1vivy + 4ayvivs — 4b1v} — 4bvivg =0

Collecting the above on the terms v; introduced, and these are
{v1, v2}

Equation (7E) now becomes

(—2a2 —az + 2b3) ’U% —+ (—4a3 - 4b2) ’U?’Uz — 4b11):15 (SE)
+ (2ay — 2a3 — 2b3) v2v; + (4a; — 4by) vivy + 4a vivs — asvy =0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a; =0

—a3z3 =0

—4b; =0

da, —4b; =0
—4az —4by =0

—2@2 — as +2b3 =0
2(12 — 2&3 - 2b3 =0
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Solving the above equations for the unknowns gives

a1 =0
as = bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=a
n=y
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation
n=n-wy)¢

=y- ((y;;,f’ ) @

_g?
2z
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dr dy
&

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S:/ldy
7
1
=/T_y2dy

2x

s (1)

S is found from
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Which results in

S = —2arctan (g)

x
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
aS Sy +w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

w(w, y) = %

Evaluating all the partial derivatives gives

R,=1
R,=0
2y
2x
Ty

r =

=
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

o 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR~ R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R)=—-In(R)+ ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—2arctan <%> =—In(z)+c
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Which simplifies to

—2arctan <%> =—In(z)+c

_ In(z) ¢«
Y= tan< 9 +2>x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Which gives

Canonical
. . . i ODE in canonical coordinates

Original ode in z,y coordinates coordinates

. (R,S)
transformation
dy _ (y+2)° as _ _ 1
de = 2x2 dR~ R

e A AR PSS e I
e S A PRI D et AN
N AL IR, B s r T I ANNCICRICIEICN
passacst SR I RS EIITY B/ NN
bbb o T _7 NS e e
Beaeewic VR IRREFIIA DOrriets s 711 ENN
B L I YN B PP U & s NV VO CVCICICEAN
m o v oo oo} fAAA A A RZ.T R atatatata O I
v v o v v v v o f AN A A A T v r w7 2 A N N e e
EPS TN EY P e e o Y e a2 Pl | IERSER S
AAAAAAZ AN oo o v o v v S = —2arctan [ £ v r v v 7 A AN N e e e e
AAAF 2272t et o v T ittt O W IR
AAAASALS f_%f A /v»,v»/v//v//_j;A NN e Sa e e
A R I ettt A LN R,
AAAAPPELE UL s StntntatatetetasRA RINR R
FAPIILE AL s Ot LR
RN R Ot LR
R R R R . et LR
R DD R R RERIE Y o 2 7 NN s

Summary
The solution(s) found are the following

y = —tan (—

In(z) ¢
29
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Figure 94: Slope field plot

Verification of solutions

y=-tn (-2 4 2)o

2 2
Verified OK.

3.2.3 Solving as riccati ode

In canonical form the ODE is

Yy =F(z,y)

(y + z)°
22

This is a Riccati ODE. Comparing the ODE to solve

1y
I—_ p— —_—
y_2+x+2z2

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y?
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Shows that fo(z) = 3, fi(z) = 1 and fo(z) = Let

1
2’ 272"

- f2u
- (1)

212

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

Fa' () = (S + fuf) (&) + £ fyula) = 0 e
But
=
fif= 55
fifo= g

Substituting the above terms back in equation (2) gives

(@) (@) ul) _

212 213 84

Solving the above ODE (this ode solved using Maple, not this program), gives

o) = v (20) ey (22

The above shows that

1 COS (@) — ¢y sin <lngx)>

2z

u'(z) =

Using the above in (1) gives the solution

(v (47) e ()

c; sin (ln( )> + ¢y cOS <ln(”)>

y=-

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
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Summary
The solution(s) found are the following

(s (o) s (=)
(

Y= (1)
cs sin (hlém)) + cos lngv))
H————=s /1] 1111171777
——— 111111777
***** =771 111177777
H ————— =71 111177777
AAAAAA =71 111177777
—————— -~/ 111777777
- 7 117777777
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Figure 95: Slope field plot

Verification of solutions

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

Ldsolve(diff(y(x),x)=(x+y(x))‘2/(2*x‘2),y(x), singsol=all)

y(z) = tan (# + %) z

v/ Solution by Mathematica
Time used: 0.234 (sec). Leaf size: 17

LDSolve[y'[x]==(x+y[x])‘2/(2*x‘2),y[x],x,IncludeSingularSolutions -> True]

y(x) — ztan <@ + cl)
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3.3 problem 11

3.3.1 Solving as homogeneousTypeD2ode . ... .. ... ...... 404!
3.3.2 Solving as first order ode lie symmetry calculated ode . . . . . . 406
3.3.3 Solvingasexactode ... ... .................. AT2]

Internal problem ID [2575]
Internal file name [OUTPUT/2067_Sunday_June_05_2022_02_47_02_AM_4957607/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 11.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

sin (%) (zy —y) — z cos (%) =0

3.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) = on the above ode results in new ode in u(z)
sin (u(z)) (z(v'(z) z + u(z)) — u(z) ) — z cos (u(z)) =0
In canonical form the ODE is

v = F(z,u)
= f(z)g(v)
_ cot (u)
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Where f(z) =  and g(u) = cot (u). Integrating both sides gives

T

L du = 1 dz
cot (u) x

/@du=/%dw

—1In(cos (u)) =In(z) + ¢

Raising both side to exponential gives

1 — eln(z)—i—cz
cos (u)

Which simplifies to
sec (u) = c3x

Therefore the solution y is

Yy =2au

= x arcsec (c3e®)

Summary
The solution(s) found are the following

y = z arcsec (c3e®x) (1)
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Figure 96: Slope field plot
Y

Y =w(z,y)
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Nz + w(ny — &) — w2€y — W — wyM
The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved

using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

3.3.2 Solving as first order ode lie symmetry calculated ode

The condition of Lie symmetry is the linearized PDE given by

Verification of solutions
Verified OK.
Writing the ode as



Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(zcos (¥) +sin (¥) y) (bs — a2) (xcos( ) +sin (¥) y)2a3

sin (;) T sin (;) 2

cos (1) + X2l — LBl (zcos (1) +sin (£) y) ycos (2)
B ( sin (%) T + sin (%)2 3 (5E)
zcos () +sin (¥)y
sin (¥) 22

(zmble s h) -0

2 sin ( sin (;)2@'2

by +

) (zas + yas + a1)

Putting the above in normal form gives

cos (%)2 z2a3 — cos (%)2 x2by + cos (%)2 Tyas — cos (%)2 zybs + cos (¥ ) y2a3 + cos () sin (¥) z%as — c

=0

Setting the numerator to zero gives

2 2 2 2
— CoS <g> r’as + cos <g> x2by — cos (Q) Tyas + cos <Q> xybs
x x x x

— oS (%)2 y’az — cos <Q> sin <£> z’az + cos (Q) sin (g> z%bs (6E)

T T T T

2 2
— 2cos <g> sin (g) xyas + by sin (E) z? — sin (g) TYas
T T T T

2 2 2 2
+ sin (E) xybs — sin <Q> y’as + cos <Q> xb; — cos (Q) ya; =0
x x x x
Simplifying the above gives

z(z%asin (%) — 22bs sin (2) + 2zyas sin (2) + z%a3 cos (2) — xb; cos () + Ya.08 (%) + z?a3 — ¢
- (6E)

2
=0
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Looking at the above PDE shows the following are all the terms with {z,y} in them.

trwes () (3))

The following substitution is now made to be able to collect on all terms with {z,y}

{ (3) = (Z) =)
T =101,y =v,co8| — | =wvsg,sin| — | =4
x T

The above PDE (6E) now becomes

in them

v1(Viagvy + viagvs + 201020304 — VgV + V2a1V3 4 201v2a2 + vias + 2v5a3 — vi1bys — 20Tby — 201U2bs
- ()
2

=0
Collecting the above on the terms v; introduced, and these are
{vla V2, U3, 1)4}

Equation (7E) now becomes

3 b byv?
<—@ + bz) of - By (_% + _3> 04} + 25t + (b — az) v} (8E)

2 2 2 2 2
2
bl’Ug’Ul 9 2 a1V a1V2V3V1
5 a3V4V2V] — A3V — 5 5 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

al_
2_
—a3—0
_% _
2_
by
2 =0
2
az b3
-24+2-0
2+2
as
2 4 by=0
2+2
b3—a2=0
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Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=zx
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)§

- (a:cos (¥) +sin (¥) y> @)

sin (%) T

_ cos (%) x

sin (%)
§=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

F=, =4 1)

The above comes from the requirements that (ﬁ a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
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S is found from

Which results in

=i (om (2)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sx +CU(.’L',y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

zcos (%) +sin () y

w(Z, = .
() sin (%) x
Evaluating all the partial derivatives gives
R, =1
Ry =
tan (%) y
tan (¥
5, _tm()
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

D 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR~ R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —In(R) + a1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in
In (cos (%)) =—In(z)+a

Which simplifies to
In (cos (%)) =—In(z)+a

et
Yy = xarccos | —
T

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Which gives

Canonical

.. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R,S)
transformation ’
dy _ @cos(¥)+sin(¥)y ds 1
de ~— sin(%)m dR ~— R
NNNNNNSV Lt e aa s p g e Tl IR
NANNNNNL Wttt s r s B T RS S S
MANNNNN AVt N2 227 B . 1 I NN,
NNNNNNNNA Y|t b rrr sy D B | SR,
SNSRI AL R L e
AN AtV 2 r 7t e PR L NN e
VANVANNNNEE f 2 ptt D e r PP P L A IENCRCICCICIEN
VANNANNNNA P 22 2t B e VR NG
YV YVNNNNSAN A R=zx Rttt i R
PLLLb bbb N Pt e ey Y 2 1 NN
RSN R Y e e A R R
R RS SR PR R SR 5:1n<cos(_>> 0600 AR | NI R S
PERPEA2 27NN NNV L AL z B T D R e,
ffffff//L%L\\\\\\\x\ »»)»»///L%&\\\\\\\‘x
PEEALAZZNTEENNNNN NN piptpiptetatetet oA ARy
FEPAAAAAE HE NN NN v 2 NN e
FAAZZZZZE I VNN NN NN NN Sintatatetetetet oA R IR e
FAAZZZANEHE VNN NN B e r I AN
2AA2Z27 0 EHE VNN NN NN e | I
FIA2ZZ77 P HE B VNN NN o w7 7 2 AN N e e
Summary

The solution(s) found are the following

et
Yy = T arccos | —
T
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X arccos (
¢(z,y) =0
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Figure 97: Slope field plot
)

d
M(w,y)+N(x,y)£=0
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N R

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)

3.3.3 Solving as exact ode
To solve an ode of the form
ode. Taking derivative of ¢ w.r.t. x gives

Verification of solutions

Verified OK.
Hence



Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz +N(z,y)dy =0 (1A)

<sin (%) x) dy = (:c oS (%) + sin (%) y) dx
(—x cos (%) — sin <%> y) da:—i—(sin (%) ac) dy=0 (2A)
Comparing (1A) and (2A) shows that

Therefore

M(z,y) = —z cos <%> — sin (Q) Y

N(z,y) = sin (%) x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
0y Oz

Using result found above gives
oy =y (reos(2) = (2))

_ cos (%) Y
=
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And
= s (Y)2)
_ sy (%)
xr T

Since %i; F# %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /OM ON
- 3(%-3)

(=) (=)
_ 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

= el Ade
_of-tds
The result of integrating gives
= e~ 0@
_1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

cren () (2)9
_ —wcos () —sin (%) y

And

w(2)9
(2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

. _dy
M = =
+ e 0
—zcos (¥) —sin (%) y . /YN dy
(P | (e (2)) 2 -
The following equations are now set up to solve for the function ¢(z,y)
0p —
9 M (1)
0y —
2 —-N 2
- )

Integrating (1) w.r.t. = gives

@dx = /de
or

¢ / —zcos (¥) —sin (¥)y &

X

¢=—zcos (L) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o =sin(Y) + 1) @)

But equation (2) says that g—f = sin (¥). Therefore equation (4) becomes
n(2)=in(2)+7 ;
sin <x sin { ~ + f'(y) (5)
Solving equation (5) for f'(y) gives

fy)=0

Therefore
fly)=a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

The solution(s) found are the following

Summary

T T T T T T T
on (@] — () — N o

Verification of solutions

Verified OK.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

-

Ldsolve(sin(y(x)/x)*(x*diff(y(x),x)—y(x))=x*cos(y(x)/x),y(x), singsol=all)

~—

y(x) = x arccos (i)

1T

v/ Solution by Mathematica
Time used: 25.589 (sec). Leaf size: 56

LDSolve [Sin[y[x]/x]1* (x*y' [x]-y[x])==x*Cos[y[x]/x],y[x],x, IncludeSingularSolutiﬁms -> True]

e
y(x) — —x arccos ( - )

e
y(x) — xarccos < - )

™

y(z) — g
T

_) —_
y(x) 5

417



3.4 problem 12

3.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 418]

Internal problem ID [2576]
Internal file name [OUTPUT/2068_Sunday_June_05_2022_02_47_07_AM_35449455/index . tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 12.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

zy — /1622 —y2 —y =10

3.4.1 Solving as first order ode lie symmetry calculated ode
Writing the ode as

VI +y

T

/

y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny — &) — w2€y —wz§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + ay (1E)
n = xby + ybs + by (2E)

Where the unknown coeflicients are

{(11, a2, as, bl) b2, b3}

418



Substituting equations (1E,2E) and w into (A) gives

- (\/ 1622 — 2 + y) (bs — as) (\/ 1622 — 42 + y)2 as
) _

T 2
_( 16 _V16z? -y’ +y

V1622 — o2 2
) (xby + ybs + b1)

(5E)

) (zaz + yas + aq)

<_ \/16;}2—1/2 +1

T

Putting the above in normal form gives

(162% — yz)% az + 16z3a; — 162303 + 322%yas — z2yby — y3as + /1622 — y2 xby — /1622 — y2 ya; — Ty
V16z2 — y? 22

=0

Setting the numerator to zero gives

3
—(162® — y*)* as — 162°as + 162°b3 — 322%yas + 2°ybs + y’as (6E)

— /1622 — 92 2by + /1622 — y2ya; + zyb; — y’a; =0

Simplifying the above gives

3
— (163v2 — y2) as+ (163&2 — y2) xbs — (161‘2 — y2) yas (6E)
— 162°a; — 162°yaz + z’ybs + 2 y°bs + (162° — y*) ax
— /1622 — y2 zby + /1622 — y2ya;, — 162%a; + zyb, =0
Since the PDE has radicals, simplifying gives

—16x3ay + 1623b5 — 162%1/1622 — 42 a3 — 322%yas + z2yby + /1622 — y2 y2as
+1yla3 — /1622 — 42 xby + zyb, + /1622 — y2ya; — y’a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{w,y, \/W}
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The following substitution is now made to be able to collect on all terms with {z,y}
in them

{x =,y = Vg, /1622 — Y2 = ’Ug}

The above PDE (6E) now becomes

—16v3ay — 32v2v0a3 — 16v7v3a3 + vias + vsvias + vivaby (7E)
+ 16'Ui’b3 - ’U;al + v3v901 + ’U1’U2b1 - ’U3’U1b1 =0

Collecting the above on the terms v; introduced, and these are
{U17 V2, ’U3}

Equation (7E) now becomes

(—16ag + 16b3) v2 + (—32a3 + by) vivy — 16v3vsa3 (8E)
+ ’Ul’Uzbl - ’Ug’Ulbl + Ugag + ’U3’U§a3 - ’U%Cll “+ V31201 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0

az3 =10

by =0

—a1 =0

—16a3 =0
—b=0

—16a9 + 16b3 =0
—32a3 +b,=0

Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
by =0
bs = bs
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-wy)§
B (x/lﬁxzi—yzﬂty> ()

= —/162% — y2
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ 2+ n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

[ 3
n

1
—d
/—\/163:2 — y? Y

S is found from

S

Which results in

Y
S = —arct .
arcan( o7 2>

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sx +W($,y)Sy
dR R, +w(z,y)R,

(2)
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

VIBZ = +y

w(z,y) = -
Evaluating all the partial derivatives gives

R, =1

R,=0

S - Y
V1622 — 2z

1
Sy =—

V16z2 — y?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

D 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR~ R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R)=—In(R) +a (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

— arctan (\/%—yz) =—In(x)+c

Which simplifies to

— arctan (\/16%—3;2) =—In(z)+a

Which gives

72
tan (—In (z) + ¢;)> + 1

y=—4tan(—In(z) + ¢;1) \/

422



The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . )

. ) ) . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, 9)

transformation ’
dy _ 1622 —y’+y ds _ _ 1
dr ~ T dR~ R

by b bbby trrrrrrt ittt O L B N e
bhv bbb vy trrtrtrtrtt S S PP N 1 LN CICICI SN
R trrttrtt v v e 7 7 F A1) N e
SN I
v T _T, NN A e e e
RN wﬁxiﬂ prtrtELt ANt/ S| NN,
VYLV VYLV N2 ettt e P N I S
R T T R T A trrtrtrtrrtt S S PPV N | [N NIV
R R A A R=x S TS Y R i NANNCICICCICICIEN
[ N O N I A A e r v 7 72 AL N e e a e
VR N S R A S > ¥ P AR e e
ST s = eetan (e R e
, —v—vw > o v v I 7 A T e e e e
VAVVV VNS 2 rr et 16z B LI ——
L T e S ~/FrPPPELY —wrwr e x2S e
\Sa\a\u\\q\\f NALLELELE »»)»}////fx\\\\\\s\a\‘
LR TR T ~rrrrEES et i R
VY YN NN N gy ~frPrPPELY ettt N A R R
VAV N AN NP B 2 VR | ARG

Summary

The solution(s) found are the following

y = —4tan(—1In(z) + ¢1)

x2
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Figure 99: Slope field plot

Verification of solutions

2
tan (—In (z) +¢1)*> + 1

y=—4tan(—1In(z) +¢1) \/

Verified OK.

Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group

<- 1st order, canonical coordinates successful

<- homogeneous successful”
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

Ldsolve (x*diff (y(x),x)=sqrt(16*x~2-y(x)"2)+y(x),y(x), singsol=all) J

y(z)
1622 — y (z)?

— arctan +In(zx) —c; =0

v/ Solution by Mathematica
Time used: 0.43 (sec). Leaf size: 18

LDSolve [x*y' [x]==Sqrt[16*x~2-y[x] ~2]+y[x],y[x] ,x,IncludeSingularSolutions -> T}'ue]

y(z) — —4z cosh(ilog(z) + ¢1)
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3.5 problem 13
3.5.1 Solving as first order ode lie symmetry calculated ode . . . . . . 426

Internal problem ID [2577]
Internal file name [OUTPUT/2069_Sunday_June_05_2022_02_47_11_AM_32996207/index . tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 13.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

zy —y— 922+ 42 =0

3.5.1 Solving as first order ode lie symmetry calculated ode
Writing the ode as

v+ VITTP

i
Y =w(z,y)

y =

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny -&) — w2€y —wz§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + ay (1E)
n = xby + ybs + by (2E)

Where the unknown coeflicients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

(y+ V922 ) (bs —az) (v + Vo2 +17) as
2

by + -

xT T
_( 9y VI ry
B <1+\/#7+y2> (:cb2+ybg+b1) _0

T

(5E)

) (zag +yas + aq)

Putting the above in normal form gives

3
(922 4+ y?)2 a3 + 9x3as — 923b3 + 18x2yaz + x2yby + yiaz + V922 + y2 zby — V922 + y2 ya; + zyby —
V922 + 32 22

=0

Setting the numerator to zero gives

3
—(9x2 + yz) 2 a3 — 92%as + 923bs — 18x2ya3 — x2yb2 — y3a3 (6E)
— /922 + y2 by + /922 + y2 ya; — zyb; + y?a; =0

Simplifying the above gives

3
— (93v2 + y2) 2ag+ (91’2 + y2) xbs — (9:1:2 + y2) yas — 9z3ay — 92%yas — xyby (6E)
2 2,2 2 2 2 2 2 =
—zy’bs+ (92° + %) a1 — V922 + y? zb1 + /922 + y? ya; — 9z°a; —zyby =0

Since the PDE has radicals, simplifying gives

—923ay + 923b3 — 922 /922 + y2 a3 — 18z%yas — xyby — /922 + 32 y%as
— a3 — /922 + y2 xby — zyby + /922 + 42 yas + y2a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y, \V 9z2 + y2}
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The following substitution is now made to be able to collect on all terms with {z,y}
in them

{a: =01,y = Vg, /922 + 92 = 'Ug}

The above PDE (6E) now becomes

—Qvi’ag — 18'0%'02(13 — 9va3a3 — vg’ag — 'vgvgag — 'vasz (7E)
3 2
+ 9v7bs + via1 + vsvea; — v1v2by — v3v1b; =0

Collecting the above on the terms v; introduced, and these are
{vla V2, ’03}

Equation (7E) now becomes

(—9&2 + 9b3) ’U:f + (—18G3 — b2) ’U%Uz — 9’0%’03(13 — ’Ul’Uzbl (8E)
— v3U1b; — 'vgag — v3v§a3 + v%al + v3v9a; =0

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0

—9a3 =0

—a3 =0
—b=0

—9ay +9b3 =0
—18a3 — b, =0

Solving the above equations for the unknowns gives

a; =0
as = bs
a3 =0
by =0
by =0
bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)¢
B (y+«/m) ()

= —/922 + 92
§=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n

The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n

1
=4
/—\/99:2-I-y2 Y

S is found from

Which results in

S=—ln(y—|— \/W)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sx +W($,y)Sy
dR R, +w(z,y)R,

(2)
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

v+ VITTP

T

w(x, y) =

Evaluating all the partial derivatives gives

R, =1

R,=0

g —_ 9z

T VT (Y + V0T )

1
NN

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

S 2(V927+ 4¢Py +92° +47)
dR 2922+ ¢ (y+ 922 + ¢?)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 2

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

(24)

S(R) = —2In (R) + ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—In (y+ vV 9x2 + y? > =—2ln(z)+¢

Which simplifies to

—In <y+ vV 9x2 + y? ) =—2ln(z)+¢

Which gives

e (9%t — z?)
2

y=-
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .

. . . ; ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ y+/9z24y? s _ 2
de T dR R
Vv bbby vl lrt ettt mmm A A7 VN N N e e
VAV v by byttt St I NN
R N RN wr A2 AT N N N e
R R mmm A A2 VN N N e
X\a\zxx\;y*x%)&l‘f‘fffffff/‘f A ALY N N N e e e
¥\\X¥¥X¥31T?ffffffff A f;&\\\\\\\\\
R R R mr A A2 AT VNN N e
R RN Rt I N e
LI T 1 A A A A A A o A R=x¢x mmm A 2227 PN N N N e
PR R TR R Y A A A A A A m A A7 AN N N e
LR I I PN ~r v 52 - 44 R
e | D a4 Napa A Sa e e
NN T RO RSN n(y+ TR YT DL RIS
MANNNNNNNNSrffff Y »///////f_%u\\\\\\\\
MNNYNNNYNNNNNNL AP S Rttt Al A R TR TA TN NN
AANYNNNNNS s p ] o 22 F NN N N e
YNNNNYNNN N g LSS mmrm A2 N N R e
VNN NN NN NSl 2 A 27 A NN N N
YNNYNN NN NN AP mrmm A A2 P VN N N e
YNNNNN NN g A p S mmm A2 N N N e
Summary

The solution(s) found are the following

Yy=-

e 1 (9e? — x?)

2

431

1)




R N e R N =

R R R S N S N N N N NS N
A N e R N SO Rt G N

At S S N s S S N N N S N N

e S D N O N S N
e e N N N N N N S S S S S S S N N NN

e e

NN\
1111111111 ////////VV-

LLLLLLLLL \\\\\\\ \\
LLLLLLLL —— 777/
\\\\\\ —— 77

——— - - s 7 77

—_—— - T T T
—_—— - T T T T 7

R P P i A A

—_——— T T 77
—_—— T T

P P g g il

N R
_ ! _

—

=

~—

-~

X

Figure 100: Slope field plot

Verification of solutions

Verified OK.

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group

<- 1st order, canonical coordinates successful

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

Ldsolve (x*diff (y(x),x)-y(x)=sqrt(9*x~2+y(x)~2),y(x), singsol=all) J
—c18? + /922 + y (2)° + y(z) .
x? -

v/ Solution by Mathematica
Time used: 0.376 (sec). Leaf size: 27

kDSolve [x*y' [x]-y[x]==Sqrt [9*x~2+y[x]~2],y[x],x,IncludeSingularSolutions -> Trﬁ.\e]

Qefig?2 e~

2 2

y(z) —
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3.6 problem 14
3.6.1 Solving as homogeneousTypeD2ode . ... .. ... ...... 434
3.6.2 Solving as first order ode lie symmetry calculated ode . . . . . . 436

Internal problem ID [2578]
Internal file name [OUTPUT/2070_Sunday_June_05_2022_02_47_16_AM_42539443/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 14.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_ or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

x(m2 _ y2) _ _,E(yQ +x2) y =0

3.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
z(z® — u(z)? %) — x(u(x)2 * +2%) (W' (z) z + u(z)) = 0
In canonical form the ODE is

v = F(z,u)
= f(z)g(w)
wWtur+u—1
(w+1)z

Where f(z) = —1 and g(u) = %ﬁ“l Integrating both sides gives

1 1
P — du = — dx
u2+1
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1 1
/mdu:/—;dw

uZ+1

u _a?+1
/ T a_ld_az—ln(:c)+02

Which results in

v _a*+1
/ a4+ _a+ a_ld_az—ln(x)+c2

The solution is

u(z) 2 1
/ =0 d a+In(z)—c=0

e+ _a?+_a—1 "

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

@ _a?+1

/ _a3+_a2+_a_1d_a+ln(ac)—c2:0
¥ 2
@ _a*+1

/ _a3+_a2+_a_1d_a—|-ln(z)—02=0

Summary
The solution(s) found are the following

Yy
x

a®+1
— ! o
/ _a3+_a2+_a—1d—a+ n(z) —c;=0
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Figure 101: Slope field plot

Verification of solutions

Yy

B _a®+1
/ T P+ a- 1d_a+1n(x) —c=0

Verified OK.

3.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

Tty
y = x24—y2
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(’?y - 5:1:) - w2€y - Wx€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(-2 +9) (bs—as) (-2 +9) as
z? +y? (22 +¢2)°
27 2(-z*+y*)z

- (932 +y* (22 +¢?)’ w0z +yos+ )

B (_ 2y 2(=2’+¢)y
2ty (2?2

by —

(5E)

) (mb2+yb3+b1) =0

Putting the above in normal form gives

_ z'ag 4ty — 2'by — by — 4xyby + 4x’yPay — 227y a3 — 20%y’by — 42y?bs + 4w yPas — ylag + ylas

(22 + y2)?
—0

Setting the numerator to zero gives

—ztay — ztag + 20y + 2tbs + 4x3yb2 — 4x2y2a2 + 2x2y2a3 + 2x2y2b2 (6E)
+ 42%y%b; — 4z y3as + ylas — ylas + y'by — ylbs + 42’yb, — 4z yPa; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{z=v,y =02}

The above PDE (6E) now becomes

—agv] — 4agvivy + agvy — azvi + 2a3v3vs — 4azvivs — azvs + bovi + 4byvivy (7E)
+ 2bov303 + byvy + bsv} + 4bsviva — byvy — 4a1v V5 + 4bjvivy = 0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(—CLg — as —+— bg —|— b3) 1}411 —|— 4b2’Ui”UQ —+— (—4(12 —|— 2(13 —|— 2b2 —|— 4b3) ’U%’U% (8E)
+ 4blv%v2 — 4a3fulv§’ — 4alvlv§ + (ag — a3 + by — b3) vg =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—4a; =0
—4a3 =0
4b; =0
4by =0

—4a2+2a3+2b2+4b3 =0
—a2—03+b2+b3=0
a2—a3+b2—b3=0

Solving the above equations for the unknowns gives

a1 =0
as = b3
a3 =0
by =0
b, =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

de _ dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy _m

de €&

_Y

x

_Y

x

This is easily solved to give

Yy=ocz

Where now the coordinate R is taken as the constant of integration. Hence

And S is found from

Integrating gives

Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ _ Set+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
R

(A)(l',y) = - 2 +y2
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Evaluating all the partial derivatives gives

4
R,=——
1
R, =~
1
Sy =~
T
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _ z(@®+yP)
dR 3 —z2y —zxy? —y3

(2A)
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

R
dR R34+ R2+R-1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

R*+1
S(R):/—R3+R2+R_ldR+c1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

Yy

< _a*+1
ln(z):/ __a3+_a2+_a—1d_a+cl

Which simplifies to

8 ke

2
1
ln(x)z/ — Sl d a+c

e+ _a?+ _a—1 "
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _  —x%4y? das __ —R2-1
dr z2+y2 dR = R3+R2+R-1
e e S Sttt s L T e
Eanana N R D D e g e m FFAAF PN A e e e e
e . B T T T T 2 el o AN S
P e B T N O R e e 4 R ettt VAN s
P N A A e O 4 o v 7 7 AN e e e
///»»JIX\\\ NN e T T 7 o T T A\ A s
AAAA K\ a7 o 7 7 et VA
AAAAAT AN T AT TS Gttt sl VT N e
PR AA A NN A2 J S R__Q A
FLPAPI A e A PSP - ettt VAT S e
R N Rl . YWY Vi T e R AR e
AAPAAAAA NN I AT S =1 e F B AT IS e epe e e e
AAAAA A TN\ T T A A - Il(.']:) it el VN
AAAA e\ e 7 T 7 A ettt I N
P B N R O P wr o w A FFFF AN e
e N O S e etV VNN
Dt N N R S S e m T A AP A e e —e e
e e N N N AN N M N e Rt S VRN
=~ N N N N NN N N N e e e D ettt A W AN
e T e T T e w T FAAF AN N
Summary
The solution(s) found are the following
¥ 2
@ a*+1
In(z) = / — d_a+a (1)

_ad+_ad+_a—1
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Verification of solutions
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Figure 102: Slope field plot

8l

2
muﬂz/i— —o +1 d_a+c

_a+_a+_a—1—

Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful”
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

Ldsolve (x* (x72-y (%) "2) —x* (x"2+y (x) "2) *diff (y(x) ,x)=0,y(x), singsol=all) J
— a?+1
y(x) = RootOf (/ 3 +__a2 T as 1d_a +1In(z) + 01) x

v Solution by Mathematica
Time used: 0.133 (sec). Leaf size: 71

‘ DSolve [x* (x~2-y [x] ~2) -x* (x~2+y [x] "2) *y ' [x]==0,y[x] ,x,IncludeSingularSolutions| -> True]

Solve | RootSum | #13 + #1% + #1

#121og (M _ #1) +log (M — #1)
3#12 4241+ 1

—1&, &

= —log(z) + 1, y(x)}
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3.7 problem 15
3.7.1 Solving as first order ode lie symmetry calculated ode . . . . . . 444
3.72 Solvingasexactode . .. ... ... ... ... ... ... 450

Internal problem ID [2579]
Internal file name [OUTPUT/2071_Sunday_June_05_2022_02_47_18_AM_35225455/index. tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 15.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "first_ or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

zy +yln(z) —yln(y) =0

3.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

/

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
e +w(ny — &) —w?Ey — wef —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zas + yas + a (1E)
1 = xbs + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

p, — Y0 (2) —In(y)) (bs — as) _ y*(In (z) —In (y))* as

T x2

_ (_E L y(n(z) ~In (y))) (va3 + yas + a1) (5E)

— (_M + %) (xby +ybs+b1) =0

Putting the above in normal form gives

In (2)? y2a3 — 2In (z) In (y) y2as + In (y)® y2as — In () 22by + In (z) y?as + In (y) z2b, — In (y) y2a3 — In
)

=0

Setting the numerator to zero gives

—1In (z)? y%as + 21n () In (y) y?as — In (y)* y?as + In (z) 22b, (6E)
—In(z) y%as — In (y) 26y + In (y) y2as + In (z) by — In () ya,
—In (y) by + In (y) ya; + zyay — wybs + y?az — xby +ya; = 0
Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y,1n(2),In (y)}
The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =vo,In () = v3,In (y) = v4}

The above PDE (6E) now becomes

—v3v3az + 203V4V5a3 — VaUSa3 — V3V3a3 + VaV3a3 + V3vihy — V4UThy — V3v2a; (7E)
2
+ v4v2a1 + V1V2a2 + Usa3 + 'U3’l)1b1 — ’U4’l)1b1 — ’Ulvgb3 + V2@ — ’Ulbl =0
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Collecting the above on the terms v; introduced, and these are
{Ul7 V2, Vs, 'U4}

Equation (7E) now becomes

2 2 2.2
V30, b2 — U4’Ulb2 + (—b3 + (ZQ) V1U9 + ’U3’01b1 - ’U4’Ulb1 — ’Ulbl — U3Vya3 (8E)
2 2 2,2 2 2
+ 203040503 — V3V5Q3 — UyU503 + V4U503 + V503 — V3V201 + V4V2a1 + v2a1 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

ar =0
a3 =0
by =0
by =0
—a; =0
—a3=0
2a3 =0
-b=0
—by =0
—bs+ay;=0

Solving the above equations for the unknowns gives

a; =0
as = b3
a3 =0
by =0
b, =0
bs = b

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

)

X

n=n-w(xy)§
:y_<_ymﬂﬂ

=In(z)y-In(y)y+y
£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr dy
— =2 =dS 1
£ (1)
The above comes from the requirements that (E a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==z

S is found from

d
In (2 )y+yy

Which results in
S=—-In(ln(z) —In(y) +1)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y(In (z) — In (y))

T

w(x, y) ==
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Evaluating all the partial derivatives gives

R,=1
R,=0
S, = — L
z(In(z) —In(y) +1)
Sy = 1

- y(n(z) —In(y) +1)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS 1

-~ = 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR~ R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —In(R) + a1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—In(ln(z) —In(y) +1) =—In(z) + &
Which simplifies to

—In(In(z) —In(y)+1)=—-In(z)+
Which gives

e(ecl In(z)+e1—z)e™ 1

y:
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

— e f X

\\\\\\\ﬁ/f
~~a~aa—a—s—s7 A 4]

1

/1
——s—s—er 7 f 1A
Prt

ttt

~ s 7 f

~~a—a—a—s_= 7 f

S=—In(In(z) — In(g

— v v v 7 7 AN
D P O
s v v v v 7 A F ]
»»»})ﬂ///%
D P O
D e P
——v v o v w72}
D e
D e P

a i i e a a i i e e i il o o i i i
I S S S S e e Al e aad

Canonical . . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy _ _ y(n(z)-In(y)) as _ _ 1

de T dR~ R
14t P Ao D e P A e
tttr s > o o v v 7 A N Na A e A e —a—a
HqHt t P A ——v v v v 77 A 4 A e e St
;ff//xaﬂxx D e P O e e S
P A~ oo w7, v NN e e A e
y(x) $ P A e »»»/}gwﬁff NN S e e —a e
Tff/%‘\\\\\ »»)»ﬂ/ﬂ//% A i
f/»\\\\\\\ »)»»/ﬂ///f Na N e e e e —a—a
f%\\\x\\\\ »»»/}ﬂ///f A i
e~~~ —a—a s —a—b—5 R X »»)»ﬂ////f D
—e—s g e s~y s g 5 4 »»4»/44//b NS e

N A Sape e —a s
AT e
NN A A e e e
A e o e
AV e
NN e e e e
N e e e
AV e
NN e e e e

Summary
The solution(s) found are the following

Y

— e(ecl In(z)+e1—z)e™ 1
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Figure 103: Slope field plot

Verification of solutions

— e(ecl In(z)4e1—z)e~ 1

Y

Verified OK.

3.7.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,y) + N(z,3) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 96 06d
Yy _
or + oydr 0
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy=(~In(z)y +1n(y)y)dz
(In(z)y —In(y)y)dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =In(z)y —In(y)y
N(z,y) ==z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
—=—(1 -1
3y 8y( n(z)y—In(y)y)
=—1+In(z) —1In(y)
And
ON 0
%~ 5
=1
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Since %—J‘; # %, then the ODE is not exact. By inspection ﬁ is an integrating factor.
Therefore by multiplying M = yln (z) — yIn (y) and N = z by this integrating factor
the ode becomes exact. The new M, N are

_yln(z) —yln(y)

M
x2y
n=1l
Ty
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06d
Y
— —_—— T B
Oox + Oy dx 0 (B)
Comparing (A,B) shows that
99
T M
ox
99
T _N
Oy
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
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Therefore

(xiy) dy = (_ln (z) yw;yln (y)y> dz

(m (z)y — ln(y)y) d$+(i) dy =0

x2y
Comparing (1A) and (2A) shows that
In(z)y —1In
M(z,y) = (z)y —In(y)y

1

(24)

The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied
oM ON
dy oz
Using result found above gives

oM 9 <ln(w)y—ln(y)y)

dy Oy %y
R
12y
And
ON 0 (1
%_%(E)
!
2y

oM __

Since Sy = %’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

09
g—M
0p
8_y_N

Integrating (1) w.r.t. z gives

op .
a—zdx—/Mdaz

o /ln (z)y—In (y)ydm

oz dz = 3y

—In(z)+In(y) — 1

¢= + f(y)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0p 1

/
- 4
=) (@)
But equation (2) says that g—‘z = é Therefore equation (4) becomes
R
= 5
=W )

Solving equation (5) for f'(y) gives
flly)=0

Therefore
fly)=a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
_ —In(z)+1In(y) —1
T

¢

+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

—In(z)+In(y) -1

C1 =
x
The solution becomes
y = e01$+1 T
Summary
The solution(s) found are the following
y ="ty (1)
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Figure 104: Slope field plot

Verification of solutions

Y= eC1z‘+1x

Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

Ldsolve(x*diff (y(x),x)+y(x)*1n(x)=y(x)*1n(y(x)),y(x), singsol=all) J

y(z) = et

v/ Solution by Mathematica
Time used: 0.264 (sec). Leaf size: 24

LDSolve [x*xy' [x]+y[x] *Log[x] ==y [x] *Log[y[x]],y[x] ,x,IncludeSingularSolutions —>J True]

y(z) — et

y(z) = ex
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3.8 problem 16
3.8.1 Solving as homogeneousTypeD2ode . . ... ... ... .... 457
3.8.2 Solving as first order ode lie symmetry calculated ode . . . . . . 459

Internal problem ID [2580)]
Internal file name [OUTPUT/2072_Sunday_June_05_2022_02_47_23_AM_6298508/index . tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 16.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_ or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

;Y A+ 2yz —22%
TR gy

3.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) x on the above ode results in new ode in u(x)

u(z)? 22 4 2u(z) 22 — 222

5 =0
22 —u(z)x?+u(x)

v (z) z + u(z) —

x2

In canonical form the ODE is

u = F(z,u)
= f(z)g(u)
v —-2u—u+2
o z(—u+1)
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Where f(z) = —21 and g(u) = Y=2°-4+2 TIntegrating both sides gives

uZ—u+1

1 1

—————du=——dx
u3—2u2—u
u22—u+1+2 z
1 1
—————du = / ——dz
ud—2u2—u
/ e z
| 1 1 -1
n(U2+ )_ H(U2 )—l—ln(u—2)=—ln($)+02

Raising both side to exponential gives

ew - w+ln(u—2) — e In(z)+c2

Which simplifies to
Vu+1l(u—2) ¢

vu—1 ;

The solution is
u(z)+1(u(z) —2) c3

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

T+I(2-2) o
41 oz
V % (—21’ +y) - C3
y=z ;. T
Which simplifies to
(—2z +y) /&=
= C3
[y—=
Summary
The solution(s) found are the following
(—2z +y) \ v
— =3 (1)

T
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Figure 105: Slope field plot

Verification of solutions

yt+z
T

(—2z + y)

Verified OK.

3.8.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

N
y2
+ |5
N
A
g
1
n/..mwnlu
a8
|

|
>

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - fz) - w2€y - wzf - wyn
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The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

¢ = 20y + yas + oz (1E)
1 = xbz + ybs + by (2E)

Where the unknown coefficients are

{al, a2, as, bla b2, b3}

Substituting equations (1E,2E) and w into (A) gives

(—2x2 + 22y + y2) (bs — az) B (—29v2 + 2zy + yz)2 as

bt z? —zy + y? (22 — zy + y2)
_< —dr+2 (=22 +2zy+9°) (2x—y)> (20> + yas + ar) (5E)
72 — 2y + 12 (x2—xy+y2)2 2 T Yas 1
_< 2z + 2y _(—2z2+2zy+y2)(—x+2y))(xb+ by +b1) = 0
z? — zy + y? (22 — zy + 92)° TR

Putting the above in normal form gives

2z4ay — 4xtas + by — 223 — 4x3yay + 8xiyas — 8x3yby + 4xdybs + 9xy%ay + 62%y%by — 92%Y%bs — 4a

(2% — =y

=0

Setting the numerator to zero gives

2ztay — 4ztas + oby — 22%bs — 4x3ya, + 8x3yas — Sxiyby + 4x3ybs (6E)
+ 92%9%ay + 62%y>by — 922y%bs — 4z yiay + 2z yPas — 22 y3by + 4z y3bs
— ytay — dy'as + y'by + y*bs — 62%yby + 62 y%a; + 3 y%b; — 3y3a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}
The following substitution is now made to be able to collect on all terms with {z,y}

in them

{r =v1,y = v}
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The above PDE (6E) now becomes

20,07 — 4aav3vy + 9ayvv3 — dagu vy — agvy — 4azv} + 8azvivy + 2a3v1v3 (7E)
— 4azvy + byv] — 8bavivy + 6byvivs — 2byv1vs + byvy — 2b3v} + 4bzviv,
— 9bsviva + 4bsvivs + bg,v§L + 6a,v1v2 — 3a,v5 — 6b1v2vy + 3byvivs =0

Collecting the above on the terms v; introduced, and these are
{v1, v2}

Equation (7E) now becomes

(2&2 — 4(13 + b2 - 2b3) ’Ui1 + (—4a2 + 8a3 - 8b2 + 4b3) ’U?'UQ
+ (9ag + 6by — 9b3) VIV — 6byv vy + (—4ay + 2a3 — 2by + 4b3) vy1v3
+ (6ay + 3b1) v1v5 + (—ay — 4as + by + b3) vy — 3a;vs =0

(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

—3(11 =0
—6b; =0
6@1 + 3b1 =0

9as + 6by — 9b3 =0

—4ay + 2a3 — 2by + 4b3 =0
—4as + 8az — 8by + 4b3 =0
—ag —4az+by+b3=0
2as — 4az + by — 2b3 =0

Solving the above equations for the unknowns gives

a1 =0
az = b3
a3 =0
by =0
b, =0
bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)
—2x2 + 2zy + o
—u- )@

z? —zy +y?
223 — 2%y — 2z + 93
2 —zy +y?
£E=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

Sz/ldy
n

1
=/2m3_z2y_2zy2+y3 dy

z2—zy+y?

S is found from

Which results in

S = In (y2+ z) _In (y2— z) +1In(—2z+y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—22% 4 22y + 92
z? — zy +y?

UJ(.’IJ,y) =

Evaluating all the partial derivatives gives

=
Il

T

1
0

&
I

1 1 2

T2 +2y 20—-2y —2z+4y
1 1 1

y:2z+2y+2x—2y+—2z+y

g

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS
> -0 2A
dR (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
>~ -0
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(y+z) In(y—=z)
2 2

+In(—2z4+y)=a

Which simplifies to

In(y+z) In(y—=z)
2 2

+In(—2z+y)=c
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ —2z2+2ar:y+y2 das 0
dr —  z?—zyt+y? dR
NN NN A A A ppp A A
NN NN~ T A f LSS
NN NN A SR P A A |
\\\\\\\ﬂ»//;;;f///»w
NN NN per P~ .
NIRRT I R e, S(R]
NNNN NN NN F A e 24
AN NN NN N A 7SN NN
R VS VANV VRN R=z
HEHER R ,
- iR = T
NSNS 3| BN NEENEVENY _In(y+2) In(y . 4 S
NN A Ao VRN Y 9
NN N A A AL SO N NN e
N A A e SN NN N N VRN
D I Y A ) e A N
N A A A AV e N N N Y
e A AP PP A NN N N 4
AR AT~
VA A A A A L e N Y
Summary

The solution(s) found are the following

In(y+2) In(y—2)

2
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Verification of solutions

In(y +z)
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Figure 106: Slope field plot

In(y — =) +In(—2x+y)=¢

2
Verified OK.

Maple trace

B 2

“Methods for first order

ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying

trying homogeneous D

homogeneous types:

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.86 (sec). Leaf size: 80

Ldsolve(diff(y(x),x)= (y (x) ~2+2%x*y (x) -2%x72) / (x"2-xxy (x) +y (x) 72) ,y (%), singsq}=all)

5~ RootOF (2_2 + (9esa? 1) 24— 6%s_2 + cxa?)’ +1)

Yy\r) =
(@) RootOf (2_Z6 + (9¢y22 — 1)_Z4 — 622¢, 7%+ clz2)2

v Solution by Mathematica
Time used: 60.179 (sec). Leaf size: 373

LDSolve[y'[x]== (y[x]”2+2*x*y[x]-2*x”2)/(x“2-x*y[x]+y[x]“2),y[x],x,IncludeSing?larSolutions -

{’/ —54x3 + 21/72926 + (=92 4 3e201) 3
y(z) — 3
3V/2
B V2(—322 + )
{’/ —54x3 + 21/72926 + (=912 4 3e201)3
(=1 +14v3) \/ —5423 + 21/72926 + (—922 + 3e21) 3
y(z) = 3
6v/2
(14 iv/3) (—3z% + e%1)
22/3 i/—54a:3 + 21/72926 + (=922 + 3e21) 3

+x

+

+zx

(1+14v3) {'/—54903 + 24/72926 + (=922 + 3e21) 3
y(x) - = 6\3/5
(1 —iv/3) (—32% + 1)

22/3 {'/—543:3 + 24/72926 + (=922 + 3e21) 3

+

+zx
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3.9 problem 17
3.9.1 Solving as homogeneousTypeD2ode . . ... ... ... .... 467
3.9.2 Solving as first order ode lie symmetry calculated ode . . . . . . 469

Internal problem ID [2581]
Internal file name [OUTPUT/2073_Sunday_June_05_2022_02_47_27_AM_56589216/index.tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 17.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_ or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A~]]

y2

2zyy — xPe 2 — 22 =0

3.9.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
27%u(z) (u'(z) z + u(x)) — ple @) _ 2u(z)’z? =0
In canonical form the ODE is

u' = F(z,u)
= f(z)g(u)

e

- 2ux

w2

Where f(z) = 5- and g(u) = <

u

. Integrating both sides gives

1 1
ﬁdu=gdm
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The solution is

1
H(-’IJ) —CQ=O

eu(.’z)2

2

2

¥ results in the solution for y in implicit form

Replacing u(z) in the above solution by

Summary

The solution(s) found are the following
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Figure 107: Slope field plot
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Verification of solutions

Verified OK.

3.9.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

2,4 2
,  Te 2 42y
2zy
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fz) - wzfy —wz§ — wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

£ =zaz +yas + a; (1E)
n= :L'bz + yb3 + bl (2E)

Where the unknown coefficients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

[N

2
y2 y
(xze_w? + 2y2) (b3 — as) (alzze_a:2 + 2y2) as

by +

2xy B 41292
y2 2 _y; y2

21y 272y (zaz +yaz + a1)

'!/2 y2
—2ye < +4y e + 2y°
2xy 2x y?

(.’L'bz + yb3 + bl) =0
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Putting the above in normal form gives

2

_2? _2 _2 _y2 _2 _2
e o2 xtaz —2e 2 xtby +4e 2 xdyay — de 2xdybs + 6e 2 xylaz —4de” z2z 2y%by +4e 2z ylay — 4

Setting the numerator to zero gives

_2y2 _y2 _y2 _y2
—e 2z gt a3+2e 736462 4e 22g3 ya2+4e 22 yb3 6e” 7x ya3

(6E)
+4e” w2m2y2b2 4e” wzmy 3as+4e = my3b3—4e 2ytag +2e” w2 z3b;
—2e” 7x ya, +4e” 7xy2b1 ya1 4z by + 4y®a; =0
Simplifying the above gives
2y2 y2 y2 y2 2
—e_?z‘lag + 2e_?2x4b2 4e 27 g3 yaz +4e 228 yb3 6e =2 1> y? a3 (6E)

+4e_ac2 2020, —4ewxya2+4ewxyb3—4ezya3+2ewxb1
— 2e_a72x ya, +4e_ﬁxy2b1 — 4e_?2y ay — 4z y’by +4yPa; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

2y2 2
x’ y? e—? Y e_

The following substitution is now made to be able to collect on all terms with {z,y}

845

in them

22 2
{x =1,y = V,€ 22 =1U3,€ 22 = 1)4}
The above PDE (6E) now becomes

3 3 4 2,2 4
—4v407V9a9 — 4V4V1V5a2 — V3VTa3 — 6V4V]V5a3 — 4vav5a3 (7E)
+ 2v4v11b2 + 4v4va§b2 + 41)41)?1)21)3 + 4v4vlv§’b3 — 20411%v2a1
— 4v4v§’a1 + 21)41):1361 + 4v4v1v§b1 + 4v§’a1 — 4'011)%61 =0

Collecting the above on the terms v; introduced, and these are

{vla Vg, U3, ’U4}
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Equation (7E) now becomes

—v3vias + 20401y + (—4ag + 4b3) V3vauy + 20403b;
+ (=6as3 + 4by) vivavy — 2040v0a1 + (—4ay + 4b3) V1V3v,
+ 4v4vlv§b1 — 4vlv§b1 — 4v4v§a3 — 4v4v§’a1 + 4113(11 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—4a; =0

—2a; =0

4a; =0

—4a3 =0
—a3=0

—4b; =0

2b; =0

4b; =0

2bs =0

—4a9 +4b3 =0
—6az +4by; =0

Solving the above equations for the unknowns gives

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for

any unknown in the RHS) gives

a; =0
as = bs
a3 =0
by =0
by =0
bs = b3

E=x
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)é

2
a2 + 22

27y ()

:y—

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _

F=, =4 1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

Sz/ldy
n
1t

S is found from

22e 22
—le st
Which results in
S = —eg;

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)Ry
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2

T2 + 2>

Evaluating all the partial derivatives gives
R, =1
R, =0
2
2y%e+?
S, =2
x
y2
2es?y
Sy = — 2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

D 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R) = —In(R) + (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

3

—e:2 = —In(z)+ ¢

Which simplifies to

[

—e2 = —In(z)+ ¢
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . .
. . i i ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
y2

dy __ z2e 2 4292 s _ _ 1

dr 2y dR R
ARARRRRAREE R o m 7 7 A NN e e
ARRARRRERE R RN 7 TN N e
ARARRARRRARE IR oyt 7 A AN N e
ARRRRRRRARE 1 I R o T A NN
\\\\\\}Qxxfff/////// Attty |/ AN N e
SNNNSNNRNA N r s s sy v e BT N N s
SNNNNNNNN LA s e 7 2 AN N N e
NNNNNNNNN A pas s pp o p ] o A 2NN A
AAYNNYNNNNNN 2 2 f R =z o 7 AN e
SEETEEERR SRS SRS, R
R A WA, NI W2 gy T NN e
PEERPZZZZFINNNN NN N LD S = —ea2 o 2 A NN e
FEAFAZAZ NN NNNN NN = Sttt A LN R eiieie
////////L%;\\\\\\\\\ »»»»}///L%N\\\\\*‘*“
AAAAAAALE T VNNNNNNNN o 2 AL TN N N
AAAZZ22 2P LV VN N NN YN X ettt N BRI
AZAZZZLEEHE VNN NN NN o 7 I NN e
AAZZAE P Y LV NN NN Gttty s RENT I o
AZAZZZEE A VNN NN N NN Etattatatata ol A R T
AZZZAEEEEHE VNN NN w7 N e e

Summary
The solution(s) found are the following
—ez2 = —In(z) + ¢ (1)
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"Methods for first order ODEs:

--- Trying classification methods ---
trying 1st order linear

trying homogeneous types:

<- homogeneous successful”

trying inverse linear
trying homogeneous D

Verification of solutions
trying a quadrature
trying Bernoulli
trying separable

Verified OK.
Maple trace




v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 26

Ldsolve(2*x*y(x)*diff(y(x),x)-(x“2*exp(—y(x)“2/x‘2)+2*y(x)‘2)=O,y(x), singsolfﬁll)

y(z) = V/In(In (z) + 1) =
y(z) = —/In(In(z) +c1) z

v Solution by Mathematica
Time used: 2.155 (sec). Leaf size: 38

LDSolve[2*x*y[x]*y'[x]-(x“2*Exp[-y[x]“2/x“2]+2*y[x]‘2)==0,y[x],x,IncludeSingu;%rSolutions ->

y(z) = —z+/log(log(z) + 2¢1)
y(x) — z\/log(log(:v) + 2¢1)
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3.10 problem 18

3.10.1 Solving as homogeneousTypeD2ode . ... ... ... ..... 47T
3.10.2 Solving as first order ode lie symmetry calculated ode . . . . . . 479
3.10.3 Solving asriccatiode . . . . . .. .. .. ... ... ... ... AR5

Internal problem ID [2582]
Internal file name [OUTPUT/2074_Sunday_June_05_2022_02_47_31_AM_12116909/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 18.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2",
"first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _rational, _Riccatil

2

vy -y’ —3yzr ==

3.10.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
(W' (z) z + u(z)) 22 — u(z)® 2% — 3u(z) 22 = 22

In canonical form the ODE is

Where f(z) = L and g(u) = u® + 2u + 1. Integrating both sides gives

1 1
u2+2u+1du_5dz
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1 1
/u2+2u+1du_/5dw

1
u—+1

=In(z)+c

The solution is

_—u(x)+1 —111(.’1!)—62:0

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

1
—%+1—ln(x)—02=0
(—co—In(z))y —xz(co + In(z) + 1) _0
y+zx

Which simplifies to

_yhn(@)+oyt+h(@)z+ort+z
yt+z

0

Summary
The solution(s) found are the following

yhh@) toyt+h()z+or+z
y+zx

0 1)
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Figure 109: Slope field plot

Verification of solutions

yhn(@)toyt+th@)r+cer+z
y+z

=0
Verified OK.

3.10.2 Solving as first order ode lie symmetry calculated ode
Writing the ode as

J = acQ—i-3;v2y+y2

y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by

e + Wiy — &) — W€y — we€ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)

n = zbz + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(a®+3zy +4?) (b3 —as) (2> +3zy+y) a

by + 5 1
2c+3y  2(z*+3zy +y°
_<9H; y 2 oy y))(m2+ya3+al)
T T
_ (Bz+2y) (wba +ybs +b1) 0
x? N

Putting the above in normal form gives

ztas + zhaz + 2byxt — b3 + 623yas + 2x3yby — x2y%as + 82%y%as + 2y?bs + 4z a3 + yras + 33, -
!

=0
Setting the numerator to zero gives

—ztay — ztag — 2by2* + 2*bs — 623yas — 223yby + 2%y2ay — 8%y a3 (6E)
— 22%bs — 4z yBas — y'as — 3236, + 3x%ya;, — 22%yby + 2z y%a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{z =v1,y = v}

The above PDE (6E) now becomes

—agv} + a3 — azvi — 6azvivy — 8azvivi — 4azvivs — azvy — 2byvy (7E)
- 2621};’02 + bg,vi1 — b;w%v% + 3alvaz + 2alvlvg — 3b1v§’ — 2b1v%v2 =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(_(]./2 — asz — 2b2 + b3) ’Uil + (—603 - 2b2) ’Ui”Ug - 3b1’U? + (a2 - 8(13 - b3) ’U%’U% (8E)
+ (3a; — 2by) vivy — 4azviv3 + 24,0105 — azvy =0

Setting each coefficients in (8E) to zero gives the following equations to solve

2041 =0

—4a3 =0
—a3=0

—-3b; =0

3a; —2b; =0
—6az —2b, =0

a2—8a3—b3=0

—az—a3—2b2+b3=()

Solving the above equations for the unknowns gives

a; =0
as = bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=zx
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wxy)é
z? + 3zy + y?
—y- (T
—z% — 27y — 9

T

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S is found from

1
S = / ~dy

n

1

= / —z2—2zy—y? dy
Which results in
o
y+x

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

x? + 3zy + 9>

w(z,y) = 2

482



Evaluating all the partial derivatives gives

R, =1
R,=0
Sp=—"2
(y + )
X
S, =—
Y (y+a)?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

w o 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R) = —In(R) + ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

X

=—1 +
. n(x)+c
Which simplifies to
x
=—1 +
. n(x)+c

Which gives

z(ln(z) — ¢ + 1)
In(z) — ¢

y=-
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ z?4+3zy+y? as _ _ 1
de z2 dR~ R
SNNNN NNt ettt ettt e L IR
NN NNNN= APttt st e el L NN
NSNS NNNNA PPt B B
~a NN NN oo _v_ Vi A T o o S
“\\\\\J&«Q/’ trrrrtrrrrs »»»/}/@@/f IR e e
SR D N o O A e OO
e NN DL PP 0o | AN
SAAAAAI AN P PP Y 2 I ——
IR IET T DN A A7 77 T R - ey O (I
FAAAALF Pt AN = e R R i
rrrrrEE Y T_%AT\\\\\\\-—»—‘» »»»»»////_7;‘; A U
frrrrtttrt NN N N N e v w7 7 A AN N e e
frr it =N NN N N v v w v 7 A F LN N e
RN REEEE A S RN RN ettt N A R R
(20 N A A O R € R A NA N NN N S S TSP 5 I AN CNCICICUEIEN
Summary

The solution(s) found are the following

z(ln(z) —c +1)
In(z) — ¢

Yy=-

484



3 NNNNNN—T 11111011
NANNNNNN /] T 1111111
NANNNN NN 11111111

2 NNNNN NN\ 1111111
SN t1111111
S N 4 11111177

===y 11111177
s\
sl LA

ST

YX) Ny /?(»/iz/;ﬁ//

7777771111117/ \~~—rrrr”

A7270 00NN S
“srrrr1 SOANNN S ———
11111 7NN NN NN ——
1111011 FNONN NN NN
-2/ 1 111111 =N NNNNNN
11101111 17 NNNNNNN
111111 I/ ~NN NN\
—}71111111 T /=N
-3 -2 1 0 1 2 3

Figure 110: Slope field plot

Verification of solutions

_z(ln(z) —a+1)

In(z) — ¢
Verified OK.
3.10.3 Solving as riccati ode
In canonical form the ODE is
Y = F(z,y)
2?4 3zy+y?
=

This is a Riccati ODE. Comparing the ODE to solve

3 2
Y _1+_y+y_

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®
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Shows that fo(z) =1, fi(z) = 2 and fy(z) = 5. Let

= (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

Fau' (@) = (fi+ ) (@) + Ffou(w) = 0 e
But
fi=—2
fifr=
fifo=

Substituting the above terms back in equation (2) gives

“;(f) _ U’g) N ua(cf) _0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) = z(In () ¢; + ¢1)

The above shows that
v(z)=In(z)cy +c1+ o

Using the above in (1) gives the solution

(In(x)eo+c1+c)zx
In(z)ca + ¢

y=-

Dividing both numerator and denominator by c; gives, after renaming the constant
2 = c3 the following solution

(In(z)+ec3+ 1)z
In(z) + c3
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Summary

The solution(s) found are the following

Verification of solutions

Verified OK.

(n(@)+ea+l)z
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Figure 111: Slope field plot

_(n(@)+ea+l)z

In(x) + c3
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(x‘2*diff(y(x),x)=y(x)‘2+3*x*y(x)+x‘2,y(x), singsol=all) J

z(ln(z) + ¢ +1)
In(z) + ¢

y(z) = —

v/ Solution by Mathematica
Time used: 0.145 (sec). Leaf size: 28

LDSolve[x‘2*y'[x]==y[x]‘2+3*x*y[x]+x‘2,y[x],x,IncludeSingularSolutions -> Trug}

z(log(z) + 1+ ¢)
log(z) + c1

y(z) = —

y(x) —» —x
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3.11 problem 19

3.11.1 Solving as first order ode lie symmetry calculated ode . . . . . . 489

Internal problem ID [2583]
Internal file name [OUTPUT/2075_Sunday_June_05_2022_02_47_34_AM_41897557/index . tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 19.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

v —Vyr+at=—z

3.11.1 Solving as first order ode lie symmetry calculated ode
Writing the ode as
,_ VAP o
()
Yy =uw(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - £z) - w2€y - ww€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

¢ = zay +yas + ay (1E)
n = by + ybs + by (2E)

Where the unknown coeflicients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

(\/m—iﬂ) (b3—02) _ (\/m—ﬂ?)zag

by + 3
Y Y
. ( /m2w+y2 - ]‘> (xa’Q + ya’3 + al) (5E)
Y

_( 1 VETf-o

g ) Gt =0

Putting the above in normal form gives

(@ +142)? az + V2T ¥ g2 2203 + VIZ T P2 a%bs — 2V/Z T 2 wyas + 2072+ yR aybs — VaE T 2 yPas —

=0

Setting the numerator to zero gives

3
—(z* 4+ ¥%)% a3 — V22 + y? 2as — V22 + y2 2°by + 2/2% + Y2 Tyas
— 2/7% + 2 oybs + V22 + 12 y2az + bo /22 + 42 42 (6E)
+ 223a3 + 230y — 22%yay + 20%ybs + T y%as — y2ag + y3bs

— x4+ y2zby + /22 + y2ya; + 2°b — zya; =0

Simplifying the above gives

—(@+97)? a5 +2(” +v7) as + (& + 92) 7bz — (& +97) yao
+2(2® + 9%) ybs — V22 + y2 2’as — /2% + y2 2%, (6E)
+2v/2% + y? wyaz — 2¢/2 + y2aybs + /22 + 42 ylas

+ b2 + 2y — 2Pyas — zy’az — v y’by — ¥bs + (2 + 7)) by
— V22 +y2xb; + /22 + Y2 yas — zyas — y?b =0

Since the PDE has radicals, simplifying gives

2z3a5 + 23by — 2v/22 + y2 2?ag — /22 + y2 2%by — 2202yay + 22°ybs
+2v/a? +y? zyas — 21/22 + y2aybs + xy’az + by/a? + 32y

— yPas +y°bs + #°b1 — /3% + Y2 wb1 — zYay + /22 + Y2 yay =0
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Looking at the above PDE shows the following are all the terms with {z,y} in them.

{fc,y,\/ﬂv2+y2}

The following substitution is now made to be able to collect on all terms with {z,y}

{-’B=U1ay=’02, vff2+y2:’03}

The above PDE (6E) now becomes

in them

—2vf112a2 + 203v1V9a9 — vgaz + 2vf’a3 — 21)31)%(13 + vlvgag + 'vf‘bz — v3vfb2 (TE)
2 2 3 2
+ bQ’U3’02 -+ 2’01’02b3 — 2’03’01’Ugbg + ’U2b3 — VU207 + V3207 + ’Ulbl - ’U3’Ulb1 =0

Collecting the above on the terms v; introduced, and these are
{U17 V2, '1)3}

Equation (7E) now becomes

(2a3 + b) V3 + (—2ay + 2b3) vivy + (—2a3 — by) vivs + v2b; + vivias (8E)
+ (2ay — 2b3) V1V9Vs — V1V2a1 — V3V1by + (b — ap) V3 + byvsva + vsveay = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0

a3 =0

by =0

by =0

—a; =0
-b=0
—2a9 +2b3 =0
2a9 — 2b3 =0
—2a3 — by =0
2a3+b; =0
bs —ay =0
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Solving the above equations for the unknowns gives

a1 =0
as = bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

{=z

n=y
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-wxy)

vty —x
=y (VST )
Y
-z 2 P
Y

£=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dr dy
& n

The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

Sz/ldy
n
_ 1

————
x2—x/x2 +y2+y2 y
Y

ds (1)

S is found from
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Which results in

zln (2302+2x/972 \/W)
y
V72

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S=In(y) -

ﬁ — Sx +w(x’y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Vet +y? -z

w(z,y) = y

Evaluating all the partial derivatives gives

R,=1
R,=0
o _VEEIR+a

N
2224y 4 2022+
Yoyvr+ 2 (VT + Yt + o)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

i o/TEF 44y
dR  zv22+ 42 (Vo> + 32+ 2)

(24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —In(R) +c (4)
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Which gives

y=e

In(2) 1n(2 e€1 +2z) c
Tt oty

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
. . . : ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R,S)
transformation ’
dy _ Veltyl-w as _ _ 1
dz — Yy dR~ " R

FPPPPPI S AS A npoe oo s B .0 L I AN
PPrPPPLPPAA A A A A7 mm tatace e e R N S
PLIPPPPAHN A A A7 7w v v v v 7 2 A A1)\ e
VA A A A A A Vet et g B O A I VNSO C N C C N
f bt Ao B O U s NNV NONCNCVCICV N
tttttrrrrAo e e r w7 A AN N e e
ttttrtttrLr Ao R = R atatatata A I
trrtrrttt A o r oy 7 2P NN
TR | ne e R
A A A — — - —_ —~ e v v 77 Na Sy ~Sa e e s

L T T Y A i n(y) n( ) n | B O P Ul | NNAVE VOV EICICEAN
L R T T T e e /"/'/’/’/’/’/"/’/‘_,;A A G
P R e N N S S PSS | AN NENNCI IR
A T T T T N A R wv v r v v v A A AN a—a—a—s
A R R R e B S ST YR I IO IO

Summary

The solution(s) found are the following

y=e

1n;2) + In(2 el +2z)

e
2 +2
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Figure 112: Slope field plot

Verification of solutions

Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.063 (sec). Leaf size: 27

Ldsolve (y(x)*diff (y(x) ,x)=sqrt(x~2+y(x)~2)-x,y(x), singsol=all) J
—cy(z)’ + /22 +y () +2
e -
y(z

v/ Solution by Mathematica
Time used: 0.432 (sec). Leaf size: 57

LDSolve [y [x]*y' [x]==Sqrt [x~2+y[x]~2]-x,y[x],x,IncludeSingularSolutions -> True}]

y(z) = —e? 2z + e
y(z) = €72z + e
y(z) =0
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3.12 problem 20

3.12.1 Solving as homogeneousTypeD2ode . . ... ... . ... ... 497
3.12.2 Solving as first order ode lie symmetry calculated ode . . . . . . 499
3.12.3 Solvingasexactode . . ... ... ... ... .......... 505

Internal problem ID [2584]
Internal file name [OUTPUT/2076_Sunday_June_05_2022_02_47_39_AM_18342098/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 20.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_ order_ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, [_Abel, ~2nd type ,
class B~ 1]

22(y +27)y —y(dz —y) =0

3.12.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
2z(u(z) z + 2z) (u'(z) z + u(z)) — u(z) z(4x — u(z) ) =0

In canonical form the ODE is

v = F(z,u)
= f(2)g(u)
3u?

2z (u+2)
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Where f(z) = —2 and g(u) = uu—jz Integrating both sides gives

12 du = _3 dr
_u” 2.T
u+2
/ 12 du = / _3 dx
_us 2x
u+2
2 3ln(z
—E—Hn(u) = 2( ) Co
The solution is
2 3In(x) B
—m—Fln (U(IE))+ 9 —Cy =

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

—254-111 <g> N 31n (z) Ly

x 2
2 Yy 31n (z) B
-y <5>+ 5 =0
Summary
The solution(s) found are the following
2z y\  3ln(z) B
—?ﬂ—ln(;)—FT—CQ—O (1)
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Figure 113: Slope field plot

Verification of solutions

Verified OK.

3.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

J = _y(=4z+y)
2z (2z + )
y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
e +w(ny — &) — w?Ey — wef —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by — y(—4z+y) (bs —az)  y*(—4z+y) as
2 (2z + y) 412 (2z + y)°
B < 2y y(—4z+y)  y(—4z+y)
z(2z+y) 222(22+y)  z(22+y)?
B <_ —dz+y y y(—4z +y)
20(2r+y) 20(2z+y) 2z(2z+y)’

(5E)

> (zas + yas + aq)

) (xby + ybs + b1) =0

Putting the above in normal form gives

24z3yby — 122%y%ay + 622y2b, + 122%y%bs — 3y*as — 1623b, + 162%ya; + 8x2yb, — 8z y%a; + 2z y%b; — 2
422 (2z + )°

=0
Setting the numerator to zero gives

24x3yby — 120%y%ay + 62%y>by + 122%y?bs — 3y*as — 162, (6E)
+ 162%ya; + 8z%yb; — 8z y?a; + 22 4%, — 2y%a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{z=v,y =02}

The above PDE (6E) now becomes

—12a5v3v5 — 3azvy + 24byvivy + 6bav3vs + 12b30305 + 16a;v3 0, (7E)
— 8alvlv§ — 2a1v§’ — 16b1v:1” + 8b1va2 + 2b1v1v§ =0
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Collecting the above on the terms v; introduced, and these are
{’Ul, 1}2}

Equation (7E) now becomes

24byv3vy — 16b,0% + (—12ay + 6by + 12b3) v20? (8E)
+ (16a; + 8by) vivy + (—8ay + 2b1) v1v; — 3azvs — 2a,v5 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

—2a; =0
—3a3=0
—16b; =0

24b, =0

—8a; +2b; =0
16a; +8b; =0

—12a2 + 6b2 + 12b3 =0

Solving the above equations for the unknowns gives

a1 =0
as = b3
a3 =0
by =0
b, =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

f=x
n=y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(xy)§
_ y(—4z +7v)
—YT (_Qw(2x+y)) @)
_ 3
2y +4x

£=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
13 n

The above comes from the requirements that <§ 2+ n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

Sz/ldy
n
_ 1

- / 3y2 dy

2y+4x

S is found from

Which results in

4z 2In(y)
S =" 4+ "7
3y + 3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y(—4z +7)

w@w=_m@ww)

Evaluating all the partial derivatives gives

R,=1
R,=0
4
Sy =——
3y
2y +4x
Sy = 32
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

T (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s _ _ 1
dR~ "3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

+ C1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2y1 —4 1
@ -4 _ (@),
3y 3

Which simplifies to

2yl —4 1
yln(y) ~4z _ (@) ,
3y 3

Which gives

In(z) 3c
LambertW (22: e%_j}) _#4_3%

y=e
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates

transformation

ODE in canonical coordinates

(R,

5)

~_ T T T v v o >

dy _ _ y(—dz+y)

dz 2z(2z+y)
RO TR T B B A e et
R EEE DR LR Satatatatatata s
R R EEERERE R atatatatatatatad
AR R R EE R L aatatalatatatadad
\\\\\&ﬂﬂff\w////////
\\\\\\;ifg\///////»)

v
f

N N | e ——

B B g g

R P Sy | W e e
e v T ¥ T T T~

R==x

2In(y)y — 4z

ds _
dR —

——>—>—n_ > > o > 7
B e e S
N e T
S |
- =
DGV
g
B e e S
B e e e

I Y

_ 1

3R

N e s>
N e —s——b
R
N e —b—s—5
N e —s——b
R
N e ——s—b
N e —s——>
A

N e —s——b

—»—»_—'z——a——v—a_‘—f/’/v A
> > > > > > v v A
B 5 0
v _v |
e e T
B 5 0
R =
> > > v _z f
Y 5 T

e L e

N \\s\z'\sﬁ.a{r—»ﬂ
N s s —epe—b—a—s—>
N e —b—s—5
N e —s——>
N Sw s —b—s—b
N e e —b—>—b
N e
N s —b—>
N e e bbb —b—>—5

N\ s —s—s—p

t
Gttt P AN I I Y
ittt A L N R Y
v mmmmmm e\ DLV N N NN
ettt e et | I B AN R SRR AN
et et & N B B B S S NS
R e U B S S R A A U R
et e B I S B A O R

Summary

The solution(s) found are the following

LambertW (
y=¢e

In(z)
2xe 2
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Figure 114: Slope field plot

Verification of solutions

Verified OK.

In(z) 3cy

y=e

3.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
me+N@wﬁ%=0

LambertW (22: eT‘T) _#_’_3%

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

d
op  0¢dy _
oxr  Oydr
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

22z +y)) dy = (y(4z — y)) dz
(—y(4z — y)) dz +(2z(2z + y))dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —y(4z — y)
N(z,y) =2z(2z +y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
T (—yldr —
o 9 (—y(4z —y))
= -4z 42y
And
ON
=8z + 2y
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Since %—J‘; # %, then the ODE is not exact. By inspection # is an integrating factor.
Therefore by multiplying M = —y(4x —y) and N = 2z(y + 2x) by this integrating
factor the ode becomes exact. The new M, N are

M= 4z —y
zy
2 4
N= y; z
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06d
Y
— —_—— B
Oz + Oy dx 0 (B)
Comparing (A,B) shows that
99
T M
ox
99
T _N
9y
But since % = 86—;% then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
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Therefore

4z — 2y +4
<— & y)dx+< v x)dy: (24)
Ty Y
Comparing (1A) and (2A) shows that

dr — vy
M(.’E,y):— Ty

2y + 4z
N(z,y) = ny

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM ON
R
Using result found above gives
oM 0 ( 4z — y)

dy  oy\  wy

And

Since %—]‘; = %%’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p
¢ _ N

Integrating (1) w.r.t. = gives

0¢ .
a—zdx—/Mda:

%dwz/—llx_ydx

or
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0p Az ,
A 4
=W (@
But equation (2) says that g—z = 2y;24’”. Therefore equation (4) becomes
2y+4x 4z
g =g W (5)

Solving equation (5) for f'(y) gives
2
/ = —
Fo) =

Integrating the above w.r.t y gives

/f’(y) dy=/(§> dy
fly)=2In(y) +

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢:ln(z)—4§+2ln(y)+01

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

4
a1 =ln(x)—gx+2ln(y)

The solution becomes
In(z) ¢
LambertW(Zme ?x _7}>—¥+%
y = e

Summary
The solution(s) found are the following

In(z) c1 In(z) | c
LambertW | 2ze 2 ~ 2 _T+71

(1)

y=e
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Verification of solutions

Y

Verified OK.
Maple trace

-3 -2 —1 0 1 2 3

Figure 115: Slope field plot

In(z) ¢
LambertW(2meﬁi_%>_#+%
=€

“Methods for first order

ODEs:

--- Trying classification methods ---

trying a quadrature
trying 1st order linear
trying Bernoulli

trying separable
trying inverse linear

trying homogeneous types:

trying homogeneous D

.

<- homogeneous successful”
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v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 19

Ldsolve(2*x* (y (x)+2%x) *diff (y (x) ,x) =y (x) *(4*x-y(x)),y(x), singsol=all) J

2x

3cq

- LambertW <2 e7x3>

y(z)

v/ Solution by Mathematica
Time used: 5.384 (sec). Leaf size: 29

kDSolve [2*x* (y [x]+2*x) *y ' [x]==y [x]*(4*x-y[x]) ,y[x] ,x,IncludeSingularSolutions J—> Truel

(z) — 2
Y W (2e—c123/2)
y(z) = 0
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3.13 problem 21

3.13.1 Solving as homogeneousTypeD ode . . . . ... ... ... ... H12]
3.13.2 Solving as homogeneousTypeD2ode . . ... ... ....... 614!
3.13.3 Solving as first order ode lie symmetry lookup ode . . .. ... 5106}

Internal problem ID [2585]
Internal file name [OUTPUT/2077_Sunday_June_05_2022_02_47_42_AM_65586110/index.tex|

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 21.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_ order__ode__lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

zy' — xtan (Q) —y=0
x

3.13.1 Solving as homogeneousTypeD ode
Writing the ode as
y' = tan (Q) +2 (A)
x x

The given ode has the form

3B

v =249 f(v2) (1)

x
Where b is scalar and g(z) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(z) = u(z) x then

dy du

Hence the given ode becomes

Mo+ u=ut () f(bu)*
o = g(a) f(bu)" 2)
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The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(z)=1
b=1

(5) =)

Substituting the above in (2) results in the u(z) ode as

(o) = 00

Which is now solved as separable In canonical form the ODE is

u = F(z,u)
= f(z)g(u)

_ tan (u)

T

Where f(z) = 1 and g(u) = tan (u). Integrating both sides gives

In (sin (u)) = In(z) + ¢

Raising both side to exponential gives
sin (u) = en@+a
Which simplifies to
sin (u) = cox

Therefore the solution is

Y =ur

= zarcsin (c2e” 1)
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Summary

1)

y = x arcsin (ce”x)

The solution(s) found are the following
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Figure 116: Slope field plot

Verification of solutions

y = x arcsin (ce”x)

Verified OK.

3.13.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) « on the above ode results in new ode in u(z)

z(v'(z) z + u(z)) — rtan (u(z)) —u(z)z =0

In canonical form the ODE is
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Where f(x) =  and g(u) = tan (u). Integrating both sides gives

T

Raising both side to exponential gives
sin (u) = en@+e2
Which simplifies to
sin (u) = c3x

Therefore the solution y is

Y=7zTU

= xarcsin (c3e®x)

Summary
The solution(s) found are the following

y = z arcsin (c3e®x) (1)
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Figure 117: Slope field plot

Verification of solutions

y = zarcsin (c3e®x)
Verified OK.

3.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2§y —wef —wyn =0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find &,
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Table 84: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

&(x,y) = 2

n(z,y) = oy

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

017



canonical coordinates, where S(R). Therefore

dy _n
dr &
Ty
T2
Yy

x
This is easily solved to give

Yy=cz

Where now the coordinate R is taken as the constant of integration. Hence

And S is found from

Integrating gives

Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating
s _ S +w(z,y)S, @)
dR R;+w(z,y)R,
Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

T tan (f—c) +y

w(z,y) = .
Evaluating all the partial derivatives gives
Yy
Rx == —E
1
Ry == 5
1
Sy = o
Sy, =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS  cot (¥)
w7 \z) 2A
dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
1
S(R) = 4
(R) = — ®) (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
1 . C1
z  sin ()
Which simplifies to
T sin (%)
Which gives
y = —arcsin (¢1z) ©
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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The solution(s) found are the following

Summary

(1)

—arcsin (¢1z) ©

y:
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Figure 118: Slope field plot

Verification of solutions

—arcsin (¢1z) ©

y:

Verified OK.

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 10

Ldsolve (x*diff (y(x),x)=x*tan(y(x)/x)+y(x),y(x), singsol=all) J

y(x) = arcsin (¢1z) x

v/ Solution by Mathematica
Time used: 4.369 (sec). Leaf size: 19

LDSolve [x*y' [x]==x*Tan[y[x]/x]+y[x],y[x],x,IncludeSingularSolutions -> True] J

y(x) — xarcsin (e“'x)
y() =0
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3.14 problem 22
3.14.1 Solving as first order ode lie symmetry calculated ode . . . . . . 23]

Internal problem ID [2586]
Internal file name [OUTPUT/2078_Sunday_June_05_2022_02_47_45_AM_59997785/index . tex]

Book: Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section: 1.8, page 68

Problem number: 22.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

y,_x\/m+y2

yxr

=0

3.14.1 Solving as first order ode lie symmetry calculated ode
Writing the ode as
_TEP Y

Yyx
Y =w(z,y)

Y

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - gac) - w2€y - wxf — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, n then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz + yas + a (1E)
n = xbs +ybs + by (2E)

923



Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(NTFF+) (- ) _ (/T TF +3%)"as

b —
2+ " "
VT2 + y + = 12+y oz /22 + yz + yz (5E)
_ o~ )22 (zag + yas + a4)
L 42y K /22 + 2 + o2
— ( x2+;l‘ y2z y (be + yb3 + bl) =0

Putting the above in normal form gives

(2 + y2)% x2az — 2°by + 22%yay — 2xtybs + 3x3y%as + 2?ylay — 2Y3bs + 2z ytas + V22 + Y2 T y?b —

Vs
=0

Setting the numerator to zero gives

3
— (2% 4+ y®)? 2as + 2°by — 2z%yay + 2z'ybs — 3z%y’az — 2%ylas + 2%y%bs (6E)

— 2z ytas — V22 + 12 2 y%by + V22 + 2 yPay + by — 2Pya; = 0

Simplifying the above gives

3
= (@ +9°)* Pas + (2" +9°) 2°bp — (2" + %) a'yar + 2(2* +°) 2”ybs ()
—2(z® +9?) zy’a3 — z'yas — 2°y’az — YPby — 2%Y%bs + (37 +y7) 2%y
— V2 + 2z y’h + V22 + 2 yda — 2Pyar — 22yPh =0
Since the PDE has radicals, simplifying gives

25by — 1*\/22 + 42 a3 — 2x'yay + 2xybs — 323y%as — /22 +y y2a3 _ x2y3a2
+ 22%b5 — 2z ylas + b1 — 2Pyar — V22 + 2z y?b + Va2 + 2y =
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Looking at the above PDE shows the following are all the terms with {z,y} in them.

{x,y,vx2+y2}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{$=U1,y=1}2, \/x2+y2=v3}

The above PDE (6E) now becomes

—2viv9ay — V2VSay — vivzas — 3viviaz — vivsviasz — 2v,v5a3 + viby (7E)
4 2,3 3 3 4 2
+ 2v7v9b3 + viV5b3 — viv2a;1 + V3V5a1 + v1by — v3v1v501 =0

Collecting the above on the terms v; introduced, and these are
{Ul7 V2, U3}

Equation (7E) now becomes

v3by + (—2ag + 2b3) vivy — vivsas + vib; — 3vivias — viveay (8E)

2,3 .2 2 4 2 3
+ (b3 — az) vivy — ViV3zVsa3 — 2V1V5a3 — V3V VSb1 + V3vya; = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0

by =0

by =0

—a1 =0
—3a3=0
—2a3 =0
—a3z3 =0
-b=0
—2a9 + 2b3 =0
bs —ay =0
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Solving the above equations for the unknowns gives

a1 =0
as = bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

{=z
n=y
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation
n=n-wxy)
NGETET AW
=9 — x
YT
__wrty

B y

£=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dr dy
&
The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

ds (1)

S is found from
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Which results in

T

S=-—

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

ST 4y

w(z,y) = -
Evaluating all the partial derivatives gives
R, =1
Ry=0
2
So = 2 yz 2
Tz +y
S, =——2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

o~ 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR~ R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R) = —In(R) +c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
VET T

—Tz—ln(z)—l-cl
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Which simplifies to

T

=—In(z)+ ¢

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . .

L . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
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Summary
The solution(s) found are the following
2 2
VY -+
———————=—In(z)+¢ (1)

X
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Figure 119: Slope field plot

Verification of solutions

=—In(z)+c

VT

Verified OK.

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group

canonical coordinates successful

<- 1st order,

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 28

Ldsolve(diff (y(x) ,x)=(x*sqrt (x~2+y (x) "2)+y (x) "2) / (x*y (x)) ,,y(x), singsol=all) J

zln (z) — 1z — \/22 +y (z) 0

T

v/ Solution by Mathematica
Time used: 0.283 (sec). Leaf size: 54

kDSolve [y' [x]==(x*Sqrt [x~2+y [x] "2]+y [x] ~2) / (x*y [x]) ,y [x] ,x, IncludeSingularSoluj;ions -> Truel

y(z) — —z\/logz(a;) + 2¢; 10g(;1;) — 14 ¢2

y(x) — x\/log2(x) + 2¢ylog(z) — 14 ¢42
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