A Solution Manual For

Differential equations and linear algebra,

 Stephen W. Goode and Scott A Annin. Fourth edition, 2015

Nasser M. Abbasi

May 15, 2024

Contents

1 Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21

2 Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43

3 Chapter 1, First-Order Differential Equations. Section 1.6, FirstOrder Linear Differential Equations. page 59

4 Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79

5 Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91

6 Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502

1211
7 Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525

8 Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529

1577
9 Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556

1701
10 Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567

2047
11 Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572

12 Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575

13 Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689

14 Chapter 10, The Laplace Transform and Some Elementary Applica
tions. Exercises for 10.7. page 704

2724

15 Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710

16 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739

2907
17 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758

18 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771

19 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.6. page 783

20 Chapter 11, Series Solutions to Linear Differential Equations. Additional problems. Section 11.7. page 788

3874
1 Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page21
1.1 problem Problem 7 5
1.2 problem Problem 8 15
1.3 problem Problem 9 25
1.4 problem Problem 10 33
1.5 problem Problem 11 36
1.6 problem Problem 12 51
1.7 problem Problem 13 59
1.8 problem Problem 14 69
1.9 problem Problem 15 90
1.10 problem Problem 16 106
1.11 problem Problem 17 123
1.12 problem Problem 18 154
1.13 problem Problem 19 184
1.14 problem Problem 20 191
1.15 problem Problem 21 198
1.16 problem Problem 22 205
1.17 problem Problem 23 213
1.18 problem Problem 24 222
1.19 problem Problem 25 245
1.20 problem Problem 28 261
1.21 problem Problem 29 266
1.22 problem Problem 30 271
1.23 problem Problem 31 277
1.24 problem Problem 32 283
1.25 problem Problem 33 297
1.26 problem Problem 34 300
1.27 problem Problem 35 303
1.28 problem Problem 36 318
1.29 problem Problem 37 337
1.30 problem Problem 38 341
1.31 problem Problem 39 361
1.32 problem Problem 40 366
1.33 problem Problem 45 386
1.34 problem Problem 46 394
1.35 problem Problem 47 . 408

1.1 problem Problem 7

1.1.1 Solving as second order linear constant coeff ode 5
1.1.2 Solving as second order ode can be made integrable ode 7
1.1.3 Solving using Kovacic algorithm 9
1.1.4 Maple step by step solution . 13

Internal problem ID [2587]
Internal file name [OUTPUT/2079_Sunday_June_05_2022_02_47_48_AM_5325985/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-25 y=0
$$

1.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-25$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-25 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-25=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-25$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-25)} \\
& = \pm 5
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+5 \\
& \lambda_{2}=-5
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =5 \\
\lambda_{2} & =-5
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(5) x}+c_{2} e^{(-5) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-5 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-5 x} \tag{1}
\end{equation*}
$$

Figure 1: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-5 x}
$$

Verified OK.

1.1.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-25 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-25 y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{25 y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{25 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{25 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{25 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\ln \left(y \sqrt{25}+\sqrt{25 y^{2}+2 c_{1}}\right) \sqrt{25}}{25} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(y \sqrt{25}+\sqrt{25 y^{2}+2 c_{1}}\right) \sqrt{25}}{25}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(5 y+\sqrt{25 y^{2}+2 c_{1}}\right)^{\frac{1}{5}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{25 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\ln \left(y \sqrt{25}+\sqrt{25 y^{2}+2 c_{1}}\right) \sqrt{25}}{25} & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln \left(y \sqrt{25}+\sqrt{25 y^{2}+2 c_{1}}\right) \sqrt{25}}{25}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{\left(5 y+\sqrt{25 y^{2}+2 c_{1}}\right)^{\frac{1}{5}}}=c_{5} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(\mathrm{e}^{10 x} c_{3}^{10}-2 c_{1}\right) \mathrm{e}^{-5 x}}{10 c_{3}^{5}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{10} \mathrm{e}^{10 x}-1\right) \mathrm{e}^{-5 x}}{10 c_{5}^{5}} \tag{2}
\end{align*}
$$

Figure 2: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{10 x} c_{3}^{10}-2 c_{1}\right) \mathrm{e}^{-5 x}}{10 c_{3}^{5}}
$$

Verified OK.

$$
y=-\frac{\left(2 c_{1} c_{5}^{10} \mathrm{e}^{10 x}-1\right) \mathrm{e}^{-5 x}}{10 c_{5}^{5}}
$$

Verified OK.

1.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-25 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=25 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 1: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=25$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-5 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-5 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-5 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-5 x} \int \frac{1}{\mathrm{e}^{-10 x}} d x \\
& =\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{10 x}}{10}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{10 x}}{10}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{5 x}}{10} \tag{1}
\end{equation*}
$$

Figure 3: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{5 x}}{10}
$$

Verified OK.

1.1.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-25 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-25=0
$$

- Factor the characteristic polynomial

$$
(r-5)(r+5)=0
$$

- Roots of the characteristic polynomial

$$
r=(-5,5)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-5 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{5 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{5 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)-25*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{-5 x}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 22

```
DSolve[y''[x]-25*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{5 x}+c_{2} e^{-5 x}
$$

1.2 problem Problem 8

1.2.1 Solving as second order linear constant coeff ode
 15

1.2.2 Solving as second order ode can be made integrable ode 17
1.2.3 Solving using Kovacic algorithm 19
1.2.4 Maple step by step solution . 23

Internal problem ID [2588]
Internal file name [OUTPUT/2080_Sunday_June_05_2022_02_47_50_AM_77417296/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y=0
$$

1.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x) \tag{1}
\end{equation*}
$$

Figure 4: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Verified OK.

1.2.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+4 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+4 y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+2 y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-4 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-4 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-4 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-4 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =x+c_{2} \tag{1}\\
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =x+c_{3} \tag{2}
\end{align*}
$$

Figure 5: Slope field plot

Verification of solutions

$$
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2}=x+c_{2}
$$

Verified OK.

$$
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2}=x+c_{3}
$$

Verified OK.

1.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-4 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 3: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Figure 6: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

Verified OK.

1.2.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\cos (2 x)
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\sin (2 x) c_{1}+c_{2} \cos (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20

```
DSolve[y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

1.3 problem Problem 9

1.3.1 Solving as second order linear constant coeff ode 25
1.3.2 Solving using Kovacic algorithm 27
1.3.3 Maple step by step solution . 31

Internal problem ID [2589]
Internal file name [OUTPUT/2081_Sunday_June_05_2022_02_47_52_AM_20594809/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 9.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

1.3.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-2)} \\
& =-\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 7: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

1.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 5: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3} \tag{1}
\end{equation*}
$$

Figure 8: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}
$$

Verified OK.

1.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+r-2=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r-1)=0
$$

- Roots of the characteristic polynomial
$r=(-2,1)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve(diff($y(x), x \$ 2)+\operatorname{diff}(y(x), x)-2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{2} \mathrm{e}^{3 x}+c_{1}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20
DSolve[y''[x]+y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} e^{-2 x}+c_{2} e^{x}
$$

1.4 problem Problem 10

1.4.1 Solving as quadrature ode . 33
1.4.2 Maple step by step solution . 34

Internal problem ID [2590]
Internal file name [OUTPUT/2082_Sunday_June_05_2022_02_47_54_AM_75794518/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y^{2}=0
$$

1.4.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{y^{2}} d y & =x+c_{1} \\
\frac{1}{y} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\frac{1}{x+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{x+c_{1}} \tag{1}
\end{equation*}
$$

Figure 9: Slope field plot
Verification of solutions

$$
y=\frac{1}{x+c_{1}}
$$

Verified OK.

1.4.2 Maple step by step solution

Let's solve
$y^{\prime}+y^{2}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}}=-1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{2}} d x=\int(-1) d x+c_{1}$
- Evaluate integral

$$
-\frac{1}{y}=-x+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{-x+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(diff(y(x),x)=-y(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{1}{c_{1}+x}
$$

\checkmark Solution by Mathematica
Time used: 0.092 (sec). Leaf size: 18
DSolve[y'[x]==-y[x]~2,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{x-c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.5 problem Problem 11

1.5.1 Solving as separable ode . 36
1.5.2 Solving as linear ode . 38
1.5.3 Solving as homogeneousTypeD2 ode 39
1.5.4 Solving as first order ode lie symmetry lookup ode 41
1.5.5 Solving as exact ode . 45
1.5.6 Maple step by step solution . 49

Internal problem ID [2591]
Internal file name [OUTPUT/2083_Sunday_June_05_2022_02_47_55_AM_11922254/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{y}{2 x}=0
$$

1.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{2 x}
\end{aligned}
$$

Where $f(x)=\frac{1}{2 x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{2 x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{2 x} d x \\
\ln (y) & =\frac{\ln (x)}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{\ln (x)}{2}+c_{1}} \\
& =c_{1} \sqrt{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \tag{1}
\end{equation*}
$$

Figure 10: Slope field plot

Verification of solutions

$$
y=c_{1} \sqrt{x}
$$

Verified OK.

1.5.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{2 x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{\sqrt{x}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{\sqrt{x}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x}}$ results in

$$
y=c_{1} \sqrt{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \tag{1}
\end{equation*}
$$

Figure 11: Slope field plot
Verification of solutions

$$
y=c_{1} \sqrt{x}
$$

Verified OK.

1.5.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+\frac{u(x)}{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{2 x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{2 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{2 x} d x \\
\ln (u) & =-\frac{\ln (x)}{2}+c_{2} \\
u & =\mathrm{e}^{-\frac{\ln (x)}{2}+c_{2}} \\
& =\frac{c_{2}}{\sqrt{x}}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =\sqrt{x} c_{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

Figure 12: Slope field plot

Verification of solutions

$$
y=\sqrt{x} c_{2}
$$

Verified OK.

1.5.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{2 x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 8: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\sqrt{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{\sqrt{x}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{2 x^{\frac{3}{2}}} \\
S_{y} & =\frac{1}{\sqrt{x}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{\sqrt{x}}=c_{1}
$$

Which simplifies to

$$
\frac{y}{\sqrt{x}}=c_{1}
$$

Which gives

$$
y=c_{1} \sqrt{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{2 x}$		$\frac{d S}{d R}=0$
		\rightarrow
込		
$\Rightarrow \rightarrow \Delta x+x+1$		
$\rightarrow \rightarrow \rightarrow$ ara		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$	$R=x$	\rightarrow
	$S=\frac{y}{\sqrt{x}}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		
\cdots		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x} \tag{1}
\end{equation*}
$$

Figure 13: Slope field plot
Verification of solutions

$$
y=c_{1} \sqrt{x}
$$

Verified OK.

1.5.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{2}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{2}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{2}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{2}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{2}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{2}{y}\right) \mathrm{d} y \\
f(y) & =2 \ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+2 \ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+2 \ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{\ln (x)}{2}+\frac{c_{1}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\ln (x)} \frac{c_{1}}{2}+\frac{c_{1}}{2} \tag{1}
\end{equation*}
$$

Figure 14: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{\frac{\ln (x)}{2}+\frac{c_{1}}{2}}
$$

Verified OK.

1.5.6 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{y}{2 x}=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- \quad Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{2 x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{2 x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\frac{\ln (x)}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{\mathrm{e}^{-2 c_{1}}}}{\mathrm{e}^{-2 c_{1}}}, y=-\frac{\sqrt{\mathrm{e}^{-2 c_{1}}}}{\mathrm{e}^{-2 c_{1}}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(diff(y(x),x)=y(x)/(2*x),y(x), singsol=all)
```

$$
y(x)=c_{1} \sqrt{x}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 18
DSolve $[y$ ' $[x]==y[x] /(2 * x), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} \sqrt{x} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.6 problem Problem 12

1.6.1 Solving as second order linear constant coeff ode
 51

1.6.2 Solving using Kovacic algorithm 53
1.6.3 Maple step by step solution 57

Internal problem ID [2592]
Internal file name [OUTPUT/2084_Sunday_June_05_2022_02_47_57_AM_18256709/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

1.6.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(5)} \\
& =-1 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-1+2 i \\
\lambda_{2}=-1-2 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1+2 i \\
\lambda_{2}=-1-2 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \tag{1}
\end{equation*}
$$

Figure 15: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Verified OK.

1.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 11: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{-x} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Figure 16: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{-x} \sin (2 x)}{2}
$$

Verified OK.

1.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}+2 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-1-2 \mathrm{I},-1+2 \mathrm{I})
$$

- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-x} \cos (2 x)$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{-x} \sin (2 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x} \cos (2 x)+c_{2} \mathrm{e}^{-x} \sin (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve(diff $(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+5 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-x}\left(\sin (2 x) c_{1}+c_{2} \cos (2 x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 26
DSolve[y'' $[x]+2 * y$ ' $[x]+5 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x}\left(c_{2} \cos (2 x)+c_{1} \sin (2 x)\right)
$$

1.7 problem Problem 13

1.7.1 Solving as second order linear constant coeff ode
 59

1.7.2 Solving as second order ode can be made integrable ode 61
1.7.3 Solving using Kovacic algorithm 63
1.7.4 Maple step by step solution . 67

Internal problem ID [2593]
Internal file name [OUTPUT/2085_Sunday_June_05_2022_02_47_59_AM_37621237/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-9 y=0
$$

1.7.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-9)} \\
& = \pm 3
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+3 \\
\lambda_{2}=-3
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Figure 17: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x}
$$

Verified OK.

1.7.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-9 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-9 y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{9 y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\sqrt{9 y^{2}+2 c_{1}} \tag{1}\\
y^{\prime} & =-\sqrt{9 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{9 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(3 y+\sqrt{9 y^{2}+2 c_{1}}\right)^{\frac{1}{3}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{9 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9} & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{\left(3 y+\sqrt{9 y^{2}+2 c_{1}}\right)^{\frac{1}{3}}}=c_{5} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(\mathrm{e}^{6 x} c_{3}^{6}-2 c_{1}\right) \mathrm{e}^{-3 x}}{6 c_{3}^{3}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{6} \mathrm{e}^{6 x}-1\right) \mathrm{e}^{-3 x}}{6 c_{5}^{3}} \tag{2}
\end{align*}
$$

Figure 18: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{6 x} c_{3}^{6}-2 c_{1}\right) \mathrm{e}^{-3 x}}{6 c_{3}^{3}}
$$

Verified OK.

$$
y=-\frac{\left(2 c_{1} c_{5}^{6} \mathrm{e}^{6 x}-1\right) \mathrm{e}^{-3 x}}{6 c_{5}^{3}}
$$

Verified OK.

1.7.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 13: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-3 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-3 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-3 x} \int \frac{1}{\mathrm{e}^{-6 x}} d x \\
& =\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{6 x}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{6 x}}{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{3 x}}{6} \tag{1}
\end{equation*}
$$

Figure 19: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{3 x}}{6}
$$

Verified OK.

1.7.4 Maple step by step solution

Let's solve
$y^{\prime \prime}-9 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE $r^{2}-9=0$
- Factor the characteristic polynomial

$$
(r-3)(r+3)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,3)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)-9*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{-3 x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 22

```
DSolve[y''[x]-9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-3 x}\left(c_{1} e^{6 x}+c_{2}\right)
$$

1.8 problem Problem 14

1.8.1 Solving as second order euler ode ode 70
1.8.2 Solving as second order change of variable on x method 2 ode 71
1.8.3 Solving as second order change of variable on x method 1 ode 73
1.8.4 Solving as second order change of variable on y method 2 ode 75
1.8.5 Solving as second order integrable as is ode 78)
1.8.6 Solving as type second_order_integrable_as_is (not using ABC version) 79
1.8.7 Solving using Kovacic algorithm 80
1.8.8 Solving as exact linear second order ode ode 85
1.8.9 Maple step by step solution 87

Internal problem ID [2594]
Internal file name [OUTPUT/2086_Sunday_June_05_2022_02_48_00_AM_34534614/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change__of_variable_on__x_method_1", "second_order_change_of_cvariable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0
$$

1.8.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+5 x r x^{r-1}+3 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+5 r x^{r}+3 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+5 r+3=0
$$

Or

$$
\begin{equation*}
r^{2}+4 r+3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3 \\
& r_{2}=-1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x}
$$

Verified OK.

1.8.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{5}{x} d x\right)} d x \\
& =\int e^{-5 \ln (x)} d x \\
& =\int \frac{1}{x^{5}} d x \\
& =-\frac{1}{4 x^{4}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{3}{x^{2}}}{\frac{1}{x^{10}}} \\
& =3 x^{8} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+3 x^{8} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
3 x^{8}=\frac{3}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+3 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+3 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+3 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
16 r(r-1)+0+3=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{4} \\
& r_{2}=\frac{3}{4}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{4}}+c_{2} \tau^{\frac{3}{4}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2}\left(-\frac{1}{x^{4}}\right)^{\frac{1}{4}}\left(c_{2} \sqrt{-\frac{1}{x^{4}}}+2 c_{1}\right)}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2}\left(-\frac{1}{x^{4}}\right)^{\frac{1}{4}}\left(c_{2} \sqrt{-\frac{1}{x^{4}}}+2 c_{1}\right)}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2}\left(-\frac{1}{x^{4}}\right)^{\frac{1}{4}}\left(c_{2} \sqrt{-\frac{1}{x^{4}}}+2 c_{1}\right)}{4}
$$

Verified OK.

1.8.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{3}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{3}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{5}{x} \frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =\frac{4 c \sqrt{3}}{3}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 c \sqrt{3}\left(\frac{d}{d \tau} y(\tau)\right)}{3}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{2 \sqrt{3} c \tau}{3}}\left(c_{1} \cosh \left(\frac{\sqrt{3} c \tau}{3}\right)+i c_{2} \sinh \left(\frac{\sqrt{3} c \tau}{3}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{3} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x^{3}}
$$

Verified OK.

1.8.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{5 n}{x^{2}}+\frac{3}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{-\frac{c_{1}}{2 x^{2}}+c_{2}}{x} \\
& =\frac{2 c_{2} x^{2}-c_{1}}{2 x^{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\frac{c_{1}}{2 x^{2}}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\frac{c_{1}}{2 x^{2}}+c_{2}}{x}
$$

Verified OK.

1.8.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y\right) d x=0 \\
y^{\prime} x^{2}+3 y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x} d x} \\
& =x^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3} y\right) & =\left(x^{3}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{3} y\right) & =\left(c_{1} x\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{3} y=\int c_{1} x \mathrm{~d} x \\
& x^{3} y=\frac{c_{1} x^{2}}{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}}
$$

Verified OK.

1.8.6 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y\right) d x=0 \\
y^{\prime} x^{2}+3 y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x} d x} \\
& =x^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3} y\right) & =\left(x^{3}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{3} y\right) & =\left(c_{1} x\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{3} y=\int c_{1} x \mathrm{~d} x \\
& x^{3} y=\frac{c_{1} x^{2}}{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}}
$$

Verified OK.

1.8.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=5 x \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 15: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5 x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{5 \ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{x^{\frac{5}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{3}}\right)+c_{2}\left(\frac{1}{x^{3}}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{2 x}
$$

Verified OK.

1.8.8 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x^{2} \\
& q(x)=5 x \\
& r(x)=3 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =5
\end{aligned}
$$

Therefore (1) becomes

$$
2-(5)+(3)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} x^{2}+3 y x=c_{1}
$$

We now have a first order ode to solve which is

$$
y^{\prime} x^{2}+3 y x=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{3 y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x} d x} \\
& =x^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3} y\right) & =\left(x^{3}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{3} y\right) & =\left(c_{1} x\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{3} y=\int c_{1} x \mathrm{~d} x \\
& x^{3} y=\frac{c_{1} x^{2}}{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{2 x}+\frac{c_{2}}{x^{3}}
$$

Verified OK.

1.8.9 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{5 y^{\prime}}{x}-\frac{3 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{5 y^{\prime}}{x}+\frac{3 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+5 \frac{d}{d t} y(t)+3 y(t)=0$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)+4 \frac{d}{d t} y(t)+3 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}+4 r+3=0$
- Factor the characteristic polynomial
$(r+3)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-3,-1)$
- \quad 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-3 t}$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{-t}$
- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x}
$$

- \quad Simplify

$$
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

```
dsolve(x^2*diff(y(x),x$2)+5*x*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{2} x^{2}+c_{1}}{x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18

```
DSolve[x^2*y''[x]+5*x*y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{c_{2} x^{2}+c_{1}}{x^{3}}
$$

1.9 problem Problem 15

1.9.1 Solving as second order euler ode ode 90
1.9.2 Solving as second order change of variable on x method 2 ode . 91
1.9.3 Solving as second order change of variable on x method 1 ode . 94
1.9.4 Solving as second order change of variable on y method 2 ode . 96
1.9.5 Solving using Kovacic algorithm 98
1.9.6 Maple step by step solution . 103

Internal problem ID [2595]
Internal file name [OUTPUT/2087_Sunday_June_05_2022_02_48_02_AM_91072846/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order__change__of__variable_on_u__method__2", "second_order_change_of_cvariable_on_y_method_2"
Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(
        x)]`]]
```

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

1.9.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-3 r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-3 r+4=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+c_{2} x^{2} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Verified OK.

1.9.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{x^{6}} \\
& =\frac{4}{x^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{x^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{4}{x^{8}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

Verified OK.

1.9.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

1.9.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \ln (x)+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \ln (x)+c_{2}\right) x^{2}
$$

Verified OK.

1.9.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 17: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(\ln (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+c_{2} x^{2} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Verified OK.

1.9.6 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{3 y^{\prime}}{x}-\frac{4 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{3 y^{\prime}}{x}+\frac{4 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d} t y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), 3 \frac{d}{x^{2}} y(t)+4 y(t)=0\right.$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-4 \frac{d}{d t} y(t)+4 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-4 r+4=0$
- Factor the characteristic polynomial

$$
(r-2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=2
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{2 t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence

$$
y_{2}(t)=t \mathrm{e}^{2 t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} t \mathrm{e}^{2 t}
$$

- Change variables back using $t=\ln (x)$

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

- \quad Simplify

$$
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve(x^2*diff(y(x),x$2)-3*x*diff (y(x),x)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=x^{2}\left(c_{2} \ln (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 18
DSolve[$x^{\wedge} 2 * y$ ' ' $[x]-3 * x * y$ ' $[x]+4 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}\left(2 c_{2} \log (x)+c_{1}\right)
$$

1.10 problem Problem 16

1.10.1 Solving as second order euler ode ode 106
1.10.2 Solving as second order change of variable on x method 2 ode . 108
1.10.3 Solving as second order change of variable on x method 1 ode . 111
1.10.4 Solving as second order change of variable on y method 2 ode . 113
1.10.5 Solving using Kovacic algorithm 115
1.10.6 Maple step by step solution . 120

Internal problem ID [2596]
Internal file name [OUTPUT/2088_Sunday_June_05_2022_02_48_04_AM_36533908/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

1.10.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+13 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-3 r x^{r}+13 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-3 r+13=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+13=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2-3 i \\
& r_{2}=2+3 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=2$ and $\beta=-3$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=2, \beta=-3$, the above becomes

$$
y=x^{2}\left(c_{1} e^{-3 i \ln (x)}+c_{2} e^{3 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)
$$

Verified OK.

1.10.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{13}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{13}{x^{2}}}{x^{6}} \\
& =\frac{13}{x^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{13 y(\tau)}{x^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{13}{x^{8}}=\frac{13}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{13 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+13 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+13 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+13 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
16 r(r-1)+0+13=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+13=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{3 i}{4} \\
& r_{2}=\frac{1}{2}+\frac{3 i}{4}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-\frac{3}{4}$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-\frac{3}{4}$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{3 i \ln (\tau)}{4}}+c_{2} e^{\frac{3 i \ln (\tau)}{4}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{3 \ln (\tau)}{4}\right)+c_{2} \sin \left(\frac{3 \ln (\tau)}{4}\right)\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)\right) x^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)\right) x^{2}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+3 \ln (x)\right)\right) x^{2}}{2}
$$

Verified OK.

1.10.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{13}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{13} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{13}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{13}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{\sqrt{13} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{13} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{4 c \sqrt{13}}{13}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{4 c \sqrt{13}\left(\frac{d}{d \tau} y(\tau)\right)}{13}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{2 \sqrt{13} c \tau}{13}}\left(c_{1} \cos \left(\frac{3 \sqrt{13} c \tau}{13}\right)+c_{2} \sin \left(\frac{3 \sqrt{13} c \tau}{13}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{13} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{13} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)
$$

Verified OK.

1.10.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{13}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{13}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2+3 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{4+6 i}{x}-\frac{3}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+6 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+6 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-6 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-6 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-6 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-6 i}{x} d x \\
\ln (u) & =(-1-6 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-6 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-6 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-6 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-6 i}}{6}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{2+3 i} \\
& =c_{2} x^{2+3 i}+\frac{i c_{1} x^{2-3 i}}{6}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{2+3 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{2+3 i}
$$

Verified OK.

1.10.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-37}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-37 \\
t & =4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{37}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. \{1,2\},\{1,3\},\{2\},\{3\},\{3,	
3	$\{1,\{1,2\}$	$\{2\} .5\}$

Table 19: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{37}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{37}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{37}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-3 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-3 i-\left(\frac{1}{2}-3 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-3 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-3 i}{x} \\
& =\frac{\frac{1}{2}-3 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-3 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+3 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-3 i}{x}\right)^{2}-\left(-\frac{37}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-3 i} x d x \\
& =x^{\frac{1}{2}-3 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2-3 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{6 i}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2-3 i}\right)+c_{2}\left(x^{2-3 i}\left(-\frac{i x^{6 i}}{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2-3 i}-\frac{i c_{2} x^{2+3 i}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2-3 i}-\frac{i c_{2} x^{2+3 i}}{6}
$$

Verified OK.

1.10.6 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{3 y^{\prime}}{x}-\frac{13 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{3 y^{\prime}}{x}+\frac{13 y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+13 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-3 \frac{d}{d t} y(t)+13 y(t)=0$
- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-4 \frac{d}{d t} y(t)+13 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-4 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{4 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(2-3 \mathrm{I}, 2+3 \mathrm{I})$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{2 t} \cos (3 t)$
- 2nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{2 t} \sin (3 t)$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{2 t} \cos (3 t)+c_{2} \mathrm{e}^{2 t} \sin (3 t)$
- \quad Change variables back using $t=\ln (x)$
$y=c_{1} x^{2} \cos (3 \ln (x))+c_{2} x^{2} \sin (3 \ln (x))$
- \quad Simplify
$y=x^{2}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x$2)-3*x*\operatorname{diff}(y(x),x)+13*y(x)=0,y(x), singsol=all)
```

$$
y(x)=x^{2}\left(c_{1} \sin (3 \ln (x))+c_{2} \cos (3 \ln (x))\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 26
DSolve $\left[x^{\wedge} 2 * y^{\prime \prime}\right.$ ' $[x]-3 * x * y$ ' $[x]+13 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x^{2}\left(c_{2} \cos (3 \log (x))+c_{1} \sin (3 \log (x))\right)
$$

1.11 problem Problem 17

1.11.1 Solving as second order euler ode ode 124
1.11.2 Solving as second order change of variable on x method 2 ode . 127
1.11.3 Solving as second order change of variable on x method 1 ode . 132
1.11.4 Solving as second order change of variable on y method 2 ode . 137
1.11.5 Solving as second order ode non constant coeff transformation
on B ode . 142
1.11.6 Solving using Kovacic algorithm 146

Internal problem ID [2597]
Internal file name [OUTPUT/2089_Sunday_June_05_2022_02_48_05_AM_11285012/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cariable_on_x_method_1", "second_order_change__of__variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=9 x^{2}
$$

1.11.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=2 x^{2}, B=-x, C=1, f(x)=9 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
2 x^{2}(r(r-1)) x^{r-2}-x r x^{r-1}+x^{r}=0
$$

Simplifying gives

$$
2 r(r-1) x^{r}-r x^{r}+x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
2 r(r-1)-r+1=0
$$

Or

$$
\begin{equation*}
2 r^{2}-3 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{1} x+\sqrt{x} c_{2}
$$

Next, we find the particular solution to the ODE

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=9 x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\sqrt{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \sqrt{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}(\sqrt{x})
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \sqrt{x} \\
1 & \frac{1}{2 \sqrt{x}}
\end{array}\right|
$$

Therefore

$$
W=(x)\left(\frac{1}{2 \sqrt{x}}\right)-(\sqrt{x})(1)
$$

Which simplifies to

$$
W=-\frac{\sqrt{x}}{2}
$$

Which simplifies to

$$
W=-\frac{\sqrt{x}}{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{9 x^{\frac{5}{2}}}{-x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int(-9) d x
$$

Hence

$$
u_{1}=9 x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9 x^{3}}{-x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int-9 \sqrt{x} d x
$$

Hence

$$
u_{2}=-6 x^{\frac{3}{2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =3 x^{2}+c_{1} x+\sqrt{x} c_{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=3 x^{2}+c_{1} x+\sqrt{x} c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=3 x^{2}+c_{1} x+\sqrt{x} c_{2}
$$

Verified OK.

1.11.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{1}{2 x} d x\right)} d x \\
& =\int \mathrm{e}^{\frac{\ln (x)}{2}} d x \\
& =\int \sqrt{x} d x \\
& =\frac{2 x^{\frac{3}{2}}}{3} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{2 x^{2}}}{x} \\
& =\frac{1}{2 x^{3}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{2 x^{3}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{1}{2 x^{3}}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 2^{\frac{1}{3}} 3^{\frac{2}{3}}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}}{3}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 2^{\frac{1}{3}} 3^{\frac{2}{3}}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} & \left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} & \left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} \\
\frac{\sqrt{x}}{2\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}} & \frac{\sqrt{x}}{\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}\right)\left(\frac{\sqrt{x}}{\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}}\right)-\left(\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\right)\left(\frac{\sqrt{x}}{2\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}}\right)
$$

Which simplifies to

$$
W=\frac{\sqrt{x}}{2}
$$

Which simplifies to

$$
W=\frac{\sqrt{x}}{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{9\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} x^{2}}{x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{9\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}}{\sqrt{x}} d x
$$

Hence

$$
u_{1}=-6 \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} x^{2}}{x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{9\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}}{\sqrt{x}} d x
$$

Hence

$$
u_{2}=9 \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 2^{\frac{1}{3}} 3^{\frac{2}{3}}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}}{3}\right)+\left(3 x^{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 2^{\frac{1}{3}} 3^{\frac{2}{3}}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}}{3}+3 x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 2^{\frac{1}{3}} 3^{\frac{2}{3}}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}}{3}+3 x^{2}
$$

Verified OK.

1.11.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=2 x^{2}, B=-x, C=1, f(x)=9 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{2 c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{2 c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{2 c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{1}{2 x} \frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{2 c}}{\left(\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{2 c}\right)^{2}} \\
& =-\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{3 \sqrt{2}}{2} c \tau}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{2} d x}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{3}{4}}\left(c_{1} \cosh \left(\frac{\ln (x)}{4}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{4}\right)\right)
$$

Now the particular solution to this ODE is found

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=9 x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} & \left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} & \left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} \\
\frac{\sqrt{x}}{2\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}} & \frac{\sqrt{x}}{\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}\right)\left(\frac{\sqrt{x}}{\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}}\right)-\left(\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}\right)\left(\frac{\sqrt{x}}{2\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}}\right)
$$

Which simplifies to

$$
W=\frac{\sqrt{x}}{2}
$$

Which simplifies to

$$
W=\frac{\sqrt{x}}{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{9\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} x^{2}}{x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{9\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}}{\sqrt{x}} d x
$$

Hence

$$
u_{1}=-6 \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}} x^{2}}{x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{9\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}}{\sqrt{x}} d x
$$

Hence

$$
u_{2}=9 \sqrt{x}\left(x^{\frac{3}{2}}\right)^{\frac{1}{3}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{\frac{3}{4}}\left(c_{1} \cosh \left(\frac{\ln (x)}{4}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{4}\right)\right)\right)+\left(3 x^{2}\right) \\
& =3 x^{2}+x^{\frac{3}{4}}\left(c_{1} \cosh \left(\frac{\ln (x)}{4}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{4}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=i x^{\frac{3}{4}} \sinh \left(\frac{\ln (x)}{4}\right) c_{2}+x^{\frac{3}{4}} \cosh \left(\frac{\ln (x)}{4}\right) c_{1}+3 x^{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=i x^{\frac{3}{4}} \sinh \left(\frac{\ln (x)}{4}\right) c_{2}+x^{\frac{3}{4}} \cosh \left(\frac{\ln (x)}{4}\right) c_{1}+3 x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=i x^{\frac{3}{4}} \sinh \left(\frac{\ln (x)}{4}\right) c_{2}+x^{\frac{3}{4}} \cosh \left(\frac{\ln (x)}{4}\right) c_{1}+3 x^{2}
$$

Verified OK.

1.11.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=2 x^{2}, B=-x, C=1, f(x)=9 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{2 x} \\
& q(x)=\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{n}{2 x^{2}}+\frac{1}{2 x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{2 x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{2 x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{2 x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{2 x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{2 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{2 x} d x \\
\ln (u) & =-\frac{3 \ln (x)}{2}+c_{1} \\
u & =\mathrm{e}^{-\frac{3 \ln (x)}{2}+c_{1}} \\
& =\frac{c_{1}}{x^{\frac{3}{2}}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{2 c_{1}}{\sqrt{x}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{2 c_{1}}{\sqrt{x}}+c_{2}\right) x \\
& =c_{2} x-2 c_{1} \sqrt{x}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=9 x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\sqrt{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \sqrt{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}(\sqrt{x})
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \sqrt{x} \\
1 & \frac{1}{2 \sqrt{x}}
\end{array}\right|
$$

Therefore

$$
\begin{equation*}
W=(x)\left(\frac{1}{2 \sqrt{x}}\right)-(\sqrt{x}) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
W=-\frac{\sqrt{x}}{2}
$$

Which simplifies to

$$
W=-\frac{\sqrt{x}}{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{9 x^{\frac{5}{2}}}{-x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int(-9) d x
$$

Hence

$$
u_{1}=9 x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9 x^{3}}{-x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int-9 \sqrt{x} d x
$$

Hence

$$
u_{2}=-6 x^{\frac{3}{2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{2 c_{1}}{\sqrt{x}}+c_{2}\right) x\right)+\left(3 x^{2}\right) \\
& =3 x^{2}+\left(-\frac{2 c_{1}}{\sqrt{x}}+c_{2}\right) x
\end{aligned}
$$

Which simplifies to

$$
y=c_{2} x-2 c_{1} \sqrt{x}+3 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x-2 c_{1} \sqrt{x}+3 x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x-2 c_{1} \sqrt{x}+3 x^{2}
$$

Verified OK.

1.11.5 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=2 x^{2} \\
& B=-x \\
& C=1 \\
& F=9 x^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(2 x^{2}\right)(0)+(-x)(-1)+(1)(-x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-2 x^{3} v^{\prime \prime}+\left(-3 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-2 x^{3} u^{\prime}(x)-3 x^{2} u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{2 x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{2 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{2 x} d x \\
\ln (u) & =-\frac{3 \ln (x)}{2}+c_{1} \\
u & =\mathrm{e}^{-\frac{3 \ln (x)}{2}+c_{1}} \\
& =\frac{c_{1}}{x^{\frac{3}{2}}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{\frac{3}{2}}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{\frac{3}{2}}} \mathrm{~d} x \\
& =-\frac{2 c_{1}}{\sqrt{x}}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(-x)\left(-\frac{2 c_{1}}{\sqrt{x}}+c_{2}\right) \\
& =-c_{2} x+2 c_{1} \sqrt{x}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=\sqrt{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x & \sqrt{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}(\sqrt{x})
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x & \sqrt{x} \\
1 & \frac{1}{2 \sqrt{x}}
\end{array}\right|
$$

Therefore

$$
W=(x)\left(\frac{1}{2 \sqrt{x}}\right)-(\sqrt{x})(1)
$$

Which simplifies to

$$
W=-\frac{\sqrt{x}}{2}
$$

Which simplifies to

$$
W=-\frac{\sqrt{x}}{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{9 x^{\frac{5}{2}}}{-x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int(-9) d x
$$

Hence

$$
u_{1}=9 x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9 x^{3}}{-x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int-9 \sqrt{x} d x
$$

Hence

$$
u_{2}=-6 x^{\frac{3}{2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{2}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-c_{2} x+2 c_{1} \sqrt{x}\right)+\left(3 x^{2}\right) \\
& =-c_{2} x+2 c_{1} \sqrt{x}+3 x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-c_{2} x+2 c_{1} \sqrt{x}+3 x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-c_{2} x+2 c_{1} \sqrt{x}+3 x^{2}
$$

Verified OK.

1.11.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 x^{2} y^{\prime \prime}-x y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 x^{2} \\
& B=-x \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-3}{16 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-3 \\
& t=16 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{3}{16 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 21: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=16 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

$\underline{\text { Attempting to find a solution using case } n=1}$.

Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{3}{16 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{4}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{3}{16 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{4} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{4}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{3}{16 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{4}$	$\frac{1}{4}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{4}$	$\frac{1}{4}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{4}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{4}-\left(\frac{1}{4}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{4 x}+(-)(0) \\
& =\frac{1}{4 x} \\
& =\frac{1}{4 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{4 x}\right)(0)+\left(\left(-\frac{1}{4 x^{2}}\right)+\left(\frac{1}{4 x}\right)^{2}-\left(-\frac{3}{16 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{4 x} d x} \\
& =x^{\frac{1}{4}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-x}{2 x^{2}} d x} \\
& =z_{1} e^{\frac{\ln (x)}{4}} \\
& =z_{1}\left(x^{\frac{1}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\sqrt{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{2 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{\ln (x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(2 \sqrt{x})
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\sqrt{x})+c_{2}(\sqrt{x}(2 \sqrt{x}))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \sqrt{x}+2 c_{2} x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \\
& y_{2}=2 x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} & 2 x \\
\frac{d}{d x}(\sqrt{x}) & \frac{d}{d x}(2 x)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x} & 2 x \\
\frac{1}{2 \sqrt{x}} & 2
\end{array}\right|
$$

Therefore

$$
W=(\sqrt{x})(2)-(2 x)\left(\frac{1}{2 \sqrt{x}}\right)
$$

Which simplifies to

$$
W=\sqrt{x}
$$

Which simplifies to

$$
W=\sqrt{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{18 x^{3}}{2 x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 9 \sqrt{x} d x
$$

Hence

$$
u_{1}=-6 x^{\frac{3}{2}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9 x^{\frac{5}{2}}}{2 x^{\frac{5}{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{9}{2} d x
$$

Hence

$$
u_{2}=\frac{9 x}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=3 x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \sqrt{x}+2 c_{2} x\right)+\left(3 x^{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x}+2 c_{2} x+3 x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{x}+2 c_{2} x+3 x^{2}
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form $[x i=0$, eta=F $(x)]$
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve ($2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-x * \operatorname{diff}(y(x), x)+y(x)=9 * x^{\wedge} 2, y(x), \quad$ singsol=all)

$$
y(x)=c_{2} x+c_{1} \sqrt{x}+3 x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 23
DSolve[2*x^2*y''[x]-x*y'[x]+y[x]==9*x^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 3 x^{2}+c_{2} x+c_{1} \sqrt{x}
$$

1.12 problem Problem 18

1.12.1 Solving as second order euler ode ode 155
1.12.2 Solving as linear second order ode solved by an integrating factor
ode . 158
1.12.3 Solving as second order change of variable on x method 2 ode . 159
1.12.4 Solving as second order change of variable on x method 1 ode . 164
1.12.5 Solving as second order change of variable on y method 1 ode . 169
1.12.6 Solving as second order change of variable on y method 2 ode . 173
1.12.7 Solving using Kovacic algorithm 178

Internal problem ID [2598]
Internal file name [OUTPUT/2090_Sunday_June_05_2022_02_48_08_AM_7065649/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_1", "second__order_change_of__variable_on_y_method_2", "linear_second__order__ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{4} \sin (x)
$$

1.12.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=x^{4} \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{4} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{7} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \sin (x) d x
$$

Hence

$$
u_{1}=-\sin (x)+\cos (x) x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (x) x^{6}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x^{2}\left(c_{2} x-\sin (x)+c_{1}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{2} x-\sin (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{2} x-\sin (x)+c_{1}\right)
$$

Verified OK.

1.12.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\sin (x) \\
\left(\frac{y}{x^{2}}\right)^{\prime \prime} & =\sin (x)
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x^{2}}\right)^{\prime}=-\cos (x)+c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x^{2}}\right)=c_{1} x-\sin (x)+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x-\sin (x)+c_{2}}{\frac{1}{x^{2}}}
$$

Or

$$
y=c_{1} x^{3}+c_{2} x^{2}-x^{2} \sin (x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{2}-x^{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}+c_{2} x^{2}-x^{2} \sin (x)
$$

Verified OK.

1.12.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int \mathrm{e}^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{x^{8}} \\
& =\frac{6}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{x^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{1}=\frac{\left(x^{5}\right)^{\frac{3}{5}} \cos (x)}{x^{2}}-\frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(-\sin (x)+\cos (x) x)\left(x^{5}\right)^{\frac{3}{5}}}{x^{3}} \\
& u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}\right)+\left(-x^{2} \sin (x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}-x^{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}-x^{2} \sin (x)
$$

Verified OK.

1.12.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=x^{4} \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{4}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{4} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{1}=\frac{\left(x^{5}\right)^{\frac{3}{5}} \cos (x)}{x^{2}}-\frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(-\sin (x)+\cos (x) x)\left(x^{5}\right)^{\frac{3}{5}}}{x^{3}} \\
& u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)\right)+\left(-x^{2} \sin (x)\right) \\
& =-x^{2} \sin (x)+x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=i \sinh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{2}+\cosh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{1}-x^{2} \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=i \sinh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{2}+\cosh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{1}-x^{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=i \sinh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{2}+\cosh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{1}-x^{2} \sin (x)
$$

Verified OK.

1.12.5 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-4}{x}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)=\sin (x)
$$

Which is now solved for $v(x)$ Integrating once gives

$$
v^{\prime}(x)=-\cos (x)+c_{1}
$$

Integrating again gives

$$
v(x)=-\sin (x)+c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x-\sin (x)+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} x-\sin (x)+c_{2}\right) x^{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\left(c_{1} x-\sin (x)+c_{2}\right) x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{1}=\frac{\left(x^{5}\right)^{\frac{3}{5}} \cos (x)}{x^{2}}-\frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(-\sin (x)+\cos (x) x)\left(x^{5}\right)^{\frac{3}{5}}}{x^{3}} \\
& u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} x-\sin (x)+c_{2}\right) x^{2}\right)+\left(-x^{2} \sin (x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} x-\sin (x)+c_{2}\right) x^{2}-x^{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} x-\sin (x)+c_{2}\right) x^{2}-x^{2} \sin (x)
$$

Verified OK.

1.12.6 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=x^{4} \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \\
& =\left(c_{2} x-c_{1}\right) x^{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{4} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{7} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \sin (x) d x
$$

Hence

$$
u_{1}=-\sin (x)+\cos (x) x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (x) x^{6}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3}\right)+\left(-x^{2} \sin (x)\right) \\
& =-x^{2} \sin (x)+\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3}
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(-\sin (x)+c_{2} x-c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(-\sin (x)+c_{2} x-c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(-\sin (x)+c_{2} x-c_{1}\right)
$$

Verified OK.

1.12.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 22: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x} \\
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x^{3}+c_{1} x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{7} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \sin (x) d x
$$

Hence

$$
u_{1}=-\sin (x)+\cos (x) x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (x) x^{6}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x^{3}+c_{1} x^{2}\right)+\left(-x^{2} \sin (x)\right)
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(c_{2} x+c_{1}\right)-x^{2} \sin (x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{2} x+c_{1}\right)-x^{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{2} x+c_{1}\right)-x^{2} \sin (x)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=x^4*sin(x),y(x), singsol=all)
```

$$
y(x)=x^{2}\left(c_{2} x-\sin (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 20

```
DSolve[x^2*y''[x]-4*x*y'[x]+6*y[x]==x^4*Sin[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x^{2}\left(-\sin (x)+c_{2} x+c_{1}\right)
$$

1.13 problem Problem 19

1.13.1 Solving as second order linear constant coeff ode 184
1.13.2 Solving using Kovacic algorithm 186
1.13.3 Maple step by step solution . 189

Internal problem ID [2599]
Internal file name [OUTPUT/2091_Sunday_June_05_2022_02_48_10_AM_51967793/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-(a+b) y^{\prime}+a b y=0
$$

1.13.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-a-b, C=a b$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+(-a-b) \lambda \mathrm{e}^{\lambda x}+a b \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+(-a-b) \lambda+a b=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-a-b, C=a b$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{a+b}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-a-b^{2}-(4)(1)(a b)} \\
& =\frac{a}{2}+\frac{b}{2} \pm \frac{\sqrt{(b-a)^{2}}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{a}{2}+\frac{b}{2}+\frac{\sqrt{(b-a)^{2}}}{2} \\
& \lambda_{2}=\frac{a}{2}+\frac{b}{2}-\frac{\sqrt{(b-a)^{2}}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{a}{2}+\frac{b}{2}+\frac{\sqrt{(b-a)^{2}}}{2} \\
& \lambda_{2}=\frac{a}{2}+\frac{b}{2}-\frac{\sqrt{(b-a)^{2}}}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{a}{2}+\frac{b}{2}+\frac{\sqrt{(b-a)^{2}}}{2}\right) x}+c_{2} e^{\left(\frac{a}{2}+\frac{b}{2}-\frac{\sqrt{(b-a)^{2}}}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\left(\frac{a}{2}+\frac{b}{2}+\frac{\sqrt{(b-a)^{2}}}{2}\right) x}+c_{2} \mathrm{e}^{\left(\frac{a}{2}+\frac{b}{2}-\frac{\sqrt{(b-a)^{2}}}{2}\right) x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(\frac{a}{2}+\frac{b}{2}+\frac{\sqrt{(b-a)^{2}}}{2}\right) x}+c_{2} \mathrm{e}^{\left(\frac{a}{2}+\frac{b}{2}-\frac{\sqrt{(b-a)^{2}}}{2}\right) x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\left(\frac{a}{2}+\frac{b}{2}+\frac{\sqrt{(b-a)^{2}}}{2}\right) x}+c_{2} \mathrm{e}^{\left(\frac{a}{2}+\frac{b}{2}-\frac{\sqrt{(b-a)^{2}}}{2}\right) x}
$$

Verified OK.

1.13.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+(-a-b) y^{\prime}+a b y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-a-b \tag{3}\\
& C=a b
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{a^{2}-2 a b+b^{2}}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =a^{2}-2 a b+b^{2} \\
t & =4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} a^{2}-\frac{1}{2} a b+\frac{1}{4} b^{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 23: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4} a^{2}-\frac{1}{2} a b+\frac{1}{4} b^{2}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{\frac{\sqrt{(b-a)^{2}} x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-a-b}{1} d x} \\
& =z_{1} e^{\left(\frac{a}{2}+\frac{b}{2}\right) x} \\
& =z_{1}\left(\mathrm{e}^{\frac{(a+b) x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{(\operatorname{cosgn}(-b+a)(-b+a)+a+b) x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-a-b}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{(a+b) x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\mathrm{e}^{-\operatorname{csgn}(-b+a)(-b+a) x}}{\sqrt{(-b+a)^{2}}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{(\operatorname{csgn}(-b+a)(-b+a)+a+b) x}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{(\operatorname{c\operatorname {sgn}(-b+a)(-b+a)+a+b)x} 2}{2}}\left(-\frac{\mathrm{e}^{-\operatorname{csgn}(-b+a)(-b+a) x}}{\sqrt{(-b+a)^{2}}}\right)\right)
\end{aligned}
$$

Simplifying the solution $y=c_{1} \mathrm{e}^{\frac{(\operatorname{csgn}(-b+a)(-b+a)+a+b) x}{2}}-\frac{c_{2} \operatorname{csgn}(-b+a) \mathrm{e}^{-\frac{x(\operatorname{csgn}(-b+a)(-b+a)-a-b)}{2}}}{-b+a}$ to Summary
The solution(s) found are the following
$y=c_{1} \mathrm{e}^{a x}-\frac{c_{2} \mathrm{e}^{b x}}{-b+a}$

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{a x}-\frac{c_{2} \mathrm{e}^{b x}}{-b+a} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{a x}-\frac{c_{2} \mathrm{e}^{b x}}{-b+a}
$$

Verified OK.

1.13.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+(-a-b) y^{\prime}+a b y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+(-a-b) r+a b=0
$$

- Factor the characteristic polynomial
$(b-r)(a-r)=0$
- Roots of the characteristic polynomial
$r=(a, b)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{a x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{b x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{a x}+c_{2} \mathrm{e}^{b x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)-(a+b)*diff(y(x),x)+a*b*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{a x}+c_{2} \mathrm{e}^{b x}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 22

```
DSolve[y''[x]-(a+b)*y'[x]+a*b*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{2} e^{a x}+c_{1} e^{b x}
$$

1.14 problem Problem 20

1.14.1 Solving as second order linear constant coeff ode 191
1.14.2 Solving as linear second order ode solved by an integrating factor
ode . 192
1.14.3 Solving using Kovacic algorithm 193
1.14.4 Maple step by step solution . 196

Internal problem ID [2600]
Internal file name [OUTPUT/2092_Sunday_June_05_2022_02_48_12_AM_84334121/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_ccoeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-2 y^{\prime} a+y a^{2}=0
$$

1.14.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2 a, C=a^{2}$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 a \lambda \mathrm{e}^{\lambda x}+a^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
a^{2}-2 a \lambda+\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2 a, C=a^{2}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2 a}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2 a)^{2}-(4)(1)\left(a^{2}\right)} \\
& =a
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-a$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{a x}+c_{2} x \mathrm{e}^{a x} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{a x}+c_{2} x \mathrm{e}^{a x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{a x}+c_{2} x \mathrm{e}^{a x}
$$

Verified OK.

1.14.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2 a$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 a d x} \\
& =\mathrm{e}^{-a x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{-a x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-a x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-a x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-a x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{a x}+c_{2} \mathrm{e}^{a x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{a x}+c_{2} \mathrm{e}^{a x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{a x}+c_{2} \mathrm{e}^{a x}
$$

Verified OK.

1.14.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime} a+y a^{2} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 a \tag{3}\\
& C=a^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 25: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 a}{1} d x} \\
& =z_{1} e^{a x} \\
& =z_{1}\left(\mathrm{e}^{a x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{a x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 a}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 a x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{a x}\right)+c_{2}\left(\mathrm{e}^{a x}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{a x}+c_{2} x \mathrm{e}^{a x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{a x}+c_{2} x \mathrm{e}^{a x}
$$

Verified OK.

1.14.4 Maple step by step solution

Let's solve
$y^{\prime \prime}-2 y^{\prime} a+y a^{2}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$a^{2}-2 r a+r^{2}=0$
- Factor the characteristic polynomial
$(a-r)^{2}=0$
- Root of the characteristic polynomial
$r=a$
- \quad 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{a x}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{a x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{a x}+c_{2} x \mathrm{e}^{a x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(x),x$2)-2*a*diff(y(x),x)+a^2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{a x}\left(c_{2} x+c_{1}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 18

```
DSolve[y''[x]-2*a*y'[x]+a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{a x}\left(c_{2} x+c_{1}\right)
$$

1.15 problem Problem 21

1.15.1 Solving as second order linear constant coeff ode 198
1.15.2 Solving using Kovacic algorithm 200
1.15.3 Maple step by step solution . 203

Internal problem ID [2601]
Internal file name [OUTPUT/2093_Sunday_June_05_2022_02_48_14_AM_32397012/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-2 y^{\prime} a+\left(a^{2}+b^{2}\right) y=0
$$

1.15.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2 a, C=a^{2}+b^{2}$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 a \lambda \mathrm{e}^{\lambda x}+\left(a^{2}+b^{2}\right) \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
a^{2}-2 a \lambda+b^{2}+\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2 a, C=a^{2}+b^{2}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2 a}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2 a^{2}-(4)(1)\left(a^{2}+b^{2}\right)} \\
& =a \pm \sqrt{-b^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=a+\sqrt{-b^{2}} \\
& \lambda_{2}=a-\sqrt{-b^{2}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=a+\sqrt{-b^{2}} \\
& \lambda_{2}=a-\sqrt{-b^{2}}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(a+\sqrt{-b^{2}}\right) x}+c_{2} e^{\left(a-\sqrt{-b^{2}}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\left(a+\sqrt{-b^{2}}\right) x}+c_{2} \mathrm{e}^{\left(a-\sqrt{-b^{2}}\right) x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(a+\sqrt{-b^{2}}\right) x}+c_{2} \mathrm{e}^{\left(a-\sqrt{-b^{2}}\right) x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\left(a+\sqrt{-b^{2}}\right) x}+c_{2} \mathrm{e}^{\left(a-\sqrt{-b^{2}}\right) x}
$$

Verified OK.

1.15.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime} a+\left(a^{2}+b^{2}\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 a \tag{3}\\
& C=a^{2}+b^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-b^{2}}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-b^{2} \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-b^{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 27: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-b^{2}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{x \sqrt{-b^{2}}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 a}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{a x} \\
& =z_{1}\left(\mathrm{e}^{a x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\left(a+\sqrt{-b^{2}}\right) x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 a}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 a x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{-b^{2}} \mathrm{e}^{-2 x \sqrt{-b^{2}}}}{2 b^{2}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\left(a+\sqrt{-b^{2}}\right) x}\right)+c_{2}\left(\mathrm{e}^{\left(a+\sqrt{-b^{2}}\right) x}\left(\frac{\sqrt{-b^{2}} \mathrm{e}^{-2 x \sqrt{-b^{2}}}}{2 b^{2}}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(a+\sqrt{-b^{2}}\right) x}+\frac{c_{2} \sqrt{-b^{2}} \mathrm{e}^{\left(a-\sqrt{-b^{2}}\right) x}}{2 b^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\left(a+\sqrt{-b^{2}}\right) x}+\frac{c_{2} \sqrt{-b^{2}} \mathrm{e}^{\left(a-\sqrt{-b^{2}}\right) x}}{2 b^{2}}
$$

Verified OK.

1.15.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime} a+\left(a^{2}+b^{2}\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$a^{2}-2 r a+b^{2}+r^{2}=0$
- Use quadratic formula to solve for r
$r=\frac{(2 a) \pm\left(\sqrt{-4 b^{2}}\right)}{2}$
- Roots of the characteristic polynomial
$r=\left(a-\sqrt{-b^{2}}, a+\sqrt{-b^{2}}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\left(a-\sqrt{-b^{2}}\right) x}$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{\left(a+\sqrt{-b^{2}}\right) x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{\left(a-\sqrt{-b^{2}}\right) x}+c_{2} \mathrm{e}^{\left(a+\sqrt{-b^{2}}\right) x}$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve(diff $(y(x), x \$ 2)-2 * a * \operatorname{diff}(y(x), x)+\left(a^{\wedge} 2+b^{\wedge} 2\right) * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{a x}\left(c_{1} \sin (b x)+c_{2} \cos (b x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 31
DSolve[y''[x]-2*a*y'[x]+(a^2+b^2)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x(a-i b)}\left(c_{2} e^{2 i b x}+c_{1}\right)
$$

1.16 problem Problem 22

1.16.1 Solving as second order linear constant coeff ode 205
1.16.2 Solving using Kovacic algorithm 207
1.16.3 Maple step by step solution . 211

Internal problem ID [2602]
Internal file name [OUTPUT/2094_Sunday_June_05_2022_02_48_15_AM_92038629/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

1.16.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-6)} \\
& =\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 20: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

1.16.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 29: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5} \tag{1}
\end{equation*}
$$

Figure 21: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}
$$

Verified OK.

1.16.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-r-6=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r-3)=0
$$

- Roots of the characteristic polynomial
$r=(-2,3)$
- \quad 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{3 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-6 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{1} \mathrm{e}^{5 x}+c_{2}\right) \mathrm{e}^{-2 x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 22
DSolve[y''[x]-y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-2 x}\left(c_{2} e^{5 x}+c_{1}\right)
$$

1.17 problem Problem 23

1.17.1 Solving as second order linear constant coeff ode 213

1.17.2 Solving as linear second order ode solved by an integrating factor
ode . 215 ,
1.17.3 Solving using Kovacic algorithm 216
1.17.4 Maple step by step solution . 220

Internal problem ID [2603]
Internal file name [OUTPUT/2095_Sunday_June_05_2022_02_48_17_AM_78263782/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

1.17.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(6)^{2}-(4)(1)(9)} \\
& =-3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

Figure 22: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

Verified OK.

1.17.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 6 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{3 x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{3 x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{3 x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{3 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Figure 23: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}
$$

Verified OK.

1.17.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 31: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Figure 24: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

Verified OK.

1.17.4 Maple step by step solution

Let's solve
$y^{\prime \prime}+6 y^{\prime}+9 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+6 r+9=0$
- Factor the characteristic polynomial
$(r+3)^{2}=0$
- Root of the characteristic polynomial

$$
r=-3
$$

- \quad 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{-3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff $(y(x), x \$ 2)+6 * \operatorname{diff}(y(x), x)+9 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 18
DSolve[y'' $[x]+6 * y$ ' $[x]+9 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-3 x}\left(c_{2} x+c_{1}\right)
$$

1.18 problem Problem 24

1.18.1 Solving as second order euler ode ode 223
1.18.2 Solving as second order change of variable on x method 2 ode . 224
1.18.3 Solving as second order change of variable on x method 1 ode . 226
1.18.4 Solving as second order change of variable on y method 2 ode . 228
1.18.5 Solving as second order integrable as is ode 230
1.18.6 Solving as second order ode non constant coeff transformation
on B ode . 232

1.18.8 Solving using Kovacic algorithm 235
1.18.9 Solving as exact linear second order ode ode 240
1.18.10 Maple step by step solution . 242

Internal problem ID [2604]
Internal file name [OUTPUT/2096_Sunday_June_05_2022_02_48_18_AM_5147740/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_variable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of_variable_on_y_method_2", "second__order_ode__non_constant__coeff_transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

1.18.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}-x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r-1=0
$$

Or

$$
\begin{equation*}
r^{2}-1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Verified OK.

1.18.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+1 \\
\lambda_{2}=-1
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(1) \tau}+c_{2} e^{(-1) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{\tau}+c_{2} \mathrm{e}^{-\tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{2}+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{2}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{2}+c_{2}}{x}
$$

Verified OK.

1.18.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{\sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
$$

Verified OK.

1.18.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
$$

Verified OK.

1.18.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+x y^{\prime}-y\right) d x=0 \\
y^{\prime} x^{2}-y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Verified OK.

1.18.6 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=x \\
& C=-1 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(x)(1)+(-1)(x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
x^{3} v^{\prime \prime}+\left(3 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
x^{2}\left(u^{\prime}(x) x+3 u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(x)\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
$$

Verified OK.
$\begin{array}{ll}\text { 1.18.7 } & \begin{array}{l}\text { Solving as type second_order_integrable_as_is (not using ABC } \\ \text { version) }\end{array}\end{array}$
Writing the ode as

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+x y^{\prime}-y\right) d x=0 \\
y^{\prime} x^{2}-y x=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Verified OK.

1.18.8 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 33: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2} x}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{c_{2} x}{2}
$$

Verified OK.

1.18.9 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =x^{2} \\
q(x) & =x \\
r(x) & =-1 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =1
\end{aligned}
$$

Therefore (1) becomes

$$
2-(1)+(-1)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} x^{2}-y x=c_{1}
$$

We now have a first order ode to solve which is

$$
y^{\prime} x^{2}-y x=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Verified OK.

1.18.10 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}+x y^{\prime}-y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)-y(t)=0$
- Simplify
$\frac{d^{2}}{d t^{2}} y(t)-y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-1=0$
- Factor the characteristic polynomial
$(r-1)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-1,1)$
- \quad 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

- Simplify

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(x^2*diff (y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{2} x^{2}+c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 16
DSolve[x^2*y''[x]+x*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{c_{1}}{x}+c_{2} x
$$

1.19 problem Problem 25

1.19.1 Solving as second order euler ode ode 245
1.19.2 Solving as second order change of variable on x method 2 ode . 246
1.19.3 Solving as second order change of variable on x method 1 ode . 249
1.19.4 Solving as second order change of variable on y method 2 ode . 251
1.19.5 Solving using Kovacic algorithm 253
1.19.6 Maple step by step solution . 258

Internal problem ID [2605]
Internal file name [OUTPUT/2097_Sunday_June_05_2022_02_48_20_AM_48551106/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of__variable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method__2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0
$$

1.19.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+5 x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+5 r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+5 r+4=0
$$

Or

$$
\begin{equation*}
r^{2}+4 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=-2
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}}
$$

Verified OK.

1.19.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{5}{x} d x\right)} d x \\
& =\int e^{-5 \ln (x)} d x \\
& =\int \frac{1}{x^{5}} d x \\
& =-\frac{1}{4 x^{4}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{\frac{1}{x^{10}}} \\
& =4 x^{8} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+4 x^{8} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
4 x^{8}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{4}}\right)+c_{1}\right) \sqrt{-\frac{1}{x^{4}}}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{4}}\right)+c_{1}\right) \sqrt{-\frac{1}{x^{4}}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{4}}\right)+c_{1}\right) \sqrt{-\frac{1}{x^{4}}}}{2}
$$

Verified OK.

1.19.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}} x^{3}}}+\frac{5}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}
$$

Verified OK.

1.19.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{5 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{c_{1} \ln (x)+c_{2}}{x^{2}} \\
& =\frac{c_{1} \ln (x)+c_{2}}{x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (x)+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (x)+c_{2}}{x^{2}}
$$

Verified OK.

1.19.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=5 x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	no condition

Table 35: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to
determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{gathered}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{gathered}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5 x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{5 \ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{x^{\frac{5}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}(\ln (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}}
$$

Verified OK.

1.19.6 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{5 y^{\prime}}{x}-\frac{4 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{5 y^{\prime}}{x}+\frac{4 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1 st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t)\right)+5 \frac{d}{d t} y(t)+4 y(t)=0$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)+4 \frac{d}{d t} y(t)+4 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}+4 r+4=0$
- Factor the characteristic polynomial
$(r+2)^{2}=0$
- Root of the characteristic polynomial
$r=-2$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence
$y_{2}(t)=t \mathrm{e}^{-2 t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}$
- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}}
$$

- \quad Simplify
$y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(x^2*\operatorname{diff}(y(x),x$2)+5*x*\operatorname{diff}(y(x),x)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{2} \ln (x)+c_{1}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 18

```
DSolve[x^2*y''[x]+5*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{2 c_{2} \log (x)+c_{1}}{x^{2}}
$$

1.20 problem Problem 28

1.20.1 Solving as exact ode

Internal problem ID [2606]
Internal file name [OUTPUT/2098_Sunday_June_05_2022_02_48_21_AM_8392845/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[`y=_G(x, \(\left.\left.y^{\prime}\right)^{`}\right]\)

$$
y^{\prime}-\frac{\mathrm{e}^{x}-\sin (y)}{x \cos (y)}=0
$$

1.20.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x \cos (y)) \mathrm{d} y & =\left(\mathrm{e}^{x}-\sin (y)\right) \mathrm{d} x \\
\left(-\mathrm{e}^{x}+\sin (y)\right) \mathrm{d} x+(x \cos (y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\mathrm{e}^{x}+\sin (y) \\
N(x, y) & =x \cos (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{x}+\sin (y)\right) \\
& =\cos (y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x \cos (y)) \\
& =\cos (y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x}+\sin (y) \mathrm{d} x \\
\phi & =-\mathrm{e}^{x}+x \sin (y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x \cos (y)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x \cos (y)$. Therefore equation (4) becomes

$$
\begin{equation*}
x \cos (y)=x \cos (y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\mathrm{e}^{x}+x \sin (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\mathrm{e}^{x}+x \sin (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\mathrm{e}^{x}+x \sin (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 25: Slope field plot

Verification of solutions

$$
-\mathrm{e}^{x}+x \sin (y)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(diff(y(x),x)=(exp(x)-\operatorname{sin}(y(x)))/(x*\operatorname{cos}(y(x))),y(x), singsol=all)
```

$$
y(x)=\arcsin \left(\frac{-c_{1}+\mathrm{e}^{x}}{x}\right)
$$

\checkmark Solution by Mathematica
Time used: 11.572 (sec). Leaf size: 16
DSolve[y' $[x]==(\operatorname{Exp}[x]-\operatorname{Sin}[y[x]]) /(x * \operatorname{Cos}[y[x]]), y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \arcsin \left(\frac{e^{x}+c_{1}}{x}\right)
$$

1.21 problem Problem 29

1.21.1 Solving as exact ode

Internal problem ID [2607]
Internal file name [OUTPUT/2099_Sunday_June_05_2022_02_48_27_AM_75787558/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_rational, [_1st_order, `_with_symmetry_ [F(x)*G(y),0]`], [_Abel, `2nd type`, `class B`]]

$$
y^{\prime}-\frac{1-y^{2}}{2+2 y x}=0
$$

1.21.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x y+2) \mathrm{d} y & =\left(-y^{2}+1\right) \mathrm{d} x \\
\left(y^{2}-1\right) \mathrm{d} x+(2 x y+2) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{2}-1 \\
N(x, y) & =2 x y+2
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-1\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x y+2) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2}-1 \mathrm{~d} x \\
\phi & =\left(y^{2}-1\right) x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 x y+2$. Therefore equation (4) becomes

$$
\begin{equation*}
2 x y+2=2 x y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2) \mathrm{d} y \\
f(y) & =2 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\left(y^{2}-1\right) x+2 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\left(y^{2}-1\right) x+2 y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x\left(y^{2}-1\right)+2 y=c_{1} \tag{1}
\end{equation*}
$$

Figure 26: Slope field plot

Verification of solutions

$$
x\left(y^{2}-1\right)+2 y=c_{1}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
    <- Kovacics algorithm successful
    <- Abel AIR successful: ODE belongs to the 2F1 3-parameter class
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(diff(y(x),x)=(1-y(x)^2)/(2*(1+x*y(x))),y(x), singsol=all)
```

$$
c_{1}+\frac{1}{(y(x)-1)(x y(x)+x+2)}=0
$$

\checkmark Solution by Mathematica
Time used: 0.463 (sec). Leaf size: 58
DSolve[y'[x]==(1-y[x]~2)/(2*(1+x*y[x])),y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1+\sqrt{x^{2}+c_{1} x+1}}{x} \\
& y(x) \rightarrow \frac{-1+\sqrt{x^{2}+c_{1} x+1}}{x} \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 1
\end{aligned}
$$

1.22 problem Problem 30

1.22.1 Existence and uniqueness analysis 271
1.22.2 Solving as exact ode . 272

Internal problem ID [2608]
Internal file name [OUTPUT/2100_Sunday_June_05_2022_02_48_29_AM_15930513/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 30.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[[_1st_order, `_with_symmetry_ \([F(x), G(y)] `]\)

$$
y^{\prime}-\frac{\left(1-y \mathrm{e}^{y x}\right) \mathrm{e}^{-y x}}{x}=0
$$

With initial conditions

$$
[y(1)=0]
$$

1.22.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{\left(y \mathrm{e}^{x y}-1\right) \mathrm{e}^{-x y}}{x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\left(y \mathrm{e}^{x y}-1\right) \mathrm{e}^{-x y}}{x}\right) \\
& =-\frac{\left(\mathrm{e}^{x y}+y \mathrm{e}^{x y} x\right) \mathrm{e}^{-x y}}{x}+\left(y \mathrm{e}^{x y}-1\right) \mathrm{e}^{-x y}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

1.22.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{x y} x\right) \mathrm{d} y & =\left(1-y \mathrm{e}^{x y}\right) \mathrm{d} x \\
\left(y \mathrm{e}^{x y}-1\right) \mathrm{d} x+\left(\mathrm{e}^{x y} x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \mathrm{e}^{x y}-1 \\
N(x, y) & =\mathrm{e}^{x y} x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y \mathrm{e}^{x y}-1\right) \\
& =\mathrm{e}^{x y}(x y+1)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{x y} x\right) \\
& =\mathrm{e}^{x y}(x y+1)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y \mathrm{e}^{x y}-1 \mathrm{~d} x \\
\phi & =-x+\mathrm{e}^{x y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x y} x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x y} x$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x y} x=\mathrm{e}^{x y} x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x+\mathrm{e}^{x y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x+\mathrm{e}^{x y}
$$

The solution becomes

$$
y=\frac{\ln \left(x+c_{1}\right)}{x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\ln \left(c_{1}+1\right) \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\ln (x)}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (x)}{x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\ln (x)}{x}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, --> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4` [1, -y/x], [-x, (x*y-1)/x]
```


Solution by Maple

Time used: 0.062 (sec). Leaf size: 10

```
dsolve([diff (y(x),x)=(1-y(x)*exp(x*y(x)))/(x*exp(x*y(x))),y(1) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{\ln (x)}{x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.403 (sec). Leaf size: 11
DSolve $\left[\left\{y^{\prime}[x]==(1-y[x] * \operatorname{Exp}[x * y[x]]) /(x * \operatorname{Exp}[x * y[x]]),\{y[1]==0\}\right\}, y[x], x\right.$, IncludeSingularSolutio

$$
y(x) \rightarrow \frac{\log (x)}{x}
$$

1.23 problem Problem 31

1.23.1 Solving as exact ode

Internal problem ID [2609]
Internal file name [OUTPUT/2101_Sunday_June_05_2022_02_48_34_AM_38515979/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[`y=_G(x, \(\left.\left.y^{\prime}\right)^{`}\right]\)

$$
y^{\prime}-\frac{x^{2}\left(1-y^{2}\right)+y \mathrm{e}^{\frac{y}{x}}}{x\left(\mathrm{e}^{\frac{y}{x}}+2 x^{2} y\right)}=0
$$

1.23.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x\left(\mathrm{e}^{\frac{y}{x}}+2 x^{2} y\right)\right) \mathrm{d} y & =\left(-y^{2} x^{2}+y \mathrm{e}^{\frac{y}{x}}+x^{2}\right) \mathrm{d} x \\
\left(y^{2} x^{2}-y \mathrm{e}^{\frac{y}{x}}-x^{2}\right) \mathrm{d} x+\left(x\left(\mathrm{e}^{\frac{y}{x}}+2 x^{2} y\right)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{2} x^{2}-y \mathrm{e}^{\frac{y}{x}}-x^{2} \\
N(x, y) & =x\left(\mathrm{e}^{\frac{y}{x}}+2 x^{2} y\right)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2} x^{2}-y \mathrm{e}^{\frac{y}{x}}-x^{2}\right) \\
& =\frac{(-y-x) \mathrm{e}^{\frac{y}{x}}+2 x^{3} y}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x\left(\mathrm{e}^{\frac{y}{x}}+2 x^{2} y\right)\right) \\
& =\frac{(-y+x) \mathrm{e}^{\frac{y}{x}}+6 x^{3} y}{x}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x \mathrm{e}^{\frac{y}{x}}+2 x^{3} y}\left(\left(2 x^{2} y-\mathrm{e}^{\frac{y}{x}}-\frac{y \mathrm{e}^{\frac{y}{x}}}{x}\right)-\left(\mathrm{e}^{\frac{y}{x}}+2 x^{2} y+x\left(-\frac{y \mathrm{e}^{\frac{y}{x}}}{x^{2}}+4 x y\right)\right)\right) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(y^{2} x^{2}-y \mathrm{e}^{\frac{y}{x}}-x^{2}\right) \\
& =\frac{x^{2}\left(y^{2}-1\right)-y \mathrm{e}^{\frac{y}{x}}}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}\left(x\left(\mathrm{e}^{\frac{y}{x}}+2 x^{2} y\right)\right) \\
& =\frac{\mathrm{e}^{\frac{y}{x}}+2 x^{2} y}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{x^{2}\left(y^{2}-1\right)-y \mathrm{e}^{\frac{y}{x}}}{x^{2}}\right)+\left(\frac{\mathrm{e}^{\frac{y}{x}}+2 x^{2} y}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{2}\left(y^{2}-1\right)-y \mathrm{e}^{\frac{y}{x}}}{x^{2}} \mathrm{~d} x \\
\phi & =x y^{2}+\mathrm{e}^{\frac{y}{x}}-x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x y+\frac{\mathrm{e}^{\frac{y}{x}}}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{\frac{y}{x}}+2 x^{2} y}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\mathrm{e}^{\frac{y}{x}}+2 x^{2} y}{x}=\frac{\mathrm{e}^{\frac{y}{x}}+2 x^{2} y}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x y^{2}+\mathrm{e}^{\frac{y}{x}}-x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x y^{2}+\mathrm{e}^{\frac{y}{x}}-x
$$

Summary
The solution(s) found are the following

Figure 28: Slope field plot

Verification of solutions

$$
y^{2} x+\mathrm{e}^{\frac{y}{x}}-x=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 21
dsolve $\left(\operatorname{diff}(y(x), x)=\left(x^{\wedge} 2 *\left(1-y(x)^{\wedge} 2\right)+y(x) * \exp (y(x) / x)\right) /\left(x *\left(\exp (y(x) / x)+2 * x^{\wedge} 2 * y(x)\right)\right), y(x), \quad \sin \right.$

$$
y(x)=\operatorname{RootOf}\left(\mathrm{e}^{-Z}+x^{3} _Z^{2}+c_{1}-x\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.293 (sec). Leaf size: 24
DSolve $\left[y y^{\prime}[x]==\left(x^{\wedge} 2 *(1-y[x] \sim 2)+y[x] * \operatorname{Exp}[y[x] / x]\right) /\left(x *\left(\operatorname{Exp}[y[x] / x]+2 * x^{\wedge} 2 * y[x]\right)\right), y[x], x\right.$, IncludeS

Solve $\left[x y(x)^{2}+e^{\frac{y(x)}{x}}-x=c_{1}, y(x)\right]$

1.24 problem Problem 32

1.24.1 Existence and uniqueness analysis 283
1.24.2 Solving as first order ode lie symmetry lookup ode 284
1.24.3 Solving as bernoulli ode . 289
1.24.4 Solving as exact ode . 292

Internal problem ID [2610]
Internal file name [OUTPUT/2102_Sunday_June_05_2022_02_48_38_AM_97526757/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 32.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

$$
y^{\prime}-\frac{\cos (x)-2 y^{2} x}{2 x^{2} y}=0
$$

With initial conditions

$$
\left[y(\pi)=\frac{1}{\pi}\right]
$$

1.24.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{\cos (x)-2 x y^{2}}{2 x^{2} y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=\frac{1}{\pi}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=\pi$ is inside this domain. The y domain of $f(x, y)$ when $x=\pi$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=\frac{1}{\pi}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{\cos (x)-2 x y^{2}}{2 x^{2} y}\right) \\
& =-\frac{2}{x}-\frac{\cos (x)-2 x y^{2}}{2 x^{2} y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=\frac{1}{\pi}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=\pi$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=\pi$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=\frac{1}{\pi}$ is inside this domain. Therefore solution exists and is unique.

1.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\cos (x)-2 x y^{2}}{2 x^{2} y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 37: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{2} y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{2} y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2} x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\cos (x)-2 x y^{2}}{2 x^{2} y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =x y^{2} \\
S_{y} & =x^{2} y
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\cos (x)}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\cos (R)}{2}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\sin (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{y^{2} x^{2}}{2}=\frac{\sin (x)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2} x^{2}}{2}=\frac{\sin (x)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\cos (x)-2 x y^{2}}{2 x^{2} y}$		$\frac{d S}{d R}=\frac{\cos (R)}{2}$
		\rightarrow
		$\rightarrow \rightarrow$ 边
		－
	$R=x$	$\xrightarrow[\rightarrow-\infty-1]{ }$
	$y^{2} x^{2}$	
$\rightarrow \rightarrow$ 为	$S=\frac{y^{2}}{2}$	$\rightarrow \rightarrow$ 为
		$\rightarrow \rightarrow \pm$－
		\rightarrow 为
		$\rightarrow+-1 \times 0$
		$\cdots \rightarrow \infty$

Initial conditions are used to solve for c_{1} ．Substituting $x=\pi$ and $y=\frac{1}{\pi}$ in the above solution gives an equation to solve for the constant of integration．

$$
\frac{1}{2}=c_{1}
$$

$$
c_{1}=\frac{1}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{y^{2} x^{2}}{2}=\frac{\sin (x)}{2}+\frac{1}{2}
$$

Solving for y from the above gives

$$
y=\frac{\sqrt{1+\sin (x)}}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{1+\sin (x)}}{x} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{1+\sin (x)}}{x}
$$

Verified OK.

1.24.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\cos (x)-2 x y^{2}}{2 x^{2} y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+\frac{\cos (x)}{2 x^{2}} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =\frac{\cos (x)}{2 x^{2}} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-\frac{y^{2}}{x}+\frac{\cos (x)}{2 x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{x}+\frac{\cos (x)}{2 x^{2}} \\
w^{\prime} & =-\frac{2 w}{x}+\frac{\cos (x)}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{\cos (x)}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{2 w(x)}{x}=\frac{\cos (x)}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{\cos (x)}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} w\right) & =\left(x^{2}\right)\left(\frac{\cos (x)}{x^{2}}\right) \\
\mathrm{d}\left(x^{2} w\right) & =\cos (x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} w=\int \cos (x) \mathrm{d} x \\
& x^{2} w=\sin (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
w(x)=\frac{\sin (x)}{x^{2}}+\frac{c_{1}}{x^{2}}
$$

which simplifies to

$$
w(x)=\frac{\sin (x)+c_{1}}{x^{2}}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=\frac{\sin (x)+c_{1}}{x^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=\frac{1}{\pi}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{\pi^{2}}=\frac{c_{1}}{\pi^{2}} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y^{2}=\frac{1+\sin (x)}{x^{2}}
$$

The above simplifies to

$$
y^{2} x^{2}-\sin (x)-1=0
$$

Solving for y from the above gives

$$
y=\frac{\sqrt{1+\sin (x)}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{1+\sin (x)}}{x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{1+\sin (x)}}{x}
$$

Verified OK.

1.24.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 x^{2} y\right) \mathrm{d} y & =\left(\cos (x)-2 x y^{2}\right) \mathrm{d} x \\
\left(-\cos (x)+2 x y^{2}\right) \mathrm{d} x+\left(2 x^{2} y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\cos (x)+2 x y^{2} \\
N(x, y) & =2 x^{2} y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\cos (x)+2 x y^{2}\right) \\
& =4 x y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 x^{2} y\right) \\
& =4 x y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\cos (x)+2 x y^{2} \mathrm{~d} x \\
\phi & =y^{2} x^{2}-\sin (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x^{2} y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 x^{2} y$. Therefore equation (4) becomes

$$
\begin{equation*}
2 x^{2} y=2 x^{2} y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y^{2} x^{2}-\sin (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y^{2} x^{2}-\sin (x)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=\frac{1}{\pi}$ in the above solution gives an equation to solve for the constant of integration.

$$
1=c_{1}
$$

$$
c_{1}=1
$$

Substituting c_{1} found above in the general solution gives

$$
y^{2} x^{2}-\sin (x)=1
$$

Solving for y from the above gives

$$
y=\frac{\sqrt{1+\sin (x)}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{1+\sin (x)}}{x} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{1+\sin (x)}}{x}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 14

```
dsolve([diff (y (x),x)=(\operatorname{cos}(x)-2*x*y(x)^2)/(2*x^2*y(x)),y(Pi) = 1/Pi],y(x), singsol=all)
```

$$
y(x)=\frac{\sqrt{\sin (x)+1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.342 (sec). Leaf size: 17
DSolve $\left[\left\{y^{\prime}[x]==(\operatorname{Cos}[x]-2 * x * y[x] \sim 2) /\left(2 * x^{\wedge} 2 * y[x]\right),\{y[P i]==1 / P i\}\right\}, y[x], x\right.$, IncludeSingularSolutio

$$
y(x) \rightarrow \frac{\sqrt{\sin (x)+1}}{x}
$$

1.25 problem Problem 33

1.25.1 Solving as quadrature ode . 297
1.25.2 Maple step by step solution . 298

Internal problem ID [2611]
Internal file name [OUTPUT/2103_Sunday_June_05_2022_02_48_42_AM_58942872/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 33.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\sin (x)
$$

1.25.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \sin (x) \mathrm{d} x \\
& =-\cos (x)+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\cos (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 32: Slope field plot
Verification of solutions

$$
y=-\cos (x)+c_{1}
$$

Verified OK.

1.25.2 Maple step by step solution

Let's solve

$$
y^{\prime}=\sin (x)
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \sin (x) d x+c_{1}
$$

- Evaluate integral

$$
y=-\cos (x)+c_{1}
$$

- \quad Solve for y

$$
y=-\cos (x)+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(diff(y(x),x)=sin(x),y(x), singsol=all)
```

$$
y(x)=-\cos (x)+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 12

```
DSolve[y'[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-\cos (x)+c_{1}
$$

1.26 problem Problem 34

1.26.1 Solving as quadrature ode . 300
1.26.2 Maple step by step solution . 301

Internal problem ID [2612]
Internal file name [OUTPUT/2104_Sunday_June_05_2022_02_48_44_AM_47541874/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 34.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\frac{1}{x^{\frac{2}{3}}}
$$

1.26.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x^{\frac{2}{3}}} \mathrm{~d} x \\
& =3 x^{\frac{1}{3}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x^{\frac{1}{3}}+c_{1} \tag{1}
\end{equation*}
$$

Figure 33: Slope field plot

Verification of solutions

$$
y=3 x^{\frac{1}{3}}+c_{1}
$$

Verified OK.

1.26.2 Maple step by step solution

Let's solve
$y^{\prime}=\frac{1}{x^{\frac{2}{3}}}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{1}{x^{\frac{2}{3}}} d x+c_{1}$
- Evaluate integral
$y=3 x^{\frac{1}{3}}+c_{1}$
- \quad Solve for y

$$
y=3 x^{\frac{1}{3}}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

$$
\begin{array}{r}
\text { dsolve }\left(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{x}^{\wedge}(-2 / 3), \mathrm{y}(\mathrm{x}), \text { singsol=all }\right) \\
y(x)=3 x^{\frac{1}{3}}+c_{1}
\end{array}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 15

```
DSolve[y'[x]==x^(-2/3),y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 3 \sqrt[3]{x}+c_{1}
$$

1.27 problem Problem 35

1.27.1 Solving as second order ode quadrature ode 303

1.27.2 Solving as second order linear constant coeff ode 304
1.27.3 Solving as second order integrable as is ode 307
1.27.4 Solving as second order ode missing y ode 308
1.27.5 Solving using Kovacic algorithm 309
1.27.6 Solving as exact linear second order ode ode 314
1.27.7 Maple step by step solution 316

Internal problem ID [2613]

Internal file name [OUTPUT/2105_Sunday_June_05_2022_02_48_45_AM_32814056/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode_quadrature", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=x \mathrm{e}^{x}
$$

1.27.1 Solving as second order ode quadrature ode

Integrating once gives

$$
y^{\prime}=(x-1) \mathrm{e}^{x}+c_{1}
$$

Integrating again gives

$$
y=(x-2) \mathrm{e}^{x}+c_{1} x+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) \mathrm{e}^{x}+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Figure 34: Slope field plot

Verification of solutions

$$
y=(x-2) \mathrm{e}^{x}+c_{1} x+c_{2}
$$

Verified OK.

1.27.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=0, f(x)=x \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} x \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}=x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x \mathrm{e}^{x}-2 \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(x \mathrm{e}^{x}-2 \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 35: Slope field plot

Verification of solutions

$$
y=c_{2} x+c_{1}+x \mathrm{e}^{x}-2 \mathrm{e}^{x}
$$

Verified OK.

1.27.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int y^{\prime \prime} d x=\int x \mathrm{e}^{x} d x \\
& y^{\prime}=(x-1) \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1} \mathrm{~d} x \\
& =x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 36: Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
$$

Verified OK.

1.27.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-x \mathrm{e}^{x}=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(x) & =\int x \mathrm{e}^{x} \mathrm{~d} x \\
& =(x-1) \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=(x-1) \mathrm{e}^{x}+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1} \mathrm{~d} x \\
& =x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2} \tag{1}
\end{equation*}
$$

Figure 37: Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
$$

Verified OK.

1.27.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 41: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =1 \int \frac{1}{1} d x \\
& =1(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}=x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x \mathrm{e}^{x}-2 \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(x \mathrm{e}^{x}-2 \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 38: Slope field plot
Verification of solutions

$$
y=c_{2} x+c_{1}+x \mathrm{e}^{x}-2 \mathrm{e}^{x}
$$

Verified OK.

1.27.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
r(x) & =0 \\
s(x) & =x \mathrm{e}^{x}
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime}=\int x \mathrm{e}^{x} d x
$$

We now have a first order ode to solve which is

$$
y^{\prime}=(x-1) \mathrm{e}^{x}+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1} \mathrm{~d} x \\
& =x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 39: Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
$$

Verified OK.

1.27.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=x \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{0})}{2}$
- Roots of the characteristic polynomial
$r=0$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=1
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1}+c_{2} x+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \mathrm{e}^{x}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\left(\int x^{2} \mathrm{e}^{x} d x\right)+x\left(\int x \mathrm{e}^{x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=(x-2) \mathrm{e}^{x}
$$

- Substitute particular solution into general solution to ODE

$$
y=(x-2) \mathrm{e}^{x}+c_{2} x+c_{1}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(diff(y(x),x$2)=x*exp(x),y(x), singsol=all)
```

$$
y(x)=(-2+x) \mathrm{e}^{x}+c_{1} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 19

```
DSolve[y''[x]==x*Exp[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{x}(x-2)+c_{2} x+c_{1}
$$

1.28 problem Problem 36

1.28.1 Solving as second order ode quadrature ode 318
1.28.2 Solving as second order linear constant coeff ode 319
1.28.3 Solving as second order integrable as is ode 323
1.28.4 Solving as second order ode missing y ode 324
1.28.5 Solving using Kovacic algorithm 326
1.28.6 Solving as exact linear second order ode ode 332
1.28.7 Maple step by step solution . 334

Internal problem ID [2614]
Internal file name [OUTPUT/2106_Sunday_June_05_2022_02_48_47_AM_58618917/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 36.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode_quadrature", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=x^{n}
$$

1.28.1 Solving as second order ode quadrature ode

Integrating once gives

$$
y^{\prime}=\frac{x^{n+1}}{n+1}+c_{1}
$$

Integrating again gives

$$
y=\frac{x^{2+n}}{(2+n)(n+1)}+c_{1} x+c_{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2+n}}{(2+n)(n+1)}+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Figure 40: Slope field plot

Verification of solutions

$$
y=\frac{x^{2+n}}{(2+n)(n+1)}+c_{1} x+c_{2}
$$

Verified OK.

1.28.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=0, f(x)=x^{n}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} x \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & x \\
\frac{d}{d x}(1) & \frac{d}{d x}(x)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right|
$$

Therefore

$$
W=(1)(1)-(x)(0)
$$

Which simplifies to

$$
W=1
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x x^{n}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int x^{n+1} d x
$$

Hence

$$
u_{1}=-\frac{x^{2+n}}{2+n}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{n}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int x^{n} d x
$$

Hence

$$
u_{2}=\frac{x^{n+1}}{n+1}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{2+n}}{2+n}+\frac{x^{n+1} x}{n+1}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2+n}}{(2+n)(n+1)}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(\frac{x^{2+n}}{(2+n)(n+1)}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1}+\frac{x^{2+n}}{(2+n)(n+1)} \tag{1}
\end{equation*}
$$

Figure 41: Slope field plot

Verification of solutions

$$
y=c_{2} x+c_{1}+\frac{x^{2+n}}{(2+n)(n+1)}
$$

Verified OK.

1.28.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int y^{\prime \prime} d x=\int x^{n} d x \\
& y^{\prime}=\frac{x^{n+1}}{n+1}+c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{n c_{1}+x^{n+1}+c_{1}}{n+1} \mathrm{~d} x \\
& =\frac{c_{1} x+\frac{x^{2+n}}{2+n}+c_{1} n x}{n+1}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x+\frac{x^{2+n}}{2+n}+c_{1} n x}{n+1}+c_{2} \tag{1}
\end{equation*}
$$

Figure 42: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} x+\frac{x^{2+n}}{2+n}+c_{1} n x}{n+1}+c_{2}
$$

Verified OK.

1.28.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-x^{n}=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(x) & =\int x^{n} \mathrm{~d} x \\
& =\frac{x^{n+1}}{n+1}+c_{1}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{x^{n+1}}{n+1}+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{n c_{1}+x^{n+1}+c_{1}}{n+1} \mathrm{~d} x \\
& =\frac{c_{1} x+\frac{x^{2+n}}{2+n}+c_{1} n x}{n+1}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x+\frac{x^{2+n}}{2+n}+c_{1} n x}{n+1}+c_{2} \tag{1}
\end{equation*}
$$

Figure 43: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} x+\frac{x^{2+n}}{2+n}+c_{1} n x}{n+1}+c_{2}
$$

Verified OK.

1.28.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 43: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =1 \int \frac{1}{1} d x \\
& =1(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & x \\
\frac{d}{d x}(1) & \frac{d}{d x}(x)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right|
$$

Therefore

$$
W=(1)(1)-(x)(0)
$$

Which simplifies to

$$
W=1
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x x^{n}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int x^{n+1} d x
$$

Hence

$$
u_{1}=-\frac{x^{2+n}}{2+n}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{n}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int x^{n} d x
$$

Hence

$$
u_{2}=\frac{x^{n+1}}{n+1}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{2+n}}{2+n}+\frac{x^{n+1} x}{n+1}
$$

Which simplifies to

$$
y_{p}(x)=\frac{x^{2+n}}{(2+n)(n+1)}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(\frac{x^{2+n}}{(2+n)(n+1)}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1}+\frac{x^{2+n}}{(2+n)(n+1)} \tag{1}
\end{equation*}
$$

Figure 44: Slope field plot

Verification of solutions

$$
y=c_{2} x+c_{1}+\frac{x^{2+n}}{(2+n)(n+1)}
$$

Verified OK.

1.28.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
r(x) & =0 \\
s(x) & =x^{n}
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime}=\int x^{n} d x
$$

We now have a first order ode to solve which is

$$
y^{\prime}=\frac{x^{n+1}}{n+1}+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{n c_{1}+x^{n+1}+c_{1}}{n+1} \mathrm{~d} x \\
& =\frac{c_{1} x+\frac{x^{2+n}}{2+n}+c_{1} n x}{n+1}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x+\frac{x^{2+n}}{2+n}+c_{1} n x}{n+1}+c_{2} \tag{1}
\end{equation*}
$$

Figure 45: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} x+\frac{x^{2+n}}{2+n}+c_{1} n x}{n+1}+c_{2}
$$

Verified OK.

1.28.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=x^{n}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{0})}{2}$
- Roots of the characteristic polynomial

$$
r=0
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=1
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1}+c_{2} x+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x^{n}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\left(\int x^{n+1} d x\right)+x\left(\int x^{n} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{x^{2+n}}{(2+n)(n+1)}
$$

- Substitute particular solution into general solution to ODE
$y=c_{2} x+c_{1}+\frac{x^{2+n}}{(2+n)(n+1)}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve(diff(y(x),x$2)=x^n,y(x), singsol=all)
```

$$
y(x)=\frac{x^{2+n}}{(2+n)(n+1)}+c_{1} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 28
DSolve[y''[x]==x^n,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{x^{n+2}}{n^{2}+3 n+2}+c_{2} x+c_{1}
$$

1.29 problem Problem 37

1.29.1 Existence and uniqueness analysis 337
1.29.2 Solving as quadrature ode . 338
1.29.3 Maple step by step solution . 339

Internal problem ID [2615]
Internal file name [OUTPUT/2107_Sunday_June_05_2022_02_48_48_AM_91022340/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 37.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\ln (x) x^{2}
$$

With initial conditions

$$
[y(1)=2]
$$

1.29.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\ln (x) x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\ln (x) x^{2}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\ln (x) x^{2}$ is

$$
\{0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

1.29.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \ln (x) x^{2} \mathrm{~d} x \\
& =\frac{x^{3} \ln (x)}{3}-\frac{x^{3}}{9}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=-\frac{1}{9}+c_{1} \\
c_{1}=\frac{19}{9}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x^{3} \ln (x)}{3}-\frac{x^{3}}{9}+\frac{19}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3} \ln (x)}{3}-\frac{x^{3}}{9}+\frac{19}{9} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{x^{3} \ln (x)}{3}-\frac{x^{3}}{9}+\frac{19}{9}
$$

Verified OK.

1.29.3 Maple step by step solution

Let's solve
$\left[y^{\prime}=\ln (x) x^{2}, y(1)=2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \ln (x) x^{2} d x+c_{1}$
- Evaluate integral
$y=\frac{x^{3} \ln (x)}{3}-\frac{x^{3}}{9}+c_{1}$
- \quad Solve for y
$y=\frac{x^{3} \ln (x)}{3}-\frac{x^{3}}{9}+c_{1}$
- Use initial condition $y(1)=2$
$2=-\frac{1}{9}+c_{1}$
- \quad Solve for c_{1}

$$
c_{1}=\frac{19}{9}
$$

- Substitute $c_{1}=\frac{19}{9}$ into general solution and simplify

$$
y=\frac{x^{3} \ln (x)}{3}-\frac{x^{3}}{9}+\frac{19}{9}
$$

- Solution to the IVP

$$
y=\frac{x^{3} \ln (x)}{3}-\frac{x^{3}}{9}+\frac{19}{9}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve([diff(y(x),x)=x^2*ln(x),y(1) = 2],y(x), singsol=all)
```

$$
y(x)=\frac{x^{3} \ln (x)}{3}-\frac{x^{3}}{9}+\frac{19}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 23

```
DSolve[{y'[x]==x^2*Log[x],{y[1]==2}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{9}\left(-x^{3}+3 x^{3} \log (x)+19\right)
$$

1.30 problem Problem 38

1.30.1 Existence and uniqueness analysis 342
1.30.2 Solving as second order ode quadrature ode 342
1.30.3 Solving as second order linear constant coeff ode 344
1.30.4 Solving as second order integrable as is ode 347
1.30.5 Solving as second order ode missing y ode 348
1.30.6 Solving using Kovacic algorithm 350
1.30.7 Solving as exact linear second order ode ode 355
1.30.8 Maple step by step solution 358

Internal problem ID [2616]
Internal file name [OUTPUT/2108_Sunday_June_05_2022_02_48_51_AM_90750636/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 38.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode__quadrature", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=\cos (x)
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=1\right]
$$

1.30.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =0 \\
F & =\cos (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}=\cos (x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $F=\cos (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.30.2 Solving as second order ode quadrature ode

Integrating once gives

$$
y^{\prime}=\sin (x)+c_{1}
$$

Integrating again gives

$$
y=-\cos (x)+c_{1} x+c_{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\cos (x)+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{2}-1 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\sin (x)+c_{1}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\cos (x)+3+x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\cos (x)+3+x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\cos (x)+3+x
$$

Verified OK.

1.30.3 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=0, f(x)=\cos (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} x \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \cos (x)-A_{2} \sin (x)=\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\cos (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+(-\cos (x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x+c_{1}-\cos (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}-1 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{2}+\sin (x)
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\cos (x)+3+x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\cos (x)+3+x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\cos (x)+3+x
$$

Verified OK.

1.30.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int y^{\prime \prime} d x=\int \cos (x) d x \\
& y^{\prime}=\sin (x)+c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int \sin (x)+c_{1} \mathrm{~d} x \\
& =-\cos (x)+c_{1} x+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\cos (x)+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{2}-1 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\sin (x)+c_{1}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\cos (x)+3+x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\cos (x)+3+x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\cos (x)+3+x
$$

Verified OK.

1.30.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-\cos (x)=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(x) & =\int \cos (x) \mathrm{d} x \\
& =\sin (x)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $p=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
p(x)=1+\sin (x)
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=1+\sin (x)
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int 1+\sin (x) \mathrm{d} x \\
& =-\cos (x)+c_{2}+x
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=c_{2}-1 \\
c_{2}=3
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-\cos (x)+3+x
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\cos (x)+3+x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\cos (x)+3+x
$$

Verified OK.

1.30.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 46: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =1 \int \frac{1}{1} d x \\
& =1(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \cos (x)-A_{2} \sin (x)=\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\cos (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+(-\cos (x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x+c_{1}-\cos (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}-1 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{2}+\sin (x)
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\cos (x)+3+x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\cos (x)+3+x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\cos (x)+3+x
$$

Verified OK.

1.30.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
r(x) & =0 \\
s(x) & =\cos (x)
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime}=\int \cos (x) d x
$$

We now have a first order ode to solve which is

$$
y^{\prime}=\sin (x)+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \sin (x)+c_{1} \mathrm{~d} x \\
& =-\cos (x)+c_{1} x+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\cos (x)+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{2}-1 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\sin (x)+c_{1}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\cos (x)+3+x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\cos (x)+3+x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\cos (x)+3+x
$$

Verified OK.

1.30.8 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=\cos (x), y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{0})}{2}$
- Roots of the characteristic polynomial

$$
r=0
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=1
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1}+c_{2} x+y_{p}(x)$
$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (x)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\left(\int \cos (x) x d x\right)+x\left(\int \cos (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\cos (x)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{2} x+c_{1}-\cos (x)
$$

Check validity of solution $y=c_{2} x+c_{1}-\cos (x)$

- Use initial condition $y(0)=2$
$2=c_{1}-1$
- Compute derivative of the solution

$$
y^{\prime}=c_{2}+\sin (x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify

$$
y=-\cos (x)+3+x
$$

- \quad Solution to the IVP

$$
y=-\cos (x)+3+x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\int Solution by Maple
Time used: 0.015 (sec). Leaf size: 11

```
dsolve([diff (y(x),x$2)=cos(x),y(0) = 2, D(y)(0) = 1],y(x), singsol=all)
```

$$
y(x)=-\cos (x)+x+3
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 12
DSolve[\{y''[x]==Cos[x],\{y[0]==2,y'[0]==1\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x-\cos (x)+3
$$

1.31 problem Problem 39

Internal problem ID [2617]
Internal file name [OUTPUT/2109_Sunday_June_05_2022_02_48_53_AM_70023368/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 39.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _quadrature]]

$$
y^{\prime \prime \prime}=6 x
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=-4\right]
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{3}=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =0 \\
\lambda_{3} & =0
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{3} x^{2}+c_{2} x+c_{1}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=x^{2}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}=6 x
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, x, x^{2}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}\right\}\right]
$$

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2}, x^{3}\right\}\right]
$$

Since x^{2} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3}, x^{4}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{2} x^{4}+A_{1} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
24 x A_{2}+6 A_{1}=6 x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{4}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\left(\frac{x^{4}}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{3} x^{2}+c_{2} x+c_{1}+\frac{1}{4} x^{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=x^{3}+2 c_{3} x+c_{2}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{2} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=3 x^{2}+2 c_{3}
$$

substituting $y^{\prime \prime}=-4$ and $x=0$ in the above gives

$$
\begin{equation*}
-4=2 c_{3} \tag{3~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-1 \\
& c_{3}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x^{2}-x+1+\frac{1}{4} x^{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 x^{2}-x+1+\frac{1}{4} x^{4} \tag{1}
\end{equation*}
$$

Figure 53: Solution plot
Verification of solutions

$$
y=-2 x^{2}-x+1+\frac{1}{4} x^{4}
$$

Verified OK.

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18
dsolve([diff $(y(x), x \$ 3)=6 * x, y(0)=1, D(y)(0)=-1,(D @ @ 2)(y)(0)=-4], y(x)$, singsol=all)

$$
y(x)=\frac{1}{4} x^{4}-2 x^{2}+1-x
$$

Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 22
DSolve $\left\{\left\{y^{\prime}{ }^{\prime} '[x]==6 * x,\left\{y[0]==2, y^{\prime}[0]==-1, y^{\prime \prime}[0]==-4\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow \frac{1}{4}\left(x^{4}-8 x^{2}-4 x+8\right)
$$

1.32 problem Problem 40

1.32.1 Existence and uniqueness analysis 367
1.32.2 Solving as second order ode quadrature ode 367
1.32.3 Solving as second order linear constant coeff ode 369
1.32.4 Solving as second order integrable as is ode 372
1.32.5 Solving as second order ode missing y ode 374
1.32.6 Solving using Kovacic algorithm 375
1.32.7 Solving as exact linear second order ode ode 381
1.32.8 Maple step by step solution 383

Internal problem ID [2618]

Internal file name [OUTPUT/2110_Sunday_June_05_2022_02_48_55_AM_14258921/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 40.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode_quadrature", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=x \mathrm{e}^{x}
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=4\right]
$$

1.32.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =0 \\
F & =x \mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}=x \mathrm{e}^{x}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $F=x \mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.32.2 Solving as second order ode quadrature ode

Integrating once gives

$$
y^{\prime}=(x-1) \mathrm{e}^{x}+c_{1}
$$

Integrating again gives

$$
y=(x-2) \mathrm{e}^{x}+c_{1} x+c_{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=(x-2) \mathrm{e}^{x}+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-2+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x}+(x-2) \mathrm{e}^{x}+c_{1}
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1}-1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x \mathrm{e}^{x}-2 \mathrm{e}^{x}+5+5 x
$$

Which simplifies to

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) \mathrm{e}^{x}+5 x+5 \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

Verified OK.

1.32.3 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=0, f(x)=x \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} x \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}=x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x \mathrm{e}^{x}-2 \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(x \mathrm{e}^{x}-2 \mathrm{e}^{x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x+c_{1}+x \mathrm{e}^{x}-2 \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-2+c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{2}+x \mathrm{e}^{x}-\mathrm{e}^{x}
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{2}-1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x \mathrm{e}^{x}-2 \mathrm{e}^{x}+5+5 x
$$

Which simplifies to

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) \mathrm{e}^{x}+5 x+5 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

Verified OK.

1.32.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
\int y^{\prime \prime} d x=\int x \mathrm{e}^{x} d x \\
y^{\prime}=(x-1) \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1} \mathrm{~d} x \\
& =x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-2+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1}-1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x \mathrm{e}^{x}-2 \mathrm{e}^{x}+5+5 x
$$

Which simplifies to

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) \mathrm{e}^{x}+5 x+5 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

Verified OK.

1.32.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-x \mathrm{e}^{x}=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(x) & =\int x \mathrm{e}^{x} \mathrm{~d} x \\
& =(x-1) \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $p=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=c_{1}-1 \\
c_{1}=5
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
p(x)=x \mathrm{e}^{x}-\mathrm{e}^{x}+5
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=x \mathrm{e}^{x}-\mathrm{e}^{x}+5
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{x}-\mathrm{e}^{x}+5 \mathrm{~d} x \\
& =x \mathrm{e}^{x}-2 \mathrm{e}^{x}+c_{2}+5 x
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=-2+c_{2}
$$

$$
c_{2}=5
$$

Substituting c_{2} found above in the general solution gives

$$
y=x \mathrm{e}^{x}-2 \mathrm{e}^{x}+5+5 x
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{x}-2 \mathrm{e}^{x}+5+5 x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{x}-2 \mathrm{e}^{x}+5+5 x
$$

Verified OK.

1.32.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 48: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =1 \int \frac{1}{1} d x \\
& =1(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}+A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}=x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x \mathrm{e}^{x}-2 \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(x \mathrm{e}^{x}-2 \mathrm{e}^{x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x+c_{1}+x \mathrm{e}^{x}-2 \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-2+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{2}+x \mathrm{e}^{x}-\mathrm{e}^{x}
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{2}-1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x \mathrm{e}^{x}-2 \mathrm{e}^{x}+5+5 x
$$

Which simplifies to

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) \mathrm{e}^{x}+5 x+5 \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

Verified OK.

1.32.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
r(x) & =0 \\
s(x) & =x \mathrm{e}^{x}
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime}=\int x \mathrm{e}^{x} d x
$$

We now have a first order ode to solve which is

$$
y^{\prime}=(x-1) \mathrm{e}^{x}+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1} \mathrm{~d} x \\
& =x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x \mathrm{e}^{x}+c_{1} x-2 \mathrm{e}^{x}+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-2+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1}-1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=x \mathrm{e}^{x}-2 \mathrm{e}^{x}+5+5 x
$$

Which simplifies to

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(x-2) \mathrm{e}^{x}+5 x+5 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

Verified OK.

1.32.8 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}=x \mathrm{e}^{x}, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=4\right]$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{0})}{2}
$$

- Roots of the characteristic polynomial

$$
r=0
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=1
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1}+c_{2} x+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\left(\int x^{2} \mathrm{e}^{x} d x\right)+x\left(\int x \mathrm{e}^{x} d x\right)$
- Compute integrals
$y_{p}(x)=(x-2) \mathrm{e}^{x}$
- Substitute particular solution into general solution to ODE
$y=(x-2) \mathrm{e}^{x}+c_{2} x+c_{1}$
Check validity of solution $y=(x-2) \mathrm{e}^{x}+c_{2} x+c_{1}$
- Use initial condition $y(0)=3$
$3=-2+c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=\mathrm{e}^{x}+(x-2) \mathrm{e}^{x}+c_{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=4$
$4=c_{2}-1$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=5, c_{2}=5\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

- \quad Solution to the IVP

$$
y=(x-2) \mathrm{e}^{x}+5 x+5
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([diff(y(x),x$2)=x*exp(x),y(0) = 3, D(y)(0) = 4],y(x), singsol=all)
```

$$
y(x)=(-2+x) \mathrm{e}^{x}+5 x+5
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 18

```
DSolve[{y''[x]==x*Exp[x],{y[0]==3,y'[0]==4}},y[x],x,IncludeSingularSolutions }->>\mathrm{ True]
```

$$
y(x) \rightarrow e^{x}(x-2)+5(x+1)
$$

1.33 problem Problem 45

1.33.1 Solving as second order linear constant coeff ode

1.33.2 Solving using Kovacic algorithm 388
1.33.3 Maple step by step solution 392

Internal problem ID [2619]
Internal file name [OUTPUT/2111_Sunday_June_05_2022_02_48_57_AM_59657886/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 45.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

1.33.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-6)} \\
& =-\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Figure 60: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-3 x}
$$

Verified OK.

1.33.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 50: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5} \tag{1}
\end{equation*}
$$

Figure 61: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5}
$$

Verified OK.

1.33.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+r-6=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(-3,2)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-3 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve (diff $(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-6 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{2} \mathrm{e}^{5 x}+c_{1}\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 19
DSolve $\left[y^{\prime \prime}[\mathrm{x}]==\mathrm{x} * \operatorname{Exp}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x}(x-2)+c_{2} x+c_{1}
$$

1.34 problem Problem 46

1.34.1 Solving as second order euler ode ode 394
1.34.2 Solving as second order change of variable on x method 2 ode . 395
1.34.3 Solving as second order change of variable on y method 2 ode . 398
1.34.4 Solving using Kovacic algorithm 400
1.34.5 Maple step by step solution . 405

Internal problem ID [2620]
Internal file name [OUTPUT/2112_Sunday_June_05_2022_02_48_59_AM_63405669/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 46.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of__variable_on_y__method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-x y^{\prime}-8 y=0
$$

1.34.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-x r x^{r-1}-8 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-r x^{r}-8 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-r-8=0
$$

Or

$$
\begin{equation*}
r^{2}-2 r-8=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=4
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+c_{2} x^{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{4}
$$

Verified OK.

1.34.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}-8 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=-\frac{8}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{\ln (x)} d x \\
& =\int x d x \\
& =\frac{x^{2}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{8}{x^{2}}}{x^{2}} \\
& =-\frac{8}{x^{4}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{8 y(\tau)}{x^{4}} & =0
\end{aligned}
$$

But in terms of τ

$$
-\frac{8}{x^{4}}=-\frac{2}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{2 y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-2 \tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}-2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0-2=0
$$

Or

$$
\begin{equation*}
r^{2}-r-2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau}+c_{2} \tau^{2}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{2 c_{1}}{x^{2}}+\frac{c_{2} x^{4}}{4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 c_{1}}{x^{2}}+\frac{c_{2} x^{4}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 c_{1}}{x^{2}}+\frac{c_{2} x^{4}}{4}
$$

Verified OK.

1.34.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}-8 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=-\frac{8}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{n}{x^{2}}-\frac{8}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=4 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{7 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{7 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{7 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{7 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{7}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{7}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{7}{x} d x \\
\ln (u) & =-7 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-7 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{7}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{6 x^{6}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{6 x^{6}}+c_{2}\right) x^{4} \\
& =\frac{6 c_{2} x^{6}-c_{1}}{6 x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{6 x^{6}}+c_{2}\right) x^{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{6 x^{6}}+c_{2}\right) x^{4}
$$

Verified OK.

1.34.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-x y^{\prime}-8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-x \tag{3}\\
& C=-8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{35}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=35 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{35}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 52: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{35}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{35}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{7}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{5}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{35}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{35}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{7}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{5}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{35}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{7}{2}$	$-\frac{5}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{7}{2}$	$-\frac{5}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{5}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{5}{2}-\left(-\frac{5}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{5}{2 x}+(-)(0) \\
& =-\frac{5}{2 x} \\
& =-\frac{5}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{5}{2 x}\right)(0)+\left(\left(\frac{5}{2 x^{2}}\right)+\left(-\frac{5}{2 x}\right)^{2}-\left(\frac{35}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{5}{2 x} d x} \\
& =\frac{1}{x^{\frac{5}{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1-x}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{\frac{\ln (x)}{2}} \\
& =z_{1}(\sqrt{x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{6}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}\left(\frac{x^{6}}{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{4}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{4}}{6}
$$

Verified OK.

1.34.5 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}-x y^{\prime}-8 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{y^{\prime}}{x}+\frac{8 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{x}-\frac{8 y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}-x y^{\prime}-8 y=0
$$

- Make a change of variables

$$
t=\ln (x)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-\frac{d}{d t} y(t)-8 y(t)=0$
- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-2 \frac{d}{d t} y(t)-8 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-2 r-8=0$
- Factor the characteristic polynomial
$(r+2)(r-4)=0$
- Roots of the characteristic polynomial

$$
r=(-2,4)
$$

- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{4 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{4 t}
$$

- Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{4}
$$

- \quad Simplify

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve( (x^2*diff(y(x),x$2)-x*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{2} x^{6}+c_{1}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 18
DSolve $[x \sim 2 * y$ '' $[x]-x * y$ ' $[x]-8 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{2} x^{6}+c_{1}}{x^{2}}
$$

1.35 problem Problem 47

1.35.1 Solving as second order euler ode ode 408
1.35.2 Solving as second order change of variable on x method 2 ode . 412
1.35.3 Solving as second order change of variable on x method 1 ode . 417
1.35.4 Solving as second order change of variable on y method 2 ode . 422
1.35.5 Solving using Kovacic algorithm 427

Internal problem ID [2621]
Internal file name [OUTPUT/2113_Sunday_June_05_2022_02_49_00_AM_99743443/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.2, Basic Ideas and Terminology. page 21
Problem number: Problem 47.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change_of__variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=\ln (x) x^{2}
$$

1.35.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=\ln (x) x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$.

Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-3 r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-3 r+4=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=\ln (x) x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 \ln (x) x
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 \ln (x) x)-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x)^{2} x^{4}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)^{2}}{x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{3}}{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4} \ln (x)}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)}{x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{2}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\ln (x)^{3} x^{2}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}+c_{2} \ln (x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}+c_{2} \ln (x)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}+c_{2} \ln (x)\right)
$$

Verified OK.

1.35.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{x^{6}} \\
& =\frac{4}{x^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{x^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{4}{x^{8}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x^{4}} \\
& y_{2}=\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & \frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}} \\
\frac{d}{d x}\left(\sqrt{x^{4}}\right) & \frac{d}{d x}\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & \frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}} \\
\frac{2 x^{3}}{\sqrt{x^{4}}} & \frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}
\end{array}\right|
$$

Therefore
$W=\left(\sqrt{x^{4}}\right)\left(\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}\right)-\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)\left(\frac{2 x^{3}}{\sqrt{x^{4}}}\right)$
Which simplifies to

$$
W=2 x^{3}
$$

Which simplifies to

$$
W=2 x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right) \ln (x) x^{2}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{1}=-\int-\frac{(-2 \ln (x)+\ln (2)) \ln (x)}{2 x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{3}}{3}+\frac{\ln (2) \ln (x)^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{x^{4}} \ln (x) x^{2}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{2}=\int \frac{\ln (x)}{2 x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{2}}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\ln (x)^{2}(4 \ln (x)-3 \ln (2))}{12} \\
& u_{2}=\frac{\ln (x)^{2}}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\ln (x)^{2}(4 \ln (x)-3 \ln (2)) \sqrt{x^{4}}}{12}+\frac{\ln (x)^{2}\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)^{3} x^{2}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}\right)+\left(\frac{\ln (x)^{3} x^{2}}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}+\frac{\ln (x)^{3} x^{2}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}+\frac{\ln (x)^{3} x^{2}}{6}
$$

Verified OK. $\{0<\mathrm{x}\}$

1.35.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=\ln (x) x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} x^{2}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=\ln (x) x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x^{4}} \\
& y_{2}=\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & \frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}} \\
\frac{d}{d x}\left(\sqrt{x^{4}}\right) & \frac{d}{d x}\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & \frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}} \\
\frac{2 x^{3}}{\sqrt{x^{4}}} & \frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}
\end{array}\right|
$$

Therefore
$W=\left(\sqrt{x^{4}}\right)\left(\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}\right)-\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)\left(\frac{2 x^{3}}{\sqrt{x^{4}}}\right)$
Which simplifies to

$$
W=2 x^{3}
$$

Which simplifies to

$$
W=2 x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right) \ln (x) x^{2}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{1}=-\int-\frac{(-2 \ln (x)+\ln (2)) \ln (x)}{2 x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{3}}{3}+\frac{\ln (2) \ln (x)^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{x^{4}} \ln (x) x^{2}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{2}=\int \frac{\ln (x)}{2 x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{2}}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\ln (x)^{2}(4 \ln (x)-3 \ln (2))}{12} \\
& u_{2}=\frac{\ln (x)^{2}}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\ln (x)^{2}(4 \ln (x)-3 \ln (2)) \sqrt{x^{4}}}{12}+\frac{\ln (x)^{2}\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)^{3} x^{2}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}\right)+\left(\frac{\ln (x)^{3} x^{2}}{6}\right) \\
& =\frac{\ln (x)^{3} x^{2}}{6}+c_{1} x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}\right)
$$

Verified OK. $\{0<\mathrm{x}\}$

1.35.4 Solving as second order change of variable on y method 2 ode

 This is second order non-homogeneous ODE. In standard form the ODE is$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=\ln (x) x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=\ln (x) x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 \ln (x) x
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 \ln (x) x)-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x)^{2} x^{4}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)^{2}}{x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{3}}{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4} \ln (x)}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)}{x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{2}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\ln (x)^{3} x^{2}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} \ln (x)+c_{2}\right) x^{2}\right)+\left(\frac{\ln (x)^{3} x^{2}}{6}\right) \\
& =\frac{\ln (x)^{3} x^{2}}{6}+\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1} \ln (x)+c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1} \ln (x)+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1} \ln (x)+c_{2}\right)
$$

Verified OK. $\{0<x\}$

1.35.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 54: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(\ln (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 \ln (x) x
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 \ln (x) x)-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x)^{2} x^{4}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)^{2}}{x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{3}}{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4} \ln (x)}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)}{x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{2}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\ln (x)^{3} x^{2}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}+c_{2} x^{2} \ln (x)\right)+\left(\frac{\ln (x)^{3} x^{2}}{6}\right)
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+\frac{\ln (x)^{3} x^{2}}{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+\frac{\ln (x)^{3} x^{2}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+\frac{\ln (x)^{3} x^{2}}{6}
$$

Verified OK. $\{0<\mathrm{x}\}$
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

$$
\begin{aligned}
& \text { dsolve }\left(\mathrm{x}^{\wedge} 2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-3 * \mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+4 * \mathrm{y}(\mathrm{x})=\mathrm{x}^{\wedge} 2 * \ln (\mathrm{x}), \mathrm{y}(\mathrm{x})\right. \text {, singsol=all) } \\
& y(x)=x^{2}\left(c_{2}+\ln (x) c_{1}+\frac{\ln (x)^{3}}{6}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 27
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[\mathrm{x}]-3 * \mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==\mathrm{x}^{\wedge} 2 * \log [\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{6} x^{2}\left(\log ^{3}(x)+12 c_{2} \log (x)+6 c_{1}\right)
$$

2 Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43
2.1 problem Problem 1 437
2.2 problem Problem 2 440
2.3 problem Problem 3 444
2.4 problem Problem 4 448
2.5 problem Problem 5 451
2.6 problem Problem 6 454
2.7 problem Problem 7 458
2.8 problem Problem 8 462
2.9 problem Problem 9 473
2.10 problem Problem 10 477
2.11 problem Problem 11 481
2.12 problem Problem 12 484
2.13 problem Problem 13 489
2.14 problem Problem 14 501
2.15 problem Problem 15 514
2.16 problem Problem 16 518
2.17 problem Problem 17 523

2.1 problem Problem 1

2.1.1 Solving as separable ode . 437
2.1.2 Maple step by step solution . 438

Internal problem ID [2622]
Internal file name [OUTPUT/2114_Sunday_June_05_2022_02_49_02_AM_83416222/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-2 y x=0
$$

2.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =2 x y
\end{aligned}
$$

Where $f(x)=2 x$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =2 x d x \\
\int \frac{1}{y} d y & =\int 2 x d x \\
\ln (y) & =x^{2}+c_{1} \\
y & =\mathrm{e}^{x^{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
$$

Figure 62: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x^{2}}
$$

Verified OK.

2.1.2 Maple step by step solution

Let's solve
$y^{\prime}-2 y x=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=2 x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int 2 x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{x^{2}+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(diff(y(x),x)=2*x*y(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x^{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 18
DSolve[y'[x]==2*x*y[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{x^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.2 problem Problem 2

2.2.1 Solving as separable ode . 440
2.2.2 Maple step by step solution . 442

Internal problem ID [2623]
Internal file name [OUTPUT/2115_Sunday_June_05_2022_02_49_05_AM_4677793/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{y^{2}}{x^{2}+1}=0
$$

2.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y^{2}}{x^{2}+1}
\end{aligned}
$$

Where $f(x)=\frac{1}{x^{2}+1}$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =\frac{1}{x^{2}+1} d x \\
\int \frac{1}{y^{2}} d y & =\int \frac{1}{x^{2}+1} d x \\
-\frac{1}{y} & =\arctan (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{1}{\arctan (x)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{\arctan (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 63: Slope field plot

Verification of solutions

$$
y=-\frac{1}{\arctan (x)+c_{1}}
$$

Verified OK.

2.2.2 Maple step by step solution

Let's solve
$y^{\prime}-\frac{y^{2}}{x^{2}+1}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y^{2}}=\frac{1}{x^{2}+1}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{2}} d x=\int \frac{1}{x^{2}+1} d x+c_{1}$
- Evaluate integral
$-\frac{1}{y}=\arctan (x)+c_{1}$
- \quad Solve for y
$y=-\frac{1}{\arctan (x)+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)=y(x)^2/(x^2+1),y(x), singsol=all)
```

$$
y(x)=\frac{1}{-\arctan (x)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.16 (sec). Leaf size: 19
DSolve[y' $[x]==y[x] \sim 2 /\left(x^{\wedge} 2+1\right), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{\arctan (x)+c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.3 problem Problem 3

2.3.1 Solving as separable ode . 444
2.3.2 Maple step by step solution . 446

Internal problem ID [2624]
Internal file name [OUTPUT/2116_Sunday_June_05_2022_02_49_06_AM_88882434/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
\mathrm{e}^{y+x} y^{\prime}=1
$$

2.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\mathrm{e}^{-y} \mathrm{e}^{-x}
\end{aligned}
$$

Where $f(x)=\mathrm{e}^{-x}$ and $g(y)=\mathrm{e}^{-y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{-y}} d y & =\mathrm{e}^{-x} d x \\
\int \frac{1}{\mathrm{e}^{-y}} d y & =\int \mathrm{e}^{-x} d x \\
\mathrm{e}^{y} & =-\mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\ln \left(-1+c_{1} \mathrm{e}^{x}\right)-x
$$

Summary
The solution(s) found are the following

Figure 64: Slope field plot

Verification of solutions

$$
y=\ln \left(-1+c_{1} \mathrm{e}^{x}\right)-x
$$

Verified OK.

2.3.2 Maple step by step solution

Let's solve

$$
\mathrm{e}^{y+x} y^{\prime}=1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y^{\prime} \mathrm{e}^{y}=\frac{1}{\mathrm{e}^{x}}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} \mathrm{e}^{y} d x=\int \frac{1}{\mathrm{e}^{x}} d x+c_{1}
$$

- Evaluate integral

$$
\mathrm{e}^{y}=-\frac{1}{\mathrm{e}^{x}}+c_{1}
$$

- \quad Solve for y

$$
y=\ln \left(-1+c_{1} \mathrm{e}^{x}\right)-x
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(exp(x+y(x))*diff(y(x),x)-1=0,y(x), singsol=all)
```

$$
y(x)=\ln \left(\mathrm{e}^{x} c_{1}-1\right)-x
$$

\checkmark Solution by Mathematica
Time used: 0.097 (sec). Leaf size: 16
DSolve[Exp $[x+y[x]] * y$ ' $[x]-1==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \log \left(-e^{-x}+c_{1}\right)
$$

2.4 problem Problem 4

> 2.4.1 Solving as separable ode
2.4.2 Maple step by step solution449

Internal problem ID [2625]
Internal file name [OUTPUT/2117_Sunday_June_05_2022_02_49_09_AM_36847014/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{y}{\ln (x) x}=0
$$

2.4.1 Solving as separable ode

In canonical form the $O D E$ is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{\ln (x) x}
\end{aligned}
$$

Where $f(x)=\frac{1}{\ln (x) x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{\ln (x) x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{\ln (x) x} d x \\
\ln (y) & =\ln (\ln (x))+c_{1} \\
y & =\mathrm{e}^{\ln (\ln (x))+c_{1}} \\
& =c_{1} \ln (x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (x) \tag{1}
\end{equation*}
$$

Figure 65: Slope field plot

Verification of solutions

$$
y=c_{1} \ln (x)
$$

Verified OK.

2.4.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{y}{\ln (x) x}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{\ln (x) x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{\ln (x) x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\ln (\ln (x))+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}} \ln (x)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve(diff(y(x),x)=y(x)/(x*\operatorname{ln}(x)),y(x), singsol=all)
```

$$
y(x)=\ln (x) c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 15
DSolve[y' $[x]==y[x] /(x * \log [x]), y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} \log (x) \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.5 problem Problem 5

2.5.1 Solving as separable ode . 451
2.5.2 Maple step by step solution . 452

Internal problem ID [2626]
Internal file name [OUTPUT/2118_Sunday_June_05_2022_02_49_11_AM_50037576/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y-(x-1) y^{\prime}=0
$$

2.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x-1}
\end{aligned}
$$

Where $f(x)=\frac{1}{x-1}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x-1} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x-1} d x \\
\ln (y) & =\ln (x-1)+c_{1} \\
y & =\mathrm{e}^{\ln (x-1)+c_{1}} \\
& =c_{1}(x-1)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}(x-1) \tag{1}
\end{equation*}
$$

Figure 66: Slope field plot

Verification of solutions

$$
y=c_{1}(x-1)
$$

Verified OK.

2.5.2 Maple step by step solution

Let's solve
$y-(x-1) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x-1}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x-1} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\ln (x-1)+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}}(x-1)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(y(x)-(x-1)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}(x-1)
$$

Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 16
DSolve $[y[x]-(x-1) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1}(x-1) \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.6 problem Problem 6

2.6.1 Solving as separable ode . 454
2.6.2 Maple step by step solution . 456

Internal problem ID [2627]
Internal file name [OUTPUT/2119_Sunday_June_05_2022_02_49_12_AM_27167669/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{2 x(y-1)}{x^{2}+3}=0
$$

2.6.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x(2 y-2)}{x^{2}+3}
\end{aligned}
$$

Where $f(x)=\frac{x}{x^{2}+3}$ and $g(y)=2 y-2$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{2 y-2} d y & =\frac{x}{x^{2}+3} d x \\
\int \frac{1}{2 y-2} d y & =\int \frac{x}{x^{2}+3} d x \\
\frac{\ln (y-1)}{2} & =\frac{\ln \left(x^{2}+3\right)}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{y-1}=\mathrm{e}^{\frac{\ln \left(x^{2}+3\right)}{2}+c_{1}}
$$

Which simplifies to

$$
\sqrt{y-1}=c_{2} \sqrt{x^{2}+3}
$$

Which simplifies to

$$
y=c_{2}^{2}\left(x^{2}+3\right) \mathrm{e}^{2 c_{1}}+1
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{2}^{2}\left(x^{2}+3\right) \mathrm{e}^{2 c_{1}}+1 \tag{1}
\end{equation*}
$$

Figure 67: Slope field plot

Verification of solutions

$$
y=c_{2}^{2}\left(x^{2}+3\right) \mathrm{e}^{2 c_{1}}+1
$$

Verified OK.

2.6.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{2 x(y-1)}{x^{2}+3}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y-1}=\frac{2 x}{x^{2}+3}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y-1} d x=\int \frac{2 x}{x^{2}+3} d x+c_{1}$
- Evaluate integral
$\ln (y-1)=\ln \left(x^{2}+3\right)+c_{1}$
- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}} x^{2}+3 \mathrm{e}^{c_{1}}+1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(x),x)=(2*x*(y(x)-1))/(x^2+3),y(x), singsol=all)
```

$$
y(x)=c_{1} x^{2}+3 c_{1}+1
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 20
DSolve $\left[y^{\prime}[x]==(2 * x *(y[x]-1)) /\left(x^{\wedge} 2+3\right), y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow 1+c_{1}\left(x^{2}+3\right) \\
& y(x) \rightarrow 1
\end{aligned}
$$

2.7 problem Problem 7

> 2.7.1 Solving as separable ode
2.7.2 Maple step by step solution 460

Internal problem ID [2628]
Internal file name [OUTPUT/2120_Sunday_June_05_2022_02_49_15_AM_13431656/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
-x y^{\prime}+y+2 y^{\prime} x^{2}=3
$$

2.7.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{-y+3}{x(2 x-1)}
\end{aligned}
$$

Where $f(x)=\frac{1}{x(2 x-1)}$ and $g(y)=-y+3$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-y+3} d y & =\frac{1}{x(2 x-1)} d x \\
\int \frac{1}{-y+3} d y & =\int \frac{1}{x(2 x-1)} d x \\
-\ln (y-3) & =\ln (2 x-1)-\ln (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y-3}=\mathrm{e}^{\ln (2 x-1)-\ln (x)+c_{1}}
$$

Which simplifies to

$$
\frac{1}{y-3}=c_{2} \mathrm{e}^{\ln (2 x-1)-\ln (x)}
$$

Which simplifies to

$$
y=\frac{3 c_{2}\left(2 \mathrm{e}^{c_{1}}-\frac{\mathrm{e}^{c_{1}}}{x}\right)+1}{c_{2}\left(2 \mathrm{e}^{c_{1}}-\frac{\mathrm{e}^{c_{1}}}{x}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 c_{2}\left(2 \mathrm{e}^{c_{1}}-\frac{\mathrm{e}^{c_{1}}}{x}\right)+1}{c_{2}\left(2 \mathrm{e}^{c_{1}}-\frac{\mathrm{e}^{c_{1}}}{x}\right)} \tag{1}
\end{equation*}
$$

Figure 68: Slope field plot

Verification of solutions

$$
y=\frac{3 c_{2}\left(2 \mathrm{e}^{c_{1}}-\frac{\mathrm{e}^{c_{1}}}{x}\right)+1}{c_{2}\left(2 \mathrm{e}^{c_{1}}-\frac{\mathrm{e}^{c_{1}}}{x}\right)}
$$

Verified OK.

2.7.2 Maple step by step solution

Let's solve

$$
-x y^{\prime}+y+2 y^{\prime} x^{2}=3
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{-y+3}=\frac{1}{2 x^{2}-x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{-y+3} d x=\int \frac{1}{2 x^{2}-x} d x+c_{1}
$$

- Evaluate integral
$-\ln (-y+3)=\ln (2 x-1)-\ln (x)+c_{1}$
- \quad Solve for y

$$
y=\frac{6 \mathrm{e}^{c_{1} x-3} \mathrm{e}^{c_{1}}-x}{\mathrm{e}^{c_{1}}(2 x-1)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve $\left(y(x)-x * \operatorname{diff}(y(x), x)=3-2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x), y(x)\right.$, singsol=all)

$$
y(x)=\frac{c_{1} x-3}{2 x-1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 24
DSolve[y[x]-x*y'[x]==3-2*x^2*y'[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{3+c_{1} x}{1-2 x} \\
& y(x) \rightarrow 3
\end{aligned}
$$

2.8 problem Problem 8

2.8.1 Solving as separable ode . 462
2.8.2 Solving as first order ode lie symmetry lookup ode 464
2.8.3 Solving as exact ode . 468

Internal problem ID [2629]
Internal file name [OUTPUT/2121_Sunday_June_05_2022_02_49_16_AM_95754766/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\cos (-y+x)}{\sin (x) \sin (y)}=-1
$$

2.8.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\cos (x) \cot (y)}{\sin (x)}
\end{aligned}
$$

Where $f(x)=\frac{\cos (x)}{\sin (x)}$ and $g(y)=\cot (y)$. Integrating both sides gives

$$
\frac{1}{\cot (y)} d y=\frac{\cos (x)}{\sin (x)} d x
$$

$$
\begin{aligned}
\int \frac{1}{\cot (y)} d y & =\int \frac{\cos (x)}{\sin (x)} d x \\
-\ln (\cos (y)) & =\ln (\sin (x))+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\cos (y)}=\mathrm{e}^{\ln (\sin (x))+c_{1}}
$$

Which simplifies to

$$
\sec (y)=c_{2} \sin (x)
$$

Summary
The solution(s) found are the following

Figure 69: Slope field plot

Verification of solutions

$$
y=\operatorname{arcsec}\left(c_{2} \mathrm{e}^{c_{1}} \sin (x)\right)
$$

Verified OK.

2.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\sin (x) \sin (y)-\cos (-y+x)}{\sin (x) \sin (y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 62: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{\sin (x)}{\cos (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{\sin (x)}{\cos (x)}} d x
\end{aligned}
$$

Which results in

$$
S=\ln (\sin (x))
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\sin (x) \sin (y)-\cos (-y+x)}{\sin (x) \sin (y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\cot (x) \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\cos (x) \sin (y)}{-\sin (x) \sin (y)+\cos (-y+x)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\tan (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (\cos (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (\sin (x))=-\ln (\cos (y))+c_{1}
$$

Which simplifies to

$$
\ln (\sin (x))=-\ln (\cos (y))+c_{1}
$$

Which gives

$$
y=\arccos \left(\frac{\mathrm{e}^{c_{1}}}{\sin (x)}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\sin (x) \sin (y)-\cos (-y+x)}{\sin (x) \sin (y)}$		$\frac{d S}{d R}=\tan (R)$
$\rightarrow \overrightarrow{y c \rightarrow 0}$		
\vec{r}		
		${ }^{\text {P }}$
	$R=y$	
	$S=\ln (\sin (x))$	
$\rightarrow x_{i} \rightarrow \rightarrow \rightarrow 1$, $\rightarrow \rightarrow-\infty$		
$\operatorname{ly}_{4 \rightarrow \infty} \rightarrow$		
		x_{1}

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\arccos \left(\frac{\mathrm{e}^{c_{1}}}{\sin (x)}\right) \tag{1}
\end{equation*}
$$

Figure 70: Slope field plot

Verification of solutions

$$
y=\arccos \left(\frac{\mathrm{e}^{c_{1}}}{\sin (x)}\right)
$$

Verified OK.

2.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{\sin (y)}{\cos (y)}\right) \mathrm{d} y & =\left(\frac{\cos (x)}{\sin (x)}\right) \mathrm{d} x \\
\left(-\frac{\cos (x)}{\sin (x)}\right) \mathrm{d} x+\left(\frac{\sin (y)}{\cos (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\cos (x)}{\sin (x)} \\
& N(x, y)=\frac{\sin (y)}{\cos (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\cos (x)}{\sin (x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{\sin (y)}{\cos (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\cos (x)}{\sin (x)} \mathrm{d} x \\
\phi & =-\ln (\sin (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\sin (y)}{\cos (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\sin (y)}{\cos (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{\sin (y)}{\cos (y)} \\
& =\tan (y)
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(\tan (y)) \mathrm{d} y \\
f(y) & =-\ln (\cos (y))+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (\sin (x))-\ln (\cos (y))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (\sin (x))-\ln (\cos (y))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\ln (\sin (x))-\ln (\cos (y))=c_{1} \tag{1}
\end{equation*}
$$

Figure 71: Slope field plot

Verification of solutions

$$
-\ln (\sin (x))-\ln (\cos (y))=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.141 (sec). Leaf size: 11

```
dsolve(diff(y(x),x)=cos(x-y(x))/(sin(x)*sin(y(x)))-1,y(x), singsol=all)
```

$$
y(x)=\arccos \left(\frac{\csc (x)}{c_{1}}\right)
$$

\checkmark Solution by Mathematica
Time used: 5.812 (sec). Leaf size: 47
DSolve $\left[y^{\prime}[x]==\operatorname{Cos}[x-y[x]] /(\operatorname{Sin}[x] * \operatorname{Sin}[y[x]])-1, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\arccos \left(-\frac{1}{2} c_{1} \csc (x)\right) \\
& y(x) \rightarrow \arccos \left(-\frac{1}{2} c_{1} \csc (x)\right) \\
& y(x) \rightarrow-\frac{\pi}{2} \\
& y(x) \rightarrow \frac{\pi}{2}
\end{aligned}
$$

2.9 problem Problem 9

2.9.1 Solving as separable ode . 473
2.9.2 Maple step by step solution . 475

Internal problem ID [2630]
Internal file name [OUTPUT/2122_Sunday_June_05_2022_02_49_20_AM_4206466/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[_separable]
```

$$
y^{\prime}-\frac{x\left(y^{2}-1\right)}{2(x-2)(x-1)}=0
$$

2.9.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x\left(\frac{y^{2}}{2}-\frac{1}{2}\right)}{(x-2)(x-1)}
\end{aligned}
$$

Where $f(x)=\frac{x}{(x-2)(x-1)}$ and $g(y)=\frac{y^{2}}{2}-\frac{1}{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y^{2}}{2}-\frac{1}{2}} d y & =\frac{x}{(x-2)(x-1)} d x \\
\int \frac{1}{\frac{y^{2}}{2}-\frac{1}{2}} d y & =\int \frac{x}{(x-2)(x-1)} d x \\
-2 \operatorname{arctanh}(y) & =-\ln (x-1)+2 \ln (x-2)+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\tanh \left(-\frac{\ln (x-1)}{2}+\ln (x-2)+\frac{c_{1}}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\tanh \left(-\frac{\ln (x-1)}{2}+\ln (x-2)+\frac{c_{1}}{2}\right) \tag{1}
\end{equation*}
$$

Figure 72: Slope field plot

Verification of solutions

$$
y=-\tanh \left(-\frac{\ln (x-1)}{2}+\ln (x-2)+\frac{c_{1}}{2}\right)
$$

Verified OK.

2.9.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{x\left(y^{2}-1\right)}{2(x-2)(x-1)}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}-1}=\frac{x}{2(x-2)(x-1)}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}-1} d x=\int \frac{x}{2(x-2)(x-1)} d x+c_{1}
$$

- Evaluate integral
$-\operatorname{arctanh}(y)=-\frac{\ln (x-1)}{2}+\ln (x-2)+c_{1}$
- \quad Solve for y

$$
y=-\tanh \left(-\frac{\ln (x-1)}{2}+\ln (x-2)+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 21

```
dsolve(diff(y(x),x)=x*(y(x)~2-1)/(2*(x-2)*(x-1)),y(x), singsol=all)
```

$$
y(x)=-\tanh \left(\ln (-2+x)-\frac{\ln (x-1)}{2}+\frac{c_{1}}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.882 (sec). Leaf size: 51
DSolve[y'[x]==x*(y[x] 2-1)/(2*(x-2)*(x-1)),y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x+e^{2 c_{1}}(x-2)^{2}-1}{-x+e^{2 c_{1}}(x-2)^{2}+1} \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 1
\end{aligned}
$$

2.10 problem Problem 10

2.10.1 Solving as separable ode . 477
2.10.2 Maple step by step solution . 479

Internal problem ID [2631]
Internal file name [OUTPUT/2123_Sunday_June_05_2022_02_49_23_AM_6369853/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x^{2} y-32}{-x^{2}+16}=2
$$

2.10.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x^{2}(-y+2)}{x^{2}-16}
\end{aligned}
$$

Where $f(x)=\frac{x^{2}}{x^{2}-16}$ and $g(y)=-y+2$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-y+2} d y & =\frac{x^{2}}{x^{2}-16} d x \\
\int \frac{1}{-y+2} d y & =\int \frac{x^{2}}{x^{2}-16} d x \\
-\ln (y-2) & =x-2 \ln (x+4)+2 \ln (x-4)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y-2}=\mathrm{e}^{x-2 \ln (x+4)+2 \ln (x-4)+c_{1}}
$$

Which simplifies to

$$
\frac{1}{y-2}=c_{2} \mathrm{e}^{x-2 \ln (x+4)+2 \ln (x-4)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 c_{2} \mathrm{e}^{x-2 \ln (x+4)+2 \ln (x-4)+c_{1}}+1\right)(x+4)^{2} \mathrm{e}^{-x-c_{1}}}{c_{2}(x-4)^{2}} \tag{1}
\end{equation*}
$$

Figure 73: Slope field plot

Verification of solutions

$$
y=\frac{\left(2 c_{2} \mathrm{e}^{x-2 \ln (x+4)+2 \ln (x-4)+c_{1}}+1\right)(x+4)^{2} \mathrm{e}^{-x-c_{1}}}{c_{2}(x-4)^{2}}
$$

Verified OK.

2.10.2 Maple step by step solution

Let's solve
$y^{\prime}-\frac{x^{2} y-32}{-x^{2}+16}=2$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y-2}=-\frac{x^{2}}{(x-4)(x+4)}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y-2} d x=\int-\frac{x^{2}}{(x-4)(x+4)} d x+c_{1}$
- Evaluate integral $\ln (y-2)=-x+2 \ln (x+4)-2 \ln (x-4)+c_{1}$
- \quad Solve for y

$$
y=\frac{\mathrm{e}^{-x+c_{1}} x^{2}+8 \mathrm{e}^{-x+c_{1}} x+2 x^{2}+16 \mathrm{e}^{-x+c_{1}}-16 x+32}{x^{2}-8 x+16}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(diff (y(x),x)=(x^2*y(x)-32)/(16-x^2)+2,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1}(x+4)^{2} \mathrm{e}^{-x}+2(x-4)^{2}}{(x-4)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.148 (sec). Leaf size: 40
DSolve $\left[y^{\prime}[x]==\left(x^{\wedge} 2 * y[x]-32\right) /\left(16-x^{\wedge} 2\right)+2, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{e^{-x}\left(2 e^{x}(x-4)^{2}+c_{1}(x+4)^{2}\right)}{(x-4)^{2}} \\
& y(x) \rightarrow 2
\end{aligned}
$$

2.11 problem Problem 11

2.11.1 Solving as separable ode
2.11.2 Maple step by step solution 482

Internal problem ID [2632]
Internal file name [OUTPUT/2124_Sunday_June_05_2022_02_49_25_AM_75605802/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
(x-a)(x-b) y^{\prime}-y=-c
$$

2.11.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y-c}{(-x+a)(-x+b)}
\end{aligned}
$$

Where $f(x)=\frac{1}{(-x+a)(-x+b)}$ and $g(y)=y-c$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y-c} d y & =\frac{1}{(-x+a)(-x+b)} d x \\
\int \frac{1}{y-c} d y & =\int \frac{1}{(-x+a)(-x+b)} d x \\
\ln (y-c) & =-\frac{\ln (x-b)}{-b+a}+\frac{\ln (x-a)}{-b+a}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y-c=\mathrm{e}^{-\frac{\ln (x-b)}{-b+a}+\frac{\ln (x-a)}{-b+a}+c_{1}}
$$

Which simplifies to

$$
y-c=c_{2} \mathrm{e}^{-\frac{\ln (x-b)}{-b+a}+\frac{\ln (x-a)}{-b+a}}
$$

Which simplifies to

$$
y=c_{2}(x-b)^{-\frac{1}{-b+a}}(x-a)^{\frac{1}{-b+a}} \mathrm{e}^{c_{1}}+c
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2}(x-b)^{-\frac{1}{-b+a}}(x-a)^{\frac{1}{-b+a}} \mathrm{e}^{c_{1}}+c \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2}(x-b)^{-\frac{1}{-b+a}}(x-a)^{\frac{1}{-b+a}} \mathrm{e}^{c_{1}}+c
$$

Verified OK.

2.11.2 Maple step by step solution

Let's solve

$$
(x-a)(x-b) y^{\prime}-y=-c
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y-c}=\frac{1}{(x-a)(x-b)}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y-c} d x=\int \frac{1}{(x-a)(x-b)} d x+c_{1}$
- Evaluate integral

$$
\ln (y-c)=-\frac{\ln (x-b)}{-b+a}+\frac{\ln (x-a)}{-b+a}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-\frac{-c_{1} a+c_{1} b+\ln \left(\frac{-x+b}{-x+a}\right)}{-b+a}}+c
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
dsolve((x-a)*(x-b)*diff (y (x),x)-(y(x)-c)=0,y(x), singsol=all)
```

$$
y(x)=c+(x-b)^{-\frac{1}{a-b}}(x-a)^{\frac{1}{a-b}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.102 (sec). Leaf size: 41
DSolve[($\mathrm{x}-\mathrm{a}) *(\mathrm{x}-\mathrm{b}) * \mathrm{y}^{\prime}[\mathrm{x}]-(\mathrm{y}[\mathrm{x}]-\mathrm{c})==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c+c_{1}(x-b)^{\frac{1}{b-a}}(x-a)^{\frac{1}{a-b}} \\
& y(x) \rightarrow c
\end{aligned}
$$

2.12 problem Problem 12

2.12.1 Existence and uniqueness analysis 484
2.12.2 Solving as separable ode . 485
2.12.3 Maple step by step solution . 487

Internal problem ID [2633]
Internal file name [OUTPUT/2125_Sunday_June_05_2022_02_49_28_AM_75197817/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\left(x^{2}+1\right) y^{\prime}+y^{2}=-1
$$

With initial conditions

$$
[y(0)=1]
$$

2.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{y^{2}+1}{x^{2}+1}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y^{2}+1}{x^{2}+1}\right) \\
& =-\frac{2 y}{x^{2}+1}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

2.12.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{-y^{2}-1}{x^{2}+1}
\end{aligned}
$$

Where $f(x)=\frac{1}{x^{2}+1}$ and $g(y)=-y^{2}-1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-y^{2}-1} d y & =\frac{1}{x^{2}+1} d x \\
\int \frac{1}{-y^{2}-1} d y & =\int \frac{1}{x^{2}+1} d x \\
-\arctan (y) & =\arctan (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\tan \left(\arctan (x)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\tan \left(c_{1}\right) \\
c_{1}=-\frac{\pi}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1-x}{x+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1-x}{x+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1-x}{x+1}
$$

Verified OK.

2.12.3 Maple step by step solution

Let's solve
$\left[\left(x^{2}+1\right) y^{\prime}+y^{2}=-1, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{-y^{2}-1}=\frac{1}{x^{2}+1}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{-y^{2}-1} d x=\int \frac{1}{x^{2}+1} d x+c_{1}$
- Evaluate integral
$-\arctan (y)=\arctan (x)+c_{1}$
- \quad Solve for y
$y=-\tan \left(\arctan (x)+c_{1}\right)$
- Use initial condition $y(0)=1$
$1=-\tan \left(c_{1}\right)$
- \quad Solve for c_{1}
$c_{1}=-\frac{\pi}{4}$
- \quad Substitute $c_{1}=-\frac{\pi}{4}$ into general solution and simplify
$y=\cot \left(\arctan (x)+\frac{\pi}{4}\right)$
- \quad Solution to the IVP
$y=\cot \left(\arctan (x)+\frac{\pi}{4}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 11
dsolve $\left(\left[\left(x^{\wedge} 2+1\right) * \operatorname{diff}(y(x), x)+y(x)^{\wedge} 2=-1, y(0)=1\right], y(x)\right.$, singsol=all)

$$
y(x)=\cot \left(\arctan (x)+\frac{\pi}{4}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.243 (sec). Leaf size: 14
DSolve[\{($\left.\left.x^{\wedge} 2+1\right) * y^{\prime}[x]+y[x] \sim 2==-1,\{y[0]==1\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \cot \left(\arctan (x)+\frac{\pi}{4}\right)
$$

2.13 problem Problem 13

2.13.1 Existence and uniqueness analysis 490
2.13.2 Solving as separable ode . 490
2.13.3 Solving as linear ode . 491
2.13.4 Solving as first order ode lie symmetry lookup ode 493
2.13.5 Solving as exact ode . 496
2.13.6 Maple step by step solution . 499

Internal problem ID [2634]
Internal file name [OUTPUT/2126_Sunday_June_05_2022_02_49_30_AM_93577070/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential Equations. page 43
Problem number: Problem 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\left(-x^{2}+1\right) y^{\prime}+y x=a x
$$

With initial conditions

$$
[y(0)=2 a]
$$

2.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{x}{x^{2}-1} \\
& q(x)=-\frac{a x}{x^{2}-1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{x y}{x^{2}-1}=-\frac{a x}{x^{2}-1}
$$

The domain of $p(x)=-\frac{x}{x^{2}-1}$ is

$$
\{-\infty \leq x<-1,-1<x<1,1<x \leq \infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-\frac{a x}{x^{2}-1}$ is

$$
\{-\infty \leq x<-1,-1<x<1,1<x \leq \infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

2.13.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x(-a+y)}{x^{2}-1}
\end{aligned}
$$

Where $f(x)=\frac{x}{x^{2}-1}$ and $g(y)=-a+y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-a+y} d y & =\frac{x}{x^{2}-1} d x \\
\int \frac{1}{-a+y} d y & =\int \frac{x}{x^{2}-1} d x \\
\ln (-a+y) & =\frac{\ln (x-1)}{2}+\frac{\ln (x+1)}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
-a+y=\mathrm{e}^{\frac{\ln (x-1)}{2}+\frac{\ln (x+1)}{2}+c_{1}}
$$

Which simplifies to

$$
-a+y=c_{2} \mathrm{e}^{\frac{\ln (x-1)}{2}+\frac{\ln (x+1)}{2}}
$$

Which can be simplified to become

$$
y=c_{2} \sqrt{x-1} \sqrt{x+1} \mathrm{e}^{c_{1}}+a
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2 a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2 a=i \mathrm{e}^{c_{1}} c_{2}+a \\
& c_{1}=\ln \left(-\frac{i a}{c_{2}}\right)
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \sqrt{x-1} \sqrt{x+1} a+a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \sqrt{x-1} \sqrt{x+1} a+a \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \sqrt{x-1} \sqrt{x+1} a+a
$$

Verified OK.

2.13.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{x}{x^{2}-1} d x} \\
& =\mathrm{e}^{-\frac{\ln (x-1)}{2}-\frac{\ln (x+1)}{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{1}{\sqrt{x-1} \sqrt{x+1}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(-\frac{a x}{x^{2}-1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\sqrt{x-1} \sqrt{x+1}}\right) & =\left(\frac{1}{\sqrt{x-1} \sqrt{x+1}}\right)\left(-\frac{a x}{x^{2}-1}\right) \\
\mathrm{d}\left(\frac{y}{\sqrt{x-1} \sqrt{x+1}}\right) & =\left(-\frac{a x}{\left(x^{2}-1\right) \sqrt{x-1} \sqrt{x+1}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\sqrt{x-1} \sqrt{x+1}}=\int-\frac{a x}{\left(x^{2}-1\right) \sqrt{x-1} \sqrt{x+1}} \mathrm{~d} x \\
& \frac{y}{\sqrt{x-1} \sqrt{x+1}}=\frac{\sqrt{x-1} \sqrt{x+1} a}{x^{2}-1}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{x-1} \sqrt{x+1}}$ results in

$$
y=\frac{(x-1)(x+1) a}{x^{2}-1}+c_{1} \sqrt{x-1} \sqrt{x+1}
$$

which simplifies to

$$
y=a+c_{1} \sqrt{x-1} \sqrt{x+1}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2 a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2 a=c_{1} i+a \\
c_{1}=-i a
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \sqrt{x-1} \sqrt{x+1} a+a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \sqrt{x-1} \sqrt{x+1} a+a \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \sqrt{x-1} \sqrt{x+1} a+a
$$

Verified OK.

2.13.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x(-a+y)}{x^{2}-1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 68: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$			

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{\ln (x-1)}{2}+\frac{\ln (x+1)}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{\ln (x-1)}{2}+\frac{\ln (x+1)}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\ln \left(\frac{1}{\sqrt{x-1}}\right)+\ln \left(\frac{1}{\sqrt{x+1}}\right)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x(-a+y)}{x^{2}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y x}{(x-1)^{\frac{3}{2}}(x+1)^{\frac{3}{2}}} \\
S_{y} & =\frac{1}{\sqrt{x-1} \sqrt{x+1}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{a x}{(x-1)^{\frac{3}{2}}(x+1)^{\frac{3}{2}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{a R}{(R-1)^{\frac{3}{2}}(R+1)^{\frac{3}{2}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{a}{\sqrt{R-1} \sqrt{R+1}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{\sqrt{x-1} \sqrt{x+1}}=\frac{a}{\sqrt{x-1} \sqrt{x+1}}+c_{1}
$$

Which simplifies to

$$
\frac{y}{\sqrt{x-1} \sqrt{x+1}}=\frac{a}{\sqrt{x-1} \sqrt{x+1}}+c_{1}
$$

Which gives

$$
y=a+c_{1} \sqrt{x-1} \sqrt{x+1}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2 a$ in the above solution gives an equation to solve for the constant of integration.

$$
2 a=c_{1} i+a
$$

$$
c_{1}=-i a
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \sqrt{x-1} \sqrt{x+1} a+a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i \sqrt{x-1} \sqrt{x+1} a+a \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \sqrt{x-1} \sqrt{x+1} a+a
$$

Verified OK.

2.13.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-a+y}\right) \mathrm{d} y & =\left(\frac{x}{x^{2}-1}\right) \mathrm{d} x \\
\left(-\frac{x}{x^{2}-1}\right) \mathrm{d} x+\left(\frac{1}{-a+y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x}{x^{2}-1} \\
& N(x, y)=\frac{1}{-a+y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}-1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{-a+y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x^{2}-1} \mathrm{~d} x \\
\phi & =-\frac{\ln (x-1)}{2}-\frac{\ln (x+1)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{-a+y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-a+y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{a-y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{a-y}\right) \mathrm{d} y \\
f(y) & =\ln (a-y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln (x-1)}{2}-\frac{\ln (x+1)}{2}+\ln (a-y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln (x-1)}{2}-\frac{\ln (x+1)}{2}+\ln (a-y)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=2 a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\frac{i \pi}{2}+\ln (-a)=c_{1} \\
& c_{1}=-\frac{i \pi}{2}+\ln (-a)
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\ln (x-1)}{2}-\frac{\ln (x+1)}{2}+\ln (a-y)=-\frac{i \pi}{2}+\ln (-a)
$$

Solving for y from the above gives

$$
y=(-i \sqrt{x-1} \sqrt{x+1}+1) a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-i \sqrt{x-1} \sqrt{x+1}+1) a \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(-i \sqrt{x-1} \sqrt{x+1}+1) a
$$

Verified OK. \{positive\}

2.13.6 Maple step by step solution

Let's solve
$\left[\left(-x^{2}+1\right) y^{\prime}+y x=a x, y(0)=2 a\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{a-y}=-\frac{x}{(x-1)(x+1)}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{a-y} d x=\int-\frac{x}{(x-1)(x+1)} d x+c_{1}
$$

- Evaluate integral

$$
-\ln (a-y)=-\frac{\ln ((x-1)(x+1))}{2}+c_{1}
$$

- \quad Solve for y

$$
y=-\mathrm{e}^{\frac{\ln ((x-1)(x+1))}{2}-c_{1}}+a
$$

- Use initial condition $y(0)=2 a$

$$
2 a=-\mathrm{e}^{\frac{\mathrm{I} \pi}{2}-c_{1}}+a
$$

- \quad Solve for c_{1}

$$
c_{1}=\frac{\mathrm{I} \pi}{2}-\ln (-a)
$$

- Substitute $c_{1}=\frac{\mathrm{I} \pi}{2}-\ln (-a)$ into general solution and simplify

$$
y=a\left(1-\mathrm{I} \sqrt{x^{2}-1}\right)
$$

- Solution to the IVP

$$
y=a\left(1-\mathrm{I} \sqrt{x^{2}-1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
```

--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve([(1-x^2)*diff(y(x),x)+x*y(x)=a*x,y(0) = 2*a],y(x), singsol=all)
```

$$
y(x)=a(1-i \sqrt{x-1} \sqrt{x+1})
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 21
DSolve[\{(1-x^2)*y'[x]+x*y[x]==a*x,\{y[0]==2*a\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow a-i a \sqrt{x^{2}-1}
$$

2.14 problem Problem 14

2.14.1 Existence and uniqueness analysis 501
2.14.2 Solving as separable ode . 502
2.14.3 Solving as first order ode lie symmetry lookup ode 504
2.14.4 Solving as exact ode . 509

Internal problem ID [2635]
Internal file name [OUTPUT/2127_Sunday_June_05_2022_02_49_32_AM_24557463/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+\frac{\sin (y+x)}{\sin (y) \cos (x)}=1
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{4}\right)=\frac{\pi}{4}\right]
$$

2.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{-\cos (x) \sin (y)+\sin (y+x)}{\sin (y) \cos (x)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=\frac{\pi}{4}$ is

$$
\left\{x<\frac{1}{2} \pi+\pi _Z 142 \vee \frac{1}{2} \pi+\pi _Z 142<x\right\}
$$

And the point $x_{0}=\frac{\pi}{4}$ is inside this domain. The y domain of $f(x, y)$ when $x=\frac{\pi}{4}$ is

$$
\left\{y<\pi _Z 143 \vee \pi _Z 143<y\right\}
$$

And the point $y_{0}=\frac{\pi}{4}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{-\cos (x) \sin (y)+\sin (y+x)}{\sin (y) \cos (x)}\right) \\
& =-\frac{-\cos (x) \cos (y)+\cos (y+x)}{\sin (y) \cos (x)}+\frac{(-\cos (x) \sin (y)+\sin (y+x)) \cos (y)}{\sin (y)^{2} \cos (x)}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=\frac{\pi}{4}$ is

$$
\left\{x<\frac{1}{2} \pi+\pi _Z 142 \vee \frac{1}{2} \pi+\pi _Z 142<x\right\}
$$

And the point $x_{0}=\frac{\pi}{4}$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=\frac{\pi}{4}$ is

$$
\left\{y<\pi _Z 143 \vee \pi _Z 143<y\right\}
$$

And the point $y_{0}=\frac{\pi}{4}$ is inside this domain. Therefore solution exists and is unique.

2.14.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{\sin (x) \cot (y)}{\cos (x)}
\end{aligned}
$$

Where $f(x)=-\frac{\sin (x)}{\cos (x)}$ and $g(y)=\cot (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cot (y)} d y & =-\frac{\sin (x)}{\cos (x)} d x \\
\int \frac{1}{\cot (y)} d y & =\int-\frac{\sin (x)}{\cos (x)} d x \\
-\ln (\cos (y)) & =\ln (\cos (x))+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\cos (y)}=\mathrm{e}^{\ln (\cos (x))+c_{1}}
$$

Which simplifies to

$$
\sec (y)=c_{2} \cos (x)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{4}$ and $y=\frac{\pi}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{\pi}{4}=\frac{\pi}{2}-\arcsin \left(\frac{\sqrt{2} \mathrm{e}^{-c_{1}}}{c_{2}}\right) \\
c_{1}=-\ln \left(\frac{c_{2}}{2}\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\pi}{2}-\arcsin \left(\frac{1}{2 \cos (x)}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\pi}{2}-\arcsin \left(\frac{1}{2 \cos (x)}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\pi}{2}-\arcsin \left(\frac{1}{2 \cos (x)}\right)
$$

Verified OK.

2.14.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-\cos (x) \sin (y)+\sin (y+x)}{\sin (y) \cos (x)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 71: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{\cos (x)}{\sin (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{\cos (x)}{\sin (x)}} d x
\end{aligned}
$$

Which results in

$$
S=\ln (\cos (x))
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-\cos (x) \sin (y)+\sin (y+x)}{\sin (y) \cos (x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\tan (x) \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\sin (x) \sin (y)}{-\cos (x) \sin (y)+\sin (y+x)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\tan (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (\cos (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (\cos (x))=-\ln (\cos (y))+c_{1}
$$

Which simplifies to

$$
\ln (\cos (x))=-\ln (\cos (y))+c_{1}
$$

Which gives

$$
y=\arccos \left(\frac{\mathrm{e}^{c_{1}}}{\cos (x)}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-\cos (x) \sin (y)+\sin (y+x)}{\sin (y) \cos (x)}$		$\frac{d S}{d R}=\tan (R)$
$x_{\rightarrow \rightarrow \rightarrow+}$		
	$R=y$	
	$S=\ln (\cos (x))$	$\mathrm{S}^{\text {a }}$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{4}$ and $y=\frac{\pi}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{\pi}{4}=\frac{\pi}{2}-\arcsin \left(\sqrt{2} \mathrm{e}^{c_{1}}\right)
$$

$$
c_{1}=-\ln (2)
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\pi}{2}-\arcsin \left(\frac{1}{2 \cos (x)}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\pi}{2}-\arcsin \left(\frac{1}{2 \cos (x)}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\pi}{2}-\arcsin \left(\frac{1}{2 \cos (x)}\right)
$$

Verified OK.

2.14.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{\sin (y)}{\cos (y)}\right) \mathrm{d} y & =\left(\frac{\sin (x)}{\cos (x)}\right) \mathrm{d} x \\
\left(-\frac{\sin (x)}{\cos (x)}\right) \mathrm{d} x+\left(-\frac{\sin (y)}{\cos (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\sin (x)}{\cos (x)} \\
& N(x, y)=-\frac{\sin (y)}{\cos (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\sin (x)}{\cos (x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{\sin (y)}{\cos (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\sin (x)}{\cos (x)} \mathrm{d} x \\
\phi & =\ln (\cos (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{\sin (y)}{\cos (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{\sin (y)}{\cos (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-\frac{\sin (y)}{\cos (y)} \\
& =-\tan (y)
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-\tan (y)) \mathrm{d} y \\
f(y) & =\ln (\cos (y))+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (\cos (x))+\ln (\cos (y))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (\cos (x))+\ln (\cos (y))
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{4}$ and $y=\frac{\pi}{4}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\ln (2)=c_{1} \\
& c_{1}=-\ln (2)
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\ln (\cos (x))+\ln (\cos (y))=-\ln (2)
$$

Solving for y from the above gives

$$
y=\arccos \left(\frac{\sec (x)}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arccos \left(\frac{\sec (x)}{2}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\arccos \left(\frac{\sec (x)}{2}\right)
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 9
dsolve $([\operatorname{diff}(y(x), x)=1-(\sin (x+y(x))) /(\sin (y(x)) * \cos (x)), y(1 / 4 * \operatorname{Pi})=1 / 4 * \operatorname{Pi}], y(x)$, singsol $=a l$

$$
y(x)=\frac{\pi}{2}-\arcsin \left(\frac{\sec (x)}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 6.259 (sec). Leaf size: 12
DSolve $\left[\left\{y^{\prime}[x]==1-(\operatorname{Sin}[x+y[x]]) /(\operatorname{Sin}[y[x]] * \operatorname{Cos}[x]),\{y[P i / 4]==P i / 4\}\right\}, y[x], x\right.$, IncludeSingularSol

$$
y(x) \rightarrow \arccos \left(\frac{\sec (x)}{2}\right)
$$

2.15 problem Problem 15

2.15.1 Existence and uniqueness analysis 514
2.15.2 Solving as separable ode . 515
2.15.3 Maple step by step solution . 516

Internal problem ID [2636]
Internal file name [OUTPUT/2128_Sunday_June_05_2022_02_49_38_AM_92792261/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y^{3} \sin (x)=0
$$

With initial conditions

$$
[y(0)=0]
$$

2.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{3} \sin (x)
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{3} \sin (x)\right) \\
& =3 y^{2} \sin (x)
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

2.15.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =y^{3} \sin (x)
\end{aligned}
$$

Where $f(x)=\sin (x)$ and $g(y)=y^{3}$. Since unique solution exists and $g(y)$ evaluated at $y_{0}=0$ is zero, then the solution is

$$
\begin{aligned}
y & =y_{0} \\
& =0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

2.15.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{3} \sin (x)=0, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{3}}=\sin (x)$
- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{3}} d x=\int \sin (x) d x+c_{1}
$$

- Evaluate integral
$-\frac{1}{2 y^{2}}=-\cos (x)+c_{1}$
- \quad Solve for y
$\left\{y=\frac{1}{\sqrt{-2 c_{1}+2 \cos (x)}}, y=-\frac{1}{\sqrt{-2 c_{1}+2 \cos (x)}}\right\}$
- Use initial condition $y(0)=0$

$$
0=\frac{1}{\sqrt{-2 c_{1}+2}}
$$

- Solution does not satisfy initial condition
- Use initial condition $y(0)=0$

$$
0=-\frac{1}{\sqrt{-2 c_{1}+2}}
$$

- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=y(x)^3*\operatorname{sin}(\textrm{x}),\textrm{y}(0)=0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6
DSolve[\{y' $[x]==y[x] \sim 3 * \operatorname{Sin}[x],\{y[0]==0\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow 0
$$

2.16 problem Problem 16

2.16.1 Existence and uniqueness analysis 518
2.16.2 Solving as separable ode . 519
2.16.3 Maple step by step solution . 521

Internal problem ID [2637]
Internal file name [OUTPUT/2129_Sunday_June_05_2022_02_49_40_AM_95114883/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\frac{2 \sqrt{y-1}}{3}=0
$$

With initial conditions

$$
[y(1)=1]
$$

2.16.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{2 \sqrt{y-1}}{3}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=1$ is

$$
\{1 \leq y\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 \sqrt{y-1}}{3}\right) \\
& =\frac{1}{3 \sqrt{y-1}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{1<y\}
$$

But the point $y_{0}=1$ is not inside this domain. Hence existence and uniqueness theorem does not apply. Solution exists but no guarantee that unique solution exists.

2.16.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2 \sqrt{y-1}}{3}
\end{aligned}
$$

Where $f(x)=1$ and $g(y)=\frac{2 \sqrt{y-1}}{3}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{2 \sqrt{y-1}}{3}} d y & =1 d x \\
\int \frac{1}{\frac{2 \sqrt{y-1}}{3}} d y & =\int 1 d x \\
3 \sqrt{y-1} & =x+c_{1}
\end{aligned}
$$

The solution is

$$
3 \sqrt{y-1}-x-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1-c_{1}=0 \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
3 \sqrt{y-1}-x+1=0
$$

Solving for y from the above gives

$$
y=\frac{1}{9} x^{2}-\frac{2}{9} x+\frac{10}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{9} x^{2}-\frac{2}{9} x+\frac{10}{9} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{1}{9} x^{2}-\frac{2}{9} x+\frac{10}{9}
$$

Verified OK.

2.16.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{2 \sqrt{y-1}}{3}=0, y(1)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{\sqrt{y-1}}=\frac{2}{3}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{y-1}} d x=\int \frac{2}{3} d x+c_{1}$
- Evaluate integral

$$
2 \sqrt{y-1}=\frac{2 x}{3}+c_{1}
$$

- \quad Solve for y
$y=\frac{1}{4} c_{1}^{2}+\frac{1}{3} c_{1} x+\frac{1}{9} x^{2}+1$
- Use initial condition $y(1)=1$
$1=\frac{1}{4} c_{1}^{2}+\frac{1}{3} c_{1}+\frac{10}{9}$
- \quad Solve for c_{1}
$c_{1}=\left(-\frac{2}{3},-\frac{2}{3}\right)$
- \quad Substitute $c_{1}=\left(-\frac{2}{3},-\frac{2}{3}\right)$ into general solution and simplify $y=\frac{1}{9} x^{2}-\frac{2}{9} x-\frac{2}{9}$
- Solution to the IVP
$y=\frac{1}{9} x^{2}-\frac{2}{9} x-\frac{2}{9}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(x),x)=2/3*(y(x)-1)^(1/2),y(1) = 1],y(x), singsol=all)
```

$$
y(x)=1
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 17
DSolve $\left\{\left\{y^{\prime}[x]==1 / 3 *(y[x]-1)^{\wedge}(1 / 2),\{y[1]==1\}\right\}, y[x], x\right.$, IncludeSingularSolutions $\rightarrow>$ True]

$$
y(x) \rightarrow \frac{1}{36}\left(x^{2}-2 x+37\right)
$$

2.17 problem Problem 17

2.17.1 Existence and uniqueness analysis 523
2.17.2 Solving as separable ode . 524
2.17.3 Maple step by step solution . 525

Internal problem ID [2638]
Internal file name [OUTPUT/2130_Sunday_June_05_2022_02_49_44_AM_28871846/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.4, Separable Differential
Equations. page 43
Problem number: Problem 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
m v^{\prime}+k v^{2}=m g
$$

With initial conditions

$$
[v(0)=0]
$$

2.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
v^{\prime} & =f(t, v) \\
& =-\frac{k v^{2}-m g}{m}
\end{aligned}
$$

The v domain of $f(t, v)$ when $t=0$ is

$$
\{-\infty<v<\infty\}
$$

And the point $v_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial v} & =\frac{\partial}{\partial v}\left(-\frac{k v^{2}-m g}{m}\right) \\
& =-\frac{2 k v}{m}
\end{aligned}
$$

The v domain of $\frac{\partial f}{\partial v}$ when $t=0$ is

$$
\{-\infty<v<\infty\}
$$

And the point $v_{0}=0$ is inside this domain. Therefore solution exists and is unique.

2.17.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
v^{\prime} & =F(t, v) \\
& =f(t) g(v) \\
& =\frac{-k v^{2}+m g}{m}
\end{aligned}
$$

Where $f(t)=1$ and $g(v)=\frac{-k v^{2}+m g}{m}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{-k v^{2}+m g}{m}} d v & =1 d t \\
\int \frac{1}{\frac{-k v^{2}+m g}{m}} d v & =\int 1 d t \\
\frac{m \operatorname{arctanh}\left(\frac{k v}{\sqrt{m g k}}\right)}{\sqrt{m g k}} & =t+c_{1}
\end{aligned}
$$

Which results in

$$
v=\frac{\tanh \left(\frac{\sqrt{m g k}\left(t+c_{1}\right)}{m}\right) \sqrt{m g k}}{k}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $v=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\frac{\sqrt{m g k} \mathrm{e}^{\frac{2 \sqrt{m g k} c_{1}}{m}}-\sqrt{m g k}}{k \mathrm{e}^{\frac{2 \sqrt{m g k} c_{1}}{m}}+k}
$$

$$
c_{1}=0
$$

Substituting c_{1} found above in the general solution gives

$$
v=\lim _{c_{1} \rightarrow 0} \frac{\tanh \left(\frac{\sqrt{m g k}\left(t+c_{1}\right)}{m}\right) \sqrt{m g k}}{k}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\lim _{c_{1} \rightarrow 0} \frac{\tanh \left(\frac{\sqrt{m g k}\left(t+c_{1}\right)}{m}\right) \sqrt{m g k}}{k} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
v=\lim _{c_{1} \rightarrow 0} \frac{\tanh \left(\frac{\sqrt{m g k}\left(t+c_{1}\right)}{m}\right) \sqrt{m g k}}{k}
$$

Verified OK.

2.17.3 Maple step by step solution

Let's solve
$\left[m v^{\prime}+k v^{2}=m g, v(0)=0\right]$

- Highest derivative means the order of the ODE is 1 v^{\prime}
- \quad Separate variables
$\frac{v^{\prime}}{m g-k v^{2}}=\frac{1}{m}$
- Integrate both sides with respect to t
$\int \frac{v^{\prime}}{m g-k v^{2}} d t=\int \frac{1}{m} d t+c_{1}$
- Evaluate integral
$\frac{\operatorname{arctanh}\left(\frac{k v}{\sqrt{m g k}}\right)}{\sqrt{m g k}}=\frac{t}{m}+c_{1}$
- \quad Solve for v
$v=\frac{\tanh \left(\frac{\sqrt{m g k}\left(c_{1} m+t\right)}{m}\right) \sqrt{m g k}}{k}$
- Use initial condition $v(0)=0$
$0=\frac{\tanh \left(c_{1} \sqrt{m g k}\right) \sqrt{m g k}}{k}$
- Solve for c_{1}
$c_{1}=0$
- Substitute $c_{1}=0$ into general solution and simplify
$v=\frac{\tanh \left(\frac{\sqrt{m g k t}}{m}\right) \sqrt{m g k}}{k}$
- Solution to the IVP
$v=\frac{\tanh \left(\frac{\sqrt{m g k} t}{m}\right) \sqrt{m g k}}{k}$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 26

```
dsolve([m*diff(v(t),t)=m*g-k*v(t)^2,v(0) = 0],v(t), singsol=all)
```

$$
v(t)=\frac{\tanh \left(\frac{\sqrt{m g k} t}{m}\right) \sqrt{m g k}}{k}
$$

Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 39

```
DSolve[{m*v'[t]==m*g-k*v[t]~2,{v[0]==0}},v[t],t,IncludeSingularSolutions -> True]
```

$$
v(t) \rightarrow \frac{\sqrt{g} \sqrt{m} \tanh \left(\frac{\sqrt{g} \sqrt{k} t}{\sqrt{m}}\right)}{\sqrt{k}}
$$

3 Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
3.1 problem Problem 1 528
3.2 problem Problem 2 532
3.3 problem Problem 3 536
3.4 problem Problem 4 540
3.5 problem Problem 5 544
3.6 problem Problem 6 549
3.7 problem Problem 7 554
3.8 problem Problem 8 559
3.9 problem Problem 9 564
3.10 problem Problem 10 568
3.11 problem Problem 11 573
3.12 problem Problem 12 586
3.13 problem Problem 13 591
3.14 problem Problem 14 596
3.15 problem Problem 15 600
3.16 problem Problem 16 604
3.17 problem Problem 17 609
3.18 problem Problem 18 623
3.19 problem Problem 19 641
3.20 problem Problem 20 655
3.21 problem Problem 21 666
3.22 problem Problem 22 677
3.23 problem Problem 30 694
3.24 problem Problem 31 706
3.25 problem Problem 32 719
3.26 problem Problem 33 732

3.1 problem Problem 1

3.1.1 Solving as linear ode
3.1.2 Maple step by step solution . 530

Internal problem ID [2639]
Internal file name [OUTPUT/2131_Sunday_June_05_2022_02_49_47_AM_87891120/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=4 \mathrm{e}^{x}
$$

3.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =4 \mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=4 \mathrm{e}^{x}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(4 \mathrm{e}^{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(4 \mathrm{e}^{x}\right) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left(4 \mathrm{e}^{2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int 4 \mathrm{e}^{2 x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=2 \mathrm{e}^{2 x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=2 \mathrm{e}^{-x} \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=2 \mathrm{e}^{x}+c_{1} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
y=2 \mathrm{e}^{x}+c_{1} \mathrm{e}^{-x}
$$

Figure 80: Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{x}+c_{1} \mathrm{e}^{-x}
$$

Verified OK.

3.1.2 Maple step by step solution

Let's solve
$y^{\prime}+y=4 \mathrm{e}^{x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+4 \mathrm{e}^{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=4 \mathrm{e}^{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=4 \mu(x) \mathrm{e}^{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 4 \mu(x) \mathrm{e}^{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 4 \mu(x) \mathrm{e}^{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(x) \mathrm{e}^{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int 4\left(\mathrm{e}^{x}\right)^{2} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs

$$
y=\frac{2\left(\mathrm{e}^{x}\right)^{2}+c_{1}}{\mathrm{e}^{x}}
$$

- Simplify

$$
y=2 \mathrm{e}^{x}+c_{1} \mathrm{e}^{-x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(diff(y(x),x)+y(x)=4*exp(x),y(x), singsol=all)
```

$$
y(x)=2 \mathrm{e}^{x}+\mathrm{e}^{-x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 19

```
DSolve[y'[x]+y[x]==4*Exp[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 2 e^{x}+c_{1} e^{-x}
$$

3.2 problem Problem 2

3.2.1 Solving as linear ode . 532
3.2.2 Maple step by step solution . 534

Internal problem ID [2640]
Internal file name [OUTPUT/2132_Sunday_June_05_2022_02_49_48_AM_40991139/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{2 y}{x}=5 x^{2}
$$

3.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=5 x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=5 x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(5 x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)\left(5 x^{2}\right) \\
\mathrm{d}\left(x^{2} y\right) & =\left(5 x^{4}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int 5 x^{4} \mathrm{~d} x \\
& x^{2} y=x^{5}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=x^{3}+\frac{c_{1}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}+\frac{c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 81: Slope field plot

Verification of solutions

$$
y=x^{3}+\frac{c_{1}}{x^{2}}
$$

Verified OK.

3.2.2 Maple step by step solution

Let's solve

$$
y^{\prime}+\frac{2 y}{x}=5 x^{2}
$$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Isolate the derivative
$y^{\prime}=-\frac{2 y}{x}+5 x^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{x}=5 x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=5 \mu(x) x^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{2 \mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=x^{2}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 5 \mu(x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 5 \mu(x) x^{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 5 \mu(x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{2}$
$y=\frac{\int 5 x^{4} d x+c_{1}}{x^{2}}$
- Evaluate the integrals on the rhs

$$
y=\frac{x^{5}+c_{1}}{x^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff(y(x),x)+2/x*y(x)=5*x^2,y(x), singsol=all)
```

$$
y(x)=\frac{x^{5}+c_{1}}{x^{2}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 15

```
DSolve[y'[x]+2/x*y[x]==5*x^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{x^{5}+c_{1}}{x^{2}}
$$

3.3 problem Problem 3

3.3.1 Solving as linear ode . 536
3.3.2 Maple step by step solution . 538

Internal problem ID [2641]
Internal file name [OUTPUT/2133_Sunday_June_05_2022_02_49_50_AM_92282794/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y^{\prime} x^{2}-4 y x=x^{7} \sin (x)
$$

3.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=x^{5} \sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{4 y}{x}=x^{5} \sin (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{5} \sin (x)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{4}}\right) & =\left(\frac{1}{x^{4}}\right)\left(x^{5} \sin (x)\right) \\
\mathrm{d}\left(\frac{y}{x^{4}}\right) & =(x \sin (x)) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{4}} & =\int x \sin (x) \mathrm{d} x \\
\frac{y}{x^{4}} & =\sin (x)-\cos (x) x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{4}}$ results in

$$
y=x^{4}(\sin (x)-\cos (x) x)+c_{1} x^{4}
$$

which simplifies to

$$
y=x^{4}\left(\sin (x)-\cos (x) x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{4}\left(\sin (x)-\cos (x) x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 82: Slope field plot

Verification of solutions

$$
y=x^{4}\left(\sin (x)-\cos (x) x+c_{1}\right)
$$

Verified OK.

3.3.2 Maple step by step solution

Let's solve

$$
y^{\prime} x^{2}-4 y x=x^{7} \sin (x)
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{4 y}{x}+x^{5} \sin (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{4 y}{x}=x^{5} \sin (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{4 y}{x}\right)=\mu(x) x^{5} \sin (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{4 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{4 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x^{4}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{5} \sin (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x^{5} \sin (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x^{5} \sin (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x^{4}}$
$y=x^{4}\left(\int x \sin (x) d x+c_{1}\right)$
- Evaluate the integrals on the rhs

$$
y=x^{4}\left(\sin (x)-\cos (x) x+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(x^2*diff(y(x),x)-4*x*y(x)=x^7*sin}(\textrm{x}),\textrm{y}(\textrm{x}),\mathrm{ , singsol=all)
```

$$
y(x)=\left(-x \cos (x)+\sin (x)+c_{1}\right) x^{4}
$$

\checkmark Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 19

```
DSolve[x^2*y'[x]-4*x*y[x]==x^7*Sin[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x^{4}\left(\sin (x)-x \cos (x)+c_{1}\right)
$$

3.4 problem Problem 4

> 3.4.1 Solving as linear ode
3.4.2 Maple step by step solution 542

Internal problem ID [2642]
Internal file name [OUTPUT/2134_Sunday_June_05_2022_02_49_53_AM_32028512/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+2 y x=2 x^{3}
$$

3.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=2 x \\
& q(x)=2 x^{3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y x=2 x^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 x d x} \\
& =\mathrm{e}^{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(2 x^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x^{2}} y\right) & =\left(\mathrm{e}^{x^{2}}\right)\left(2 x^{3}\right) \\
\mathrm{d}\left(\mathrm{e}^{x^{2}} y\right) & =\left(2 x^{3} \mathrm{e}^{x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x^{2}} y=\int 2 x^{3} \mathrm{e}^{x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{x^{2}} y=\left(x^{2}-1\right) \mathrm{e}^{x^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x^{2}}$ results in

$$
y=\mathrm{e}^{-x^{2}}\left(x^{2}-1\right) \mathrm{e}^{x^{2}}+c_{1} \mathrm{e}^{-x^{2}}
$$

which simplifies to

$$
y=x^{2}-1+c_{1} \mathrm{e}^{-x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}-1+c_{1} \mathrm{e}^{-x^{2}} \tag{1}
\end{equation*}
$$

Figure 83: Slope field plot

Verification of solutions

$$
y=x^{2}-1+c_{1} \mathrm{e}^{-x^{2}}
$$

Verified OK.

3.4.2 Maple step by step solution

Let's solve
$y^{\prime}+2 y x=2 x^{3}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 y x+2 x^{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+2 y x=2 x^{3}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+2 y x\right)=2 \mu(x) x^{3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+2 y x\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=2 \mu(x) x$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x^{2}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) x^{3} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 2 \mu(x) x^{3} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(x) x^{3} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x^{2}}$
$y=\frac{\int 2 x^{3} \mathrm{e}^{x^{2}} d x+c_{1}}{\mathrm{e}^{x^{2}}}$
- Evaluate the integrals on the rhs

$$
y=\frac{\left(x^{2}-1\right) e^{x^{2}}+c_{1}}{\mathrm{e}^{x^{2}}}
$$

- Simplify

$$
y=x^{2}-1+c_{1} \mathrm{e}^{-x^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x)+2*x*y(x)=2*x^3,y(x), singsol=all)
```

$$
y(x)=x^{2}-1+c_{1} \mathrm{e}^{-x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 20
DSolve $\left[y\right.$ ' $[x]+2 * x * y[x]==2 * x^{\wedge} 3, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}+c_{1} e^{-x^{2}}-1
$$

3.5 problem Problem 5

3.5.1 Solving as linear ode . 544
3.5.2 Maple step by step solution . 546

Internal problem ID [2643]
Internal file name [OUTPUT/2135_Sunday_June_05_2022_02_49_55_AM_48257899/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{2 x y}{-x^{2}+1}=4 x
$$

3.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2 x}{x^{2}-1} \\
& q(x)=4 x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 x y}{x^{2}-1}=4 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 x}{x^{2}-1} d x} \\
& =\mathrm{e}^{-\ln (x-1)-\ln (x+1)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{1}{x^{2}-1}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(4 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}-1}\right) & =\left(\frac{1}{x^{2}-1}\right)(4 x) \\
\mathrm{d}\left(\frac{y}{x^{2}-1}\right) & =\left(\frac{4 x}{x^{2}-1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x^{2}-1}=\int \frac{4 x}{x^{2}-1} \mathrm{~d} x \\
& \frac{y}{x^{2}-1}=2 \ln (x-1)+2 \ln (x+1)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}-1}$ results in

$$
y=\left(x^{2}-1\right)(2 \ln (x-1)+2 \ln (x+1))+c_{1}\left(x^{2}-1\right)
$$

which simplifies to

$$
y=\left(x^{2}-1\right)\left(2 \ln (x-1)+2 \ln (x+1)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2}-1\right)\left(2 \ln (x-1)+2 \ln (x+1)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 84: Slope field plot

Verification of solutions

$$
y=\left(x^{2}-1\right)\left(2 \ln (x-1)+2 \ln (x+1)+c_{1}\right)
$$

Verified OK.

3.5.2 Maple step by step solution

Let's solve
$y^{\prime}+\frac{2 x y}{-x^{2}+1}=4 x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 x y}{x^{2}-1}+4 x$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 x y}{x^{2}-1}=4 x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{2 x y}{x^{2}-1}\right)=4 \mu(x) x$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{2 x y}{x^{2}-1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{2 \mu(x) x}{x^{2}-1}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{(x+1)(x-1)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 4 \mu(x) x d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 4 \mu(x) x d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(x) x d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{(x+1)(x-1)}$
$y=(x+1)(x-1)\left(\int \frac{4 x}{(x-1)(x+1)} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=(x+1)(x-1)\left(2 \ln ((x-1)(x+1))+c_{1}\right)$
- Simplify
$y=\left(2 \ln \left(x^{2}-1\right)+c_{1}\right)\left(x^{2}-1\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve(diff $(y(x), x)+2 * x /\left(1-x^{\wedge} 2\right) * y(x)=4 * x, y(x)$, singsol=all)

$$
y(x)=\left(2 \ln (x-1)+2 \ln (x+1)+c_{1}\right)\left(x^{2}-1\right)
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 22
DSolve $\left[y^{\prime}[x]+2 * x /\left(1-x^{\wedge} 2\right) * y[x]==4 * x, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow\left(x^{2}-1\right)\left(2 \log \left(x^{2}-1\right)+c_{1}\right)
$$

3.6 problem Problem 6

> 3.6.1 Solving as linear ode
3.6.2 Maple step by step solution . 551

Internal problem ID [2644]
Internal file name [OUTPUT/2136_Sunday_June_05_2022_02_49_57_AM_87142551/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{2 x y}{x^{2}+1}=\frac{4}{\left(x^{2}+1\right)^{2}}
$$

3.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2 x}{x^{2}+1} \\
& q(x)=\frac{4}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 x y}{x^{2}+1}=\frac{4}{\left(x^{2}+1\right)^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2 x}{x^{2}+1} d x} \\
& =x^{2}+1
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{4}{\left(x^{2}+1\right)^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{2}+1\right) y\right) & =\left(x^{2}+1\right)\left(\frac{4}{\left(x^{2}+1\right)^{2}}\right) \\
\mathrm{d}\left(\left(x^{2}+1\right) y\right) & =\left(\frac{4}{x^{2}+1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(x^{2}+1\right) y=\int \frac{4}{x^{2}+1} \mathrm{~d} x \\
& \left(x^{2}+1\right) y=4 \arctan (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}+1$ results in

$$
y=\frac{4 \arctan (x)}{x^{2}+1}+\frac{c_{1}}{x^{2}+1}
$$

which simplifies to

$$
y=\frac{4 \arctan (x)+c_{1}}{x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \arctan (x)+c_{1}}{x^{2}+1} \tag{1}
\end{equation*}
$$

Figure 85: Slope field plot
Verification of solutions

$$
y=\frac{4 \arctan (x)+c_{1}}{x^{2}+1}
$$

Verified OK.

3.6.2 Maple step by step solution

Let's solve
$y^{\prime}+\frac{2 x y}{x^{2}+1}=\frac{4}{\left(x^{2}+1\right)^{2}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 x y}{x^{2}+1}+\frac{4}{\left(x^{2}+1\right)^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 x y}{x^{2}+1}=\frac{4}{\left(x^{2}+1\right)^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{2 x y}{x^{2}+1}\right)=\frac{4 \mu(x)}{\left(x^{2}+1\right)^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{2 x y}{x^{2}+1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{2 \mu(x) x}{x^{2}+1}$
- \quad Solve to find the integrating factor
$\mu(x)=x^{2}+1$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{4 \mu(x)}{\left(x^{2}+1\right)^{2}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{4 \mu(x)}{\left(x^{2}+1\right)^{2}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{4 \mu(x)}{\left(x^{2}+1\right)^{2}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{2}+1$
$y=\frac{\int \frac{4}{x^{2}+1} d x+c_{1}}{x^{2}+1}$
- Evaluate the integrals on the rhs

$$
y=\frac{4 \arctan (x)+c_{1}}{x^{2}+1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve($\operatorname{diff}(y(x), x)+2 * x /\left(1+x^{\wedge} 2\right) * y(x)=4 /\left(1+x^{\wedge} 2\right)^{\wedge} 2, y(x)$, singsol=all)

$$
y(x)=\frac{4 \arctan (x)+c_{1}}{x^{2}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 20
DSolve $\left[y\right.$ ' $[x]+2 * x /\left(1+x^{\wedge} 2\right) * y[x]==4 /\left(1+x^{\wedge} 2\right) \wedge 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{4 \arctan (x)+c_{1}}{x^{2}+1}
$$

3.7 problem Problem 7

3.7.1 Solving as linear ode . 554
3.7.2 Maple step by step solution

Internal problem ID [2645]
Internal file name [OUTPUT/2137_Sunday_June_05_2022_02_49_59_AM_17371146/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[_linear]
```

$$
2 \cos (x)^{2} y^{\prime}+y \sin (2 x)=4 \cos (x)^{4}
$$

3.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\tan (x) \\
q(x) & =2 \cos (x)^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y \tan (x)=2 \cos (x)^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \tan (x) d x} \\
& =\frac{1}{\cos (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\sec (x)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(2 \cos (x)^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sec (x) y) & =(\sec (x))\left(2 \cos (x)^{2}\right) \\
\mathrm{d}(\sec (x) y) & =(2 \cos (x)) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sec (x) y=\int 2 \cos (x) \mathrm{d} x \\
& \sec (x) y=2 \sin (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sec (x)$ results in

$$
y=2 \sin (x) \cos (x)+c_{1} \cos (x)
$$

which simplifies to

$$
y=\cos (x)\left(2 \sin (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x)\left(2 \sin (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 86: Slope field plot

Verification of solutions

$$
y=\cos (x)\left(2 \sin (x)+c_{1}\right)
$$

Verified OK.

3.7.2 Maple step by step solution

Let's solve
$2 \cos (x)^{2} y^{\prime}+y \sin (2 x)=4 \cos (x)^{4}$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Isolate the derivative

$$
y^{\prime}=-\frac{\sin (2 x) y}{2 \cos (x)^{2}}+2 \cos (x)^{2}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{\sin (2 x) y}{2 \cos (x)^{2}}=2 \cos (x)^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}+\frac{\sin (2 x) y}{2 \cos (x)^{2}}\right)=2 \mu(x) \cos (x)^{2}
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{\sin (2 x) y}{2 \cos (x)^{2}}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) \sin (2 x)}{2 \cos (x)^{2}}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{\cos (x)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) \cos (x)^{2} d x+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(x) y=\int 2 \mu(x) \cos (x)^{2} d x+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\int 2 \mu(x) \cos (x)^{2} d x+c_{1}}{\mu(x)}
$$

- \quad Substitute $\mu(x)=\frac{1}{\cos (x)}$
$y=\cos (x)\left(\int 2 \cos (x) d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=\cos (x)\left(2 \sin (x)+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
dsolve $(2 *(\cos (x) \wedge 2) * \operatorname{diff}(y(x), x)+y(x) * \sin (2 * x)=4 * \cos (x) \wedge 4, y(x)$, singsol=all)

$$
y(x)=\left(2 \sin (x)+c_{1}\right) \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 15
DSolve $\left[2 *(\operatorname{Cos}[x] \sim 2) * y{ }^{\prime}[x]+y[x] * \operatorname{Sin}[2 * x]==4 * \operatorname{Cos}[x] \sim 4, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \cos (x)\left(2 \sin (x)+c_{1}\right)
$$

3.8 problem Problem 8

3.8.1 Solving as linear ode
3.8.2 Maple step by step solution . 561

Internal problem ID [2646]
Internal file name [OUTPUT/2138_Sunday_June_05_2022_02_50_01_AM_1763986/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{y}{\ln (x) x}=9 x^{2}
$$

3.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{\ln (x) x} \\
& q(x)=9 x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{\ln (x) x}=9 x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{\ln (x) x} d x} \\
& =\ln (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(9 x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\ln (x) y) & =(\ln (x))\left(9 x^{2}\right) \\
\mathrm{d}(\ln (x) y) & =\left(9 \ln (x) x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \ln (x) y=\int 9 \ln (x) x^{2} \mathrm{~d} x \\
& \ln (x) y=3 x^{3} \ln (x)-x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\ln (x)$ results in

$$
y=\frac{3 x^{3} \ln (x)-x^{3}}{\ln (x)}+\frac{c_{1}}{\ln (x)}
$$

which simplifies to

$$
y=\frac{3 x^{3} \ln (x)-x^{3}+c_{1}}{\ln (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{3} \ln (x)-x^{3}+c_{1}}{\ln (x)} \tag{1}
\end{equation*}
$$

Figure 87: Slope field plot

Verification of solutions

$$
y=\frac{3 x^{3} \ln (x)-x^{3}+c_{1}}{\ln (x)}
$$

Verified OK.

3.8.2 Maple step by step solution

Let's solve

$$
y^{\prime}+\frac{y}{\ln (x) x}=9 x^{2}
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative

$$
y^{\prime}=-\frac{y}{\ln (x) x}+9 x^{2}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{\ln (x) x}=9 x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{\ln (x) x}\right)=9 \mu(x) x^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{\ln (x) x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{\ln (x) x}$
- Solve to find the integrating factor
$\mu(x)=\ln (x)$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 9 \mu(x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 9 \mu(x) x^{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 9 \mu(x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\ln (x)$
$y=\frac{\int 9 \ln (x) x^{2} d x+c_{1}}{\ln (x)}$
- Evaluate the integrals on the rhs
$y=\frac{3 x^{3} \ln (x)-x^{3}+c_{1}}{\ln (x)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve(diff $(y(x), x)+1 /(x * \ln (x)) * y(x)=9 * x^{\wedge} 2, y(x)$, singsol=all)

$$
y(x)=\frac{3 x^{3} \ln (x)-x^{3}+c_{1}}{\ln (x)}
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 25
DSolve $[y '[x]+1 /(x * \log [x]) * y[x]==9 * x \wedge 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{-x^{3}+3 x^{3} \log (x)+c_{1}}{\log (x)}
$$

3.9 problem Problem 9

3.9.1 Solving as linear ode . 564
3.9.2 Maple step by step solution . 566

Internal problem ID [2647]
Internal file name [OUTPUT/2139_Sunday_June_05_2022_02_50_04_AM_6156280/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-y \tan (x)=8 \sin (x)^{3}
$$

3.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\tan (x) \\
q(x) & =8 \sin (x)^{3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y \tan (x)=8 \sin (x)^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\tan (x) d x} \\
& =\cos (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(8 \sin (x)^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\cos (x) y) & =(\cos (x))\left(8 \sin (x)^{3}\right) \\
\mathrm{d}(\cos (x) y) & =\left(8 \sin (x)^{3} \cos (x)\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \cos (x) y=\int 8 \sin (x)^{3} \cos (x) \mathrm{d} x \\
& \cos (x) y=2 \sin (x)^{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\cos (x)$ results in

$$
y=2 \sec (x) \sin (x)^{4}+c_{1} \sec (x)
$$

which simplifies to

$$
y=\sec (x)\left(2 \sin (x)^{4}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sec (x)\left(2 \sin (x)^{4}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 88: Slope field plot

Verification of solutions

$$
y=\sec (x)\left(2 \sin (x)^{4}+c_{1}\right)
$$

Verified OK.

3.9.2 Maple step by step solution

Let's solve
$y^{\prime}-y \tan (x)=8 \sin (x)^{3}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=y \tan (x)+8 \sin (x)^{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y \tan (x)=8 \sin (x)^{3}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-y \tan (x)\right)=8 \mu(x) \sin (x)^{3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y \tan (x)\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x) \tan (x)$
- Solve to find the integrating factor
$\mu(x)=\cos (x)$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 8 \mu(x) \sin (x)^{3} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 8 \mu(x) \sin (x)^{3} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 8 \mu(x) \sin (x)^{3} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\cos (x)$
$y=\frac{\int 8 \sin (x)^{3} \cos (x) d x+c_{1}}{\cos (x)}$
- Evaluate the integrals on the rhs

$$
y=\frac{2 \sin (x)^{4}+c_{1}}{\cos (x)}
$$

- Simplify

$$
y=\sec (x)\left(2 \sin (x)^{4}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

```
dsolve(diff(y(x),x)-y(x)*\operatorname{tan}(x)=8*\operatorname{sin}(\textrm{x})^
```

$$
y(x)=2 \cos (x)^{3}-4 \cos (x)+\frac{\sec (x)\left(4 c_{1}+5\right)}{4}
$$

Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 19

```
DSolve[y'[x]-y[x]*Tan[x]==8*Sin[x] 3,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow 2 \sin ^{3}(x) \tan (x)+c_{1} \sec (x)
$$

3.10 problem Problem 10

3.10.1 Solving as linear ode . 568
3.10.2 Maple step by step solution 570

Internal problem ID [2648]
Internal file name [OUTPUT/2140_Sunday_June_05_2022_02_50_06_AM_138995/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
x^{\prime} t+2 x=4 \mathrm{e}^{t}
$$

3.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
x^{\prime}+p(t) x=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{2}{t} \\
q(t) & =\frac{4 \mathrm{e}^{t}}{t}
\end{aligned}
$$

Hence the ode is

$$
x^{\prime}+\frac{2 x}{t}=\frac{4 \mathrm{e}^{t}}{t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{t} d t} \\
& =t^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu x) & =(\mu)\left(\frac{4 \mathrm{e}^{t}}{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{2} x\right) & =\left(t^{2}\right)\left(\frac{4 \mathrm{e}^{t}}{t}\right) \\
\mathrm{d}\left(t^{2} x\right) & =\left(4 \mathrm{e}^{t} t\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{2} x=\int 4 \mathrm{e}^{t} t \mathrm{~d} t \\
& t^{2} x=4(t-1) \mathrm{e}^{t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{2}$ results in

$$
x=\frac{4(t-1) \mathrm{e}^{t}}{t^{2}}+\frac{c_{1}}{t^{2}}
$$

which simplifies to

$$
x=\frac{(4 t-4) \mathrm{e}^{t}+c_{1}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{(4 t-4) \mathrm{e}^{t}+c_{1}}{t^{2}} \tag{1}
\end{equation*}
$$

Figure 89: Slope field plot
Verification of solutions

$$
x=\frac{(4 t-4) \mathrm{e}^{t}+c_{1}}{t^{2}}
$$

Verified OK.

3.10.2 Maple step by step solution

Let's solve
$x^{\prime} t+2 x=4 \mathrm{e}^{t}$

- Highest derivative means the order of the ODE is 1
x^{\prime}
- Isolate the derivative
$x^{\prime}=-\frac{2 x}{t}+\frac{4 \mathrm{e}^{t}}{t}$
- \quad Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE $x^{\prime}+\frac{2 x}{t}=\frac{4 \mathrm{e}^{t}}{t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(x^{\prime}+\frac{2 x}{t}\right)=\frac{4 \mu(t) e^{t}}{t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) x)$
$\mu(t)\left(x^{\prime}+\frac{2 x}{t}\right)=\mu^{\prime}(t) x+\mu(t) x^{\prime}$
- Isolate $\mu^{\prime}(t)$

$$
\mu^{\prime}(t)=\frac{2 \mu(t)}{t}
$$

- \quad Solve to find the integrating factor
$\mu(t)=t^{2}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) x)\right) d t=\int \frac{4 \mu(t) e^{t}}{t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) x=\int \frac{4 \mu(t) e^{t}}{t} d t+c_{1}$
- \quad Solve for x
$x=\frac{\int \frac{4 \mu(t) e^{t}}{t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t^{2}$
$x=\frac{\int 4 \mathrm{e}^{t} t d t+c_{1}}{t^{2}}$
- Evaluate the integrals on the rhs

$$
x=\frac{4(t-1) e^{t}+c_{1}}{t^{2}}
$$

- Simplify

$$
x=\frac{(4 t-4) e^{t}+c_{1}}{t^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve($t * \operatorname{diff}(x(t), t)+2 * x(t)=4 * \exp (t), x(t), \quad$ singsol $=a l l)$

$$
x(t)=\frac{(4 t-4) \mathrm{e}^{t}+c_{1}}{t^{2}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 20
DSolve[$t * x^{\prime}[t]+2 * x[t]==4 * \operatorname{Exp}[t], x[t], t$, IncludeSingularSolutions $->$ True]

$$
x(t) \rightarrow \frac{4 e^{t}(t-1)+c_{1}}{t^{2}}
$$

3.11 problem Problem 11

3.11.1 Solving as linear ode 573
3.11.2 Solving as first order ode lie symmetry lookup ode 575
3.11.3 Solving as exact ode 579
3.11.4 Maple step by step solution 583

Internal problem ID [2649]
Internal file name [OUTPUT/2141_Sunday_June_05_2022_02_50_08_AM_17178087/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\sin (x)(y \sec (x)-2)=0
$$

3.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\tan (x) \\
& q(x)=-2 \sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y \tan (x)=-2 \sin (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\tan (x) d x} \\
& =\cos (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(-2 \sin (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\cos (x) y) & =(\cos (x))(-2 \sin (x)) \\
\mathrm{d}(\cos (x) y) & =(-\sin (2 x)) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \cos (x) y=\int-\sin (2 x) \mathrm{d} x \\
& \cos (x) y=\frac{\cos (2 x)}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\cos (x)$ results in

$$
y=\frac{\sec (x) \cos (2 x)}{2}+c_{1} \sec (x)
$$

which simplifies to

$$
y=\cos (x)-\frac{\sec (x)}{2}+c_{1} \sec (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x)-\frac{\sec (x)}{2}+c_{1} \sec (x) \tag{1}
\end{equation*}
$$

Figure 90: Slope field plot

Verification of solutions

$$
y=\cos (x)-\frac{\sec (x)}{2}+c_{1} \sec (x)
$$

Verified OK.

3.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\sin (x)(\sec (x) y-2) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 86: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\cos (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\cos (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\cos (x) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\sin (x)(\sec (x) y-2)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\sin (x) y \\
S_{y} & =\cos (x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\sin (2 x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\sin (2 R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\cos (2 R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\cos (x) y=\frac{\cos (2 x)}{2}+c_{1}
$$

Which simplifies to

$$
\cos (x) y=\frac{\cos (2 x)}{2}+c_{1}
$$

Which gives

$$
y=\frac{\cos (2 x)+2 c_{1}}{2 \cos (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\sin (x)(\sec (x) y-2)$		$\frac{d S}{d R}=-\sin (2 R)$
		分いでフ
		4
	$R=x$	
－	$S=\cos (x) y$	－ 0^{-3}
		\because

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\frac{\cos (2 x)+2 c_{1}}{2 \cos (x)} \tag{1}
\end{equation*}
$$

Figure 91: Slope field plot

Verification of solutions

$$
y=\frac{\cos (2 x)+2 c_{1}}{2 \cos (x)}
$$

Verified OK.

3.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(\sin (x)(\sec (x) y-2)) \mathrm{d} x \\
(-\sin (x)(\sec (x) y-2)) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\sin (x)(\sec (x) y-2) \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\sin (x)(\sec (x) y-2)) \\
& =-\tan (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-\sec (x) \sin (x))-(0)) \\
& =-\tan (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\tan (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (\cos (x))} \\
& =\cos (x)
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\cos (x)(-\sin (x)(\sec (x) y-2)) \\
& =-\sin (x)(y-2 \cos (x))
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\cos (x)(1) \\
& =\cos (x)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
(-\sin (x)(y-2 \cos (x)))+(\cos (x)) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\sin (x)(y-2 \cos (x)) \mathrm{d} x \\
\phi & =\cos (x)(-\cos (x)+y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\cos (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\cos (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
\cos (x)=\cos (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\cos (x)(-\cos (x)+y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\cos (x)(-\cos (x)+y)
$$

The solution becomes

$$
y=\frac{\cos (x)^{2}+c_{1}}{\cos (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\cos (x)^{2}+c_{1}}{\cos (x)} \tag{1}
\end{equation*}
$$

Figure 92: Slope field plot

Verification of solutions

$$
y=\frac{\cos (x)^{2}+c_{1}}{\cos (x)}
$$

Verified OK.

3.11.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\sin (x)(y \sec (x)-2)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=\sin (x) y \sec (x)-2 \sin (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$-\sin (x) y \sec (x)+y^{\prime}=-2 \sin (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(-\sin (x) y \sec (x)+y^{\prime}\right)=-2 \mu(x) \sin (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(-\sin (x) y \sec (x)+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x) \sec (x) \sin (x)$
- \quad Solve to find the integrating factor

$$
\mu(x)=\frac{1}{\sec (x)}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int-2 \mu(x) \sin (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int-2 \mu(x) \sin (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int-2 \mu(x) \sin (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{\sec (x)}$
$y=\sec (x)\left(\int-\frac{2 \sin (x)}{\sec (x)} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=\sec (x)\left(-\sin (x)^{2}+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve(diff $(y(x), x)=\sin (x) *(y(x) * \sec (x)-2), y(x), \quad$ singsol=all)

$$
y(x)=\cos (x)-\frac{\sec (x)}{2}+\sec (x) c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 20
DSolve $\left[y^{\prime}[x]==\operatorname{Sin}[x] *(y[x] * \operatorname{Sec}[x]-2), y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2} \sec (x)\left(\cos (2 x)+2 c_{1}\right)
$$

3.12 problem Problem 12

3.12.1 Solving as linear ode . 586
3.12.2 Maple step by step solution . 588

Internal problem ID [2650]
Internal file name [OUTPUT/2142_Sunday_June_05_2022_02_50_11_AM_19325055/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
-y \sin (x)-y^{\prime} \cos (x)=-1
$$

3.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\tan (x) \\
q(x) & =\sec (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y \tan (x)=\sec (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \tan (x) d x} \\
& =\frac{1}{\cos (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\sec (x)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\sec (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sec (x) y) & =(\sec (x))(\sec (x)) \\
\mathrm{d}(\sec (x) y) & =\sec (x)^{2} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sec (x) y=\int \sec (x)^{2} \mathrm{~d} x \\
& \sec (x) y=\tan (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sec (x)$ results in

$$
y=\tan (x) \cos (x)+c_{1} \cos (x)
$$

which simplifies to

$$
y=c_{1} \cos (x)+\sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+\sin (x) \tag{1}
\end{equation*}
$$

Figure 93: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+\sin (x)
$$

Verified OK.

3.12.2 Maple step by step solution

Let's solve

$$
-y \sin (x)-y^{\prime} \cos (x)=-1
$$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Isolate the derivative

$$
y^{\prime}=-\frac{\sin (x) y}{\cos (x)}+\frac{1}{\cos (x)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}+\frac{\sin (x) y}{\cos (x)}=\frac{1}{\cos (x)}
$$

- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{\sin (x) y}{\cos (x)}\right)=\frac{\mu(x)}{\cos (x)}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{\sin (x) y}{\cos (x)}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) \sin (x)}{\cos (x)}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{\cos (x)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{\cos (x)} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{\cos (x)} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{\cos (x)} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{\cos (x)}$
$y=\cos (x)\left(\int \frac{1}{\cos (x)^{2}} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=\cos (x)\left(\tan (x)+c_{1}\right)$
- Simplify
$y=c_{1} \cos (x)+\sin (x)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11
dsolve($(1-y(x) * \sin (x))-\cos (x) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
y(x)=\cos (x) c_{1}+\sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 13
DSolve[(1-y[x]*Sin[x])-Cos[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sin (x)+c_{1} \cos (x)
$$

3.13 problem Problem 13

3.13.1 Solving as linear ode . 591
3.13.2 Maple step by step solution . 593

Internal problem ID [2651]
Internal file name [OUTPUT/2143_Sunday_June_05_2022_02_50_13_AM_9669064/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[_linear]
```

$$
y^{\prime}-\frac{y}{x}=2 \ln (x) x^{2}
$$

3.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=2 \ln (x) x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=2 \ln (x) x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(2 \ln (x) x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(2 \ln (x) x^{2}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =(2 \ln (x) x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int 2 \ln (x) x \mathrm{~d} x \\
& \frac{y}{x}=\ln (x) x^{2}-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=x\left(\ln (x) x^{2}-\frac{x^{2}}{2}\right)+c_{1} x
$$

which simplifies to

$$
y=x^{3} \ln (x)-\frac{x^{3}}{2}+c_{1} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3} \ln (x)-\frac{x^{3}}{2}+c_{1} x \tag{1}
\end{equation*}
$$

Figure 94: Slope field plot

Verification of solutions

$$
y=x^{3} \ln (x)-\frac{x^{3}}{2}+c_{1} x
$$

Verified OK.

3.13.2 Maple step by step solution

Let's solve
$y^{\prime}-\frac{y}{x}=2 \ln (x) x^{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{x}+2 \ln (x) x^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{x}=2 \ln (x) x^{2}$
- \quad The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=2 \mu(x) \ln (x) x^{2}
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) \ln (x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 2 \mu(x) \ln (x) x^{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(x) \ln (x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$y=x\left(\int 2 \ln (x) x d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x\left(\ln (x) x^{2}-\frac{x^{2}}{2}+c_{1}\right)$
- \quad Simplify
$y=x^{3} \ln (x)-\frac{x^{3}}{2}+c_{1} x$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve($\operatorname{diff}(y(x), x)-1 / x * y(x)=2 * x^{\wedge} 2 * \ln (x), y(x)$, singsol=all)

$$
y(x)=x^{3} \ln (x)-\frac{x^{3}}{2}+c_{1} x
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 23
DSolve[y'[x]-1/x*y[x]==2*x^2*Log[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{x^{3}}{2}+x^{3} \log (x)+c_{1} x
$$

3.14 problem Problem 14

3.14.1 Solving as linear ode . 596
3.14.2 Maple step by step solution . 597

Internal problem ID [2652]
Internal file name [OUTPUT/2144_Sunday_June_05_2022_02_50_15_AM_31038222/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[[_linear, `class A`]]
```

$$
y^{\prime}+\alpha y=\mathrm{e}^{\beta x}
$$

3.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\alpha \\
q(x) & =\mathrm{e}^{\beta x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\alpha y=\mathrm{e}^{\beta x}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \alpha d x} \\
=\mathrm{e}^{\alpha x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{\beta x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\alpha x} y\right) & =\left(\mathrm{e}^{\alpha x}\right)\left(\mathrm{e}^{\beta x}\right) \\
\mathrm{d}\left(\mathrm{e}^{\alpha x} y\right) & =\mathrm{e}^{x(\alpha+\beta)} \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\alpha x} y=\int \mathrm{e}^{x(\alpha+\beta)} \mathrm{d} x \\
& \mathrm{e}^{\alpha x} y=\frac{\mathrm{e}^{x(\alpha+\beta)}}{\alpha+\beta}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\alpha x}$ results in

$$
y=\frac{\mathrm{e}^{-\alpha x} \mathrm{e}^{x(\alpha+\beta)}}{\alpha+\beta}+c_{1} \mathrm{e}^{-\alpha x}
$$

which simplifies to

$$
y=\frac{c_{1}(\alpha+\beta) \mathrm{e}^{-\alpha x}+\mathrm{e}^{\beta x}}{\alpha+\beta}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}(\alpha+\beta) \mathrm{e}^{-\alpha x}+\mathrm{e}^{\beta x}}{\alpha+\beta} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}(\alpha+\beta) \mathrm{e}^{-\alpha x}+\mathrm{e}^{\beta x}}{\alpha+\beta}
$$

Verified OK.

3.14.2 Maple step by step solution

Let's solve
$y^{\prime}+\alpha y=\mathrm{e}^{\beta x}$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Isolate the derivative
$y^{\prime}=-\alpha y+\mathrm{e}^{\beta x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\alpha y=\mathrm{e}^{\beta x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\alpha y\right)=\mu(x) \mathrm{e}^{\beta x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\alpha y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x) \alpha$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{\alpha x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{\beta x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{\beta x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{\beta x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\alpha x}$
$y=\frac{\int \mathrm{e}^{\beta x} \mathrm{e}^{\alpha x} d x+c_{1}}{\mathrm{e}^{\alpha x}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\mathrm{e}^{\alpha x+\beta x}}{\alpha+\beta}+c_{1}}{\mathrm{e}^{\alpha x}}$
- Simplify
$y=\frac{\mathrm{e}^{-\alpha x}\left(\mathrm{e}^{x(\alpha+\beta)}+c_{1}(\alpha+\beta)\right)}{\alpha+\beta}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff (y (x),x)+alpha*y(x)=exp(beta*x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{-\alpha x}\left(\mathrm{e}^{x(\alpha+\beta)}+c_{1}(\alpha+\beta)\right)}{\alpha+\beta}
$$

\checkmark Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 31
DSolve[y'[x] \backslash [Alpha] $*[\mathrm{x}]==\operatorname{Exp}[\backslash[$ Beta $] * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{e^{\alpha(-x)}\left(e^{x(\alpha+\beta)}+c_{1}(\alpha+\beta)\right)}{\alpha+\beta}
$$

3.15 problem Problem 15

3.15.1 Solving as linear ode . 600
3.15.2 Maple step by step solution . 602

Internal problem ID [2653]
Internal file name [OUTPUT/2145_Sunday_June_05_2022_02_50_17_AM_4708840/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{m y}{x}=\ln (x)
$$

3.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{m}{x} \\
q(x) & =\ln (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{m y}{x}=\ln (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{m}{x} d x} \\
& =\mathrm{e}^{m \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=x^{m}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\ln (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{m} y\right) & =\left(x^{m}\right)(\ln (x)) \\
\mathrm{d}\left(x^{m} y\right) & =\left(\ln (x) x^{m}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
x^{m} y & =\int \ln (x) x^{m} \mathrm{~d} x \\
x^{m} y & =\frac{x \ln (x) \mathrm{e}^{m \ln (x)}}{m+1}-\frac{x \mathrm{e}^{m \ln (x)}}{m^{2}+2 m+1}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{m}$ results in

$$
y=x^{-m}\left(\frac{x \ln (x) \mathrm{e}^{m \ln (x)}}{m+1}-\frac{x \mathrm{e}^{m \ln (x)}}{m^{2}+2 m+1}\right)+c_{1} x^{-m}
$$

which simplifies to

$$
y=\frac{c_{1}(m+1)^{2} x^{-m}+(-1+(m+1) \ln (x)) x}{(m+1)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}(m+1)^{2} x^{-m}+(-1+(m+1) \ln (x)) x}{(m+1)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}(m+1)^{2} x^{-m}+(-1+(m+1) \ln (x)) x}{(m+1)^{2}}
$$

Verified OK.

3.15.2 Maple step by step solution

Let's solve
$y^{\prime}+\frac{m y}{x}=\ln (x)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{m y}{x}+\ln (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{m y}{x}=\ln (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{m y}{x}\right)=\mu(x) \ln (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{m y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) m}{x}$
- Solve to find the integrating factor
$\mu(x)=x^{m}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \ln (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \ln (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \ln (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{m}$
$y=\frac{\int \ln (x) x^{m} d x+c_{1}}{x^{m}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{x \ln (x) e^{m \ln (x)}}{m+1}-\frac{x^{m} \ln (x)}{m^{2}+2 m+1}+c_{1}}{x^{m}}$
- Simplify

$$
y=\frac{c_{1}(m+1)^{2} x^{-m}+(-1+(m+1) \ln (x)) x}{(m+1)^{2}}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33
dsolve(diff $(y(x), x)+m / x * y(x)=\ln (x), y(x)$, singsol=all)

$$
y(x)=\frac{c_{1}(m+1)^{2} x^{-m}+x(-1+(m+1) \ln (x))}{(m+1)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 29
DSolve $[y '[x]+m / x * y[x]==\log [x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{x((m+1) \log (x)-1)}{(m+1)^{2}}+c_{1} x^{-m}
$$

3.16 problem Problem 16

3.16.1 Existence and uniqueness analysis 604
3.16.2 Solving as linear ode . 605
3.16.3 Maple step by step solution . 607

Internal problem ID [2654]
Internal file name [OUTPUT/2146_Sunday_June_05_2022_02_50_19_AM_68953379/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{2 y}{x}=4 x
$$

With initial conditions

$$
[y(1)=2]
$$

3.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=4 x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=4 x
$$

The domain of $p(x)=\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=4 x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

3.16.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(4 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)(4 x) \\
\mathrm{d}\left(x^{2} y\right) & =\left(4 x^{3}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int 4 x^{3} \mathrm{~d} x \\
& x^{2} y=x^{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=x^{2}+\frac{c_{1}}{x^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
2=c_{1}+1
$$

$$
c_{1}=1
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x^{4}+1}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{4}+1}{x^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{x^{4}+1}{x^{2}}
$$

Verified OK.

3.16.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+\frac{2 y}{x}=4 x, y(1)=2\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 y}{x}+4 x$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{x}=4 x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=4 \mu(x) x$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{2 \mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=x^{2}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 4 \mu(x) x d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 4 \mu(x) x d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(x) x d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{2}$
$y=\frac{\int 4 x^{3} d x+c_{1}}{x^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{x^{4}+c_{1}}{x^{2}}$
- Use initial condition $y(1)=2$
$2=c_{1}+1$
- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify
$y=\frac{x^{4}+1}{x^{2}}$
- \quad Solution to the IVP
$y=\frac{x^{4}+1}{x^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 13

```
dsolve([diff (y (x),x)+2/x*y(x)=4*x,y(1) = 2],y(x), singsol=all)
```

$$
y(x)=\frac{x^{4}+1}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 12
DSolve[\{y' $[x]+2 / x * y[x]==4 * x,\{y[1]==2\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}+\frac{1}{x^{2}}
$$

3.17 problem Problem 17

3.17.1 Existence and uniqueness analysis 609
3.17.2 Solving as linear ode . 610
3.17.3 Solving as first order ode lie symmetry lookup ode 612
3.17.4 Solving as exact ode . 616
3.17.5 Maple step by step solution . 620

Internal problem ID [2655]
Internal file name [OUTPUT/2147_Sunday_June_05_2022_02_50_22_AM_72927966/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime} \sin (x)-\cos (x) y=\sin (2 x)
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{2}\right)=2\right]
$$

3.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\cot (x) \\
q(x) & =2 \cos (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y \cot (x)=2 \cos (x)
$$

The domain of $p(x)=-\cot (x)$ is

$$
\left\{x<\pi _Z 144 \vee \pi _Z 144<x\right\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is inside this domain. The domain of $q(x)=2 \cos (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is also inside this domain. Hence solution exists and is unique.

3.17.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\cot (x) d x} \\
& =\frac{1}{\sin (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\csc (x)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(2 \cos (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\csc (x) y) & =(\csc (x))(2 \cos (x)) \\
\mathrm{d}(\csc (x) y) & =(2 \cot (x)) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \csc (x) y=\int 2 \cot (x) \mathrm{d} x \\
& \csc (x) y=2 \ln (\sin (x))+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\csc (x)$ results in

$$
y=2 \sin (x) \ln (\sin (x))+c_{1} \sin (x)
$$

which simplifies to

$$
y=\sin (x)\left(2 \ln (\sin (x))+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 \sin (x) \ln (\sin (x))+2 \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \sin (x) \ln (\sin (x))+2 \sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \sin (x) \ln (\sin (x))+2 \sin (x)
$$

Verified OK.

3.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\cos (x) y+\sin (2 x)}{\sin (x)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 94: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\sin (x) \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sin (x)} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{\sin (x)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\cos (x) y+\sin (2 x)}{\sin (x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\csc (x) \cot (x) y \\
S_{y} & =\csc (x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 \cot (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 \cot (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 \ln (\sin (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\csc (x) y=2 \ln (\sin (x))+c_{1}
$$

Which simplifies to

$$
\csc (x) y=2 \ln (\sin (x))+c_{1}
$$

Which gives

$$
y=\frac{2 \ln (\sin (x))+c_{1}}{\csc (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\cos (x) y+\sin (2 x)}{\sin (x)}$		$\frac{d S}{d R}=2 \cot (R)$
		-
$\xrightarrow{\text { a }}$		
	$R=x$	
	$S=\csc (x) y$	

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 \sin (x) \ln (\sin (x))+2 \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \sin (x) \ln (\sin (x))+2 \sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \sin (x) \ln (\sin (x))+2 \sin (x)
$$

Verified OK.

3.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(\sin (x)) \mathrm{d} y & =(\cos (x) y+\sin (2 x)) \mathrm{d} x \\
(-\cos (x) y-\sin (2 x)) \mathrm{d} x+(\sin (x)) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\cos (x) y-\sin (2 x) \\
N(x, y) & =\sin (x)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\cos (x) y-\sin (2 x)) \\
& =-\cos (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(\sin (x)) \\
& =\cos (x)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\csc (x)((-\cos (x))-(\cos (x))) \\
& =-2 \cot (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-2 \cot (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (\sin (x))} \\
& =\csc (x)^{2}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\csc (x)^{2}(-\cos (x) y-\sin (2 x)) \\
& =-\cot (x)(\csc (x) y+2)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\csc (x)^{2}(\sin (x)) \\
& =\csc (x)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
(-\cot (x)(\csc (x) y+2))+(\csc (x)) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\cot (x)(\csc (x) y+2) \mathrm{d} x \\
\phi & =\csc (x) y+2 \ln (\csc (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\csc (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\csc (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
\csc (x)=\csc (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\csc (x) y+2 \ln (\csc (x))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\csc (x) y+2 \ln (\csc (x))
$$

The solution becomes

$$
y=-\frac{2 \ln (\csc (x))-c_{1}}{\csc (x)}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-2 \ln (\csc (x)) \sin (x)+2 \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 \ln (\csc (x)) \sin (x)+2 \sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 \ln (\csc (x)) \sin (x)+2 \sin (x)
$$

Verified OK.

3.17.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime} \sin (x)-\cos (x) y=\sin (2 x), y\left(\frac{\pi}{2}\right)=2\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{\cos (x) y}{\sin (x)}+\frac{\sin (2 x)}{\sin (x)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{\cos (x) y}{\sin (x)}=\frac{\sin (2 x)}{\sin (x)}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{\cos (x) y}{\sin (x)}\right)=\frac{\mu(x) \sin (2 x)}{\sin (x)}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{\cos (x) y}{\sin (x)}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x) \cos (x)}{\sin (x)}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{\sin (x)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) \sin (2 x)}{\sin (x)} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) \sin (2 x)}{\sin (x)} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) \sin (2 x)}{\sin (x)} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{\sin (x)}$
$y=\sin (x)\left(\int \frac{\sin (2 x)}{\sin (x)^{2}} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=\sin (x)\left(2 \ln (\sin (x))+c_{1}\right)$
- Use initial condition $y\left(\frac{\pi}{2}\right)=2$
$2=c_{1}$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify
$y=(2 \ln (\sin (x))+2) \sin (x)$
- Solution to the IVP
$y=(2 \ln (\sin (x))+2) \sin (x)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve([sin $(x) * \operatorname{diff}(y(x), x)-y(x) * \cos (x)=\sin (2 * x), y(1 / 2 * \operatorname{Pi})=2], y(x)$, singsol=all)

$$
y(x)=(2 \ln (\sin (x))+2) \sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 14
DSolve $[\{\operatorname{Sin}[x] * y$ ' $[x]-y[x] * \operatorname{Cos}[x]==\operatorname{Sin}[2 * x],\{y[P i / 2]==2\}\}, y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow 2 \sin (x)(\log (\sin (x))+1)
$$

3.18 problem Problem 18

3.18.1 Existence and uniqueness analysis 624
3.18.2 Solving as linear ode . 624
3.18.3 Solving as homogeneousTypeMapleC ode 626
3.18.4 Solving as first order ode lie symmetry lookup ode 629
3.18.5 Solving as exact ode . 634
3.18.6 Maple step by step solution . 638

Internal problem ID [2656]
Internal file name [OUTPUT/2148_Sunday_June_05_2022_02_50_24_AM_55698290/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeMapleC", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
x^{\prime}+\frac{2 x}{4-t}=5
$$

With initial conditions

$$
[x(0)=4]
$$

3.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime}+p(t) x=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{2}{-4+t} \\
& q(t)=5
\end{aligned}
$$

Hence the ode is

$$
x^{\prime}-\frac{2 x}{-4+t}=5
$$

The domain of $p(t)=-\frac{2}{-4+t}$ is

$$
\{t<4 \vee 4<t\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

3.18.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{-4+t} d t} \\
& =\frac{1}{(-4+t)^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu x) & =(\mu)(5) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{x}{(-4+t)^{2}}\right) & =\left(\frac{1}{(-4+t)^{2}}\right)(5) \\
\mathrm{d}\left(\frac{x}{(-4+t)^{2}}\right) & =\left(\frac{5}{(-4+t)^{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{x}{(-4+t)^{2}}=\int \frac{5}{(-4+t)^{2}} \mathrm{~d} t \\
& \frac{x}{(-4+t)^{2}}=-\frac{5}{-4+t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{(-4+t)^{2}}$ results in

$$
x=20-5 t+c_{1}(-4+t)^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=20+16 c_{1} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
x=-t^{2}+3 t+4
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=-t^{2}+3 t+4 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=-t^{2}+3 t+4
$$

Verified OK.

3.18.3 Solving as homogeneousTypeMapleC ode

Let $Y=x+y_{0}$ and $X=t+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{2 Y(X)+2 y_{0}-20+5 X+5 x_{0}}{-4+X+x_{0}}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =4 \\
y_{0} & =0
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{2 Y(X)+5 X}{X}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{2 Y+5 X}{X} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=2 Y+5 X$ and $N=X$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =2 u+5 \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{u(X)+5}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{u(X)+5}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X-u(X)-5=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =\frac{u+5}{X}
\end{aligned}
$$

Where $f(X)=\frac{1}{X}$ and $g(u)=u+5$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u+5} d u & =\frac{1}{X} d X \\
\int \frac{1}{u+5} d u & =\int \frac{1}{X} d X \\
\ln (u+5) & =\ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
u+5=\mathrm{e}^{\ln (X)+c_{2}}
$$

Which simplifies to

$$
u+5=c_{3} X
$$

Which simplifies to

$$
u(X)=c_{3} X \mathrm{e}^{c_{2}}-5
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
Y(X)=X\left(c_{3} X \mathrm{e}^{c_{2}}-5\right)
$$

Using the solution for $Y(X)$

$$
Y(X)=X\left(c_{3} X \mathrm{e}^{c_{2}}-5\right)
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=x+y_{0} \\
& X=t+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=x \\
& X=t+4
\end{aligned}
$$

Then the solution in x becomes

$$
x=(-4+t)\left(c_{3}(-4+t) \mathrm{e}^{c_{2}}-5\right)
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $x=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 4=20+16 c_{3} \mathrm{e}^{c_{2}} \\
& c_{2}=\ln \left(-\frac{1}{c_{3}}\right)
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
x=-t^{2}+3 t+4
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=-t^{2}+3 t+4 \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
x=-t^{2}+3 t+4
$$

Verified OK.

3.18.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& x^{\prime}=\frac{2 x-20+5 t}{-4+t} \\
& x^{\prime}=\omega(t, x)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{x}-\xi_{t}\right)-\omega^{2} \xi_{x}-\omega_{t} \xi-\omega_{x} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 97: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, x)=0 \\
& \eta(t, x)=(-4+t)^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, x) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d x}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial x}\right) S(t, x)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{(-4+t)^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x}{(-4+t)^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, x) S_{x}}{R_{t}+\omega(t, x) R_{x}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{x}, S_{t}, S_{x}$ are all partial derivatives and $\omega(t, x)$ is the right hand side of the original ode given by

$$
\omega(t, x)=\frac{2 x-20+5 t}{-4+t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{x} & =0 \\
S_{t} & =-\frac{2 x}{(-4+t)^{3}} \\
S_{x} & =\frac{1}{(-4+t)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{5}{(-4+t)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, x in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{5}{(-4+R)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{5}{-4+R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, x coordinates. This results in

$$
\frac{x}{(-4+t)^{2}}=-\frac{5}{-4+t}+c_{1}
$$

Which simplifies to

$$
\frac{x}{(-4+t)^{2}}=-\frac{5}{-4+t}+c_{1}
$$

Which gives

$$
x=\left(c_{1} t-4 c_{1}-5\right)(-4+t)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d x}{d t}=\frac{2 x-20+5 t}{-4+t}$		$\frac{d S}{d R}=\frac{5}{(-4+R)^{2}}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ -
		- $\rightarrow_{\rightarrow \rightarrow \rightarrow \text { - }}$
		$\rightarrow \rightarrow \rightarrow 20 \rightarrow$ 灱 $1+\uparrow+4$
	$R=t$	
	$S=\frac{x}{(-4+t)^{2}}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
	$(-4+t)^{2}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		1tat ${ }_{\text {a }}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		(
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ b b		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=20+16 c_{1} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
x=-(t+1)(-4+t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=-(t+1)(-4+t) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
x=-(t+1)(-4+t)
$$

Verified OK.

3.18.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, x) \mathrm{d} t+N(t, x) \mathrm{d} x=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} x & =\left(-\frac{2 x}{4-t}+5\right) \mathrm{d} t \\
\left(\frac{2 x}{4-t}-5\right) \mathrm{d} t+\mathrm{d} x & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, x) & =\frac{2 x}{4-t}-5 \\
N(t, x) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{2 x}{4-t}-5\right) \\
& =-\frac{2}{-4+t}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial x}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(\frac{2}{4-t}\right)-(0)\right) \\
& =-\frac{2}{-4+t}
\end{aligned}
$$

Since A does not depend on x, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{2}{-4+t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (-4+t)} \\
& =\frac{1}{(-4+t)^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{(-4+t)^{2}}\left(\frac{2 x}{4-t}-5\right) \\
& =\frac{-2 x+20-5 t}{(-4+t)^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{(-4+t)^{2}}(1) \\
& =\frac{1}{(-4+t)^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} x}{\mathrm{~d} t} & =0 \\
\left(\frac{-2 x+20-5 t}{(-4+t)^{3}}\right)+\left(\frac{1}{(-4+t)^{2}}\right) \frac{\mathrm{d} x}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, x)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial x}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{-2 x+20-5 t}{(-4+t)^{3}} \mathrm{~d} t \\
\phi & =\frac{-20+5 t+x}{(-4+t)^{2}}+f(x) \tag{3}
\end{align*}
$$

Where $f(x)$ is used for the constant of integration since ϕ is a function of both t and x. Taking derivative of equation (3) w.r.t x gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=\frac{1}{(-4+t)^{2}}+f^{\prime}(x) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial x}=\frac{1}{(-4+t)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{(-4+t)^{2}}=\frac{1}{(-4+t)^{2}}+f^{\prime}(x) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(x)$ gives

$$
f^{\prime}(x)=0
$$

Therefore

$$
f(x)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(x)$ into equation (3) gives ϕ

$$
\phi=\frac{-20+5 t+x}{(-4+t)^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-20+5 t+x}{(-4+t)^{2}}
$$

The solution becomes

$$
x=\left(c_{1} t-4 c_{1}-5\right)(-4+t)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=20+16 c_{1} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
x=-(t+1)(-4+t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=-(t+1)(-4+t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x=-(t+1)(-4+t)
$$

Verified OK.

3.18.6 Maple step by step solution

Let's solve

$$
\left[x^{\prime}+\frac{2 x}{4-t}=5, x(0)=4\right]
$$

- Highest derivative means the order of the ODE is 1
x^{\prime}
- Isolate the derivative
$x^{\prime}=5+\frac{2 x}{-4+t}$
- \quad Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE
$x^{\prime}-\frac{2 x}{-4+t}=5$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(x^{\prime}-\frac{2 x}{-4+t}\right)=5 \mu(t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) x)$
$\mu(t)\left(x^{\prime}-\frac{2 x}{-4+t}\right)=\mu^{\prime}(t) x+\mu(t) x^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{2 \mu(t)}{-4+t}$
- Solve to find the integrating factor
$\mu(t)=\frac{1}{(-4+t)^{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) x)\right) d t=\int 5 \mu(t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) x=\int 5 \mu(t) d t+c_{1}$
- \quad Solve for x
$x=\frac{\int 5 \mu(t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{(-4+t)^{2}}$
$x=(-4+t)^{2}\left(\int \frac{5}{(-4+t)^{2}} d t+c_{1}\right)$
- Evaluate the integrals on the rhs
$x=(-4+t)^{2}\left(-\frac{5}{-4+t}+c_{1}\right)$
- Simplify
$x=(-4+t)\left(-5+c_{1}(-4+t)\right)$
- Use initial condition $x(0)=4$
$4=20+16 c_{1}$
- Solve for c_{1}
$c_{1}=-1$
- Substitute $c_{1}=-1$ into general solution and simplify
$x=-(t+1)(-4+t)$
- Solution to the IVP
$x=-(t+1)(-4+t)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

```
dsolve([diff(x(t),t)+2/(4-t)*x(t)=5,x(0) = 4],x(t), singsol=all)
```

$$
x(t)=-t^{2}+3 t+4
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 15
DSolve[\{x' $[t]+2 /(4-t) * x[t]==5,\{x[0]==4\}\}, x[t], t$, IncludeSingularSolutions \rightarrow True]

$$
x(t) \rightarrow-t^{2}+3 t+4
$$

3.19 problem Problem 19

3.19.1 Existence and uniqueness analysis 641
3.19.2 Solving as linear ode . 642
3.19.3 Solving as first order ode lie symmetry lookup ode 644
3.19.4 Solving as exact ode . 648
3.19.5 Maple step by step solution . 652

Internal problem ID [2657]
Internal file name [OUTPUT/2149_Sunday_June_05_2022_02_50_27_AM_10511743/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=\mathrm{e}^{x}
$$

With initial conditions

$$
[y(0)=1]
$$

3.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =\mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=\mathrm{e}^{x}
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

3.19.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\mathrm{e}^{2 x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int \mathrm{e}^{2 x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{2 x}}{2}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=\frac{\mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{2}+c_{1} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Verified OK.

3.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+\mathrm{e}^{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 100: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+\mathrm{e}^{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{2 R}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x} y=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x} y=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+\mathrm{e}^{x}$		$\frac{d S}{d R}=\mathrm{e}^{2 R}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+21} \uparrow$
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}{ }^{\text {a }}$
	$S=\mathrm{e}^{x} y$	
		¢ $4+1+1+1$
तोtोtt\|tोt		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{2}+c_{1} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Verified OK.

3.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y+\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(y-\mathrm{e}^{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y-\mathrm{e}^{x} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-\mathrm{e}^{x}\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(y-\mathrm{e}^{x}\right) \\
& =\left(y-\mathrm{e}^{x}\right) \mathrm{e}^{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(y-\mathrm{e}^{x}\right) \mathrm{e}^{x}\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(y-\mathrm{e}^{x}\right) \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =\mathrm{e}^{x} y-\frac{\mathrm{e}^{2 x}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x} y-\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x} y-\frac{\mathrm{e}^{2 x}}{2}
$$

The solution becomes

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{2}+c_{1} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Verified OK.

3.19.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y=\mathrm{e}^{x}, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+\mathrm{e}^{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=\mathrm{e}^{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x) \mathrm{e}^{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int\left(\mathrm{e}^{x}\right)^{2} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\left(\mathrm{e}^{x}\right)^{2}}{2}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=\frac{\mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x}$
- Use initial condition $y(0)=1$
$1=\frac{1}{2}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=\frac{1}{2}$
- \quad Substitute $c_{1}=\frac{1}{2}$ into general solution and simplify
$y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}$
- Solution to the IVP

$$
y=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve([y(x)-exp(x)+diff(y(x),x)=0,y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 21
DSolve[\{y[x]-Exp $[x]+y '[x]==0,\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2} e^{-x}\left(e^{2 x}+1\right)
$$

3.20 problem Problem 20

3.20.1 Existence and uniqueness analysis 655
3.20.2 Solving as linear ode . 656
3.20.3 Solving as first order ode lie symmetry lookup ode 658
3.20.4 Maple step by step solution . 662

Internal problem ID [2658]
Internal file name [OUTPUT/2150_Sunday_June_05_2022_02_50_29_AM_36187375/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y= \begin{cases}1 & x \leq 1 \\ 0 & 1<x\end{cases}
$$

With initial conditions

$$
[y(0)=3]
$$

3.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \\
& q(x)= \begin{cases}1 & x \leq 1 \\
0 & 1<x\end{cases}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y= \begin{cases}1 & x \leq 1 \\ 0 & 1<x\end{cases}
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\left\{\begin{array}{ll}1 & x \leq 1 \\ 0 & 1<x\end{array}\right.$ is

$$
\{x<1 \vee 1<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

3.20.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\left\{\begin{array}{ll}
1 & x \leq 1 \\
0 & 1<x
\end{array}\right)\right. \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-2 x} y\right) & =\left(\mathrm{e}^{-2 x}\right)\left(\begin{array}{ll}
1 & x \leq 1 \\
0 & 1<x
\end{array}\right) \\
\mathrm{d}\left(\mathrm{e}^{-2 x} y\right) & =\left\{\begin{array}{cl}
\mathrm{e}^{-2 x} & x \leq 1 \\
0 & 1<x
\end{array} \mathrm{~d} x\right.
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 x} y=\int\left\{\begin{array}{cc}
\mathrm{e}^{-2 x} & x \leq 1 \\
0 & 1<x
\end{array} \mathrm{~d} x\right. \\
& \mathrm{e}^{-2 x} y=\left\{\begin{array}{cl}
-\frac{\mathrm{e}^{-2 x}}{2} & x \leq 1 \\
-\frac{\mathrm{e}^{-2}}{2} & 1<x
\end{array}+c_{1}\right.
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 x}$ results in

$$
y=\mathrm{e}^{2 x}\left(\left\{\begin{array}{cc}
-\frac{\mathrm{e}^{-2 x}}{2} & x \leq 1 \\
-\frac{\mathrm{e}^{-2}}{2} & 1<x
\end{array}\right)+\mathrm{e}^{2 x} c_{1}\right.
$$

which simplifies to

$$
y=-\frac{\mathrm{e}^{2 x-2}\left(\left\{\begin{array}{cc}
x & x \leq 1 \\
1 & 1<x
\end{array}\right)\right.}{2}+\mathrm{e}^{2 x} c_{1}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=c_{1}-\frac{1}{2} \\
c_{1}=\frac{7}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left\{\begin{array}{cc}
-\frac{1}{2}+\frac{7 \mathrm{e}^{2 x}}{2} & x \leq 1 \\
-\frac{\mathrm{e}^{2 x-2}}{2}+\frac{7 \mathrm{e}^{2 x}}{2} & 1<x \\
3 \mathrm{e}^{2 x} & \text { otherwise }
\end{array}\right.
$$

Summary
The solution(s) found are the following

$$
y=\left\{\begin{array}{cc}
-\frac{1}{2}+\frac{7 \mathrm{e}^{2 x}}{2} & x \leq 1 \tag{1}\\
-\frac{\mathrm{e}^{2 x-2}}{2}+\frac{7 \mathrm{e}^{2 x}}{2} & 1<x \\
3 \mathrm{e}^{2 x} & \text { otherwise }
\end{array}\right.
$$

Verification of solutions

$$
y=\left\{\begin{array}{cc}
-\frac{1}{2}+\frac{7 \mathrm{e}^{2 x}}{2} & x \leq 1 \\
-\frac{\mathrm{e}^{2 x-2}}{2}+\frac{7 \mathrm{e}^{2 x}}{2} & 1<x \\
3 \mathrm{e}^{2 x} & \text { otherwise }
\end{array}\right.
$$

Verified OK.

3.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 y+\left(\left\{\begin{array}{ll}
1 & x \leq 1 \\
0 & 1<x
\end{array}\right)\right. \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 103: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{2 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-2 x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2 y+\left(\left\{\begin{array}{ll}
1 & x \leq 1 \\
0 & 1<x
\end{array}\right)\right.
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-2 \mathrm{e}^{-2 x} y \\
S_{y} & =\mathrm{e}^{-2 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\frac{d S}{d R}=\left\{\begin{array}{cc}
\mathrm{e}^{-2 x} & x \leq 1 \tag{2~A}\\
0 & 1<x
\end{array}\right.
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left\{\begin{array}{cc}
\mathrm{e}^{-2 R} & R \leq 1 \\
0 & 1<R
\end{array}\right.
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
S(R)=\left\{\begin{array}{cc}
-\frac{\mathrm{e}^{-2 R}}{2}+c_{1} & R<1 \tag{4}\\
c_{1}-\frac{\mathrm{e}^{-2}}{2} & 1 \leq R
\end{array}\right.
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-2 x} y=\left\{\begin{array}{cc}
-\frac{\mathrm{e}^{-2 x}}{2}+c_{1} & x<1 \\
c_{1}-\frac{\mathrm{e}^{-2}}{2} & 1 \leq x
\end{array}\right.
$$

Which simplifies to

$$
\mathrm{e}^{-2 x} y-c_{1}+\frac{\mathrm{e}^{-2\left(\left\{\begin{array}{cc}
x & x<1 \\
1 & 1 \leq x
\end{array}\right)\right.}}{2}=0
$$

Which gives

$$
y=\left\{\begin{array}{cc}
{\left[\mathrm{e}^{2 x} c_{1}-\frac{1}{2}\right]} & x<1 \\
{\left[-\frac{\left(\mathrm{e}^{-2}-2 c_{1}\right) \mathrm{e}^{2 x}}{2}\right]} & 1 \leq x
\end{array}\right.
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=2 y+\left(\left\{\begin{array}{ll}1 & x \leq 1 \\ 0 & 1<x\end{array}\right)\right.$		$\frac{d S}{d R}=\left\{\begin{array}{cc}\mathrm{e}^{-2 R} & R \leq 1 \\ 0 & 1<R\end{array}\right.$
¢ $\uparrow \uparrow \uparrow$		
		$1+1+1+\square \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ (
	$R=x$	
	$S=\mathrm{e}^{-2 x} y$	
	$S=\mathrm{e}^{-2 x} y$	
blytimetytyty		
		+1 $+\rightarrow \xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
$1.1+1$		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=\left[c_{1}-\frac{1}{2}\right]
$$

Unable to solve for constant of integration. Verification of solutions N/A

3.20.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 y=\left\{\begin{array}{ll}
1 & x \leq 1 \\
0 & 1<x
\end{array}, y(0)=3\right]\right.
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative

$$
y^{\prime}=2 y+ \begin{cases}1 & x \leq 1 \\ 0 & 1<x\end{cases}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-2 y= \begin{cases}1 & x \leq 1 \\ 0 & 1<x\end{cases}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-2 y\right)=\mu(x)\left(\left\{\begin{array}{ll}1 & x \leq 1 \\ 0 & 1<x\end{array}\right)\right.$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-2 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-2 \mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-2 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(\left\{\begin{array}{ll}1 & x \leq 1 \\ 0 & 1<x\end{array}\right) d x+c_{1}\right.$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)\left(\left\{\begin{array}{ll}1 & x \leq 1 \\ 0 & 1<x\end{array}\right) d x+c_{1}\right.$
- \quad Solve for y
$y=\frac{\int \mu(x)\left(\left\{\begin{array}{cc}1 & x \leq 1 \\ 0 & 1<x\end{array}\right) d x+c_{1}\right.}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-2 x}$

$$
y=\frac{\int\left(\left\{\begin{array}{cc}
1 & x \leq 1 \\
0 & 1<x
\end{array}\right) \mathrm{e}^{-2 x} d x+c_{1}\right.}{\mathrm{e}^{-2 x}}
$$

- Evaluate the integrals on the rhs
$y=\frac{\left\{\begin{array}{ll}-\frac{\mathrm{e}^{-2 x}}{2} & x \leq 1 \\ -\frac{\mathrm{e}^{-2}}{2} & 1<x\end{array}+c_{1}\right.}{\mathrm{e}^{-2 x}}$
- Simplify

$$
y=-\frac{\mathrm{e}^{2 x}\left(\mathrm{e}\binom{-2\left(\left\{\begin{array}{cc}
x & x \leq 1 \\
1 & 1<x
\end{array}\right)_{-2 c_{1}}\right)}{2}\right.}{2}
$$

- Use initial condition $y(0)=3$
$3=c_{1}-\frac{1}{2}$
- \quad Solve for c_{1}
$c_{1}=\frac{7}{2}$
- \quad Substitute $c_{1}=\frac{7}{2}$ into general solution and simplify
$y=-\frac{\mathrm{e}^{2 x}\left(\mathrm{e}^{-2}\left(\left\{\begin{array}{cc}x & x \leq 1 \\ 1 & 1<x\end{array}\right)_{-7}\right)\right.}{2}$
- \quad Solution to the IVP
$y=-\frac{\mathrm{e}^{2 x}\left(\mathrm{e}\left({ }_{-2}\left(\left\{\begin{array}{cc}x & x \leq 1 \\ 1 & 1<x\end{array}\right)_{-7}\right)\right.\right.}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 27

```
dsolve([diff (y (x),x)-2*y(x)=piecewise(x<=1,1,x>1,0),y(0) = 3],y(x), singsol=all)
```

$$
y(x)=\frac{7 \mathrm{e}^{2 x}}{2}-\frac{\left(\left\{\begin{array}{cc}
1 & x<1 \\
\mathrm{e}^{2 x-2} & 1 \leq x
\end{array}\right)\right.}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.195 (sec). Leaf size: 42
DSolve[\{y'[x] - $2 * y[x]==$ Piecewise[\{\{1, $x<=1\},\{0, x>1\}\}],\{y[0]==3\}\}, y[x], x$, IncludeSing

$$
y(x) \rightarrow\left\{\begin{array}{cc}
\frac{1}{2}\left(-1+7 e^{2 x}\right) & x \leq 1 \\
\frac{1}{2} e^{2 x-2}\left(-1+7 e^{2}\right) & \text { True }
\end{array}\right.
$$

3.21 problem Problem 21

3.21.1 Existence and uniqueness analysis 666
3.21.2 Solving as linear ode . 667]
3.21.3 Solving as first order ode lie symmetry lookup ode 669
3.21.4 Maple step by step solution . 673

Internal problem ID [2659]
Internal file name [OUTPUT/2151_Sunday_June_05_2022_02_50_34_AM_23091357/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y=\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right.
$$

With initial conditions

$$
[y(0)=1]
$$

3.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \\
& q(x)=\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right.
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right.
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\left\{\begin{array}{cc}1-x & x<1 \\ 0 & 1 \leq x\end{array}\right.$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

3.21.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right)\right. \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-2 x} y\right) & =\left(\mathrm{e}^{-2 x}\right)\left(\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right)\right. \\
\mathrm{d}\left(\mathrm{e}^{-2 x} y\right) & =\left(\left(\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right) \mathrm{e}^{-2 x}\right) \mathrm{d} x\right.
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 x} y=\int\left(\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& \mathrm{e}^{-2 x} y=\left\{\begin{array}{cl}
\frac{\mathrm{e}^{-2 x}(2 x-1)}{4} & x \leq 1 \\
\frac{\mathrm{e}^{-2}}{4} & 1<x
\end{array}+c_{1}\right.
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 x}$ results in

$$
y=\mathrm{e}^{2 x}\left(\left\{\begin{array}{cc}
\frac{\mathrm{e}^{-2 x}(2 x-1)}{4} & x \leq 1 \\
\frac{\mathrm{e}^{-2}}{4} & 1<x
\end{array}\right)+\mathrm{e}^{2 x} c_{1}\right.
$$

which simplifies to

$$
y=\mathrm{e}^{2 x} c_{1}+\frac{\left(\left\{\begin{array}{cc}
2 x-1 & x \leq 1 \\
\mathrm{e}^{2 x-2} & 1<x
\end{array}\right)\right.}{4}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1}-\frac{1}{4} \\
c_{1}=\frac{5}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left\{\begin{array}{cc}
\frac{5 \mathrm{e}^{2 x}}{4}+\frac{x}{2}-\frac{1}{4} & x \leq 1 \\
\frac{5 \mathrm{e}^{2 x}}{4}+\frac{\mathrm{e}^{2 x-2}}{4} & 1<x \\
\frac{5 \mathrm{e}^{2 x}}{4} & \text { otherwise }
\end{array}\right.
$$

Summary
The solution(s) found are the following

$$
y=\left\{\begin{array}{cc}
\frac{5 \mathrm{e}^{2 x}}{4}+\frac{x}{2}-\frac{1}{4} & x \leq 1 \tag{1}\\
\frac{5 \mathrm{e}^{2 x}}{4}+\frac{\mathrm{e}^{2 x-2}}{4} & 1<x \\
\frac{5 \mathrm{e}^{2 x}}{4} & \text { otherwise }
\end{array}\right.
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\left\{\begin{array}{cc}
\frac{5 \mathrm{e}^{2 x}}{4}+\frac{x}{2}-\frac{1}{4} & x \leq 1 \\
\frac{5 \mathrm{e}^{2 x}}{4}+\frac{\mathrm{e}^{2 x-2}}{4} & 1<x \\
\frac{5 \mathrm{e}^{2 x}}{4} & \text { otherwise }
\end{array}\right.
$$

Verified OK.

3.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 y+\left(\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right)\right. \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 106: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{2 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-2 x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2 y+\left(\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right)\right.
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-2 \mathrm{e}^{-2 x} y \\
S_{y} & =\mathrm{e}^{-2 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\frac{d S}{d R}=\left\{\begin{array}{cc}
-(x-1) \mathrm{e}^{-2 x} & x<1 \tag{2~A}\\
0 & 1 \leq x
\end{array}\right.
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left\{\begin{array}{cc}
-(R-1) \mathrm{e}^{-2 R} & R<1 \\
0 & 1 \leq R
\end{array}\right.
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
S(R)=\left\{\begin{array}{cc}
\frac{\mathrm{e}^{-2 R} R}{2}-\frac{\mathrm{e}^{-2 R}}{4}+c_{1} & R<1 \tag{4}\\
c_{1}+\frac{\mathrm{e}^{-2}}{4} & 1 \leq R
\end{array}\right.
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-2 x} y=\left\{\begin{array}{cc}
\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\mathrm{e}^{-2 x}}{4}+c_{1} & x<1 \\
c_{1}+\frac{\mathrm{e}^{-2}}{4} & 1 \leq x
\end{array}\right.
$$

Which simplifies to

$$
\mathrm{e}^{-2 x} y-c_{1}-\frac{\left(\left\{\begin{array}{cc}
\mathrm{e}^{-2 x}(2 x-1) & x<1 \\
\mathrm{e}^{-2} & 1 \leq x
\end{array}\right)\right.}{4}=0
$$

Which gives

$$
y=\left\{\begin{array}{cc}
{\left[\mathrm{e}^{2 x} c_{1}+\frac{x}{2}-\frac{1}{4}\right]} & x<1 \\
{\left[\frac{\left(4 c_{1}+\mathrm{e}^{-2}\right) \mathrm{e}^{2 x}}{4}\right]} & 1 \leq x
\end{array}\right.
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=2 y+\left(\left\{\begin{array}{cc}1-x & x<1 \\ 0 & 1 \leq x\end{array}\right)\right.$		$\frac{d S}{d R}=\left\{\begin{array}{cc}-(R-1) \mathrm{e}^{-2 R} & R<1 \\ 0 & 1 \leq R\end{array}\right.$
¢		边
		$\wedge \uparrow \uparrow \stackrel{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}{ }$
	$R=x$	
	$S=\mathrm{e}^{-2 x} y$	
	$S=\mathrm{e}^{-2 x} y$	
		¢ $\uparrow+\rightarrow \rightarrow 0 \rightarrow 0$
1.1		¢ ${ }_{\text {¢ }}$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\left[c_{1}-\frac{1}{4}\right]
$$

Unable to solve for constant of integration. Verification of solutions N/A

3.21.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 y=\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}, y(0)=1\right]\right.
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative

$$
y^{\prime}=2 y+\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right.
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-2 y=\left\{\begin{array}{cc}1-x & x<1 \\ 0 & 1 \leq x\end{array}\right.$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-2 y\right)=\mu(x)\left(\left\{\begin{array}{cc}1-x & x<1 \\ 0 & 1 \leq x\end{array}\right)\right.$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-2 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-2 \mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-2 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(\left\{\begin{array}{cc}1-x & x<1 \\ 0 & 1 \leq x\end{array}\right) d x+c_{1}\right.$
- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x)\left(\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right) d x+c_{1}\right.
$$

- \quad Solve for y
$y=\frac{\int \mu(x)\left(\left\{\begin{array}{cc}1-x & x<1 \\ 0 & 1 \leq x\end{array}\right) d x+c_{1}\right.}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-2 x}$

$$
y=\frac{\int\left(\left\{\begin{array}{cc}
1-x & x<1 \\
0 & 1 \leq x
\end{array}\right) \mathrm{e}^{-2 x} d x+c_{1}\right.}{\mathrm{e}^{-2 x}}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{\left\{\begin{array}{cc}
\frac{\mathrm{e}^{-2 x}(2 x-1)}{4} & x \leq 1 \\
\frac{\mathrm{e}^{-2}}{4} & 1<x
\end{array}+c_{1}\right.}{\mathrm{e}^{-2 x}}
$$

- Simplify

$$
y=\frac{\mathrm{e}^{2 x}\left(\left\{\begin{array}{cc}
\mathrm{e}^{-2 x}(2 x-1) & x \leq 1 \\
\mathrm{e}^{-2} & 1<x
\end{array}+4 c_{1}\right.\right.}{4}
$$

- Use initial condition $y(0)=1$

$$
1=c_{1}-\frac{1}{4}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{5}{4}$
- \quad Substitute $c_{1}=\frac{5}{4}$ into general solution and simplify

$$
y=\frac{\mathrm{e}^{2 x}\left(\left\{\begin{array}{cc}
\mathrm{e}^{-2 x}(2 x-1) & x \leq 1 \\
\mathrm{e}^{-2} & 1<x
\end{array}\right)\right.}{4}
$$

- Solution to the IVP

$$
y=\frac{\mathrm{e}^{2 x}\left(\left\{\begin{array}{cc}
\mathrm{e}^{-2 x}(2 x-1) & x \leq 1 \\
\mathrm{e}^{-2} & 1<x
\end{array}\right)\right.}{4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 31
dsolve([diff $(y(x), x)-2 * y(x)=$ piecewise $(x<1,1-x, x>=1,0), y(0)=1], y(x)$, singsol=all)

$$
y(x)=\frac{5 \mathrm{e}^{2 x}}{4}+\frac{\left(\left\{\begin{array}{cc}
2 x-1 & x<1 \\
\mathrm{e}^{2 x-2} & 1 \leq x
\end{array}\right)\right.}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 45
DSolve[\{y'[x] - $2 * y[x]==$ Piecewise[\{\{1-x, $x<1\},\{0, x>=1\}\}],\{y[0]==1\}\}, y[x], x$, IncludeSi

$$
y(x) \rightarrow\left\{\begin{array}{cc}
\frac{1}{4}\left(2 x+5 e^{2 x}-1\right) & x \leq 1 \\
\frac{1}{4} e^{2 x-2}\left(1+5 e^{2}\right) & \text { True }
\end{array}\right.
$$

3.22 problem Problem 22

3.22.1 Solving as second order ode missing y ode 677
3.22.2 $\left.\begin{array}{l}\text { Solving as second order ode non constant coeff transformation } \\ \text { on B ode . } 679\end{array}\right] .{ }^{679}$.
3.22.3 Solving using Kovacic algorithm 684
3.22.4 Maple step by step solution . 691

Internal problem ID [2660]
Internal file name [OUTPUT/2152_Sunday_June_05_2022_02_50_37_AM_79437181/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_ode__missing_y", "second_oorder__ode__non_constant_ccoeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}=9 x
$$

3.22.1 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)+\frac{p(x)}{x}-9 x=0
$$

Which is now solve for $p(x)$ as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=9 x
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)+\frac{p(x)}{x}=9 x
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)(9 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x p) & =(x)(9 x) \\
\mathrm{d}(x p) & =\left(9 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x p=\int 9 x^{2} \mathrm{~d} x \\
& x p=3 x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
p(x)=3 x^{2}+\frac{c_{1}}{x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=3 x^{2}+\frac{c_{1}}{x}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{3 x^{3}+c_{1}}{x} \mathrm{~d} x \\
& =x^{3}+c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}+c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{3}+c_{1} \ln (x)+c_{2}
$$

Verified OK.

3.22.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The ODE is now normalized to

$$
y^{\prime \prime} x+y^{\prime}=9 x
$$

Where now

$$
\begin{aligned}
A & =x \\
B & =1 \\
C & =0 \\
F & =9 x
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(x)(0)+(1)(0)+(0)(1) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
x v^{\prime \prime}+(1) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
x u^{\prime}(x)+u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x} \mathrm{~d} x \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =B v \\
& =(1)\left(c_{1} \ln (x)+c_{2}\right) \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

And now the particular solution $y_{p}(x)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\ln (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & \ln (x) \\
\frac{d}{d x}(1) & \frac{d}{d x}(\ln (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
1 & \ln (x) \\
0 & \frac{1}{x}
\end{array}\right|
$$

Therefore

$$
W=(1)\left(\frac{1}{x}\right)-(\ln (x))(0)
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{9 \ln (x) x}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int 9 \ln (x) x d x
$$

Hence

$$
u_{1}=-\frac{9 \ln (x) x^{2}}{2}+\frac{9 x^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9 x}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 9 x d x
$$

Hence

$$
u_{2}=\frac{9 x^{2}}{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{9 x^{2}(-1+2 \ln (x))}{4} \\
& u_{2}=\frac{9 x^{2}}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{9 x^{2}(-1+2 \ln (x))}{4}+\frac{9 \ln (x) x^{2}}{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{9 x^{2}}{4}
$$

Hence the complete solution is

$$
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(c_{1} \ln (x)+c_{2}\right)+\left(\frac{9 x^{2}}{4}\right) \\
& =c_{1} \ln (x)+c_{2}+\frac{9 x^{2}}{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \ln (x)+c_{2}+\frac{9 x^{2}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \ln (x)+c_{2}+\frac{9 x^{2}}{4}
$$

Verified OK.

3.22.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime} x+y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x \\
& B=1 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 109: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{x} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(\ln (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime} x+y^{\prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1}+c_{2} \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\ln (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
1 & \ln (x) \\
\frac{d}{d x}(1) & \frac{d}{d x}(\ln (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
1 & \ln (x) \\
0 & \frac{1}{x}
\end{array}\right|
$$

Therefore

$$
W=(1)\left(\frac{1}{x}\right)-(\ln (x))(0)
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{9 \ln (x) x}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int 9 \ln (x) x d x
$$

Hence

$$
u_{1}=-\frac{9 \ln (x) x^{2}}{2}+\frac{9 x^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9 x}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 9 x d x
$$

Hence

$$
u_{2}=\frac{9 x^{2}}{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{9 x^{2}(-1+2 \ln (x))}{4} \\
& u_{2}=\frac{9 x^{2}}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{9 x^{2}(-1+2 \ln (x))}{4}+\frac{9 \ln (x) x^{2}}{2}
$$

Which simplifies to

$$
y_{p}(x)=\frac{9 x^{2}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \ln (x)\right)+\left(\frac{9 x^{2}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \ln (x)+\frac{9 x^{2}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \ln (x)+\frac{9 x^{2}}{4}
$$

Verified OK.

3.22.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+y^{\prime}=9 x
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Make substitution $u=y^{\prime}$ to reduce order of ODE
$u^{\prime}(x) x+u(x)=9 x$
- Isolate the derivative
$u^{\prime}(x)=9-\frac{u(x)}{x}$
- Group terms with $u(x)$ on the lhs of the ODE and the rest on the rhs of the ODE
$u^{\prime}(x)+\frac{u(x)}{x}=9$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(u^{\prime}(x)+\frac{u(x)}{x}\right)=9 \mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) u(x))$
$\mu(x)\left(u^{\prime}(x)+\frac{u(x)}{x}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)$
- \quad Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int 9 \mu(x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) u(x)=\int 9 \mu(x) d x+c_{1}$
- \quad Solve for $u(x)$
$u(x)=\frac{\int 9 \mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x$
$u(x)=\frac{\int 9 x d x+c_{1}}{x}$
- Evaluate the integrals on the rhs
$u(x)=\frac{\frac{9 x^{2}}{2}+c_{1}}{x}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=\frac{\frac{9 x^{2}}{2}+c_{1}}{x}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=\frac{\frac{9 x^{2}}{2}+c_{1}}{x}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int \frac{\frac{9 x^{2}}{2}+c_{1}}{x} d x+c_{2}$
- Compute integrals
$y=c_{1} \ln (x)+c_{2}+\frac{9 x^{2}}{4}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(-9*_a^2+_b(_a))/_a, _b(_a)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff(y(x),x$2)+1/x*\operatorname{diff}(y(x),x)=9*x,y(x), singsol=all)
```

$$
y(x)=x^{3}+\ln (x) c_{1}+c_{2}
$$

Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 16
DSolve[y''[x]+1/x*y'[x]==9*x,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{3}+c_{1} \log (x)+c_{2}
$$

3.23 problem Problem 30

3.23.1 Solving as linear ode . 694
3.23.2 Solving as first order ode lie symmetry lookup ode 696
3.23.3 Solving as exact ode . 700
3.23.4 Maple step by step solution . 704

Internal problem ID [2661]
Internal file name [OUTPUT/2153_Sunday_June_05_2022_02_50_40_AM_28462835/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 30.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{y}{x}=\cos (x)
$$

3.23.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\cos (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=\cos (x)
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\cos (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)(\cos (x)) \\
\mathrm{d}(x y) & =(\cos (x) x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x y=\int \cos (x) x \mathrm{~d} x \\
& x y=x \sin (x)+\cos (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{x \sin (x)+\cos (x)}{x}+\frac{c_{1}}{x}
$$

which simplifies to

$$
y=\frac{x \sin (x)+\cos (x)+c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x \sin (x)+\cos (x)+c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 108: Slope field plot

Verification of solutions

$$
y=\frac{x \sin (x)+\cos (x)+c_{1}}{x}
$$

Verified OK.

3.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-y+\cos (x) x}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 111: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x}} d y
\end{aligned}
$$

Which results in

$$
S=x y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-y+\cos (x) x}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (x) x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R) R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\cos (R)+\sin (R) R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
y x=x \sin (x)+\cos (x)+c_{1}
$$

Which simplifies to

$$
y x=x \sin (x)+\cos (x)+c_{1}
$$

Which gives

$$
y=\frac{x \sin (x)+\cos (x)+c_{1}}{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-y+\cos (x) x}{x}$		$\frac{d S}{d R}=\cos (R) R$
$\rightarrow 4 \times 2$	$S=x y$	
－1．		フィ9アコン

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\frac{x \sin (x)+\cos (x)+c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 109: Slope field plot
Verification of solutions

$$
y=\frac{x \sin (x)+\cos (x)+c_{1}}{x}
$$

Verified OK.

3.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =(-y+\cos (x) x) \mathrm{d} x \\
(y-\cos (x) x) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y-\cos (x) x \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-\cos (x) x) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y-\cos (x) x \mathrm{~d} x \\
\phi & =x y-\cos (x)-x \sin (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x$. Therefore equation (4) becomes

$$
\begin{equation*}
x=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x y-\cos (x)-x \sin (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x y-\cos (x)-x \sin (x)
$$

The solution becomes

$$
y=\frac{x \sin (x)+\cos (x)+c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x \sin (x)+\cos (x)+c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 110: Slope field plot

Verification of solutions

$$
y=\frac{x \sin (x)+\cos (x)+c_{1}}{x}
$$

Verified OK.

3.23.4 Maple step by step solution

Let's solve
$y^{\prime}+\frac{y}{x}=\cos (x)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x}+\cos (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{x}=\cos (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu(x) \cos (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \cos (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \cos (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \cos (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x$
$y=\frac{\int \cos (x) x d x+c_{1}}{x}$
- Evaluate the integrals on the rhs
$y=\frac{x \sin (x)+\cos (x)+c_{1}}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff (y(x), x)+1/x*y(x)=cos(x),y(x), singsol=all)
```

$$
y(x)=\frac{x \sin (x)+\cos (x)+c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 18
DSolve[y' $[\mathrm{x}]+1 / \mathrm{x} * \mathrm{y}[\mathrm{x}]==\operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x \sin (x)+\cos (x)+c_{1}}{x}
$$

3.24 problem Problem 31

$$
\text { 3.24.1 Solving as linear ode . } 706
$$

3.24.2 Solving as first order ode lie symmetry lookup ode 708
3.24.3 Solving as exact ode . 712
3.24.4 Maple step by step solution . 716

Internal problem ID [2662]
Internal file name [OUTPUT/2154_Sunday_June_05_2022_02_50_42_AM_84646342/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=\mathrm{e}^{-2 x}
$$

3.24.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =\mathrm{e}^{-2 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=\mathrm{e}^{-2 x}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{-2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{-2 x}\right) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\mathrm{e}^{-x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int \mathrm{e}^{-x} \mathrm{~d} x \\
& \mathrm{e}^{x} y=-\mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=-\mathrm{e}^{-2 x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=-\mathrm{e}^{-2 x}+c_{1} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-2 x}+c_{1} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 111: Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{-2 x}+c_{1} \mathrm{e}^{-x}
$$

Verified OK.

3.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+\mathrm{e}^{-2 x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 114: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+\mathrm{e}^{-2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x} y=-\mathrm{e}^{-x}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x} y=-\mathrm{e}^{-x}+c_{1}
$$

Which gives

$$
y=-\mathrm{e}^{-x}\left(\mathrm{e}^{-x}-c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+\mathrm{e}^{-2 x}$		$\frac{d S}{d R}=\mathrm{e}^{-R}$
		+1 + $+1+\square \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ -
	$S=\mathrm{e}^{x} y$	
		+1 + $\uparrow+1$
¢ $1+1$		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-x}\left(\mathrm{e}^{-x}-c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 112: Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{-x}\left(\mathrm{e}^{-x}-c_{1}\right)
$$

Verified OK.

3.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y+\mathrm{e}^{-2 x}\right) \mathrm{d} x \\
\left(y-\mathrm{e}^{-2 x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y-\mathrm{e}^{-2 x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-\mathrm{e}^{-2 x}\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(y-\mathrm{e}^{-2 x}\right) \\
& =\mathrm{e}^{x} y-\mathrm{e}^{-x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\mathrm{e}^{x} y-\mathrm{e}^{-x}\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x} y-\mathrm{e}^{-x} \mathrm{~d} x \\
\phi & =\mathrm{e}^{x} y+\mathrm{e}^{-x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x} y+\mathrm{e}^{-x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x} y+\mathrm{e}^{-x}
$$

The solution becomes

$$
y=-\mathrm{e}^{-x}\left(\mathrm{e}^{-x}-c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-x}\left(\mathrm{e}^{-x}-c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 113: Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{-x}\left(\mathrm{e}^{-x}-c_{1}\right)
$$

Verified OK.

3.24.4 Maple step by step solution

Let's solve
$y^{\prime}+y=\mathrm{e}^{-2 x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+\mathrm{e}^{-2 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}+y=\mathrm{e}^{-2 x}
$$

- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\mu(x) \mathrm{e}^{-2 x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{-2 x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{-2 x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{-2 x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int \mathrm{e}^{-2 x} \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{-\mathrm{e}^{-x}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=\left(-\mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{-x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x)+y(x)=\exp (-2 * x), y(x)$, singsol=all)

$$
y(x)=\left(-\mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 19
DSolve [y' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==\operatorname{Exp}[-2 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-2 x}\left(-1+c_{1} e^{x}\right)
$$

3.25 problem Problem 32

3.25.1 Solving as linear ode . 719
3.25.2 Solving as first order ode lie symmetry lookup ode 721
3.25.3 Solving as exact ode . 725
3.25.4 Maple step by step solution . 729

Internal problem ID [2663]
Internal file name [OUTPUT/2155_Sunday_June_05_2022_02_50_44_AM_2281112/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 32.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+y \cot (x)=2 \cos (x)
$$

3.25.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\cot (x) \\
q(x) & =2 \cos (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y \cot (x)=2 \cos (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cot (x) d x} \\
& =\sin (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(2 \cos (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sin (x) y) & =(\sin (x))(2 \cos (x)) \\
\mathrm{d}(\sin (x) y) & =\sin (2 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sin (x) y=\int \sin (2 x) \mathrm{d} x \\
& \sin (x) y=-\frac{\cos (2 x)}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sin (x)$ results in

$$
y=-\frac{\csc (x) \cos (2 x)}{2}+c_{1} \csc (x)
$$

which simplifies to

$$
y=\csc (x)\left(-\cos (x)^{2}+c_{1}+\frac{1}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\csc (x)\left(-\cos (x)^{2}+c_{1}+\frac{1}{2}\right) \tag{1}
\end{equation*}
$$

Figure 114: Slope field plot

Verification of solutions

$$
y=\csc (x)\left(-\cos (x)^{2}+c_{1}+\frac{1}{2}\right)
$$

Verified OK.

3.25.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\cot (x) y+2 \cos (x) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 117: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\sin (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\sin (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\sin (x) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\cot (x) y+2 \cos (x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\cos (x) y \\
S_{y} & =\sin (x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sin (2 x) \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sin (2 R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\cos (2 R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \sin (x)=-\frac{\cos (2 x)}{2}+c_{1}
$$

Which simplifies to

$$
y \sin (x)=-\frac{\cos (2 x)}{2}+c_{1}
$$

Which gives

$$
y=-\frac{\cos (2 x)-2 c_{1}}{2 \sin (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\cot (x) y+2 \cos (x)$		$\frac{d S}{d R}=\sin (2 R)$
		坴
		stin ${ }^{-}$
		可 4 -
	$S=\sin (x) y$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (2 x)-2 c_{1}}{2 \sin (x)} \tag{1}
\end{equation*}
$$

Figure 115: Slope field plot
Verification of solutions

$$
y=-\frac{\cos (2 x)-2 c_{1}}{2 \sin (x)}
$$

Verified OK.

3.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-\cot (x) y+2 \cos (x)) \mathrm{d} x \\
(\cot (x) y-2 \cos (x)) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\cot (x) y-2 \cos (x) \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(\cot (x) y-2 \cos (x)) \\
& =\cot (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((\cot (x))-(0)) \\
& =\cot (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \cot (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (\sin (x))} \\
& =\sin (x)
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\sin (x)(\cot (x) y-2 \cos (x)) \\
& =\cos (x)(-2 \sin (x)+y)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\sin (x)(1) \\
& =\sin (x)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
(\cos (x)(-2 \sin (x)+y))+(\sin (x)) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \cos (x)(-2 \sin (x)+y) \mathrm{d} x \\
\phi & =\sin (x)(y-\sin (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\sin (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\sin (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
\sin (x)=\sin (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\sin (x)(y-\sin (x))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sin (x)(y-\sin (x))
$$

The solution becomes

$$
y=\frac{\sin (x)^{2}+c_{1}}{\sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (x)^{2}+c_{1}}{\sin (x)} \tag{1}
\end{equation*}
$$

Figure 116: Slope field plot

Verification of solutions

$$
y=\frac{\sin (x)^{2}+c_{1}}{\sin (x)}
$$

Verified OK.

3.25.4 Maple step by step solution

Let's solve

$$
y^{\prime}+y \cot (x)=2 \cos (x)
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-y \cot (x)+2 \cos (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y \cot (x)=2 \cos (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y \cot (x)\right)=2 \mu(x) \cos (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y \cot (x)\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x) \cot (x)$
- Solve to find the integrating factor
$\mu(x)=\sin (x)$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) \cos (x) d x+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(x) y=\int 2 \mu(x) \cos (x) d x+c_{1}
$$

- \quad Solve for y
$y=\frac{\int 2 \mu(x) \cos (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\sin (x)$
$y=\frac{\int 2 \sin (x) \cos (x) d x+c_{1}}{\sin (x)}$
- Evaluate the integrals on the rhs
$y=\frac{\sin (x)^{2}+c_{1}}{\sin (x)}$
- Simplify
$y=\sin (x)+c_{1} \csc (x)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff (y(x),x)+y(x)*\operatorname{cot}(x)=2*\operatorname{cos}(x),y(x), singsol=all)
```

$$
y(x)=\csc (x)\left(-\cos (x)^{2}+c_{1}+\frac{1}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 20

```
DSolve[y'[x]+y[x]*Cot[x]==2*Cos[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-\frac{1}{2} \csc (x)\left(\cos (2 x)-2 c_{1}\right)
$$

3.26 problem Problem 33

3.26.1 Solving as linear ode . 732
3.26.2 Solving as homogeneousTypeD2 ode 734
3.26.3 Solving as first order ode lie symmetry lookup ode 735
3.26.4 Solving as exact ode . 739
3.26.5 Maple step by step solution . 744

Internal problem ID [2664]
Internal file name [OUTPUT/2156_Sunday_June_05_2022_02_50_47_AM_45393673/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.6, First-Order Linear Differential Equations. page 59
Problem number: Problem 33.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
x y^{\prime}-y=\ln (x) x^{2}
$$

3.26.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\ln (x) x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\ln (x) x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\ln (x) x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)(\ln (x) x) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\ln (x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \ln (x) \mathrm{d} x \\
& \frac{y}{x}=\ln (x) x-x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=x(\ln (x) x-x)+c_{1} x
$$

which simplifies to

$$
y=x\left(\ln (x) x+c_{1}-x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\ln (x) x+c_{1}-x\right) \tag{1}
\end{equation*}
$$

Figure 117: Slope field plot

Verification of solutions

$$
y=x\left(\ln (x) x+c_{1}-x\right)
$$

Verified OK.

3.26.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x\left(u^{\prime}(x) x+u(x)\right)-u(x) x=\ln (x) x^{2}
$$

Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int \ln (x) \mathrm{d} x \\
& =\ln (x) x-x+c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x\left(\ln (x) x-x+c_{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\ln (x) x-x+c_{2}\right) \tag{1}
\end{equation*}
$$

Figure 118: Slope field plot

Verification of solutions

$$
y=x\left(\ln (x) x-x+c_{2}\right)
$$

Verified OK.

3.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+\ln (x) x^{2}}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 120: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+\ln (x) x^{2}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\ln (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\ln (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R \ln (R)-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x}=\ln (x) x+c_{1}-x
$$

Which simplifies to

$$
\frac{y}{x}=\ln (x) x+c_{1}-x
$$

Which gives

$$
y=x\left(\ln (x) x+c_{1}-x\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\ln (x) x+c_{1}-x\right) \tag{1}
\end{equation*}
$$

Figure 119: Slope field plot

Verification of solutions

$$
y=x\left(\ln (x) x+c_{1}-x\right)
$$

Verified OK.

3.26.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(y+\ln (x) x^{2}\right) \mathrm{d} x \\
\left(-y-\ln (x) x^{2}\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y-\ln (x) x^{2} \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y-\ln (x) x^{2}\right) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-1)-(1)) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(-y-\ln (x) x^{2}\right) \\
& =\frac{-y-\ln (x) x^{2}}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(x) \\
& =\frac{1}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-y-\ln (x) x^{2}}{x^{2}}\right)+\left(\frac{1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-y-\ln (x) x^{2}}{x^{2}} \mathrm{~d} x \\
\phi & =-\ln (x) x+x+\frac{y}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x}=\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x) x+x+\frac{y}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x) x+x+\frac{y}{x}
$$

The solution becomes

$$
y=x\left(\ln (x) x+c_{1}-x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(\ln (x) x+c_{1}-x\right) \tag{1}
\end{equation*}
$$

Figure 120: Slope field plot

Verification of solutions

$$
y=x\left(\ln (x) x+c_{1}-x\right)
$$

Verified OK.

3.26.5 Maple step by step solution

Let's solve
$x y^{\prime}-y=\ln (x) x^{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{x}+\ln (x) x$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{x}=\ln (x) x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu(x) \ln (x) x$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \ln (x) x d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \ln (x) x d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \ln (x) x d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$y=x\left(\int \ln (x) d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x\left(\ln (x) x+c_{1}-x\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(x*diff(y(x),x)-y(x)=x^2*ln(x),y(x), singsol=all)
```

$$
y(x)=\left(x \ln (x)-x+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 17
DSolve[x*y'[x]-y[x]==x^2*Log[x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x\left(-x+x \log (x)+c_{1}\right)
$$

4 Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
4.1 problem Problem 9 748
4.2 problem Problem 10 752
4.3 problem Problem 11 756
4.4 problem Problem 12 760
4.5 problem Problem 13 764
4.6 problem Problem 14 768
4.7 problem Problem 15 772
4.8 problem Problem 16 776
4.9 problem Problem 17 780
4.10 problem Problem 18 785
4.11 problem Problem 19 789
4.12 problem Problem 20 793
4.13 problem Problem 21 797
4.14 problem Problem 22 801
4.15 problem Problem 23 805
4.16 problem Problem 25 809
4.17 problem Problem 26 814
4.18 problem Problem 27 819
4.19 problem Problem 28 824
4.20 problem Problem 29(a) 832
4.21 problem Problem 29(b) 836
4.22 problem Problem 38 840
4.23 problem Problem 39 855
4.24 problem Problem 40 864
4.25 problem Problem 41 873
4.26 problem Problem 42 882
4.27 problem Problem 43 899
4.28 problem Problem 44 908
4.29 problem Problem 45 916
4.30 problem Problem 46 925
4.31 problem Problem 47 934
4.32 problem Problem 48 943
4.33 problem Problem 49 956
4.34 problem Problem 50 969
4.35 problem Problem 51 985
4.36 problem Problem 52 998
4.37 problem Problem 54 1008
4.38 problem Problem 55 1020
4.39 problem Problem 56 1030
4.40 problem Problem 58 1038
4.41 problem Problem 59 1051
4.42 problem Problem 60 1062
4.43 problem Problem 61 1073
4.44 problem Problem 62 1078
4.45 problem Problem 63 1093
4.46 problem Problem 64 1108
4.47 problem Problem 65 1114
4.48 problem Problem 67 1127

4.1 problem Problem 9

4.1.1 Solving as homogeneous ode . 748

Internal problem ID [2665]
Internal file name [OUTPUT/2157_Sunday_June_05_2022_02_50_49_AM_69742392/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Riccati]

$$
y^{\prime}-\frac{y^{2}+y x+x^{2}}{x^{2}}=0
$$

4.1.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+x y+y^{2}}{x^{2}} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=x^{2}+x y+y^{2}$ and $N=x^{2}$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u^{2}+u+1 \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{u(x)^{2}+1}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{u(x)^{2}+1}{x}=0
$$

Or

$$
u^{\prime}(x) x-u(x)^{2}-1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}+1}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u^{2}+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}+1} d u & =\frac{1}{x} d x \\
\int \frac{1}{u^{2}+1} d u & =\int \frac{1}{x} d x \\
\arctan (u) & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\arctan (u(x))-\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 121: Slope field plot

Verification of solutions

$$
\arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11
dsolve(diff $(y(x), x)=\left(y(x) \wedge 2+x * y(x)+x^{\wedge} 2\right) / x^{\wedge} 2, y(x)$, singsol=all)

$$
y(x)=\tan \left(\ln (x)+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.198 (sec). Leaf size: 13
DSolve[y'[x]==(y[x]^2+x*y[x]+x^2)/x^2,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x \tan \left(\log (x)+c_{1}\right)
$$

4.2 problem Problem 10

4.2.1 Solving as homogeneous ode

Internal problem ID [2666]
Internal file name [OUTPUT/2158_Sunday_June_05_2022_02_50_52_AM_39559977/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
(3 x-y) y^{\prime}-3 y=0
$$

4.2.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =-\frac{3 y}{-3 x+y} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=3 y$ and $N=3 x-y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =-\frac{3 u}{u-3} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{-\frac{3 u(x)}{u(x)-3}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{-\frac{3 u(x)}{u(x)-3}-u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) x u(x)-3 u^{\prime}(x) x+u(x)^{2}=0
$$

Or

$$
x(u(x)-3) u^{\prime}(x)+u(x)^{2}=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}}{x(u-3)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}}{u-3}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}}{u-3}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}}{u-3}} d u & =\int-\frac{1}{x} d x \\
\frac{3}{u}+\ln (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{3}{u(x)}+\ln (u(x))+\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{3 x}{y}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{3 x}{y}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 122: Slope field plot

Verification of solutions

$$
\frac{3 x}{y}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve((3*x-y(x))*diff(y(x),x)=3*y(x),y(x), singsol=all)
```

$$
y(x)=-\frac{3 x}{\text { LambertW }\left(-3 x \mathrm{e}^{-3 c_{1}}\right)}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 6.103 (sec). Leaf size: 25
DSolve[(3*x-y[x])*y'[x]==3*y[x],y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{3 x}{W\left(-3 e^{-c_{1}} x\right)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.3 problem Problem 11

4.3.1 Solving as homogeneous ode

Internal problem ID [2667]
Internal file name [OUTPUT/2159_Sunday_June_05_2022_02_50_55_AM_84826546/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Riccati]

$$
y^{\prime}-\frac{(y+x)^{2}}{2 x^{2}}=0
$$

4.3.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{(y+x)^{2}}{2 x^{2}} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=(y+x)^{2}$ and $N=2 x^{2}$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{1}{2}+u+\frac{1}{2} u^{2} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{1}{2}+\frac{u(x)^{2}}{2}}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\frac{1}{2}+\frac{u(x)^{2}}{2}}{x}=0
$$

Or

$$
2 u^{\prime}(x) x-u(x)^{2}-1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\frac{u^{2}}{2}+\frac{1}{2}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{u^{2}}{2}+\frac{1}{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}}{2}+\frac{1}{2}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}}{2}+\frac{1}{2}} d u & =\int \frac{1}{x} d x \\
2 \arctan (u) & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
2 \arctan (u(x))-\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
2 \arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 \arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 123: Slope field plot

Verification of solutions

$$
2 \arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve(diff $(y(x), x)=(x+y(x)) \wedge 2 /\left(2 * x^{\wedge} 2\right), y(x)$, singsol=all)

$$
y(x)=\tan \left(\frac{\ln (x)}{2}+\frac{c_{1}}{2}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.236 (sec). Leaf size: 17
DSolve[y'[x]==(x+y[x])~2/(2*x~2),y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow x \tan \left(\frac{\log (x)}{2}+c_{1}\right)
$$

4.4 problem Problem 12

4.4.1 Solving as homogeneous ode . 760

Internal problem ID [2668]
Internal file name [OUTPUT/2160_Sunday_June_05_2022_02_50_57_AM_39886309/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
\sin \left(\frac{y}{x}\right)\left(x y^{\prime}-y\right)-x \cos \left(\frac{y}{x}\right)=0
$$

4.4.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{x \cos \left(\frac{y}{x}\right)+\sin \left(\frac{y}{x}\right) y}{\sin \left(\frac{y}{x}\right) x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=x \cos \left(\frac{y}{x}\right)+\sin \left(\frac{y}{x}\right) y$ and $N=\sin \left(\frac{y}{x}\right) x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{\cos (u)}{\sin (u)}+u \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\cos (u(x))}{\sin (u(x)) x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\cos (u(x))}{\sin (u(x)) x}=0
$$

Or

$$
u^{\prime}(x) \sin (u(x)) x-\cos (u(x))=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\cot (u)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\cot (u)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cot (u)} d u & =\frac{1}{x} d x \\
\int \frac{1}{\cot (u)} d u & =\int \frac{1}{x} d x \\
-\ln (\cos (u)) & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\cos (u)}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sec (u)=c_{3} x
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
y=x \operatorname{arcsec}\left(c_{3} \mathrm{e}^{c_{2}} x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \operatorname{arcsec}\left(c_{3} \mathrm{e}^{c_{2}} x\right) \tag{1}
\end{equation*}
$$

Figure 124: Slope field plot

Verification of solutions

$$
y=x \operatorname{arcsec}\left(c_{3} \mathrm{e}^{c_{2}} x\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve $(\sin (y(x) / x) *(x * \operatorname{diff}(y(x), x)-y(x))=x * \cos (y(x) / x), y(x)$, singsol=all)

$$
y(x)=x \arccos \left(\frac{1}{c_{1} x}\right)
$$

\checkmark Solution by Mathematica
Time used: 25.367 (sec). Leaf size: 56
DSolve $[\operatorname{Sin}[y[x] / x] *(x * y '[x]-y[x])==x * \operatorname{Cos}[y[x] / x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-x \arccos \left(\frac{e^{-c_{1}}}{x}\right) \\
& y(x) \rightarrow x \arccos \left(\frac{e^{-c_{1}}}{x}\right) \\
& y(x) \rightarrow-\frac{\pi x}{2} \\
& y(x) \rightarrow \frac{\pi x}{2}
\end{aligned}
$$

4.5 problem Problem 13

4.5.1 Solving as homogeneous ode . 764

Internal problem ID [2669]
Internal file name [OUTPUT/2161_Sunday_June_05_2022_02_51_01_AM_22761468/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
x y^{\prime}-\sqrt{16 x^{2}-y^{2}}-y=0
$$

4.5.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{\sqrt{16 x^{2}-y^{2}}+y}{x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=\sqrt{16 x^{2}-y^{2}}+y$ and $N=x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\sqrt{-u^{2}+16}+u \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\sqrt{-u(x)^{2}+16}}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\sqrt{-u(x)^{2}+16}}{x}=0
$$

Or

$$
u^{\prime}(x) x-\sqrt{-u(x)^{2}+16}=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\sqrt{-u^{2}+16}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\sqrt{-u^{2}+16}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{-u^{2}+16}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\sqrt{-u^{2}+16}} d u & =\int \frac{1}{x} d x \\
\arcsin \left(\frac{u}{4}\right) & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\arcsin \left(\frac{u(x)}{4}\right)-\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\arcsin \left(\frac{y}{4 x}\right)-\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\arcsin \left(\frac{y}{4 x}\right)-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 125: Slope field plot

Verification of solutions

$$
\arcsin \left(\frac{y}{4 x}\right)-\ln (x)-c_{2}=0
$$

Verified OK. $\{0<\mathrm{x}\}$
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 29
dsolve($x * \operatorname{diff}(y(x), x)=\operatorname{sqrt}\left(16 * x^{\wedge} 2-y(x)^{\wedge} 2\right)+y(x), y(x)$, singsol=all)

$$
-\arctan \left(\frac{y(x)}{\sqrt{16 x^{2}-y(x)^{2}}}\right)+\ln (x)-c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.398 (sec). Leaf size: 18
DSolve $\left[x * y^{\prime}[x]==\operatorname{Sqrt}\left[16 * x^{\wedge} 2-y[x] \sim 2\right]+y[x], y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow-4 x \cosh \left(i \log (x)+c_{1}\right)
$$

4.6 problem Problem 14

4.6.1 Solving as homogeneous ode . 768

Internal problem ID [2670]
Internal file name [OUTPUT/2162_Sunday_June_05_2022_02_51_06_AM_41940925/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
x y^{\prime}-y-\sqrt{9 x^{2}+y^{2}}=0
$$

4.6.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{y+\sqrt{9 x^{2}+y^{2}}}{x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=y+\sqrt{9 x^{2}+y^{2}}$ and $N=x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u+\sqrt{u^{2}+9} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\sqrt{u(x)^{2}+9}}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\sqrt{u(x)^{2}+9}}{x}=0
$$

Or

$$
u^{\prime}(x) x-\sqrt{u(x)^{2}+9}=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\sqrt{u^{2}+9}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\sqrt{u^{2}+9}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{u^{2}+9}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\sqrt{u^{2}+9}} d u & =\int \frac{1}{x} d x \\
\operatorname{arcsinh}\left(\frac{u}{3}\right) & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\operatorname{arcsinh}\left(\frac{u(x)}{3}\right)-\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\operatorname{arcsinh}\left(\frac{y}{3 x}\right)-\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\operatorname{arcsinh}\left(\frac{y}{3 x}\right)-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 126: Slope field plot

Verification of solutions

$$
\operatorname{arcsinh}\left(\frac{y}{3 x}\right)-\ln (x)-c_{2}=0
$$

Verified OK. $\{0<\mathrm{x}\}$
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28
dsolve ($x * \operatorname{diff}(y(x), x)-y(x)=\operatorname{sqrt}\left(9 * x^{\wedge} 2+y(x)^{\wedge} 2\right), y(x)$, singsol=all)

$$
\frac{-c_{1} x^{2}+\sqrt{9 x^{2}+y(x)^{2}}+y(x)}{x^{2}}=0
$$

\checkmark Solution by Mathematica
Time used: 0.35 (sec). Leaf size: 27
DSolve[$x * y$ ' $[x]-y[x]==$ Sqrt $\left[9 * x^{\wedge} 2+y[x] \wedge 2\right], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{9 e^{c_{1}} x^{2}}{2}-\frac{e^{-c_{1}}}{2}
$$

4.7 problem Problem 15

4.7.1 Solving as homogeneous ode
 772

4.7.2 Maple step by step solution . 774

Internal problem ID [2671]
Internal file name [OUTPUT/2163_Sunday_June_05_2022_02_51_10_AM_21063386/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[_separable]
```

$$
y\left(x^{2}-y^{2}\right)-x\left(x^{2}-y^{2}\right) y^{\prime}=0
$$

4.7.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{y}{x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=y$ and $N=x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =0
\end{aligned}
$$

Or

$$
u^{\prime}(x)=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{2}
\end{aligned}
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
y=c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x \tag{1}
\end{equation*}
$$

Figure 127: Slope field plot

Verification of solutions

$$
y=c_{2} x
$$

Verified OK.

4.7.2 Maple step by step solution

Let's solve
$y\left(x^{2}-y^{2}\right)-x\left(x^{2}-y^{2}\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=\frac{1}{x}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}$
- Evaluate integral
$\ln (y)=\ln (x)+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{c_{1}} x$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve $\left(y(x) *\left(x^{\wedge} 2-y(x)^{\wedge} 2\right)-x *\left(x^{\wedge} 2-y(x)^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=-x \\
& y(x)=x \\
& y(x)=c_{1} x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 33
DSolve $\left[y[x] *\left(x^{\wedge} 2-y[x] \sim 2\right)-x *\left(x^{\wedge} 2-y[x] \sim 2\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-x \\
& y(x) \rightarrow x \\
& y(x) \rightarrow c_{1} x \\
& y(x) \rightarrow-x \\
& y(x) \rightarrow x
\end{aligned}
$$

4.8 problem Problem 16

4.8.1 Solving as homogeneous ode . 776

Internal problem ID [2672]
Internal file name [OUTPUT/2164_Sunday_June_05_2022_02_51_12_AM_44925127/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
x y^{\prime}+y \ln (x)-y \ln (y)=0
$$

4.8.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{y(-\ln (x)+\ln (y))}{x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=-y(\ln (x)-\ln (y))$ and $N=x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u \ln (u) \\
\frac{\mathrm{d} u}{\mathrm{~d} x} & =\frac{u(x) \ln (u(x))-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{u(x) \ln (u(x))-u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) x-u(x) \ln (u(x))+u(x)=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(\ln (u)-1)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u(\ln (u)-1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u(\ln (u)-1)} d u & =\frac{1}{x} d x \\
\int \frac{1}{u(\ln (u)-1)} d u & =\int \frac{1}{x} d x \\
\ln (\ln (u)-1) & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\ln (u)-1=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\ln (u)-1=c_{3} x
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
y=x \mathrm{e}^{1+c_{3} \mathrm{e}^{c_{2} x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{1+c_{3} \mathrm{e}^{c_{2}} x} \tag{1}
\end{equation*}
$$

Figure 128: Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{1+c_{3} \mathrm{e}^{c_{2} x}}
$$

Verified OK. $\{0<x\}$
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 12
dsolve($x * \operatorname{diff}(y(x), x)+y(x) * \ln (x)=y(x) * \ln (y(x)), y(x), \quad$ singsol=all)

$$
y(x)=x \mathrm{e}^{c_{1} x+1}
$$

\checkmark Solution by Mathematica
Time used: 0.257 (sec). Leaf size: 24
DSolve $[x * y$ ' $[x]+y[x] * \log [x]==y[x] * \log [y[x]], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow x e^{1+e^{c_{1} x}} \\
& y(x) \rightarrow e x
\end{aligned}
$$

4.9 problem Problem 17

4.9.1 Solving as homogeneous ode

Internal problem ID [2673]
Internal file name [OUTPUT/2165_Sunday_June_05_2022_02_51_16_AM_34878343/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
y^{\prime}-\frac{y^{2}+2 y x-2 x^{2}}{x^{2}-y x+y^{2}}=0
$$

4.9.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{-2 x^{2}+2 x y+y^{2}}{x^{2}-x y+y^{2}} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=-2 x^{2}+2 x y+y^{2}$ and $N=x^{2}-x y+y^{2}$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode.

Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{u^{2}+2 u-2}{u^{2}-u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{u(x)^{2}+2 u(x)-2}{u(x)^{2}-u(x)+1}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\frac{u(x)^{2}+2 u(x)-2}{u(x)^{2}-u(x)+1}-u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) u(x)^{2} x-u^{\prime}(x) u(x) x+u(x)^{3}+u^{\prime}(x) x-2 u(x)^{2}-u(x)+2=0
$$

Or

$$
x\left(u(x)^{2}-u(x)+1\right) u^{\prime}(x)+u(x)^{3}-2 u(x)^{2}-u(x)+2=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{3}-2 u^{2}-u+2}{x\left(u^{2}-u+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{3}-2 u^{2}-u+2}{u^{2}-u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{3}-2 u^{2}-u+2}{u^{2}-u+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{3}-2 u^{2}-u+2}{u^{2}-u+1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln (u+1)}{2}-\frac{\ln (u-1)}{2}+\ln (u-2) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (u+1)}{2}-\frac{\ln (u-1)}{2}+\ln (u-2)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{\sqrt{u+1}(u-2)}{\sqrt{u-1}}=\frac{c_{3}}{x}
$$

The solution is

$$
\frac{\sqrt{u(x)+1}(u(x)-2)}{\sqrt{u(x)-1}}=\frac{c_{3}}{x}
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{\sqrt{\frac{y}{x}+1}\left(\frac{y}{x}-2\right)}{\sqrt{\frac{y}{x}-1}}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\frac{(y-2 x) \sqrt{\frac{y+x}{x}}}{\sqrt{\frac{y-x}{x}}}=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{(y-2 x) \sqrt{\frac{y+x}{x}}}{\sqrt{\frac{y-x}{x}}}=c_{3} \tag{1}
\end{equation*}
$$

Figure 129: Slope field plot

Verification of solutions

$$
\frac{(y-2 x) \sqrt{\frac{y+x}{x}}}{\sqrt{\frac{y-x}{x}}}=c_{3}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 80
dsolve(diff $(y(x), x)=\left(y(x)^{\wedge} 2+2 * x * y(x)-2 * x^{\wedge} 2\right) /\left(x^{\wedge} 2-x * y(x)+y(x)^{\wedge} 2\right), y(x)$, singsol=all)

$$
y(x)=\frac{x\left(-\operatorname{RootOf}\left(2 _Z^{6}+\left(9 c_{1} x^{2}-1\right) _Z^{4}-6 x^{2} c_{1} _Z^{2}+c_{1} x^{2}\right)^{2}+1\right)}{\operatorname{RootOf}\left(2 _Z^{6}+\left(9 c_{1} x^{2}-1\right) _Z^{4}-6 x^{2} c_{1} Z^{2}+c_{1} x^{2}\right)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 60.187 (sec). Leaf size: 373
DSolve $\left[y y^{\prime}[x]==\left(y[x] \sim 2+2 * x * y[x]-2 * x^{\wedge} 2\right) /\left(x^{\wedge} 2-x * y[x]+y[x] \wedge 2\right), y[x], x\right.$, IncludeSingularSolutions

$$
\begin{aligned}
y(x) \rightarrow & \frac{\sqrt[3]{-54 x^{3}+2 \sqrt{729 x^{6}+\left(-9 x^{2}+3 e^{2 c_{1}}\right)^{3}}}}{3 \sqrt[3]{2}} \\
& -\frac{\sqrt[3]{2}\left(-3 x^{2}+e^{2 c_{1}}\right)}{\sqrt[3]{-54 x^{3}+2 \sqrt{729 x^{6}+\left(-9 x^{2}+3 e^{2 c_{1}}\right)^{3}}}}+x \\
y(x) \rightarrow & \frac{(-1+i \sqrt{3}) \sqrt[3]{-54 x^{3}+2 \sqrt{729 x^{6}+\left(-9 x^{2}+3 e^{\left.2 c_{1}\right)^{3}}\right.}}}{6 \sqrt[3]{2}} \\
& +\frac{(1+i \sqrt{3})\left(-3 x^{2}+e^{2 c_{1}}\right)}{2^{2 / 3} \sqrt[3]{-54 x^{3}+2 \sqrt{729 x^{6}+\left(-9 x^{2}+3 e^{2 c_{1}}\right)^{3}}}}+x \\
y(x) \rightarrow & -\frac{(1+i \sqrt{3}) \sqrt[3]{-54 x^{3}+2 \sqrt{729 x^{6}+\left(-9 x^{2}+3 e^{2 c_{1}}\right)^{3}}}}{6 \sqrt[3]{2}} \\
& +\frac{(1-i \sqrt{3})\left(-3 x^{2}+e^{2 c_{1}}\right)}{2^{2 / 3} \sqrt[3]{-54 x^{3}+2 \sqrt{729 x^{6}+\left(-9 x^{2}+3 e^{\left.2 c_{1}\right)^{3}}\right.}}}+x
\end{aligned}
$$

4.10 problem Problem 18

4.10.1 Solving as homogeneous ode 785

Internal problem ID [2674]
Internal file name [OUTPUT/2166_Sunday_June_05_2022_02_51_21_AM_90768622/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`]]

$$
2 x y y^{\prime}-x^{2} \mathrm{e}^{-\frac{y^{2}}{x^{2}}}-2 y^{2}=0
$$

4.10.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2} \mathrm{e}^{-\frac{y^{2}}{x^{2}}}+2 y^{2}}{2 x y} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=x^{2} \mathrm{e}^{-\frac{y^{2}}{x^{2}}}+2 y^{2}$ and $N=2 x y$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{\mathrm{e}^{-u^{2}}}{2 u}+u \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\mathrm{e}^{-u(x)^{2}}}{2 u(x) x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\mathrm{e}^{-u(x)^{2}}}{2 u(x) x}=0
$$

Or

$$
2 u^{\prime}(x) u(x) \mathrm{e}^{u(x)^{2}} x-1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\mathrm{e}^{-u^{2}}}{2 u x}
\end{aligned}
$$

Where $f(x)=\frac{1}{2 x}$ and $g(u)=\frac{\mathrm{e}^{-u^{2}}}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{\mathrm{e}^{-u^{2}}}{u}} d u & =\frac{1}{2 x} d x \\
\int \frac{1}{\frac{\mathrm{e}^{-u^{2}}}{u}} d u & =\int \frac{1}{2 x} d x \\
\frac{\mathrm{e}^{u^{2}}}{2} & =\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\mathrm{e}^{u(x)^{2}}}{2}-\frac{\ln (x)}{2}-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{\mathrm{e}^{\frac{y^{2}}{x^{2}}}}{2}-\frac{\ln (x)}{2}-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\mathrm{e}^{\frac{y^{2}}{x^{2}}}}{2}-\frac{\ln (x)}{2}-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 130: Slope field plot

Verification of solutions

$$
\frac{\mathrm{e}^{\frac{y^{2}}{x^{2}}}}{2}-\frac{\ln (x)}{2}-c_{2}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(2*x*y(x)*diff (y(x),x)-(x^2*exp (-y(x)^2/x^2)+2*y(x)^2)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{\ln \left(\ln (x)+c_{1}\right)} x \\
& y(x)=-\sqrt{\ln \left(\ln (x)+c_{1}\right)} x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.17 (sec). Leaf size: 38
DSolve $\left[2 * x * y[x] * y '[x]-\left(x^{\wedge} 2 * \operatorname{Exp}\left[-y[x] \sim 2 / x^{\wedge} 2\right]+2 * y[x] \wedge 2\right)==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow

$$
\begin{aligned}
& y(x) \rightarrow-x \sqrt{\log \left(\log (x)+2 c_{1}\right)} \\
& y(x) \rightarrow x \sqrt{\log \left(\log (x)+2 c_{1}\right)}
\end{aligned}
$$

4.11 problem Problem 19

4.11.1 Solving as homogeneous ode . 789

Internal problem ID [2675]
Internal file name [OUTPUT/2167_Sunday_June_05_2022_02_51_25_AM_403017/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Riccati]

$$
y^{\prime} x^{2}-y^{2}-3 y x=x^{2}
$$

4.11.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+3 x y+y^{2}}{x^{2}} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=x^{2}+3 x y+y^{2}$ and $N=x^{2}$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u^{2}+3 u+1 \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{u(x)^{2}+2 u(x)+1}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{u(x)^{2}+2 u(x)+1}{x}=0
$$

Or

$$
u^{\prime}(x) x-u(x)^{2}-2 u(x)-1=0
$$

Or

$$
u^{\prime}(x) x-(u(x)+1)^{2}=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(u+1)^{2}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=(u+1)^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{(u+1)^{2}} d u & =\frac{1}{x} d x \\
\int \frac{1}{(u+1)^{2}} d u & =\int \frac{1}{x} d x \\
-\frac{1}{u+1} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{u(x)+1}-\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
-\frac{1}{\frac{y}{x}+1}-\ln (x)-c_{2}=0
$$

Which simplifies to

$$
-\frac{y \ln (x)+c_{2} y+\ln (x) x+c_{2} x+x}{y+x}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{y \ln (x)+c_{2} y+\ln (x) x+c_{2} x+x}{y+x}=0 \tag{1}
\end{equation*}
$$

Figure 131: Slope field plot

Verification of solutions

$$
-\frac{y \ln (x)+c_{2} y+\ln (x) x+c_{2} x+x}{y+x}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve(x^2*\operatorname{diff (y (x),x)=y(x)^2+3*x*y(x)+x^2,y(x), singsol=all)}
```

$$
y(x)=-\frac{x\left(\ln (x)+c_{1}+1\right)}{\ln (x)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 28
DSolve $\left[x^{\wedge} 2 * y^{\prime}[x]==y[x] \sim 2+3 * x * y[x]+x^{\wedge} 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x\left(\log (x)+1+c_{1}\right)}{\log (x)+c_{1}} \\
& y(x) \rightarrow-x
\end{aligned}
$$

4.12 problem Problem 20

4.12.1 Solving as homogeneous ode . 793

Internal problem ID [2676]
Internal file name [OUTPUT/2168_Sunday_June_05_2022_02_51_28_AM_49626620/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
y y^{\prime}-\sqrt{y^{2}+x^{2}}=-x
$$

4.12.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{\sqrt{x^{2}+y^{2}}-x}{y} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=\sqrt{x^{2}+y^{2}}-x$ and $N=y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{\sqrt{u^{2}+1}-1}{u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{\sqrt{u(x)^{2}+1}-1}{u(x)}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\frac{\sqrt{u(x)^{2}+1}-1}{u(x)}-u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) u(x) x+u(x)^{2}-\sqrt{u(x)^{2}+1}+1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-\sqrt{u^{2}+1}+1}{u x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-\sqrt{u^{2}+1}+1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-\sqrt{u^{2}+1}+1}{u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-\sqrt{u^{2}+1}+1}{u}} d u & =\int-\frac{1}{x} d x \\
-\operatorname{arctanh}\left(\frac{1}{\sqrt{u^{2}+1}}\right)+\ln (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\operatorname{arctanh}\left(\frac{1}{\sqrt{u(x)^{2}+1}}\right)+\ln (u(x))+\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
-\operatorname{arctanh}\left(\frac{1}{\sqrt{\frac{y^{2}}{x^{2}}+1}}\right)+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\operatorname{arctanh}\left(\frac{1}{\sqrt{\frac{y^{2}+x^{2}}{x^{2}}}}\right)+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 132: Slope field plot

Verification of solutions

$$
-\operatorname{arctanh}\left(\frac{1}{\sqrt{\frac{y^{2}+x^{2}}{x^{2}}}}\right)+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK. $\{0<x\}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 27

```
dsolve(y(x)*diff(y(x),x)=sqrt(x^2+y(x)^2)-x,y(x), singsol=all)
```

$$
\frac{-c_{1} y(x)^{2}+\sqrt{x^{2}+y(x)^{2}}+x}{y(x)^{2}}=0
$$

\checkmark Solution by Mathematica
Time used: 0.409 (sec). Leaf size: 57

```
DSolve[y[x]*y'[x]==Sqrt[x^2+y[x] 2]-x,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-e^{\frac{c_{1}}{2}} \sqrt{2 x+e^{c_{1}}} \\
& y(x) \rightarrow e^{\frac{c_{1}}{2}} \sqrt{2 x+e^{c_{1}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.13 problem Problem 21

4.13.1 Solving as homogeneous ode 797

Internal problem ID [2677]
Internal file name [OUTPUT/2169_Sunday_June_05_2022_02_51_33_AM_71672999/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
2 x(y+2 x) y^{\prime}-y(4 x-y)=0
$$

4.13.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =-\frac{y(-4 x+y)}{2 x(2 x+y)} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=y(4 x-y)$ and $N=2 x(2 x+y)$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =-\frac{u(-4+u)}{2 u+4} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{-\frac{u(x)(-4+u(x))}{2 u(x)+4}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{-\frac{u(x)(-4+u(x))}{2 u(x)+4}-u(x)}{x}=0
$$

Or

$$
2 u^{\prime}(x) x u(x)+4 u^{\prime}(x) x+3 u(x)^{2}=0
$$

Or

$$
2 x(u(x)+2) u^{\prime}(x)+3 u(x)^{2}=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u^{2}}{2 x(u+2)}
\end{aligned}
$$

Where $f(x)=-\frac{3}{2 x}$ and $g(u)=\frac{u^{2}}{u+2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}}{u+2}} d u & =-\frac{3}{2 x} d x \\
\int \frac{1}{\frac{u^{2}}{u+2}} d u & =\int-\frac{3}{2 x} d x \\
-\frac{2}{u}+\ln (u) & =-\frac{3 \ln (x)}{2}+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{2}{u(x)}+\ln (u(x))+\frac{3 \ln (x)}{2}-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
-\frac{2 x}{y}+\ln \left(\frac{y}{x}\right)+\frac{3 \ln (x)}{2}-c_{2}=0
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{2 x}{y}+\ln \left(\frac{y}{x}\right)+\frac{3 \ln (x)}{2}-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 133: Slope field plot

Verification of solutions

$$
-\frac{2 x}{y}+\ln \left(\frac{y}{x}\right)+\frac{3 \ln (x)}{2}-c_{2}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(2*x*(y(x)+2*x)*diff(y(x),x)=y(x)*(4*x-y(x)),y(x), singsol=all)
```

$$
y(x)=\frac{2 x}{\text { LambertW }\left(2 \mathrm{e}^{\frac{3 c_{1}}{2}} x^{\frac{3}{2}}\right)}
$$

\checkmark Solution by Mathematica
Time used: 5.346 (sec). Leaf size: 29
DSolve[2*x*(y[x]+2*x)*y'[x]==y[x]*(4*x-y[x]),y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2 x}{W\left(2 e^{-c_{1}} x^{3 / 2}\right)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.14 problem Problem 22

4.14.1 Solving as homogeneous ode . 801

Internal problem ID [2678]
Internal file name [OUTPUT/2170_Sunday_June_05_2022_02_51_36_AM_30877140/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
x y^{\prime}-x \tan \left(\frac{y}{x}\right)-y=0
$$

4.14.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{x \tan \left(\frac{y}{x}\right)+y}{x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=x \tan \left(\frac{y}{x}\right)+y$ and $N=x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\tan (u)+u \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\tan (u(x))}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\tan (u(x))}{x}=0
$$

Or

$$
u^{\prime}(x) x-\tan (u(x))=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\tan (u)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\tan (u)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\tan (u)} d u & =\frac{1}{x} d x \\
\int \frac{1}{\tan (u)} d u & =\int \frac{1}{x} d x \\
\ln (\sin (u)) & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sin (u)=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sin (u)=c_{3} x
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
y=x \arcsin \left(c_{3} \mathrm{e}^{c_{2}} x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \arcsin \left(c_{3} \mathrm{e}^{c_{2}} x\right) \tag{1}
\end{equation*}
$$

Figure 134: Slope field plot

Verification of solutions

$$
y=x \arcsin \left(c_{3} \mathrm{e}^{c_{2}} x\right)
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve($x * \operatorname{diff}(y(x), x)=x * \tan (y(x) / x)+y(x), y(x)$, singsol=all)

$$
y(x)=\arcsin \left(c_{1} x\right) x
$$

\checkmark Solution by Mathematica
Time used: 4.357 (sec). Leaf size: 19
DSolve $[x * y$ ' $[x]==x * \operatorname{Tan}[y[x] / x]+y[x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow x \arcsin \left(e^{c_{1}} x\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.15 problem Problem 23

4.15.1 Solving as homogeneous ode . 805

Internal problem ID [2679]
Internal file name [OUTPUT/2171_Sunday_June_05_2022_02_51_40_AM_38121038/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
y^{\prime}-\frac{x \sqrt{y^{2}+x^{2}}+y^{2}}{y x}=0
$$

4.15.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{x \sqrt{x^{2}+y^{2}}+y^{2}}{y x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=x \sqrt{x^{2}+y^{2}}+y^{2}$ and $N=x y$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{\sqrt{u^{2}+1}+u^{2}}{u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{\sqrt{u(x)^{2}+1}+u(x)^{2}}{u(x)}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\frac{\sqrt{u(x)^{2}+1}+u(x)^{2}}{u(x)}-u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) u(x) x-\sqrt{u(x)^{2}+1}=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\sqrt{u^{2}+1}}{u x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{\sqrt{u^{2}+1}}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{\sqrt{u^{2}+1}}{u}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{\sqrt{u^{2}+1}}{u}} d u & =\int \frac{1}{x} d x \\
\sqrt{u^{2}+1} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\sqrt{u(x)^{2}+1}-\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\sqrt{\frac{y^{2}}{x^{2}}+1}-\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

Figure 135: Slope field plot
Verification of solutions

$$
\sqrt{\frac{y^{2}+x^{2}}{x^{2}}}-\ln (x)-c_{2}=0
$$

Verified OK. $\{0<x\}$
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28
dsolve(diff $(y(x), x)=\left(x * \operatorname{sqrt}\left(y(x) \wedge 2+x^{\wedge} 2\right)+y(x)^{\wedge} 2\right) /(x * y(x)), y(x)$, singsol=all)

$$
\frac{x \ln (x)-c_{1} x-\sqrt{x^{2}+y(x)^{2}}}{x}=0
$$

\checkmark Solution by Mathematica
Time used: 0.318 (sec). Leaf size: 54
DSolve $\left[y y^{\prime}[x]==\left(x * \operatorname{Sqrt}\left[y[x] \sim 2+x^{\wedge} 2\right]+y[x] \sim 2\right) /(x * y[x]), y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-x \sqrt{\log ^{2}(x)+2 c_{1} \log (x)-1+c_{1}^{2}} \\
& y(x) \rightarrow x \sqrt{\log ^{2}(x)+2 c_{1} \log (x)-1+c_{1}^{2}}
\end{aligned}
$$

4.16 problem Problem 25

4.16.1 Existence and uniqueness analysis 809
4.16.2 Solving as homogeneous ode . 810

Internal problem ID [2680]
Internal file name [OUTPUT/2172_Sunday_June_05_2022_02_51_43_AM_66279645/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, ` class A`]]

$$
y^{\prime}-\frac{2(2 y-x)}{y+x}=0
$$

With initial conditions

$$
[y(0)=2]
$$

4.16.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{4 y-2 x}{y+x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{x<-2 \vee-2<x\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{4 y-2 x}{y+x}\right) \\
& =\frac{4}{y+x}-\frac{2(2 y-x)}{(y+x)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{x<-2 \vee-2<x\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

4.16.2 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{4 y-2 x}{y+x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=4 y-2 x$ and $N=y+x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{4 u-2}{u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{4 u(x)-2}{u(x)+1}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\frac{4 u(x)-2}{u(x)+1}-u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) x u(x)+u^{\prime}(x) x+u(x)^{2}-3 u(x)+2=0
$$

Or

$$
x(u(x)+1) u^{\prime}(x)+u(x)^{2}-3 u(x)+2=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-3 u+2}{x(u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-3 u+2}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-3 u+2}{u+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-3 u+2}{u+1}} d u & =\int-\frac{1}{x} d x \\
-2 \ln (u-1)+3 \ln (u-2) & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-2 \ln (u-1)+3 \ln (u-2)}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{(u-2)^{3}}{(u-1)^{2}}=\frac{c_{3}}{x}
$$

The solution is

$$
\frac{(u(x)-2)^{3}}{(u(x)-1)^{2}}=\frac{c_{3}}{x}
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{\left(\frac{y}{x}-2\right)^{3}}{\left(\frac{y}{x}-1\right)^{2}}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
-\frac{(2 x-y)^{3}}{(-y+x)^{2}}=c_{3}
$$

Substituting initial conditions and solving for c_{3} gives $c_{3}=2$. Hence the solution beSummary
The solution(s) found are the following
comes

$$
\begin{equation*}
-\frac{(2 x-y)^{3}}{(-y+x)^{2}}=2 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{(2 x-y)^{3}}{(-y+x)^{2}}=2
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.657 (sec). Leaf size: 273
dsolve([diff $(y(x), x)=2 *(2 * y(x)-x) /(x+y(x)), y(0)=2], y(x)$, singsol=all)

$$
\begin{aligned}
y(x)= & \frac{\left(3 \sqrt{3} x \sqrt{x(27 x+8)}+27 x^{2}+36 x+8\right)^{\frac{1}{3}}}{3} \\
& +\frac{4 x+\frac{4}{3}}{\left(3 \sqrt{3} x \sqrt{x(27 x+8)}+27 x^{2}+36 x+8\right)^{\frac{1}{3}}}+2 x+\frac{2}{3}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 60.289 (sec). Leaf size: 121
DSolve[\{y' $[x]==2 *(2 * y[x]-x) /(x+y[x]),\{y[0]==2\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{array}{r}
y(x) \rightarrow \frac{1}{3}\left(x\left(\frac{12}{\sqrt[3]{3 \sqrt{3} \sqrt{x^{3}(27 x+8)}+27 x^{2}+36 x+8}}+6\right)\right. \\
+\sqrt[3]{3 \sqrt{3} \sqrt{x^{3}(27 x+8)}+27 x^{2}+36 x+8} \\
\left.+\frac{4}{\sqrt[3]{3 \sqrt{3} \sqrt{x^{3}(27 x+8)}+27 x^{2}+36 x+8}}+2\right)
\end{array}
$$

4.17 problem Problem 26

4.17.1 Existence and uniqueness analysis 814
4.17.2 Solving as homogeneous ode . 815

Internal problem ID [2681]
Internal file name [OUTPUT/2173_Sunday_June_05_2022_02_51_49_AM_57005676/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, ` class A`]]

$$
y^{\prime}-\frac{2 x-y}{4 y+x}=0
$$

With initial conditions

$$
[y(1)=1]
$$

4.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{-2 x+y}{x+4 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{x<-4 \vee-4<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\left\{y<-\frac{1}{4} \vee-\frac{1}{4}<y\right\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{-2 x+y}{x+4 y}\right) \\
& =-\frac{1}{x+4 y}+\frac{-8 x+4 y}{(x+4 y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{x<-4 \vee-4<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\left\{y<-\frac{1}{4} \vee-\frac{1}{4}<y\right\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

4.17.2 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =-\frac{-2 x+y}{x+4 y} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=2 x-y$ and $N=x+4 y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{-u+2}{4 u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{-u(x)+2}{4 u(x)+1}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\frac{-u(x)+2}{4 u(x)+1}-u(x)}{x}=0
$$

Or

$$
4 u^{\prime}(x) x u(x)+u^{\prime}(x) x+4 u(x)^{2}+2 u(x)-2=0
$$

Or

$$
-2+x(4 u(x)+1) u^{\prime}(x)+4 u(x)^{2}+2 u(x)=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2\left(2 u^{2}+u-1\right)}{x(4 u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=\frac{2 u^{2}+u-1}{4 u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{2 u^{2}+u-1}{4 u+1}} d u & =-\frac{2}{x} d x \\
\int \frac{1}{\frac{2 u^{2}+u-1}{4 u+1}} d u & =\int-\frac{2}{x} d x \\
\ln \left(2 u^{2}+u-1\right) & =-2 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
2 u^{2}+u-1=\mathrm{e}^{-2 \ln (x)+c_{2}}
$$

Which simplifies to

$$
2 u^{2}+u-1=\frac{c_{3}}{x^{2}}
$$

Which simplifies to

$$
2 u(x)^{2}+u(x)-1=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

The solution is

$$
2 u(x)^{2}+u(x)-1=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{2 y^{2}}{x^{2}}+\frac{y}{x}-1=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

Which simplifies to

$$
-(y+x)(x-2 y)=c_{3} \mathrm{e}^{c_{2}}
$$

Substituting initial conditions and solving for c_{2} gives $c_{2}=\ln \left(\frac{2}{c_{3}}\right)$. Hence the solution $\frac{\text { Summary }}{\text { The solution(s) found are the following }}$

$$
\begin{equation*}
-(y+x)(x-2 y)=2 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-(y+x)(x-2 y)=2
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.141 (sec). Leaf size: 19
dsolve([diff $(y(x), x)=(2 * x-y(x)) /(x+4 * y(x)), y(1)=1], y(x)$, singsol=all)

$$
y(x)=-\frac{x}{4}+\frac{\sqrt{9 x^{2}+16}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.472 (sec). Leaf size: 24
DSolve[\{y' $[x]==(2 * x-y[x]) /(x+4 * y[x]),\{y[1]==1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{4}\left(\sqrt{9 x^{2}+16}-x\right)
$$

4.18 problem Problem 27

4.18.1 Existence and uniqueness analysis 819
4.18.2 Solving as homogeneous ode . 820

Internal problem ID [2682]
Internal file name [OUTPUT/2174_Sunday_June_05_2022_02_51_53_AM_7818457/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
y^{\prime}-\frac{y-\sqrt{y^{2}+x^{2}}}{x}=0
$$

With initial conditions

$$
[y(3)=4]
$$

4.18.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{y-\sqrt{x^{2}+y^{2}}}{x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=4$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=3$ is inside this domain. The y domain of $f(x, y)$ when $x=3$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=4$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y-\sqrt{x^{2}+y^{2}}}{x}\right) \\
& =\frac{1-\frac{y}{\sqrt{x^{2}+y^{2}}}}{x}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=4$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=3$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=3$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=4$ is inside this domain. Therefore solution exists and is unique.

4.18.2 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{y-\sqrt{x^{2}+y^{2}}}{x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=y-\sqrt{x^{2}+y^{2}}$ and $N=x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u-\sqrt{u^{2}+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =-\frac{\sqrt{u(x)^{2}+1}}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)+\frac{\sqrt{u(x)^{2}+1}}{x}=0
$$

Or

$$
u^{\prime}(x) x+\sqrt{u(x)^{2}+1}=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\sqrt{u^{2}+1}}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\sqrt{u^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{u^{2}+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\sqrt{u^{2}+1}} d u & =\int-\frac{1}{x} d x \\
\operatorname{arcsinh}(u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\operatorname{arcsinh}(u(x))+\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\operatorname{arcsinh}\left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Substituting initial conditions and solving for c_{2} gives $c_{2}=\operatorname{arcsinh}\left(\frac{4}{3}\right)+\ln (3)$. Hence the solution becomes Solving for y from the above gives

$$
y=-\sinh \left(\ln (x)-\operatorname{arcsinh}\left(\frac{4}{3}\right)-\ln (3)\right) x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\sinh \left(\ln (x)-\operatorname{arcsinh}\left(\frac{4}{3}\right)-\ln (3)\right) x \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=-\sinh \left(\ln (x)-\operatorname{arcsinh}\left(\frac{4}{3}\right)-\ln (3)\right) x
$$

Verified OK. $\{0<x\}$
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.375 (sec). Leaf size: 21
dsolve([diff $\left.(y(x), x)=\left(y(x)-\operatorname{sqrt}\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)\right) / x, y(3)=4\right], y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{x^{2}}{2}-\frac{1}{2} \\
& y(x)=-\frac{x^{2}}{18}+\frac{9}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.248 (sec). Leaf size: 29
DSolve $\left[\left\{y^{\prime}[x]==\left(y[x]-S q r t\left[x^{\wedge} 2+y[x] \sim 2\right]\right) / x,\{y[3]==4\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow \frac{9}{2}-\frac{x^{2}}{18} \\
& y(x) \rightarrow \frac{1}{2}\left(x^{2}-1\right)
\end{aligned}
$$

4.19 problem Problem 28

4.19.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [2683]
Internal file name [OUTPUT/2175_Sunday_June_05_2022_02_52_00_AM_11057609/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _dAlembert]
```

$$
x y^{\prime}-y-\sqrt{-y^{2}+4 x^{2}}=0
$$

4.19.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y+\sqrt{4 x^{2}-y^{2}}}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(y+\sqrt{4 x^{2}-y^{2}}\right)\left(b_{3}-a_{2}\right)}{x}-\frac{\left(y+\sqrt{4 x^{2}-y^{2}}\right)^{2} a_{3}}{x^{2}} \\
& -\left(\frac{4}{\sqrt{4 x^{2}-y^{2}}}-\frac{y+\sqrt{4 x^{2}-y^{2}}}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{\left(1-\frac{y}{\sqrt{4 x^{2}-y^{2}}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(4 x^{2}-y^{2}\right)^{\frac{3}{2}} a_{3}+4 x^{3} a_{2}-4 x^{3} b_{3}+8 x^{2} y a_{3}-x^{2} y b_{2}-y^{3} a_{3}+\sqrt{4 x^{2}-y^{2}} x b_{1}-\sqrt{4 x^{2}-y^{2}} y a_{1}-x y b_{1}+y^{2}}{\sqrt{4 x^{2}-y^{2}} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{gather*}
-\left(4 x^{2}-y^{2}\right)^{\frac{3}{2}} a_{3}-4 x^{3} a_{2}+4 x^{3} b_{3}-8 x^{2} y a_{3}+x^{2} y b_{2}+y^{3} a_{3} \tag{6E}\\
-\sqrt{4 x^{2}-y^{2}} x b_{1}+\sqrt{4 x^{2}-y^{2}} y a_{1}+x y b_{1}-y^{2} a_{1}=0
\end{gather*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(4 x^{2}-y^{2}\right)^{\frac{3}{2}} a_{3}+\left(4 x^{2}-y^{2}\right) x b_{3}-\left(4 x^{2}-y^{2}\right) y a_{3}-4 x^{3} a_{2}-4 x^{2} y a_{3}+x^{2} y b_{2} \tag{6E}\\
& +x y^{2} b_{3}+\left(4 x^{2}-y^{2}\right) a_{1}-\sqrt{4 x^{2}-y^{2}} x b_{1}+\sqrt{4 x^{2}-y^{2}} y a_{1}-4 x^{2} a_{1}+x y b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -4 x^{3} a_{2}+4 x^{3} b_{3}-4 x^{2} \sqrt{4 x^{2}-y^{2}} a_{3}-8 x^{2} y a_{3}+x^{2} y b_{2}+\sqrt{4 x^{2}-y^{2}} y^{2} a_{3} \\
& +y^{3} a_{3}-\sqrt{4 x^{2}-y^{2}} x b_{1}+x y b_{1}+\sqrt{4 x^{2}-y^{2}} y a_{1}-y^{2} a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{4 x^{2}-y^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{4 x^{2}-y^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -4 v_{1}^{3} a_{2}-8 v_{1}^{2} v_{2} a_{3}-4 v_{1}^{2} v_{3} a_{3}+v_{2}^{3} a_{3}+v_{3} v_{2}^{2} a_{3}+v_{1}^{2} v_{2} b_{2} \tag{7E}\\
& +4 v_{1}^{3} b_{3}-v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}+v_{1} v_{2} b_{1}-v_{3} v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-4 a_{2}+4 b_{3}\right) v_{1}^{3}+\left(-8 a_{3}+b_{2}\right) v_{1}^{2} v_{2}-4 v_{1}^{2} v_{3} a_{3}+v_{1} v_{2} b_{1} \tag{8E}\\
& \quad-v_{3} v_{1} b_{1}+v_{2}^{3} a_{3}+v_{3} v_{2}^{2} a_{3}-v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
a_{3} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
-4 a_{3} & =0 \\
-b_{1} & =0 \\
-4 a_{2}+4 b_{3} & =0 \\
-8 a_{3}+b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y+\sqrt{4 x^{2}-y^{2}}}{x}\right)(x) \\
& =-\sqrt{4 x^{2}-y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\sqrt{4 x^{2}-y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\arctan \left(\frac{y}{\sqrt{4 x^{2}-y^{2}}}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+\sqrt{4 x^{2}-y^{2}}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{\sqrt{4 x^{2}-y^{2} x}} \\
S_{y} & =-\frac{1}{\sqrt{4 x^{2}-y^{2}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\arctan \left(\frac{y}{\sqrt{-y^{2}+4 x^{2}}}\right)=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\arctan \left(\frac{y}{\sqrt{-y^{2}+4 x^{2}}}\right)=-\ln (x)+c_{1}
$$

Which gives

$$
y=-2 \tan \left(-\ln (x)+c_{1}\right) \sqrt{\frac{x^{2}}{\tan \left(-\ln (x)+c_{1}\right)^{2}+1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y+\sqrt{4 x^{2}-y^{2}}}{x}$		$\frac{d S}{d R}=-\frac{1}{R}$
btitb a atap		$\rightarrow \rightarrow-\infty$ -
		, 4
		00^{4}
	$R=x$	$\rightarrow \rightarrow \rightarrow \infty$ -
	$S=-\arctan \left(\frac{y}{\sqrt{4 x^{2}}}\right.$	$\rightarrow \rightarrow=4 \rightarrow-\sum^{2}$
-1. $\mathrm{L}_{\text {div }}$		
		Ot
		O-3 ${ }^{\text {a }}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-2 \tan \left(-\ln (x)+c_{1}\right) \sqrt{\frac{x^{2}}{\tan \left(-\ln (x)+c_{1}\right)^{2}+1}} \tag{1}
\end{equation*}
$$

Figure 137: Slope field plot

Verification of solutions

$$
y=-2 \tan \left(-\ln (x)+c_{1}\right) \sqrt{\frac{x^{2}}{\tan \left(-\ln (x)+c_{1}\right)^{2}+1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 29
dsolve ($x * \operatorname{diff}(y(x), x)-y(x)=\operatorname{sqrt}\left(4 * x^{\wedge} 2-y(x) \wedge 2\right), y(x)$, singsol=all)

$$
-\arctan \left(\frac{y(x)}{\sqrt{4 x^{2}-y(x)^{2}}}\right)+\ln (x)-c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.416 (sec). Leaf size: 18
DSolve[x*y'[x]-y[x]==Sqrt[4*x^2-y[x]^2],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-2 x \cosh \left(i \log (x)+c_{1}\right)
$$

4.20 problem Problem 29(a)

4.20.1 Solving as homogeneous ode . 832

Internal problem ID [2684]
Internal file name [OUTPUT/2176_Sunday_June_05_2022_02_52_06_AM_56666401/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 29(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]
```

$$
y^{\prime}-\frac{x+y a}{a x-y}=0
$$

4.20.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =-\frac{y a+x}{-a x+y} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=y a+x$ and $N=a x-y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{a u+1}{a-u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{a u(x)+1}{a-u(x)}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\frac{a u(x)+1}{a-u(x)}-u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) x u(x)-u^{\prime}(x) x a+u(x)^{2}+1=0
$$

Or

$$
-x(a-u(x)) u^{\prime}(x)+u(x)^{2}+1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{-u^{2}-1}{x(a-u)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{-u^{2}-1}{a-u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{-u^{2}-1}{a-u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{-u^{2}-1}{a-u}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+1\right)}{2}-a \arctan (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(x)^{2}+1\right)}{2}-a \arctan (u(x))+\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-a \arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-a \arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-a \arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.359 (sec). Leaf size: 25

```
dsolve(diff (y(x),x)=(x+a*y(x))/(a*x-y(x)),y(x), singsol=all)
    y(x)=\operatorname{tan}(\mathrm{ RootOf }(-2a\_Z+\operatorname{ln}(\operatorname{sec}(\_Z\mp@subsup{)}{}{2}\mp@subsup{x}{}{2})+2\mp@subsup{c}{1}{}))x
```

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 34
DSolve[y'[x]==(x+a*y[x])/(a*x-y[x]),y[x],x,IncludeSingularSolutions \rightarrow True]

Solve $\left[a \arctan \left(\frac{y(x)}{x}\right)-\frac{1}{2} \log \left(\frac{y(x)^{2}}{x^{2}}+1\right)=\log (x)+c_{1}, y(x)\right]$

4.21 problem Problem 29(b)

4.21.1 Existence and uniqueness analysis 836
4.21.2 Solving as homogeneous ode . 837]

Internal problem ID [2685]
Internal file name [OUTPUT/2177_Sunday_June_05_2022_02_52_11_AM_56933570/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 29(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, ` class A`]]

$$
y^{\prime}-\frac{x+\frac{y}{2}}{\frac{x}{2}-y}=0
$$

With initial conditions

$$
[y(1)=1]
$$

4.21.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{2 x+y}{2 y-x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{x<2 \vee 2<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\left\{y<\frac{1}{2} \vee \frac{1}{2}<y\right\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 x+y}{2 y-x}\right) \\
& =-\frac{1}{2 y-x}+\frac{2 y+4 x}{(2 y-x)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{x<2 \vee 2<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\left\{y<\frac{1}{2} \vee \frac{1}{2}<y\right\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

4.21.2 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =-\frac{2 x+y}{2 y-x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=2 x+y$ and $N=x-2 y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{-u-2}{2 u-1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{-u(x)-2}{2 u(x)-1}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\frac{-u(x)-2}{2 u(x)-1}-u(x)}{x}=0
$$

Or

$$
2 u^{\prime}(x) x u(x)-u^{\prime}(x) x+2 u(x)^{2}+2=0
$$

Or

$$
2+x(2 u(x)-1) u^{\prime}(x)+2 u(x)^{2}=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2\left(u^{2}+1\right)}{x(2 u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=\frac{u^{2}+1}{2 u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{2 u-1}} d u & =-\frac{2}{x} d x \\
\int \frac{1}{\frac{u^{2}+1}{2 u-1}} d u & =\int-\frac{2}{x} d x \\
\ln \left(u^{2}+1\right)-\arctan (u) & =-2 \ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\ln \left(u(x)^{2}+1\right)-\arctan (u(x))+2 \ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\ln \left(\frac{y^{2}}{x^{2}}+1\right)-\arctan \left(\frac{y}{x}\right)+2 \ln (x)-c_{2}=0
$$

Substituting initial conditions and solving for c_{2} gives $c_{2}=\ln (2)-\frac{\pi}{4}$. Hence the solution Summary The solution(s) found are the following
becomes

$$
\begin{equation*}
\ln \left(\frac{y^{2}}{x^{2}}+1\right)-\arctan \left(\frac{y}{x}\right)+2 \ln (x)-\ln (2)+\frac{\pi}{4}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\ln \left(\frac{y^{2}}{x^{2}}+1\right)-\arctan \left(\frac{y}{x}\right)+2 \ln (x)-\ln (2)+\frac{\pi}{4}=0
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.188 (sec). Leaf size: 30

```
dsolve([diff(y(x),x)=(x+1/2*y(x))/(1/2*x-y(x)),y(1) = 1],y(x), singsol=all)
```

$$
y(x)=\tan \left(\operatorname{RootOf}\left(4 _Z-4 \ln \left(\sec \left(_Z\right)^{2}\right)-8 \ln (x)+4 \ln (2)-\pi\right)\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 42

```
DSolve[{y'[x]==(x+1/2*y[x])/(1/2*x-y[x]),{y[1]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
\text { Solve }\left[\log \left(\frac{y(x)^{2}}{x^{2}}+1\right)-\arctan \left(\frac{y(x)}{x}\right)=\frac{1}{4}(4 \log (2)-\pi)-2 \log (x), y(x)\right]
$$

4.22 problem Problem 38

4.22.1 Solving as homogeneousTypeD2 ode 840
4.22.2 Solving as first order ode lie symmetry lookup ode 842
4.22.3 Solving as bernoulli ode . 846
4.22.4 Solving as exact ode . 850

Internal problem ID [2686]
Internal file name [OUTPUT/2178_Sunday_June_05_2022_02_52_15_AM_83503958/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[[_homogeneous, `class D`], _Bernoulli]

$$
y^{\prime}-\frac{y}{x}-\frac{4 x^{2} \cos (x)}{y}=0
$$

4.22.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x-\frac{4 x \cos (x)}{u(x)}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{4 \cos (x)}{u}
\end{aligned}
$$

Where $f(x)=4 \cos (x)$ and $g(u)=\frac{1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{u}} d u & =4 \cos (x) d x \\
\int \frac{1}{\frac{1}{u}} d u & =\int 4 \cos (x) d x \\
\frac{u^{2}}{2} & =4 \sin (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{u(x)^{2}}{2}-4 \sin (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{2 x^{2}}-4 \sin (x)-c_{2}=0 \\
& \frac{y^{2}}{2 x^{2}}-4 \sin (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2 x^{2}}-4 \sin (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 138: Slope field plot

Verification of solutions

$$
\frac{y^{2}}{2 x^{2}}-4 \sin (x)-c_{2}=0
$$

Verified OK.

4.22.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y^{2}+4 \cos (x) x^{3}}{x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 124: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{x^{2}}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2}}{2 x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}+4 \cos (x) x^{3}}{x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y^{2}}{x^{3}} \\
S_{y} & =\frac{y}{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \cos (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 \cos (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=4 \sin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2}}{2 x^{2}}=4 \sin (x)+c_{1}
$$

Which simplifies to

$$
\frac{y^{2}}{2 x^{2}}=4 \sin (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y^{2}+4 \cos (x) x^{3}}{x y}$		$\frac{d S}{d R}=4 \cos (R)$
,	$R=x$	
	$R=x$	
	$S=\frac{y^{2}}{}$	
	$S=\frac{y^{2}}{2 x^{2}}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2 x^{2}}=4 \sin (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 139: Slope field plot
Verification of solutions

$$
\frac{y^{2}}{2 x^{2}}=4 \sin (x)+c_{1}
$$

Verified OK.

4.22.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}+4 \cos (x) x^{3}}{x y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x} y+4 x^{2} \cos (x) \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x} \\
f_{1}(x) & =4 x^{2} \cos (x) \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{y^{2}}{x}+4 x^{2} \cos (x) \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{w(x)}{x}+4 x^{2} \cos (x) \\
w^{\prime} & =\frac{2 w}{x}+8 x^{2} \cos (x) \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=8 x^{2} \cos (x)
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{2 w(x)}{x}=8 x^{2} \cos (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(8 x^{2} \cos (x)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(8 x^{2} \cos (x)\right) \\
\mathrm{d}\left(\frac{w}{x^{2}}\right) & =(8 \cos (x)) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x^{2}}=\int 8 \cos (x) \mathrm{d} x \\
& \frac{w}{x^{2}}=8 \sin (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
w(x)=8 x^{2} \sin (x)+c_{1} x^{2}
$$

which simplifies to

$$
w(x)=x^{2}\left(8 \sin (x)+c_{1}\right)
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=x^{2}\left(8 \sin (x)+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\sqrt{8 \sin (x)+c_{1}} x \\
& y(x)=-\sqrt{8 \sin (x)+c_{1}} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{8 \sin (x)+c_{1}} x \tag{1}\\
& y=-\sqrt{8 \sin (x)+c_{1}} x \tag{2}
\end{align*}
$$

Figure 140: Slope field plot

Verification of solutions

$$
y=\sqrt{8 \sin (x)+c_{1}} x
$$

Verified OK.

$$
y=-\sqrt{8 \sin (x)+c_{1}} x
$$

Verified OK.

4.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x y) \mathrm{d} y & =\left(y^{2}+4 \cos (x) x^{3}\right) \mathrm{d} x \\
\left(-y^{2}-4 \cos (x) x^{3}\right) \mathrm{d} x+(x y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y^{2}-4 \cos (x) x^{3} \\
N(x, y) & =x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2}-4 \cos (x) x^{3}\right) \\
& =-2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x y) \\
& =y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x y}((-2 y)-(y)) \\
& =-\frac{3}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{3}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (x)} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{3}}\left(-y^{2}-4 \cos (x) x^{3}\right) \\
& =\frac{-y^{2}-4 \cos (x) x^{3}}{x^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{3}}(x y) \\
& =\frac{y}{x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-y^{2}-4 \cos (x) x^{3}}{x^{3}}\right)+\left(\frac{y}{x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-y^{2}-4 \cos (x) x^{3}}{x^{3}} \mathrm{~d} x \\
\phi & =-4 \sin (x)+\frac{y^{2}}{2 x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{y}{x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y}{x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y}{x^{2}}=\frac{y}{x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-4 \sin (x)+\frac{y^{2}}{2 x^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-4 \sin (x)+\frac{y^{2}}{2 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2 x^{2}}-4 \sin (x)=c_{1} \tag{1}
\end{equation*}
$$

Figure 141: Slope field plot

Verification of solutions

$$
\frac{y^{2}}{2 x^{2}}-4 \sin (x)=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 28

```
dsolve(diff(y(x),x)-1/x*y(x)=4*x^2/y(x)*\operatorname{cos}(x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{8 \sin (x)+c_{1}} x \\
& y(x)=-\sqrt{8 \sin (x)+c_{1}} x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.298 (sec). Leaf size: 36

```
DSolve[y'[x]-1/x*y[x]==4*x^2/y[x]*Cos[x],y[x],x, IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-x \sqrt{8 \sin (x)+c_{1}} \\
& y(x) \rightarrow x \sqrt{8 \sin (x)+c_{1}}
\end{aligned}
$$

4.23 problem Problem 39

4.23.1 Solving as first order ode lie symmetry lookup ode 855
4.23.2 Solving as bernoulli ode . 859

Internal problem ID [2687]
Internal file name [OUTPUT/2179_Sunday_June_05_2022_02_52_19_AM_84147090/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 39.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

$$
y^{\prime}+\frac{y \tan (x)}{2}-2 y^{3} \sin (x)=0
$$

4.23.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\tan (x) y}{2}+2 y^{3} \sin (x) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 126: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{y^{3}}{\cos (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{3}}{\cos (x)}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\cos (x)}{2 y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\tan (x) y}{2}+2 y^{3} \sin (x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\sin (x)}{2 y^{2}} \\
S_{y} & =\frac{\cos (x)}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sin (2 x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sin (2 R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\cos (2 R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\cos (x)}{2 y^{2}}=-\frac{\cos (2 x)}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{\cos (x)}{2 y^{2}}=-\frac{\cos (2 x)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\tan (x) y}{2}+2 y^{3} \sin (x)$		$\frac{d S}{d R}=\sin (2 R)$
+1. ${ }^{4}$		
- ${ }^{\text {d }}$		
	$R=x$	
${ }_{x \rightarrow \rightarrow \rightarrow \rightarrow+}$		
	$\cos (x)$	-
	$2 y^{2}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\cos (x)}{2 y^{2}}=-\frac{\cos (2 x)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 142: Slope field plot
Verification of solutions

$$
-\frac{\cos (x)}{2 y^{2}}=-\frac{\cos (2 x)}{2}+c_{1}
$$

Verified OK.

4.23.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{\tan (x) y}{2}+2 y^{3} \sin (x)
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{\tan (x)}{2} y+2 \sin (x) y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{\tan (x)}{2} \\
f_{1}(x) & =2 \sin (x) \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=-\frac{\tan (x)}{2 y^{2}}+2 \sin (x) \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =-\frac{\tan (x) w(x)}{2}+2 \sin (x) \\
w^{\prime} & =\tan (x) w-4 \sin (x) \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\tan (x) \\
& q(x)=-4 \sin (x)
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\tan (x) w(x)=-4 \sin (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\tan (x) d x} \\
& =\cos (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-4 \sin (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\cos (x) w) & =(\cos (x))(-4 \sin (x)) \\
\mathrm{d}(\cos (x) w) & =(-2 \sin (2 x)) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \cos (x) w=\int-2 \sin (2 x) \mathrm{d} x \\
& \cos (x) w=\cos (2 x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\cos (x)$ results in

$$
w(x)=\sec (x) \cos (2 x)+c_{1} \sec (x)
$$

which simplifies to

$$
w(x)=\left(c_{1}-1\right) \sec (x)+2 \cos (x)
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=\left(c_{1}-1\right) \sec (x)+2 \cos (x)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\sqrt{\left(2 \cos (x)^{2}-1+c_{1}\right) \cos (x)}}{2 \cos (x)^{2}-1+c_{1}} \\
& y(x)=-\frac{\sqrt{\left(2 \cos (x)^{2}-1+c_{1}\right) \cos (x)}}{2 \cos (x)^{2}-1+c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{\left(2 \cos (x)^{2}-1+c_{1}\right) \cos (x)}}{2 \cos (x)^{2}-1+c_{1}} \tag{1}\\
& y=-\frac{\sqrt{\left(2 \cos (x)^{2}-1+c_{1}\right) \cos (x)}}{2 \cos (x)^{2}-1+c_{1}} \tag{2}
\end{align*}
$$

Figure 143: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{\left(2 \cos (x)^{2}-1+c_{1}\right) \cos (x)}}{2 \cos (x)^{2}-1+c_{1}}
$$

Verified OK.

$$
y=-\frac{\sqrt{\left(2 \cos (x)^{2}-1+c_{1}\right) \cos (x)}}{2 \cos (x)^{2}-1+c_{1}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.063 (sec). Leaf size: 56

```
dsolve(diff(y(x),x)+1/2*\operatorname{tan}(x)*y(x)=2*y(x)^3*\operatorname{sin}(x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{\left(-2 \sin (x)^{2}+c_{1}\right) \cos (x)}}{-2 \sin (x)^{2}+c_{1}} \\
& y(x)=\frac{\sqrt{\left(-2 \sin (x)^{2}+c_{1}\right) \cos (x)}}{-2 \sin (x)^{2}+c_{1}}
\end{aligned}
$$

Solution by Mathematica
Time used: 5.32 (sec). Leaf size: 227
DSolve $\left[y^{\prime}[x]+1 / 2 * \operatorname{Tan}(x) * y[x]==2 * y[x] \sim 3 * \operatorname{Sin}[x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{e^{\frac{1}{4} / \operatorname{Tan}} \sqrt[4]{\operatorname{Tan}}}{\sqrt{e^{\frac{\operatorname{Tan} x^{2}}{2}}\left(-i \sqrt{2 \pi} \operatorname{erf}\left(\frac{\operatorname{Tan} x+i}{\sqrt{2} \sqrt{\operatorname{Tan}}}\right)+\sqrt{2 \pi} \operatorname{erfi}\left(\frac{1+i \operatorname{Tan} x}{\left.\sqrt{2} \sqrt{\operatorname{Tan}})+c_{1} e^{\frac{1}{2} / \operatorname{Tan} \sqrt{\operatorname{Tan}}}\right)}\right.\right.}} \begin{array}{l}
y(x) \rightarrow \frac{e^{\frac{1}{4} / \operatorname{Tan} \sqrt[4]{\operatorname{Tan}}}}{\sqrt{e^{\frac{\operatorname{Tan} x^{2}}{2}}\left(-i \sqrt{2 \pi} \operatorname{erf}\left(\frac{\operatorname{Tan} x+i}{\sqrt{2} \sqrt{\operatorname{Tan}}}\right)+\sqrt{2 \pi} \operatorname{erfi}\left(\frac{1+i \operatorname{Tan} x}{\left.\sqrt{2} \sqrt{\operatorname{Tan}})+c_{1} e^{\frac{1}{2} / \operatorname{Tan} \sqrt{\operatorname{Tan}}}\right)}\right.\right.}} \\
y(x) \rightarrow 0
\end{array}
\end{aligned}
$$

4.24 problem Problem 40

4.24.1 Solving as first order ode lie symmetry lookup ode 864
4.24.2 Solving as bernoulli ode . 868

Internal problem ID [2688]
Internal file name [OUTPUT/2180_Sunday_June_05_2022_02_52_27_AM_46090535/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 40.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

$$
y^{\prime}-\frac{3 y}{2 x}-6 y^{\frac{1}{3}} x^{2} \ln (x)=0
$$

4.24.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{6 y^{\frac{1}{3}} x^{3} \ln (x)+\frac{3 y}{2}}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 128: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{\frac{1}{3}} x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{\frac{1}{3}} x} d y
\end{aligned}
$$

Which results in

$$
S=\frac{3 y^{\frac{2}{3}}}{2 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{6 y^{\frac{1}{3}} x^{3} \ln (x)+\frac{3 y}{2}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3 y^{\frac{2}{3}}}{2 x^{2}} \\
S_{y} & =\frac{1}{y^{\frac{1}{3}} x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=6 \ln (x) x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=6 \ln (R) R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 R^{2} \ln (R)-\frac{3 R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 y^{\frac{2}{3}}}{2 x}=3 \ln (x) x^{2}-\frac{3 x^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{3 y^{\frac{2}{3}}}{2 x}=3 \ln (x) x^{2}-\frac{3 x^{2}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(18 x^{3} \ln (x)-9 x^{3}+6 c_{1} x\right)^{\frac{3}{2}}}{27}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{6 y^{\frac{1}{3}} x^{3} \ln (x)+\frac{3 y}{2}}{x}$		$\frac{d S}{d R}=6 \ln (R) R$
		$S(R)$
	$S=\frac{3 y^{\frac{2}{3}}}{2 x}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(18 x^{3} \ln (x)-9 x^{3}+6 c_{1} x\right)^{\frac{3}{2}}}{27} \tag{1}
\end{equation*}
$$

Figure 144: Slope field plot

Verification of solutions

$$
y=\frac{\left(18 x^{3} \ln (x)-9 x^{3}+6 c_{1} x\right)^{\frac{3}{2}}}{27}
$$

Verified OK.

4.24.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{6 y^{\frac{1}{3}} x^{3} \ln (x)+\frac{3 y}{2}}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{3}{2 x} y+6 \ln (x) x^{2} y^{\frac{1}{3}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{3}{2 x} \\
f_{1}(x) & =6 \ln (x) x^{2} \\
n & =\frac{1}{3}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{\frac{1}{3}}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{\frac{1}{3}}}=\frac{3 y^{\frac{2}{3}}}{2 x}+6 \ln (x) x^{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{\frac{2}{3}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=\frac{2}{3 y^{\frac{1}{3}}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{3 w^{\prime}(x)}{2} & =\frac{3 w(x)}{2 x}+6 \ln (x) x^{2} \\
w^{\prime} & =\frac{w}{x}+4 \ln (x) x^{2} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=4 \ln (x) x^{2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{w(x)}{x}=4 \ln (x) x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(4 \ln (x) x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x}\right) & =\left(\frac{1}{x}\right)\left(4 \ln (x) x^{2}\right) \\
\mathrm{d}\left(\frac{w}{x}\right) & =(4 \ln (x) x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x}=\int 4 \ln (x) x \mathrm{~d} x \\
& \frac{w}{x}=2 \ln (x) x^{2}-x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
w(x)=x\left(2 \ln (x) x^{2}-x^{2}\right)+c_{1} x
$$

which simplifies to

$$
w(x)=2 x^{3} \ln (x)-x^{3}+c_{1} x
$$

Replacing w in the above by $y^{\frac{2}{3}}$ using equation (5) gives the final solution.

$$
y^{\frac{2}{3}}=2 x^{3} \ln (x)-x^{3}+c_{1} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{\frac{2}{3}}=2 x^{3} \ln (x)-x^{3}+c_{1} x \tag{1}
\end{equation*}
$$

Figure 145: Slope field plot

Verification of solutions

$$
y^{\frac{2}{3}}=2 x^{3} \ln (x)-x^{3}+c_{1} x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 22
dsolve(diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})-3 /(2 * \mathrm{x}) * \mathrm{y}(\mathrm{x})=6 * \mathrm{y}(\mathrm{x}) \wedge(1 / 3) * \mathrm{x}^{\wedge} 2 * \ln (\mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
-2 x^{3} \ln (x)+x^{3}+y(x)^{\frac{2}{3}}-c_{1} x=0
$$

\checkmark Solution by Mathematica
Time used: 0.795 (sec). Leaf size: 26
DSolve $\left[y\right.$ ' $[x]-3 /(2 * x) * y[x]==6 * y[x] \wedge(1 / 3) * x^{\wedge} 2 * \log [x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow\left(x\left(-x^{2}+2 x^{2} \log (x)+c_{1}\right)\right)^{3 / 2}
$$

4.25 problem Problem 41

4.25.1 Solving as first order ode lie symmetry lookup ode 873
4.25.2 Solving as bernoulli ode . 877

Internal problem ID [2689]
Internal file name [OUTPUT/2181_Sunday_June_05_2022_02_52_32_AM_14695870/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 41.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_Bernoulli]
```

$$
y^{\prime}+\frac{2 y}{x}-6 \sqrt{x^{2}+1} \sqrt{y}=0
$$

4.25.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{6 \sqrt{x^{2}+1} \sqrt{y} x-2 y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 130: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{\sqrt{y}}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\sqrt{y}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=2 \sqrt{y} x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{6 \sqrt{x^{2}+1} \sqrt{y} x-2 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 \sqrt{y} \\
S_{y} & =\frac{x}{\sqrt{y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=6 x \sqrt{x^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=6 R \sqrt{R^{2}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2\left(R^{2}+1\right)^{\frac{3}{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
2 \sqrt{y} x=2\left(x^{2}+1\right)^{\frac{3}{2}}+c_{1}
$$

Which simplifies to

$$
2 \sqrt{y} x=2\left(x^{2}+1\right)^{\frac{3}{2}}+c_{1}
$$

Which gives

$$
y=\frac{\left(2\left(x^{2}+1\right)^{\frac{3}{2}}+c_{1}\right)^{2}}{4 x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{6 \sqrt{x^{2}+1} \sqrt{y} x-2 y}{x}$		$\frac{d S}{d R}=6 R \sqrt{R^{2}+1}$
	$R=x$	$\{S!R\rangle$
	$S=2 \sqrt{y} x$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2\left(x^{2}+1\right)^{\frac{3}{2}}+c_{1}\right)^{2}}{4 x^{2}} \tag{1}
\end{equation*}
$$

Figure 146: Slope field plot
Verification of solutions

$$
y=\frac{\left(2\left(x^{2}+1\right)^{\frac{3}{2}}+c_{1}\right)^{2}}{4 x^{2}}
$$

Verified OK.

4.25.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{6 \sqrt{x^{2}+1} \sqrt{y} x-2 y}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{2}{x} y+6 \sqrt{x^{2}+1} \sqrt{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{2}{x} \\
f_{1}(x) & =6 \sqrt{x^{2}+1} \\
n & =\frac{1}{2}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\sqrt{y}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{\sqrt{y}}=-\frac{2 \sqrt{y}}{x}+6 \sqrt{x^{2}+1} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\sqrt{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=\frac{1}{2 \sqrt{y}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
2 w^{\prime}(x) & =-\frac{2 w(x)}{x}+6 \sqrt{x^{2}+1} \\
w^{\prime} & =-\frac{w}{x}+3 \sqrt{x^{2}+1} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=3 \sqrt{x^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=3 \sqrt{x^{2}+1}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(3 \sqrt{x^{2}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x w) & =(x)\left(3 \sqrt{x^{2}+1}\right) \\
\mathrm{d}(x w) & =\left(3 x \sqrt{x^{2}+1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x w=\int 3 x \sqrt{x^{2}+1} \mathrm{~d} x \\
& x w=\left(x^{2}+1\right)^{\frac{3}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=\frac{\left(x^{2}+1\right)^{\frac{3}{2}}}{x}+\frac{c_{1}}{x}
$$

Replacing w in the above by \sqrt{y} using equation (5) gives the final solution.

$$
\sqrt{y}=\frac{\left(x^{2}+1\right)^{\frac{3}{2}}}{x}+\frac{c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{y}=\frac{\left(x^{2}+1\right)^{\frac{3}{2}}}{x}+\frac{c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 147: Slope field plot

Verification of solutions

$$
\sqrt{y}=\frac{\left(x^{2}+1\right)^{\frac{3}{2}}}{x}+\frac{c_{1}}{x}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 38
dsolve($\operatorname{diff}(y(x), x)+2 / x * y(x)=6 * \operatorname{sqrt}\left(1+x^{\wedge} 2\right) * \operatorname{sqrt}(y(x)), y(x), \quad$ singsol=all)

$$
\frac{-x^{2} \sqrt{x^{2}+1}+x \sqrt{y(x)}-c_{1}-\sqrt{x^{2}+1}}{x}=0
$$

\checkmark Solution by Mathematica
Time used: 0.228 (sec). Leaf size: 55
DSolve $\left[y^{\prime}[x]+2 / x * y[x]==6 * \operatorname{Sqrt}\left[1+x^{\wedge} 2\right] * \operatorname{Sqrt}[y[x]], y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \frac{x^{6}+3 x^{4}+x^{2}\left(3+2 c_{1} \sqrt{x^{2}+1}\right)+2 c_{1} \sqrt{x^{2}+1}+1+c_{1}^{2}}{x^{2}}
$$

4.26 problem Problem 42

4.26.1 Solving as first order ode lie symmetry lookup ode 882
4.26.2 Solving as bernoulli ode . 886
4.26.3 Solving as exact ode . 890
4.26.4 Solving as riccati ode . 895

Internal problem ID [2690]
Internal file name [OUTPUT/2182_Sunday_June_05_2022_02_52_36_AM_3516020/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 42.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]

$$
y^{\prime}+\frac{2 y}{x}-6 y^{2} x^{4}=0
$$

4.26.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2 y\left(3 x^{5} y-1\right)}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 132: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{2} x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{2} x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{x^{2} y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 y\left(3 x^{5} y-1\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2}{x^{3} y} \\
S_{y} & =\frac{1}{x^{2} y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=6 x^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=6 R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 R^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x^{2} y}=2 x^{3}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{x^{2} y}=2 x^{3}+c_{1}
$$

Which gives

$$
y=-\frac{1}{x^{2}\left(2 x^{3}+c_{1}\right)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 y\left(3 x^{5} y-1\right)}{x}$		$\frac{d S}{d R}=6 R^{2}$
ctatatat zatatat	$R=x$	
	$S=-1$	
	$S=-\frac{1}{x^{2} y}$	
		$\mathrm{t}_{5}^{2}-1$
¢ $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \chi_{\text {d }}$ ¢ ¢ $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$		¢ $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \rightarrow$ - $¢ \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x^{2}\left(2 x^{3}+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 148: Slope field plot

Verification of solutions

$$
y=-\frac{1}{x^{2}\left(2 x^{3}+c_{1}\right)}
$$

Verified OK.

4.26.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{2 y\left(3 x^{5} y-1\right)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{2}{x} y+6 x^{4} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{2}{x} \\
f_{1}(x) & =6 x^{4} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=-\frac{2}{x y}+6 x^{4} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =-\frac{2 w(x)}{x}+6 x^{4} \\
w^{\prime} & =\frac{2 w}{x}-6 x^{4} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=-6 x^{4}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{2 w(x)}{x}=-6 x^{4}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-6 x^{4}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(-6 x^{4}\right) \\
\mathrm{d}\left(\frac{w}{x^{2}}\right) & =\left(-6 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{w}{x^{2}} & =\int-6 x^{2} \mathrm{~d} x \\
\frac{w}{x^{2}} & =-2 x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
w(x)=-2 x^{5}+c_{1} x^{2}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=-2 x^{5}+c_{1} x^{2}
$$

Or

$$
y=\frac{1}{-2 x^{5}+c_{1} x^{2}}
$$

Which is simplified to

$$
y=\frac{1}{x^{2}\left(-2 x^{3}+c_{1}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{x^{2}\left(-2 x^{3}+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 149: Slope field plot

Verification of solutions

$$
y=\frac{1}{x^{2}\left(-2 x^{3}+c_{1}\right)}
$$

Verified OK.

4.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-\frac{2 y}{x}+6 x^{4} y^{2}\right) \mathrm{d} x \\
\left(\frac{2 y}{x}-6 x^{4} y^{2}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{2 y}{x}-6 x^{4} y^{2} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 y}{x}-6 x^{4} y^{2}\right) \\
& =\frac{2}{x}-12 x^{4} y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(\frac{2}{x}-12 x^{4} y\right)-(0)\right) \\
& =\frac{2}{x}-12 x^{4} y
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{x}{6 x^{5} y^{2}-2 y}\left((0)-\left(\frac{2}{x}-12 x^{4} y\right)\right) \\
& =\frac{-6 x^{5} y+1}{3 x^{5} y^{2}-y}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(0)-\left(\frac{2}{x}-12 x^{4} y\right)}{x\left(\frac{2 y}{x}-6 x^{4} y^{2}\right)-y(1)} \\
& =-\frac{2}{x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{2}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{2}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (t)} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x^{2} y^{2}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2} y^{2}}\left(\frac{2 y}{x}-6 x^{4} y^{2}\right) \\
& =\frac{-6 x^{5} y+2}{x^{3} y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2} y^{2}}(1) \\
& =\frac{1}{x^{2} y^{2}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-6 x^{5} y+2}{x^{3} y}\right)+\left(\frac{1}{x^{2} y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-6 x^{5} y+2}{x^{3} y} \mathrm{~d} x \\
\phi & =\frac{-2 x^{5} y-1}{x^{2} y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{2 x^{3}}{y}-\frac{-2 x^{5} y-1}{x^{2} y^{2}}+f^{\prime}(y) \tag{4}\\
& =\frac{1}{x^{2} y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x^{2} y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x^{2} y^{2}}=\frac{1}{x^{2} y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-2 x^{5} y-1}{x^{2} y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-2 x^{5} y-1}{x^{2} y}
$$

The solution becomes

$$
y=-\frac{1}{x^{2}\left(2 x^{3}+c_{1}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x^{2}\left(2 x^{3}+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 150: Slope field plot

Verification of solutions

$$
y=-\frac{1}{x^{2}\left(2 x^{3}+c_{1}\right)}
$$

Verified OK.

4.26.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{2 y\left(3 x^{5} y-1\right)}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{2 y}{x}+6 x^{4} y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=-\frac{2}{x}$ and $f_{2}(x)=6 x^{4}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{6 x^{4} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =24 x^{3} \\
f_{1} f_{2} & =-12 x^{3} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
6 x^{4} u^{\prime \prime}(x)-12 x^{3} u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} x^{3}+c_{1}
$$

The above shows that

$$
u^{\prime}(x)=3 c_{2} x^{2}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}}{2 x^{2}\left(c_{2} x^{3}+c_{1}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{1}{2 x^{2}\left(x^{3}+c_{3}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{2 x^{2}\left(x^{3}+c_{3}\right)} \tag{1}
\end{equation*}
$$

Figure 151: Slope field plot

Verification of solutions

$$
y=-\frac{1}{2 x^{2}\left(x^{3}+c_{3}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x)+2 / x * y(x)=6 * y(x) \wedge 2 * x^{\wedge} 4, y(x)$, singsol=all)

$$
y(x)=\frac{1}{\left(-2 x^{3}+c_{1}\right) x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 24
DSolve $\left[y^{\prime}[x]+2 / x * y[x]==6 * y[x] \wedge 2 * x \wedge 4, y[x], x\right.$, IncludeSingularSolutions $\rightarrow>$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{-2 x^{5}+c_{1} x^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.27 problem Problem 43

4.27.1 Solving as first order ode lie symmetry lookup ode 899
4.27.2 Solving as bernoulli ode . 903

Internal problem ID [2691]
Internal file name [OUTPUT/2183_Sunday_June_05_2022_02_52_38_AM_40107222/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 43.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _Bernoulli]
```

$$
2 x\left(y^{\prime}+y^{3} x^{2}\right)+y=0
$$

4.27.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y\left(2 x^{3} y^{2}+1\right)}{2 x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 134: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x y^{3} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x y^{3}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{2 x y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(2 x^{3} y^{2}+1\right)}{2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{2 x^{2} y^{2}} \\
S_{y} & =\frac{1}{x y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{2 x y^{2}}=-\frac{x^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{2 x y^{2}}=-\frac{x^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(2 x^{3} y^{2}+1\right)}{2 x}$		$\frac{d S}{d R}=-R$
1, ${ }^{1}$		
! ! ! ! taxatit! ! ! ! ! !	$R=x$	
	1	
	$S=-\frac{1}{2 x y^{2}}$	
	$2 x y^{2}$	
- ${ }_{\text {- }}$		
		tit

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{2 x y^{2}}=-\frac{x^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 152: Slope field plot
Verification of solutions

$$
-\frac{1}{2 x y^{2}}=-\frac{x^{2}}{2}+c_{1}
$$

Verified OK.

4.27.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y\left(2 x^{3} y^{2}+1\right)}{2 x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{2 x} y-x^{2} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{2 x} \\
f_{1}(x) & =-x^{2} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=-\frac{1}{2 x y^{2}}-x^{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{2 x}-x^{2} \\
w^{\prime} & =\frac{w}{x}+2 x^{2} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=2 x^{2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{w(x)}{x}=2 x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(2 x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x}\right) & =\left(\frac{1}{x}\right)\left(2 x^{2}\right) \\
\mathrm{d}\left(\frac{w}{x}\right) & =(2 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x}=\int 2 x \mathrm{~d} x \\
& \frac{w}{x}=x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
w(x)=x^{3}+c_{1} x
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=x^{3}+c_{1} x
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{x\left(x^{2}+c_{1}\right)}} \\
& y(x)=-\frac{1}{\sqrt{x\left(x^{2}+c_{1}\right)}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{\sqrt{x\left(x^{2}+c_{1}\right)}} \tag{1}\\
& y=-\frac{1}{\sqrt{x\left(x^{2}+c_{1}\right)}} \tag{2}
\end{align*}
$$

Figure 153: Slope field plot
Verification of solutions

$$
y=\frac{1}{\sqrt{x\left(x^{2}+c_{1}\right)}}
$$

Verified OK.

$$
y=-\frac{1}{\sqrt{x\left(x^{2}+c_{1}\right)}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(2*x*(diff(y(x),x)+y(x)^3*x^2)+y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{x\left(x^{2}+c_{1}\right)}} \\
& y(x)=-\frac{1}{\sqrt{x\left(x^{2}+c_{1}\right)}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.326 (sec). Leaf size: 40
DSolve $\left[2 * x *\left(y^{\prime}[x]+y[x] \sim 3 * x^{\wedge} 2\right)+y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{\sqrt{x\left(x^{2}+c_{1}\right)}} \\
& y(x) \rightarrow \frac{1}{\sqrt{x\left(x^{2}+c_{1}\right)}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.28 problem Problem 44

4.28.1 Solving as first order ode lie symmetry lookup ode 908
4.28.2 Solving as bernoulli ode . 911

Internal problem ID [2692]
Internal file name [OUTPUT/2184_Sunday_June_05_2022_02_52_44_AM_88096937/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 44.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational, _Bernoulli]

$$
(x-a)(x-b)\left(y^{\prime}-\sqrt{y}\right)-2(b-a) y=0
$$

4.28.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-\sqrt{y} a b+\sqrt{y} a x+\sqrt{y} b x-\sqrt{y} x^{2}+2 y a-2 y b}{(-x+a)(-x+b)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 136: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\sqrt{y} \mathrm{e}^{-\frac{(2 a-2 b)\left(-\frac{\ln (x-b)}{-b+a}+\frac{\ln (x-a)}{-b+a}\right)}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{y} \mathrm{e}^{-\frac{(2 a-2 b)\left(-\frac{\ln (x-b)}{-b+a}+\frac{\ln (x-a)}{-b+a}\right)}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{2 \sqrt{y}(x-a)}{x-b}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-\sqrt{y} a b+\sqrt{y} a x+\sqrt{y} b x-\sqrt{y} x^{2}+2 y a-2 y b}{(-x+a)(-x+b)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 \sqrt{y}(-b+a)}{(-x+b)^{2}} \\
S_{y} & =\frac{-x+a}{\sqrt{y}(-x+b)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{-x+a}{-x+b} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{-R+a}{-R+b}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+(b-a) \ln (R-b)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{2 \sqrt{y}(-x+a)}{-x+b}=x+(b-a) \ln (x-b)+c_{1}
$$

Which simplifies to

$$
\frac{2 \sqrt{y}(-x+a)}{-x+b}=x+(b-a) \ln (x-b)+c_{1}
$$

Which gives

$$
y=\frac{\left(\ln (x-b) a b-\ln (x-b) a x-\ln (x-b) b^{2}+\ln (x-b) b x-c_{1} b+c_{1} x-b x+x^{2}\right)^{2}}{4(-x+a)^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\ln (x-b) a b-\ln (x-b) a x-\ln (x-b) b^{2}+\ln (x-b) b x-c_{1} b+c_{1} x-b x+x^{2}\right)^{2}}{4(-x+a)^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions
$y=\frac{\left(\ln (x-b) a b-\ln (x-b) a x-\ln (x-b) b^{2}+\ln (x-b) b x-c_{1} b+c_{1} x-b x+x^{2}\right)^{2}}{4(-x+a)^{2}}$
Verified OK.

4.28.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{-\sqrt{y} a b+\sqrt{y} a x+\sqrt{y} b x-\sqrt{y} x^{2}+2 y a-2 y b}{(-x+a)(-x+b)}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{2 a-2 b}{(-x+a)(-x+b)} y-\frac{-a b+a x+b x-x^{2}}{(-x+a)(-x+b)} \sqrt{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{2 a-2 b}{(-x+a)(-x+b)} \\
f_{1}(x) & =-\frac{-a b+a x+b x-x^{2}}{(-x+a)(-x+b)} \\
n & =\frac{1}{2}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\sqrt{y}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{\sqrt{y}}=-\frac{(2 a-2 b) \sqrt{y}}{(-x+a)(-x+b)}-\frac{-a b+a x+b x-x^{2}}{(-x+a)(-x+b)} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\sqrt{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=\frac{1}{2 \sqrt{y}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
2 w^{\prime}(x) & =-\frac{(2 a-2 b) w(x)}{(-x+a)(-x+b)}-\frac{-a b+a x+b x-x^{2}}{(-x+a)(-x+b)} \\
w^{\prime} & =-\frac{(2 a-2 b) w}{2(-x+a)(-x+b)}-\frac{-a b+a x+b x-x^{2}}{2(-x+a)(-x+b)} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{b-a}{(-x+a)(-x+b)} \\
& q(x)=\frac{1}{2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{(b-a) w(x)}{(-x+a)(-x+b)}=\frac{1}{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{b-a}{(-x+a)(-x+b)} d x} \\
& =\mathrm{e}^{(-b+a)\left(-\frac{\ln (x-b)}{-b+a}+\frac{\ln (x-a)}{-b+a}\right)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{-x+a}{-x+b}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{1}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{(-x+a) w}{-x+b}\right) & =\left(\frac{-x+a}{-x+b}\right)\left(\frac{1}{2}\right) \\
\mathrm{d}\left(\frac{(-x+a) w}{-x+b}\right) & =\left(\frac{-x+a}{2 b-2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{(-x+a) w}{-x+b} & =\int \frac{-x+a}{2 b-2 x} \mathrm{~d} x \\
\frac{(-x+a) w}{-x+b} & =\frac{x}{2}+\frac{(b-a) \ln (x-b)}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{-x+a}{-x+b}$ results in

$$
w(x)=\frac{(-x+b)\left(\frac{x}{2}+\frac{(b-a) \ln (x-b)}{2}\right)}{-x+a}+\frac{(-x+b) c_{1}}{-x+a}
$$

which simplifies to

$$
w(x)=-\frac{(-x+b)\left(\ln (x-b)(-b+a)-x-2 c_{1}\right)}{2 a-2 x}
$$

Replacing w in the above by \sqrt{y} using equation (5) gives the final solution.

$$
\sqrt{y}=-\frac{(-x+b)\left(\ln (x-b)(-b+a)-x-2 c_{1}\right)}{2 a-2 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\sqrt{y}=-\frac{(-x+b)\left(\ln (x-b)(-b+a)-x-2 c_{1}\right)}{2 a-2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sqrt{y}=-\frac{(-x+b)\left(\ln (x-b)(-b+a)-x-2 c_{1}\right)}{2 a-2 x}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 55

```
dsolve((x-a)*(x-b)*(diff(y(x),x)-sqrt(y(x)))=2*(b-a)*y(x),y(x), singsol=all)
```

$$
\frac{(-x+b)(a-b) \ln (x-b)+(2 a-2 x) \sqrt{y(x)}-\left(x+2 c_{1}\right)(-x+b)}{2 a-2 x}=0
$$

\checkmark Solution by Mathematica
Time used: 0.478 (sec). Leaf size: 43
DSolve $\left[(x-a) *(x-b) *\left(y^{\prime}[x]-\operatorname{Sqrt}[y[x]]\right)==2 *(b-a) * y[x], y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{(b-x)^{2}\left((b-a) \log (x-b)+x+2 c_{1}\right)^{2}}{4(a-x)^{2}}
$$

4.29 problem Problem 45

4.29.1 Solving as first order ode lie symmetry lookup ode 916
4.29.2 Solving as bernoulli ode . 921

Internal problem ID [2693]
Internal file name [OUTPUT/2185_Sunday_June_05_2022_02_52_47_AM_85575651/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 45.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_Bernoulli]
```

$$
y^{\prime}+\frac{6 y}{x}-\frac{3 y^{\frac{2}{3}} \cos (x)}{x}=0
$$

4.29.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-6 y+3 y^{\frac{2}{3}} \cos (x)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 138: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{y^{\frac{2}{3}}}{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{\frac{2}{3}}}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=3 x^{2} y^{\frac{1}{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-6 y+3 y^{\frac{2}{3}} \cos (x)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =6 y^{\frac{1}{3}} x \\
S_{y} & =\frac{x^{2}}{y^{\frac{2}{3}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 \cos (x) x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 \cos (R) R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 \cos (R)+3 \sin (R) R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
3 x^{2} y^{\frac{1}{3}}=3 \cos (x)+3 x \sin (x)+c_{1}
$$

Which simplifies to

$$
3 x^{2} y^{\frac{1}{3}}=3 \cos (x)+3 x \sin (x)+c_{1}
$$

Which gives
$y=\frac{27 x^{3} \sin (x)^{3}+27 c_{1} x^{2} \sin (x)^{2}+81 x^{2} \sin (x)^{2} \cos (x)+9 c_{1}^{2} x \sin (x)+54 c_{1} x \sin (x) \cos (x)-81 \sin (x)}{27 x^{6}}$
The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-6 y+3 y^{\frac{2}{3}} \cos (x)}{x}$		$\frac{d S}{d R}=3 \cos (R) R$
$\begin{array}{lllllllll}-4 & -2 & 0 & 2 & \\ \end{array}$	$S=3 x^{2} y^{\frac{1}{3}}$	
-2.		
-4.		

Summary

The solution(s) found are the following
y
(1)
$=\frac{27 x^{3} \sin (x)^{3}+27 c_{1} x^{2} \sin (x)^{2}+81 x^{2} \sin (x)^{2} \cos (x)+9 c_{1}^{2} x \sin (x)+54 c_{1} x \sin (x) \cos (x)-81 \sin (x)^{3} x}{27 x^{6}}$

Figure 154: Slope field plot

Verification of solutions
$=\frac{27 x^{3} \sin (x)^{3}+27 c_{1} x^{2} \sin (x)^{2}+81 x^{2} \sin (x)^{2} \cos (x)+9 c_{1}^{2} x \sin (x)+54 c_{1} x \sin (x) \cos (x)-81 \sin (x)^{3} a}{27 x^{6}}$
Verified OK.

4.29.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-6 y+3 y^{\frac{2}{3}} \cos (x)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{6}{x} y+\frac{3 \cos (x)}{x} y^{\frac{2}{3}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{6}{x} \\
f_{1}(x) & =\frac{3 \cos (x)}{x} \\
n & =\frac{2}{3}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{\frac{2}{3}}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{\frac{2}{3}}}=-\frac{6 y^{\frac{1}{3}}}{x}+\frac{3 \cos (x)}{x} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{\frac{1}{3}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=\frac{1}{3 y^{\frac{2}{3}}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
3 w^{\prime}(x) & =-\frac{6 w(x)}{x}+\frac{3 \cos (x)}{x} \\
w^{\prime} & =-\frac{2 w}{x}+\frac{\cos (x)}{x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{\cos (x)}{x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{2 w(x)}{x}=\frac{\cos (x)}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{\cos (x)}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} w\right) & =\left(x^{2}\right)\left(\frac{\cos (x)}{x}\right) \\
\mathrm{d}\left(x^{2} w\right) & =(\cos (x) x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} w=\int \cos (x) x \mathrm{~d} x \\
& x^{2} w=x \sin (x)+\cos (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
w(x)=\frac{x \sin (x)+\cos (x)}{x^{2}}+\frac{c_{1}}{x^{2}}
$$

which simplifies to

$$
w(x)=\frac{x \sin (x)+\cos (x)+c_{1}}{x^{2}}
$$

Replacing w in the above by $y^{\frac{1}{3}}$ using equation (5) gives the final solution.

$$
y^{\frac{1}{3}}=\frac{x \sin (x)+\cos (x)+c_{1}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{\frac{1}{3}}=\frac{x \sin (x)+\cos (x)+c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 155: Slope field plot

Verification of solutions

$$
y^{\frac{1}{3}}=\frac{x \sin (x)+\cos (x)+c_{1}}{x^{2}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

```
dsolve(diff (y (x),x)+6/x*y(x)=3/x*y(x)^(2/3)*\operatorname{cos}(x),y(x), singsol=all)
```

$$
\frac{y(x)^{\frac{1}{3}} x^{2}-x \sin (x)-\cos (x)-c_{1}}{x^{2}}=0
$$

\checkmark Solution by Mathematica
Time used: 0.194 (sec). Leaf size: 20
DSolve $[y$ ' $[x]+6 / x * y[x]==3 / x * y[x] \sim(2 / 3) * \operatorname{Cos}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\left(x \sin (x)+\cos (x)+c_{1}\right)^{3}}{x^{6}}
$$

4.30 problem Problem 46

4.30.1 Solving as first order ode lie symmetry lookup ode 925
4.30.2 Solving as bernoulli ode . 929

Internal problem ID [2694]
Internal file name [OUTPUT/2186_Sunday_June_05_2022_02_52_53_AM_36459872/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 46.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_Bernoulli]
```

$$
y^{\prime}+4 y x-4 \sqrt{y} x^{3}=0
$$

4.30.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-4 x y+4 \sqrt{y} x^{3} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 140: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\sqrt{y} \mathrm{e}^{-x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{y} \mathrm{e}^{-x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=2 \sqrt{y} \mathrm{e}^{x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-4 x y+4 \sqrt{y} x^{3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =4 \sqrt{y} x \mathrm{e}^{x^{2}} \\
S_{y} & =\frac{\mathrm{e}^{x^{2}}}{\sqrt{y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 x^{3} \mathrm{e}^{x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 R^{3} \mathrm{e}^{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2\left(R^{2}-1\right) \mathrm{e}^{R^{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
2 \sqrt{y} \mathrm{e}^{x^{2}}=2\left(x^{2}-1\right) \mathrm{e}^{x^{2}}+c_{1}
$$

Which simplifies to

$$
2 \sqrt{y} \mathrm{e}^{x^{2}}=2\left(x^{2}-1\right) \mathrm{e}^{x^{2}}+c_{1}
$$

Which gives

$$
y=\frac{\left(2 x^{2} \mathrm{e}^{x^{2}}-2 \mathrm{e}^{x^{2}}+c_{1}\right)^{2} \mathrm{e}^{-2 x^{2}}}{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-4 x y+4 \sqrt{y} x^{3}$		$\frac{d S}{d R}=4 R^{3} \mathrm{e}^{R^{2}}$
		,
		$\xrightarrow{1}+{ }^{2} \rightarrow 0 \rightarrow 4$
- , , - > 1.	$R=x$	$\rightarrow+1$
	$S=2 \sqrt{y} \mathrm{e}^{x^{2}}$	
-2.		
-4.		
\|		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 x^{2} \mathrm{e}^{x^{2}}-2 \mathrm{e}^{x^{2}}+c_{1}\right)^{2} \mathrm{e}^{-2 x^{2}}}{4} \tag{1}
\end{equation*}
$$

Figure 156: Slope field plot

Verification of solutions

$$
y=\frac{\left(2 x^{2} \mathrm{e}^{x^{2}}-2 \mathrm{e}^{x^{2}}+c_{1}\right)^{2} \mathrm{e}^{-2 x^{2}}}{4}
$$

Verified OK.

4.30.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-4 x y+4 \sqrt{y} x^{3}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-4 x y+4 x^{3} \sqrt{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-4 x \\
f_{1}(x) & =4 x^{3} \\
n & =\frac{1}{2}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\sqrt{y}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{\sqrt{y}}=-4 \sqrt{y} x+4 x^{3} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\sqrt{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=\frac{1}{2 \sqrt{y}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
2 w^{\prime}(x) & =-4 w(x) x+4 x^{3} \\
w^{\prime} & =2 x^{3}-2 x w \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =2 x \\
q(x) & =2 x^{3}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+2 w(x) x=2 x^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 x d x} \\
& =\mathrm{e}^{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(2 x^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x^{2}} w\right) & =\left(\mathrm{e}^{x^{2}}\right)\left(2 x^{3}\right) \\
\mathrm{d}\left(\mathrm{e}^{x^{2}} w\right) & =\left(2 x^{3} \mathrm{e}^{x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x^{2}} w=\int 2 x^{3} \mathrm{e}^{x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{x^{2}} w=\left(x^{2}-1\right) \mathrm{e}^{x^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x^{2}}$ results in

$$
w(x)=\mathrm{e}^{-x^{2}}\left(x^{2}-1\right) \mathrm{e}^{x^{2}}+c_{1} \mathrm{e}^{-x^{2}}
$$

which simplifies to

$$
w(x)=x^{2}-1+c_{1} \mathrm{e}^{-x^{2}}
$$

Replacing w in the above by \sqrt{y} using equation (5) gives the final solution.

$$
\sqrt{y}=x^{2}-1+c_{1} \mathrm{e}^{-x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{y}=x^{2}-1+c_{1} \mathrm{e}^{-x^{2}} \tag{1}
\end{equation*}
$$

Figure 157: Slope field plot
Verification of solutions

$$
\sqrt{y}=x^{2}-1+c_{1} \mathrm{e}^{-x^{2}}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

```
dsolve(diff(y(x),x)+4*x*y(x)=4*x^3*sqrt(y(x)),y(x), singsol=all)
```

$$
-x^{2}+1-c_{1} \mathrm{e}^{-x^{2}}+\sqrt{y(x)}=0
$$

\checkmark Solution by Mathematica
Time used: 0.159 (sec). Leaf size: 29
DSolve[y' $[x]+4 * x * y[x]==4 * x^{\wedge} 3 * S q r t[y[x]], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-2 x^{2}}\left(e^{x^{2}}\left(x^{2}-1\right)+c_{1}\right)^{2}
$$

4.31 problem Problem 47

4.31.1 Solving as first order ode lie symmetry lookup ode 934
4.31.2 Solving as bernoulli ode . 938

Internal problem ID [2695]
Internal file name [OUTPUT/2187_Sunday_June_05_2022_02_52_56_AM_13650653/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 47.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_Bernoulli]
```

$$
y^{\prime}-\frac{y}{2 \ln (x) x}-2 x y^{3}=0
$$

4.31.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y\left(4 x^{2} y^{2} \ln (x)+1\right)}{2 \ln (x) x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 142: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{y^{3}}{\ln (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{3}}{\ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (x)}{2 y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(4 x^{2} y^{2} \ln (x)+1\right)}{2 \ln (x) x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{2 x y^{2}} \\
S_{y} & =\frac{\ln (x)}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 \ln (x) x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 \ln (R) R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2} \ln (R)-\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (x)}{2 y^{2}}=\ln (x) x^{2}-\frac{x^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{\ln (x)}{2 y^{2}}=\ln (x) x^{2}-\frac{x^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y\left(4 x^{2} y^{2} \ln (x)+1\right)}{2 \ln (x) x}$		$\frac{d S}{d R}=2 \ln (R) R$
1		1
${ }^{\prime}(x)$		$S(R)$
	$R=x$	
$\begin{array}{llll}-4 & -2 & 0\end{array}$	$S=\ln (x)$	
	$S=-\frac{12}{2 y^{2}}$	
, ${ }^{\text {d }}$		+
$1!$		

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (x)}{2 y^{2}}=\ln (x) x^{2}-\frac{x^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 158: Slope field plot
Verification of solutions

$$
-\frac{\ln (x)}{2 y^{2}}=\ln (x) x^{2}-\frac{x^{2}}{2}+c_{1}
$$

Verified OK.

4.31.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y\left(4 x^{2} y^{2} \ln (x)+1\right)}{2 \ln (x) x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{2 \ln (x) x} y+2 x y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{2 \ln (x) x} \\
f_{1}(x) & =2 x \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=\frac{1}{2 y^{2} \ln (x) x}+2 x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =\frac{w(x)}{2 \ln (x) x}+2 x \\
w^{\prime} & =-\frac{w}{\ln (x) x}-4 x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{\ln (x) x} \\
& q(x)=-4 x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{\ln (x) x}=-4 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{\ln (x) x} d x} \\
& =\ln (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-4 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\ln (x) w) & =(\ln (x))(-4 x) \\
\mathrm{d}(\ln (x) w) & =(-4 \ln (x) x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \ln (x) w=\int-4 \ln (x) x \mathrm{~d} x \\
& \ln (x) w=-2 \ln (x) x^{2}+x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\ln (x)$ results in

$$
w(x)=\frac{-2 \ln (x) x^{2}+x^{2}}{\ln (x)}+\frac{c_{1}}{\ln (x)}
$$

which simplifies to

$$
w(x)=\frac{-2 \ln (x) x^{2}+x^{2}+c_{1}}{\ln (x)}
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=\frac{-2 \ln (x) x^{2}+x^{2}+c_{1}}{\ln (x)}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{-2 \ln (x)^{2} x^{2}+\left(x^{2}+c_{1}\right) \ln (x)}}{2 \ln (x) x^{2}-x^{2}-c_{1}} \\
& y(x)=\frac{\sqrt{-2 \ln (x)^{2} x^{2}+\left(x^{2}+c_{1}\right) \ln (x)}}{2 \ln (x) x^{2}-x^{2}-c_{1}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{\sqrt{-2 \ln (x)^{2} x^{2}+\left(x^{2}+c_{1}\right) \ln (x)}}{2 \ln (x) x^{2}-x^{2}-c_{1}} \tag{1}\\
& y=\frac{\sqrt{-2 \ln (x)^{2} x^{2}+\left(x^{2}+c_{1}\right) \ln (x)}}{2 \ln (x) x^{2}-x^{2}-c_{1}} \tag{2}
\end{align*}
$$

Figure 159: Slope field plot

Verification of solutions

$$
y=-\frac{\sqrt{-2 \ln (x)^{2} x^{2}+\left(x^{2}+c_{1}\right) \ln (x)}}{2 \ln (x) x^{2}-x^{2}-c_{1}}
$$

Verified OK.

$$
y=\frac{\sqrt{-2 \ln (x)^{2} x^{2}+\left(x^{2}+c_{1}\right) \ln (x)}}{2 \ln (x) x^{2}-x^{2}-c_{1}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 86

```
dsolve(diff(y(x),x)-1/(2*x*ln(x))*y(x)=2*x*y(x)^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\sqrt{-2 \ln (x)^{2} x^{2}+\left(x^{2}+c_{1}\right) \ln (x)}}{2 \ln (x) x^{2}-x^{2}-c_{1}} \\
& y(x)=-\frac{\sqrt{-2 \ln (x)^{2} x^{2}+\left(x^{2}+c_{1}\right) \ln (x)}}{2 \ln (x) x^{2}-x^{2}-c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.274 (sec). Leaf size: 63
DSolve $[y$ ' $[x]-1 /(2 * x * \log [x]) * y[x]==2 * x * y[x] \sim 3, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{\log (x)}}{\sqrt{x^{2}-2 x^{2} \log (x)+c_{1}}} \\
& y(x) \rightarrow \frac{\sqrt{\log (x)}}{\sqrt{x^{2}-2 x^{2} \log (x)+c_{1}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.32 problem Problem 48

4.32.1 Solving as first order ode lie symmetry lookup ode 943
4.32.2 Solving as bernoulli ode . 947
4.32.3 Solving as exact ode . 950

Internal problem ID [2696]
Internal file name [OUTPUT/2188_Sunday_June_05_2022_02_53_02_AM_57356492/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 48.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _Bernoulli]
```

$$
y^{\prime}-\frac{y}{(\pi-1) x}-\frac{3 x y^{\pi}}{1-\pi}=0
$$

4.32.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{3 x^{2} y^{\pi}-y}{(\pi-1) x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 144: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{y^{\pi}}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{\pi}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{y y^{-\pi} x}{\pi-1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 x^{2} y^{\pi}-y}{(\pi-1) x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y^{1-\pi}}{\pi-1} \\
S_{y} & =x y^{-\pi}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{3 x^{2}}{\pi-1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{3 R^{2}}{\pi-1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{R^{3}}{\pi-1}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x y^{1-\pi}}{\pi-1}=-\frac{x^{3}}{\pi-1}+c_{1}
$$

Which simplifies to

$$
\frac{x^{3}-c_{1} \pi-x y^{1-\pi}+c_{1}}{\pi-1}=0
$$

Which gives

$$
y=\mathrm{e}^{-\frac{\ln \left(-\frac{-x^{3}+c_{1} \pi-c_{1}}{x}\right)}{\pi-1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 x^{2} y^{\pi}-y}{(\pi-1) x}$		$\frac{d S}{d R}=-\frac{3 R^{2}}{\pi-1}$
		databl
		1. ${ }^{\text {d }}$
+19 $9+483$		1
	$R=x$	
$\rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow$		
-4 -2 0 2 ${ }^{4}$	$S=-\frac{x y^{1-\pi}}{\pi}$	
-2.	$\pi-1$	
${ }^{-4}$		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{\ln \left(-\frac{-x^{3}+c_{1} \pi-c_{1}}{x}\right)}{\pi-1}} \tag{1}
\end{equation*}
$$

Figure 160: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-\frac{\ln \left(-\frac{-x^{3}+c_{1} \pi-c_{1}}{x}\right)}{\pi-1}}
$$

Verified OK.

4.32.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{3 x^{2} y^{\pi}-y}{(\pi-1) x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{(\pi-1) x} y-\frac{3 x}{\pi-1} y^{\pi} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{(\pi-1) x} \\
f_{1}(x) & =-\frac{3 x}{\pi-1} \\
n & =\pi
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{\pi}$ gives

$$
\begin{equation*}
y^{\prime} y^{-\pi}=\frac{y^{1-\pi}}{(\pi-1) x}-\frac{3 x}{\pi-1} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{1-\pi} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=(1-\pi) y^{-\pi} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{1-\pi} & =\frac{w(x)}{(\pi-1) x}-\frac{3 x}{\pi-1} \\
w^{\prime} & =\frac{(1-\pi) w}{(\pi-1) x}-\frac{3(1-\pi) x}{\pi-1} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=3 x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=3 x
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(3 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x w) & =(x)(3 x) \\
\mathrm{d}(x w) & =\left(3 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x w=\int 3 x^{2} \mathrm{~d} x \\
& x w=x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=x^{2}+\frac{c_{1}}{x}
$$

Replacing w in the above by $y^{1-\pi}$ using equation (5) gives the final solution.

$$
y^{1-\pi}=x^{2}+\frac{c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{1-\pi}=x^{2}+\frac{c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 161: Slope field plot
Verification of solutions

$$
y^{1-\pi}=x^{2}+\frac{c_{1}}{x}
$$

Verified OK.

4.32.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
((\pi-1) x) \mathrm{d} y & =\left(-3 x^{2} y^{\pi}+y\right) \mathrm{d} x \\
\left(3 x^{2} y^{\pi}-y\right) \mathrm{d} x+((\pi-1) x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x^{2} y^{\pi}-y \\
N(x, y) & =(\pi-1) x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x^{2} y^{\pi}-y\right) \\
& =3 x^{2} \pi y^{\pi-1}-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}((\pi-1) x) \\
& =\pi-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{(\pi-1) x}\left(\left(\frac{3 x^{2} \pi y^{\pi}}{y}-1\right)-(\pi-1)\right) \\
& =\frac{\pi\left(-1+3 x^{2} y^{\pi-1}\right)}{(\pi-1) x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{3 x^{2} y^{\pi}-y}\left((\pi-1)-\left(\frac{3 x^{2} \pi y^{\pi}}{y}-1\right)\right) \\
& =-\frac{\pi}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{\pi}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\pi \ln (y)} \\
& =y^{-\pi}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =y^{-\pi}\left(3 x^{2} y^{\pi}-y\right) \\
& =3 x^{2}-y^{1-\pi}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =y^{-\pi}((\pi-1) x) \\
& =(\pi-1) x y^{-\pi}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(3 x^{2}-y^{1-\pi}\right)+\left((\pi-1) x y^{-\pi}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x^{2}-y^{1-\pi} \mathrm{d} x \\
\phi & =x\left(x^{2}-y^{1-\pi}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{x y^{1-\pi}(1-\pi)}{y}+f^{\prime}(y) \tag{4}\\
& =(\pi-1) x y^{-\pi}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=(\pi-1) x y^{-\pi}$. Therefore equation (4) becomes

$$
\begin{equation*}
(\pi-1) x y^{-\pi}=(\pi-1) x y^{-\pi}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x\left(x^{2}-y^{1-\pi}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x\left(x^{2}-y^{1-\pi}\right)
$$

The solution becomes

$$
y=\mathrm{e}^{-\frac{\ln \left(-\frac{-x^{3}+c_{1}}{x}\right)}{\pi-1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{\ln \left(-\frac{-x^{3}+c_{1}}{x}\right)}{\pi-1}} \tag{1}
\end{equation*}
$$

Figure 162: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{\ln \left(-\frac{-x^{3}+c_{1}}{x}\right)}{\pi-1}}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 21

```
dsolve(diff(y(x),x)-1/( (Pi-1)*x)*y(x)=3/(1-Pi)*x*y(x)^Pi,y(x), singsol=all)
```

$$
y(x)=\left(\frac{x^{3}+c_{1}}{x}\right)^{-\frac{1}{\pi-1}}
$$

\checkmark Solution by Mathematica
Time used: 1.02 (sec). Leaf size: 28
DSolve $[y$ ' $[x]-1 /((\operatorname{Pi}-1) * x) * y[x]==3 /(1-\mathrm{Pi}) * x * y[x] \wedge P i, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow\left(\frac{x^{3}+c_{1}}{x}\right)^{\frac{1}{1-\pi}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.33 problem Problem 49

4.33.1 Solving as first order ode lie symmetry lookup ode 956
4.33.2 Solving as bernoulli ode . 960
4.33.3 Solving as exact ode . 964

Internal problem ID [2697]
Internal file name [OUTPUT/2189_Sunday_June_05_2022_02_53_06_AM_8005125/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 49.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_Bernoulli]
```

$$
2 y^{\prime}+y \cot (x)-\frac{8 \cos (x)^{3}}{y}=0
$$

4.33.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{8 \cos (x)^{3}-\cot (x) y^{2}}{2 y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 146: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{y \sin (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{y \sin (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2} \sin (x)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{8 \cos (x)^{3}-\cot (x) y^{2}}{2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\cos (x) y^{2}}{2} \\
S_{y} & =\sin (x) y
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \cos (x)^{3} \sin (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 \cos (R)^{3} \sin (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\cos (R)^{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2} \sin (x)}{2}=-\cos (x)^{4}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2} \sin (x)}{2}=-\cos (x)^{4}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{8 \cos (x)^{3}-\cot (x) y^{2}}{2 y}$		$\frac{d S}{d R}=4 \cos (R)^{3} \sin (R)$
		1
		$\rightarrow+1$ 为 \rightarrow
		$\rightarrow \rightarrow$,
	$R=x$	
	$y^{2} \sin (x)$	
	$S=\frac{y^{-} \sin (x)}{2}$	
		$\rightarrow \rightarrow+1$
-		$\rightarrow \rightarrow+$,

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2} \sin (x)}{2}=-\cos (x)^{4}+c_{1} \tag{1}
\end{equation*}
$$

Figure 163: Slope field plot
Verification of solutions

$$
\frac{y^{2} \sin (x)}{2}=-\cos (x)^{4}+c_{1}
$$

Verified OK.

4.33.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{8 \cos (x)^{3}-\cot (x) y^{2}}{2 y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{\cot (x)}{2} y+4 \cos (x)^{3} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{\cot (x)}{2} \\
f_{1}(x) & =4 \cos (x)^{3} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-\frac{\cot (x) y^{2}}{2}+4 \cos (x)^{3} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{\cot (x) w(x)}{2}+4 \cos (x)^{3} \\
w^{\prime} & =-\cot (x) w+8 \cos (x)^{3} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\cot (x) \\
q(x) & =8 \cos (x)^{3}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\cot (x) w(x)=8 \cos (x)^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cot (x) d x} \\
& =\sin (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(8 \cos (x)^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sin (x) w) & =(\sin (x))\left(8 \cos (x)^{3}\right) \\
\mathrm{d}(\sin (x) w) & =\left(8 \cos (x)^{3} \sin (x)\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sin (x) w=\int 8 \cos (x)^{3} \sin (x) \mathrm{d} x \\
& \sin (x) w=-2 \cos (x)^{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sin (x)$ results in

$$
w(x)=-2 \csc (x) \cos (x)^{4}+c_{1} \csc (x)
$$

which simplifies to

$$
w(x)=\csc (x)\left(-2 \cos (x)^{4}+c_{1}\right)
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=\csc (x)\left(-2 \cos (x)^{4}+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\csc (x) \sqrt{\sin (x)\left(-2 \cos (x)^{4}+c_{1}\right)} \\
& y(x)=-\csc (x) \sqrt{\sin (x)\left(-2 \cos (x)^{4}+c_{1}\right)}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\csc (x) \sqrt{\sin (x)\left(-2 \cos (x)^{4}+c_{1}\right)} \tag{1}\\
& y=-\csc (x) \sqrt{\sin (x)\left(-2 \cos (x)^{4}+c_{1}\right)} \tag{2}
\end{align*}
$$

Figure 164: Slope field plot

Verification of solutions

$$
y=\csc (x) \sqrt{\sin (x)\left(-2 \cos (x)^{4}+c_{1}\right)}
$$

Verified OK.

$$
y=-\csc (x) \sqrt{\sin (x)\left(-2 \cos (x)^{4}+c_{1}\right)}
$$

Verified OK.

4.33.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 y) \mathrm{d} y & =\left(8 \cos (x)^{3}-\cot (x) y^{2}\right) \mathrm{d} x \\
\left(-8 \cos (x)^{3}+\cot (x) y^{2}\right) \mathrm{d} x+(2 y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-8 \cos (x)^{3}+\cot (x) y^{2} \\
N(x, y) & =2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-8 \cos (x)^{3}+\cot (x) y^{2}\right) \\
& =2 \cot (x) y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 y}((2 \cot (x) y)-(0)) \\
& =\cot (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \cot (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (\sin (x))} \\
& =\sin (x)
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\sin (x)\left(-8 \cos (x)^{3}+\cot (x) y^{2}\right) \\
& =\cos (x)\left(-8 \cos (x)^{2} \sin (x)+y^{2}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\sin (x)(2 y) \\
& =2 \sin (x) y
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\cos (x)\left(-8 \cos (x)^{2} \sin (x)+y^{2}\right)\right)+(2 \sin (x) y) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \cos (x)\left(-8 \cos (x)^{2} \sin (x)+y^{2}\right) \mathrm{d} x \\
\phi & =\sin (x)\left(2 \sin (x)^{3}+y^{2}-4 \sin (x)\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 \sin (x) y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 \sin (x) y$. Therefore equation (4) becomes

$$
\begin{equation*}
2 \sin (x) y=2 \sin (x) y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\sin (x)\left(2 \sin (x)^{3}+y^{2}-4 \sin (x)\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sin (x)\left(2 \sin (x)^{3}+y^{2}-4 \sin (x)\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\sin (x)\left(2 \sin (x)^{3}+y^{2}-4 \sin (x)\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 165: Slope field plot

Verification of solutions

$$
\sin (x)\left(2 \sin (x)^{3}+y^{2}-4 \sin (x)\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 40

```
dsolve(2*diff (y(x),x)+y(x)*\operatorname{cot}(x)=8/y(x)*\operatorname{cos}(x)^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\csc (x) \sqrt{\sin (x)\left(-2 \cos (x)^{4}+c_{1}\right)} \\
& y(x)=-\csc (x) \sqrt{\sin (x)\left(-2 \cos (x)^{4}+c_{1}\right)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 3.971 (sec). Leaf size: 47
DSolve[2*y' $[x]+y[x] * \operatorname{Cot}[x]==8 / y[x] * \operatorname{Cos}[x] \sim 3, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-2 \cos ^{3}(x) \cot (x)+c_{1} \csc (x)} \\
& y(x) \rightarrow \sqrt{-2 \cos ^{3}(x) \cot (x)+c_{1} \csc (x)}
\end{aligned}
$$

4.34 problem Problem 50

4.34.1 Solving as separable ode . 969
4.34.2 Solving as first order ode lie symmetry lookup ode 971
4.34.3 Solving as bernoulli ode . 976
4.34.4 Solving as exact ode . 979
4.34.5 Maple step by step solution . 983

Internal problem ID [2698]
Internal file name [OUTPUT/2190_Sunday_June_05_2022_02_53_11_AM_12770465/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 50.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
(1-\sqrt{3}) y^{\prime}+y \sec (x)-y^{\sqrt{3}} \sec (x)=0
$$

4.34.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sec (x)\left(-y^{\sqrt{3}}+y\right)}{\sqrt{3}-1}
\end{aligned}
$$

Where $f(x)=\frac{\sec (x)}{\sqrt{3}-1}$ and $g(y)=-y^{\sqrt{3}}+y$. Integrating both sides gives

$$
\begin{aligned}
& \frac{1}{-y^{\sqrt{3}}+y} d y=\frac{\sec (x)}{\sqrt{3}-1} d x \\
& \int \frac{1}{-y^{\sqrt{3}}+y} d y=\int \frac{\sec (x)}{\sqrt{3}-1} d x \\
& \left(\frac{3}{2}+\frac{\sqrt{3}}{2}\right) \ln (y)+\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}\right) \ln \left(-\mathrm{e}^{\sqrt{3} \ln (y)}+y\right) \\
& =\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) \ln (\sec (x)+\tan (x))+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\frac{(\sqrt{3}+3) \ln (y)-(1+\sqrt{3}) \ln \left(-\mathrm{e}^{\sqrt{3} \ln (y)}+y\right)}{2} & =\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) \ln (\sec (x)+\tan (x))+c_{1} \\
(\sqrt{3}+3) \ln (y)-(1+\sqrt{3}) \ln \left(-\mathrm{e}^{\sqrt{3} \ln (y)}+y\right) & =(2)\left(\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) \ln (\sec (x)+\tan (x))+c_{1}\right) \\
& =2\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) \ln (\sec (x)+\tan (x))+2 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{(\sqrt{3}+3) \ln (y)-(1+\sqrt{3}) \ln \left(-\mathrm{e}^{\sqrt{3} \ln (y)}+y\right)}=\mathrm{e}^{2\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) \ln (\sec (x)+\tan (x))+2 c_{1}}
$$

Which simplifies to

$$
\begin{aligned}
y^{\sqrt{3}+3}\left(-y^{\sqrt{3}}+y\right)^{-1-\sqrt{3}} & =2 c_{1} \mathrm{e}^{2\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) \ln (\sec (x)+\tan (x))} \\
& =c_{2} \mathrm{e}^{2\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) \ln (\sec (x)+\tan (x))}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y=\operatorname{RootOf} & \left(c_{2} \sin (x) _Z \mathrm{e}^{2 c_{1}}\left(-\frac{\cos (x)}{\sin (x)-1}\right)^{\sqrt{3}}\right. \\
& \left.\left.-c_{2} \sin (x) \mathrm{e}^{2 c_{1}}-Z^{\sqrt{3}}\left(-\frac{\cos (x)}{\sin (x)-1}\right)^{\sqrt{3}}+c_{2} Z \mathrm{e}^{2 c_{1}}\left(-\frac{\cos (x)}{\sin (x)-1}\right)\right)^{\sqrt{3}}\right)^{\sqrt{3}} \\
- & \left.c_{2} \mathrm{e}^{2 c_{1}}-Z^{\sqrt{3}}\left(-\frac{\cos (x)}{\sin (x)-1}\right)^{\sqrt{3}}-\not Z^{\sqrt{3}}-Z^{3}\left(--Z^{\sqrt{3}}+_Z\right)^{-\sqrt{3}} \cos (x)\right)
\end{aligned}
$$

Figure 166: Slope field plot
Verification of solutions

$$
\begin{aligned}
y=\operatorname{RootOf} & \left(c_{2} \sin (x) _Z \mathrm{e}^{2 c_{1}}\left(-\frac{\cos (x)}{\sin (x)-1}\right)^{\sqrt{3}}\right. \\
& -c_{2} \sin (x) \mathrm{e}^{2 c_{1}}-Z^{\sqrt{3}}\left(-\frac{\cos (x)}{\sin (x)-1}\right)^{\sqrt{3}}+c_{2} Z Z \mathrm{e}^{2 c_{1}}\left(-\frac{\cos (x)}{\sin (x)-1}\right)^{\sqrt{3}} \\
- & \left.c_{2} \mathrm{e}^{2 c_{1}} _Z^{\sqrt{3}}\left(-\frac{\cos (x)}{\sin (x)-1}\right)^{\sqrt{3}}--Z^{\sqrt{3}}-Z^{3}\left(-_Z^{\sqrt{3}}+_Z\right)^{-\sqrt{3}} \cos (x)\right)
\end{aligned}
$$

Warning, solution could not be verified

4.34.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{\sec (x)\left(y^{\sqrt{3}}-y\right)}{\sqrt{3}-1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 148: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{\sqrt{3}-1}{\sec (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{\sqrt{3}-1}{\sec (x)}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (\sec (x)+\tan (x))}{\sqrt{3}-1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\sec (x)\left(y^{\sqrt{3}}-y\right)}{\sqrt{3}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{\sec (x)}{\sqrt{3}-1} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{-y^{\sqrt{3}}+y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{-R^{\sqrt{3}}+R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\left(\frac{3}{2}+\frac{\sqrt{3}}{2}\right) \ln (R)+\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}\right) \ln \left(-R^{\sqrt{3}}+R\right)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (\sec (x)+\tan (x))}{\sqrt{3}-1}=\left(\frac{3}{2}+\frac{\sqrt{3}}{2}\right) \ln (y)+\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}\right) \ln \left(y-y^{\sqrt{3}}\right)+c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y-y^{\sqrt{3}}\right)+\ln (\sec (x)+\tan (x))+\left(-\ln (y)-c_{1}\right) \sqrt{3}+c_{1}}{\sqrt{3}-1}=0
$$

Which gives

$$
y=\mathrm{e}^{\left(\operatorname { l n } \left(\frac{1+\sin (x)}{\left.\left.\sin (x) \mathrm{e}^{c_{1}+\cos (x) \mathrm{e}^{c_{1} \sqrt{3}}+\mathrm{e}^{c_{1}}}\right)+c_{1}\right)(1+\sqrt{3})}\right.\right.} 2
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\left(\ln \left(\frac{1+\sin (x)}{\sin (x) \mathrm{e}^{c_{1}}+\cos (x) \mathrm{e}^{c_{1} \sqrt{3}}+\mathrm{e}^{c_{1}}}\right)+c_{1}\right)(1+\sqrt{3})}{2}} \tag{1}
\end{equation*}
$$

Figure 167: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{\left(\ln \left(\frac{1+\sin (x)}{\sin (x) \mathrm{e}^{c_{1}}+\cos (x) \mathrm{e}^{c_{1} \sqrt{3}}+\mathrm{e}^{c_{1}}}\right)+c_{1}\right)(1+\sqrt{3})}{2}}
$$

Verified OK.

4.34.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\sec (x)\left(-y^{\sqrt{3}}+y\right)}{\sqrt{3}-1}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{\sec (x)}{\sqrt{3}-1} y-\frac{\sec (x)}{\sqrt{3}-1} y^{\sqrt{3}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{\sec (x)}{\sqrt{3}-1} \\
f_{1}(x) & =-\frac{\sec (x)}{\sqrt{3}-1} \\
n & =\sqrt{3}
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{\sqrt{3}}$ gives

$$
\begin{equation*}
y^{\prime} y^{-\sqrt{3}}=\frac{\sec (x) y^{1-\sqrt{3}}}{\sqrt{3}-1}-\frac{\sec (x)}{\sqrt{3}-1} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{1-\sqrt{3}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=(1-\sqrt{3}) y^{-\sqrt{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{1-\sqrt{3}} & =\frac{\sec (x) w(x)}{\sqrt{3}-1}-\frac{\sec (x)}{\sqrt{3}-1} \\
w^{\prime} & =\frac{(1-\sqrt{3}) \sec (x) w}{\sqrt{3}-1}-\frac{(1-\sqrt{3}) \sec (x)}{\sqrt{3}-1} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\sec (x) \\
q(x) & =\sec (x)
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\sec (x) w(x)=\sec (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \sec (x) d x} \\
& =\sec (x)+\tan (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(\sec (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}((\sec (x)+\tan (x)) w) & =(\sec (x)+\tan (x))(\sec (x)) \\
\mathrm{d}((\sec (x)+\tan (x)) w) & =\left(-\frac{1}{\sin (x)-1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (\sec (x)+\tan (x)) w=\int-\frac{1}{\sin (x)-1} \mathrm{~d} x \\
& (\sec (x)+\tan (x)) w=-\frac{2}{-1+\tan \left(\frac{x}{2}\right)}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sec (x)+\tan (x)$ results in

$$
w(x)=-\frac{2}{(\sec (x)+\tan (x))\left(-1+\tan \left(\frac{x}{2}\right)\right)}+\frac{c_{1}}{\sec (x)+\tan (x)}
$$

Replacing w in the above by $y^{1-\sqrt{3}}$ using equation (5) gives the final solution.

$$
y^{1-\sqrt{3}}=-\frac{2}{(\sec (x)+\tan (x))\left(-1+\tan \left(\frac{x}{2}\right)\right)}+\frac{c_{1}}{\sec (x)+\tan (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{1-\sqrt{3}}=-\frac{2}{(\sec (x)+\tan (x))\left(-1+\tan \left(\frac{x}{2}\right)\right)}+\frac{c_{1}}{\sec (x)+\tan (x)} \tag{1}
\end{equation*}
$$

Figure 168: Slope field plot

Verification of solutions

$$
y^{1-\sqrt{3}}=-\frac{2}{(\sec (x)+\tan (x))\left(-1+\tan \left(\frac{x}{2}\right)\right)}+\frac{c_{1}}{\sec (x)+\tan (x)}
$$

Verified OK.

4.34.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{\sqrt{3}-1}{-y^{\sqrt{3}}+y}\right) \mathrm{d} y & =(\sec (x)) \mathrm{d} x \\
(-\sec (x)) \mathrm{d} x+\left(\frac{\sqrt{3}-1}{-y^{\sqrt{3}}+y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\sec (x) \\
& N(x, y)=\frac{\sqrt{3}-1}{-y^{\sqrt{3}}+y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\sec (x)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{\sqrt{3}-1}{-y^{\sqrt{3}}+y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\sec (x) \mathrm{d} x \\
\phi & =-\ln (\sec (x)+\tan (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\sqrt{3}-1}{-y^{\sqrt{3}}+y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\sqrt{3}-1}{-y^{\sqrt{3}}+y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-\frac{\sqrt{3}-1}{y^{\sqrt{3}}-y} \\
& =\frac{\sqrt{3}-1}{-y^{\sqrt{3}}+y}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{\sqrt{3}-1}{-y^{\sqrt{3}}+y}\right) \mathrm{d} y \\
f(y) & =\sqrt{3} \ln (y)-\ln \left(-\mathrm{e}^{\sqrt{3} \ln (y)}+y\right)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (\sec (x)+\tan (x))+\sqrt{3} \ln (y)-\ln \left(-\mathrm{e}^{\sqrt{3} \ln (y)}+y\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (\sec (x)+\tan (x))+\sqrt{3} \ln (y)-\ln \left(-\mathrm{e}^{\sqrt{3} \ln (y)}+y\right)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{\ln \left(\frac{1+\sin (x)}{\sin (x))^{c_{1}}+\cos (x)+\mathrm{e}^{c_{1}}}\right)}{2}+\frac{\ln \left(\frac{1+\sin (x)}{\sin (x) \mathrm{e}^{c_{1}}+\cos (x)+\mathrm{e}^{c_{1}}}\right) \sqrt{3}}{2}+\frac{c_{1}}{2}+\frac{c_{1} \sqrt{3}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\ln \left(\frac{1+\sin (x)}{\sin (x) \mathrm{e}^{c_{1}}+\cos (x)+\mathrm{e}^{c_{1}}}\right)}{2}+\frac{\ln \left(\frac{1+\sin (x)}{\sin (x) \mathrm{e}^{c_{1}}+\cos (x)+\mathrm{e}^{c_{1}}}\right) \sqrt{3}}{2}+\frac{c_{1}}{2}+\frac{c_{1} \sqrt{3}}{2}} \tag{1}
\end{equation*}
$$

Figure 169: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{\ln \left(\frac{1+\sin (x)}{\sin (x) \mathrm{e}^{c} 1+\cos (x)+\mathrm{e}^{c} 1}\right)}{2}+\frac{\ln \left(\frac{1+\sin (x)}{\sin (x) \mathrm{e}^{c} 1+\cos (x)+\mathrm{e}^{c} 1}\right) \sqrt{3}}{2}+\frac{c_{1}}{2}+\frac{c_{1} \sqrt{3}}{2}}
$$

Verified OK.

4.34.5 Maple step by step solution

Let's solve
$(1-\sqrt{3}) y^{\prime}+y \sec (x)-y^{\sqrt{3}} \sec (x)=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y^{\sqrt{3}}-y}=-\frac{(1+\sqrt{3}) \sec (x)}{2}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{\sqrt{3}}-y} d x=\int-\frac{(1+\sqrt{3}) \sec (x)}{2} d x+c_{1}$
- Evaluate integral

$$
\left(-\frac{3}{2}-\frac{\sqrt{3}}{2}\right) \ln (y)+\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) \ln \left(-\mathrm{e}^{\sqrt{3} \ln (y)}+y\right)=\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}\right) \ln (\sec (x)+\tan (x))+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{\frac{\left(\sqrt{3} \ln \left(\frac{\cos (x)}{\cos (x) \mathrm{e}^{-c_{1}} \sqrt{3}+c_{1}-\sin (x)+1}\right)+c_{1} \sqrt{3}-3 c_{1}\right)(\sqrt{3}+3)}{6}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.219 (sec). Leaf size: 23

```
dsolve((1-sqrt(3))*diff (y (x),x)+y(x)*sec (x)=y(x)^\operatorname{sqrt (3)*sec (x),y(x), singsol=all)}
```

$$
y(x)=\left(-c_{1} \tan (x)+1+\sec (x) c_{1}\right)^{-\frac{1}{2}-\frac{\sqrt{3}}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.608 (sec). Leaf size: 76
DSolve[(1-Sqrt [3])*y'[x]+y[x]*Sec[x]==y[x]^Sqrt[3]*Sec[x],y[x],x,IncludeSingularSolutions \rightarrow
$y(x)$
\rightarrow InverseFunction $\left[\frac{\log \left(1-\# 1^{\sqrt{3}-1}\right)-(\sqrt{3}-1) \log (\# 1)}{\sqrt{3}-1} \&\right]\left[-\frac{2 \operatorname{arctanh}\left(\tan \left(\frac{x}{2}\right)\right)}{\sqrt{3}-1}\right.$ $\left.+c_{1}\right]$
$y(x) \rightarrow 0$
$y(x) \rightarrow 1$

4.35 problem Problem 51

4.35.1 Existence and uniqueness analysis 985
4.35.2 Solving as first order ode lie symmetry lookup ode 986
4.35.3 Solving as bernoulli ode . 991
4.35.4 Solving as riccati ode . 994

Internal problem ID [2699]
Internal file name [OUTPUT/2191_Sunday_June_05_2022_02_53_15_AM_62391903/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 51.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational, _Bernoulli]

$$
y^{\prime}+\frac{2 x y}{x^{2}+1}-y^{2} x=0
$$

With initial conditions

$$
[y(0)=1]
$$

4.35.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x y\left(x^{2} y+y-2\right)}{x^{2}+1}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x y\left(x^{2} y+y-2\right)}{x^{2}+1}\right) \\
& =\frac{x\left(x^{2} y+y-2\right)}{x^{2}+1}+x y
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

4.35.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x y\left(x^{2} y+y-2\right)}{x^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 151: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\left(x^{2}+1\right) y^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\left(x^{2}+1\right) y^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{\left(x^{2}+1\right) y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x y\left(x^{2} y+y-2\right)}{x^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x}{\left(x^{2}+1\right)^{2} y} \\
S_{y} & =\frac{1}{\left(x^{2}+1\right) y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{x}{x^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R}{R^{2}+1}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln \left(R^{2}+1\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
-\frac{1}{\left(x^{2}+1\right) y}=\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{\left(x^{2}+1\right) y}=\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
$$

Which gives

$$
y=-\frac{2}{\ln \left(x^{2}+1\right) x^{2}+2 c_{1} x^{2}+\ln \left(x^{2}+1\right)+2 c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x y\left(x^{2} y+y-2\right)}{x^{2}+1}$		$\frac{d S}{d R}=\frac{R}{R^{2}+1}$
		$\rightarrow \rightarrow 0 x$ 为
4		－
		$\xrightarrow{\rightarrow}$
	$R=x$	$\rightarrow \rightarrow$
	1	边
	$-\frac{1}{\left(x^{2}+1\right) y}$	R
－ 14		－$\rightarrow+\rightarrow \rightarrow \infty$
d		为
		$\rightarrow \rightarrow \rightarrow+$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-\frac{1}{c_{1}} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{2}{\ln \left(x^{2}+1\right) x^{2}-2 x^{2}+\ln \left(x^{2}+1\right)-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{\ln \left(x^{2}+1\right) x^{2}-2 x^{2}+\ln \left(x^{2}+1\right)-2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\frac{2}{\ln \left(x^{2}+1\right) x^{2}-2 x^{2}+\ln \left(x^{2}+1\right)-2}
$$

Verified OK.

4.35.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x y\left(x^{2} y+y-2\right)}{x^{2}+1}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{2 x}{x^{2}+1} y+x y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{2 x}{x^{2}+1} \\
f_{1}(x) & =x \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=-\frac{2 x}{\left(x^{2}+1\right) y}+x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =-\frac{2 x w(x)}{x^{2}+1}+x \\
w^{\prime} & =\frac{2 x w}{x^{2}+1}-x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2 x}{x^{2}+1} \\
& q(x)=-x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{2 x w(x)}{x^{2}+1}=-x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 x}{x^{2}+1} d x} \\
& =\frac{1}{x^{2}+1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{2}+1}\right) & =\left(\frac{1}{x^{2}+1}\right)(-x) \\
\mathrm{d}\left(\frac{w}{x^{2}+1}\right) & =\left(-\frac{x}{x^{2}+1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{w}{x^{2}+1} & =\int-\frac{x}{x^{2}+1} \mathrm{~d} x \\
\frac{w}{x^{2}+1} & =-\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}+1}$ results in

$$
w(x)=-\frac{\left(x^{2}+1\right) \ln \left(x^{2}+1\right)}{2}+\left(x^{2}+1\right) c_{1}
$$

which simplifies to

$$
w(x)=\left(x^{2}+1\right)\left(-\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}\right)
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\left(x^{2}+1\right)\left(-\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}\right)
$$

Or

$$
y=\frac{1}{\left(x^{2}+1\right)\left(-\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}\right)}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{1}{c_{1}} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{2}{\ln \left(x^{2}+1\right) x^{2}-2 x^{2}+\ln \left(x^{2}+1\right)-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{\ln \left(x^{2}+1\right) x^{2}-2 x^{2}+\ln \left(x^{2}+1\right)-2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\frac{2}{\ln \left(x^{2}+1\right) x^{2}-2 x^{2}+\ln \left(x^{2}+1\right)-2}
$$

Verified OK.

4.35.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x y\left(x^{2} y+y-2\right)}{x^{2}+1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{3} y^{2}}{x^{2}+1}+\frac{x y^{2}}{x^{2}+1}-\frac{2 x y}{x^{2}+1}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=-\frac{2 x}{x^{2}+1}$ and $f_{2}(x)=x$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =1 \\
f_{1} f_{2} & =-\frac{2 x^{2}}{x^{2}+1} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
x u^{\prime \prime}(x)-\left(1-\frac{2 x^{2}}{x^{2}+1}\right) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+\ln \left(x^{2}+1\right) c_{2}
$$

The above shows that

$$
u^{\prime}(x)=\frac{2 x c_{2}}{x^{2}+1}
$$

Using the above in (1) gives the solution

$$
y=-\frac{2 c_{2}}{\left(x^{2}+1\right)\left(c_{1}+\ln \left(x^{2}+1\right) c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{2}{\left(x^{2}+1\right)\left(c_{3}+\ln \left(x^{2}+1\right)\right)}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\frac{2}{c_{3}}
$$

$$
c_{3}=-2
$$

Substituting c_{3} found above in the general solution gives

$$
y=-\frac{2}{\ln \left(x^{2}+1\right) x^{2}-2 x^{2}+\ln \left(x^{2}+1\right)-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{\ln \left(x^{2}+1\right) x^{2}-2 x^{2}+\ln \left(x^{2}+1\right)-2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2}{\ln \left(x^{2}+1\right) x^{2}-2 x^{2}+\ln \left(x^{2}+1\right)-2}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 23
dsolve([diff $\left.(y(x), x)+2 * x /\left(1+x^{\wedge} 2\right) * y(x)=x * y(x) \wedge 2, y(0)=1\right], y(x)$, singsol=all)

$$
y(x)=-\frac{2}{\left(x^{2}+1\right)\left(\ln \left(x^{2}+1\right)-2\right)}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.196 (sec). Leaf size: 24
DSolve $\left[\left\{y^{\prime}[x]+2 * x /\left(1+x^{\wedge} 2\right) * y[x]==x * y[x] \sim 2,\{y[0]==1\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow-\frac{2}{\left(x^{2}+1\right)\left(\log \left(x^{2}+1\right)-2\right)}
$$

4.36 problem Problem 52

4.36.1 Existence and uniqueness analysis 998
4.36.2 Solving as first order ode lie symmetry lookup ode 999
4.36.3 Solving as bernoulli ode . 1003

Internal problem ID [2700]
Internal file name [OUTPUT/2192_Sunday_June_05_2022_02_53_19_AM_81078817/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 52.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

$$
y^{\prime}+y \cot (x)-y^{3} \sin (x)^{3}=0
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{2}\right)=1\right]
$$

4.36.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\cot (x) y+y^{3} \sin (x)^{3}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\left\{x<\pi _Z 144 \vee \pi _Z 144<x\right\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is inside this domain. The y domain of $f(x, y)$ when $x=\frac{\pi}{2}$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\cot (x) y+y^{3} \sin (x)^{3}\right) \\
& =3 \sin (x)^{3} y^{2}-\cot (x)
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\left\{x<\pi _Z 144 \vee \pi _Z 144<x\right\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=\frac{\pi}{2}$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

4.36.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\cot (x) y+y^{3} \sin (x)^{3} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 153: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{3} \sin (x)^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{3} \sin (x)^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{2 \sin (x)^{2} y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\cot (x) y+y^{3} \sin (x)^{3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\csc (x)^{2} \cot (x)}{y^{2}} \\
S_{y} & =\frac{\csc (x)^{2}}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sin (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sin (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\cos (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\csc (x)^{2}}{2 y^{2}}=-\cos (x)+c_{1}
$$

Which simplifies to

$$
-\frac{\csc (x)^{2}}{2 y^{2}}=-\cos (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\cot (x) y+y^{3} \sin (x)^{3}$		$\frac{d S}{d R}=\sin (R)$
		为 $x_{0 \rightarrow+}$
	$R=x$	
		$\xrightarrow{\prime \prime}$
	$S=-\frac{\csc (x)^{2}}{}$	
	$-\frac{2 y^{2}}{}$	
,		

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
-\frac{1}{2}=c_{1}
$$

$$
c_{1}=-\frac{1}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\csc (x)^{2}}{2 y^{2}}=-\cos (x)-\frac{1}{2}
$$

The above simplifies to

$$
2 \cos (x) y^{2}-\csc (x)^{2}+y^{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 y^{2} \cos (x)-\csc (x)^{2}+y^{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
2 y^{2} \cos (x)-\csc (x)^{2}+y^{2}=0
$$

Verified OK.

4.36.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\cot (x) y+y^{3} \sin (x)^{3}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\cot (x) y+\sin (x)^{3} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\cot (x) \\
f_{1}(x) & =\sin (x)^{3} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=-\frac{\cot (x)}{y^{2}}+\sin (x)^{3} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =-\cot (x) w(x)+\sin (x)^{3} \\
w^{\prime} & =2 \cot (x) w-2 \sin (x)^{3} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \cot (x) \\
q(x) & =-2 \sin (x)^{3}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-2 \cot (x) w(x)=-2 \sin (x)^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 \cot (x) d x} \\
& =\frac{1}{\sin (x)^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-2 \sin (x)^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{\sin (x)^{2}}\right) & =\left(\frac{1}{\sin (x)^{2}}\right)\left(-2 \sin (x)^{3}\right) \\
\mathrm{d}\left(\frac{w}{\sin (x)^{2}}\right) & =(-2 \sin (x)) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{\sin (x)^{2}}=\int-2 \sin (x) \mathrm{d} x \\
& \frac{w}{\sin (x)^{2}}=2 \cos (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sin (x)^{2}}$ results in

$$
w(x)=2 \sin (x)^{2} \cos (x)+c_{1} \sin (x)^{2}
$$

which simplifies to

$$
w(x)=\sin (x)^{2}\left(2 \cos (x)+c_{1}\right)
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=\sin (x)^{2}\left(2 \cos (x)+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{1}{y^{2}}=\sin (x)^{2}(2 \cos (x)+1)
$$

The above simplifies to

$$
-2 y^{2} \sin (x)^{2} \cos (x)-y^{2} \sin (x)^{2}+1=0
$$

Solving for y from the above gives

$$
y=\frac{\csc (x) \sqrt{(2 \cos (x)-1)^{2}(2 \cos (x)+1)}}{-4 \cos (x)^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\csc (x) \sqrt{(2 \cos (x)-1)^{2}(2 \cos (x)+1)}}{-4 \cos (x)^{2}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\csc (x) \sqrt{(2 \cos (x)-1)^{2}(2 \cos (x)+1)}}{-4 \cos (x)^{2}+1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 1.375 (sec). Leaf size: 34
dsolve([diff $\left.(y(x), x)+y(x) * \cot (x)=y(x) \wedge 3 * \sin (x)^{\wedge} 3, y(1 / 2 * \operatorname{Pi})=1\right], y(x)$, singsol $\left.=a l l\right)$

$$
y(x)=\frac{\csc (x) \sqrt{(2 \cos (x)-1)^{2}(1+2 \cos (x))}}{1-4 \cos (x)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.933 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime}[x]+y[x] * \operatorname{Cot}[x]==y[x] \sim 3 * \operatorname{Sin}[x] \sim 3,\{y[P i / 2]==1\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow \frac{1}{\sqrt{\sin ^{2}(x)(2 \cos (x)+1)}}
$$

4.37 problem Problem 54

4.37.1 Existence and uniqueness analysis 1008
4.37.2 Solving as homogeneousTypeC ode 1009
4.37.3 Solving as first order ode lie symmetry lookup ode 1011
4.37.4 Solving as riccati ode . 1016

Internal problem ID [2701]
Internal file name [OUTPUT/2193_Sunday_June_05_2022_02_53_26_AM_44867446/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 54.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeC", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _Riccati]

$$
y^{\prime}-(9 x-y)^{2}=0
$$

With initial conditions

$$
[y(0)=0]
$$

4.37.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =(-9 x+y)^{2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left((-9 x+y)^{2}\right) \\
& =-18 x+2 y
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

4.37.2 Solving as homogeneousTypeC ode

Let

$$
\begin{equation*}
z=9 x-y \tag{1}
\end{equation*}
$$

Then

$$
z^{\prime}(x)=9-y^{\prime}
$$

Therefore

$$
y^{\prime}=-z^{\prime}(x)+9
$$

Hence the given ode can now be written as

$$
-z^{\prime}(x)+9=z^{2}
$$

This is separable first order ode. Integrating

$$
\begin{aligned}
\int d x & =\int \frac{1}{-z^{2}+9} d z \\
x+c_{1} & =-\frac{\ln (z-3)}{6}+\frac{\ln (z+3)}{6}
\end{aligned}
$$

Replacing z back by its value from (1) then the above gives the solution as

$$
\begin{aligned}
& y=\frac{(9 x-3) \mathrm{e}^{6 x+6 c_{1}}-9 x-3}{\mathrm{e}^{6 x+6 c_{1}}-1} \\
& y=\frac{(9 x-3) \mathrm{e}^{6 x+6 c_{1}}-9 x-3}{\mathrm{e}^{6 x+6 c_{1}}-1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{-3 \mathrm{e}^{6 c_{1}}-3}{\mathrm{e}^{6 c_{1}}-1} \\
c_{1}=\frac{i \pi}{6}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{9 x \mathrm{e}^{6 x}-3 \mathrm{e}^{6 x}+9 x+3}{\mathrm{e}^{6 x}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9 x \mathrm{e}^{6 x}-3 \mathrm{e}^{6 x}+9 x+3}{\mathrm{e}^{6 x}+1} \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=\frac{9 x \mathrm{e}^{6 x}-3 \mathrm{e}^{6 x}+9 x+3}{\mathrm{e}^{6 x}+1}
$$

Verified OK.

4.37.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =(-9 x+y)^{2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 155: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=1 \\
& \eta(x, y)=9 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{9}{1} \\
& =9
\end{aligned}
$$

This is easily solved to give

$$
y=9 x+c_{1}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=-9 x+y
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{1}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =x
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=(-9 x+y)^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-9 \\
R_{y} & =1 \\
S_{x} & =1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{-9+(-9 x+y)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}-9}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R-3)}{6}-\frac{\ln (R+3)}{6}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x=\frac{\ln (-9 x+y-3)}{6}-\frac{\ln (-9 x+y+3)}{6}+c_{1}
$$

Which simplifies to

$$
x=\frac{\ln (-9 x+y-3)}{6}-\frac{\ln (-9 x+y+3)}{6}+c_{1}
$$

Which gives

$$
y=\frac{9 x \mathrm{e}^{-6 x+6 c_{1}}+3 \mathrm{e}^{-6 x+6 c_{1}}-9 x+3}{\mathrm{e}^{-6 x+6 c_{1}}-1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{3 \mathrm{e}^{6 c_{1}}+3}{\mathrm{e}^{6 c_{1}}-1} \\
c_{1}=\frac{i \pi}{6}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{9 x \mathrm{e}^{-6 x}+3 \mathrm{e}^{-6 x}+9 x-3}{\mathrm{e}^{-6 x}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9 x \mathrm{e}^{-6 x}+3 \mathrm{e}^{-6 x}+9 x-3}{\mathrm{e}^{-6 x}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{9 x \mathrm{e}^{-6 x}+3 \mathrm{e}^{-6 x}+9 x-3}{\mathrm{e}^{-6 x}+1}
$$

Verified OK.

4.37.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =(-9 x+y)^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=81 x^{2}-18 x y+y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=81 x^{2}, f_{1}(x)=-18 x$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-18 x \\
f_{2}^{2} f_{0} & =81 x^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+18 x u^{\prime}(x)+81 x^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{-\frac{9}{2} x^{2}+3 x}+c_{2} \mathrm{e}^{-3 x-\frac{9}{2} x^{2}}
$$

The above shows that

$$
u^{\prime}(x)=c_{2}(-3-9 x) \mathrm{e}^{-3 x-\frac{9}{2} x^{2}}-9 c_{1} \mathrm{e}^{-\frac{9}{2} x^{2}+3 x}\left(x-\frac{1}{3}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}(-3-9 x) \mathrm{e}^{-3 x-\frac{9}{2} x^{2}}-9 c_{1} \mathrm{e}^{-\frac{9}{2} x^{2}+3 x}\left(x-\frac{1}{3}\right)}{c_{1} \mathrm{e}^{-\frac{9}{2} x^{2}+3 x}+c_{2} \mathrm{e}^{-3 x-\frac{9}{2} x^{2}}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{(3+9 x) \mathrm{e}^{-3 x-\frac{9}{2} x^{2}}+9 c_{3} \mathrm{e}^{-\frac{9}{2} x^{2}+3 x}\left(x-\frac{1}{3}\right)}{c_{3} \mathrm{e}^{-\frac{9}{2} x^{2}+3 x}+\mathrm{e}^{-3 x-\frac{9}{2} x^{2}}}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\frac{-3 c_{3}+3}{c_{3}+1}
$$

$$
c_{3}=1
$$

Substituting c_{3} found above in the general solution gives

$$
y=\frac{9 \mathrm{e}^{-\frac{3 x(3 x-2)}{2}} x+9 \mathrm{e}^{-\frac{3 x(2+3 x)}{2}} x-3 \mathrm{e}^{-\frac{3 x(3 x-2)}{2}}+3 \mathrm{e}^{-\frac{3 x(2+3 x)}{2}}}{\mathrm{e}^{-\frac{3 x(3 x-2)}{2}}+\mathrm{e}^{-\frac{3 x(2+3 x)}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9 \mathrm{e}^{-\frac{3 x(3 x-2)}{2}} x+9 \mathrm{e}^{-\frac{3 x(2+3 x)}{2}} x-3 \mathrm{e}^{-\frac{3 x(3 x-2)}{2}}+3 \mathrm{e}^{-\frac{3 x(2+3 x)}{2}}}{\mathrm{e}^{-\frac{3 x(3 x-2)}{2}}+\mathrm{e}^{-\frac{3 x(2+3 x)}{2}}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{9 \mathrm{e}^{-\frac{3 x(3 x-2)}{2}} x+9 \mathrm{e}^{-\frac{3 x(2+3 x)}{2}} x-3 \mathrm{e}^{-\frac{3 x(3 x-2)}{2}}+3 \mathrm{e}^{-\frac{3 x(2+3 x)}{2}}}{\mathrm{e}^{-\frac{3 x(3 x-2)}{2}}+\mathrm{e}^{-\frac{3 x(2+3 x)}{2}}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = 9, y(x)` *** Sublevel 2
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.11 (sec). Leaf size: 28

```
dsolve([diff(y(x),x)=(9*x-y(x))^2,y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{(9 x-3) \mathrm{e}^{6 x}+9 x+3}{1+\mathrm{e}^{6 x}}
$$

Solution by Mathematica
Time used: 0.15 (sec). Leaf size: 31

```
DSolve[{y'[x]==(9*x-y[x])^2,{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{9 x+e^{6 x}(9 x-3)+3}{e^{6 x}+1}
$$

4.38 problem Problem 55

4.38.1 Solving as homogeneousTypeC ode 1020
4.38.2 Solving as first order ode lie symmetry lookup ode 1022
4.38.3 Solving as riccati ode . 1026

Internal problem ID [2702]
Internal file name [OUTPUT/2194_Sunday_June_05_2022_02_53_30_AM_80305114/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 55.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeC", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _Riccati]

$$
y^{\prime}-(4 x+y+2)^{2}=0
$$

4.38.1 Solving as homogeneousTypeC ode

Let

$$
\begin{equation*}
z=4 x+y+2 \tag{1}
\end{equation*}
$$

Then

$$
z^{\prime}(x)=4+y^{\prime}
$$

Therefore

$$
y^{\prime}=z^{\prime}(x)-4
$$

Hence the given ode can now be written as

$$
z^{\prime}(x)-4=z^{2}
$$

This is separable first order ode. Integrating

$$
\begin{aligned}
\int d x & =\int \frac{1}{z^{2}+4} d z \\
x+c_{1} & =\frac{\arctan \left(\frac{z}{2}\right)}{2}
\end{aligned}
$$

Replacing z back by its value from (1) then the above gives the solution as

$$
\begin{aligned}
& y=-4 x-2+2 \tan \left(2 x+2 c_{1}\right) \\
& y=-4 x-2+2 \tan \left(2 x+2 c_{1}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 177: Slope field plot
Verification of solutions

$$
y=-4 x-2+2 \tan \left(2 x+2 c_{1}\right)
$$

Verified OK.

4.38.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=(4 x+y+2)^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 157: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=1 \\
& \eta(x, y)=-4 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{-4}{1} \\
& =-4
\end{aligned}
$$

This is easily solved to give

$$
y=-4 x+c_{1}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=4 x+y
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{1}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =x
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=(4 x+y+2)^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =4 \\
R_{y} & =1 \\
S_{x} & =1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{4+(4 x+y+2)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{4+(R+2)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\arctan \left(\frac{R}{2}+1\right)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x=\frac{\arctan \left(2 x+\frac{y}{2}+1\right)}{2}+c_{1}
$$

Which simplifies to

$$
x=\frac{\arctan \left(2 x+\frac{y}{2}+1\right)}{2}+c_{1}
$$

Which gives

$$
y=-4 x-2-2 \tan \left(-2 x+2 c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=(4 x+y+2)^{2}$		$\frac{d S}{d R}=\frac{1}{4+(R+2)^{2}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow 2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=4 x+y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow- \pm \rightarrow \rightarrow 0}$,
	$S=x$	
${ }_{t} \rightarrow$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow \rightarrow+\infty$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-4 x-2-2 \tan \left(-2 x+2 c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 178: Slope field plot

Verification of solutions

$$
y=-4 x-2-2 \tan \left(-2 x+2 c_{1}\right)
$$

Verified OK.

4.38.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =(4 x+y+2)^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=16 x^{2}+8 x y+y^{2}+16 x+4 y+4
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=(4 x+2)^{2}, f_{1}(x)=8 x+4$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =8 x+4 \\
f_{2}^{2} f_{0} & =(4 x+2)^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)-(8 x+4) u^{\prime}(x)+(4 x+2)^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{2 x(x+1)}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

The above shows that

$$
u^{\prime}(x)=4 \mathrm{e}^{2 x(x+1)}\left(\left(\left(x+\frac{1}{2}\right) c_{1}+\frac{c_{2}}{2}\right) \cos (2 x)+\sin (2 x)\left(-\frac{c_{1}}{2}+\left(x+\frac{1}{2}\right) c_{2}\right)\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{4\left(\left(\left(x+\frac{1}{2}\right) c_{1}+\frac{c_{2}}{2}\right) \cos (2 x)+\sin (2 x)\left(-\frac{c_{1}}{2}+\left(x+\frac{1}{2}\right) c_{2}\right)\right)}{c_{1} \cos (2 x)+c_{2} \sin (2 x)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-2+(-4 x-2) c_{3}\right) \cos (2 x)-4 \sin (2 x)\left(-\frac{c_{3}}{2}+x+\frac{1}{2}\right)}{c_{3} \cos (2 x)+\sin (2 x)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-2+(-4 x-2) c_{3}\right) \cos (2 x)-4 \sin (2 x)\left(-\frac{c_{3}}{2}+x+\frac{1}{2}\right)}{c_{3} \cos (2 x)+\sin (2 x)} \tag{1}
\end{equation*}
$$

Figure 179: Slope field plot

Verification of solutions

$$
y=\frac{\left(-2+(-4 x-2) c_{3}\right) \cos (2 x)-4 \sin (2 x)\left(-\frac{c_{3}}{2}+x+\frac{1}{2}\right)}{c_{3} \cos (2 x)+\sin (2 x)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x)=(4*x+y(x)+2)^2,y(x), singsol=all)
```

$$
y(x)=-4 x-2-2 \tan \left(-2 x+2 c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.16 (sec). Leaf size: 41
DSolve[y' $[\mathrm{x}]==(4 * x+y[x]+2)^{\wedge} 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-4 x+\frac{1}{c_{1} e^{4 i x}-\frac{i}{4}}-(2+2 i) \\
& y(x) \rightarrow-4 x-(2+2 i)
\end{aligned}
$$

4.39 problem Problem 56

4.39.1 Solving as first order ode lie symmetry calculated ode 1030

Internal problem ID [2703]
Internal file name [OUTPUT/2195_Sunday_June_05_2022_02_53_33_AM_80948642/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 56.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order__ode__lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _dAlembert]
```

$$
y^{\prime}-\sin (3 x-3 y+1)^{2}=0
$$

4.39.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\sin (3 x-3 y+1)^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
\xi & =x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta & =x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\sin (3 x-3 y+1)^{2}\left(b_{3}-a_{2}\right)-\sin (3 x-3 y+1)^{4} a_{3} \tag{5E}\\
& \quad-6 \sin (3 x-3 y+1) \cos (3 x-3 y+1)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& \quad+6 \sin (3 x-3 y+1) \cos (3 x-3 y+1)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\sin (3 x-3 y+1)^{4} a_{3}-6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) x a_{2} \\
& +6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) x b_{2}-6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) y a_{3} \\
& +6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) y b_{3}-\sin (3 x-3 y+1)^{2} a_{2} \\
& +\sin (3 x-3 y+1)^{2} b_{3}-6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) a_{1} \\
& +6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) b_{1}+b_{2}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\sin (3 x-3 y+1)^{4} a_{3}-6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) x a_{2} \\
& +6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) x b_{2} \\
& -6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) y a_{3} \tag{6E}\\
& +6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) y b_{3}-\sin (3 x-3 y+1)^{2} a_{2} \\
& +\sin (3 x-3 y+1)^{2} b_{3}-6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) a_{1} \\
& +6 \sin (3 x-3 y+1) \cos (3 x-3 y+1) b_{1}+b_{2}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
b_{2} & -\frac{3 a_{3}}{8}-\frac{a_{2}}{2}+\frac{b_{3}}{2}-\frac{a_{3} \cos (12 x-12 y+4)}{8}+\frac{a_{3} \cos (6 x-6 y+2)}{2} \\
& -3 x a_{2} \sin (6 x-6 y+2)+3 x b_{2} \sin (6 x-6 y+2)-3 y a_{3} \sin (6 x-6 y+2) \tag{6E}\\
& +3 y b_{3} \sin (6 x-6 y+2)+\frac{a_{2} \cos (6 x-6 y+2)}{2}-\frac{b_{3} \cos (6 x-6 y+2)}{2} \\
& -3 a_{1} \sin (6 x-6 y+2)+3 b_{1} \sin (6 x-6 y+2)=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \cos (6 x-6 y+2), \cos (12 x-12 y+4), \sin (6 x-6 y+2)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them
$\left\{x=v_{1}, y=v_{2}, \cos (6 x-6 y+2)=v_{3}, \cos (12 x-12 y+4)=v_{4}, \sin (6 x-6 y+2)=v_{5}\right\}$
The above PDE (6E) now becomes

$$
\begin{array}{r}
b_{2}-\frac{3}{8} a_{3}-\frac{1}{2} a_{2}+\frac{1}{2} b_{3}-\frac{1}{8} a_{3} v_{4}+\frac{1}{2} a_{3} v_{3}-3 v_{1} a_{2} v_{5}+3 v_{1} b_{2} v_{5} \tag{7E}\\
-3 v_{2} a_{3} v_{5}+3 v_{2} b_{3} v_{5}+\frac{1}{2} a_{2} v_{3}-\frac{1}{2} b_{3} v_{3}-3 a_{1} v_{5}+3 b_{1} v_{5}=0
\end{array}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& b_{2}-\frac{3 a_{3}}{8}-\frac{a_{2}}{2}+\frac{b_{3}}{2}+\left(-3 a_{2}+3 b_{2}\right) v_{5} v_{1}+\left(-3 a_{3}+3 b_{3}\right) v_{5} v_{2} \tag{8E}\\
& +\left(\frac{a_{3}}{2}+\frac{a_{2}}{2}-\frac{b_{3}}{2}\right) v_{3}-\frac{a_{3} v_{4}}{8}+\left(-3 a_{1}+3 b_{1}\right) v_{5}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-\frac{a_{3}}{8} & =0 \\
-3 a_{1}+3 b_{1} & =0 \\
-3 a_{2}+3 b_{2} & =0 \\
-3 a_{3}+3 b_{3} & =0 \\
\frac{a_{3}}{2}+\frac{a_{2}}{2}-\frac{b_{3}}{2} & =0 \\
b_{2}-\frac{3 a_{3}}{8}-\frac{a_{2}}{2}+\frac{b_{3}}{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =b_{1} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=1
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{1}{1} \\
& =1
\end{aligned}
$$

This is easily solved to give

$$
y=x+c_{1}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=y-x
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{1}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =x
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\sin (3 x-3 y+1)^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-1 \\
R_{y} & =1 \\
S_{x} & =1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\sec (3 x-3 y+1)^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\sec (3 R-1)^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\tan (3 R-1)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x=\frac{\tan (3 x-3 y+1)}{3}+c_{1}
$$

Which simplifies to

$$
x=\frac{\tan (3 x-3 y+1)}{3}+c_{1}
$$

Which gives

$$
y=x+\frac{1}{3}+\frac{\arctan \left(-3 x+3 c_{1}\right)}{3}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\sin (3 x-3 y+1)^{2}$		$\frac{d S}{d R}=-\sec (3 R-1)^{2}$
-		
		10, x^{1}
为		(R)
	$R=y-x$	
	$S=x$	
${ }_{\rightarrow 0 \rightarrow 0}$		\# : $\sim_{\text {R }}$
		-
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty$		-
		,

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x+\frac{1}{3}+\frac{\arctan \left(-3 x+3 c_{1}\right)}{3} \tag{1}
\end{equation*}
$$

Figure 180: Slope field plot

Verification of solutions

$$
y=x+\frac{1}{3}+\frac{\arctan \left(-3 x+3 c_{1}\right)}{3}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 17
dsolve $\left(\operatorname{diff}(y(x), x)=(\sin (3 * x-3 * y(x)+1))^{\wedge} 2, y(x)\right.$, singsol=all)

$$
y(x)=x+\frac{1}{3}+\frac{\arctan \left(-3 x+3 c_{1}\right)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.599 (sec). Leaf size: 43
DSolve $\left[y y^{\prime}[x]==(\operatorname{Sin}[3 * x-3 * y[x]+1]) \wedge 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

Solve $\left[2 y(x)-2\left(\frac{1}{3} \tan (-3 y(x)+3 x+1)-\frac{1}{3} \arctan (\tan (-3 y(x)+3 x+1))\right)=c_{1}, y(x)\right]$

4.40 problem Problem 58

4.40.1 Solving as first order ode lie symmetry calculated ode 1038
4.40.2 Solving as exact ode . 1044

Internal problem ID [2704]
Internal file name [OUTPUT/2196_Sunday_June_05_2022_02_54_04_AM_48229966/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 58.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`]]

$$
y^{\prime}-\frac{y(\ln (y x)-1)}{x}=0
$$

4.40.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y(\ln (x y)-1)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{y(\ln (x y)-1)\left(b_{3}-a_{2}\right)}{x}-\frac{y^{2}(\ln (x y)-1)^{2} a_{3}}{x^{2}} \\
& -\left(-\frac{y(\ln (x y)-1)}{x^{2}}+\frac{y}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{\ln (x y)-1}{x}+\frac{1}{x}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\ln (x y)^{2} y^{2} a_{3}+\ln (x y) x^{2} b_{2}-3 \ln (x y) y^{2} a_{3}+\ln (x y) x b_{1}-\ln (x y) y a_{1}-b_{2} x^{2}+x y a_{2}+x y b_{3}+3 y^{2} a_{3}+}{x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\ln (x y)^{2} y^{2} a_{3}-\ln (x y) x^{2} b_{2}+3 \ln (x y) y^{2} a_{3}-\ln (x y) x b_{1} \tag{6E}\\
& +\ln (x y) y a_{1}+b_{2} x^{2}-x y a_{2}-x y b_{3}-3 y^{2} a_{3}-2 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \ln (x y)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \ln (x y)=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{3}^{2} v_{2}^{2} a_{3}+3 v_{3} v_{2}^{2} a_{3}-v_{3} v_{1}^{2} b_{2}+v_{3} v_{2} a_{1}-v_{1} v_{2} a_{2} \tag{7E}\\
& -3 v_{2}^{2} a_{3}-v_{3} v_{1} b_{1}+b_{2} v_{1}^{2}-v_{1} v_{2} b_{3}-2 v_{2} a_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -v_{3} v_{1}^{2} b_{2}+b_{2} v_{1}^{2}+\left(-a_{2}-b_{3}\right) v_{1} v_{2}-v_{3} v_{1} b_{1}-v_{3}^{2} v_{2}^{2} a_{3} \tag{8E}\\
& +3 v_{3} v_{2}^{2} a_{3}-3 v_{2}^{2} a_{3}+v_{3} v_{2} a_{1}-2 v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{2} & =0 \\
-2 a_{1} & =0 \\
-3 a_{3} & =0 \\
-a_{3} & =0 \\
3 a_{3} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
-a_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y(\ln (x y)-1)}{x}\right)(-x) \\
& =y \ln (x y) \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y \ln (x y)} d y
\end{aligned}
$$

Which results in

$$
S=\ln (\ln (x y))
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(\ln (x y)-1)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x(\ln (x)+\ln (y))} \\
S_{y} & =\frac{1}{y(\ln (x)+\ln (y))}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\ln (x y)}{x(\ln (x)+\ln (y))} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (\ln (x)+\ln (y))=\ln (x)+c_{1}
$$

Which simplifies to

$$
\ln (\ln (x)+\ln (y))=\ln (x)+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{\mathrm{e}^{c_{1} x}}}{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\mathrm{e}^{c_{1} x}}}{x} \tag{1}
\end{equation*}
$$

Figure 181: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{\mathrm{e}_{1} x}}{x}
$$

Verified OK.

4.40.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y(\ln (x y)-1)}{x}\right) \mathrm{d} x \\
\left(-\frac{y(\ln (x y)-1)}{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{y(\ln (x y)-1)}{x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y(\ln (x y)-1)}{x}\right) \\
& =-\frac{\ln (x y)}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{\ln (x y)-1}{x}-\frac{1}{x}\right)-(0)\right) \\
& =-\frac{\ln (x y)}{x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{x}{y(\ln (x y)-1)}\left((0)-\left(-\frac{\ln (x y)-1}{x}-\frac{1}{x}\right)\right) \\
& =-\frac{\ln (x y)}{y(\ln (x y)-1)}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(0)-\left(-\frac{\ln (x y)-1}{x}-\frac{1}{x}\right)}{x\left(-\frac{y(\ln (x y)-1)}{x}\right)-y(1)} \\
& =-\frac{1}{x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{1}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{1}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (t)} \\
& =\frac{1}{t}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x y}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x y}\left(-\frac{y(\ln (x y)-1)}{x}\right) \\
& =\frac{-\ln (x y)+1}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x y}(1) \\
& =\frac{1}{x y}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-\ln (x y)+1}{x^{2}}\right)+\left(\frac{1}{x y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-\ln (x y)+1}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{\ln (x y)}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x y}=\frac{1}{x y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\ln (x y)}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\ln (x y)}{x}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{c_{1} x}}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{c_{1} x}}{x} \tag{1}
\end{equation*}
$$

Figure 182: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{c_{1} x}}{x}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve(diff(y(x),x)=y(x)/x*(ln(x*y(x))-1),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{\frac{x}{c_{1}}}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.233 (sec). Leaf size: 24
DSolve[y'[x]==y[x]/x*(Log[x*y[x]]-1),y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{e^{e^{c_{1} x}}}{x} \\
& y(x) \rightarrow \frac{1}{x}
\end{aligned}
$$

4.41 problem Problem 59

4.41.1 Existence and uniqueness analysis 1051
4.41.2 Solving as first order ode lie symmetry calculated ode 1052
4.41.3 Solving as riccati ode . 1058

Internal problem ID [2705]
Internal file name [OUTPUT/2197_Sunday_June_05_2022_02_54_09_AM_11715771/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 59.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Riccati]

$$
y^{\prime}-2 x(y+x)^{2}=-1
$$

With initial conditions

$$
[y(0)=1]
$$

4.41.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =2 x^{3}+4 x^{2} y+2 x y^{2}-1
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(2 x^{3}+4 x^{2} y+2 x y^{2}-1\right) \\
& =4 x^{2}+4 x y
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

4.41.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 x^{3}+4 x^{2} y+2 x y^{2}-1 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\left(2 x^{3}+4 x^{2} y+2 x y^{2}-1\right)\left(b_{3}-a_{2}\right)-\left(2 x^{3}+4 x^{2} y+2 x y^{2}-1\right)^{2} a_{3} \tag{5E}\\
& \quad-\left(6 x^{2}+8 x y+2 y^{2}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-\left(4 x^{2}+4 x y\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -4 x^{6} a_{3}-16 x^{5} y a_{3}-24 x^{4} y^{2} a_{3}-16 x^{3} y^{3} a_{3}-4 x^{2} y^{4} a_{3}-8 x^{3} a_{2}+4 x^{3} a_{3} \\
& \quad-4 x^{3} b_{2}+2 x^{3} b_{3}-12 x^{2} y a_{2}+2 x^{2} y a_{3}-4 x^{2} y b_{2}-4 x y^{2} a_{2}-4 x y^{2} a_{3}-2 x y^{2} b_{3} \\
& -2 y^{3} a_{3}-6 x^{2} a_{1}-4 x^{2} b_{1}-8 x y a_{1}-4 x y b_{1}-2 y^{2} a_{1}+a_{2}-a_{3}+b_{2}-b_{3}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -4 x^{6} a_{3}-16 x^{5} y a_{3}-24 x^{4} y^{2} a_{3}-16 x^{3} y^{3} a_{3}-4 x^{2} y^{4} a_{3}-8 x^{3} a_{2}+4 x^{3} a_{3} \tag{6E}\\
& -4 x^{3} b_{2}+2 x^{3} b_{3}-12 x^{2} y a_{2}+2 x^{2} y a_{3}-4 x^{2} y b_{2}-4 x y^{2} a_{2}-4 x y^{2} a_{3}-2 x y^{2} b_{3} \\
& -2 y^{3} a_{3}-6 x^{2} a_{1}-4 x^{2} b_{1}-8 x y a_{1}-4 x y b_{1}-2 y^{2} a_{1}+a_{2}-a_{3}+b_{2}-b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -4 a_{3} v_{1}^{6}-16 a_{3} v_{1}^{5} v_{2}-24 a_{3} v_{1}^{4} v_{2}^{2}-16 a_{3} v_{1}^{3} v_{2}^{3}-4 a_{3} v_{1}^{2} v_{2}^{4}-8 a_{2} v_{1}^{3}-12 a_{2} v_{1}^{2} v_{2} \tag{7E}\\
& -4 a_{2} v_{1} v_{2}^{2}+4 a_{3} v_{1}^{3}+2 a_{3} v_{1}^{2} v_{2}-4 a_{3} v_{1} v_{2}^{2}-2 a_{3} v_{2}^{3}-4 b_{2} v_{1}^{3}-4 b_{2} v_{1}^{2} v_{2}+2 b_{3} v_{1}^{3} \\
& -2 b_{3} v_{1} v_{2}^{2}-6 a_{1} v_{1}^{2}-8 a_{1} v_{1} v_{2}-2 a_{1} v_{2}^{2}-4 b_{1} v_{1}^{2}-4 b_{1} v_{1} v_{2}+a_{2}-a_{3}+b_{2}-b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -4 a_{3} v_{1}^{6}-16 a_{3} v_{1}^{5} v_{2}-24 a_{3} v_{1}^{4} v_{2}^{2}-16 a_{3} v_{1}^{3} v_{2}^{3}+\left(-8 a_{2}+4 a_{3}-4 b_{2}+2 b_{3}\right) v_{1}^{3} \\
& \quad-4 a_{3} v_{1}^{2} v_{2}^{4}+\left(-12 a_{2}+2 a_{3}-4 b_{2}\right) v_{1}^{2} v_{2}+\left(-6 a_{1}-4 b_{1}\right) v_{1}^{2} \tag{8E}\\
& \quad+\left(-4 a_{2}-4 a_{3}-2 b_{3}\right) v_{1} v_{2}^{2}+\left(-8 a_{1}-4 b_{1}\right) v_{1} v_{2} \\
& \quad-2 a_{3} v_{2}^{3}-2 a_{1} v_{2}^{2}+a_{2}-a_{3}+b_{2}-b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
-24 a_{3} & =0 \\
-16 a_{3} & =0 \\
-4 a_{3} & =0 \\
-2 a_{3} & =0 \\
-8 a_{1}-4 b_{1} & =0 \\
-6 a_{1}-4 b_{1} & =0 \\
-12 a_{2}+2 a_{3}-4 b_{2} & =0 \\
-4 a_{2}-4 a_{3}-2 b_{3} & =0 \\
-8 a_{2}+4 a_{3}-4 b_{2}+2 b_{3} & =0 \\
a_{2}-a_{3}+b_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =-3 a_{2} \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-3 x-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-3 x-2 y-\left(2 x^{3}+4 x^{2} y+2 x y^{2}-1\right)(x) \\
& =-2 x^{4}-4 x^{3} y-2 y^{2} x^{2}-2 x-2 y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-2 x^{4}-4 x^{3} y-2 y^{2} x^{2}-2 x-2 y} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{3}+x^{2} y+1\right)}{2}-\frac{\ln (y+x)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2 x^{3}+4 x^{2} y+2 x y^{2}-1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x(3 x+2 y)}{2 x^{3}+2 x^{2} y+2}-\frac{1}{2 x+2 y} \\
S_{y} & =-\frac{1}{2\left(x^{3}+x^{2} y+1\right)(y+x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(x^{3}+x^{2} y+1\right)}{2}-\frac{\ln (y+x)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(x^{3}+x^{2} y+1\right)}{2}-\frac{\ln (y+x)}{2}=c_{1}
$$

Which gives

$$
y=-\frac{-x^{3}+x \mathrm{e}^{2 c_{1}}-1}{-x^{2}+\mathrm{e}^{2 c_{1}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=2 x^{3}+4 x^{2} y+2 x y^{2}-1$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow \rightarrow$
		$\rightarrow \rightarrow \rightarrow 2_{2} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
	$R=x$	\rightarrow
${ }^{\text {a }}$	$S=\underline{\ln \left(x^{3}+x^{2} y+1\right)}$	
	$S=\frac{2}{2}$	
+ ${ }_{\text {dra }}$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 遇

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\mathrm{e}^{-2 c_{1}} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-x^{3}+x-1}{x^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{3}+x-1}{x^{2}-1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-x^{3}+x-1}{x^{2}-1}
$$

Verified OK.

4.41.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =2 x^{3}+4 x^{2} y+2 x y^{2}-1
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=2 x^{3}+4 x^{2} y+2 x y^{2}-1
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=2 x^{3}-1, f_{1}(x)=4 x^{2}$ and $f_{2}(x)=2 x$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{2 x u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 \\
f_{1} f_{2} & =8 x^{3} \\
f_{2}^{2} f_{0} & =4 x^{2}\left(2 x^{3}-1\right)
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
2 x u^{\prime \prime}(x)-\left(8 x^{3}+2\right) u^{\prime}(x)+4 x^{2}\left(2 x^{3}-1\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\frac{2 x^{3}}{3}}\left(c_{2} x^{2}+c_{1}\right)
$$

The above shows that

$$
u^{\prime}(x)=2 \mathrm{e}^{\frac{2 x^{3}}{3}} x\left(c_{2} x^{3}+c_{1} x+c_{2}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2} x^{3}+c_{1} x+c_{2}}{c_{2} x^{2}+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-x^{3}-c_{3} x-1}{x^{2}+c_{3}}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\frac{1}{c_{3}}
$$

$$
c_{3}=-1
$$

Substituting c_{3} found above in the general solution gives

$$
y=-\frac{x^{3}-x+1}{x^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{3}-x+1}{x^{2}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{x^{3}-x+1}{x^{2}-1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = (-3*x-2*y(x))/x, y(x)`
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
<- 1st order, canonical coordinates successful`
```

Solution by Maple
Time used: 0.141 (sec). Leaf size: 20

```
dsolve([diff(y(x),x)=2*x*(x+y(x))~2-1,y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{-x^{3}+x-1}{x^{2}-1}
$$

\checkmark Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 21
DSolve[\{y' $[x]==2 * x *(x+y[x]) \sim 2-1,\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{-x^{3}+x-1}{x^{2}-1}
$$

4.42 problem Problem 60

4.42.1 Solving as homogeneousTypeMapleC ode 1062
4.42.2 Solving as first order ode lie symmetry calculated ode 1065

Internal problem ID [2706]
Internal file name [OUTPUT/2198_Sunday_June_05_2022_02_54_12_AM_12631337/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 60.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
y^{\prime}-\frac{x+2 y-1}{2 x-y+3}=0
$$

4.42.1 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{X+x_{0}+2 Y(X)+2 y_{0}-1}{-2 X-2 x_{0}+Y(X)+y_{0}-3}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
& x_{0}=-1 \\
& y_{0}=1
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{X+2 Y(X)}{-2 X+Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{X+2 Y}{-2 X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=X+2 Y$ and $N=2 X-Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{-2 u-1}{u-2} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{-2 u(X)-1}{u(X)-2}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{-2 u(X)-1}{u(X)-2}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)-2\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+1=0
$$

Or

$$
X(u(X)-2)\left(\frac{d}{d X} u(X)\right)+u(X)^{2}+1=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+1}{X(u-2)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}+1}{u-2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u-2}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+1}{u-2}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}+1\right)}{2}-2 \arctan (u) & =-\ln (X)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(X)^{2}+1\right)}{2}-2 \arctan (u(X))+\ln (X)-c_{2}=0
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+1\right)}{2}-2 \arctan \left(\frac{Y(X)}{X}\right)+\ln (X)-c_{2}=0
$$

Using the solution for $Y(X)$

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+1\right)}{2}-2 \arctan \left(\frac{Y(X)}{X}\right)+\ln (X)-c_{2}=0
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y+1 \\
& X=x-1
\end{aligned}
$$

Then the solution in y becomes

$$
\frac{\ln \left(\frac{(y-1)^{2}}{(x+1)^{2}}+1\right)}{2}-2 \arctan \left(\frac{y-1}{x+1}\right)+\ln (x+1)-c_{2}=0
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{(y-1)^{2}}{(x+1)^{2}}+1\right)}{2}-2 \arctan \left(\frac{y-1}{x+1}\right)+\ln (x+1)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 185: Slope field plot

Verification of solutions

$$
\frac{\ln \left(\frac{(y-1)^{2}}{(x+1)^{2}}+1\right)}{2}-2 \arctan \left(\frac{y-1}{x+1}\right)+\ln (x+1)-c_{2}=0
$$

Verified OK.

4.42.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x+2 y-1}{-2 x+y-3} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(x+2 y-1)\left(b_{3}-a_{2}\right)}{-2 x+y-3}-\frac{(x+2 y-1)^{2} a_{3}}{(-2 x+y-3)^{2}} \\
& -\left(-\frac{1}{-2 x+y-3}-\frac{2(x+2 y-1)}{(-2 x+y-3)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2}{-2 x+y-3}+\frac{x+2 y-1}{(-2 x+y-3)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$-\frac{2 x^{2} a_{2}+x^{2} a_{3}+x^{2} b_{2}-2 x^{2} b_{3}-2 x y a_{2}+4 x y a_{3}+4 x y b_{2}+2 x y b_{3}-2 y^{2} a_{2}-y^{2} a_{3}-y^{2} b_{2}+2 y^{2} b_{3}+6 x a_{2}-}{(2 x-y-}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{2}+2 x^{2} b_{3}+2 x y a_{2}-4 x y a_{3}-4 x y b_{2}-2 x y b_{3}+2 y^{2} a_{2} \tag{6E}\\
& +y^{2} a_{3}+y^{2} b_{2}-2 y^{2} b_{3}-6 x a_{2}+2 x a_{3}-5 x b_{1}+7 x b_{2}+x b_{3}+5 y a_{1} \\
& -7 y a_{2}-y a_{3}-6 y b_{2}+2 y b_{3}-5 a_{1}+3 a_{2}-a_{3}-5 b_{1}+9 b_{2}-3 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a_{2} v_{1}^{2}+2 a_{2} v_{1} v_{2}+2 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-4 a_{3} v_{1} v_{2}+a_{3} v_{2}^{2}-b_{2} v_{1}^{2}-4 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2} \tag{7E}\\
& +2 b_{3} v_{1}^{2}-2 b_{3} v_{1} v_{2}-2 b_{3} v_{2}^{2}+5 a_{1} v_{2}-6 a_{2} v_{1}-7 a_{2} v_{2}+2 a_{3} v_{1}-a_{3} v_{2}-5 b_{1} v_{1} \\
& +7 b_{2} v_{1}-6 b_{2} v_{2}+b_{3} v_{1}+2 b_{3} v_{2}-5 a_{1}+3 a_{2}-a_{3}-5 b_{1}+9 b_{2}-3 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-2 a_{2}-a_{3}-b_{2}+2 b_{3}\right) v_{1}^{2}+\left(2 a_{2}-4 a_{3}-4 b_{2}-2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(-6 a_{2}+2 a_{3}-5 b_{1}+7 b_{2}+b_{3}\right) v_{1}+\left(2 a_{2}+a_{3}+b_{2}-2 b_{3}\right) v_{2}^{2} \\
& \quad+\left(5 a_{1}-7 a_{2}-a_{3}-6 b_{2}+2 b_{3}\right) v_{2}-5 a_{1}+3 a_{2}-a_{3}-5 b_{1}+9 b_{2}-3 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{2}-a_{3}-b_{2}+2 b_{3} & =0 \\
2 a_{2}-4 a_{3}-4 b_{2}-2 b_{3} & =0 \\
2 a_{2}+a_{3}+b_{2}-2 b_{3} & =0 \\
5 a_{1}-7 a_{2}-a_{3}-6 b_{2}+2 b_{3} & =0 \\
-6 a_{2}+2 a_{3}-5 b_{1}+7 b_{2}+b_{3} & =0 \\
-5 a_{1}+3 a_{2}-a_{3}-5 b_{1}+9 b_{2}-3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=b_{2}+b_{3} \\
& a_{2}=b_{3} \\
& a_{3}=-b_{2} \\
& b_{1}=b_{2}-b_{3} \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1-y \\
& \eta=x+1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =x+1-\left(-\frac{x+2 y-1}{-2 x+y-3}\right)(1-y) \\
& =\frac{2 x^{2}+2 y^{2}+4 x-4 y+4}{2 x-y+3} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x^{2}+2 y^{2}+4 x-4 y+4}{2 x-y+3}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln \left(x^{2}+y^{2}+2 x-2 y+2\right)}{4}+\arctan \left(\frac{2 y-2}{2+2 x}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x+2 y-1}{-2 x+y-3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{-x-2 y+1}{2 x^{2}+2 y^{2}+4 x-4 y+4} \\
S_{y} & =\frac{2 x-y+3}{2 x^{2}+2 y^{2}+4 x-4 y+4}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln \left(y^{2}+x^{2}-2 y+2 x+2\right)}{4}+\arctan \left(\frac{y-1}{x+1}\right)=c_{1}
$$

Which simplifies to

$$
-\frac{\ln \left(y^{2}+x^{2}-2 y+2 x+2\right)}{4}+\arctan \left(\frac{y-1}{x+1}\right)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x+2 y-1}{-2 x+y-3}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4 \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+29]{ }$
	$R=x$	$\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow$ 遇
	$S=-\frac{\ln \left(x^{2}+y^{2}+2 x\right.}{}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-2 \rightarrow \rightarrow 0} \rightarrow$
	$S=-\frac{1}{4}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
何		$\xrightarrow[{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-{ }^{2} \xrightarrow{2} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow} \rightarrow]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(y^{2}+x^{2}-2 y+2 x+2\right)}{4}+\arctan \left(\frac{y-1}{x+1}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 186: Slope field plot

Verification of solutions

$$
-\frac{\ln \left(y^{2}+x^{2}-2 y+2 x+2\right)}{4}+\arctan \left(\frac{y-1}{x+1}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 32

```
dsolve(diff(y(x),x)=(x+2*y(x)-1)/(2*x-y(x)+3),y(x), singsol=all)
```

$$
y(x)=1+\tan \left(\operatorname{RootOf}\left(4 _Z+\ln \left(\sec \left(_Z\right)^{2}\right)+2 \ln (x+1)+2 c_{1}\right)\right)(-x-1)
$$

\checkmark Solution by Mathematica
Time used: 0.064 (sec). Leaf size: 68

```
DSolve[y'[x]==(x+2*y[x]-1)/(2*x-y[x]+3),y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& \text { Solve }\left[32 \arctan \left(\frac{-2 y(x)-x+1}{-y(x)+2 x+3}\right)\right. \\
& \left.+8 \log \left(\frac{x^{2}+y(x)^{2}-2 y(x)+2 x+2}{5(x+1)^{2}}\right)+16 \log (x+1)+5 c_{1}=0, y(x)\right]
\end{aligned}
$$

4.43 problem Problem 61

4.43.1 Solving as riccati ode . 1073

Internal problem ID [2707]
Internal file name [OUTPUT/2199_Sunday_June_05_2022_02_54_17_AM_90629347/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 61.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+p(x) y+q(x) y^{2}=r(x)
$$

4.43.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-p(x) y-q(x) y^{2}+r(x)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-p(x) y-q(x) y^{2}+r(x)
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=r(x), f_{1}(x)=-p(x)$ and $f_{2}(x)=-q(x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-q(x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-q^{\prime}(x) \\
f_{1} f_{2} & =q(x) p(x) \\
f_{2}^{2} f_{0} & =r(x) q(x)^{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-q(x) u^{\prime \prime}(x)-\left(q(x) p(x)-q^{\prime}(x)\right) u^{\prime}(x)+r(x) q(x)^{2} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\operatorname{DESol}\left(\left\{-r(x) q(x) _Y(x)+\frac{\left(q(x) p(x)-q^{\prime}(x)\right)-Y^{\prime}(x)}{q(x)}+Y^{\prime \prime}(x)\right\},\{-Y(x)\}\right)
$$

The above shows that

$$
\begin{aligned}
& u^{\prime}(x)=\frac{d}{d x} \operatorname{DESol}\left(\left\{-r(x) q(x) _Y(x)+\frac{\left(q(x) p(x)-q^{\prime}(x)\right) _Y^{\prime}(x)}{q(x)}\right.\right. \\
&\left.\left.+\quad Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)
\end{aligned}
$$

Using the above in (1) gives the solution

$$
y=\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{-r(x) q(x) _Y(x)+\frac{\left(q(x) p(x)-q^{\prime}(x)\right) _Y^{\prime}(x)}{q(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{q(x) \operatorname{DESol}\left(\left\{-r(x) q(x)_{_} Y(x)+\frac{\left(q(x) p(x)-q^{\prime}(x)\right) _Y^{\prime}(x)}{q(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{-r(x) q(x) _Y(x)+\frac{\left(q(x) p(x)-q^{\prime}(x)\right) _Y^{\prime}(x)}{q(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{q(x) \operatorname{DESol}\left(\left\{-r(x) q(x) _Y(x)+\frac{\left(q(x) p(x)-q^{\prime}(x)\right) _Y^{\prime}(x)}{q(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{-r(x) q(x) _Y(x)+\frac{\left(q(x) p(x)-q^{\prime}(x)\right) _Y^{\prime}(x)}{q(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{q(x) \operatorname{DESol}\left(\left\{-r(x) q(x) _Y(x)+\frac{\left(q(x) p(x)-q^{\prime}(x)\right) _Y^{\prime}(x)}{q(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\frac{d}{d x} \operatorname{DESol}\left(\left\{-r(x) q(x)_{_} Y(x)+\frac{\left(q(x) p(x)-q^{\prime}(x)\right) _Y^{\prime}(x)}{q(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}{q(x) \operatorname{DESol}\left(\left\{-r(x) q(x) _Y(x)+\frac{\left(q(x) p(x)-q^{\prime}(x)\right) _Y^{\prime}(x)}{q(x)}+_Y^{\prime \prime}(x)\right\},\left\{_Y(x)\right\}\right)}
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = - (p(x)*q(x)-(diff(q(x), x)))*(
        Methods for second order ODEs:
    -> Trying a change of variables to reduce to Bernoulli
    -> Calling odsolve with the ODE`, diff(y(x), x)-(-q(x)*y(x)^2+y(x)-p(x)*y(x)*x+x^2*r(x))/
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        trying Bernoulli
        trying separable
        trying inverse linear
        trying homogeneous types:
        trying Chini
        differential order: 1; looking for linear symmetries
        trying exact
        Looking for potential symmetries
        trying Riccati
        trying Riccati sub-methods:
            trying Riccati_symmetries
            trying inverse_Riccati
            trying 1st order ODE linearizable_by_differentiation
    -> trying a symmetry pattern of the form [F(x)*G(y), 0]
    -> trying a symmetry pattern of the form [0, F(x)*G(y)]
    -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
trying inverse_Riccati
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
, `-> Computing symmetries using: way = 4
```

X Solution by Maple
dsolve(diff $(y(x), x)+p(x) * y(x)+q(x) * y(x) \wedge 2=r(x), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[y '[x]+p[x] * y[x]+q[x] * y[x] \sim 2==r[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

Not solved

4.44 problem Problem 62

4.44.1 Solving as first order ode lie symmetry calculated ode 1078
4.44.2 Solving as exact ode . 1084
4.44.3 Solving as riccati ode 1090

Internal problem ID [2708]
Internal file name [OUTPUT/2200_Sunday_June_05_2022_02_54_20_AM_5311040/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 62.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _Riccati]
```

$$
y^{\prime}+\frac{2 y}{x}-y^{2}=-\frac{2}{x^{2}}
$$

4.44.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y^{2} x^{2}-2 x y-2}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(y^{2} x^{2}-2 x y-2\right)\left(b_{3}-a_{2}\right)}{x^{2}}-\frac{\left(y^{2} x^{2}-2 x y-2\right)^{2} a_{3}}{x^{4}} \\
& -\left(\frac{2 x y^{2}-2 y}{x^{2}}-\frac{2\left(y^{2} x^{2}-2 x y-2\right)}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{\left(2 x^{2} y-2 x\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{4} y^{4} a_{3}+2 x^{5} y b_{2}+x^{4} y^{2} a_{2}+x^{4} y^{2} b_{3}-4 x^{3} y^{3} a_{3}+2 x^{4} y b_{1}-3 b_{2} x^{4}+2 x^{2} y^{2} a_{3}-2 x^{3} b_{1}+2 x^{2} y a_{1}+2 x^{2} a_{2}+}{x^{4}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} y^{4} a_{3}-2 x^{5} y b_{2}-x^{4} y^{2} a_{2}-x^{4} y^{2} b_{3}+4 x^{3} y^{3} a_{3}-2 x^{4} y b_{1}+3 b_{2} x^{4} \tag{6E}\\
& \quad-2 x^{2} y^{2} a_{3}+2 x^{3} b_{1}-2 x^{2} y a_{1}-2 x^{2} a_{2}-2 x^{2} b_{3}-12 x y a_{3}-4 x a_{1}-4 a_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{3} v_{1}^{4} v_{2}^{4}-a_{2} v_{1}^{4} v_{2}^{2}+4 a_{3} v_{1}^{3} v_{2}^{3}-2 b_{2} v_{1}^{5} v_{2}-b_{3} v_{1}^{4} v_{2}^{2}-2 b_{1} v_{1}^{4} v_{2}-2 a_{3} v_{1}^{2} v_{2}^{2} \tag{7E}\\
& \quad+3 b_{2} v_{1}^{4}-2 a_{1} v_{1}^{2} v_{2}+2 b_{1} v_{1}^{3}-2 a_{2} v_{1}^{2}-12 a_{3} v_{1} v_{2}-2 b_{3} v_{1}^{2}-4 a_{1} v_{1}-4 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{gather*}
-2 b_{2} v_{1}^{5} v_{2}-a_{3} v_{1}^{4} v_{2}^{4}+\left(-a_{2}-b_{3}\right) v_{1}^{4} v_{2}^{2}-2 b_{1} v_{1}^{4} v_{2}+3 b_{2} v_{1}^{4}+4 a_{3} v_{1}^{3} v_{2}^{3}+2 b_{1} v_{1}^{3} \tag{8E}\\
-2 a_{3} v_{1}^{2} v_{2}^{2}-2 a_{1} v_{1}^{2} v_{2}+\left(-2 a_{2}-2 b_{3}\right) v_{1}^{2}-12 a_{3} v_{1} v_{2}-4 a_{1} v_{1}-4 a_{3}=0
\end{gather*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-4 a_{1} & =0 \\
-2 a_{1} & =0 \\
-12 a_{3} & =0 \\
-4 a_{3} & =0 \\
-2 a_{3} & =0 \\
-a_{3} & =0 \\
4 a_{3} & =0 \\
-2 b_{1} & =0 \\
2 b_{1} & =0 \\
-2 b_{2} & =0 \\
3 b_{2} & =0 \\
-2 a_{2}-2 b_{3} & =0 \\
-a_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y^{2} x^{2}-2 x y-2}{x^{2}}\right)(-x) \\
& =\frac{y^{2} x^{2}-x y-2}{x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{2} x^{2}-x y-2}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (x y+1)}{3}+\frac{\ln (x y-2)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2} x^{2}-2 x y-2}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{(x y+1)(x y-2)} \\
S_{y} & =\frac{x}{(x y+1)(x y-2)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (1+y x)}{3}+\frac{\ln (y x-2)}{3}=\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{\ln (1+y x)}{3}+\frac{\ln (y x-2)}{3}=\ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{x^{3} \mathrm{e}^{3 c_{1}}+2}{x\left(x^{3} \mathrm{e}^{3 c_{1}}-1\right)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y^{2} x^{2}-2 x y-2}{x^{2}}$		$\frac{d S}{d R}=\frac{1}{R}$
		$\xrightarrow{\rightarrow}$
		$\rightarrow \times \sim$ 为 \rightarrow
		－10 0^{4}
	$R=x$	Avaydy
	$\ln (x y+1)$	
	$S=-\frac{\ln (x y+1)}{3}$	
		$\rightarrow \rightarrow \rightarrow V^{\text {a }}$
¢fatatatas		$\rightarrow \rightarrow \rightarrow \Delta \Delta$ andy
		avidy 9 召召

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=-\frac{x^{3} \mathrm{e}^{3 c_{1}}+2}{x\left(x^{3} \mathrm{e}^{3 c_{1}}-1\right)} \tag{1}
\end{equation*}
$$

Figure 187: Slope field plot

Verification of solutions

$$
y=-\frac{x^{3} \mathrm{e}^{3 c_{1}}+2}{x\left(x^{3} \mathrm{e}^{3 c_{1}}-1\right)}
$$

Verified OK.

4.44.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-\frac{2 y}{x}+y^{2}-\frac{2}{x^{2}}\right) \mathrm{d} x \\
\left(\frac{2 y}{x}-y^{2}+\frac{2}{x^{2}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{2 y}{x}-y^{2}+\frac{2}{x^{2}} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 y}{x}-y^{2}+\frac{2}{x^{2}}\right) \\
& =\frac{-2 x y+2}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(\frac{2}{x}-2 y\right)-(0)\right) \\
& =\frac{-2 x y+2}{x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{\frac{2 y}{x}-y^{2}+\frac{2}{x^{2}}}\left((0)-\left(\frac{2}{x}-2 y\right)\right) \\
& =-\frac{2 x(x y-1)}{y^{2} x^{2}-2 x y-2}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(0)-\left(\frac{2}{x}-2 y\right)}{x\left(\frac{2 y}{x}-y^{2}+\frac{2}{x^{2}}\right)-y(1)} \\
& =\frac{-2 x y+2}{y^{2} x^{2}-x y-2}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=\frac{-2 t+2}{t^{2}-t-2}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{-2 t+2}{t^{2}-t-2}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{4 \ln (t+1)}{3}-\frac{2 \ln (t-2)}{3}} \\
& =\frac{1}{(t+1)^{\frac{4}{3}}(t-2)^{\frac{2}{3}}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{(x y+1)^{\frac{4}{3}}(x y-2)^{\frac{2}{3}}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{(x y+1)^{\frac{4}{3}}(x y-2)^{\frac{2}{3}}}\left(\frac{2 y}{x}-y^{2}+\frac{2}{x^{2}}\right) \\
& =-\frac{y^{2} x^{2}-2 x y-2}{x^{2}(x y+1)^{\frac{4}{3}}(x y-2)^{\frac{2}{3}}}
\end{aligned}
$$

And

$$
\begin{align*}
\bar{N} & =\mu N \\
& =\frac{1}{(x y+1)^{\frac{4}{3}}(x y-2)^{\frac{2}{3}}} \tag{1}\\
& =\frac{1}{(x y+1)^{\frac{4}{3}}(x y-2)^{\frac{2}{3}}}
\end{align*}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\left(-\frac{y^{2} x^{2}-2 x y-2}{x^{2}(x y+1)^{\frac{4}{3}}(x y-2)^{\frac{2}{3}}}\right)+\left(\frac{\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}}{=}=0\right.
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{y^{2} x^{2}-2 x y-2}{x^{2}(x y+1)^{\frac{4}{3}}(x y-2)^{\frac{2}{3}}} \mathrm{~d} x \\
\phi & =\frac{(x y-2)^{\frac{1}{3}}}{x(x y+1)^{\frac{1}{3}}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{(x y-2)^{\frac{1}{3}}}{3(x y+1)^{\frac{4}{3}}}+\frac{1}{3(x y+1)^{\frac{1}{3}}(x y-2)^{\frac{2}{3}}}+f^{\prime}(y) \tag{4}\\
& =\frac{1}{(x y+1)^{\frac{4}{3}}(x y-2)^{\frac{2}{3}}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{(x y+1)^{\frac{4}{3}}(x y-2)^{\frac{2}{3}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{(x y+1)^{\frac{4}{3}}(x y-2)^{\frac{2}{3}}}=\frac{1}{(x y+1)^{\frac{4}{3}}(x y-2)^{\frac{2}{3}}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{(x y-2)^{\frac{1}{3}}}{x(x y+1)^{\frac{1}{3}}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(x y-2)^{\frac{1}{3}}}{x(x y+1)^{\frac{1}{3}}}
$$

The solution becomes

$$
y=-\frac{c_{1}^{3} x^{3}+2}{\left(c_{1}^{3} x^{3}-1\right) x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}^{3} x^{3}+2}{\left(c_{1}^{3} x^{3}-1\right) x} \tag{1}
\end{equation*}
$$

Figure 188: Slope field plot

Verification of solutions

$$
y=-\frac{c_{1}^{3} x^{3}+2}{\left(c_{1}^{3} x^{3}-1\right) x}
$$

Verified OK.

4.44.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2} x^{2}-2 x y-2}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{2 y}{x}+y^{2}-\frac{2}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-\frac{2}{x^{2}}, f_{1}(x)=-\frac{2}{x}$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-\frac{2}{x} \\
f_{2}^{2} f_{0} & =-\frac{2}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{2 u^{\prime}(x)}{x}-\frac{2 u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{c_{1} x^{3}+c_{2}}{x^{2}}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{1} x^{3}-2 c_{2}}{x^{3}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{1} x^{3}-2 c_{2}}{x\left(c_{1} x^{3}+c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-c_{3} x^{3}+2}{x\left(c_{3} x^{3}+1\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-c_{3} x^{3}+2}{x\left(c_{3} x^{3}+1\right)} \tag{1}
\end{equation*}
$$

Figure 189: Slope field plot

Verification of solutions

$$
y=\frac{-c_{3} x^{3}+2}{x\left(c_{3} x^{3}+1\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.531 (sec). Leaf size: 24

```
dsolve(diff(y(x),x)+2/x*y(x)-y(x)^2=-2/x^2,y(x), singsol=all)
```

$$
y(x)=\frac{x^{3}+2 c_{1}}{\left(-x^{3}+c_{1}\right) x}
$$

\checkmark Solution by Mathematica
Time used: 0.175 (sec). Leaf size: 35
DSolve $\left[y^{\prime}[x]+2 / x * y[x]-y[x] \sim 2==-2 / x^{\wedge} 2, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2+3 c_{1} x^{3}}{x-3 c_{1} x^{4}} \\
& y(x) \rightarrow-\frac{1}{x}
\end{aligned}
$$

4.45 problem Problem 63

4.45.1 Solving as first order ode lie symmetry calculated ode 1093
4.45.2 Solving as exact ode . 1099
4.45.3 Solving as riccati ode . 1105

Internal problem ID [2709]
Internal file name [OUTPUT/2201_Sunday_June_05_2022_02_54_24_AM_25723167/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 63.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _Riccati]
```

$$
y^{\prime}+\frac{7 y}{x}-3 y^{2}=\frac{3}{x^{2}}
$$

4.45.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{3 y^{2} x^{2}-7 x y+3}{x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(3 y^{2} x^{2}-7 x y+3\right)\left(b_{3}-a_{2}\right)}{x^{2}}-\frac{\left(3 y^{2} x^{2}-7 x y+3\right)^{2} a_{3}}{x^{4}} \\
& -\left(\frac{6 x y^{2}-7 y}{x^{2}}-\frac{2\left(3 y^{2} x^{2}-7 x y+3\right)}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{\left(6 x^{2} y-7 x\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{9 x^{4} y^{4} a_{3}+6 x^{5} y b_{2}+3 x^{4} y^{2} a_{2}+3 x^{4} y^{2} b_{3}-42 x^{3} y^{3} a_{3}+6 x^{4} y b_{1}-8 b_{2} x^{4}+74 x^{2} y^{2} a_{3}-7 x^{3} b_{1}+7 x^{2} y a_{1}-3 x}{x^{4}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -9 x^{4} y^{4} a_{3}-6 x^{5} y b_{2}-3 x^{4} y^{2} a_{2}-3 x^{4} y^{2} b_{3}+42 x^{3} y^{3} a_{3}-6 x^{4} y b_{1}+8 b_{2} x^{4} \tag{6E}\\
& \quad-74 x^{2} y^{2} a_{3}+7 x^{3} b_{1}-7 x^{2} y a_{1}+3 x^{2} a_{2}+3 x^{2} b_{3}+48 x y a_{3}+6 x a_{1}-9 a_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{array}{r}
-9 a_{3} v_{1}^{4} v_{2}^{4}-3 a_{2} v_{1}^{4} v_{2}^{2}+42 a_{3} v_{1}^{3} v_{2}^{3}-6 b_{2} v_{1}^{5} v_{2}-3 b_{3} v_{1}^{4} v_{2}^{2}-6 b_{1} v_{1}^{4} v_{2}-74 a_{3} v_{1}^{2} v_{2}^{2} \tag{7E}\\
+8 b_{2} v_{1}^{4}-7 a_{1} v_{1}^{2} v_{2}+7 b_{1} v_{1}^{3}+3 a_{2} v_{1}^{2}+48 a_{3} v_{1} v_{2}+3 b_{3} v_{1}^{2}+6 a_{1} v_{1}-9 a_{3}=0
\end{array}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -6 b_{2} v_{1}^{5} v_{2}-9 a_{3} v_{1}^{4} v_{2}^{4}+\left(-3 a_{2}-3 b_{3}\right) v_{1}^{4} v_{2}^{2}-6 b_{1} v_{1}^{4} v_{2}+8 b_{2} v_{1}^{4}+42 a_{3} v_{1}^{3} v_{2}^{3} \tag{8E}\\
& +7 b_{1} v_{1}^{3}-74 a_{3} v_{1}^{2} v_{2}^{2}-7 a_{1} v_{1}^{2} v_{2}+\left(3 a_{2}+3 b_{3}\right) v_{1}^{2}+48 a_{3} v_{1} v_{2}+6 a_{1} v_{1}-9 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-7 a_{1} & =0 \\
6 a_{1} & =0 \\
-74 a_{3} & =0 \\
-9 a_{3} & =0 \\
42 a_{3} & =0 \\
48 a_{3} & =0 \\
-6 b_{1} & =0 \\
7 b_{1} & =0 \\
-6 b_{2} & =0 \\
8 b_{2} & =0 \\
-3 a_{2}-3 b_{3} & =0 \\
3 a_{2}+3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{3 y^{2} x^{2}-7 x y+3}{x^{2}}\right)(-x) \\
& =\frac{3 y^{2} x^{2}-6 x y+3}{x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{3 y^{2} x^{2}-6 x y+3}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{3(x y-1)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{3 y^{2} x^{2}-7 x y+3}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{3(x y-1)^{2}} \\
S_{y} & =\frac{x}{3(x y-1)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{3 y x-3}=\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{1}{3 y x-3}=\ln (x)+c_{1}
$$

Which gives

$$
y=\frac{3 \ln (x)+3 c_{1}-1}{3 x\left(\ln (x)+c_{1}\right)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{3 y^{2} x^{2}-7 x y+3}{x^{2}}$		$\frac{d S}{d R}=\frac{1}{R}$
		$\rightarrow+\infty$
$y^{4}\left(x^{6}\right)^{\text {a }}$		
		$\rightarrow \rightarrow \cdots \times 1$.
	$R=x$	$\rightarrow \rightarrow \rightarrow$ and
		$\xrightarrow{\rightarrow \rightarrow-4}+\infty \times 1$.
	$S=-\frac{1}{3 x y-3}$	
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ -	$3 x y-3$	$\rightarrow \rightarrow \rightarrow \Delta v x^{4}$
		-satil
:		$\rightarrow \rightarrow \rightarrow$ - ${ }_{\square}$
		- $1+4$,

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \ln (x)+3 c_{1}-1}{3 x\left(\ln (x)+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 190: Slope field plot

Verification of solutions

$$
y=\frac{3 \ln (x)+3 c_{1}-1}{3 x\left(\ln (x)+c_{1}\right)}
$$

Verified OK.

4.45.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-\frac{7 y}{x}+3 y^{2}+\frac{3}{x^{2}}\right) \mathrm{d} x \\
\left(\frac{7 y}{x}-3 y^{2}-\frac{3}{x^{2}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{7 y}{x}-3 y^{2}-\frac{3}{x^{2}} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{7 y}{x}-3 y^{2}-\frac{3}{x^{2}}\right) \\
& =\frac{7}{x}-6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(\frac{7}{x}-6 y\right)-(0)\right) \\
& =\frac{7}{x}-6 y
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{\frac{7 y}{x}-3 y^{2}-\frac{3}{x^{2}}}\left((0)-\left(\frac{7}{x}-6 y\right)\right) \\
& =\frac{-6 x^{2} y+7 x}{3 y^{2} x^{2}-7 x y+3}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(0)-\left(\frac{7}{x}-6 y\right)}{x\left(\frac{7 y}{x}-3 y^{2}-\frac{3}{x^{2}}\right)-y(1)} \\
& =\frac{-6 x y+7}{3(x y-1)^{2}}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=\frac{-6 t+7}{3(t-1)^{2}}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{-6 t+7}{3(t-1)^{2}}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (t-1)-\frac{1}{3(t-1)}} \\
& =\frac{\mathrm{e}^{-\frac{1}{3 t-3}}}{(t-1)^{2}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{\mathrm{e}^{-\frac{1}{3 x y-3}}}{(x y-1)^{2}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{-\frac{1}{3 x y-3}}}{(x y-1)^{2}}\left(\frac{7 y}{x}-3 y^{2}-\frac{3}{x^{2}}\right) \\
& =-\frac{3\left(y^{2} x^{2}-\frac{7}{3} x y+1\right) \mathrm{e}^{-\frac{1}{3 x y-3}}}{x^{2}(x y-1)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{-\frac{1}{3 x y-3}}}{(x y-1)^{2}}(1) \\
& =\frac{\mathrm{e}^{-\frac{1}{3 x y-3}}}{(x y-1)^{2}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{3\left(y^{2} x^{2}-\frac{7}{3} x y+1\right) \mathrm{e}^{-\frac{1}{3 x y-3}}}{x^{2}(x y-1)^{2}}\right)+\left(\frac{\mathrm{e}^{-\frac{1}{3 x y-3}}}{(x y-1)^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{3\left(y^{2} x^{2}-\frac{7}{3} x y+1\right) \mathrm{e}^{-\frac{1}{3 x y-3}}}{x^{2}(x y-1)^{2}} \mathrm{~d} x \\
\phi & =\frac{3 \mathrm{e}^{-\frac{1}{3 x y-3}}}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{9 \mathrm{e}^{-\frac{1}{3 x y-3}}}{(3 x y-3)^{2}}+f^{\prime}(y) \tag{4}\\
& =\frac{\mathrm{e}^{-\frac{1}{3 x y-3}}}{(x y-1)^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{-\frac{1}{3 x y-3}}}{(x y-1)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\mathrm{e}^{-\frac{1}{3 x y-3}}}{(x y-1)^{2}}=\frac{\mathrm{e}^{-\frac{1}{3 x y-3}}}{(x y-1)^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{3 \mathrm{e}^{-\frac{1}{3 x y-3}}}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{3 \mathrm{e}^{-\frac{1}{3 x y-3}}}{x}
$$

The solution becomes

$$
y=\frac{3 \ln \left(\frac{c_{1} x}{3}\right)-1}{3 x \ln \left(\frac{c_{1} x}{3}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \ln \left(\frac{c_{1} x}{3}\right)-1}{3 x \ln \left(\frac{c_{1} x}{3}\right)} \tag{1}
\end{equation*}
$$

Figure 191: Slope field plot

Verification of solutions

$$
y=\frac{3 \ln \left(\frac{c_{1} x}{3}\right)-1}{3 x \ln \left(\frac{c_{1} x}{3}\right)}
$$

Verified OK.

4.45.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{3 y^{2} x^{2}-7 x y+3}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{7 y}{x}+3 y^{2}+\frac{3}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{3}{x^{2}}, f_{1}(x)=-\frac{7}{x}$ and $f_{2}(x)=3$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{3 u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-\frac{21}{x} \\
f_{2}^{2} f_{0} & =\frac{27}{x^{2}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
3 u^{\prime \prime}(x)+\frac{21 u^{\prime}(x)}{x}+\frac{27 u(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\frac{c_{1}+c_{2} \ln (x)}{x^{3}}
$$

The above shows that

$$
u^{\prime}(x)=\frac{-3 c_{1}-3 c_{2} \ln (x)+c_{2}}{x^{4}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{-3 c_{1}-3 c_{2} \ln (x)+c_{2}}{3 x\left(c_{1}+c_{2} \ln (x)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{c_{3}+\ln (x)-\frac{1}{3}}{x\left(c_{3}+\ln (x)\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{3}+\ln (x)-\frac{1}{3}}{x\left(c_{3}+\ln (x)\right)} \tag{1}
\end{equation*}
$$

Figure 192: Slope field plot

Verification of solutions

$$
y=\frac{c_{3}+\ln (x)-\frac{1}{3}}{x\left(c_{3}+\ln (x)\right)}
$$

Verified OK.
Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(x),x)+7/x*y(x)-3*y(x)^2=3/x^2,y(x), singsol=all)
```

$$
y(x)=\frac{3 \ln (x)-3 c_{1}-1}{3 x\left(\ln (x)-c_{1}\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.157 (sec). Leaf size: 15

```
DSolve[y'[x]+7/x*y[x]-3*y[x]^2==3/x^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{x} \\
& y(x) \rightarrow \frac{1}{x}
\end{aligned}
$$

4.46 problem Problem 64

4.46.1 Solving as exact ode . 1108

Internal problem ID [2710]
Internal file name [OUTPUT/2202_Sunday_June_05_2022_02_54_26_AM_90493069/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 64.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[[_1st_order, `_with_symmetry_ $[F(x), G(x) * y+H(x)]]]$

$$
p(x) \ln (y)=-\frac{y^{\prime}}{y}+q(x)
$$

4.46.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =(-p(x) \ln (y)+q(x)) \mathrm{d} x \\
(p(x) \ln (y)-q(x)) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =p(x) \ln (y)-q(x) \\
N(x, y) & =\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(p(x) \ln (y)-q(x)) \\
& =\frac{p(x)}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =y\left(\left(\frac{p(x)}{y}\right)-(0)\right) \\
& =p(x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int p(x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\int p(x) d x} \\
& =\mathrm{e}^{\int p(x) d x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\int p(x) d x}(p(x) \ln (y)-q(x)) \\
& =(p(x) \ln (y)-q(x)) \mathrm{e}^{\int p(x) d x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\int p(x) d x}\left(\frac{1}{y}\right) \\
& =\frac{\mathrm{e}^{\int p(x) d x}}{y}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left((p(x) \ln (y)-q(x)) \mathrm{e}^{\int p(x) d x}\right)+\left(\frac{\mathrm{e}^{\int p(x) d x}}{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}
\end{array}=0
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(p(x) \ln (y)-q(x)) \mathrm{e}^{\int p(x) d x} \mathrm{~d} x \\
\phi & =\int^{x}\left(p\left(_a\right) \ln (y)-q\left(_a\right)\right) \mathrm{e}^{\int p\left(_a\right) d _a} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{\int^{x} p\left(_a\right) d _a}}{y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{\int p(x) d x}}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\mathrm{e}^{\int p(x) d x}}{y}=\frac{\mathrm{e}^{\int^{x} p\left(_a\right) d _a}}{y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{-\mathrm{e}^{\int^{x} p\left(_a\right) d _a}+\mathrm{e}^{\int p(x) d x}}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{-\mathrm{e}^{\int^{x} p\left(_a\right) d _a}+\mathrm{e}^{\int p(x) d x}}{y}\right) \mathrm{d} y \\
f(y) & =\int_{0}^{y} \frac{-\mathrm{e}^{\int^{x} p\left(_a\right) d _a}+\mathrm{e}^{\int p(x) d x}}{-a} d _a+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{x}\left(p\left(_a\right) \ln (y)-q\left(_a\right)\right) \mathrm{e}^{\int p\left(_a\right) d _a} d _a+\int_{0}^{y} \frac{-\mathrm{e}^{\int^{x} p\left(_a\right) d _a}+\mathrm{e}^{\int p(x) d x}}{-^{a}} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{x}\left(p\left(_a\right) \ln (y)-q\left(_a\right)\right) \mathrm{e}^{\int p\left(_a\right) d _a} d _a+\int_{0}^{y} \frac{-\mathrm{e}^{\int^{x} p\left(_a\right) d _a}+\mathrm{e}^{\int p(x) d x}}{-^{a}} d _a
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\int^{x}\left(p\left(_a\right) \ln (y)-q\left(_a\right)\right) \mathrm{e}^{\int p\left(_a\right) d _a} d _a+\int_{0}^{y} \frac{-\mathrm{e}^{\int^{x} p\left(_a\right) d _a}+\mathrm{e}^{\int p(x) d x}}{_^{a}} d _a=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{x}\left(p\left(_a\right) \ln (y)-q\left(_a\right)\right) \mathrm{e}^{\int p\left(_a\right) d _a} d _a+\int_{0}^{y} \frac{-\mathrm{e}^{\int^{x} p\left(_a\right) d _a}+\mathrm{e}^{\int p(x) d x}}{_^{a}} d _a=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.218 (sec). Leaf size: 27

```
dsolve(diff(y(x),x)/y(x)+p(x)*\operatorname{ln}(y(x))=q(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\mathrm{e}^{-\left(\int p(x) d x\right)}\left(\int \mathrm{e}^{\int p(x) d x} q(x) d x-c_{1}\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.201 (sec). Leaf size: 109
DSolve $[y$ ' $[x] / y[x]+p[x] * \log [y[x]]==q[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& \text { Solve }\left[\int_{1}^{x} \exp \left(-\int_{1}^{K[2]}-p(K[1]) d K[1]\right)(\log (y(x)) p(K[2])-q(K[2])) d K[2]\right. \\
& +\int_{1}^{y(x)}\left(\frac{\exp \left(-\int_{1}^{x}-p(K[1]) d K[1]\right)}{K[3]}\right. \\
& \left.\left.-\int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-p(K[1]) d K[1]\right) p(K[2])}{K[3]} d K[2]\right) d K[3]=c_{1}, y(x)\right]
\end{aligned}
$$

4.47 problem Problem 65

4.47.1 Existence and uniqueness analysis 1114
4.47.2 Solving as first order ode lie symmetry calculated ode 1115
4.47.3 Solving as exact ode . 1121

Internal problem ID [2711]
Internal file name [OUTPUT/2203_Sunday_June_05_2022_02_54_32_AM_48815743/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 65.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _dAlembert]
```

$$
-\frac{2 \ln (y)}{x}=-\frac{y^{\prime}}{y}+\frac{1-2 \ln (x)}{x}
$$

With initial conditions

$$
[y(1)=\mathrm{e}]
$$

4.47.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{y(2 \ln (x)-2 \ln (y)-1)}{x}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=\mathrm{e}$ is

$$
\{0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{0<y\}
$$

And the point $y_{0}=\mathrm{e}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y(2 \ln (x)-2 \ln (y)-1)}{x}\right) \\
& =-\frac{2 \ln (x)-2 \ln (y)-1}{x}+\frac{2}{x}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=\mathrm{e}$ is

$$
\{0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{0<y\}
$$

And the point $y_{0}=\mathrm{e}$ is inside this domain. Therefore solution exists and is unique.

4.47.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y(2 \ln (x)-2 \ln (y)-1)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y(2 \ln (x)-2 \ln (y)-1)\left(b_{3}-a_{2}\right)}{x}-\frac{y^{2}(2 \ln (x)-2 \ln (y)-1)^{2} a_{3}}{x^{2}} \\
& -\left(-\frac{2 y}{x^{2}}+\frac{y(2 \ln (x)-2 \ln (y)-1)}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2 \ln (x)-2 \ln (y)-1}{x}+\frac{2}{x}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{4 \ln (x)^{2} y^{2} a_{3}-8 \ln (x) \ln (y) y^{2} a_{3}+4 \ln (y)^{2} y^{2} a_{3}-2 \ln (x) x^{2} b_{2}-2 \ln (x) y^{2} a_{3}+2 \ln (y) x^{2} b_{2}+2 \ln (y)}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -4 \ln (x)^{2} y^{2} a_{3}+8 \ln (x) \ln (y) y^{2} a_{3}-4 \ln (y)^{2} y^{2} a_{3}+2 \ln (x) x^{2} b_{2} \tag{6E}\\
& +2 \ln (x) y^{2} a_{3}-2 \ln (y) x^{2} b_{2}-2 \ln (y) y^{2} a_{3}+2 \ln (x) x b_{1}-2 \ln (x) y a_{1} \\
& -2 \ln (y) x b_{1}+2 \ln (y) y a_{1}-2 b_{2} x^{2}+2 x y a_{2}-2 x y b_{3}+2 y^{2} a_{3}-3 x b_{1}+3 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \ln (x), \ln (y)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \ln (x)=v_{3}, \ln (y)=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -4 v_{3}^{2} v_{2}^{2} a_{3}+8 v_{3} v_{4} v_{2}^{2} a_{3}-4 v_{4}^{2} v_{2}^{2} a_{3}+2 v_{3} v_{2}^{2} a_{3}-2 v_{4} v_{2}^{2} a_{3} \tag{7E}\\
& +2 v_{3} v_{1}^{2} b_{2}-2 v_{4} v_{1}^{2} b_{2}-2 v_{3} v_{2} a_{1}+2 v_{4} v_{2} a_{1}+2 v_{1} v_{2} a_{2}+2 v_{2}^{2} a_{3} \\
& +2 v_{3} v_{1} b_{1}-2 v_{4} v_{1} b_{1}-2 b_{2} v_{1}^{2}-2 v_{1} v_{2} b_{3}+3 v_{2} a_{1}-3 v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 v_{3} v_{1}^{2} b_{2}-2 v_{4} v_{1}^{2} b_{2}-2 b_{2} v_{1}^{2}+\left(2 a_{2}-2 b_{3}\right) v_{1} v_{2}+2 v_{3} v_{1} b_{1} \tag{8E}\\
& \quad-2 v_{4} v_{1} b_{1}-3 v_{1} b_{1}-4 v_{3}^{2} v_{2}^{2} a_{3}+8 v_{3} v_{4} v_{2}^{2} a_{3}+2 v_{3} v_{2}^{2} a_{3}-4 v_{4}^{2} v_{2}^{2} a_{3} \\
& \quad-2 v_{4} v_{2}^{2} a_{3}+2 v_{2}^{2} a_{3}-2 v_{3} v_{2} a_{1}+2 v_{4} v_{2} a_{1}+3 v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
2 a_{1} & =0 \\
3 a_{1} & =0 \\
-4 a_{3} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
8 a_{3} & =0 \\
-3 b_{1} & =0 \\
-2 b_{1} & =0 \\
2 b_{1} & =0 \\
-2 b_{2} & =0 \\
2 b_{2} & =0 \\
2 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y(2 \ln (x)-2 \ln (y)-1)}{x}\right)(x) \\
& =2 \ln (x) y-2 \ln (y) y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{2 \ln (x) y-2 \ln (y) y} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (\ln (x)-\ln (y))}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(2 \ln (x)-2 \ln (y)-1)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{2 x(\ln (x)-\ln (y))} \\
S_{y} & =\frac{1}{2 y(\ln (x)-\ln (y))}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (\ln (x)-\ln (y))}{2}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{\ln (\ln (x)-\ln (y))}{2}=-\ln (x)+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\mathrm{e}^{-2 c_{1}} x^{2}} x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=\mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \mathrm{e}=\mathrm{e}^{-\mathrm{e}^{-2 c_{1}}} \\
& c_{1}=-\frac{i \pi}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x \mathrm{e}^{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x \mathrm{e}^{x^{2}}
$$

Verified OK.

4.47.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{2 \ln (y)}{x}+\frac{1-2 \ln (x)}{x}\right) \mathrm{d} x \\
\left(-\frac{2 \ln (y)}{x}-\frac{1-2 \ln (x)}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{2 \ln (y)}{x}-\frac{1-2 \ln (x)}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 \ln (y)}{x}-\frac{1-2 \ln (x)}{x}\right) \\
& =-\frac{2}{x y}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =y\left(\left(-\frac{2}{x y}\right)-(0)\right) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(-\frac{2 \ln (y)}{x}-\frac{1-2 \ln (x)}{x}\right) \\
& =\frac{2 \ln (x)-2 \ln (y)-1}{x^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}\left(\frac{1}{y}\right) \\
& =\frac{1}{x^{2} y}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{2 \ln (x)-2 \ln (y)-1}{x^{3}}\right)+\left(\frac{1}{x^{2} y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 \ln (x)-2 \ln (y)-1}{x^{3}} \mathrm{~d} x \\
\phi & =\frac{-\ln (x)+\ln (y)}{x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x^{2} y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x^{2} y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x^{2} y}=\frac{1}{x^{2} y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-\ln (x)+\ln (y)}{x^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-\ln (x)+\ln (y)}{x^{2}}
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1} x^{2}} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=\mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \mathrm{e}=\mathrm{e}^{c_{1}} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x \mathrm{e}^{x^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{x^{2}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 10
dsolve([diff $(y(x), x) / y(x)-2 / x * \ln (y(x))=1 / x *(1-2 * \ln (x)), y(1)=\exp (1)], y(x)$, singsol=all)

$$
y(x)=x \mathrm{e}^{x^{2}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.215 (sec). Leaf size: 12
DSolve $\left[\left\{y^{\prime}[x] / y[x]-2 / x * \log [y[x]]==1 / x *(1-2 * \log [x]),\{y[1]==\operatorname{Exp}[1]\}\right\}, y[x], x\right.$, IncludeSingularSol

$$
y(x) \rightarrow e^{x^{2}} x
$$

4.48 problem Problem 67

4.48.1 Solving as separable ode . 1127
4.48.2 Solving as first order ode lie symmetry lookup ode 1129
4.48.3 Solving as exact ode . 1133
4.48.4 Maple step by step solution . 1137

Internal problem ID [2712]
Internal file name [OUTPUT/2204_Sunday_June_05_2022_02_54_36_AM_5765779/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.8, Change of Variables. page 79
Problem number: Problem 67.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\sec (y)^{2} y^{\prime}+\frac{\tan (y)}{2 \sqrt{x+1}}=\frac{1}{2 \sqrt{x+1}}
$$

4.48.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{\cos (y)^{2}(\tan (y)-1)}{2 \sqrt{x+1}}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 \sqrt{x+1}}$ and $g(y)=\cos (y)^{2}(\tan (y)-1)$. Integrating both sides gives

$$
\frac{1}{\cos (y)^{2}(\tan (y)-1)} d y=-\frac{1}{2 \sqrt{x+1}} d x
$$

$$
\begin{aligned}
\int \frac{1}{\cos (y)^{2}(\tan (y)-1)} d y & =\int-\frac{1}{2 \sqrt{x+1}} d x \\
\ln (\tan (y)-1) & =-\sqrt{x+1}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\tan (y)-1=\mathrm{e}^{-\sqrt{x+1}+c_{1}}
$$

Which simplifies to

$$
\tan (y)-1=c_{2} \mathrm{e}^{-\sqrt{x+1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arctan \left(1+c_{2} \mathrm{e}^{-\sqrt{x+1}+c_{1}}\right) \tag{1}
\end{equation*}
$$

Figure 195: Slope field plot

Verification of solutions

$$
y=\arctan \left(1+c_{2} \mathrm{e}^{-\sqrt{x+1}+c_{1}}\right)
$$

Verified OK.

4.48.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\tan (y)-1}{2 \sec (y)^{2} \sqrt{x+1}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 159: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\underline{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}} \frac{a_{1} b_{1}-b_{2} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-2 \sqrt{x+1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-2 \sqrt{x+1}} d x
\end{aligned}
$$

Which results in

$$
S=-\sqrt{x+1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\tan (y)-1}{2 \sec (y)^{2} \sqrt{x+1}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{1}{2 \sqrt{x+1}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\sec (y)^{2}}{\tan (y)-1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\sec (R)^{2}}{\tan (R)-1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (\tan (R)-1)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\sqrt{x+1}=\ln (\tan (y)-1)+c_{1}
$$

Which simplifies to

$$
-\sqrt{x+1}=\ln (\tan (y)-1)+c_{1}
$$

Which gives

$$
y=\arctan \left(\mathrm{e}^{-\sqrt{x+1}-c_{1}}+1\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\tan (y)-1}{2 \sec (y)^{2} \sqrt{x+1}}$		$\frac{d S}{d R}=\frac{\sec (R)^{2}}{\tan (R)-1}$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$		
$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$		
$y(x), y+\infty$		
$\xrightarrow{+2, ~}$		
$\xrightarrow{+\rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow}$		
	$S=-\sqrt{x+1}$	
	$S=-\sqrt{x+1}$	
$\xrightarrow{+2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$		
$\xrightarrow{-1}$		
, $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$		
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 遇		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arctan \left(\mathrm{e}^{-\sqrt{x+1}-c_{1}}+1\right) \tag{1}
\end{equation*}
$$

Figure 196: Slope field plot
Verification of solutions

$$
y=\arctan \left(\mathrm{e}^{-\sqrt{x+1}-c_{1}}+1\right)
$$

Verified OK.

4.48.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} d y=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{2 \sec (y)^{2}}{\tan (y)-1}\right) \mathrm{d} y & =\left(\frac{1}{\sqrt{x+1}}\right) \mathrm{d} x \\
\left(-\frac{1}{\sqrt{x+1}}\right) \mathrm{d} x+\left(-\frac{2 \sec (y)^{2}}{\tan (y)-1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{\sqrt{x+1}} \\
& N(x, y)=-\frac{2 \sec (y)^{2}}{\tan (y)-1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{\sqrt{x+1}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{2 \sec (y)^{2}}{\tan (y)-1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{\sqrt{x+1}} \mathrm{~d} x \\
\phi & =-2 \sqrt{x+1}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{2 \sec (y)^{2}}{\tan (y)-1}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2 \sec (y)^{2}}{\tan (y)-1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{2 \sec (y)^{2}}{\tan (y)-1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{2 \sec (y)^{2}}{\tan (y)-1}\right) \mathrm{d} y \\
f(y) & =-2 \ln (\tan (y)-1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-2 \sqrt{x+1}-2 \ln (\tan (y)-1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-2 \sqrt{x+1}-2 \ln (\tan (y)-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-2 \sqrt{x+1}-2 \ln (\tan (y)-1)=c_{1} \tag{1}
\end{equation*}
$$

Figure 197: Slope field plot

Verification of solutions

$$
-2 \sqrt{x+1}-2 \ln (\tan (y)-1)=c_{1}
$$

Verified OK.

4.48.4 Maple step by step solution

Let's solve

$$
\sec (y)^{2} y^{\prime}+\frac{\tan (y)}{2 \sqrt{x+1}}=\frac{1}{2 \sqrt{x+1}}
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables
$\frac{y^{\prime} \sec (y)^{2}}{\tan (y)-1}=-\frac{1}{2 \sqrt{x+1}}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime} \sec (y)^{2}}{\tan (y)-1} d x=\int-\frac{1}{2 \sqrt{x+1}} d x+c_{1}$
- Evaluate integral
$\ln (\tan (y)-1)=-\sqrt{x+1}+c_{1}$
- \quad Solve for y
$y=\arctan \left(\mathrm{e}^{-\sqrt{x+1}+c_{1}}+1\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
dsolve $(\sec (y(x)) \wedge 2 * \operatorname{diff}(y(x), x)+1 /(2 * \operatorname{sqrt}(1+x)) * \tan (y(x))=1 /(2 * \operatorname{sqrt}(1+x)), y(x)$, singsol=all)

$$
y(x)=\arctan \left(\mathrm{e}^{-\sqrt{x+1}} c_{1}+1\right)
$$

\checkmark Solution by Mathematica
Time used: 60.288 (sec). Leaf size: 247
DSolve $\left[\operatorname{Sec}[y[x]]^{\wedge} 2 * y^{\prime}[x]+1 /(2 * \operatorname{Sqrt}[1+x]) * \operatorname{Tan}[y[x]]==1 /(2 * \operatorname{Sqrt}[1+x]), y[x], x\right.$, IncludeSingularSo

$$
\begin{aligned}
& y(x) \rightarrow-\arccos \left(-\frac{e^{\sqrt{x+1}+2 c_{1}}}{\sqrt{-2 e^{\sqrt{x+1}+2 c_{1}}+2 e^{2 \sqrt{x+1}+4 c_{1}}+1}}\right) \\
& y(x) \rightarrow \arccos \left(-\frac{e^{\sqrt{x+1}+2 c_{1}}}{\sqrt{-2 e^{\sqrt{x+1}+2 c_{1}}+2 e^{2 \sqrt{x+1}+4 c_{1}}+1}}\right) \\
& y(x) \rightarrow-\arccos \left(\frac{e^{\sqrt{x+1}+2 c_{1}}}{\sqrt{-2 e^{\sqrt{x+1}+2 c_{1}}+2 e^{2 \sqrt{x+1}+4 c_{1}}+1}}\right) \\
& y(x) \rightarrow \arccos \left(\frac{e^{\sqrt{x+1}+2 c_{1}}}{\sqrt{-2 e^{\sqrt{x+1}+2 c_{1}}+2 e^{2 \sqrt{x+1}+4 c_{1}}+1}}\right)
\end{aligned}
$$

5 Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page91
5.1 problem Problem 1 1140
5.2 problem Problem 2 1143
5.3 problem Problem 3 1149
5.4 problem Problem 4 1155
5.5 problem Problem 5 1161
5.6 problem Problem 6 1167
5.7 problem Problem 7 1173
5.8 problem Problem 8 1180
5.9 problem Problem 9 1187
5.10 problem Problem 10 1193
5.11 problem Problem 11 1199
5.12 problem Problem 12 1205

5.1 problem Problem 1

Internal problem ID [2713]
Internal file name [OUTPUT/2205_Sunday_June_05_2022_02_54_42_AM_86103940/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin.
Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
$\left[{ }^{\prime} x={ }_{-}\left(y, y^{\prime}\right)^{\prime}\right]$
Unable to solve or complete the solution.

$$
y \mathrm{e}^{y x}+\left(2 y-x \mathrm{e}^{y x}\right) y^{\prime}=0
$$

Unable to determine ODE type.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

```
dsolve(y(x)*exp(x*y(x))+(2*y(x)-x*exp(x*y(x)))*diff(y(x),x)=0,y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y[x] * \operatorname{Exp}[x * y[x]]+(2 * y[x]-x * \operatorname{Exp}[x * y[x]]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->~ T$

Not solved

5.2 problem Problem 2

5.2.1 Solving as exact ode . 1143
5.2.2 Maple step by step solution 1146

Internal problem ID [2714]
Internal file name [OUTPUT/2206_Sunday_June_05_2022_02_54_44_AM_7544482/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[[_homogeneous, `class G`], _exact]

$$
\cos (y x)-x y \sin (y x)-x^{2} \sin (y x) y^{\prime}=0
$$

5.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x^{2} \sin (x y)\right) \mathrm{d} y & =(-\cos (x y)+x y \sin (x y)) \mathrm{d} x \\
(-x y \sin (x y)+\cos (x y)) \mathrm{d} x+\left(-x^{2} \sin (x y)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x y \sin (x y)+\cos (x y) \\
N(x, y) & =-x^{2} \sin (x y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x y \sin (x y)+\cos (x y)) \\
& =-x(y \cos (x y) x+2 \sin (x y))
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x^{2} \sin (x y)\right) \\
& =-x(y \cos (x y) x+2 \sin (x y))
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x y \sin (x y)+\cos (x y) \mathrm{d} x \\
\phi & =x \cos (x y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x^{2} \sin (x y)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-x^{2} \sin (x y)$. Therefore equation (4) becomes

$$
\begin{equation*}
-x^{2} \sin (x y)=-x^{2} \sin (x y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x \cos (x y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x \cos (x y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x \cos (y x)=c_{1} \tag{1}
\end{equation*}
$$

Figure 198: Slope field plot

Verification of solutions

$$
x \cos (y x)=c_{1}
$$

Verified OK.

5.2.2 Maple step by step solution

Let's solve

$$
\cos (y x)-x y \sin (y x)-x^{2} \sin (y x) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
\square
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$-2 x \sin (x y)-x^{2} y \cos (x y)=-2 x \sin (x y)-x^{2} y \cos (x y)$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(-x y \sin (x y)+\cos (x y)) d x+f_{1}(y)
$$

- \quad Evaluate integral

$$
F(x, y)=-\frac{\sin (x y)-y \cos (x y) x}{y}+\frac{\sin (x y)}{y}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
-x^{2} \sin (x y)=\frac{\sin (x y)-y \cos (x y) x}{y^{2}}-x^{2} \sin (x y)-\frac{\sin (x y)}{y^{2}}+\frac{x \cos (x y)}{y}+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=-\frac{\sin (x y)-y \cos (x y) x}{y^{2}}+\frac{\sin (x y)}{y^{2}}-\frac{x \cos (x y)}{y}
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=0
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=-\frac{\sin (x y)-y \cos (x y) x}{y}+\frac{\sin (x y)}{y}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
-\frac{\sin (x y)-y \cos (x y) x}{y}+\frac{\sin (x y)}{y}=c_{1}
$$

- \quad Solve for y
$y=\frac{\arccos \left(\frac{c_{1}}{x}\right)}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve $\left((\cos (x * y(x))-x * y(x) * \sin (x * y(x)))-x^{\wedge} 2 * \sin (x * y(x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad\right.$ singsol $\left.=a l l\right)$

$$
y(x)=\frac{\arccos \left(\frac{c_{1}}{x}\right)}{x}
$$

\checkmark Solution by Mathematica
Time used: 5.673 (sec). Leaf size: 34
DSolve $\left[(\operatorname{Cos}[x * y[x]]-x * y[x] * \operatorname{Sin}[x * y[x]])-x^{\wedge} 2 * \operatorname{Sin}[x * y[x]] * y '[x]==0, y[x], x\right.$, IncludeSingularSolut

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\arccos \left(-\frac{c_{1}}{x}\right)}{x} \\
& y(x) \rightarrow \frac{\arccos \left(-\frac{c_{1}}{x}\right)}{x}
\end{aligned}
$$

5.3 problem Problem 3

5.3.1 Solving as exact ode
5.3.2 Maple step by step solution 1153

Internal problem ID [2715]
Internal file name [OUTPUT/2207_Sunday_June_05_2022_02_54_48_AM_75051852/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_linear]

$$
y+x y^{\prime}=-3 x^{2}
$$

5.3.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-3 x^{2}-y\right) \mathrm{d} x \\
\left(3 x^{2}+y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x^{2}+y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x^{2}+y\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x^{2}+y \mathrm{~d} x \\
\phi & =x\left(x^{2}+y\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x$. Therefore equation (4) becomes

$$
\begin{equation*}
x=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x\left(x^{2}+y\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x\left(x^{2}+y\right)
$$

The solution becomes

$$
y=\frac{-x^{3}+c_{1}}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-x^{3}+c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 199: Slope field plot

Verification of solutions

$$
y=\frac{-x^{3}+c_{1}}{x}
$$

Verified OK.

5.3.2 Maple step by step solution

Let's solve
$y+x y^{\prime}=-3 x^{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x}-3 x$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{x}=-3 x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=-3 \mu(x) x$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int-3 \mu(x) x d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int-3 \mu(x) x d x+c_{1}$
- \quad Solve for y
$y=\frac{\int-3 \mu(x) x d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x$
$y=\frac{\int-3 x^{2} d x+c_{1}}{x}$
- Evaluate the integrals on the rhs
$y=\frac{-x^{3}+c_{1}}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve((y(x)+3*x^2)+x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{-x^{3}+c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 17
DSolve[($\left.\mathrm{y}[\mathrm{x}]+3 * \mathrm{x}^{\wedge} 2\right)+\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{-x^{3}+c_{1}}{x}
$$

5.4 problem Problem 4

5.4.1 Solving as exact ode . 1155
5.4.2 Maple step by step solution . 1159

Internal problem ID [2716]
Internal file name [OUTPUT/2208_Sunday_June_05_2022_02_54_50_AM_5743854/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
```

$$
2 x \mathrm{e}^{y}+\left(3 y^{2}+x^{2} \mathrm{e}^{y}\right) y^{\prime}=0
$$

5.4.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(3 y^{2}+x^{2} \mathrm{e}^{y}\right) \mathrm{d} y & =\left(-2 x \mathrm{e}^{y}\right) \mathrm{d} x \\
\left(2 x \mathrm{e}^{y}\right) \mathrm{d} x+\left(3 y^{2}+x^{2} \mathrm{e}^{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x \mathrm{e}^{y} \\
N(x, y) & =3 y^{2}+x^{2} \mathrm{e}^{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x \mathrm{e}^{y}\right) \\
& =2 x \mathrm{e}^{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 y^{2}+x^{2} \mathrm{e}^{y}\right) \\
& =2 x \mathrm{e}^{y}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x \mathrm{e}^{y} \mathrm{~d} x \\
\phi & =x^{2} \mathrm{e}^{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2} \mathrm{e}^{y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 y^{2}+x^{2} \mathrm{e}^{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
3 y^{2}+x^{2} \mathrm{e}^{y}=x^{2} \mathrm{e}^{y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=3 y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(3 y^{2}\right) \mathrm{d} y \\
f(y) & =y^{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{2} \mathrm{e}^{y}+y^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{2} \mathrm{e}^{y}+y^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{2} \mathrm{e}^{y}+y^{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 200: Slope field plot

Verification of solutions

$$
x^{2} \mathrm{e}^{y}+y^{3}=c_{1}
$$

Verified OK.

5.4.2 Maple step by step solution

Let's solve
$2 x \mathrm{e}^{y}+\left(3 y^{2}+x^{2} \mathrm{e}^{y}\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$2 x \mathrm{e}^{y}=2 x \mathrm{e}^{y}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int 2 x \mathrm{e}^{y} d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=x^{2} \mathrm{e}^{y}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$3 y^{2}+x^{2} \mathrm{e}^{y}=x^{2} \mathrm{e}^{y}+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=3 y^{2}$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=y^{3}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x^{2} \mathrm{e}^{y}+y^{3}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{2} \mathrm{e}^{y}+y^{3}=c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{Root} O f\left(-\mathrm{e}^{Z} x^{2}-_Z^{3}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(2*x*exp(y(x))+(3*y(x)^ 2+x^2*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
x^{2} \mathrm{e}^{y(x)}+y(x)^{3}+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.258 (sec). Leaf size: 19
DSolve $\left[2 * x * \operatorname{Exp}[y[x]]+\left(3 * y[x] \sim 2+x^{\wedge} 2 * \operatorname{Exp}[y[x]]\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $\rightarrow T r$

$$
\text { Solve }\left[x^{2} e^{y(x)}+y(x)^{3}=c_{1}, y(x)\right]
$$

5.5 problem Problem 5

5.5.1 Solving as exact ode
5.5.2 Maple step by step solution 1165

Internal problem ID [2717]
Internal file name [OUTPUT/2209_Sunday_June_05_2022_02_54_54_AM_50811869/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_separable]

$$
2 y x+\left(x^{2}+1\right) y^{\prime}=0
$$

5.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{2 y}\right) \mathrm{d} y & =\left(\frac{x}{x^{2}+1}\right) \mathrm{d} x \\
\left(-\frac{x}{x^{2}+1}\right) \mathrm{d} x+\left(-\frac{1}{2 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x}{x^{2}+1} \\
N(x, y) & =-\frac{1}{2 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{2 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x^{2}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{2}+1\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{2 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{2 y}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{2}+1\right)}{2}-\frac{\ln (y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{2}+1\right)}{2}-\frac{\ln (y)}{2}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}+1} \tag{1}
\end{equation*}
$$

Figure 201: Slope field plot
Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}+1}
$$

Verified OK.

5.5.2 Maple step by step solution

Let's solve

$$
2 y x+\left(x^{2}+1\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int\left(2 y x+\left(x^{2}+1\right) y^{\prime}\right) d x=\int 0 d x+c_{1}
$$

- Evaluate integral
$\left(x^{2}+1\right) y=c_{1}$
- \quad Solve for y

$$
y=\frac{c_{1}}{x^{2}+1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(2*x*y(x)+(x^2+1)*diff (y (x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1}}{x^{2}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 20
DSolve[2*x*y[x]+(x~2+1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{c_{1}}{x^{2}+1} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.6 problem Problem 6

5.6.1 Solving as exact ode . 1167
5.6.2 Maple step by step solution . 1170

Internal problem ID [2718]
Internal file name [OUTPUT/2210_Sunday_June_05_2022_02_54_55_AM_25370470/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _exact, _rational, _Bernoulli]
```

$$
y^{2}+2 x y y^{\prime}=2 x
$$

5.6.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x y) \mathrm{d} y & =\left(-y^{2}+2 x\right) \mathrm{d} x \\
\left(y^{2}-2 x\right) \mathrm{d} x+(2 x y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{2}-2 x \\
N(x, y) & =2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-2 x\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x y) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2}-2 x \mathrm{~d} x \\
\phi & =x y^{2}-x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 x y$. Therefore equation (4) becomes

$$
\begin{equation*}
2 x y=2 x y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x y^{2}-x^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x y^{2}-x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{2} x-x^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 202: Slope field plot

Verification of solutions

$$
y^{2} x-x^{2}=c_{1}
$$

Verified OK.

5.6.2 Maple step by step solution

Let's solve

$$
y^{2}+2 x y y^{\prime}=2 x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
2 y=2 y
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(y^{2}-2 x\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=x y^{2}-x^{2}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
2 x y=2 x y+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=x y^{2}-x^{2}$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x y^{2}-x^{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{x\left(x^{2}+c_{1}\right)}}{x}, y=-\frac{\sqrt{x\left(x^{2}+c_{1}\right)}}{x}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
dsolve((y(x)^2-2*x)+2*x*y(x)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\sqrt{x\left(x^{2}+c_{1}\right)}}{x} \\
& y(x)=-\frac{\sqrt{x\left(x^{2}+c_{1}\right)}}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.207 (sec). Leaf size: 42
DSolve[(y[x] $2-2 * x)+2 * x * y[x] * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{x^{2}+c_{1}}}{\sqrt{x}} \\
& y(x) \rightarrow \frac{\sqrt{x^{2}+c_{1}}}{\sqrt{x}}
\end{aligned}
$$

5.7 problem Problem 7

5.7.1 Solving as exact ode 1173
5.7.2 Maple step by step solution 1177

Internal problem ID [2719]
Internal file name [OUTPUT/2211_Sunday_June_05_2022_02_54_58_AM_62966589/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact, [_1st_order, ` _with_symmetry_[F(x),G(x)]`]]
```

$$
2 y x-y^{2}+(-y+x)^{2} y^{\prime}=-4 \mathrm{e}^{2 x}
$$

5.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left((-y+x)^{2}\right) \mathrm{d} y & =\left(-4 \mathrm{e}^{2 x}-2 x y+y^{2}\right) \mathrm{d} x \\
\left(2 x y-y^{2}+4 \mathrm{e}^{2 x}\right) \mathrm{d} x+\left((-y+x)^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y-y^{2}+4 \mathrm{e}^{2 x} \\
N(x, y) & =(-y+x)^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y-y^{2}+4 \mathrm{e}^{2 x}\right) \\
& =2 x-2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left((-y+x)^{2}\right) \\
& =2 x-2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y-y^{2}+4 \mathrm{e}^{2 x} \mathrm{~d} x \\
\phi & =x^{2} y-x y^{2}+2 \mathrm{e}^{2 x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =x^{2}-2 x y+f^{\prime}(y) \tag{4}\\
& =x(x-2 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=(-y+x)^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
(-y+x)^{2}=x(x-2 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{2}\right) \mathrm{d} y \\
f(y) & =\frac{y^{3}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{2} y-x y^{2}+2 \mathrm{e}^{2 x}+\frac{y^{3}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{2} y-x y^{2}+2 \mathrm{e}^{2 x}+\frac{y^{3}}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x^{2} y-y^{2} x+2 \mathrm{e}^{2 x}+\frac{y^{3}}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 203: Slope field plot

Verification of solutions

$$
x^{2} y-y^{2} x+2 \mathrm{e}^{2 x}+\frac{y^{3}}{3}=c_{1}
$$

Verified OK.

5.7.2 Maple step by step solution

Let's solve

$$
2 y x-y^{2}+(-y+x)^{2} y^{\prime}=-4 \mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

$\square \quad$ Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$2 x-2 y=2 x-2 y$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(2 x y-y^{2}+4 \mathrm{e}^{2 x}\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=x^{2} y-x y^{2}+2 \mathrm{e}^{2 x}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$(-y+x)^{2}=x^{2}-2 x y+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=(-y+x)^{2}-x^{2}+2 x y$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\frac{y^{3}}{3}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x^{2} y-x y^{2}+2 \mathrm{e}^{2 x}+\frac{y^{3}}{3}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{2} y-x y^{2}+2 \mathrm{e}^{2 x}+\frac{y^{3}}{3}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\left(-x^{3}-6 \mathrm{e}^{2 x}+3 c_{1}\right)^{\frac{1}{3}}+x, y=-\frac{\left(-x^{3}-6 \mathrm{e}^{2 x}+3 c_{1}\right)^{\frac{1}{3}}}{2}-\frac{\mathrm{I} \sqrt{3}\left(-x^{3}-6 \mathrm{e}^{2 x}+3 c_{1}\right)^{\frac{1}{3}}}{2}+x, y=-\frac{\left(-x^{3}-6 \mathrm{e}^{2 x}+\right.}{2}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```


Solution by Maple

Time used: 0.015 (sec). Leaf size: 117
dsolve($(4 * \exp (2 * x)+2 * x * y(x)-y(x) \wedge 2)+(x-y(x)) \wedge 2 * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\left(-x^{3}-6 \mathrm{e}^{2 x}-3 c_{1}\right)^{\frac{1}{3}}+x \\
& y(x)=-\frac{\left(-x^{3}-6 \mathrm{e}^{2 x}-3 c_{1}\right)^{\frac{1}{3}}}{2}-\frac{i \sqrt{3}\left(-x^{3}-6 \mathrm{e}^{2 x}-3 c_{1}\right)^{\frac{1}{3}}}{2}+x \\
& y(x)=-\frac{\left(-x^{3}-6 \mathrm{e}^{2 x}-3 c_{1}\right)^{\frac{1}{3}}}{2}+\frac{i \sqrt{3}\left(-x^{3}-6 \mathrm{e}^{2 x}-3 c_{1}\right)^{\frac{1}{3}}}{2}+x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.472 (sec). Leaf size: 112
DSolve $[(4 * \operatorname{Exp}[2 * x]+2 * x * y[x]-y[x] \sim 2)+(x-y[x]) \sim 2 * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow T

$$
\begin{aligned}
& y(x) \rightarrow x+\sqrt[3]{-x^{3}-6 e^{2 x}+3 c_{1}} \\
& y(x) \rightarrow x+\frac{1}{2} i(\sqrt{3}+i) \sqrt[3]{-x^{3}-6 e^{2 x}+3 c_{1}} \\
& y(x) \rightarrow x-\frac{1}{2}(1+i \sqrt{3}) \sqrt[3]{-x^{3}-6 e^{2 x}+3 c_{1}}
\end{aligned}
$$

5.8 problem Problem 8

5.8.1 Solving as exact ode
5.8.2 Maple step by step solution 1184

Internal problem ID [2720]
Internal file name [OUTPUT/2212_Sunday_June_05_2022_02_55_00_AM_89385217/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, _Riccati]
```

$$
-\frac{y}{y^{2}+x^{2}}+\frac{x y^{\prime}}{y^{2}+x^{2}}=-\frac{1}{x}
$$

5.8.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{1}{x}+\frac{y}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{1}{x}-\frac{y}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(\frac{x}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{1}{x}-\frac{y}{x^{2}+y^{2}} \\
& N(x, y)=\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{1}{x}-\frac{y}{x^{2}+y^{2}}\right) \\
& =\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right) \\
& =\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{1}{x}-\frac{y}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =\ln (x)-\arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}\\
& =\frac{x}{x^{2}+y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x}{x^{2}+y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (x)-\arctan \left(\frac{x}{y}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (x)-\arctan \left(\frac{x}{y}\right)
$$

The solution becomes

$$
y=-\frac{x}{\tan \left(-\ln (x)+c_{1}\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{\tan \left(-\ln (x)+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 204: Slope field plot

Verification of solutions

$$
y=-\frac{x}{\tan \left(-\ln (x)+c_{1}\right)}
$$

Verified OK.

5.8.2 Maple step by step solution

Let's solve

$$
-\frac{y}{y^{2}+x^{2}}+\frac{x y^{\prime}}{y^{2}+x^{2}}=-\frac{1}{x}
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
-\frac{1}{x^{2}+y^{2}}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{1}{x^{2}+y^{2}}
$$

- Simplify

$$
\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(\frac{1}{x}-\frac{y}{x^{2}+y^{2}}\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\ln (x)-\arctan \left(\frac{x}{y}\right)+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative

$$
\frac{x}{x^{2}+y^{2}}=\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=\frac{x}{x^{2}+y^{2}}-\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=0
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\ln (x)-\arctan \left(\frac{x}{y}\right)
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\ln (x)-\arctan \left(\frac{x}{y}\right)=c_{1}
$$

- \quad Solve for y

$$
y=-\frac{x}{\tan \left(-\ln (x)+c_{1}\right)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12
dsolve $\left(\left(1 / x-y(x) /\left(x^{\wedge} 2+y(x) \wedge 2\right)\right)+x /\left(x^{\wedge} 2+y(x) \wedge 2\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
y(x)=-\tan \left(\ln (x)+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.205 (sec). Leaf size: 15
DSolve $\left[\left(1 / x-y[x] /\left(x^{\wedge} 2+y[x] \sim 2\right)\right)+x /\left(x^{\wedge} 2+y[x] \sim 2\right) * y y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $\rightarrow T r$

$$
y(x) \rightarrow x \tan \left(-\log (x)+c_{1}\right)
$$

5.9 problem Problem 9

5.9.1 Solving as exact ode . 1187
5.9.2 Maple step by step solution . 1190

Internal problem ID [2721]
Internal file name [OUTPUT/2213_Sunday_June_05_2022_02_55_02_AM_44629639/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact, [_1st_order, ` _with_symmetry_[F(x),G(x)*y+H(x)]`]]
```

$$
y \cos (y x)+x \cos (y x) y^{\prime}=\sin (x)
$$

5.9.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x \cos (x y)) \mathrm{d} y & =(-y \cos (x y)+\sin (x)) \mathrm{d} x \\
(y \cos (x y)-\sin (x)) \mathrm{d} x+(x \cos (x y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \cos (x y)-\sin (x) \\
N(x, y) & =x \cos (x y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y \cos (x y)-\sin (x)) \\
& =-x y \sin (x y)+\cos (x y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x \cos (x y)) \\
& =-x y \sin (x y)+\cos (x y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y \cos (x y)-\sin (x) \mathrm{d} x \\
\phi & =\sin (x y)+\cos (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x \cos (x y)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x \cos (x y)$. Therefore equation (4) becomes

$$
\begin{equation*}
x \cos (x y)=x \cos (x y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\sin (x y)+\cos (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sin (x y)+\cos (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sin (y x)+\cos (x)=c_{1} \tag{1}
\end{equation*}
$$

Figure 205: Slope field plot

Verification of solutions

$$
\sin (y x)+\cos (x)=c_{1}
$$

Verified OK.

5.9.2 Maple step by step solution

Let's solve

$$
y \cos (y x)+x \cos (y x) y^{\prime}=\sin (x)
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
-x y \sin (x y)+\cos (x y)=-x y \sin (x y)+\cos (x y)
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(y \cos (x y)-\sin (x)) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\sin (x y)+\cos (x)+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
x \cos (x y)=x \cos (x y)+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=\sin (x y)+\cos (x)$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\sin (x y)+\cos (x)=c_{1}
$$

- \quad Solve for y
$y=\frac{\arcsin \left(-\cos (x)+c_{1}\right)}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve((y(x)*\operatorname{cos}(x*y(x))-\operatorname{sin}(\textrm{x}))+x*\operatorname{cos}(x*y(x))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=-\frac{\arcsin \left(\cos (x)+c_{1}\right)}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.628 (sec). Leaf size: 17
DSolve $\left[(y[x] * \operatorname{Cos}[x * y[x]]-\operatorname{Sin}[x])+x * \operatorname{Cos}[x * y[x]] * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ T

$$
y(x) \rightarrow \frac{\arcsin \left(-\cos (x)+c_{1}\right)}{x}
$$

5.10 problem Problem 10

5.10.1 Solving as exact ode . 1193
5.10.2 Maple step by step solution . 1196

Internal problem ID [2722]
Internal file name [OUTPUT/2214_Sunday_June_05_2022_02_55_05_AM_93691168/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, _Bernoulli]

$$
2 y^{2} \mathrm{e}^{2 x}+2 y \mathrm{e}^{2 x} y^{\prime}=-3 x^{2}
$$

5.10.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 \mathrm{e}^{2 x} y\right) \mathrm{d} y & =\left(-2 y^{2} \mathrm{e}^{2 x}-3 x^{2}\right) \mathrm{d} x \\
\left(2 y^{2} \mathrm{e}^{2 x}+3 x^{2}\right) \mathrm{d} x+\left(2 \mathrm{e}^{2 x} y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y^{2} \mathrm{e}^{2 x}+3 x^{2} \\
N(x, y) & =2 \mathrm{e}^{2 x} y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y^{2} \mathrm{e}^{2 x}+3 x^{2}\right) \\
& =4 \mathrm{e}^{2 x} y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 \mathrm{e}^{2 x} y\right) \\
& =4 \mathrm{e}^{2 x} y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 y^{2} \mathrm{e}^{2 x}+3 x^{2} \mathrm{~d} x \\
\phi & =x^{3}+y^{2} \mathrm{e}^{2 x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{2 x} y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{2 x} y$. Therefore equation (4) becomes

$$
\begin{equation*}
2 \mathrm{e}^{2 x} y=2 \mathrm{e}^{2 x} y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{3}+y^{2} \mathrm{e}^{2 x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{3}+y^{2} \mathrm{e}^{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{3}+y^{2} \mathrm{e}^{2 x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 206: Slope field plot
$\underline{\text { Verification of solutions }}$

$$
x^{3}+y^{2} \mathrm{e}^{2 x}=c_{1}
$$

Verified OK.

5.10.2 Maple step by step solution

Let's solve

$$
2 y^{2} \mathrm{e}^{2 x}+2 y \mathrm{e}^{2 x} y^{\prime}=-3 x^{2}
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$4 \mathrm{e}^{2 x} y=4 \mathrm{e}^{2 x} y$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(2 y^{2} \mathrm{e}^{2 x}+3 x^{2}\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=x^{3}+y^{2} \mathrm{e}^{2 x}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
2 \mathrm{e}^{2 x} y=2 \mathrm{e}^{2 x} y+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x^{3}+y^{2} \mathrm{e}^{2 x}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{3}+y^{2} \mathrm{e}^{2 x}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{\mathrm{e}^{2 x}\left(-x^{3}+c_{1}\right)}}{\mathrm{e}^{2 x}}, y=-\frac{\sqrt{\mathrm{e}^{2 x}\left(-x^{3}+c_{1}\right)}}{\mathrm{e}^{2 x}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 46

```
dsolve((2*y(x)^2*exp (2*x)+3*x^2)+2*y(x)*exp (2*x)*diff(y(x), x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\mathrm{e}^{-2 x} \sqrt{\mathrm{e}^{2 x}\left(-x^{3}+c_{1}\right)} \\
& y(x)=-\mathrm{e}^{-2 x} \sqrt{\mathrm{e}^{2 x}\left(-x^{3}+c_{1}\right)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 7.702 (sec). Leaf size: 47
DSolve $\left[\left(2 * y[x] \sim 2 * \operatorname{Exp}[2 * x]+3 * x^{\wedge} 2\right)+2 * y[x] * \operatorname{Exp}[2 * x] * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{e^{-2 x}\left(-x^{3}+c_{1}\right)} \\
& y(x) \rightarrow \sqrt{e^{-2 x}\left(-x^{3}+c_{1}\right)}
\end{aligned}
$$

5.11 problem Problem 11

> 5.11.1 Solving as exact ode . 1199 5.11.2 Maple step by step solution . 1203

Internal problem ID [2723]
Internal file name [OUTPUT/2215_Sunday_June_05_2022_02_55_07_AM_95970603/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
y^{2}+(2 y x+\sin (y)) y^{\prime}=-\cos (x)
$$

5.11.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x y+\sin (y)) \mathrm{d} y & =\left(-y^{2}-\cos (x)\right) \mathrm{d} x \\
\left(y^{2}+\cos (x)\right) \mathrm{d} x+(2 x y+\sin (y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{2}+\cos (x) \\
N(x, y) & =2 x y+\sin (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}+\cos (x)\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x y+\sin (y)) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2}+\cos (x) \mathrm{d} x \\
\phi & =x y^{2}+\sin (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 x y+\sin (y)$. Therefore equation (4) becomes

$$
\begin{equation*}
2 x y+\sin (y)=2 x y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\sin (y)
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(\sin (y)) \mathrm{d} y \\
f(y) & =-\cos (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x y^{2}+\sin (x)-\cos (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x y^{2}+\sin (x)-\cos (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{2} x+\sin (x)-\cos (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 207: Slope field plot

Verification of solutions

$$
y^{2} x+\sin (x)-\cos (y)=c_{1}
$$

Verified OK.

5.11.2 Maple step by step solution

Let's solve
$y^{2}+(2 y x+\sin (y)) y^{\prime}=-\cos (x)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$2 y=2 y$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(y^{2}+\cos (x)\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=x y^{2}+\sin (x)+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$2 x y+\sin (y)=2 x y+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=\sin (y)$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-\cos (y)$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x y^{2}+\sin (x)-\cos (y)
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x y^{2}+\sin (x)-\cos (y)=c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{Root} O f\left(-x _Z^{2}+c_{1}+\cos \left(_Z\right)-\sin (x)\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 18

```
dsolve((y(x)~2+cos(x))+(2*x*y(x)+\operatorname{sin}(y(x)))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
x y(x)^{2}+\sin (x)-\cos (y(x))+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.227 (sec). Leaf size: 20
DSolve $\left[\left(y[x]{ }^{\wedge} 2+\operatorname{Cos}[x]\right)+(2 * x * y[x]+\operatorname{Sin}[y[x]]) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

Solve $\left[x y(x)^{2}-\cos (y(x))+\sin (x)=c_{1}, y(x)\right]$

5.12 problem Problem 12

5.12.1 Solving as exact ode . 1205
5.12.2 Maple step by step solution 1208

Internal problem ID [2724]
Internal file name [OUTPUT/2216_Sunday_June_05_2022_02_55_11_AM_23277851/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 1, First-Order Differential Equations. Section 1.9, Exact Differential Equations. page 91
Problem number: Problem 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
\sin (y)+\cos (x) y+(x \cos (y)+\sin (x)) y^{\prime}=0
$$

5.12.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x \cos (y)+\sin (x)) \mathrm{d} y & =(-\cos (x) y-\sin (y)) \mathrm{d} x \\
(\sin (y)+\cos (x) y) \mathrm{d} x+(x \cos (y)+\sin (x)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\sin (y)+\cos (x) y \\
N(x, y) & =x \cos (y)+\sin (x)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(\sin (y)+\cos (x) y) \\
& =\cos (y)+\cos (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x \cos (y)+\sin (x)) \\
& =\cos (y)+\cos (x)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \sin (y)+\cos (x) y \mathrm{~d} x \\
\phi & =\sin (x) y+x \sin (y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x \cos (y)+\sin (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x \cos (y)+\sin (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
x \cos (y)+\sin (x)=x \cos (y)+\sin (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\sin (x) y+x \sin (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sin (x) y+x \sin (y)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y \sin (x)+x \sin (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 208: Slope field plot

Verification of solutions

$$
y \sin (x)+x \sin (y)=c_{1}
$$

Verified OK.

5.12.2 Maple step by step solution

Let's solve

$$
\sin (y)+\cos (x) y+(x \cos (y)+\sin (x)) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$\cos (y)+\cos (x)=\cos (y)+\cos (x)$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(\sin (y)+\cos (x) y) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=\sin (x) y+x \sin (y)+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$x \cos (y)+\sin (x)=\sin (x)+x \cos (y)+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=\sin (x) y+x \sin (y)$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\sin (x) y+x \sin (y)=c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{RootOf}\left(-_Z \sin (x)-x \sin \left(_Z\right)+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 15
dsolve $((\sin (y(x))+y(x) * \cos (x))+(x * \cos (y(x))+\sin (x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
y(x) \sin (x)+x \sin (y(x))+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 17
DSolve $[(\operatorname{Sin}[y[x]]+y[x] * \operatorname{Cos}[x])+(x * \operatorname{Cos}[y[x]]+\operatorname{Sin}[x]) * y \cdot[x]==0, y[x], x$, IncludeSingularSolutions

$$
\text { Solve }\left[x \sin (y(x))+y(x) \sin (x)=c_{1}, y(x)\right]
$$

6 Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
6.1 problem Problem 23 1212
6.2 problem Problem 24 1220
6.3 problem Problem 25 1228
6.4 problem Problem 26 1238
6.5 problem Problem 27 1252
6.6 problem Problem 28 1257
6.7 problem Problem 29 1262
6.8 problem Problem 30 1267
6.9 problem Problem 31 1272
6.10 problem Problem 32 1277
6.11 problem Problem 33 1283
6.12 problem Problem 34 1289
6.13 problem Problem 35 1303
6.14 problem Problem 36 1325
6.15 problem Problem 37 1332
6.16 problem Problem 38 1339
6.17 problem Problem 39 1350
6.18 problem Problem 40 1361
6.19 problem Problem 41 1369
6.20 problem Problem 42 1377

6.1 problem Problem 23

6.1.1 Solving as second order linear constant coeff ode 1212
6.1.2 Solving using Kovacic algorithm 1214
6.1.3 Maple step by step solution . 1218

Internal problem ID [2725]
Internal file name [OUTPUT/2217_Sunday_June_05_2022_02_55_15_AM_7655955/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

6.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=-3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda-3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=-3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(-3)} \\
& =1 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+2 \\
& \lambda_{2}=1-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 209: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

6.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 173: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{3 x}}{4} \tag{1}
\end{equation*}
$$

Figure 210: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{3 x}}{4}
$$

Verified OK.

6.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}-2 r-3=0$
- Factor the characteristic polynomial

$$
(r+1)(r-3)=0
$$

- Roots of the characteristic polynomial
$r=(-1,3)$
- \quad 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{3 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)-3 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{-x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 22
DSolve[y''[x]-2*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-x}\left(c_{2} e^{4 x}+c_{1}\right)
$$

6.2 problem Problem 24

6.2.1 Solving as second order linear constant coeff ode 1220
6.2.2 Solving using Kovacic algorithm 1222
6.2.3 Maple step by step solution . 1226

Internal problem ID [2726]
Internal file name [OUTPUT/2218_Sunday_June_05_2022_02_55_16_AM_57616816/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+7 y^{\prime}+10 y=0
$$

6.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=7, C=10$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+7 \lambda \mathrm{e}^{\lambda x}+10 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+7 \lambda+10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=7, C=10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-7}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{7^{2}-(4)(1)(10)} \\
& =-\frac{7}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{7}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{7}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2 \\
\lambda_{2}=-5
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-2) x}+c_{2} e^{(-5) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-5 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-5 x} \tag{1}
\end{equation*}
$$

Figure 211: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-5 x}
$$

Verified OK.

6.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+7 y^{\prime}+10 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=7 \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 175: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{17}{2} d x} \\
& =z_{1} e^{-\frac{7 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{7 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-5 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{7}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-7 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{-2 x}}{3} \tag{1}
\end{equation*}
$$

Figure 212: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{-2 x}}{3}
$$

Verified OK.

6.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+7 y^{\prime}+10 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+7 r+10=0
$$

- Factor the characteristic polynomial

$$
(r+5)(r+2)=0
$$

- Roots of the characteristic polynomial
$r=(-5,-2)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-5 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{-2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{-2 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve($\operatorname{diff}(y(x), x \$ 2)+7 * \operatorname{diff}(y(x), x)+10 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-5 x} c_{1}+\mathrm{e}^{-2 x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 22
DSolve[y'' $[x]+7 * y$ ' $[x]+10 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-5 x}\left(c_{2} e^{3 x}+c_{1}\right)
$$

6.3 problem Problem 25

6.3.1 Solving as second order linear constant coeff ode 1228

6.3.2 Solving as second order ode can be made integrable ode 1230
6.3.3 Solving using Kovacic algorithm 1232
6.3.4 Maple step by step solution . 1236

Internal problem ID [2727]
Internal file name [OUTPUT/2219_Sunday_June_05_2022_02_55_18_AM_29793156/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"
Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-36 y=0
$$

6.3.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-36$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-36 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-36=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-36$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-36)} \\
& = \pm 6
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+6 \\
& \lambda_{2}=-6
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=6 \\
& \lambda_{2}=-6
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(6) x}+c_{2} e^{(-6) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{6 x} c_{1}+c_{2} \mathrm{e}^{-6 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{6 x} c_{1}+c_{2} \mathrm{e}^{-6 x} \tag{1}
\end{equation*}
$$

Figure 213: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{6 x} c_{1}+c_{2} \mathrm{e}^{-6 x}
$$

Verified OK.

6.3.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-36 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-36 y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-18 y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{36 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{36 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{36 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\ln \left(y \sqrt{36}+\sqrt{36 y^{2}+2 c_{1}}\right) \sqrt{36}}{36} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(y \sqrt{36}+\sqrt{36 y^{2}+2 c_{1}}\right) \sqrt{36}}{36}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(6 y+\sqrt{36 y^{2}+2 c_{1}}\right)^{\frac{1}{6}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{36 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\ln \left(y \sqrt{36}+\sqrt{36 y^{2}+2 c_{1}}\right) \sqrt{36}}{36} & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln \left(y \sqrt{36}+\sqrt{36 y^{2}+2 c_{1}}\right) \sqrt{36}}{36}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{\left(6 y+\sqrt{36 y^{2}+2 c_{1}}\right)^{\frac{1}{6}}}=c_{5} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(\mathrm{e}^{12 x} c_{3}^{12}-2 c_{1}\right) \mathrm{e}^{-6 x}}{12 c_{3}^{6}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{12} \mathrm{e}^{12 x}-1\right) \mathrm{e}^{-6 x}}{12 c_{5}^{6}} \tag{2}
\end{align*}
$$

Figure 214: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{12 x} c_{3}^{12}-2 c_{1}\right) \mathrm{e}^{-6 x}}{12 c_{3}^{6}}
$$

Verified OK.

$$
y=-\frac{\left(2 c_{1} c_{5}^{12} \mathrm{e}^{12 x}-1\right) \mathrm{e}^{-6 x}}{12 c_{5}^{6}}
$$

Verified OK.

6.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-36 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =-36
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{36}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=36 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=36 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 177: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=36$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-6 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-6 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-6 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-6 x} \int \frac{1}{\mathrm{e}^{-12 x}} d x \\
& =\mathrm{e}^{-6 x}\left(\frac{\mathrm{e}^{12 x}}{12}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-6 x}\right)+c_{2}\left(\mathrm{e}^{-6 x}\left(\frac{\mathrm{e}^{12 x}}{12}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-6 x}+\frac{c_{2} \mathrm{e}^{6 x}}{12} \tag{1}
\end{equation*}
$$

Figure 215: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-6 x}+\frac{c_{2} \mathrm{e}^{6 x}}{12}
$$

Verified OK.

6.3.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-36 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-36=0
$$

- Factor the characteristic polynomial

$$
(r-6)(r+6)=0
$$

- Roots of the characteristic polynomial

$$
r=(-6,6)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-6 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{6 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-6 x}+c_{2} \mathrm{e}^{6 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)-36*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-6 x}+\mathrm{e}^{6 x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 22

```
DSolve[y''[x]-36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{6 x}+c_{2} e^{-6 x}
$$

6.4 problem Problem 26

6.4.1 Solving as second order linear constant coeff ode 1238

6.4.2 Solving as second order integrable as is ode 1240
6.4.3 Solving as second order ode missing y ode 1242
6.4.4 Solving as type second_order_integrable_as_is (not using ABC version) . 1243
6.4.5 Solving using Kovacic algorithm 1245
6.4.6 Solving as exact linear second order ode ode 1248
6.4.7 Maple step by step solution . 1250

Internal problem ID [2728]
Internal file name [OUTPUT/2220_Sunday_June_05_2022_02_55_20_AM_74449003/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant__coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+4 y^{\prime}=0
$$

6.4.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(0)} \\
& =-2 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+2 \\
& \lambda_{2}=-2-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(0) x}+c_{2} e^{(-4) x}
\end{aligned}
$$

Or

$$
y=c_{1}+c_{2} \mathrm{e}^{-4 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-4 x} \tag{1}
\end{equation*}
$$

Figure 216: Slope field plot

Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{-4 x}
$$

Verified OK.

6.4.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+4 y^{\prime}\right) d x=0 \\
4 y+y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-4 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-4 y+c_{1}\right)}{4} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-4 y+c_{1}\right)^{\frac{1}{4}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-4 y+c_{1}\right)^{\frac{1}{4}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-4 x}}{4 c_{3}^{4}}+\frac{c_{1}}{4} \tag{1}
\end{equation*}
$$

Figure 217: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-4 x}}{4 c_{3}^{4}}+\frac{c_{1}}{4}
$$

Verified OK.

6.4.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)+4 p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{4 p} d p & =\int d x \\
-\frac{\ln (p)}{4} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{p^{\frac{1}{4}}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{p^{\frac{1}{4}}}=c_{2} \mathrm{e}^{x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{\mathrm{e}^{-4 x}}{c_{2}^{4}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\mathrm{e}^{-4 x}}{c_{2}^{4}} \mathrm{~d} x \\
& =-\frac{\mathrm{e}^{-4 x}}{4 c_{2}^{4}}+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-4 x}}{4 c_{2}^{4}}+c_{3} \tag{1}
\end{equation*}
$$

Figure 218: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-4 x}}{4 c_{2}^{4}}+c_{3}
$$

Verified OK.

6.4.4 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}+4 y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+4 y^{\prime}\right) d x=0 \\
4 y+y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-4 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-4 y+c_{1}\right)}{4} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-4 y+c_{1}\right)^{\frac{1}{4}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-4 y+c_{1}\right)^{\frac{1}{4}}}=c_{3} \mathrm{e}^{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-4 x}}{4 c_{3}^{4}}+\frac{c_{1}}{4} \tag{1}
\end{equation*}
$$

Figure 219: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-4 x}}{4 c_{3}^{4}}+\frac{c_{1}}{4}
$$

Verified OK.

6.4.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 179: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 x}\right)+c_{2}\left(\mathrm{e}^{-4 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 x}+\frac{c_{2}}{4} \tag{1}
\end{equation*}
$$

Figure 220: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-4 x}+\frac{c_{2}}{4}
$$

Verified OK.

6.4.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =4 \\
r(x) & =0 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
4 y+y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
4 y+y^{\prime}=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-4 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-4 y+c_{1}\right)}{4} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-4 y+c_{1}\right)^{\frac{1}{4}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-4 y+c_{1}\right)^{\frac{1}{4}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-4 x}}{4 c_{3}^{4}}+\frac{c_{1}}{4} \tag{1}
\end{equation*}
$$

Figure 221: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-4 x}}{4 c_{3}^{4}}+\frac{c_{1}}{4}
$$

Verified OK.

6.4.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+4 r=0
$$

- Factor the characteristic polynomial

$$
r(r+4)=0
$$

- Roots of the characteristic polynomial

$$
r=(-4,0)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-4 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=1
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-4 x}+c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x$2)+4*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{-4 x}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 19

```
DSolve[y'' \([x]+4 * y\) ' \([x]==0, y[x], x\), IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{2}-\frac{1}{4} c_{1} e^{-4 x}
$$

6.5 problem Problem 27

6.5.1 Maple step by step solution

1253
Internal problem ID [2729]
Internal file name [OUTPUT/2221_Sunday_June_05_2022_02_55_22_AM_3391712/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 27.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=0
$$

The characteristic equation is

$$
\lambda^{3}-3 \lambda^{2}-\lambda+3=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =3 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{3 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{3 x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{3 x} c_{3}
$$

Verified OK.

6.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}-y^{\prime}+3 y=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=3 y_{3}(x)+y_{2}(x)-3 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=3 y_{3}(x)+y_{2}(x)-3 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & 1 & 3
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-3 & 1 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+\mathrm{e}^{3 x} c_{3} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\frac{\mathrm{e}^{3 x} c_{3}}{9}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve (diff $(y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)-\operatorname{diff}(y(x), x)+3 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{3 x}+\mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 28
DSolve[y'''[x]-3*y''[x]-y'[x]+3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} e^{-x}+c_{2} e^{x}+c_{3} e^{3 x}
$$

6.6 problem Problem 28

6.6.1 Maple step by step solution

1258
Internal problem ID [2730]
Internal file name [OUTPUT/2222_Sunday_June_05_2022_02_55_24_AM_30528737/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 28.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}-4 y^{\prime}-12 y=0
$$

The characteristic equation is

$$
\lambda^{3}+3 \lambda^{2}-4 \lambda-12=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-3 \\
& \lambda_{3}=-2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}+c_{3} \mathrm{e}^{2 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{-3 x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}+c_{3} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}+c_{3} \mathrm{e}^{2 x}
$$

Verified OK.

6.6.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime}+3 y^{\prime \prime}-4 y^{\prime}-12 y=0$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=-3 y_{3}(x)+4 y_{2}(x)+12 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-3 y_{3}(x)+4 y_{2}(x)+12 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
12 & 4 & -3
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
12 & 4 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(9 c_{3} \mathrm{e}^{5 x}+9 c_{2} \mathrm{e}^{x}+4 c_{1}\right) \mathrm{e}^{-3 x}}{36}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve (diff $(y(x), x \$ 3)+3 * \operatorname{diff}(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)-12 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{3} \mathrm{e}^{5 x}+\mathrm{e}^{x} c_{1}+c_{2}\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 28
DSolve[y'' $[x]+3 * y$ '' $[x]-4 * y$ ' $[x]-12 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-3 x}\left(c_{2} e^{x}+c_{3} e^{5 x}+c_{1}\right)
$$

6.7 problem Problem 29

6.7.1 Maple step by step solution

1263
Internal problem ID [2731]
Internal file name [OUTPUT/2223_Sunday_June_05_2022_02_55_25_AM_42386429/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 29.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}-18 y^{\prime}-40 y=0
$$

The characteristic equation is

$$
\lambda^{3}+3 \lambda^{2}-18 \lambda-40=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-5 \\
\lambda_{2} & =-2 \\
\lambda_{3} & =4
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{4 x} c_{2}+\mathrm{e}^{-5 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{4 x} \\
& y_{3}=\mathrm{e}^{-5 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{4 x} c_{2}+\mathrm{e}^{-5 x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{4 x} c_{2}+\mathrm{e}^{-5 x} c_{3}
$$

Verified OK.

6.7.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}-18 y^{\prime}-40 y=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-3 y_{3}(x)+18 y_{2}(x)+40 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-3 y_{3}(x)+18 y_{2}(x)+40 y_{1}(x)\right]$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
40 & 18 & -3
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
40 & 18 & -3
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-5,\left[\begin{array}{c}
\frac{1}{25} \\
-\frac{1}{5} \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-5,\left[\begin{array}{c}
\frac{1}{25} \\
-\frac{1}{5} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-5 x} \cdot\left[\begin{array}{c}
\frac{1}{25} \\
-\frac{1}{5} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[4,\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{4 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-5 x} \cdot\left[\begin{array}{c}
\frac{1}{25} \\
-\frac{1}{5} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{4 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(25 c_{3} e^{9 x}+100 c_{2} \mathrm{e}^{3 x}+16 c_{1}\right) \mathrm{e}^{-5 x}}{400}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve(diff $(y(x), x \$ 3)+3 * \operatorname{diff}(y(x), x \$ 2)-18 * \operatorname{diff}(y(x), x)-40 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{3} \mathrm{e}^{9 x}+c_{2} \mathrm{e}^{3 x}+c_{1}\right) \mathrm{e}^{-5 x}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 30
DSolve y '' ' $[\mathrm{x}]+3 * \mathrm{y}$ '' $[\mathrm{x}]-18 * y$ ' $[\mathrm{x}]-40 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-5 x}\left(c_{2} e^{3 x}+c_{3} e^{9 x}+c_{1}\right)
$$

6.8 problem Problem 30

6.8.1 Maple step by step solution

1268
Internal problem ID [2732]
Internal file name [OUTPUT/2224_Sunday_June_05_2022_02_55_27_AM_35086072/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 30.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-y^{\prime \prime}-2 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-\lambda^{2}-2 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=2 \\
& \lambda_{3}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{2 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=1 \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{2 x}
$$

Verified OK.

6.8.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-y^{\prime \prime}-2 y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=y_{3}(x)+2 y_{2}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=y_{3}(x)+2 y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 2 & 1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{2} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y=c_{1} \mathrm{e}^{-x}+\frac{c_{3} e^{2 x}}{4}+c_{2}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff $(y(x), x \$ 3)-\operatorname{diff}(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
y(x)=c_{1}+\mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 28
DSolve[y'''[x]-y''[x]-2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1}\left(-e^{-x}\right)+\frac{1}{2} c_{2} e^{2 x}+c_{3}
$$

6.9 problem Problem 31

6.9.1 Maple step by step solution . 1273

Internal problem ID [2733]
Internal file name [OUTPUT/2225_Sunday_June_05_2022_02_55_29_AM_63189436/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 31.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+y^{\prime \prime}-10 y^{\prime}+8 y=0
$$

The characteristic equation is

$$
\lambda^{3}+\lambda^{2}-10 \lambda+8=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =2 \\
\lambda_{3} & =-4
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-4 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{-4 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-4 x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-4 x} c_{3}
$$

Verified OK.

6.9.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+y^{\prime \prime}-10 y^{\prime}+8 y=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-y_{3}(x)+10 y_{2}(x)-8 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-y_{3}(x)+10 y_{2}(x)-8 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8 & 10 & -1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8 & 10 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-4,\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{4} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-4,\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{4} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-4 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{4} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-4 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{4} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(4 c_{3} \mathrm{e}^{6 x}+16 c_{2} \mathrm{e}^{5 x}+c_{1}\right) \mathrm{e}^{-4 x}}{16}$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve($\operatorname{diff}(y(x), x \$ 3)+\operatorname{diff}(y(x), x \$ 2)-10 * \operatorname{diff}(y(x), x)+8 * y(x)=0, y(x), \quad$ singsol=all)

$$
y(x)=\left(\mathrm{e}^{6 x} c_{2}+c_{1} \mathrm{e}^{5 x}+c_{3}\right) \mathrm{e}^{-4 x}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 28
DSolve[y'''[x]+y''[x]-10*y'[x]+8*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} e^{-4 x}+c_{2} e^{x}+c_{3} e^{2 x}
$$

6.10 problem Problem 32

6.10.1 Maple step by step solution . 1278

Internal problem ID [2734]
Internal file name [OUTPUT/2226_Sunday_June_05_2022_02_55_30_AM_40969575/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 32.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime \prime}-y^{\prime \prime}+2 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{4}-2 \lambda^{3}-\lambda^{2}+2 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =1 \\
\lambda_{3} & =2 \\
\lambda_{4} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=1 \\
& y_{3}=\mathrm{e}^{x} \\
& y_{4}=\mathrm{e}^{2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4}
$$

Verified OK.

6.10.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime \prime}-y^{\prime \prime}+2 y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$ Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=2 y_{4}(x)+y_{3}(x)-2 y_{2}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=2 y_{4}(x)+y_{3}(x)-2 y_{2}(x)\right]
$$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x) \\ y_{4}(x)\end{array}\right]$
- \quad System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -2 & 1 & 2\end{array}\right] \cdot \vec{y}(x)$
- Define the coefficient matrix
$A=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -2 & 1 & 2\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[\left[-1,\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right]\right],\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right],\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right],\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]\right]\right.$
- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{4}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{4} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{2} \\
0 \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-c_{1} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}+\frac{\mathrm{e}^{2 x} c_{4}}{8}+c_{2}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 22

```
dsolve(diff (y(x),x$4)-2*diff (y(x), x$3)-diff (y (x), x$2)+2*diff (y (x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}+\mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}+c_{4} \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 34
DSolve[y''''[x]-2*y'''[x]-y''[x]+2*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1}\left(-e^{-x}\right)+c_{2} e^{x}+\frac{1}{2} c_{3} e^{2 x}+c_{4}
$$

6.11 problem Problem 33

6.11.1 Maple step by step solution

1284
Internal problem ID [2735]
Internal file name [OUTPUT/2227_Sunday_June_05_2022_02_55_32_AM_56122593/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 33.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-13 y^{\prime \prime}+36 y=0
$$

The characteristic equation is

$$
\lambda^{4}-13 \lambda^{2}+36=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2 \\
\lambda_{3} & =-3 \\
\lambda_{4} & =3
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}+c_{3} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{-3 x} \\
& y_{3}=\mathrm{e}^{2 x} \\
& y_{4}=\mathrm{e}^{3 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}+c_{3} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-3 x}+c_{3} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{4}
$$

Verified OK.

6.11.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}-13 y^{\prime \prime}+36 y=0$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=13 y_{3}(x)-36 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=13 y_{3}(x)-36 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-36 & 0 & 13 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-36 & 0 & 13 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
-\frac{1}{27} \\
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
-\frac{1}{27} \\
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
-\frac{1}{27} \\
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{y}_{2}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}-\frac{1}{8} \\ \frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]$
- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{27} \\ \frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{4}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
-\frac{1}{27} \\
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\mathrm{e}^{3 x} c_{4} \cdot\left[\begin{array}{c}
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(8 \mathrm{e}^{6 x} c_{4}+27 c_{3} \mathrm{e}^{5 x}-27 c_{2} \mathrm{e}^{x}-8 c_{1}\right) \mathrm{e}^{-3 x}}{216}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$4)-13*\operatorname{diff}(y(x),x$2)+36*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{1} \mathrm{e}^{6 x}+c_{4} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{x}+c_{3}\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 35
DSolve[y''''[x]-13*y''[x]+36*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-3 x}\left(c_{2} e^{x}+e^{5 x}\left(c_{4} e^{x}+c_{3}\right)+c_{1}\right)
$$

6.12 problem Problem 34

6.12.1 Solving as second order euler ode ode 1289
6.12.2 Solving as second order change of variable on x method 2 ode . 1290
6.12.3 Solving as second order change of variable on y method 2 ode . 1293
6.12.4 Solving using Kovacic algorithm 1295
6.12.5 Maple step by step solution . 1300

Internal problem ID [2736]
Internal file name [OUTPUT/2228_Sunday_June_05_2022_02_55_34_AM_22159462/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 34.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of__variable_on_y__method__2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(x)] 〕]

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}-8 y=0
$$

6.12.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+3 x r x^{r-1}-8 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+3 r x^{r}-8 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+3 r-8=0
$$

Or

$$
\begin{equation*}
r^{2}+2 r-8=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-4 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{4}}+c_{2} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{4}}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{4}}+c_{2} x^{2}
$$

Verified OK.

6.12.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}-8 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=-\frac{8}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{3}{x} d x\right)} d x \\
& =\int e^{-3 \ln (x)} d x \\
& =\int \frac{1}{x^{3}} d x \\
& =-\frac{1}{2 x^{2}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{8}{x^{2}}}{\frac{1}{x^{6}}} \\
& =-8 x^{4} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-8 x^{4} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
-8 x^{4}=-\frac{2}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{2 y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-2 \tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}-2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0-2=0
$$

Or

$$
\begin{equation*}
r^{2}-r-2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau}+c_{2} \tau^{2}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=-2 c_{1} x^{2}+\frac{c_{2}}{4 x^{4}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-2 c_{1} x^{2}+\frac{c_{2}}{4 x^{4}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-2 c_{1} x^{2}+\frac{c_{2}}{4 x^{4}}
$$

Verified OK.

6.12.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}-8 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=-\frac{8}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{3 n}{x^{2}}-\frac{8}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{7 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{7 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{7 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{7 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{7}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{7}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{7}{x} d x \\
\ln (u) & =-7 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-7 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{7}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{6 x^{6}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{6 x^{6}}+c_{2}\right) x^{2} \\
& =\frac{6 c_{2} x^{6}-c_{1}}{6 x^{4}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{6 x^{6}}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{6 x^{6}}+c_{2}\right) x^{2}
$$

Verified OK.

6.12.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+3 x y^{\prime}-8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=3 x \tag{3}\\
& C=-8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{35}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=35 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{35}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 188: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{35}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{35}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{7}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{5}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{35}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{35}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{7}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{5}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{35}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{7}{2}$	$-\frac{5}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{7}{2}$	$-\frac{5}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{5}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{5}{2}-\left(-\frac{5}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{5}{2 x}+(-)(0) \\
& =-\frac{5}{2 x} \\
& =-\frac{5}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{5}{2 x}\right)(0)+\left(\left(\frac{5}{2 x^{2}}\right)+\left(-\frac{5}{2 x}\right)^{2}-\left(\frac{35}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{5}{2 x} d x} \\
& =\frac{1}{x^{\frac{5}{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{x^{\frac{3}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{4}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{6}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{4}}\right)+c_{2}\left(\frac{1}{x^{4}}\left(\frac{x^{6}}{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{4}}+\frac{c_{2} x^{2}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{4}}+\frac{c_{2} x^{2}}{6}
$$

Verified OK.

6.12.5 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+3 x y^{\prime}-8 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{3 y^{\prime}}{x}+\frac{8 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{3 y^{\prime}}{x}-\frac{8 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}-8 y=0
$$

- Make a change of variables

$$
t=\ln (x)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), 3 \frac{d}{x^{2}}\right)+3(t)-8 y(t)=0$
- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)+2 \frac{d}{d t} y(t)-8 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}+2 r-8=0$
- Factor the characteristic polynomial
$(r+4)(r-2)=0$
- Roots of the characteristic polynomial

$$
r=(-4,2)
$$

- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-4 t}$
- \quad 2nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{2 t}
$$

- Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{4}}+c_{2} x^{2}
$$

- \quad Simplify

$$
y=\frac{c_{1}}{x^{4}}+c_{2} x^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)-8*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x^{6}+c_{2}}{x^{4}}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 18
DSolve $[x \sim 2 * y$ ' ' $[\mathrm{x}]+3 * x * y$ ' $[\mathrm{x}]-8 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{2} x^{6}+c_{1}}{x^{4}}
$$

6.13 problem Problem 35

6.13.1 Solving as second order euler ode ode 1304
6.13.2 Solving as second order change of variable on x method 2 ode . 1305
6.13.3 Solving as second order change of variable on x method 1 ode . 1307
6.13.4 Solving as second order change of variable on y method 2 ode . 1309
6.13.5 Solving as second order integrable as is ode 1312

6.13.7 Solving using Kovacic algorithm 1315
6.13.8 Solving as exact linear second order ode ode 1320
6.13.9 Maple step by step solution . 1322

Internal problem ID [2737]
Internal file name [OUTPUT/2229_Sunday_June_05_2022_02_55_35_AM_94114452/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 35.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change__of_variable_on__x_method_1", "second_order_change_of_cvariable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=0
$$

6.13.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
2 x^{2}(r(r-1)) x^{r-2}+5 x r x^{r-1}+x^{r}=0
$$

Simplifying gives

$$
2 r(r-1) x^{r}+5 r x^{r}+x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
2 r(r-1)+5 r+1=0
$$

Or

$$
\begin{equation*}
2 r^{2}+3 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}}
$$

Verified OK.

6.13.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{2 x} \\
& q(x)=\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{5}{2 x} d x\right)} d x \\
& =\int e^{-\frac{5 \ln (x)}{2}} d x \\
& =\int \frac{1}{x^{\frac{5}{2}}} d x \\
& =-\frac{2}{3 x^{\frac{3}{2}}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{2 x^{2}}}{\frac{1}{x^{5}}} \\
& =\frac{x^{3}}{2} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{x^{3} y(\tau)}{2} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{x^{3}}{2}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{18^{\frac{1}{3}}\left(-\frac{1}{x^{\frac{3}{2}}}\right)^{\frac{1}{3}}\left(c_{2} 18^{\frac{1}{3}}\left(-\frac{1}{x^{\frac{3}{2}}}\right)^{\frac{1}{3}}+3 c_{1}\right)}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{18^{\frac{1}{3}}\left(-\frac{1}{x^{\frac{3}{2}}}\right)^{\frac{1}{3}}\left(c_{2} 18^{\frac{1}{3}}\left(-\frac{1}{x^{\frac{3}{2}}}\right)^{\frac{1}{3}}+3 c_{1}\right)}{9} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{18^{\frac{1}{3}}\left(-\frac{1}{x^{\frac{3}{2}}}\right)^{\frac{1}{3}}\left(c_{2} 18^{\frac{1}{3}}\left(-\frac{1}{x^{\frac{3}{2}}}\right)^{\frac{1}{3}}+3 c_{1}\right)}{9}
$$

Verified OK.

6.13.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{2 x} \\
& q(x)=\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{2 c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{2 c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{2 c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{5}{2 x} \frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{2 c}}{\left(\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{2 c}\right)^{2}} \\
& =\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{2} d x}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cosh \left(\frac{\ln (x)}{4}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{4}\right)}{x^{\frac{3}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cosh \left(\frac{\ln (x)}{4}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{4}\right)}{x^{\frac{3}{4}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cosh \left(\frac{\ln (x)}{4}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{4}\right)}{x^{\frac{3}{4}}}
$$

Verified OK.

6.13.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{2 x} \\
& q(x)=\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{5 n}{2 x^{2}}+\frac{1}{2 x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-\frac{1}{2} \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{2 x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{2 x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{2 x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{2 x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{2 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{2 x} d x \\
\ln (u) & =-\frac{3 \ln (x)}{2}+c_{1} \\
u & =\mathrm{e}^{-\frac{3 \ln (x)}{2}+c_{1}} \\
& =\frac{c_{1}}{x^{\frac{3}{2}}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{2 c_{1}}{\sqrt{x}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{-\frac{2 c_{1}}{\sqrt{x}}+c_{2}}{\sqrt{x}} \\
& =\frac{\sqrt{x} c_{2}-2 c_{1}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\frac{2 c_{1}}{\sqrt{x}}+c_{2}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\frac{2 c_{1}}{\sqrt{x}}+c_{2}}{\sqrt{x}}
$$

Verified OK.

6.13.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y\right) d x=0 \\
y x+2 y^{\prime} x^{2}=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{2 x} \\
& q(x)=\frac{c_{1}}{2 x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{2 x}=\frac{c_{1}}{2 x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{2 x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sqrt{x} y) & =(\sqrt{x})\left(\frac{c_{1}}{2 x^{2}}\right) \\
\mathrm{d}(\sqrt{x} y) & =\left(\frac{c_{1}}{2 x^{\frac{3}{2}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{x} y=\int \frac{c_{1}}{2 x^{\frac{3}{2}}} \mathrm{~d} x \\
& \sqrt{x} y=-\frac{c_{1}}{\sqrt{x}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{x}$ results in

$$
y=-\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}}
$$

Verified OK.

6.13.6 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y\right) d x=0 \\
y x+2 y^{\prime} x^{2}=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{2 x} \\
& q(x)=\frac{c_{1}}{2 x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{2 x}=\frac{c_{1}}{2 x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{2 x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sqrt{x} y) & =(\sqrt{x})\left(\frac{c_{1}}{2 x^{2}}\right) \\
\mathrm{d}(\sqrt{x} y) & =\left(\frac{c_{1}}{2 x^{\frac{3}{2}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{x} y=\int \frac{c_{1}}{2 x^{\frac{3}{2}}} \mathrm{~d} x \\
& \sqrt{x} y=-\frac{c_{1}}{\sqrt{x}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{x}$ results in

$$
y=-\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}}
$$

Verified OK.

6.13.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 x^{2} \\
& B=5 x \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-3}{16 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-3 \\
& t=16 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{3}{16 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 190: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=16 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{3}{16 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{4}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{3}{16 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{4} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{4}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{3}{16 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{4}$	$\frac{1}{4}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{4}$	$\frac{1}{4}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{4}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{4}-\left(\frac{1}{4}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{4 x}+(-)(0) \\
& =\frac{1}{4 x} \\
& =\frac{1}{4 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{4 x}\right)(0)+\left(\left(-\frac{1}{4 x^{2}}\right)+\left(\frac{1}{4 x}\right)^{2}-\left(-\frac{3}{16 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{4 x} d x} \\
& =x^{\frac{1}{4}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5 x}{2 x} d x} \\
& =z_{1} e^{-\frac{5 \ln (x)}{4}} \\
& =z_{1}\left(\frac{1}{x^{\frac{5}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5 x}{2 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{5 \ln (x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(2 \sqrt{x})
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}(2 \sqrt{x})\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{2 c_{2}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{2 c_{2}}{\sqrt{x}}
$$

Verified OK.

6.13.8 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =2 x^{2} \\
q(x) & =5 x \\
r(x) & =1 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =4 \\
q^{\prime}(x) & =5
\end{aligned}
$$

Therefore (1) becomes

$$
4-(5)+(1)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y x+2 y^{\prime} x^{2}=c_{1}
$$

We now have a first order ode to solve which is

$$
y x+2 y^{\prime} x^{2}=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{2 x} \\
& q(x)=\frac{c_{1}}{2 x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{2 x}=\frac{c_{1}}{2 x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{2 x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sqrt{x} y) & =(\sqrt{x})\left(\frac{c_{1}}{2 x^{2}}\right) \\
\mathrm{d}(\sqrt{x} y) & =\left(\frac{c_{1}}{2 x^{\frac{3}{2}}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sqrt{x} y=\int \frac{c_{1}}{2 x^{\frac{3}{2}}} \mathrm{~d} x \\
& \sqrt{x} y=-\frac{c_{1}}{\sqrt{x}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{x}$ results in

$$
y=-\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}}
$$

Verified OK.

6.13.9 Maple step by step solution

Let's solve
$2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{5 y^{\prime}}{2 x}-\frac{y}{2 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{5 y^{\prime}}{2 x}+\frac{y}{2 x^{2}}=0$
- Multiply by denominators of the ODE
$2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$2 x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+5 \frac{d}{d t} y(t)+y(t)=0$
- \quad Simplify
$2 \frac{d^{2}}{d t^{2}} y(t)+3 \frac{d}{d t} y(t)+y(t)=0$
- Isolate 2nd derivative

$$
\frac{d^{2}}{d t^{2}} y(t)=-\frac{3 \frac{d}{d t} y(t)}{2}-\frac{y(t)}{2}
$$

- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{2}}{d t^{2}} y(t)+\frac{3 \frac{d}{d t} y(t)}{2}+\frac{y(t)}{2}=0$
- Characteristic polynomial of ODE
$r^{2}+\frac{3}{2} r+\frac{1}{2}=0$
- Factor the characteristic polynomial
$\frac{(r+1)(2 r+1)}{2}=0$
- Roots of the characteristic polynomial

$$
r=\left(-1,-\frac{1}{2}\right)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-\frac{t}{2}}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x}+\frac{c_{2}}{\sqrt{x}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve ($2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+5 * x * \operatorname{diff}(y(x), x)+y(x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{c_{1}}{\sqrt{x}}+\frac{c_{2}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 20
DSolve[2*x^2*y' ' $[x]+5 * x * y$ ' $[x]+y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{c_{2} \sqrt{x}+c_{1}}{x}
$$

6.14 problem Problem 36

6.14.1 Maple step by step solution

1327
Internal problem ID [2738]
Internal file name [OUTPUT/2230_Sunday_June_05_2022_02_55_37_AM_78723603/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 36.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order__ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _exact, _linear, _homogeneous]]

$$
x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

gives

$$
-2 x \lambda x^{\lambda-1}+x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}+2 x^{\lambda}=0
$$

Which simplifies to

$$
-2 \lambda x^{\lambda}+\lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}+2 x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
-2 \lambda+\lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)+2=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}-2 \lambda^{2}-\lambda+2=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=-1
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
-1	1	real root
1	1	real root
2	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=\frac{c_{1}}{x}+c_{2} x+c_{3} x^{2}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=x \\
& y_{3}=x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2} x+c_{3} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+c_{2} x+c_{3} x^{2}
$$

Verified OK.

6.14.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=-\frac{2 y}{x^{3}}-\frac{y^{\prime \prime} x-2 y^{\prime}}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime \prime}+\frac{y^{\prime \prime}}{x}-\frac{2 y^{\prime}}{x^{2}}+\frac{2 y}{x^{3}}=0
$$

- Multiply by denominators of the ODE

$$
x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2 nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

- Calculate the 3 rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
x^{3}\left(\frac{\frac{d^{3}}{} d^{3} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)+x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-2 \frac{d}{d t} y(t)+2 y(t)=0
$$

- Simplify
$\frac{d^{3}}{d t^{3}} y(t)-2 \frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)+2 y(t)=0$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=2 y_{3}(t)+y_{2}(t)-2 y_{1}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=2 y_{3}(t)+y_{2}(t)-2 y_{1}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- \quad System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+\frac{c_{3} \mathrm{e}^{2 t}}{4}
$$

- Change variables back using $t=\ln (x)$
$y=\frac{c_{1}}{x}+c_{2} x+\frac{c_{3} x^{2}}{4}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
dsolve ($x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)+x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-2 * x * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{c_{3} x^{3}+c_{2} x^{2}+c_{1}}{x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 22
DSolve $\left[x^{\wedge} 3 * y\right.$ ' ' ' $[x]+x^{\wedge} 2 * y$ ' ' $[x]-2 * x * y$ ' $[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow c_{3} x^{2}+c_{2} x+\frac{c_{1}}{x}
$$

6.15 problem Problem 37

6.15.1 Maple step by step solution

1334
Internal problem ID [2739]
Internal file name [OUTPUT/2231_Sunday_June_05_2022_02_55_39_AM_56463461/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 37.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order__ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type

```
[[_3rd_order, _missing_y]]
```

$$
x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}-6 x y^{\prime}=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}-6 x y^{\prime}=0
$$

gives

$$
-6 x \lambda x^{\lambda-1}+3 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}=0
$$

Which simplifies to

$$
-6 \lambda x^{\lambda}+3 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
-6 \lambda+3 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}-7 \lambda=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=\sqrt{7} \\
& \lambda_{3}=-\sqrt{7}
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
0	1	real root
$\sqrt{7}$	1	real root
$-\sqrt{7}$	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{1}+c_{2} x^{\sqrt{7}}+c_{3} x^{-\sqrt{7}}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x^{\sqrt{7}} \\
& y_{3}=x^{-\sqrt{7}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} x^{\sqrt{7}}+c_{3} x^{-\sqrt{7}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} x^{\sqrt{7}}+c_{3} x^{-\sqrt{7}}
$$

Verified OK.

6.15.1 Maple step by step solution

Let's solve

$x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}-6 x y^{\prime}=0$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=-\frac{3\left(y^{\prime \prime} x-2 y^{\prime}\right)}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}+\frac{3 y^{\prime \prime}}{x}-\frac{6 y^{\prime}}{x^{2}}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime \prime} x^{2}+3 y^{\prime \prime} x-6 y^{\prime}=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

- Calculate the 3 rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right) x^{2}+3\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x-\frac{6\left(\frac{d}{d t} y(t)\right)}{x}=0
$$

- \quad Simplify

$$
\frac{\frac{d^{3}}{d t^{3}} y(t)-7 \frac{d}{d t} y(t)}{x}=0
$$

- Isolate 3rd derivative

$$
\frac{d^{3}}{d t^{3}} y(t)=7 \frac{d}{d t} y(t)
$$

- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin

$$
\frac{d^{3}}{d t^{3}} y(t)-7 \frac{d}{d t} y(t)=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=7 y_{2}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=7 y_{2}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- \quad System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 7 & 0
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 7 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\begin{array}{ll}
& {\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[\sqrt{7},\left[\begin{array}{c}
\frac{1}{7} \\
\frac{\sqrt{7}}{7} \\
1
\end{array}\right]\right],\left[-\sqrt{7},\left[\begin{array}{c}
\frac{1}{7} \\
-\frac{\sqrt{7}}{7} \\
1
\end{array}\right]\right]\right]} \\
& \text { Consider eigenpair } \\
& {\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]}
\end{array}
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[\sqrt{7},\left[\begin{array}{c}\frac{1}{7} \\ \frac{\sqrt{7}}{7} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{\sqrt{7} t} \cdot\left[\begin{array}{c}
\frac{1}{7} \\
\frac{\sqrt{7}}{7} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-\sqrt{7},\left[\begin{array}{c}
\frac{1}{7} \\
-\frac{\sqrt{7}}{7} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{-\sqrt{7} t} \cdot\left[\begin{array}{c}
\frac{1}{7} \\
-\frac{\sqrt{7}}{7} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{2} \mathrm{e}^{\sqrt{7} t} \cdot\left[\begin{array}{c}
\frac{1}{7} \\
\frac{\sqrt{7}}{7} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{-\sqrt{7} t} \cdot\left[\begin{array}{c}
\frac{1}{7} \\
-\frac{\sqrt{7}}{7} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y(t)=\frac{c_{2} \mathrm{e}^{\sqrt{7}} t}{7}+\frac{c_{3} \mathrm{e}^{-\sqrt{7} t}}{7}+c_{1}$
- Change variables back using $t=\ln (x)$
$y=\frac{c_{2} \mathrm{e}^{\sqrt{7} \ln (x)}}{7}+\frac{c_{3} \mathrm{e}^{-\sqrt{7} \ln (x)}}{7}+c_{1}$
- Simplify
$y=\frac{c_{2} x^{\sqrt{7}}}{7}+\frac{c_{3} x^{-\sqrt{7}}}{7}+c_{1}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(x^3*\operatorname{diff}(y(x),x$3)+3*x^2*\operatorname{diff}(y(x),x$2)-6*x*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}+c_{2} x^{\sqrt{7}}+c_{3} x^{-\sqrt{7}}
$$

\checkmark Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 41
DSolve $\left[x^{\wedge} 3 * y\right.$ '' ' $[x]+3 * x^{\wedge} 2 * y$ ' ' $[x]-6 * x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{c_{1} x^{-\sqrt{7}}}{\sqrt{7}}+\frac{c_{2} x^{\sqrt{7}}}{\sqrt{7}}+c_{3}
$$

6.16 problem Problem 38

6.16.1 Solving as second order linear constant coeff ode 1339
6.16.2 Solving using Kovacic algorithm 1342
6.16.3 Maple step by step solution . 1347

Internal problem ID [2740]
Internal file name [OUTPUT/2232_Sunday_June_05_2022_02_55_40_AM_37374709/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 38.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime}-6 y=18 \mathrm{e}^{5 x}
$$

6.16.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=1, C=-6, f(x)=18 \mathrm{e}^{5 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-6)} \\
& =-\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-3 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
18 \mathrm{e}^{5 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{5 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{5 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
24 A_{1} \mathrm{e}^{5 x}=18 \mathrm{e}^{5 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \mathrm{e}^{5 x}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-3 x}\right)+\left(\frac{3 \mathrm{e}^{5 x}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-3 x}+\frac{3 \mathrm{e}^{5 x}}{4} \tag{1}
\end{equation*}
$$

Figure 222: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-3 x}+\frac{3 \mathrm{e}^{5 x}}{4}
$$

Verified OK.

6.16.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 194: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
18 \mathrm{e}^{5 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{5 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 x}}{5}, \mathrm{e}^{-3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{5 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
24 A_{1} \mathrm{e}^{5 x}=18 \mathrm{e}^{5 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \mathrm{e}^{5 x}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5}\right)+\left(\frac{3 \mathrm{e}^{5 x}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5}+\frac{3 \mathrm{e}^{5 x}}{4} \tag{1}
\end{equation*}
$$

Figure 223: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5}+\frac{3 \mathrm{e}^{5 x}}{4}
$$

Verified OK.

6.16.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y^{\prime}-6 y=18 \mathrm{e}^{5 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+r-6=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(-3,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-3 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function
$\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=18 \mathrm{e}^{5 x}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 x} & \mathrm{e}^{2 x} \\ -3 \mathrm{e}^{-3 x} & 2 \mathrm{e}^{2 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=5 \mathrm{e}^{-x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=\frac{18\left(\mathrm{e}^{5 x}\left(\int \mathrm{e}^{3 x} d x\right)-\left(\int \mathrm{e}^{8 x} d x\right)\right) \mathrm{e}^{-3 x}}{5}$
- Compute integrals

$$
y_{p}(x)=\frac{3 \mathrm{e}^{5 x}}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}+\frac{3 \mathrm{e}^{5 x}}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)+diff(y(x),x)-6*y(x)=18*exp(5*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(3 \mathrm{e}^{8 x}+4 c_{1} \mathrm{e}^{5 x}+4 c_{2}\right) \mathrm{e}^{-3 x}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 31
DSolve[y''[x]+y'[x]-6*y[x]==18*Exp[5*x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{3 e^{5 x}}{4}+c_{1} e^{-3 x}+c_{2} e^{2 x}
$$

6.17 problem Problem 39

6.17.1 Solving as second order linear constant coeff ode 1350
6.17.2 Solving using Kovacic algorithm 1353
6.17.3 Maple step by step solution . 1358

Internal problem ID [2741]
Internal file name [OUTPUT/2233_Sunday_June_05_2022_02_55_43_AM_21368893/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 39.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+y^{\prime}-2 y=4 x^{2}+5
$$

6.17.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=1, C=-2, f(x)=4 x^{2}+5$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-2)} \\
& =-\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{3} x^{2}-2 A_{2} x+2 x A_{3}-2 A_{1}+A_{2}+2 A_{3}=4 x^{2}+5
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{11}{2}, A_{2}=-2, A_{3}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 x^{2}-2 x-\frac{11}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-2 x^{2}-2 x-\frac{11}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}-2 x^{2}-2 x-\frac{11}{2} \tag{1}
\end{equation*}
$$

Figure 224: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}-2 x^{2}-2 x-\frac{11}{2}
$$

Verified OK.

6.17.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 196: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{x}}{3}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{3} x^{2}-2 A_{2} x+2 x A_{3}-2 A_{1}+A_{2}+2 A_{3}=4 x^{2}+5
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{11}{2}, A_{2}=-2, A_{3}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 x^{2}-2 x-\frac{11}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}\right)+\left(-2 x^{2}-2 x-\frac{11}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}-2 x^{2}-2 x-\frac{11}{2} \tag{1}
\end{equation*}
$$

Figure 225: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}-2 x^{2}-2 x-\frac{11}{2}
$$

Verified OK.

6.17.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y^{\prime}-2 y=4 x^{2}+5
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+r-2=0$
- Factor the characteristic polynomial

$$
(r+2)(r-1)=0
$$

- Roots of the characteristic polynomial
$r=(-2,1)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 x^{2}+5\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 x} & \mathrm{e}^{x} \\ -2 \mathrm{e}^{-2 x} & \mathrm{e}^{x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{-x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=\frac{\left(\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-x}\left(4 x^{2}+5\right) d x\right)-\left(\int \mathrm{e}^{2 x}\left(4 x^{2}+5\right) d x\right)\right) \mathrm{e}^{-2 x}}{3}$
- Compute integrals

$$
y_{p}(x)=-2 x^{2}-2 x-\frac{11}{2}
$$

- Substitute particular solution into general solution to ODE $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}-2 x^{2}-2 x-\frac{11}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 38

```
dsolve(diff(y(x),x$2)+diff(y(x),x)-2*y(x)=4*x^2+5,y(x), singsol=all)
```

$$
y(x)=\frac{\left(-4 x^{2}-4 x-11\right) \mathrm{e}^{-2 x} \mathrm{e}^{2 x}}{2}+\left(c_{1} \mathrm{e}^{3 x}+c_{2}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 31
DSolve[y'' $[x]+y$ ' $[x]-2 * y[x]==4 * x^{\wedge} 2+5, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow-2 x^{2}-2 x+c_{1} e^{-2 x}+c_{2} e^{x}-\frac{11}{2}
$$

6.18 problem Problem 40

6.18.1 Maple step by step solution

1363
Internal problem ID [2742]
Internal file name [OUTPUT/2234_Sunday_June_05_2022_02_55_45_AM_88425653/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 40.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=4 \mathrm{e}^{2 x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=0
$$

The characteristic equation is

$$
\lambda^{3}+2 \lambda^{2}-\lambda-2=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+c_{3} \mathrm{e}^{x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{-2 x} \\
& y_{3}=\mathrm{e}^{x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=4 \mathrm{e}^{2 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-2 x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
12 A_{1} \mathrm{e}^{2 x}=4 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{2 x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+c_{3} \mathrm{e}^{x}\right)+\left(\frac{\mathrm{e}^{2 x}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+c_{3} \mathrm{e}^{x}+\frac{\mathrm{e}^{2 x}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+c_{3} \mathrm{e}^{x}+\frac{\mathrm{e}^{2 x}}{3}
$$

Verified OK.

6.18.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=4 \mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$ Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=4 \mathrm{e}^{2 x}-2 y_{3}(x)+y_{2}(x)+2 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=4 \mathrm{e}^{2 x}-2 y_{3}(x)+y_{2}(x)+2 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & 1 & -2
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
4 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 4 \mathrm{e}^{2 x}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & 1 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-2 x}}{4} & \mathrm{e}^{-x} & \mathrm{e}^{x} \\
-\frac{\mathrm{e}^{-2 x}}{2} & -\mathrm{e}^{-x} & \mathrm{e}^{x} \\
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-2 x}}{4} & \mathrm{e}^{-x} & \mathrm{e}^{x} \\
-\frac{\mathrm{e}^{-2 x}}{2} & -\mathrm{e}^{-x} & \mathrm{e}^{x} \\
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
\frac{1}{4} & 1 & 1 \\
-\frac{1}{2} & -1 & 1 \\
1 & 1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\left(\mathrm{e}^{3 x}+3 \mathrm{e}^{x}-1\right) \mathrm{e}^{-2 x}}{3} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\left(\mathrm{e}^{3 x}-3 \mathrm{e}^{x}+2\right) \mathrm{e}^{-2 x}}{6} \\
\frac{\left(\mathrm{e}^{3 x}-3 \mathrm{e}^{x}+2\right) \mathrm{e}^{-2 x}}{3} & \frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2} & \frac{\left(\mathrm{e}^{3 x}+3 \mathrm{e}^{x}-4\right) \mathrm{e}^{-2 x}}{6} \\
\frac{\left(\mathrm{e}^{3 x}+3 \mathrm{e}^{x}-4\right) \mathrm{e}^{-2 x}}{3} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\left(\mathrm{e}^{3 x}-3 \mathrm{e}^{x}+8\right) \mathrm{e}^{-2 x}}{6}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms
$\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)$
- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\left(\mathrm{e}^{4 x}-2 \mathrm{e}^{3 x}+2 \mathrm{e}^{x}-1\right) \mathrm{e}^{-2 x}}{3} \\
-\frac{2\left(-\mathrm{e}^{4 x}+\mathrm{e}^{3 x}+\mathrm{e}^{x}-1\right) \mathrm{e}^{-2 x}}{3} \\
\frac{2\left(2 \mathrm{e}^{4 x}-\mathrm{e}^{3 x}+\mathrm{e}^{x}-2\right) \mathrm{e}^{-2 x}}{3}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
\frac{\left(\mathrm{e}^{4 x}-2 \mathrm{e}^{3 x}+2 \mathrm{e}^{x}-1\right) \mathrm{e}^{-2 x}}{3} \\
-\frac{2\left(-\mathrm{e}^{4 x}+\mathrm{e}^{3 x}+\mathrm{e}^{x}-1\right) \mathrm{e}^{-2 x}}{3} \\
\frac{2\left(2 \mathrm{e}^{4 x}-\mathrm{e}^{3 x}+\mathrm{e}^{x}-2\right) \mathrm{e}^{-2 x}}{3}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(4 \mathrm{e}^{4 x}+12 \mathrm{e}^{3 x} c_{3}-8 \mathrm{e}^{3 x}+12 c_{2} \mathrm{e}^{x}+8 \mathrm{e}^{x}+3 c_{1}-4\right) \mathrm{e}^{-2 x}}{12}$

Maple trace
'Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 3; linear nonhomogeneous with symmetry [0,1] trying high order linear exact nonhomogeneous trying differential order: 3; missing the dependent variable checking if the LODE has constant coefficients <- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30
dsolve(diff $(y(x), x \$ 3)+2 * \operatorname{diff}(y(x), x \$ 2)-\operatorname{diff}(y(x), x)-2 * y(x)=4 * \exp (2 * x), y(x)$, singsol=all)

$$
y(x)=\frac{\left(\mathrm{e}^{4 x}+3 c_{1} \mathrm{e}^{3 x}+3 c_{3} \mathrm{e}^{x}+3 c_{2}\right) \mathrm{e}^{-2 x}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 37
DSolve[y'' $[x]+2 * y$ ''[x]-y'[x]-2*y[x]==4*Exp[2*x],y[x],x, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{2 x}}{3}+c_{1} e^{-2 x}+c_{2} e^{-x}+c_{3} e^{x}
$$

6.19 problem Problem 41

6.19.1 Maple step by step solution . 1371

Internal problem ID [2743]
Internal file name [OUTPUT/2235_Sunday_June_05_2022_02_55_47_AM_2481686/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 41.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime \prime}+y^{\prime \prime}-10 y^{\prime}+8 y=24 \mathrm{e}^{-3 x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+y^{\prime \prime}-10 y^{\prime}+8 y=0
$$

The characteristic equation is

$$
\lambda^{3}+\lambda^{2}-10 \lambda+8=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =2 \\
\lambda_{3} & =-4
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-4 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{-4 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+y^{\prime \prime}-10 y^{\prime}+8 y=24 \mathrm{e}^{-3 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
24 \mathrm{e}^{-3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-4 x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-3 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
20 A_{1} \mathrm{e}^{-3 x}=24 \mathrm{e}^{-3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{6}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{6 \mathrm{e}^{-3 x}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-4 x} c_{3}\right)+\left(\frac{6 \mathrm{e}^{-3 x}}{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-4 x} c_{3}+\frac{6 \mathrm{e}^{-3 x}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-4 x} c_{3}+\frac{6 \mathrm{e}^{-3 x}}{5}
$$

Verified OK.

6.19.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+y^{\prime \prime}-10 y^{\prime}+8 y=24 \mathrm{e}^{-3 x}
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$ Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=24 \mathrm{e}^{-3 x}-y_{3}(x)+10 y_{2}(x)-8 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=24 \mathrm{e}^{-3 x}-y_{3}(x)+10 y_{2}(x)-8 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8 & 10 & -1
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
24 \mathrm{e}^{-3 x}
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
24 \mathrm{e}^{-3 x}
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8 & 10 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair

$$
\left[-4,\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{4} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-4 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{4} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-4 x}}{16} & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{4} \\
-\frac{\mathrm{e}^{-4 x}}{4} & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{-4 x} & \mathrm{e}^{x} & \mathrm{e}^{2 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-4 x}}{16} & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{4} \\
-\frac{\mathrm{e}^{-4 x}}{4} & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{-4 x} & \mathrm{e}^{x} & \mathrm{e}^{2 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
\frac{1}{16} & 1 & \frac{1}{4} \\
-\frac{1}{4} & 1 & \frac{1}{2} \\
1 & 1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
-\frac{\left(10 \mathrm{e}^{6 x}-24 \mathrm{e}^{5 x}-1\right) \mathrm{e}^{-4 x}}{15} & \frac{\left(5 \mathrm{e}^{6 x}-4 \mathrm{e}^{5 x}-1\right) \mathrm{e}^{-4 x}}{10} & \frac{\left(5 \mathrm{e}^{6 x}-6 \mathrm{e}^{5 x}+1\right) \mathrm{e}^{-4 x}}{30} \\
-\frac{4\left(5 \mathrm{e}^{6 x}-6 \mathrm{e}^{5 x}+1\right) \mathrm{e}^{-4 x}}{15} & \frac{\left(5 \mathrm{e}^{6 x}-2 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-4 x}}{5} & \frac{\left(5 \mathrm{e}^{6 x}-3 \mathrm{e}^{5 x}-2\right) \mathrm{e}^{-4 x}}{15} \\
-\frac{8\left(5 \mathrm{e}^{6 x}-3 \mathrm{e}^{5 x}-2\right) \mathrm{e}^{-4 x}}{15} & -\frac{2\left(-5 \mathrm{e}^{6 x}+\mathrm{e}^{5 x}+4\right) \mathrm{e}^{-4 x}}{5} & \frac{\left(10 \mathrm{e}^{6 x}-3 \mathrm{e}^{5 x}+8\right) \mathrm{e}^{-4 x}}{15}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms
$\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)$
- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{2\left(2 \mathrm{e}^{6 x}-3 \mathrm{e}^{5 x}+3 \mathrm{e}^{x}-2\right) \mathrm{e}^{-4 x}}{5} \\
\frac{2\left(4 \mathrm{e}^{6 x}-3 \mathrm{e}^{5 x}-9 \mathrm{e}^{x}+8\right) \mathrm{e}^{-4 x}}{5} \\
\frac{2\left(8 \mathrm{e}^{6 x}-3 \mathrm{e}^{5 x}+27 \mathrm{e}^{x}-32\right) \mathrm{e}^{-4 x}}{5}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
\frac{2\left(2 \mathrm{e}^{6 x}-3 \mathrm{e}^{5 x}+3 \mathrm{e}^{x}-2\right) \mathrm{e}^{-4 x}}{5} \\
\frac{2\left(4 \mathrm{e}^{6 x}-3 \mathrm{e}^{5 x}-9 \mathrm{e}^{x}+8\right) \mathrm{e}^{-4 x}}{5} \\
\frac{2\left(8 \mathrm{e}^{6 x}-3 \mathrm{e}^{5 x}+27 \mathrm{e}^{x}-32\right) \mathrm{e}^{-4 x}}{5}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(20 c_{3} \mathrm{e}^{6 x}+64 \mathrm{e}^{6 x}+80 c_{2} \mathrm{e}^{5 x}-96 \mathrm{e}^{5 x}+96 \mathrm{e}^{x}+5 c_{1}-64\right) \mathrm{e}^{-4 x}}{80}
$$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 3; linear nonhomogeneous with symmetry [0,1] trying high order linear exact nonhomogeneous trying differential order: 3; missing the dependent variable checking if the LODE has constant coefficients <- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 32
dsolve(diff $(y(x), x \$ 3)+\operatorname{diff}(y(x), x \$ 2)-10 * \operatorname{diff}(y(x), x)+8 * y(x)=24 * \exp (-3 * x), y(x)$, singsol=all)

$$
y(x)=\frac{\left(5 c_{3} \mathrm{e}^{6 x}+5 c_{1} \mathrm{e}^{5 x}+6 \mathrm{e}^{x}+5 c_{2}\right) \mathrm{e}^{-4 x}}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 37
DSolve [y'''[x]+y' '[x]-10*y'[x]+8*y[x]==24*Exp[-3*x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{6 e^{-3 x}}{5}+c_{1} e^{-4 x}+c_{2} e^{x}+c_{3} e^{2 x}
$$

6.20 problem Problem 42

6.20.1 Maple step by step solution . 1379

Internal problem ID [2744]
Internal file name [OUTPUT/2236_Sunday_June_05_2022_02_55_49_AM_28455852/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.1, General Theory for Linear Differential Equations. page 502
Problem number: Problem 42.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _missing_y]]
```

$$
y^{\prime \prime \prime}+5 y^{\prime \prime}+6 y^{\prime}=6 \mathrm{e}^{-x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+5 y^{\prime \prime}+6 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}+5 \lambda^{2}+6 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=-3
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{-3 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{-2 x} \\
& y_{3}=\mathrm{e}^{-3 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+5 y^{\prime \prime}+6 y^{\prime}=6 \mathrm{e}^{-x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
6 \mathrm{e}^{-x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, \mathrm{e}^{-3 x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \mathrm{e}^{-x}=6 \mathrm{e}^{-x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-3 \mathrm{e}^{-x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{-3 x} c_{3}\right)+\left(-3 \mathrm{e}^{-x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{-3 x} c_{3}-3 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{-3 x} c_{3}-3 \mathrm{e}^{-x}
$$

Verified OK.

6.20.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+5 y^{\prime \prime}+6 y^{\prime}=6 \mathrm{e}^{-x}
$$

- Highest derivative means the order of the ODE is 3

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=6 \mathrm{e}^{-x}-5 y_{3}(x)-6 y_{2}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=6 \mathrm{e}^{-x}-5 y_{3}(x)-6 y_{2}(x)\right]
$$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- \quad System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -6 & -5\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}0 \\ 0 \\ 6 \mathrm{e}^{-x}\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 6 \mathrm{e}^{-x}\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -6 & -5\end{array}\right]$
- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[-3,\left[\begin{array}{c}\frac{1}{9} \\ -\frac{1}{3} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair
$\vec{y}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst
$\phi(x)=\left[\begin{array}{ccc}\frac{\mathrm{e}^{-3 x}}{9} & \frac{\mathrm{e}^{-2 x}}{4} & 1 \\ -\frac{\mathrm{e}^{-3 x}}{3} & -\frac{\mathrm{e}^{-2 x}}{2} & 0 \\ \mathrm{e}^{-3 x} & \mathrm{e}^{-2 x} & 0\end{array}\right]$
- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-3 x}}{9} & \frac{\mathrm{e}^{-2 x}}{4} & 1 \\
-\frac{\mathrm{e}^{-3 x}}{3} & -\frac{\mathrm{e}^{-2 x}}{2} & 0 \\
\mathrm{e}^{-3 x} & \mathrm{e}^{-2 x} & 0
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
\frac{1}{9} & \frac{1}{4} & 1 \\
-\frac{1}{3} & -\frac{1}{2} & 0 \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & \frac{2 \mathrm{e}^{-3 x}}{3}-\frac{3 \mathrm{e}^{-2 x}}{2}+\frac{5}{6} & \frac{\mathrm{e}^{-3 x}}{3}-\frac{\mathrm{e}^{-2 x}}{2}+\frac{1}{6} \\
0 & -2 \mathrm{e}^{-3 x}+3 \mathrm{e}^{-2 x} & -\mathrm{e}^{-3 x}+\mathrm{e}^{-2 x} \\
0 & 6 \mathrm{e}^{-3 x}-6 \mathrm{e}^{-2 x} & 3 \mathrm{e}^{-3 x}-2 \mathrm{e}^{-2 x}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-3 \mathrm{e}^{-x}+1+3 \mathrm{e}^{-2 x}-\mathrm{e}^{-3 x} \\
3 \mathrm{e}^{-x}-6 \mathrm{e}^{-2 x}+3 \mathrm{e}^{-3 x} \\
-3 \mathrm{e}^{-x}+12 \mathrm{e}^{-2 x}-9 \mathrm{e}^{-3 x}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
-3 \mathrm{e}^{-x}+1+3 \mathrm{e}^{-2 x}-\mathrm{e}^{-3 x} \\
3 \mathrm{e}^{-x}-6 \mathrm{e}^{-2 x}+3 \mathrm{e}^{-3 x} \\
-3 \mathrm{e}^{-x}+12 \mathrm{e}^{-2 x}-9 \mathrm{e}^{-3 x}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=1+\frac{\left(-9+c_{1}\right) \mathrm{e}^{-3 x}}{9}+\frac{\left(12+c_{2}\right) \mathrm{e}^{-2 x}}{4}+c_{3}-3 \mathrm{e}^{-x}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = -5*(diff(_b(_a), _a))-6*_b(_a
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    -> Try solving first the homogeneous part of the ODE
        checking if the LODE has constant coefficients
        <- constant coefficients successful
    <- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
dsolve(diff $(y(x), x \$ 3)+5 * \operatorname{diff}(y(x), x \$ 2)+6 * \operatorname{diff}(y(x), x)=6 * \exp (-x), y(x)$, singsol=all)

$$
y(x)=-\frac{c_{1} \mathrm{e}^{-3 x}}{3}-\frac{\mathrm{e}^{-2 x} c_{2}}{2}-3 \mathrm{e}^{-x}+c_{3}
$$

\checkmark Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 37
DSolve[y'''[x]+5*y''[x]+6*y'[x]==6*Exp[-x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-3 e^{-x}-\frac{1}{3} c_{1} e^{-3 x}-\frac{1}{2} c_{2} e^{-2 x}+c_{3}
$$

7 Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
7.1 problem Problem 25 1386
7.2 problem Problem 26 1397
7.3 problem Problem 27 1410
7.4 problem Problem 28 1421
7.5 problem Problem 29 1433
7.6 problem Problem 30 1444
7.7 problem Problem 31 1452
7.8 problem Problem 32 1460
7.9 problem Problem 33 1464
7.10 problem Problem 34 1477
7.11 problem Problem 35 1490
7.12 problem Problem 36 1503
7.13 problem Problem 38 1516
7.14 problem Problem 39 1532
7.15 problem Problem 40 1543
7.16 problem Problem 41 1551
7.17 problem Problem 46 1555
7.18 problem Problem 47 1566

7.1 problem Problem 25

7.1.1 Solving as second order linear constant coeff ode 1386
7.1.2 Solving using Kovacic algorithm 1389
7.1.3 Maple step by step solution . 1394

Internal problem ID [2745]
Internal file name [OUTPUT/2237_Sunday_June_05_2022_02_55_51_AM_25015968/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+y=6 \mathrm{e}^{x}
$$

7.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=6 \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
6 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}=6 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(3 \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+3 \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 226: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+3 \mathrm{e}^{x}
$$

Verified OK.

7.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 201: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}=6 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(3 \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+3 \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 227: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+3 \mathrm{e}^{x}
$$

Verified OK.

7.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=6 \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r $r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=6 \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-6 \cos (x)\left(\int \mathrm{e}^{x} \sin (x) d x\right)+6 \sin (x)\left(\int \cos (x) \mathrm{e}^{x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=3 \mathrm{e}^{x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+3 \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)+y(x)=6 * \exp (x), y(x), \quad$ singsol $=a l l)$

$$
y(x)=\sin (x) c_{2}+\cos (x) c_{1}+3 \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 21
DSolve[y'' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==6 * \operatorname{Exp}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 3 e^{x}+c_{1} \cos (x)+c_{2} \sin (x)
$$

7.2 problem Problem 26

7.2.1 Solving as second order linear constant coeff ode 1397
$\begin{array}{ll}\text { 7.2.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 1400\end{array}$
7.2.3 Solving using Kovacic algorithm 1402
7.2.4 Maple step by step solution . 1407

Internal problem ID [2746]
Internal file name [OUTPUT/2238_Sunday_June_05_2022_02_55_54_AM_77301884/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+4 y=5 x \mathrm{e}^{-2 x}
$$

7.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=4, C=4, f(x)=5 x \mathrm{e}^{-2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(4)^{2}-(4)(1)(4)} \\
& =-2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=2$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 x \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x}\right\}
$$

Since $\mathrm{e}^{-2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x} x^{2}\right\}\right]
$$

Since $x \mathrm{e}^{-2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3} \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x} x^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{3} \mathrm{e}^{-2 x}+A_{2} \mathrm{e}^{-2 x} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} x \mathrm{e}^{-2 x}+2 A_{2} \mathrm{e}^{-2 x}=5 x \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{5}{6}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+\left(\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{5 x^{3} \mathrm{e}^{-2 x}}{6} \tag{1}
\end{equation*}
$$

Figure 228: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}
$$

Verified OK.

7.2.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 4 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =5 \mathrm{e}^{2 x} x \mathrm{e}^{-2 x} \\
\left(\mathrm{e}^{2 x} y\right)^{\prime \prime} & =5 \mathrm{e}^{2 x} x \mathrm{e}^{-2 x}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{2 x} y\right)^{\prime}=\frac{5 x^{2}}{2}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{2 x} y\right)=\frac{5}{6} x^{3}+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{\frac{5}{6} x^{3}+c_{1} x+c_{2}}{\mathrm{e}^{2 x}}
$$

Or

$$
y=\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}+c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}+c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 229: Slope field plot

Verification of solutions

$$
y=\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}+c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

7.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =4 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 203: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 x \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x}\right\}
$$

Since $\mathrm{e}^{-2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x} x^{2}\right\}\right]
$$

Since $x \mathrm{e}^{-2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3} \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x} x^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{3} \mathrm{e}^{-2 x}+A_{2} \mathrm{e}^{-2 x} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} x \mathrm{e}^{-2 x}+2 A_{2} \mathrm{e}^{-2 x}=5 x \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{5}{6}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+\left(\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{5 x^{3} \mathrm{e}^{-2 x}}{6} \tag{1}
\end{equation*}
$$

Figure 230: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}
$$

Verified OK.

7.2.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+4 y=5 x \mathrm{e}^{-2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+4=0
$$

- Factor the characteristic polynomial

$$
(r+2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-2
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=5 x \mathrm{e}^{-2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-5 \mathrm{e}^{-2 x}\left(\int x^{2} d x-\left(\int x d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{2} x \mathrm{e}^{-2 x}+c_{1} \mathrm{e}^{-2 x}+\frac{5 x^{3} \mathrm{e}^{-2 x}}{6}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=5*x*exp(-2*x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-2 x}\left(c_{2}+c_{1} x+\frac{5}{6} x^{3}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 29
DSolve[y''[x]+4*y'[x]+4*y[x]==5*x*Exp[-2*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{6} e^{-2 x}\left(5 x^{3}+6 c_{2} x+6 c_{1}\right)
$$

7.3 problem Problem 27

7.3.1 Solving as second order linear constant coeff ode 1410
7.3.2 Solving using Kovacic algorithm 1413
7.3.3 Maple step by step solution . 1418

Internal problem ID [2747]
Internal file name [OUTPUT/2239_Sunday_June_05_2022_02_55_56_AM_6096335/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+4 y=8 \sin (2 x)
$$

7.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=8 \sin (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 \sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (2 x), x \sin (2 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (2 x)+A_{2} x \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)=8 \sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 x \cos (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+(-2 x \cos (2 x))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-2 x \cos (2 x) \tag{1}
\end{equation*}
$$

Figure 231: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-2 x \cos (2 x)
$$

Verified OK.

7.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 205: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 \sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (2 x), x \sin (2 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (2 x)+A_{2} x \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)=8 \sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 x \cos (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+(-2 x \cos (2 x))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}-2 x \cos (2 x) \tag{1}
\end{equation*}
$$

Figure 232: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}-2 x \cos (2 x)
$$

Verified OK.

7.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=8 \sin (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (2 x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=8 \sin (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (2 x) & \sin (2 x) \\ -2 \sin (2 x) & 2 \cos (2 x)\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-2 \cos (2 x)\left(\int(1-\cos (4 x)) d x\right)+2 \sin (2 x)\left(\int \sin (4 x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\sin (2 x)}{2}-2 x \cos (2 x)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\sin (2 x)}{2}-2 x \cos (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve(diff(y(x),x$2)+4*y(x)=8*sin(2*x),y(x), singsol=all)
```

$$
y(x)=\left(-2 x+c_{1}\right) \cos (2 x)+\sin (2 x) c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 29
DSolve[y'' $[\mathrm{x}]+4 * y[\mathrm{x}]==8 * \operatorname{Sin}[2 * x], y[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \sin (x) \cos (x)+\left(-2 x+c_{1}\right) \cos (2 x)+c_{2} \sin (2 x)
$$

7.4 problem Problem 28

7.4.1 Solving as second order linear constant coeff ode 1421
7.4.2 Solving using Kovacic algorithm 1424
7.4.3 Maple step by step solution . 1430

Internal problem ID [2748]
Internal file name [OUTPUT/2240_Sunday_June_05_2022_02_55_58_AM_81023087/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-y^{\prime}-2 y=5 \mathrm{e}^{2 x}
$$

7.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-1, C=-2, f(x)=5 \mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x}, \mathrm{e}^{2 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{x \mathrm{e}^{2 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{2 x}=5 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{5}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5 x \mathrm{e}^{2 x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x}\right)+\left(\frac{5 x \mathrm{e}^{2 x}}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x}+\frac{5 x \mathrm{e}^{2 x}}{3} \tag{1}
\end{equation*}
$$

Figure 233: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x}+\frac{5 x \mathrm{e}^{2 x}}{3}
$$

Verified OK.

7.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 207: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\frac{\mathrm{e}^{2 x}}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{3} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x}}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{3} \\
-\mathrm{e}^{-x} & \frac{2 \mathrm{e}^{2 x}}{3}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x}\right)\left(\frac{2 \mathrm{e}^{2 x}}{3}\right)-\left(\frac{\mathrm{e}^{2 x}}{3}\right)\left(-\mathrm{e}^{-x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-x} \mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{5 \mathrm{e}^{4 x}}{3}}{\mathrm{e}^{x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{5 \mathrm{e}^{3 x}}{3} d x
$$

Hence

$$
u_{1}=-\frac{5 \mathrm{e}^{3 x}}{9}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{5 \mathrm{e}^{-x} \mathrm{e}^{2 x}}{\mathrm{e}^{x}} d x
$$

Which simplifies to

$$
u_{2}=\int 5 d x
$$

Hence

$$
u_{2}=5 x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{5 \mathrm{e}^{-x} \mathrm{e}^{3 x}}{9}+\frac{5 x \mathrm{e}^{2 x}}{3}
$$

Which simplifies to

$$
y_{p}(x)=\frac{5 \mathrm{e}^{2 x}(3 x-1)}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}\right)+\left(\frac{5 \mathrm{e}^{2 x}(3 x-1)}{9}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}+\frac{5 \mathrm{e}^{2 x}(3 x-1)}{9} \tag{1}
\end{equation*}
$$

Figure 234: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}+\frac{5 \mathrm{e}^{2 x}(3 x-1)}{9}
$$

Verified OK.

7.4.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y^{\prime}-2 y=5 \mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(-1,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=5 \mathrm{e}^{2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{2 x} \\ -\mathrm{e}^{-x} & 2 \mathrm{e}^{2 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{5 \mathrm{e}^{-x}\left(\int \mathrm{e}^{3 x} d x\right)}{3}+\frac{5 \mathrm{e}^{2 x}\left(\int 1 d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=\frac{5 \mathrm{e}^{2 x}(3 x-1)}{9}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+\frac{5 \mathrm{e}^{2 x}(3 x-1)}{9}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
dsolve(diff(y(x),x$2)-diff(y(x),x)-2*y(x)=5*exp(2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(5 x+3 c_{1}\right) \mathrm{e}^{2 x}}{3}+\mathrm{e}^{-x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 31
DSolve[y''[x]-y'[x]-2*y[x]==5*Exp[2*x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} e^{-x}+e^{2 x}\left(\frac{5 x}{3}-\frac{5}{9}+c_{2}\right)
$$

7.5 problem Problem 29

7.5.1 Solving as second order linear constant coeff ode 1433
7.5.2 Solving using Kovacic algorithm 1436
7.5.3 Maple step by step solution . 1441

Internal problem ID [2749]
Internal file name [OUTPUT/2241_Sunday_June_05_2022_02_56_01_AM_55212245/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime}+5 y=3 \sin (2 x)
$$

7.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=5, f(x)=3 \sin (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(5)} \\
& =-1 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (2 x), \mathrm{e}^{-x} \sin (2 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (2 x)+A_{2} \sin (2 x)-4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)=3 \sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{12}{17}, A_{2}=\frac{3}{17}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{12 \cos (2 x)}{17}+\frac{3 \sin (2 x)}{17}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)\right)+\left(-\frac{12 \cos (2 x)}{17}+\frac{3 \sin (2 x)}{17}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)-\frac{12 \cos (2 x)}{17}+\frac{3 \sin (2 x)}{17} \tag{1}
\end{equation*}
$$

Figure 235: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)-\frac{12 \cos (2 x)}{17}+\frac{3 \sin (2 x)}{17}
$$

Verified OK.

7.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-4 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 209: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (2 x) \mathrm{e}^{-x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{-x} c_{2}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (2 x), \frac{\mathrm{e}^{-x} \sin (2 x)}{2}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (2 x)+A_{2} \sin (2 x)-4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)=3 \sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{12}{17}, A_{2}=\frac{3}{17}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{12 \cos (2 x)}{17}+\frac{3 \sin (2 x)}{17}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (2 x) \mathrm{e}^{-x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{-x} c_{2}}{2}\right)+\left(-\frac{12 \cos (2 x)}{17}+\frac{3 \sin (2 x)}{17}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (2 x) \mathrm{e}^{-x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{-x} c_{2}}{2}-\frac{12 \cos (2 x)}{17}+\frac{3 \sin (2 x)}{17} \tag{1}
\end{equation*}
$$

Figure 236: Slope field plot

Verification of solutions

$$
y=\cos (2 x) \mathrm{e}^{-x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{-x} c_{2}}{2}-\frac{12 \cos (2 x)}{17}+\frac{3 \sin (2 x)}{17}
$$

Verified OK.

7.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+5 y=3 \sin (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+5=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-2) \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-1-2 \mathrm{I},-1+2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x} \cos (2 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x} \sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=\cos (2 x) \mathrm{e}^{-x} c_{1}+\sin (2 x) \mathrm{e}^{-x} c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 \sin (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} \cos (2 x) & \mathrm{e}^{-x} \sin (2 x) \\
-\mathrm{e}^{-x} \cos (2 x)-2 \mathrm{e}^{-x} \sin (2 x) & -\mathrm{e}^{-x} \sin (2 x)+2 \mathrm{e}^{-x} \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{3 \mathrm{e}^{-x}\left(\sin (2 x)\left(\int \sin (4 x) \mathrm{e}^{x} d x\right)-2 \cos (2 x)\left(\int \mathrm{e}^{x} \sin (2 x)^{2} d x\right)\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{12 \cos (2 x)}{17}+\frac{3 \sin (2 x)}{17}
$$

- Substitute particular solution into general solution to ODE $y=\sin (2 x) \mathrm{e}^{-x} c_{2}+\cos (2 x) \mathrm{e}^{-x} c_{1}+\frac{3 \sin (2 x)}{17}-\frac{12 \cos (2 x)}{17}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 36

```
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+5*y(x)=3*\operatorname{sin}(2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\sin (2 x)\left(17 \mathrm{e}^{-x} c_{2}+3\right)}{17}+\cos (2 x) \mathrm{e}^{-x} c_{1}-\frac{12 \cos (2 x)}{17}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 45
DSolve[y''[x]+2*y'[x]+5*y[x]==3*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{1}{17} e^{-x}\left(\left(-12 e^{x}+17 c_{2}\right) \cos (2 x)+\left(3 e^{x}+17 c_{1}\right) \sin (2 x)\right)
$$

7.6 problem Problem 30

7.6.1 Maple step by step solution

Internal problem ID [2750]
Internal file name [OUTPUT/2242_Sunday_June_05_2022_02_56_03_AM_97144766/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 30.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-5 y^{\prime}-6 y=4 x^{2}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-5 y^{\prime}-6 y=0
$$

The characteristic equation is

$$
\lambda^{3}+2 \lambda^{2}-5 \lambda-6=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-3 \\
& \lambda_{3}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-3 x}+c_{3} \mathrm{e}^{2 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{-3 x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-5 y^{\prime}-6 y=4 x^{2}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 x}, \mathrm{e}^{-x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{3} x^{2}-6 A_{2} x-10 x A_{3}-6 A_{1}-5 A_{2}+4 A_{3}=4 x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{37}{27}, A_{2}=\frac{10}{9}, A_{3}=-\frac{2}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{2}{3} x^{2}+\frac{10}{9} x-\frac{37}{27}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-3 x}+c_{3} \mathrm{e}^{2 x}\right)+\left(-\frac{2}{3} x^{2}+\frac{10}{9} x-\frac{37}{27}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-3 x}+c_{3} \mathrm{e}^{2 x}-\frac{2 x^{2}}{3}+\frac{10 x}{9}-\frac{37}{27} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-3 x}+c_{3} \mathrm{e}^{2 x}-\frac{2 x^{2}}{3}+\frac{10 x}{9}-\frac{37}{27}
$$

Verified OK.

7.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-5 y^{\prime}-6 y=4 x^{2}
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=4 x^{2}-2 y_{3}(x)+5 y_{2}(x)+6 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=4 x^{2}-2 y_{3}(x)+5 y_{2}(x)+6 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & 5 & -2
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
4 x^{2}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 4 x^{2}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & 5 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-3 x}}{9} & \mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{4} \\
-\frac{\mathrm{e}^{-3 x}}{3} & -\mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{-3 x} & \mathrm{e}^{-x} & \mathrm{e}^{2 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-3 x}}{9} & \mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{4} \\
-\frac{\mathrm{e}^{-3 x}}{3} & -\mathrm{e}^{-x} & \frac{\mathrm{e}^{2 x}}{2} \\
\mathrm{e}^{-3 x} & \mathrm{e}^{-x} & \mathrm{e}^{2 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
\frac{1}{9} & 1 & \frac{1}{4} \\
-\frac{1}{3} & -1 & \frac{1}{2} \\
1 & 1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\left(\mathrm{e}^{5 x}+5 \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-3 x}}{5} & \frac{\left(8 \mathrm{e}^{5 x}-5 \mathrm{e}^{2 x}-3\right) \mathrm{e}^{-3 x}}{30} & \frac{\left(2 \mathrm{e}^{5 x}-5 \mathrm{e}^{2 x}+3\right) \mathrm{e}^{-3 x}}{30} \\
\frac{\left(2 \mathrm{e}^{5 x}-5 \mathrm{e}^{2 x}+3\right) \mathrm{e}^{-3 x}}{5} & \frac{\left(16 \mathrm{e}^{5 x}+5 \mathrm{e}^{2 x}+9\right) \mathrm{e}^{-3 x}}{30} & \frac{\left(4 \mathrm{e}^{5 x}+5 \mathrm{e}^{2 x}-9\right) \mathrm{e}^{-3 x}}{30} \\
\frac{\left(4 \mathrm{e}^{5 x}+5 \mathrm{e}^{2 x}-9\right) \mathrm{e}^{-3 x}}{5} & \frac{\left(32 \mathrm{e}^{5 x}-5 \mathrm{e}^{2 x}-27\right) \mathrm{e}^{-3 x}}{30} & \frac{\left(8 \mathrm{e}^{5 x}-5 \mathrm{e}^{2 x}+27\right) \mathrm{e}^{-3 x}}{30}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms
$\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)$
- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\mathrm{e}^{-3 x}\left(\left(-18 x^{2}+30 x-37\right) \mathrm{e}^{3 x}+36 \mathrm{e}^{2 x}+\frac{9 \mathrm{e}^{5 x}}{5}-\frac{4}{5}\right)}{27} \\
-\frac{2\left(-3 \mathrm{e}^{5 x}+30 x \mathrm{e}^{3 x}-25 \mathrm{e}^{3 x}+30 \mathrm{e}^{2 x}-2\right) \mathrm{e}^{-3 x}}{45} \\
\frac{4\left(\mathrm{e}^{5 x}-5 \mathrm{e}^{3 x}+5 \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-3 x}}{15}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
\frac{\mathrm{e}^{-3 x}\left(\left(-18 x^{2}+30 x-37\right) \mathrm{e}^{3 x}+36 \mathrm{e}^{2 x}+\frac{9 \mathrm{e}^{5 x}}{5}-\frac{4}{5}\right)}{27} \\
-\frac{2\left(-3 \mathrm{e}^{5 x}+30 x \mathrm{e}^{3 x}-25 \mathrm{e}^{3 x}+30 \mathrm{e}^{2 x}-2\right) \mathrm{e}^{-3 x}}{45} \\
\frac{4\left(\mathrm{e}^{5 x}-5 \mathrm{e}^{3 x}+5 \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-3 x}}{15}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 44
dsolve(diff $(y(x), x \$ 3)+2 * \operatorname{diff}(y(x), x \$ 2)-5 * \operatorname{diff}(y(x), x)-6 * y(x)=4 * x^{\wedge} 2, y(x)$, singsol=all)

$$
y(x)=\frac{\left(-18 x^{2}+30 x-37\right) \mathrm{e}^{-3 x} \mathrm{e}^{3 x}}{27}+\left(c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{5 x}+c_{1}\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 45
DSolve[y'''[x]+2*y''[x]-5*y'[x]-6*y[x]==4*x^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{2 x^{2}}{3}+\frac{10 x}{9}+c_{1} e^{-3 x}+c_{2} e^{-x}+c_{3} e^{2 x}-\frac{37}{27}
$$

7.7 problem Problem 31

7.7.1 Maple step by step solution

Internal problem ID [2751]
Internal file name [OUTPUT/2243_Sunday_June_05_2022_02_56_05_AM_62395484/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 31.
ODE order: 3 .
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=9 \mathrm{e}^{-x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0
$$

The characteristic equation is

$$
\lambda^{3}-\lambda^{2}+\lambda-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =i \\
\lambda_{3} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{x}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=9 \mathrm{e}^{-x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
9 \mathrm{e}^{-x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{i x}, \mathrm{e}^{-i x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \mathrm{e}^{-x}=9 \mathrm{e}^{-x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{9}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{9 \mathrm{e}^{-x}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}\right)+\left(-\frac{9 \mathrm{e}^{-x}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}-\frac{9 \mathrm{e}^{-x}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}-\frac{9 \mathrm{e}^{-x}}{4}
$$

Verified OK.

7.7.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=9 \mathrm{e}^{-x}
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=9 \mathrm{e}^{-x}+y_{3}(x)-y_{2}(x)+y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=9 \mathrm{e}^{-x}+y_{3}(x)-y_{2}(x)+y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
9 \mathrm{e}^{-x}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 9 \mathrm{e}^{-x}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $\vec{y}_{p}($

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)
$$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(x)=\left[\begin{array}{ccc}\mathrm{e}^{x} & -\cos (x) & \sin (x) \\ \mathrm{e}^{x} & \sin (x) & \cos (x) \\ \mathrm{e}^{x} & \cos (x) & -\sin (x)\end{array}\right]$
- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & -\cos (x) & \sin (x) \\
\mathrm{e}^{x} & \sin (x) & \cos (x) \\
\mathrm{e}^{x} & \cos (x) & -\sin (x)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix
$\Phi(x)=\left[\begin{array}{ccc}\frac{\mathrm{e}^{x}}{2}+\frac{\cos (x)}{2}-\frac{\sin (x)}{2} & \sin (x) & \frac{\mathrm{e}^{x}}{2}-\frac{\cos (x)}{2}-\frac{\sin (x)}{2} \\ \frac{\mathrm{e}^{x}}{2}-\frac{\cos (x)}{2}-\frac{\sin (x)}{2} & \cos (x) & \frac{\mathrm{e}^{x}}{2}+\frac{\sin (x)}{2}-\frac{\cos (x)}{2} \\ \frac{\mathrm{e}^{x}}{2}+\frac{\sin (x)}{2}-\frac{\cos (x)}{2} & -\sin (x) & \frac{\mathrm{e}^{x}}{2}+\frac{\cos (x)}{2}+\frac{\sin (x)}{2}\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{9 \mathrm{e}^{x}}{4}-\frac{9 \sin (x)}{2}-\frac{9 \mathrm{e}^{-x}}{4} \\
\frac{9 \mathrm{e}^{x}}{4}-\frac{9 \cos (x)}{2}+\frac{9 \mathrm{e}^{-x}}{4} \\
\frac{9 \mathrm{e}^{x}}{4}+\frac{9 \sin (x)}{2}-\frac{9 \mathrm{e}^{-x}}{4}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
\frac{9 \mathrm{e}^{x}}{4}-\frac{9 \sin (x)}{2}-\frac{9 \mathrm{e}^{-x}}{4} \\
\frac{9 \mathrm{e}^{x}}{4}-\frac{9 \cos (x)}{2}+\frac{9 \mathrm{e}^{-x}}{4} \\
\frac{9 \mathrm{e}^{x}}{4}+\frac{9 \sin (x)}{2}-\frac{9 \mathrm{e}^{-x}}{4}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=c_{1} \mathrm{e}^{x}+\frac{9 \mathrm{e}^{x}}{4}-\frac{9 \sin (x)}{2}-\frac{9 \mathrm{e}^{-x}}{4}+c_{3} \sin (x)-c_{2} \cos (x)
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve(diff $(y(x), x \$ 3)-\operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-y(x)=9 * \exp (-x), y(x)$, singsol=all)

$$
y(x)=-\frac{9 \mathrm{e}^{-x}}{4}+\cos (x) c_{1}+c_{2} \mathrm{e}^{x}+c_{3} \sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 31
DSolve[y'''[x]-y''[x]+y'[x]-y[x]==9*Exp[-x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{9 e^{-x}}{4}+c_{3} e^{x}+c_{1} \cos (x)+c_{2} \sin (x)
$$

7.8 problem Problem 32

Internal problem ID [2752]
Internal file name [OUTPUT/2244_Sunday_June_05_2022_02_56_07_AM_96434338/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 32.
ODE order: 3 .
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=2 \mathrm{e}^{-x}+3 \mathrm{e}^{2 x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0
$$

The characteristic equation is

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}+x^{2} \mathrm{e}^{-x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=\mathrm{e}^{-x} x^{2}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=2 \mathrm{e}^{-x}+3 \mathrm{e}^{2 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-x}+3 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x} x^{2}, \mathrm{e}^{-x}\right\}
$$

Since e^{-x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

Since $x \mathrm{e}^{-x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{-x} x^{2}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

Since $\mathrm{e}^{-x} x^{2}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3} \mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{3} \mathrm{e}^{-x}+A_{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{-x}+27 A_{2} \mathrm{e}^{2 x}=2 \mathrm{e}^{-x}+3 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=\frac{1}{9}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{3} \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}+x^{2} \mathrm{e}^{-x} c_{3}\right)+\left(\frac{x^{3} \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{9}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{9} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}}{9}
$$

Verified OK.

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 36

```
dsolve(diff (y(x),x$3)+3*diff (y(x),x$2)+3*diff (y(x),x)+y(x)=2*exp(-x)+3*exp(2*x),y(x), singso
```

$$
y(x)=\frac{\left(9 c_{3} x^{2}+3 x^{3}+9 c_{2} x+9 c_{1}\right) \mathrm{e}^{-x}}{9}+\frac{\mathrm{e}^{2 x}}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 41
DSolve $[y$ '' ' $[x]+3 * y$ ' ' $[x]+3 * y$ ' $[x]+y[x]==2 * \operatorname{Exp}[-x]+3 * \operatorname{Exp}[2 * x], y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{1}{9} e^{-x}\left(3 x^{3}+9 c_{3} x^{2}+e^{3 x}+9 c_{2} x+9 c_{1}\right)
$$

7.9 problem Problem 33

7.9.1 Existence and uniqueness analysis 1464
7.9.2 Solving as second order linear constant coeff ode 1465
7.9.3 Solving using Kovacic algorithm 1469
7.9.4 Maple step by step solution . 1474

Internal problem ID [2753]
Internal file name [OUTPUT/2245_Sunday_June_05_2022_02_56_10_AM_15687103/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=5 \cos (2 x)
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=3\right]
$$

7.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =9 \\
F & =5 \cos (2 x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+9 y=5 \cos (2 x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=5 \cos (2 x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.9.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=5 \cos (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 x), \sin (3 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \cos (2 x)+5 A_{2} \sin (2 x)=5 \cos (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\cos (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+(\cos (2 x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\cos (2 x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+1 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)-2 \sin (2 x)
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\cos (2 x)+\cos (3 x)+\sin (3 x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\cos (2 x)+\cos (3 x)+\sin (3 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\cos (2 x)+\cos (3 x)+\sin (3 x)
$$

Verified OK.

7.9.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 213: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \cos (2 x)+5 A_{2} \sin (2 x)=5 \cos (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\cos (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+(\cos (2 x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+\cos (2 x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+1 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \sin (3 x)+c_{2} \cos (3 x)-2 \sin (2 x)
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\cos (2 x)+\cos (3 x)+\sin (3 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (2 x)+\cos (3 x)+\sin (3 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\cos (2 x)+\cos (3 x)+\sin (3 x)
$$

Verified OK.

7.9.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+9 y=5 \cos (2 x), y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=3\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-36})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (3 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=5 \cos (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (3 x) & \sin (3 x) \\ -3 \sin (3 x) & 3 \cos (3 x)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{5 \cos (3 x)\left(\int(\sin (5 x)+\sin (x)) d x\right)}{6}+\frac{5 \sin (3 x)\left(\int(\cos (x)+\cos (5 x)) d x\right)}{6}$
- Compute integrals
$y_{p}(x)=\cos (2 x)$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\cos (2 x)$
Check validity of solution $y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\cos (2 x)$
- Use initial condition $y(0)=2$

$$
2=c_{1}+1
$$

- Compute derivative of the solution
$y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)-2 \sin (2 x)$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=3$
$3=3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=1, c_{2}=1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\cos (2 x)+\cos (3 x)+\sin (3 x)
$$

- \quad Solution to the IVP

$$
y=\cos (2 x)+\cos (3 x)+\sin (3 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 17

```
dsolve([diff (y (x),x$2)+9*y(x)=5*\operatorname{cos}(2*x),y(0) = 2, D(y)(0) = 3],y(x), singsol=all)
```

$$
y(x)=\sin (3 x)+\cos (3 x)+\cos (2 x)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 18
DSolve $\left[\left\{y^{\prime \prime}[x]+9 * y[x]==5 * \operatorname{Cos}[2 * x],\{y[0]==2, y\right.\right.$ ' $\left.[0]==3\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow \sin (3 x)+\cos (2 x)+\cos (3 x)
$$

7.10 problem Problem 34

7.10.1 Existence and uniqueness analysis 1477
7.10.2 Solving as second order linear constant coeff ode 1478
7.10.3 Solving using Kovacic algorithm 1482
7.10.4 Maple step by step solution . 1487

Internal problem ID [2754]
Internal file name [OUTPUT/2246_Sunday_June_05_2022_02_56_13_AM_57390033/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 34.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y=9 x \mathrm{e}^{2 x}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=7\right]
$$

7.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-1 \\
F & =9 x \mathrm{e}^{2 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y=9 x \mathrm{e}^{2 x}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=9 x \mathrm{e}^{2 x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.10.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-1, f(x)=9 x \mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
9 x \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{2 x}+A_{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \mathrm{e}^{2 x}+3 A_{1} x \mathrm{e}^{2 x}+3 A_{2} \mathrm{e}^{2 x}=9 x \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=-4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x \mathrm{e}^{2 x}-4 \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}\right)+\left(3 x \mathrm{e}^{2 x}-4 \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}+3 x \mathrm{e}^{2 x}-4 \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}-4 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{-x}-5 \mathrm{e}^{2 x}+6 x \mathrm{e}^{2 x}
$$

substituting $y^{\prime}=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=c_{1}-c_{2}-5 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=8 \\
& c_{2}=-4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{2 x}+8 \mathrm{e}^{x}-4 \mathrm{e}^{2 x}-4 \mathrm{e}^{-x}
$$

Which simplifies to

$$
y=(3 x-4) \mathrm{e}^{2 x}+8 \mathrm{e}^{x}-4 \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(3 x-4) \mathrm{e}^{2 x}+8 \mathrm{e}^{x}-4 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(3 x-4) \mathrm{e}^{2 x}+8 \mathrm{e}^{x}-4 \mathrm{e}^{-x}
$$

Verified OK.

7.10.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 215: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
9 x \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{x}}{2}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{2 x}+A_{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \mathrm{e}^{2 x}+3 A_{1} x \mathrm{e}^{2 x}+3 A_{2} \mathrm{e}^{2 x}=9 x \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=-4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x \mathrm{e}^{2 x}-4 \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}\right)+\left(3 x \mathrm{e}^{2 x}-4 \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}+3 x \mathrm{e}^{2 x}-4 \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2}-4 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}-5 \mathrm{e}^{2 x}+6 x \mathrm{e}^{2 x}
$$

substituting $y^{\prime}=7$ and $x=0$ in the above gives

$$
\begin{equation*}
7=-c_{1}+\frac{c_{2}}{2}-5 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-4 \\
& c_{2}=16
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 x \mathrm{e}^{2 x}+8 \mathrm{e}^{x}-4 \mathrm{e}^{2 x}-4 \mathrm{e}^{-x}
$$

Which simplifies to

$$
y=(3 x-4) \mathrm{e}^{2 x}+8 \mathrm{e}^{x}-4 \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(3 x-4) \mathrm{e}^{2 x}+8 \mathrm{e}^{x}-4 \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=(3 x-4) \mathrm{e}^{2 x}+8 \mathrm{e}^{x}-4 \mathrm{e}^{-x}
$$

Verified OK.

7.10.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y=9 x \mathrm{e}^{2 x}, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=7\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-1=0$
- Factor the characteristic polynomial
$(r-1)(r+1)=0$
- Roots of the characteristic polynomial $r=(-1,1)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=9 x \mathrm{e}^{2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{x} \\ -\mathrm{e}^{-x} & \mathrm{e}^{x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{9 \mathrm{e}^{-x}\left(\int x \mathrm{e}^{3 x} d x\right)}{2}+\frac{9 \mathrm{e}^{x}\left(\int x \mathrm{e}^{x} d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=(3 x-4) \mathrm{e}^{2 x}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+(3 x-4) \mathrm{e}^{2 x}$
Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+(3 x-4) \mathrm{e}^{2 x}$
- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}-4
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+3 \mathrm{e}^{2 x}+2(3 x-4) \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=7$

$$
7=-c_{1}+c_{2}-5
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-4, c_{2}=8\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=(3 x-4) \mathrm{e}^{2 x}+8 \mathrm{e}^{x}-4 \mathrm{e}^{-x}
$$

- \quad Solution to the IVP

$$
y=(3 x-4) \mathrm{e}^{2 x}+8 \mathrm{e}^{x}-4 \mathrm{e}^{-x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 25

```
dsolve([diff (y (x),x$2)-y(x)=9*x*exp (2*x),y(0) = 0, D(y) (0) = 7],y(x), singsol=all)
```

$$
y(x)=-4 \mathrm{e}^{-x}+8 \mathrm{e}^{x}+(3 x-4) \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 29

```
DSolve[{y''[x]-y[x]==9*x*Exp[2*x],{y[0]==0,y'[0]==7}},y[x],x,IncludeSingularSolutions -> Tru
```

$$
y(x) \rightarrow e^{2 x}(3 x-4)-4 e^{-x}+8 e^{x}
$$

7.11 problem Problem 35

7.11.1 Existence and uniqueness analysis 1490
7.11.2 Solving as second order linear constant coeff ode 1491
7.11.3 Solving using Kovacic algorithm 1495
7.11.4 Maple step by step solution . 1500

Internal problem ID [2755]
Internal file name [OUTPUT/2247_Sunday_June_05_2022_02_56_15_AM_46099453/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 35.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y^{\prime}-2 y=-10 \sin (x)
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=1\right]
$$

7.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-2 \\
F & =-10 \sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}-2 y=-10 \sin (x)
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=-10 \sin (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.11.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=1, C=-2, f(x)=-10 \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-2)} \\
& =-\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-10 \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1} \cos (x)-3 A_{2} \sin (x)-A_{1} \sin (x)+A_{2} \cos (x)=-10 \sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\cos (x)+3 \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}\right)+(\cos (x)+3 \sin (x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}+\cos (x)+3 \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2}+1 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}-2 c_{2} \mathrm{e}^{-2 x}-\sin (x)+3 \cos (x)
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}-2 c_{2}+3 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \sin (x)+\cos (x)+\mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \sin (x)+\cos (x)+\mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \sin (x)+\cos (x)+\mathrm{e}^{-2 x}
$$

Verified OK.

7.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+y^{\prime}-2 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 217: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-10 \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{x}}{3}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1} \cos (x)-3 A_{2} \sin (x)-A_{1} \sin (x)+A_{2} \cos (x)=-10 \sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=3\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\cos (x)+3 \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}\right)+(\cos (x)+3 \sin (x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}+\cos (x)+3 \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+\frac{c_{2}}{3}+1 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}-\sin (x)+3 \cos (x)
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-2 c_{1}+\frac{c_{2}}{3}+3 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \sin (x)+\cos (x)+\mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \sin (x)+\cos (x)+\mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \sin (x)+\cos (x)+\mathrm{e}^{-2 x}
$$

Verified OK.

7.11.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}-2 y=-10 \sin (x), y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+r-2=0
$$

- Factor the characteristic polynomial
$(r+2)(r-1)=0$
- Roots of the characteristic polynomial

$$
r=(-2,1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-10 \sin (x)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 x} & \mathrm{e}^{x} \\ -2 \mathrm{e}^{-2 x} & \mathrm{e}^{x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{-x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{10\left(\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-x} \sin (x) d x\right)-\left(\int \sin (x) \mathrm{e}^{2 x} d x\right)\right) \mathrm{e}^{-2 x}}{3}$
- Compute integrals
$y_{p}(x)=\cos (x)+3 \sin (x)$
- \quad Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+\cos (x)+3 \sin (x)$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+\cos (x)+3 \sin (x)$
- Use initial condition $y(0)=2$
$2=c_{1}+c_{2}+1$
- Compute derivative of the solution $y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}-\sin (x)+3 \cos (x)$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=-2 c_{1}+c_{2}+3$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=0\right\}$
- Substitute constant values into general solution and simplify

$$
y=3 \sin (x)+\cos (x)+\mathrm{e}^{-2 x}
$$

- \quad Solution to the IVP

$$
y=3 \sin (x)+\cos (x)+\mathrm{e}^{-2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 15

```
dsolve([diff (y(x),x$2)+diff (y(x),x)-2*y(x)=-10*\operatorname{sin}(x),y(0)=2, D(y)(0) = 1],y(x), singsol=a
```

$$
y(x)=\mathrm{e}^{-2 x}+\cos (x)+3 \sin (x)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 17
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+y\right.\right.$ ' $\left.[x]-2 * y[x]==-10 * \operatorname{Sin}[x],\left\{y[0]==2, y^{\prime}[0]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow e^{-2 x}+3 \sin (x)+\cos (x)
$$

7.12 problem Problem 36

7.12.1 Existence and uniqueness analysis 1503
7.12.2 Solving as second order linear constant coeff ode 1504
7.12.3 Solving using Kovacic algorithm 1508
7.12.4 Maple step by step solution . 1513

Internal problem ID [2756]
Internal file name [OUTPUT/2248_Sunday_June_05_2022_02_56_18_AM_76438375/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 36.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y^{\prime}-2 y=4 \cos (x)-2 \sin (x)
$$

With initial conditions

$$
\left[y(0)=-1, y^{\prime}(0)=4\right]
$$

7.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-2 \\
F & =4 \cos (x)-2 \sin (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}-2 y=4 \cos (x)-2 \sin (x)
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=4 \cos (x)-2 \sin (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.12.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=1, C=-2, f(x)=4 \cos (x)-2 \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-2)} \\
& =-\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \cos (x)-2 \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1} \cos (x)-3 A_{2} \sin (x)-A_{1} \sin (x)+A_{2} \cos (x)=4 \cos (x)-2 \sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\cos (x)+\sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}\right)+(-\cos (x)+\sin (x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}-\cos (x)+\sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{1}+c_{2}-1 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}-2 c_{2} \mathrm{e}^{-2 x}+\sin (x)+\cos (x)
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1}-2 c_{2}+1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\sin (x)-\cos (x)+\mathrm{e}^{x}-\mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin (x)-\cos (x)+\mathrm{e}^{x}-\mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sin (x)-\cos (x)+\mathrm{e}^{x}-\mathrm{e}^{-2 x}
$$

Verified OK.

7.12.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+y^{\prime}-2 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 219: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \cos (x)-2 \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{x}}{3}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1} \cos (x)-3 A_{2} \sin (x)-A_{1} \sin (x)+A_{2} \cos (x)=4 \cos (x)-2 \sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\cos (x)+\sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}\right)+(-\cos (x)+\sin (x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}-\cos (x)+\sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{1}+\frac{c_{2}}{3}-1 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}+\sin (x)+\cos (x)
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=-2 c_{1}+\frac{c_{2}}{3}+1 \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\sin (x)-\cos (x)+\mathrm{e}^{x}-\mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin (x)-\cos (x)+\mathrm{e}^{x}-\mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sin (x)-\cos (x)+\mathrm{e}^{x}-\mathrm{e}^{-2 x}
$$

Verified OK.

7.12.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}-2 y=4 \cos (x)-2 \sin (x), y(0)=-1,\left.y^{\prime}\right|_{\{x=0\}}=4\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+r-2=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r-1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \cos (x)-2 \sin (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{-x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{2\left(\mathrm{e}^{3 x}\left(\int(-2 \cos (x)+\sin (x)) \mathrm{e}^{-x} d x\right)-\left(\int(-2 \cos (x)+\sin (x)) \mathrm{e}^{2 x} d x\right)\right) \mathrm{e}^{-2 x}}{3}
$$

- Compute integrals

$$
y_{p}(x)=-\cos (x)+\sin (x)
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}-\cos (x)+\sin (x)
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}-\cos (x)+\sin (x)$

- Use initial condition $y(0)=-1$
$-1=c_{1}+c_{2}-1$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+\sin (x)+\cos (x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=4$
$4=-2 c_{1}+c_{2}+1$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-1, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify
$y=-\left((-\sin (x)+\cos (x)) \mathrm{e}^{2 x}-\mathrm{e}^{3 x}+1\right) \mathrm{e}^{-2 x}$
- \quad Solution to the IVP
$y=-\left((-\sin (x)+\cos (x)) \mathrm{e}^{2 x}-\mathrm{e}^{3 x}+1\right) \mathrm{e}^{-2 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 19
dsolve ([diff $(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-2 * y(x)=4 * \cos (x)-2 * \sin (x), y(0)=-1, D(y)(0)=4], y(x)$,

$$
y(x)=-\mathrm{e}^{-2 x}\left((-\sin (x)+\cos (x)) \mathrm{e}^{2 x}-\mathrm{e}^{3 x}+1\right)
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 22
DSolve $[\{y$ ' ' $[x]+y$ ' $[x]-2 * y[x]==4 * \operatorname{Cos}[x]-2 * \operatorname{Sin}[x],\{y[0]==-1, y$ ' $[0]==4\}\}, y[x], x$, IncludeSingularSo

$$
y(x) \rightarrow-e^{-2 x}+e^{x}+\sin (x)-\cos (x)
$$

7.13 problem Problem 38

7.13.1 Existence and uniqueness analysis 1516
7.13.2 Solving as second order linear constant coeff ode 1517
7.13.3 Solving using Kovacic algorithm 1522
7.13.4 Maple step by step solution . 1529

Internal problem ID [2757]
Internal file name [OUTPUT/2249_Sunday_June_05_2022_02_56_20_AM_24828777/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 38.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+\omega^{2} y=\frac{F_{0} \cos (\omega t)}{m}
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

7.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =\omega^{2} \\
F & =\frac{F_{0} \cos (\omega t)}{m}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\omega^{2} y=\frac{F_{0} \cos (\omega t)}{m}
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\omega^{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\frac{F_{0} \cos (\omega t)}{m}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.13.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=\omega^{2}, f(t)=\frac{F_{0} \cos (\omega t)}{m}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+\omega^{2} y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=\omega^{2}$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+\omega^{2} \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+\omega^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=\omega^{2}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(\omega^{2}\right)} \\
& = \pm \sqrt{-\omega^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\sqrt{-\omega^{2}} \\
& \lambda_{2}=-\sqrt{-\omega^{2}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\sqrt{-\omega^{2}} \\
& \lambda_{2}=-\sqrt{-\omega^{2}}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{\left(\sqrt{-\omega^{2}}\right) t}+c_{2} e^{\left(-\sqrt{-\omega^{2}}\right) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} t}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} t}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} t}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{\sqrt{ }-\omega^{2}} t \\
& y_{2}=\mathrm{e}^{-\sqrt{ }-\omega^{2}} t
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\sqrt{-\omega^{2}} t} & \mathrm{e}^{-\sqrt{-\omega^{2}} t} \\
\frac{d}{d t}\left(\mathrm{e}^{\sqrt{-\omega^{2}} t}\right) & \frac{d}{d t}\left(\mathrm{e}^{-\sqrt{-\omega^{2}} t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\sqrt{-\omega^{2}} t} & \mathrm{e}^{-\sqrt{-\omega^{2}} t} \\
\sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} t} & -\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{\sqrt{-\omega^{2}} t}\right)\left(-\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}\right)-\left(\mathrm{e}^{-\sqrt{-\omega^{2}} t}\right)\left(\sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} t}\right)
$$

Which simplifies to

$$
W=-2 \mathrm{e}^{\sqrt{-\omega^{2}} t} \sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}
$$

Which simplifies to

$$
W=-2 \sqrt{-\omega^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-\sqrt{-\omega^{2}}} t F_{0} \cos (\omega t)}{m}}{-2 \sqrt{-\omega^{2}}} d t
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-\sqrt{-\omega^{2}} t} F_{0} \cos (\omega t)}{2 m \sqrt{-\omega^{2}}} d t
$$

Hence

$$
\begin{aligned}
& u_{1}= \\
& -\frac{-\frac{F_{0} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{4 \omega m}-\frac{F_{0} t \mathrm{e}^{-\sqrt{-\omega^{2}} t} \tan \left(\frac{\omega t}{2}\right)}{2 m}+\frac{F_{0} \mathrm{e}^{-\sqrt{-\omega^{2} t} t} \tan \left(\frac{\omega t}{2}\right)^{2}}{4 \omega m}+\frac{F_{0} \sqrt{-\omega^{2}} t \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{4 m \omega}-\frac{F_{0} \sqrt{-\omega^{2}} t \mathrm{e}^{-\sqrt{-\omega^{2}} t} \tan \left(\frac{\omega t}{2}\right)^{2}}{4 m \omega}}{\omega\left(1+\tan \left(\frac{\omega t}{2}\right)^{2}\right)}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{\sqrt{-\omega^{2}} t} F_{F_{0}} \cos (\omega t)}{m}}{-2 \sqrt{-\omega^{2}}} d t
$$

Which simplifies to

$$
u_{2}=\int-\frac{\mathrm{e}^{\sqrt{-\omega^{2}} t} F_{0} \cos (\omega t)}{2 m \sqrt{-\omega^{2}}} d t
$$

Hence

$$
u_{2}=\frac{\frac{F_{0} \mathrm{e}^{\sqrt{-\omega^{2}} t}}{4 \omega m}+\frac{F_{0} t \mathrm{e}^{\sqrt{-\omega^{2}} t} \tan \left(\frac{\omega t}{2}\right)}{2 m}-\frac{F_{0} \mathrm{e}^{\sqrt{-\omega^{2}} t} \tan \left(\frac{\omega t}{2}\right)^{2}}{4 \omega m}+\frac{F_{0} \sqrt{-\omega^{2}} t \mathrm{e}^{\sqrt{-\omega^{2}} t}}{4 m \omega}-\frac{F_{0} \sqrt{-\omega^{2}} t \mathrm{e}^{\sqrt{-\omega^{2}} t} \tan \left(\frac{\omega t}{2}\right)^{2}}{4 m \omega}}{\omega\left(1+\tan \left(\frac{\omega t}{2}\right)^{2}\right)}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{F_{0} \mathrm{e}^{-\sqrt{-\omega^{2}} t}\left(-\sqrt{-\omega^{2}} t \cos (\omega t)+t \omega \sin (\omega t)+\cos (\omega t)\right)}{4 m \omega^{2}} \\
& u_{2}=\frac{F_{0} \mathrm{e}^{\sqrt{-\omega^{2}} t}\left(\sqrt{-\omega^{2}} t \cos (\omega t)+t \omega \sin (\omega t)+\cos (\omega t)\right)}{4 \omega^{2} m}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(t)= & \frac{F_{0} \mathrm{e}^{-\sqrt{-\omega^{2}} t}\left(-\sqrt{-\omega^{2}} t \cos (\omega t)+t \omega \sin (\omega t)+\cos (\omega t)\right) \mathrm{e}^{\sqrt{-\omega^{2}} t}}{4 m \omega^{2}} \\
& +\frac{F_{0} \mathrm{e}^{\sqrt{-\omega^{2}} t}\left(\sqrt{-\omega^{2}} t \cos (\omega t)+t \omega \sin (\omega t)+\cos (\omega t)\right) \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{4 \omega^{2} m}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(t)=\frac{F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{2 \omega^{2} m}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} t}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} t}\right)+\left(\frac{F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{2 \omega^{2} m}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} t}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} t}+\frac{F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{2 \omega^{2} m} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=\frac{2 m\left(c_{1}+c_{2}\right) \omega^{2}+F_{0}}{2 \omega^{2} m} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} t}-c_{2} \sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}+\frac{F_{0} t \cos (\omega t)}{2 m}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\sqrt{-\omega^{2}}\left(c_{1}-c_{2}\right) \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{-2 \omega^{2} m+F_{0}}{4 \omega^{2} m} \\
& c_{2}=-\frac{-2 \omega^{2} m+F_{0}}{4 \omega^{2} m}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 F_{0} \sin (\omega t) \omega t+2 \mathrm{e}^{\sqrt{-\omega^{2}} t} \omega^{2} m+2 \mathrm{e}^{-\sqrt{-\omega^{2}} t} m \omega^{2}+2 F_{0} \cos (\omega t)-F_{0} \mathrm{e}^{\sqrt{-\omega^{2}} t}-F_{0} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{4 \omega^{2} m}
$$

Which simplifies to

$$
y=\frac{\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{-\sqrt{-\omega^{2}} t}+\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{\sqrt{-\omega^{2}} t}+2 F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{4 m \omega^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{-\sqrt{-\omega^{2}} t}+\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{\sqrt{-\omega^{2}} t}+2 F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{4 m \omega^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{-\sqrt{-\omega^{2}} t}+\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{\sqrt{-\omega^{2}} t}+2 F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{4 m \omega^{2}}
$$

Verified OK.

7.13.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+\omega^{2} y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=\omega^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-\omega^{2}}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-\omega^{2} \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\omega^{2}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 221: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\omega^{2}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{\sqrt{-\omega^{2}} t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{\sqrt{-\omega^{2}} t}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\sqrt{-\omega^{2}} t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\mathrm{e}^{\sqrt{-\omega^{2}} t} \int \frac{1}{\mathrm{e}^{2 \sqrt{-\omega^{2}} t} d t} \\
& =\mathrm{e}^{\sqrt{-\omega^{2}} t}\left(\frac{\sqrt{-\omega^{2}} \mathrm{e}^{-2 \sqrt{-\omega^{2}} t}}{2 \omega^{2}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\sqrt{-\omega^{2}} t}\right)+c_{2}\left(\mathrm{e}^{\sqrt{-\omega^{2}} t}\left(\frac{\sqrt{-\omega^{2}} \mathrm{e}^{-2 \sqrt{-\omega^{2}} t}}{2 \omega^{2}}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+\omega^{2} y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} t}+\frac{c_{2} \sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{2 \omega^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{\sqrt{-\omega^{2}} t} \\
& y_{2}=\frac{\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{2 \omega^{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\sqrt{-\omega^{2}} t} & \frac{\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{2 \omega^{2}} \\
\frac{d}{d t}\left(\mathrm{e}^{\sqrt{-\omega^{2}}}\right) & \frac{d}{d t}\left(\frac{\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{2 \omega^{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\sqrt{-\omega^{2}} t} & \frac{\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{2 \omega^{2}} \\
\sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} t} & \frac{\mathrm{e}^{-\sqrt{-\omega^{2}} t}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{\sqrt{-\omega^{2}} t}\right)\left(\frac{\mathrm{e}^{-\sqrt{-\omega^{2}} t}}{2}\right)-\left(\frac{\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{2 \omega^{2}}\right)\left(\sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} t}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{\sqrt{-\omega^{2}} t} \mathrm{e}^{-\sqrt{-\omega^{2}} t}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t} F_{0} \cos (\omega t)}{2 \omega^{2} m}}{1} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t} F_{0} \cos (\omega t)}{2 \omega^{2} m} d t
$$

Hence

$$
\begin{aligned}
& u_{1}= \\
& -\frac{-\frac{F_{0} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{4 \omega m}-\frac{F_{0} t \mathrm{e}^{-\sqrt{-\omega^{2}} t} \tan \left(\frac{\omega t}{2}\right)}{2 m}+\frac{F_{0} \mathrm{e}^{-\sqrt{-\omega^{2}} t} \tan \left(\frac{\omega t}{2}\right)^{2}}{4 \omega m}+\frac{F_{0} \sqrt{-\omega^{2}} t \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{4 m \omega}-\frac{F_{0} \sqrt{-\omega^{2}} t \mathrm{e}^{-\sqrt{-\omega^{2}} t} \tan \left(\frac{\omega t}{2}\right)^{2}}{4 m \omega}}{\omega\left(1+\tan \left(\frac{\omega t}{2}\right)^{2}\right)}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{\sqrt{ }-\omega^{2}} t}{t_{0} \cos (\omega t)}}{m} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{\mathrm{e}^{\sqrt{-\omega^{2}} t} F_{0} \cos (\omega t)}{m} d t
$$

Hence

$$
\left.=\frac{\bar{F}_{0} t \mathrm{e}^{\sqrt{-\omega^{2}} t}}{2 m}-\frac{F_{0} t \mathrm{e}^{\sqrt{-\omega^{2}} t} \tan \left(\frac{\omega t}{2}\right)^{2}}{2 m}-\frac{\sqrt{-\omega^{2}} F_{0} \mathrm{e}^{\sqrt{-\omega^{2}} t}}{2 \omega^{2} m}+\frac{\sqrt{-\omega^{2}} F_{0} \mathrm{e}^{\sqrt{ }-\omega^{2}} t \tan \left(\frac{\omega t}{2}\right)^{2}}{2 \omega^{2} m}-\frac{F_{0} \sqrt{-\omega^{2}} t \mathrm{e}^{\sqrt{-\omega^{2}}} \tan \left(\frac{\omega t}{2}\right)}{m \omega}\right)
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{F_{0} \mathrm{e}^{-\sqrt{-\omega^{2}}} t\left(-\sqrt{-\omega^{2}} t \cos (\omega t)+t \omega \sin (\omega t)+\cos (\omega t)\right)}{4 m \omega^{2}} \\
& u_{2}=\frac{F_{0}\left((-t \omega \sin (\omega t)-\cos (\omega t)) \sqrt{-\omega^{2}}+t \omega^{2} \cos (\omega t)\right) \mathrm{e}^{\sqrt{-\omega^{2}} t}}{2 m \omega^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(t)= & \frac{F_{0} \mathrm{e}^{-\sqrt{-\omega^{2}} t}\left(-\sqrt{-\omega^{2}} t \cos (\omega t)+t \omega \sin (\omega t)+\cos (\omega t)\right) \mathrm{e}^{\sqrt{-\omega^{2}} t}}{4 m \omega^{2}} \\
& +\frac{F_{0}\left((-t \omega \sin (\omega t)-\cos (\omega t)) \sqrt{-\omega^{2}}+t \omega^{2} \cos (\omega t)\right) \mathrm{e}^{\sqrt{-\omega^{2}} t} \sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{4 m \omega^{4}}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(t)=\frac{F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{2 \omega^{2} m}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} t}+\frac{c_{2} \sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{2 \omega^{2}}\right)+\left(\frac{F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{2 \omega^{2} m}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} t}+\frac{c_{2} \sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{2 \omega^{2}}+\frac{F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{2 \omega^{2} m} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=\frac{2 c_{1} \omega^{2} m+\sqrt{-\omega^{2}} c_{2} m+F_{0}}{2 \omega^{2} m} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} t}+\frac{c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{2}+\frac{F_{0} t \cos (\omega t)}{2 m}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\sqrt{-\omega^{2}} c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{-2 \omega^{2} m+F_{0}}{4 \omega^{2} m} \\
& c_{2}=\frac{\sqrt{-\omega^{2}}\left(-2 \omega^{2} m+F_{0}\right)}{2 \omega^{2} m}
\end{aligned}
$$

Substituting these values back in above solution results in
$y=\frac{2 F_{0} \sin (\omega t) \omega t+2 \mathrm{e}^{\sqrt{-\omega^{2}} t} \omega^{2} m+2 \mathrm{e}^{-\sqrt{-\omega^{2}} t} m \omega^{2}+2 F_{0} \cos (\omega t)-F_{0} \mathrm{e}^{\sqrt{-\omega^{2}} t}-F_{0} \mathrm{e}^{-\sqrt{-\omega^{2}} t}}{4 \omega^{2} m}$
Which simplifies to

$$
y=\frac{\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{-\sqrt{-\omega^{2}} t}+\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{\sqrt{-\omega^{2}} t}+2 F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{4 m \omega^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{-\sqrt{-\omega^{2}} t}+\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{\sqrt{-\omega^{2}} t}+2 F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{4 m \omega^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{-\sqrt{-\omega^{2}} t}+\left(2 \omega^{2} m-F_{0}\right) \mathrm{e}^{\sqrt{-\omega^{2}} t}+2 F_{0}(t \omega \sin (\omega t)+\cos (\omega t))}{4 m \omega^{2}}
$$

Verified OK.

7.13.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+\omega^{2} y=\frac{F_{0} \cos (\omega t)}{m}, y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$\omega^{2}+r^{2}=0$
- Use quadratic formula to solve for r

$$
r=\frac{0 \pm\left(\sqrt{-4 \omega^{2}}\right)}{2}
$$

- Roots of the characteristic polynomial

$$
r=\left(\sqrt{-\omega^{2}},-\sqrt{-\omega^{2}}\right)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{\sqrt{-\omega^{2}} t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-\sqrt{-\omega^{2}} t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} t}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\frac{F_{0} \cos (\omega t)}{m}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{\sqrt{-\omega^{2}} t} & \mathrm{e}^{-\sqrt{-\omega^{2}} t} \\
\sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} t} & -\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=-2 \sqrt{-\omega^{2}}
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=\frac{F_{0}\left(\mathrm{e}^{\sqrt{-\omega^{2}} t}\left(\int \mathrm{e}^{-\sqrt{-\omega^{2}} t} \cos (\omega t) d t\right)-\mathrm{e}^{-\sqrt{-\omega^{2}} t}\left(\int \mathrm{e}^{\sqrt{-\omega^{2}} t} \cos (\omega t) d t\right)\right)}{2 m \sqrt{-\omega^{2}}}$
- Compute integrals
$y_{p}(t)=\frac{F_{0} \sin (\omega t) t}{2 \omega m}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} t}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} t}+\frac{F_{0} \sin (\omega t) t}{2 \omega m}$
Check validity of solution $y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} t}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} t}+\frac{F_{0} \sin (\omega t) t}{2 \omega m}$
- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}$
- Compute derivative of the solution
$y^{\prime}=c_{1} \sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} t}-c_{2} \sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} t}+\frac{F_{0} t \cos (\omega t)}{2 m}+\frac{F_{0} \sin (\omega t)}{2 \omega m}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=\sqrt{-\omega^{2}} c_{1}-\sqrt{-\omega^{2}} c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=\frac{1}{2}, c_{2}=\frac{1}{2}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{t \sin (\omega t) F_{0}+\mathrm{e}^{\sqrt{-\omega^{2}} t} m \omega+\mathrm{e}^{-\sqrt{-\omega^{2}} t} m \omega}{2 m \omega}
$$

- \quad Solution to the IVP

$$
y=\frac{t \sin (\omega t) F_{0}+\mathrm{e}^{\sqrt{-\omega^{2}} t} m \omega+\mathrm{e}^{-\sqrt{-\omega^{2}} t} m \omega}{2 m \omega}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

```
dsolve([diff(y(t),t$2)+omega~2*y(t)=F__0/m*\operatorname{cos}(omega*t),y(0) = 1, D(y)(0) = 0],y(t), singsol
```

$$
y(t)=\cos (\omega t)+\frac{F_{0} \sin (\omega t) t}{2 \omega m}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 26
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+\backslash[\text { Omega }]^{\sim} 2 * y[t]==F 0 / m * \operatorname{Cos}[\backslash[\right.\right.$ Omega $\left.] * t],\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingu

$$
y(t) \rightarrow \frac{\mathrm{F} 0 t \sin (t \omega)}{2 m \omega}+\cos (t \omega)
$$

7.14 problem Problem 39

7.14.1 Solving as second order linear constant coeff ode 1532
7.14.2 Solving using Kovacic algorithm 1535
7.14.3 Maple step by step solution . 1540

Internal problem ID [2758]
Internal file name [OUTPUT/2250_Sunday_June_05_2022_02_56_23_AM_65732325/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 39.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-4 y^{\prime}+6 y=7 \mathrm{e}^{2 x}
$$

7.14.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-4, C=6, f(x)=7 \mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-4^{2}-(4)(1)(6)} \\
& =2 \pm i \sqrt{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =2+i \sqrt{2} \\
\lambda_{2} & =2-i \sqrt{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2+i \sqrt{2} \\
& \lambda_{2}=2-i \sqrt{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=2$ and $\beta=\sqrt{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{2 x}\left(c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x}\left(c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
7 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x} \cos (\sqrt{2} x), \mathrm{e}^{2 x} \sin (\sqrt{2} x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{2 x}=7 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{7}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{7 \mathrm{e}^{2 x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x}\left(c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)\right)\right)+\left(\frac{7 \mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)\right)+\frac{7 \mathrm{e}^{2 x}}{2} \tag{1}
\end{equation*}
$$

Figure 245: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(c_{1} \cos (\sqrt{2} x)+c_{2} \sin (\sqrt{2} x)\right)+\frac{7 \mathrm{e}^{2 x}}{2}
$$

Verified OK.

7.14.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-2 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 223: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (\sqrt{2} x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x} \cos (\sqrt{2} x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{2} \tan (\sqrt{2} x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x} \cos (\sqrt{2} x)\right)+c_{2}\left(\mathrm{e}^{2 x} \cos (\sqrt{2} x)\left(\frac{\sqrt{2} \tan (\sqrt{2} x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{2 x} \cos (\sqrt{2} x) c_{1}+\frac{c_{2} \sin (\sqrt{2} x) \mathrm{e}^{2 x} \sqrt{2}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
7 \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x} \cos (\sqrt{2} x), \frac{\sin (\sqrt{2} x) \mathrm{e}^{2 x} \sqrt{2}}{2}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{2 x}=7 \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{7}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{7 \mathrm{e}^{2 x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} \cos (\sqrt{2} x) c_{1}+\frac{c_{2} \sin (\sqrt{2} x) \mathrm{e}^{2 x} \sqrt{2}}{2}\right)+\left(\frac{7 \mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} \cos (\sqrt{2} x) c_{1}+\frac{c_{2} \sin (\sqrt{2} x) \mathrm{e}^{2 x} \sqrt{2}}{2}+\frac{7 \mathrm{e}^{2 x}}{2} \tag{1}
\end{equation*}
$$

Figure 246: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x} \cos (\sqrt{2} x) c_{1}+\frac{c_{2} \sin (\sqrt{2} x) \mathrm{e}^{2 x} \sqrt{2}}{2}+\frac{7 \mathrm{e}^{2 x}}{2}
$$

Verified OK.

7.14.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y^{\prime}+6 y=7 \mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4 r+6=0
$$

- Use quadratic formula to solve for r $r=\frac{4 \pm(\sqrt{-8})}{2}$
- Roots of the characteristic polynomial

$$
r=(2-\mathrm{I} \sqrt{2}, 2+\mathrm{I} \sqrt{2})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{2 x} \cos (\sqrt{2} x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{2 x} \sin (\sqrt{2} x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{2 x} \cos (\sqrt{2} x) c_{1}+\mathrm{e}^{2 x} \sin (\sqrt{2} x) c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=7 \mathrm{e}^{2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{2 x} \cos (\sqrt{2} x) & \mathrm{e}^{2 x} \sin (\sqrt{2} x) \\
2 \mathrm{e}^{2 x} \cos (\sqrt{2} x)-\sin (\sqrt{2} x) \mathrm{e}^{2 x} \sqrt{2} & 2 \mathrm{e}^{2 x} \sin (\sqrt{2} x)+\mathrm{e}^{2 x} \sqrt{2} \cos (\sqrt{2} x)
\end{array}\right.
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\sqrt{2} \mathrm{e}^{4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{7 \mathrm{e}^{2 x} \sqrt{2}\left(\cos (\sqrt{2} x)\left(\int \sin (\sqrt{2} x) d x\right)-\sin (\sqrt{2} x)\left(\int \cos (\sqrt{2} x) d x\right)\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=\frac{7 \mathrm{e}^{2 x}}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{2 x} \cos (\sqrt{2} x) c_{1}+\mathrm{e}^{2 x} \sin (\sqrt{2} x) c_{2}+\frac{7 \mathrm{e}^{2 x}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)-4*diff(y(x),x)+6*y(x)=7*exp(2*x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x}\left(\frac{7}{2}+c_{2} \sin (\sqrt{2} x)+\cos (\sqrt{2} x) c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 40

```
DSolve[y''[x]-4*y'[x]+6*y[x]==7*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{2} e^{2 x}\left(2 c_{2} \cos (\sqrt{2} x)+2 c_{1} \sin (\sqrt{2} x)+7\right)
$$

7.15 problem Problem 40

7.15.1 Maple step by step solution . 1545

Internal problem ID [2759]
Internal file name [OUTPUT/2251_Sunday_June_05_2022_02_56_26_AM_96941610/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 40.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+y=4 x \mathrm{e}^{x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+y=0
$$

The characteristic equation is

$$
\lambda^{3}+\lambda^{2}+\lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =i \\
\lambda_{3} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+y=4 x \mathrm{e}^{x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 x \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{i x}, \mathrm{e}^{-x}, \mathrm{e}^{-i x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}+A_{2} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{x}+4 A_{1} x \mathrm{e}^{x}+4 A_{2} \mathrm{e}^{x}=4 x \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=-\frac{3}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x \mathrm{e}^{x}-\frac{3 \mathrm{e}^{x}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}\right)+\left(x \mathrm{e}^{x}-\frac{3 \mathrm{e}^{x}}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{x}-\frac{3 \mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+x \mathrm{e}^{x}-\frac{3 \mathrm{e}^{x}}{2}
$$

Verified OK.

7.15.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+y=4 x \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 3

```
y'\prime
```

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=4 x \mathrm{e}^{x}-y_{3}(x)-y_{2}(x)-y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=4 x \mathrm{e}^{x}-y_{3}(x)-y_{2}(x)-y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
4 x \mathrm{e}^{x}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 4 x \mathrm{e}^{x}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p}

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)
$$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(x)=\left[\begin{array}{ccc}\mathrm{e}^{-x} & -\cos (x) & \sin (x) \\ -\mathrm{e}^{-x} & \sin (x) & \cos (x) \\ \mathrm{e}^{-x} & \cos (x) & -\sin (x)\end{array}\right]$
- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$
$\Phi(x)=\left[\begin{array}{ccc}\mathrm{e}^{-x} & -\cos (x) & \sin (x) \\ -\mathrm{e}^{-x} & \sin (x) & \cos (x) \\ \mathrm{e}^{-x} & \cos (x) & -\sin (x)\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]}$
- Evaluate and simplify to get the fundamental matrix
$\Phi(x)=\left[\begin{array}{ccc}\frac{\mathrm{e}^{-x}}{2}+\frac{\cos (x)}{2}+\frac{\sin (x)}{2} & \sin (x) & \frac{\mathrm{e}^{-x}}{2}-\frac{\cos (x)}{2}+\frac{\sin (x)}{2} \\ -\frac{\mathrm{e}^{-x}}{2}-\frac{\sin (x)}{2}+\frac{\cos (x)}{2} & \cos (x) & -\frac{\mathrm{e}^{-x}}{2}+\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\ \frac{\mathrm{e}^{-x}}{2}-\frac{\cos (x)}{2}-\frac{\sin (x)}{2} & -\sin (x) & \frac{\mathrm{e}^{-x}}{2}+\frac{\cos (x)}{2}-\frac{\sin (x)}{2}\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
x \mathrm{e}^{x}-\frac{3 \mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}+\cos (x)+\sin (x) \\
x \mathrm{e}^{x}-\frac{\mathrm{e}^{x}}{2}-\frac{\mathrm{e}^{-x}}{2}+\cos (x)-\sin (x) \\
x \mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}-\cos (x)-\sin (x)
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
x \mathrm{e}^{x}-\frac{3 \mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}+\cos (x)+\sin (x) \\
x \mathrm{e}^{x}-\frac{\mathrm{e}^{x}}{2}-\frac{\mathrm{e}^{-x}}{2}+\cos (x)-\sin (x) \\
x \mathrm{e}^{x}+\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}-\cos (x)-\sin (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{x}-\frac{3 \mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{-x}}{2}+\cos (x)+\sin (x)+c_{3} \sin (x)-c_{2} \cos (x)
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 27
dsolve(diff $(y(x), x \$ 3)+\operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)+y(x)=4 * x * \exp (x), y(x)$, singsol=all)

$$
y(x)=c_{3} \mathrm{e}^{-x}+\cos (x) c_{1}+x \mathrm{e}^{x}+\sin (x) c_{2}-\frac{3 \mathrm{e}^{x}}{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 36
DSolve[y'' $[\mathrm{x}]+\mathrm{y}$ '' $[\mathrm{x}]+\mathrm{y}$ ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==4 * \mathrm{x} * \operatorname{Exp}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x} x-\frac{3 e^{x}}{2}+c_{3} e^{-x}+c_{1} \cos (x)+c_{2} \sin (x)
$$

7.16 problem Problem 41

Internal problem ID [2760]
Internal file name [OUTPUT/2252_Sunday_June_05_2022_02_56_28_AM_61127683/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 41.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _missing_y]]
```

$$
y^{\prime \prime \prime \prime}+104 y^{\prime \prime \prime}+2740 y^{\prime \prime}=5 \mathrm{e}^{-2 x} \cos (3 x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+104 y^{\prime \prime \prime}+2740 y^{\prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{4}+104 \lambda^{3}+2740 \lambda^{2}=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=-52+6 i \\
& \lambda_{4}=-52-6 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{2} x+c_{1}+\mathrm{e}^{(-52+6 i) x} c_{3}+\mathrm{e}^{(-52-6 i) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=\mathrm{e}^{(-52+6 i) x} \\
& y_{4}=\mathrm{e}^{(-52-6 i) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+104 y^{\prime \prime \prime}+2740 y^{\prime \prime}=5 \mathrm{e}^{-2 x} \cos (3 x)
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \mathrm{e}^{-2 x} \cos (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x} \cos (3 x), \mathrm{e}^{-2 x} \sin (3 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, x, \mathrm{e}^{(-52-6 i) x}, \mathrm{e}^{(-52+6 i) x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x} \cos (3 x)+A_{2} \mathrm{e}^{-2 x} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -9035 A_{1} \mathrm{e}^{-2 x} \cos (3 x)+31824 A_{1} \mathrm{e}^{-2 x} \sin (3 x) \\
& \quad-9035 A_{2} \mathrm{e}^{-2 x} \sin (3 x)-31824 A_{2} \mathrm{e}^{-2 x} \cos (3 x)=5 \mathrm{e}^{-2 x} \cos (3 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3475}{84184477}, A_{2}=-\frac{12240}{84184477}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3475 \mathrm{e}^{-2 x} \cos (3 x)}{84184477}-\frac{12240 \mathrm{e}^{-2 x} \sin (3 x)}{84184477}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}+\mathrm{e}^{(-52+6 i) x} c_{3}+\mathrm{e}^{(-52-6 i) x} c_{4}\right)+\left(-\frac{3475 \mathrm{e}^{-2 x} \cos (3 x)}{84184477}-\frac{12240 \mathrm{e}^{-2 x} \sin (3 x)}{84184477}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=c_{2} x+c_{1}+\mathrm{e}^{(-52+6 i) x} c_{3}+\mathrm{e}^{(-52-6 i) x} c_{4}-\frac{3475 \mathrm{e}^{-2 x} \cos (3 x)}{84184477}-\frac{12240 \mathrm{e}^{-2 x} \sin (3 x)}{84184477}(1)
$$

Verification of solutions

$$
y=c_{2} x+c_{1}+\mathrm{e}^{(-52+6 i) x} c_{3}+\mathrm{e}^{(-52-6 i) x} c_{4}-\frac{3475 \mathrm{e}^{-2 x} \cos (3 x)}{84184477}-\frac{12240 \mathrm{e}^{-2 x} \sin (3 x)}{84184477}
$$

Verified OK.

Maple trace
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE , diff(diff(_b(_a), _a), _a) = 5*exp(-2*_a)*cos(3*_a)-104*(d)
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE checking if the LODE has constant coefficients <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 58

```
dsolve(diff(y(x),x$4)+104*\operatorname{diff}(y(x),x$3)+2740*\operatorname{diff}(y(x),x$2)=5*exp(-2*x)*\operatorname{cos}(3*x),y(x), sing
```

$$
\begin{aligned}
y(x)= & \frac{\left(\left(667 c_{1}+156 c_{2}\right) \cos (6 x)-156\left(c_{1}-\frac{667 c_{2}}{156}\right) \sin (6 x)\right) \mathrm{e}^{-52 x}}{1876900} \\
& +\frac{5(-695 \cos (3 x)-2448 \sin (3 x)) \mathrm{e}^{-2 x}}{84184477}+c_{3} x+c_{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 4.755 (sec). Leaf size: 82
DSolve[y'' '' $[\mathrm{x}]+104 * y$ ' ' ' $[\mathrm{x}]+2740 * \mathrm{y}$ ' ' $[\mathrm{x}]==5 * \operatorname{Exp}[-2 * x] * \operatorname{Cos}[3 * x], y[x], x$, IncludeSingularSolution

$$
\begin{aligned}
y(x) \rightarrow & -\frac{12240 e^{-2 x} \sin (3 x)}{84184477}-\frac{3475 e^{-2 x} \cos (3 x)}{84184477}+c_{4} x \\
& +\frac{\left(156 c_{1}+667 c_{2}\right) e^{-52 x} \cos (6 x)}{1876900}+\frac{\left(667 c_{1}-156 c_{2}\right) e^{-52 x} \sin (6 x)}{1876900}+c_{3}
\end{aligned}
$$

7.17 problem Problem 46

7.17.1 Solving as second order linear constant coeff ode 1555
7.17.2 Solving using Kovacic algorithm 1558
7.17.3 Maple step by step solution . 1563

Internal problem ID [2761]
Internal file name [OUTPUT/2253_Sunday_June_05_2022_02_56_30_AM_69860173/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 46.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}-3 y=\sin (x)^{2}
$$

7.17.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=-3, f(x)=\sin (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=-3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda-3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=-3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(-3)} \\
& =-1 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+2 \\
& \lambda_{2}=-1-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-3 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (2 x)+A_{3} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-7 A_{2} \cos (2 x)-7 A_{3} \sin (2 x)-4 A_{2} \sin (2 x)+4 A_{3} \cos (2 x)-3 A_{1}=\sin (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{6}, A_{2}=\frac{7}{130}, A_{3}=-\frac{2}{65}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{1}{6}+\frac{7 \cos (2 x)}{130}-\frac{2 \sin (2 x)}{65}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-3 x}\right)+\left(-\frac{1}{6}+\frac{7 \cos (2 x)}{130}-\frac{2 \sin (2 x)}{65}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-3 x}-\frac{1}{6}+\frac{7 \cos (2 x)}{130}-\frac{2 \sin (2 x)}{65} \tag{1}
\end{equation*}
$$

Figure 247: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-3 x}-\frac{1}{6}+\frac{7 \cos (2 x)}{130}-\frac{2 \sin (2 x)}{65}
$$

Verified OK.

7.17.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 226: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{x}}{4}, \mathrm{e}^{-3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (2 x)+A_{3} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-7 A_{2} \cos (2 x)-7 A_{3} \sin (2 x)-4 A_{2} \sin (2 x)+4 A_{3} \cos (2 x)-3 A_{1}=\sin (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{6}, A_{2}=\frac{7}{130}, A_{3}=-\frac{2}{65}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{1}{6}+\frac{7 \cos (2 x)}{130}-\frac{2 \sin (2 x)}{65}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}\right)+\left(-\frac{1}{6}+\frac{7 \cos (2 x)}{130}-\frac{2 \sin (2 x)}{65}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}-\frac{1}{6}+\frac{7 \cos (2 x)}{130}-\frac{2 \sin (2 x)}{65} \tag{1}
\end{equation*}
$$

Figure 248: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}-\frac{1}{6}+\frac{7 \cos (2 x)}{130}-\frac{2 \sin (2 x)}{65}
$$

Verified OK.

7.17.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}-3 y=\sin (x)^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r-3=0
$$

- Factor the characteristic polynomial
$(r+3)(r-1)=0$
- Roots of the characteristic polynomial

$$
r=(-3,1)
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-3 x}$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{x}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 x} & \mathrm{e}^{x} \\
-3 \mathrm{e}^{-3 x} & \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=4 \mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\left(\mathrm{e}^{4 x}\left(\int \sin (x)^{2} \mathrm{e}^{-x} d x\right)-\left(\int \mathrm{e}^{3 x} \sin (x)^{2} d x\right)\right) \mathrm{e}^{-3 x}}{4}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{1}{6}+\frac{7 \cos (2 x)}{130}-\frac{2 \sin (2 x)}{65}
$$

- \quad Substitute particular solution into general solution to ODE $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{x}-\frac{1}{6}+\frac{7 \cos (2 x)}{130}-\frac{2 \sin (2 x)}{65}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 36

```
dsolve(diff(y(x),x$2)+2*\operatorname{diff}(y(x),x)-3*y(x)=sin(x)^2,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-3 x}\left(\left(-\frac{1}{6}-\frac{2 \sin (2 x)}{65}+\frac{7 \cos (2 x)}{130}\right) \mathrm{e}^{3 x}+\mathrm{e}^{4 x} c_{1}+c_{2}\right)
$$

Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 39
DSolve[y''[x]+2*y'[x]-3*y[x]==Sin[x]~2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{2}{65} \sin (2 x)+\frac{7}{130} \cos (2 x)+c_{1} e^{-3 x}+c_{2} e^{x}-\frac{1}{6}
$$

7.18 problem Problem 47

7.18.1 Solving as second order linear constant coeff ode 1566
7.18.2 Solving using Kovacic algorithm 1570
7.18.3 Maple step by step solution . 1575

Internal problem ID [2762]
Internal file name [OUTPUT/2254_Sunday_June_05_2022_02_56_32_AM_68604457/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.3, The Method of Undetermined Coefficients. page 525
Problem number: Problem 47.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y=\sin (x)^{2} \cos (x)^{2}
$$

7.18.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=6, f(x)=\sin (x)^{2} \cos (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(6)} \\
& = \pm i \sqrt{6}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \sqrt{6} \\
& \lambda_{2}=-i \sqrt{6}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{6} \\
& \lambda_{2}=-i \sqrt{6}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\sqrt{6}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (\sqrt{6} x)+c_{2} \sin (\sqrt{6} x)\right)
$$

Or

$$
y=c_{1} \cos (\sqrt{6} x)+c_{2} \sin (\sqrt{6} x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (\sqrt{6} x)+c_{2} \sin (\sqrt{6} x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{2} \cos (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (\sqrt{6} x), \sin (\sqrt{6} x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (4 x)+A_{3} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-10 A_{2} \cos (4 x)-10 A_{3} \sin (4 x)+6 A_{1}=\sin (x)^{2} \cos (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{48}, A_{2}=\frac{1}{80}, A_{3}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{48}+\frac{\cos (4 x)}{80}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (\sqrt{6} x)+c_{2} \sin (\sqrt{6} x)\right)+\left(\frac{1}{48}+\frac{\cos (4 x)}{80}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\sqrt{6} x)+c_{2} \sin (\sqrt{6} x)+\frac{1}{48}+\frac{\cos (4 x)}{80} \tag{1}
\end{equation*}
$$

Figure 249: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (\sqrt{6} x)+c_{2} \sin (\sqrt{6} x)+\frac{1}{48}+\frac{\cos (4 x)}{80}
$$

Verified OK.

7.18.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-6}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-6 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-6 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 228: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-6$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (\sqrt{6} x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (\sqrt{6} x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (\sqrt{6} x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (\sqrt{6} x) \int \frac{1}{\cos (\sqrt{6} x)^{2}} d x \\
& =\cos (\sqrt{6} x)\left(\frac{\sqrt{6} \tan (\sqrt{6} x)}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (\sqrt{6} x))+c_{2}\left(\cos (\sqrt{6} x)\left(\frac{\sqrt{6} \tan (\sqrt{6} x)}{6}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (\sqrt{6} x)+\frac{c_{2} \sqrt{6} \sin (\sqrt{6} x)}{6}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)^{2} \cos (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sqrt{6} \sin (\sqrt{6} x)}{6}, \cos (\sqrt{6} x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (4 x)+A_{3} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-10 A_{2} \cos (4 x)-10 A_{3} \sin (4 x)+6 A_{1}=\sin (x)^{2} \cos (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{48}, A_{2}=\frac{1}{80}, A_{3}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{48}+\frac{\cos (4 x)}{80}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (\sqrt{6} x)+\frac{c_{2} \sqrt{6} \sin (\sqrt{6} x)}{6}\right)+\left(\frac{1}{48}+\frac{\cos (4 x)}{80}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\sqrt{6} x)+\frac{c_{2} \sqrt{6} \sin (\sqrt{6} x)}{6}+\frac{1}{48}+\frac{\cos (4 x)}{80} \tag{1}
\end{equation*}
$$

Figure 250: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (\sqrt{6} x)+\frac{c_{2} \sqrt{6} \sin (\sqrt{6} x)}{6}+\frac{1}{48}+\frac{\cos (4 x)}{80}
$$

Verified OK.

7.18.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y=\sin (x)^{2} \cos (x)^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+6=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-24})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I} \sqrt{6}, \mathrm{I} \sqrt{6})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (\sqrt{6} x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (\sqrt{6} x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (\sqrt{6} x)+c_{2} \sin (\sqrt{6} x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)^{2} \cos (x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (\sqrt{6} x) & \sin (\sqrt{6} x) \\
-\sqrt{6} \sin (\sqrt{6} x) & \sqrt{6} \cos (\sqrt{6} x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\sqrt{6}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\sqrt{6}\left(\cos (\sqrt{6} x)\left(\int(-1+\cos (4 x)) \sin (\sqrt{6} x) d x\right)-\sin (\sqrt{6} x)\left(\int(-1+\cos (4 x)) \cos (\sqrt{6} x) d x\right)\right)}{48}
$$

- Compute integrals

$$
y_{p}(x)=\frac{1}{48}+\frac{\cos (4 x)}{80}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (\sqrt{6} x)+c_{2} \sin (\sqrt{6} x)+\frac{1}{48}+\frac{\cos (4 x)}{80}
$$

Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

```
dsolve(diff(y(x),x$2)+6*y(x)=sin(x)^2*\operatorname{cos}(x)^2,y(x), singsol=all)
```

$$
y(x)=\sin (\sqrt{6} x) c_{2}+\cos (\sqrt{6} x) c_{1}+\frac{1}{48}+\frac{\cos (4 x)}{80}
$$

Solution by Mathematica
Time used: 0.756 (sec). Leaf size: 39
DSolve[y' $\quad[x]+6 * y[x]==\operatorname{Sin}[x] \sim 2 * \operatorname{Cos}[x] \sim 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{80} \cos (4 x)+c_{1} \cos (\sqrt{6} x)+c_{2} \sin (\sqrt{6} x)+\frac{1}{48}
$$

8 Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
8.1 problem Problem 1 1578
8.2 problem Problem 2 1589
8.3 problem Problem 3 1601
8.4 problem Problem 4 1612
8.5 problem Problem 5 1624
8.6 problem Problem 6 1635
8.7 problem Problem 7 1646
8.8 problem Problem 8 1657
8.9 problem Problem 9 1668
8.10 problem Problem 10 1679
8.11 problem Problem 11 1690

8.1 problem Problem 1

8.1.1 Solving as second order linear constant coeff ode 1578
8.1.2 Solving using Kovacic algorithm 1581
8.1.3 Maple step by step solution . 1586

Internal problem ID [2763]
Internal file name [OUTPUT/2255_Sunday_June_05_2022_02_56_35_AM_9892585/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
Problem number: Problem 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-16 y=20 \cos (4 x)
$$

8.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-16, f(x)=20 \cos (4 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-16 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-16$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-16 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-16=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-16$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-16)} \\
& = \pm 4
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+4 \\
& \lambda_{2}=-4
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =4 \\
\lambda_{2} & =-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(-4) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-4 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-4 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
20 \cos (4 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 x}, \mathrm{e}^{4 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (4 x)+A_{2} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-32 A_{1} \cos (4 x)-32 A_{2} \sin (4 x)=20 \cos (4 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{5}{8}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{5 \cos (4 x)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-4 x}\right)+\left(-\frac{5 \cos (4 x)}{8}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-4 x}-\frac{5 \cos (4 x)}{8} \tag{1}
\end{equation*}
$$

Figure 251: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{-4 x}-\frac{5 \cos (4 x)}{8}
$$

Verified OK.

8.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-16 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-16
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=16 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 230: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=16$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-4 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-4 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-4 x} \int \frac{1}{\mathrm{e}^{-8 x}} d x \\
& =\mathrm{e}^{-4 x}\left(\frac{\mathrm{e}^{8 x}}{8}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 x}\right)+c_{2}\left(\mathrm{e}^{-4 x}\left(\frac{\mathrm{e}^{8 x}}{8}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-16 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 x}+\frac{\mathrm{e}^{4 x} c_{2}}{8}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
20 \cos (4 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{4 x}}{8}, \mathrm{e}^{-4 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (4 x)+A_{2} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-32 A_{1} \cos (4 x)-32 A_{2} \sin (4 x)=20 \cos (4 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{5}{8}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{5 \cos (4 x)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 x}+\frac{\mathrm{e}^{4 x} c_{2}}{8}\right)+\left(-\frac{5 \cos (4 x)}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 x}+\frac{\mathrm{e}^{4 x} c_{2}}{8}-\frac{5 \cos (4 x)}{8} \tag{1}
\end{equation*}
$$

Figure 252: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-4 x}+\frac{\mathrm{e}^{4 x} c_{2}}{8}-\frac{5 \cos (4 x)}{8}
$$

Verified OK.

8.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-16 y=20 \cos (4 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-16=0
$$

- Factor the characteristic polynomial
$(r-4)(r+4)=0$
- Roots of the characteristic polynomial
$r=(-4,4)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-4 x}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{4 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 x}+\mathrm{e}^{4 x} c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=20 \cos (4 x)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-4 x} & \mathrm{e}^{4 x} \\ -4 \mathrm{e}^{-4 x} & 4 \mathrm{e}^{4 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=8$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{5 \mathrm{e}^{-4 x}\left(\int \mathrm{e}^{4 x} \cos (4 x) d x\right)}{2}+\frac{5 \mathrm{e}^{4 x}\left(\int \mathrm{e}^{-4 x} \cos (4 x) d x\right)}{2}$
- Compute integrals
$y_{p}(x)=-\frac{5 \cos (4 x)}{8}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-4 x}+\mathrm{e}^{4 x} c_{2}-\frac{5 \cos (4 x)}{8}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)-16*y(x)=20*cos(4*x),y(x), singsol=all)
```

$$
y(x)=c_{2} \mathrm{e}^{4 x}+\mathrm{e}^{-4 x} c_{1}-\frac{5 \cos (4 x)}{8}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 30
DSolve[y''[x]-16*y[x]==20*Cos[4*x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-\frac{5}{8} \cos (4 x)+c_{1} e^{4 x}+c_{2} e^{-4 x}
$$

8.2 problem Problem 2

8.2.1 Solving as second order linear constant coeff ode 1589
$\begin{array}{ll}\text { 8.2.2 Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 1592\end{array}$
8.2.3 Solving using Kovacic algorithm 1594
8.2.4 Maple step by step solution . 1599

Internal problem ID [2764]
Internal file name [OUTPUT/2256_Sunday_June_05_2022_02_56_37_AM_1048561/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
Problem number: Problem 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_byy_an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime}+y=50 \sin (3 x)
$$

8.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=1, f(x)=50 \sin (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
50 \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 x)+A_{2} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-8 A_{1} \cos (3 x)-8 A_{2} \sin (3 x)-6 A_{1} \sin (3 x)+6 A_{2} \cos (3 x)=50 \sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-3, A_{2}=-4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-3 \cos (3 x)-4 \sin (3 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}\right)+(-3 \cos (3 x)-4 \sin (3 x))
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-3 \cos (3 x)-4 \sin (3 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-3 \cos (3 x)-4 \sin (3 x) \tag{1}
\end{equation*}
$$

Figure 253: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-3 \cos (3 x)-4 \sin (3 x)
$$

Verified OK.

8.2.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =50 \mathrm{e}^{x} \sin (3 x) \\
\left(\mathrm{e}^{x} y\right)^{\prime \prime} & =50 \mathrm{e}^{x} \sin (3 x)
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{x} y\right)^{\prime}=5 \mathrm{e}^{x}(-3 \cos (3 x)+\sin (3 x))+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{x} y\right)=-4 \mathrm{e}^{x} \sin (3 x)-3 \mathrm{e}^{x} \cos (3 x)+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{-4 \mathrm{e}^{x} \sin (3 x)-3 \mathrm{e}^{x} \cos (3 x)+c_{1} x+c_{2}}{\mathrm{e}^{x}}
$$

Or

$$
y=-12 \cos (x)^{3}-16 \cos (x)^{2} \sin (x)+c_{1} x \mathrm{e}^{-x}+9 \cos (x)+4 \sin (x)+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-12 \cos (x)^{3}-16 \cos (x)^{2} \sin (x)+c_{1} x \mathrm{e}^{-x}+9 \cos (x)+4 \sin (x)+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 254: Slope field plot

Verification of solutions

$$
y=-12 \cos (x)^{3}-16 \cos (x)^{2} \sin (x)+c_{1} x \mathrm{e}^{-x}+9 \cos (x)+4 \sin (x)+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

8.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 232: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
50 \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 x)+A_{2} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-8 A_{1} \cos (3 x)-8 A_{2} \sin (3 x)-6 A_{1} \sin (3 x)+6 A_{2} \cos (3 x)=50 \sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-3, A_{2}=-4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-3 \cos (3 x)-4 \sin (3 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}\right)+(-3 \cos (3 x)-4 \sin (3 x))
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-3 \cos (3 x)-4 \sin (3 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-3 \cos (3 x)-4 \sin (3 x) \tag{1}
\end{equation*}
$$

Figure 255: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)-3 \cos (3 x)-4 \sin (3 x)
$$

Verified OK.

8.2.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+y=50 \sin (3 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r+1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-1
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=50 \sin (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}-x \mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=50 \mathrm{e}^{-x}\left(-\left(\int x \sin (3 x) \mathrm{e}^{x} d x\right)+x\left(\int \mathrm{e}^{x} \sin (3 x) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=-3 \cos (3 x)-4 \sin (3 x)
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{2} x \mathrm{e}^{-x}+c_{1} \mathrm{e}^{-x}-4 \sin (3 x)-3 \cos (3 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=50*\operatorname{sin}(3*x),y(x), singsol=all)
```

$$
y(x)=\left(c_{1} x+c_{2}\right) \mathrm{e}^{-x}-3 \cos (3 x)-4 \sin (3 x)
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 34
DSolve[y'' $[x]+2 * y$ ' $[x]+y[x]==50 * \operatorname{Sin}[3 * x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-3 \cos (3 x)+e^{-x}\left(-4 e^{x} \sin (3 x)+c_{2} x+c_{1}\right)
$$

8.3 problem Problem 3

8.3.1 Solving as second order linear constant coeff ode 1601
8.3.2 Solving using Kovacic algorithm 1604
8.3.3 Maple step by step solution . 1609

Internal problem ID [2765]
Internal file name [OUTPUT/2257_Sunday_June_05_2022_02_56_39_AM_14082930/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
Problem number: Problem 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-y=10 \cos (x) \mathrm{e}^{2 x}
$$

8.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-1, f(x)=10 \cos (x) \mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \cos (x) \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos (x) \mathrm{e}^{2 x}, \sin (x) \mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x) \mathrm{e}^{2 x}+A_{2} \sin (x) \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \cos (x) \mathrm{e}^{2 x}-4 A_{1} \sin (x) \mathrm{e}^{2 x}+2 A_{2} \sin (x) \mathrm{e}^{2 x}+4 A_{2} \cos (x) \mathrm{e}^{2 x}=10 \cos (x) \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}\right)+\left(\cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}+\cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Figure 256: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}+\cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}
$$

Verified OK.

8.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 234: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
10 \cos (x) \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos (x) \mathrm{e}^{2 x}, \sin (x) \mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{x}}{2}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x) \mathrm{e}^{2 x}+A_{2} \sin (x) \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \cos (x) \mathrm{e}^{2 x}-4 A_{1} \sin (x) \mathrm{e}^{2 x}+2 A_{2} \sin (x) \mathrm{e}^{2 x}+4 A_{2} \cos (x) \mathrm{e}^{2 x}=10 \cos (x) \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}\right)+\left(\cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}+\cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Figure 257: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}+\cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}
$$

Verified OK.

8.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y=10 \cos (x) \mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-1=0$
- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+y_{p}(x)$
$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=10 \cos (x) \mathrm{e}^{2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-5 \mathrm{e}^{-x}\left(\int \cos (x) \mathrm{e}^{3 x} d x\right)+5 \mathrm{e}^{x}\left(\int \cos (x) \mathrm{e}^{x} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=(\cos (x)+2 \sin (x)) \mathrm{e}^{2 x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+(\cos (x)+2 \sin (x)) \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)-y(x)=10*exp(2*x)*cos(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x} c_{2}+\mathrm{e}^{x} c_{1}+\mathrm{e}^{2 x}(2 \sin (x)+\cos (x))
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 33
DSolve[y''[x]-y[x]==10*Exp[2*x]*Cos[x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} e^{x}+c_{2} e^{-x}+e^{2 x}(2 \sin (x)+\cos (x))
$$

8.4 problem Problem 4

8.4.1 Solving as second order linear constant coeff ode 1612
$\begin{array}{ll}\text { 8.4.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 1615\end{array}$
8.4.3 Solving using Kovacic algorithm 1617
8.4.4 Maple step by step solution . 1622

Internal problem ID [2766]
Internal file name [OUTPUT/2258_Sunday_June_05_2022_02_56_41_AM_45151139/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
Problem number: Problem 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_byy_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+4 y=169 \sin (3 x)
$$

8.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=4, C=4, f(x)=169 \sin (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(4)^{2}-(4)(1)(4)} \\
& =-2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=2$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
169 \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 x)+A_{2} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \cos (3 x)-5 A_{2} \sin (3 x)-12 A_{1} \sin (3 x)+12 A_{2} \cos (3 x)=169 \sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-12, A_{2}=-5\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-12 \cos (3 x)-5 \sin (3 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+(-12 \cos (3 x)-5 \sin (3 x))
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-12 \cos (3 x)-5 \sin (3 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-12 \cos (3 x)-5 \sin (3 x) \tag{1}
\end{equation*}
$$

Figure 258: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-12 \cos (3 x)-5 \sin (3 x)
$$

Verified OK.

8.4.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 4 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{array}{r}
(M(x) y)^{\prime \prime}=169 \mathrm{e}^{2 x} \sin (3 x) \\
\left(\mathrm{e}^{2 x} y\right)^{\prime \prime}=169 \mathrm{e}^{2 x} \sin (3 x)
\end{array}
$$

Integrating once gives

$$
\left(\mathrm{e}^{2 x} y\right)^{\prime}=13 \mathrm{e}^{2 x}(-3 \cos (3 x)+2 \sin (3 x))+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{2 x} y\right)=\mathrm{e}^{2 x}(-12 \cos (3 x)-5 \sin (3 x))+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{\mathrm{e}^{2 x}(-12 \cos (3 x)-5 \sin (3 x))+c_{1} x+c_{2}}{\mathrm{e}^{2 x}}
$$

Or

$$
y=-48 \cos (x)^{3}-20 \cos (x)^{2} \sin (x)+36 \cos (x)+5 \sin (x)+c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-48 \cos (x)^{3}-20 \cos (x)^{2} \sin (x)+36 \cos (x)+5 \sin (x)+c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 259: Slope field plot

Verification of solutions

$$
y=-48 \cos (x)^{3}-20 \cos (x)^{2} \sin (x)+36 \cos (x)+5 \sin (x)+c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

8.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y^{\prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =4 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 236: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
169 \sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-2 x}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 x)+A_{2} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \cos (3 x)-5 A_{2} \sin (3 x)-12 A_{1} \sin (3 x)+12 A_{2} \cos (3 x)=169 \sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-12, A_{2}=-5\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-12 \cos (3 x)-5 \sin (3 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+(-12 \cos (3 x)-5 \sin (3 x))
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-12 \cos (3 x)-5 \sin (3 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-12 \cos (3 x)-5 \sin (3 x) \tag{1}
\end{equation*}
$$

Figure 260: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-12 \cos (3 x)-5 \sin (3 x)
$$

Verified OK.

8.4.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+4 y=169 \sin (3 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+4=0
$$

- Factor the characteristic polynomial

$$
(r+2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-2
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=169 \sin (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=169 \mathrm{e}^{-2 x}\left(-\left(\int x \sin (3 x) \mathrm{e}^{2 x} d x\right)+x\left(\int \mathrm{e}^{2 x} \sin (3 x) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=-12 \cos (3 x)-5 \sin (3 x)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{2} x \mathrm{e}^{-2 x}+c_{1} \mathrm{e}^{-2 x}-5 \sin (3 x)-12 \cos (3 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=169*\operatorname{sin}(3*x),y(x), singsol=all)
```

$$
y(x)=\left(c_{1} x+c_{2}\right) \mathrm{e}^{-2 x}-12 \cos (3 x)-5 \sin (3 x)
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 36
DSolve[y'' $[x]+4 * y$ ' $[x]+4 * y[x]==169 * \operatorname{Sin}[3 * x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow-12 \cos (3 x)+e^{-2 x}\left(-5 e^{2 x} \sin (3 x)+c_{2} x+c_{1}\right)
$$

8.5 problem Problem 5

8.5.1 Solving as second order linear constant coeff ode 1624
8.5.2 Solving using Kovacic algorithm 1627
8.5.3 Maple step by step solution . 1632

Internal problem ID [2767]
Internal file name [OUTPUT/2259_Sunday_June_05_2022_02_56_44_AM_92419375/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
Problem number: Problem 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}-2 y=40 \sin (x)^{2}
$$

8.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-1, C=-2, f(x)=40 \sin (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
40 \sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (2 x)+A_{3} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{2} \cos (2 x)-6 A_{3} \sin (2 x)+2 A_{2} \sin (2 x)-2 A_{3} \cos (2 x)-2 A_{1}=40 \sin (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-10, A_{2}=3, A_{3}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-10+3 \cos (2 x)+\sin (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x}\right)+(-10+3 \cos (2 x)+\sin (2 x))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x}-10+3 \cos (2 x)+\sin (2 x) \tag{1}
\end{equation*}
$$

Figure 261: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x}-10+3 \cos (2 x)+\sin (2 x)
$$

Verified OK.

8.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 238: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
40 \sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 x}}{3}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (2 x)+A_{3} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{2} \cos (2 x)-6 A_{3} \sin (2 x)+2 A_{2} \sin (2 x)-2 A_{3} \cos (2 x)-2 A_{1}=40 \sin (x)^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-10, A_{2}=3, A_{3}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-10+3 \cos (2 x)+\sin (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}\right)+(-10+3 \cos (2 x)+\sin (2 x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}-10+3 \cos (2 x)+\sin (2 x) \tag{1}
\end{equation*}
$$

Figure 262: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}-10+3 \cos (2 x)+\sin (2 x)
$$

Verified OK.

8.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y^{\prime}-2 y=40 \sin (x)^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=40 \sin (x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{2 x} \\
-\mathrm{e}^{-x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{40 \mathrm{e}^{-x}\left(\int \mathrm{e}^{x} \sin (x)^{2} d x\right)}{3}+\frac{40 \mathrm{e}^{2 x}\left(\int \mathrm{e}^{-2 x} \sin (x)^{2} d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=-10+3 \cos (2 x)+\sin (2 x)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}-10+3 \cos (2 x)+\sin (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

```
dsolve(diff(y(x),x$2)-diff(y(x),x)-2*y(x)=40*sin(x)^2,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x} c_{2}+c_{1} \mathrm{e}^{2 x}-10+\sin (2 x)+3 \cos (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 33
DSolve[y''[x]-y'[x]-2*y[x]==40*Sin[x]~2,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \sin (2 x)+3 \cos (2 x)+c_{1} e^{-x}+c_{2} e^{2 x}-10
$$

8.6 problem Problem 6

8.6.1 Solving as second order linear constant coeff ode 1635
8.6.2 Solving using Kovacic algorithm 1638
8.6.3 Maple step by step solution . 1643

Internal problem ID [2768]
Internal file name [OUTPUT/2260_Sunday_June_05_2022_02_56_46_AM_81534391/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
Problem number: Problem 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y=3 \mathrm{e}^{x} \cos (2 x)
$$

8.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=3 \mathrm{e}^{x} \cos (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{x} \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x} \cos (2 x), \mathrm{e}^{x} \sin (2 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x} \cos (2 x)+A_{2} \mathrm{e}^{x} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \mathrm{e}^{x} \cos (2 x)-4 A_{1} \mathrm{e}^{x} \sin (2 x)-2 A_{2} \mathrm{e}^{x} \sin (2 x)+4 A_{2} \mathrm{e}^{x} \cos (2 x)=3 \mathrm{e}^{x} \cos (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{10}, A_{2}=\frac{3}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \mathrm{e}^{x} \cos (2 x)}{10}+\frac{3 \mathrm{e}^{x} \sin (2 x)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{3 \mathrm{e}^{x} \cos (2 x)}{10}+\frac{3 \mathrm{e}^{x} \sin (2 x)}{5}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{3 \mathrm{e}^{x} \cos (2 x)}{10}+\frac{3 \mathrm{e}^{x} \sin (2 x)}{5} \tag{1}
\end{equation*}
$$

Figure 263: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{3 \mathrm{e}^{x} \cos (2 x)}{10}+\frac{3 \mathrm{e}^{x} \sin (2 x)}{5}
$$

Verified OK.

8.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 240: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{x} \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x} \cos (2 x), \mathrm{e}^{x} \sin (2 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x} \cos (2 x)+A_{2} \mathrm{e}^{x} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \mathrm{e}^{x} \cos (2 x)-4 A_{1} \mathrm{e}^{x} \sin (2 x)-2 A_{2} \mathrm{e}^{x} \sin (2 x)+4 A_{2} \mathrm{e}^{x} \cos (2 x)=3 \mathrm{e}^{x} \cos (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{10}, A_{2}=\frac{3}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \mathrm{e}^{x} \cos (2 x)}{10}+\frac{3 \mathrm{e}^{x} \sin (2 x)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\frac{3 \mathrm{e}^{x} \cos (2 x)}{10}+\frac{3 \mathrm{e}^{x} \sin (2 x)}{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{3 \mathrm{e}^{x} \cos (2 x)}{10}+\frac{3 \mathrm{e}^{x} \sin (2 x)}{5} \tag{1}
\end{equation*}
$$

Figure 264: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{3 \mathrm{e}^{x} \cos (2 x)}{10}+\frac{3 \mathrm{e}^{x} \sin (2 x)}{5}
$$

Verified OK.

8.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=3 \mathrm{e}^{x} \cos (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 \mathrm{e}^{x} \cos (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-3 \cos (x)\left(\int \sin (x) \mathrm{e}^{x} \cos (2 x) d x\right)+3 \sin (x)\left(\int \cos (x) \mathrm{e}^{x} \cos (2 x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\frac{3 \mathrm{e}^{x}(\cos (2 x)-2 \sin (2 x))}{10}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\frac{3 \mathrm{e}^{x}(\cos (2 x)-2 \sin (2 x))}{10}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(diff(y(x),x$2)+y(x)=3*exp(x)*\operatorname{cos}(2*x),y(x), singsol=all)
```

$$
y(x)=\cos (x) c_{1}+\frac{3 \mathrm{e}^{x} \sin (2 x)}{5}-\frac{3 \mathrm{e}^{x} \cos (2 x)}{10}+\sin (x) c_{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 34
DSolve[y' ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==3 * \operatorname{Exp}[\mathrm{x}] * \operatorname{Cos}[2 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{3}{10} e^{x}(\cos (2 x)-2 \sin (2 x))+c_{1} \cos (x)+c_{2} \sin (x)
$$

8.7 problem Problem 7

8.7.1 Solving as second order linear constant coeff ode 1646
8.7.2 Solving using Kovacic algorithm 1649
8.7.3 Maple step by step solution . 1654

Internal problem ID [2769]
Internal file name [OUTPUT/2261_Sunday_June_05_2022_02_56_48_AM_82603819/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
Problem number: Problem 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime}+2 y=2 \mathrm{e}^{-x} \sin (x)
$$

8.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=2, f(x)=2 \mathrm{e}^{-x} \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(2)} \\
& =-1 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-x} \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x} \cos (x), \mathrm{e}^{-x} \sin (x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (x), \mathrm{e}^{-x} \sin (x)\right\}
$$

Since $\mathrm{e}^{-x} \cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x} \cos (x), x \mathrm{e}^{-x} \sin (x)\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-x} \cos (x)+A_{2} x \mathrm{e}^{-x} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \mathrm{e}^{-x} \sin (x)+2 A_{2} \mathrm{e}^{-x} \cos (x)=2 \mathrm{e}^{-x} \sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-x \mathrm{e}^{-x} \cos (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right)+\left(-x \mathrm{e}^{-x} \cos (x)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-x \mathrm{e}^{-x} \cos (x) \tag{1}
\end{equation*}
$$

Figure 265: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-x \mathrm{e}^{-x} \cos (x)
$$

Verified OK.

8.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 242: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (x)(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-x} \cos (x) c_{1}+\mathrm{e}^{-x} \sin (x) c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-x} \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x} \cos (x), \mathrm{e}^{-x} \sin (x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (x), \mathrm{e}^{-x} \sin (x)\right\}
$$

Since $\mathrm{e}^{-x} \cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x} \cos (x), x \mathrm{e}^{-x} \sin (x)\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-x} \cos (x)+A_{2} x \mathrm{e}^{-x} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \mathrm{e}^{-x} \sin (x)+2 A_{2} \mathrm{e}^{-x} \cos (x)=2 \mathrm{e}^{-x} \sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-x \mathrm{e}^{-x} \cos (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x} \cos (x) c_{1}+\mathrm{e}^{-x} \sin (x) c_{2}\right)+\left(-x \mathrm{e}^{-x} \cos (x)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-x \mathrm{e}^{-x} \cos (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-x \mathrm{e}^{-x} \cos (x) \tag{1}
\end{equation*}
$$

Figure 266: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-x \mathrm{e}^{-x} \cos (x)
$$

Verified OK.

8.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+2 y=2 \mathrm{e}^{-x} \sin (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+2=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-1-\mathrm{I},-1+\mathrm{I})$
- 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x} \cos (x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x} \sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-x} \cos (x) c_{1}+\mathrm{e}^{-x} \sin (x) c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \mathrm{e}^{-x} \sin (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} \cos (x) & \mathrm{e}^{-x} \sin (x) \\
-\mathrm{e}^{-x} \cos (x)-\mathrm{e}^{-x} \sin (x) & -\mathrm{e}^{-x} \sin (x)+\mathrm{e}^{-x} \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{-x}\left(-2 \cos (x)\left(\int \sin (x)^{2} d x\right)+\sin (x)\left(\int \sin (2 x) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{(\sin (x)-2 \cos (x) x) \mathrm{e}^{-x}}{2}
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-x} \cos (x) c_{1}+\mathrm{e}^{-x} \sin (x) c_{2}+\frac{(\sin (x)-2 \cos (x) x) \mathrm{e}^{-x}}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve(diff(y(x),x$2)+2*\operatorname{diff}(y(x),x)+2*y(x)=2*exp(-x)*\operatorname{sin}(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x}\left(\sin (x) c_{2}+\cos (x) c_{1}-x \cos (x)+\sin (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 34
DSolve[y''[x] $+2 * y$ ' $[x]+2 * y[x]==2 * \operatorname{Exp}[-x] * \operatorname{Sin}[x], y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \frac{1}{2} e^{-x}\left(\sin (x)-2 x \cos (x)+2 c_{2} \cos (x)+2 c_{1} \sin (x)\right)
$$

8.8 problem Problem 8

8.8.1 Solving as second order linear constant coeff ode 1657
8.8.2 Solving using Kovacic algorithm 1660
8.8.3 Maple step by step solution 1665

Internal problem ID [2770]
Internal file name [OUTPUT/2262_Sunday_June_05_2022_02_56_50_AM_15779565/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
Problem number: Problem 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-4 y=100 \mathrm{e}^{x} x \sin (x)
$$

8.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-4, f(x)=100 \mathrm{e}^{x} x \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
100 \mathrm{e}^{x} x \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos (x) \mathrm{e}^{x}, \mathrm{e}^{x} \sin (x), \mathrm{e}^{x} x \cos (x), \mathrm{e}^{x} x \sin (x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x) \mathrm{e}^{x}+A_{2} \mathrm{e}^{x} \sin (x)+A_{3} \mathrm{e}^{x} x \cos (x)+A_{4} \mathrm{e}^{x} x \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -2 A_{1} \sin (x) \mathrm{e}^{x}+2 A_{2} \mathrm{e}^{x} \cos (x)+2 A_{3} \mathrm{e}^{x} \cos (x)-2 A_{3} \mathrm{e}^{x} x \sin (x)-2 A_{3} \mathrm{e}^{x} \sin (x) \\
& +2 A_{4} \mathrm{e}^{x} \sin (x)+2 A_{4} \mathrm{e}^{x} x \cos (x)+2 A_{4} \mathrm{e}^{x} \cos (x)-4 A_{1} \cos (x) \mathrm{e}^{x} \\
& -4 A_{2} \mathrm{e}^{x} \sin (x)-4 A_{3} \mathrm{e}^{x} x \cos (x)-4 A_{4} \mathrm{e}^{x} x \sin (x)=100 \mathrm{e}^{x} x \sin (x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-14, A_{2}=2, A_{3}=-10, A_{4}=-20\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-14 \cos (x) \mathrm{e}^{x}+2 \mathrm{e}^{x} \sin (x)-10 \mathrm{e}^{x} x \cos (x)-20 \mathrm{e}^{x} x \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-14 \cos (x) \mathrm{e}^{x}+2 \mathrm{e}^{x} \sin (x)-10 \mathrm{e}^{x} x \cos (x)-20 \mathrm{e}^{x} x \sin (x)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}-14 \cos (x) \mathrm{e}^{x}+2 \mathrm{e}^{x} \sin (x)-10 \mathrm{e}^{x} x \cos (x)-20 \mathrm{e}^{x} x \sin (x) \tag{1}
\end{equation*}
$$

Figure 267: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}-14 \cos (x) \mathrm{e}^{x}+2 \mathrm{e}^{x} \sin (x)-10 \mathrm{e}^{x} x \cos (x)-20 \mathrm{e}^{x} x \sin (x)
$$

Verified OK.

8.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 244: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
100 \mathrm{e}^{x} x \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos (x) \mathrm{e}^{x}, \mathrm{e}^{x} \sin (x), \mathrm{e}^{x} x \cos (x), \mathrm{e}^{x} x \sin (x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 x}}{4}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x) \mathrm{e}^{x}+A_{2} \mathrm{e}^{x} \sin (x)+A_{3} \mathrm{e}^{x} x \cos (x)+A_{4} \mathrm{e}^{x} x \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -2 A_{1} \sin (x) \mathrm{e}^{x}+2 A_{2} \mathrm{e}^{x} \cos (x)+2 A_{3} \mathrm{e}^{x} \cos (x)-2 A_{3} \mathrm{e}^{x} x \sin (x)-2 A_{3} \mathrm{e}^{x} \sin (x) \\
& +2 A_{4} \mathrm{e}^{x} \sin (x)+2 A_{4} \mathrm{e}^{x} x \cos (x)+2 A_{4} \mathrm{e}^{x} \cos (x)-4 A_{1} \cos (x) \mathrm{e}^{x} \\
& -4 A_{2} \mathrm{e}^{x} \sin (x)-4 A_{3} \mathrm{e}^{x} x \cos (x)-4 A_{4} \mathrm{e}^{x} x \sin (x)=100 \mathrm{e}^{x} x \sin (x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-14, A_{2}=2, A_{3}=-10, A_{4}=-20\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-14 \cos (x) \mathrm{e}^{x}+2 \mathrm{e}^{x} \sin (x)-10 \mathrm{e}^{x} x \cos (x)-20 \mathrm{e}^{x} x \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}\right)+\left(-14 \cos (x) \mathrm{e}^{x}+2 \mathrm{e}^{x} \sin (x)-10 \mathrm{e}^{x} x \cos (x)-20 \mathrm{e}^{x} x \sin (x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}-14 \cos (x) \mathrm{e}^{x}+2 \mathrm{e}^{x} \sin (x)-10 \mathrm{e}^{x} x \cos (x)-20 \mathrm{e}^{x} x \sin (x) \tag{1}
\end{equation*}
$$

Figure 268: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}-14 \cos (x) \mathrm{e}^{x}+2 \mathrm{e}^{x} \sin (x)-10 \mathrm{e}^{x} x \cos (x)-20 \mathrm{e}^{x} x \sin (x)
$$

Verified OK.

8.8.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y=100 \mathrm{e}^{x} x \sin (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial
$(r-2)(r+2)=0$
- Roots of the characteristic polynomial
$r=(-2,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=100 \mathrm{e}^{x} x \sin (x)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} \\ -2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-25 \mathrm{e}^{-2 x}\left(\int \mathrm{e}^{3 x} \sin (x) x d x\right)+25 \mathrm{e}^{2 x}\left(\int x \mathrm{e}^{-x} \sin (x) d x\right)$
- Compute integrals

$$
y_{p}(x)=-2 \mathrm{e}^{x}(10 x \sin (x)+5 \cos (x) x-\sin (x)+7 \cos (x))
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}-2 \mathrm{e}^{x}(10 x \sin (x)+5 \cos (x) x-\sin (x)+7 \cos (x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 51
dsolve(diff $(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-4 * \mathrm{y}(\mathrm{x})=100 * \mathrm{x} * \exp (\mathrm{x}) * \sin (\mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)
$y(x)=\left(-10 x \cos (x) \mathrm{e}^{3 x}+\mathrm{e}^{4 x} c_{1}-20 x \sin (x) \mathrm{e}^{3 x}-14 \cos (x) \mathrm{e}^{3 x}+2 \mathrm{e}^{3 x} \sin (x)+c_{2}\right) \mathrm{e}^{-2 x}$
\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 44
DSolve[y''[x]-4*y[x]==100*x*Exp[x]*Sin[x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} e^{2 x}+c_{2} e^{-2 x}-2 e^{x}((10 x-1) \sin (x)+(5 x+7) \cos (x))
$$

8.9 problem Problem 9

8.9.1 Solving as second order linear constant coeff ode 1668
8.9.2 Solving using Kovacic algorithm 1671
8.9.3 Maple step by step solution . 1676

Internal problem ID [2771]
Internal file name [OUTPUT/2263_Sunday_June_05_2022_02_56_53_AM_69436000/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
Problem number: Problem 9.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime}+5 y=4 \mathrm{e}^{-x} \cos (2 x)
$$

8.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=5, f(x)=4 \mathrm{e}^{-x} \cos (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(5)} \\
& =-1 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{-x} \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x} \cos (2 x), \mathrm{e}^{-x} \sin (2 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (2 x), \mathrm{e}^{-x} \sin (2 x)\right\}
$$

Since $\mathrm{e}^{-x} \cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x} \cos (2 x), x \mathrm{e}^{-x} \sin (2 x)\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-x} \cos (2 x)+A_{2} x \mathrm{e}^{-x} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \mathrm{e}^{-x} \sin (2 x)+4 A_{2} \mathrm{e}^{-x} \cos (2 x)=4 \mathrm{e}^{-x} \cos (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x \mathrm{e}^{-x} \sin (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)\right)+\left(x \mathrm{e}^{-x} \sin (2 x)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+x \mathrm{e}^{-x} \sin (2 x) \tag{1}
\end{equation*}
$$

Figure 269: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+x \mathrm{e}^{-x} \sin (2 x)
$$

Verified OK.

8.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 246: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (2 x) \mathrm{e}^{-x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{-x} c_{2}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{-x} \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x} \cos (2 x), \mathrm{e}^{-x} \sin (2 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x} \cos (2 x), \frac{\mathrm{e}^{-x} \sin (2 x)}{2}\right\}
$$

Since $\mathrm{e}^{-x} \cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x} \cos (2 x), x \mathrm{e}^{-x} \sin (2 x)\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-x} \cos (2 x)+A_{2} x \mathrm{e}^{-x} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \mathrm{e}^{-x} \sin (2 x)+4 A_{2} \mathrm{e}^{-x} \cos (2 x)=4 \mathrm{e}^{-x} \cos (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x \mathrm{e}^{-x} \sin (2 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (2 x) \mathrm{e}^{-x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{-x} c_{2}}{2}\right)+\left(x \mathrm{e}^{-x} \sin (2 x)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\cos (2 x) \mathrm{e}^{-x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{-x} c_{2}}{2}+x \mathrm{e}^{-x} \sin (2 x) \tag{1}
\end{equation*}
$$

Figure 270: Slope field plot

Verification of solutions

$$
y=\cos (2 x) \mathrm{e}^{-x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{-x} c_{2}}{2}+x \mathrm{e}^{-x} \sin (2 x)
$$

Verified OK.

8.9.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+5 y=4 \mathrm{e}^{-x} \cos (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+5=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-2) \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-1-2 \mathrm{I},-1+2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x} \cos (2 x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x} \sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=\cos (2 x) \mathrm{e}^{-x} c_{1}+\sin (2 x) \mathrm{e}^{-x} c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \mathrm{e}^{-x} \cos (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} \cos (2 x) & \mathrm{e}^{-x} \sin (2 x) \\
-\mathrm{e}^{-x} \cos (2 x)-2 \mathrm{e}^{-x} \sin (2 x) & -\mathrm{e}^{-x} \sin (2 x)+2 \mathrm{e}^{-x} \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-x}\left(\cos (2 x)\left(\int \sin (4 x) d x\right)-2 \sin (2 x)\left(\int \cos (2 x)^{2} d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{(4 x \sin (2 x)+\cos (2 x)) \mathrm{e}^{-x}}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=\cos (2 x) \mathrm{e}^{-x} c_{1}+\sin (2 x) \mathrm{e}^{-x} c_{2}+\frac{(4 x \sin (2 x)+\cos (2 x)) \mathrm{e}^{-x}}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(x),x$2)+2*diff (y(x),x)+5*y(x)=4*exp (-x)*\operatorname{cos}(2*x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x}\left(\cos (2 x)\left(\frac{1}{2}+c_{1}\right)+\sin (2 x)\left(c_{2}+x\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 36
DSolve $[y$ '' $[x]+2 * y$ ' $[x]+5 * y[x]==4 * \operatorname{Exp}[-x] * \operatorname{Cos}[2 * x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{4} e^{-x}\left(\left(1+4 c_{2}\right) \cos (2 x)+4\left(x+c_{1}\right) \sin (2 x)\right)
$$

8.10 problem Problem 10

8.10.1 Solving as second order linear constant coeff ode 1679
8.10.2 Solving using Kovacic algorithm 1682
8.10.3 Maple step by step solution . 1687

Internal problem ID [2772]
Internal file name [OUTPUT/2264_Sunday_June_05_2022_02_56_56_AM_72898369/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
Problem number: Problem 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-2 y^{\prime}+10 y=24 \mathrm{e}^{x} \cos (3 x)
$$

8.10.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=10, f(x)=24 \mathrm{e}^{x} \cos (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+10 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=10$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+10 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(10)} \\
& =1 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+3 i \\
& \lambda_{2}=1-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+3 i \\
& \lambda_{2}=1-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=1$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
24 \mathrm{e}^{x} \cos (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x} \cos (3 x), \mathrm{e}^{x} \sin (3 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x} \cos (3 x), \mathrm{e}^{x} \sin (3 x)\right\}
$$

Since $\mathrm{e}^{x} \cos (3 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x} \cos (3 x), x \sin (3 x) \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x} \cos (3 x)+A_{2} x \sin (3 x) \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \mathrm{e}^{x} \sin (3 x)+6 A_{2} \cos (3 x) \mathrm{e}^{x}=24 \mathrm{e}^{x} \cos (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=4 x \sin (3 x) \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)\right)+\left(4 x \sin (3 x) \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+4 x \sin (3 x) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 271: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+4 x \sin (3 x) \mathrm{e}^{x}
$$

Verified OK.

8.10.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+10 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 248: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x} \cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x} \cos (3 x)\right)+c_{2}\left(\mathrm{e}^{x} \cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+10 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} \cos (3 x) c_{1}+\frac{\mathrm{e}^{x} \sin (3 x) c_{2}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
24 \mathrm{e}^{x} \cos (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x} \cos (3 x), \mathrm{e}^{x} \sin (3 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x} \cos (3 x), \frac{\mathrm{e}^{x} \sin (3 x)}{3}\right\}
$$

Since $\mathrm{e}^{x} \cos (3 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x} \cos (3 x), x \sin (3 x) \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x} \cos (3 x)+A_{2} x \sin (3 x) \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \mathrm{e}^{x} \sin (3 x)+6 A_{2} \cos (3 x) \mathrm{e}^{x}=24 \mathrm{e}^{x} \cos (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=4 x \sin (3 x) \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x} \cos (3 x) c_{1}+\frac{\mathrm{e}^{x} \sin (3 x) c_{2}}{3}\right)+\left(4 x \sin (3 x) \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x} \cos (3 x) c_{1}+\frac{\mathrm{e}^{x} \sin (3 x) c_{2}}{3}+4 x \sin (3 x) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 272: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x} \cos (3 x) c_{1}+\frac{\mathrm{e}^{x} \sin (3 x) c_{2}}{3}+4 x \sin (3 x) \mathrm{e}^{x}
$$

Verified OK.

8.10.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+10 y=24 \mathrm{e}^{x} \cos (3 x)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+10=0
$$

- Use quadratic formula to solve for r
$r=\frac{2 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(1-3 \mathrm{I}, 1+3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{x} \cos (3 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x} \sin (3 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} \cos (3 x) c_{1}+\mathrm{e}^{x} \sin (3 x) c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=24 \mathrm{e}^{x} \cos (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} \cos (3 x) & \mathrm{e}^{x} \sin (3 x) \\
\mathrm{e}^{x} \cos (3 x)-3 \mathrm{e}^{x} \sin (3 x) & \mathrm{e}^{x} \sin (3 x)+3 \mathrm{e}^{x} \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4 \mathrm{e}^{x}\left(\cos (3 x)\left(\int \sin (6 x) d x\right)-2 \sin (3 x)\left(\int \cos (3 x)^{2} d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{2(6 x \sin (3 x)+\cos (3 x)) \mathrm{e}^{x}}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} \cos (3 x) c_{1}+\mathrm{e}^{x} \sin (3 x) c_{2}+\frac{2(6 x \sin (3 x)+\cos (3 x)) \mathrm{e}^{x}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31
dsolve (diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+10 * y(x)=24 * \exp (x) * \cos (3 * x), y(x)$, singsol $=a l l)$

$$
y(x)=\frac{\mathrm{e}^{x}\left(3 c_{1}+4\right) \cos (3 x)}{3}+4 \mathrm{e}^{x} \sin (3 x)\left(x+\frac{c_{2}}{4}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 36
DSolve[y''[x]-2*y'[x]+10*y[x]==24*Exp[x]*Cos[3*x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{3} e^{x}\left(\left(2+3 c_{2}\right) \cos (3 x)+3\left(4 x+c_{1}\right) \sin (3 x)\right)
$$

8.11 problem Problem 11

8.11.1 Solving as second order linear constant coeff ode 1690
8.11.2 Solving using Kovacic algorithm 1694
8.11.3 Maple step by step solution . 1699

Internal problem ID [2773]
Internal file name [OUTPUT/2265_Sunday_June_05_2022_02_56_59_AM_98263515/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.4, Complex-Valued Trial Solutions. page 529
Problem number: Problem 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+16 y=34 \mathrm{e}^{x}+16 \cos (4 x)-8 \sin (4 x)
$$

8.11.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=16, f(x)=34 \mathrm{e}^{x}+16 \cos (4 x)-8 \sin (4 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+16 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=16$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+16 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+16=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=16$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(16)} \\
& = \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+4 i \\
& \lambda_{2}=-4 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 i \\
& \lambda_{2}=-4 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
$$

Or

$$
y=c_{1} \cos (4 x)+c_{2} \sin (4 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (4 x)+c_{2} \sin (4 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
34 \mathrm{e}^{x}+16 \cos (4 x)-8 \sin (4 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\{\cos (4 x), \sin (4 x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (4 x), \sin (4 x)\}
$$

Since $\cos (4 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{x}\right\},\{x \cos (4 x), x \sin (4 x)\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2} x \cos (4 x)+A_{3} x \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
17 A_{1} \mathrm{e}^{x}-8 A_{2} \sin (4 x)+8 A_{3} \cos (4 x)=34 \mathrm{e}^{x}+16 \cos (4 x)-8 \sin (4 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=1, A_{3}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{x}+x \cos (4 x)+2 x \sin (4 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)+\left(2 \mathrm{e}^{x}+x \cos (4 x)+2 x \sin (4 x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (4 x)+c_{2} \sin (4 x)+2 \mathrm{e}^{x}+x \cos (4 x)+2 x \sin (4 x) \tag{1}
\end{equation*}
$$

Figure 273: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (4 x)+c_{2} \sin (4 x)+2 \mathrm{e}^{x}+x \cos (4 x)+2 x \sin (4 x)
$$

Verified OK.

8.11.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+16 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=16
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-16 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 250: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (4 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (4 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (4 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (4 x) \int \frac{1}{\cos (4 x)^{2}} d x \\
& =\cos (4 x)\left(\frac{\tan (4 x)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (4 x))+c_{2}\left(\cos (4 x)\left(\frac{\tan (4 x)}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+16 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (4 x)+\frac{c_{2} \sin (4 x)}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
34 \mathrm{e}^{x}+16 \cos (4 x)-8 \sin (4 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\{\cos (4 x), \sin (4 x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (4 x)}{4}, \cos (4 x)\right\}
$$

Since $\cos (4 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{x}\right\},\{x \cos (4 x), x \sin (4 x)\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2} x \cos (4 x)+A_{3} x \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
17 A_{1} \mathrm{e}^{x}-8 A_{2} \sin (4 x)+8 A_{3} \cos (4 x)=34 \mathrm{e}^{x}+16 \cos (4 x)-8 \sin (4 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2, A_{2}=1, A_{3}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 \mathrm{e}^{x}+x \cos (4 x)+2 x \sin (4 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (4 x)+\frac{c_{2} \sin (4 x)}{4}\right)+\left(2 \mathrm{e}^{x}+x \cos (4 x)+2 x \sin (4 x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (4 x)+\frac{c_{2} \sin (4 x)}{4}+2 \mathrm{e}^{x}+x \cos (4 x)+2 x \sin (4 x) \tag{1}
\end{equation*}
$$

Figure 274: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (4 x)+\frac{c_{2} \sin (4 x)}{4}+2 \mathrm{e}^{x}+x \cos (4 x)+2 x \sin (4 x)
$$

Verified OK.

8.11.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+16 y=34 \mathrm{e}^{x}+16 \cos (4 x)-8 \sin (4 x)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+16=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial

$$
r=(-4 \mathrm{I}, 4 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (4 x)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\sin (4 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (4 x)+c_{2} \sin (4 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=34 \mathrm{e}^{x}+16 \cos (4 x)-8\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (4 x) & \sin (4 x) \\
-4 \sin (4 x) & 4 \cos (4 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (4 x)\left(\int \sin (4 x)\left(17 \mathrm{e}^{x}+8 \cos (4 x)-4 \sin (4 x)\right) d x\right)}{2}+\frac{\sin (4 x)\left(\int \cos (4 x)\left(17 \mathrm{e}^{x}+8 \cos (4 x)-4 \sin (4 x)\right) d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=2 \mathrm{e}^{x}+2 x \sin (4 x)+x \cos (4 x)-\frac{\sin (4 x)}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (4 x)+c_{2} \sin (4 x)+2 \mathrm{e}^{x}+2 x \sin (4 x)+x \cos (4 x)-\frac{\sin (4 x)}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

```
dsolve(diff(y(x),x$2)+16*y(x)=34*exp(x)+16*\operatorname{cos}(4*x)-8*\operatorname{sin}(4*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(4 c_{2}+8 x-1\right) \sin (4 x)}{4}+\left(c_{1}+x\right) \cos (4 x)+2 \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.623 (sec). Leaf size: 37
DSolve $[y$ ' $[x]+16 * y[x]==34 * \operatorname{Exp}[x]+16 * \operatorname{Cos}[4 * x]-8 * \operatorname{Sin}[4 * x], y[x], x$, IncludeSingularSolutions $->$ I

$$
y(x) \rightarrow 2 e^{x}+\left(x+\frac{1}{4}+c_{1}\right) \cos (4 x)+\left(2 x-\frac{1}{8}+c_{2}\right) \sin (4 x)
$$

9 Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
9.1 problem Problem 1 1702
9.2 problem Problem 2 1717
9.3 problem Problem 3 1732
9.4 problem Problem 4 1745
9.5 problem Problem 5 1758
9.6 problem Problem 6 1771
9.7 problem Problem 7 1784
9.8 problem Problem 8 1798
9.9 problem Problem 9 1811
9.10 problem Problem 10 1824
9.11 problem Problem 11 1837
9.12 problem Problem 12 1850
9.13 problem Problem 13 1863
9.14 problem Problem 13 1876
9.15 problem Problem 15 1891
9.16 problem Problem 16 1906
9.17 problem Problem 17 1919
9.18 problem Problem 18 1933
9.19 problem Problem 19 1948
9.20 problem Problem 20 1953
9.21 problem Problem 21 1958
9.22 problem Problem 22 1963
9.23 problem Problem 23 1967
9.24 problem Problem 24 1979
9.25 problem Problem 25 1991
9.26 problem Problem 26 2003
9.27 problem Problem 27 2015
9.28 problem Problem 28 2032

9.1 problem Problem 1

9.1.1 Solving as second order linear constant coeff ode 1702
$\begin{array}{ll}\text { 9.1.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 1706\end{array}$
9.1.3 Solving using Kovacic algorithm 1708
9.1.4 Maple step by step solution . 1714

Internal problem ID [2774]
Internal file name [OUTPUT/2266_Sunday_June_05_2022_02_57_01_AM_15360658/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear_second__order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-6 y^{\prime}+9 y=4 \mathrm{e}^{3 x} \ln (x)
$$

9.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-6, C=9, f(x)=4 \mathrm{e}^{3 x} \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-6, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-6)^{2}-(4)(1)(9)} \\
& =3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{3 x} \\
& y_{2}=x \mathrm{e}^{3 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{3 x} & x \mathrm{e}^{3 x} \\
\frac{d}{d x}\left(\mathrm{e}^{3 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{3 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{3 x} & x \mathrm{e}^{3 x} \\
3 \mathrm{e}^{3 x} & \mathrm{e}^{3 x}+3 x \mathrm{e}^{3 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{3 x}\right)\left(\mathrm{e}^{3 x}+3 x \mathrm{e}^{3 x}\right)-\left(x \mathrm{e}^{3 x}\right)\left(3 \mathrm{e}^{3 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{6 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{6 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4 x \mathrm{e}^{6 x} \ln (x)}{\mathrm{e}^{6 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 \ln (x) x d x
$$

Hence

$$
u_{1}=-2 \ln (x) x^{2}+x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 \mathrm{e}^{6 x} \ln (x)}{\mathrm{e}^{6 x}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 \ln (x) d x
$$

Hence

$$
u_{2}=4 \ln (x) x-4 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}(1-2 \ln (x)) \\
& u_{2}=4 \ln (x) x-4 x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=x^{2}(1-2 \ln (x)) \mathrm{e}^{3 x}+(4 \ln (x) x-4 x) x \mathrm{e}^{3 x}
$$

Which simplifies to

$$
y_{p}(x)=x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}\right)+\left(x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3) \tag{1}
\end{equation*}
$$

Figure 275: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3)
$$

Verified OK.

9.1.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-6 d x} \\
& =\mathrm{e}^{-3 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =4 \mathrm{e}^{-3 x} \mathrm{e}^{3 x} \ln (x) \\
\left(\mathrm{e}^{-3 x} y\right)^{\prime \prime} & =4 \mathrm{e}^{-3 x} \mathrm{e}^{3 x} \ln (x)
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-3 x} y\right)^{\prime}=4 \ln (x) x-4 x+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-3 x} y\right)=x\left(2 \ln (x) x+c_{1}-3 x\right)+c_{2}
$$

Hence the solution is

$$
y=\frac{x\left(2 \ln (x) x+c_{1}-3 x\right)+c_{2}}{\mathrm{e}^{-3 x}}
$$

Or

$$
y=2 x^{2} \mathrm{e}^{3 x} \ln (x)+c_{1} x \mathrm{e}^{3 x}-3 x^{2} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 x^{2} \mathrm{e}^{3 x} \ln (x)+c_{1} x \mathrm{e}^{3 x}-3 x^{2} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Figure 276: Slope field plot

Verification of solutions

$$
y=2 x^{2} \mathrm{e}^{3 x} \ln (x)+c_{1} x \mathrm{e}^{3 x}-3 x^{2} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{3 x}
$$

Verified OK.

9.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 252: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6}{1} d x} \\
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 x}\right)+c_{2}\left(\mathrm{e}^{3 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{3 x} \\
& y_{2}=x \mathrm{e}^{3 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{3 x} & x \mathrm{e}^{3 x} \\
\frac{d}{d x}\left(\mathrm{e}^{3 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{3 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{3 x} & x \mathrm{e}^{3 x} \\
3 \mathrm{e}^{3 x} & \mathrm{e}^{3 x}+3 x \mathrm{e}^{3 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{3 x}\right)\left(\mathrm{e}^{3 x}+3 x \mathrm{e}^{3 x}\right)-\left(x \mathrm{e}^{3 x}\right)\left(3 \mathrm{e}^{3 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{6 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{6 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4 x \mathrm{e}^{6 x} \ln (x)}{\mathrm{e}^{6 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 \ln (x) x d x
$$

Hence

$$
u_{1}=-2 \ln (x) x^{2}+x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 \mathrm{e}^{6 x} \ln (x)}{\mathrm{e}^{6 x}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 \ln (x) d x
$$

Hence

$$
u_{2}=4 \ln (x) x-4 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}(1-2 \ln (x)) \\
& u_{2}=4 \ln (x) x-4 x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=x^{2}(1-2 \ln (x)) \mathrm{e}^{3 x}+(4 \ln (x) x-4 x) x \mathrm{e}^{3 x}
$$

Which simplifies to

$$
y_{p}(x)=x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}\right)+\left(x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3) \tag{1}
\end{equation*}
$$

Figure 277: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3)
$$

Verified OK.

9.1.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-6 y^{\prime}+9 y=4 \mathrm{e}^{3 x} \ln (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-6 r+9=0
$$

- Factor the characteristic polynomial

$$
(r-3)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=3
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{3 x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}+y_{p}(x)
$$

$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \mathrm{e}^{3 x} \ln (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{3 x} & x \mathrm{e}^{3 x} \\
3 \mathrm{e}^{3 x} & \mathrm{e}^{3 x}+3 x \mathrm{e}^{3 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{6 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4 \mathrm{e}^{3 x}\left(\int \ln (x) x d x-\left(\int \ln (x) d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3)
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}+x^{2} \mathrm{e}^{3 x}(2 \ln (x)-3)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(x),x$2)-6*diff(y(x),x)+9*y(x)=4*exp(3*x)*\operatorname{ln}(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{3 x}\left(2 \ln (x) x^{2}+c_{1} x-3 x^{2}+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 30
DSolve[y''[x]-6*y'[x]+9*y[x]==4*Exp[3*x]*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{3 x}\left(-3 x^{2}+2 x^{2} \log (x)+c_{2} x+c_{1}\right)
$$

9.2 problem Problem 2

9.2.1 Solving as second order linear constant coeff ode 1717
$\begin{array}{ll}\text { 9.2.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 1721\end{array}$
9.2.3 Solving using Kovacic algorithm 1723
9.2.4 Maple step by step solution . 1729

Internal problem ID [2775]
Internal file name [OUTPUT/2267_Sunday_June_05_2022_02_57_03_AM_63963978/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an__integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+4 y=\frac{\mathrm{e}^{-2 x}}{x^{2}}
$$

9.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=4, C=4, f(x)=\frac{\mathrm{e}^{-2 x}}{x^{2}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(4)^{2}-(4)(1)(4)} \\
& =-2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=2$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}\right)-\left(x \mathrm{e}^{-2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-4 x}}{x}}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{1}{x} d x
$$

Hence

$$
u_{1}=-\ln (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-4 x}}{x^{2}}}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln (x) \mathrm{e}^{-2 x}-\mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{-2 x}(-1-\ln (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+\left(\mathrm{e}^{-2 x}(-1-\ln (x))\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-2 x}(-1-\ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-2 x}(-1-\ln (x)) \tag{1}
\end{equation*}
$$

Figure 278: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-2 x}(-1-\ln (x))
$$

Verified OK.

9.2.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 4 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{\mathrm{e}^{2 x} \mathrm{e}^{-2 x}}{x^{2}} \\
\left(\mathrm{e}^{2 x} y\right)^{\prime \prime} & =\frac{\mathrm{e}^{2 x} \mathrm{e}^{-2 x}}{x^{2}}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{2 x} y\right)^{\prime}=-\frac{1}{x}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{2 x} y\right)=c_{1} x-\ln (x)+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x-\ln (x)+c_{2}}{\mathrm{e}^{2 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-\ln (x) \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-\ln (x) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 279: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-\ln (x) \mathrm{e}^{-2 x}
$$

Verified OK.

9.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 254: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}\right)-\left(x \mathrm{e}^{-2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-4 x}}{x}}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{1}{x} d x
$$

Hence

$$
u_{1}=-\ln (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-4 x}}{x^{2}}}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln (x) \mathrm{e}^{-2 x}-\mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{-2 x}(-1-\ln (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+\left(\mathrm{e}^{-2 x}(-1-\ln (x))\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-2 x}(-1-\ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-2 x}(-1-\ln (x)) \tag{1}
\end{equation*}
$$

Figure 280: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-2 x}(-1-\ln (x))
$$

Verified OK.

9.2.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+4 y=\frac{\mathrm{e}^{-2 x}}{x^{2}}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+4=0
$$

- Factor the characteristic polynomial

$$
(r+2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-2
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{\mathrm{e}^{-2 x}}{x^{2}}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{-2 x}\left(-\left(\int \frac{1}{x} d x\right)+\left(\int \frac{1}{x^{2}} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\mathrm{e}^{-2 x}(\ln (x)+1)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}-\mathrm{e}^{-2 x}(\ln (x)+1)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

```
dsolve(diff(y(x),x$2)+4*\operatorname{diff}(y(x),x)+4*y(x)=\mp@subsup{x}{}{\wedge}(-2)*exp(-2*x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-2 x}\left(-1+c_{1} x-\ln (x)+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 23
DSolve[y''[x] $+4 * y$ ' $[\mathrm{x}]+4 * y[\mathrm{x}]==\mathrm{x}^{\wedge}(-2) * \operatorname{Exp}[-2 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-2 x}\left(-\log (x)+c_{2} x-1+c_{1}\right)
$$

9.3 problem Problem 3

9.3.1 Solving as second order linear constant coeff ode 1732
9.3.2 Solving using Kovacic algorithm 1737
9.3.3 Maple step by step solution . 1743

Internal problem ID [2776]
Internal file name [OUTPUT/2268_Sunday_June_05_2022_02_57_05_AM_70335767/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=18 \sec (3 x)^{3}
$$

9.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=18 \sec (3 x)^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+3 i \\
\lambda_{2}=-3 i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (3 x) \\
& y_{2}=\sin (3 x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
\frac{d}{d x}(\cos (3 x)) & \frac{d}{d x}(\sin (3 x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (3 x))(3 \cos (3 x))-(\sin (3 x))(-3 \sin (3 x))
$$

Which simplifies to

$$
W=3 \cos (3 x)^{2}+3 \sin (3 x)^{2}
$$

Which simplifies to

$$
W=3
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{18 \sin (3 x) \sec (3 x)^{3}}{3} d x
$$

Which simplifies to

$$
u_{1}=-\int 6 \tan (3 x) \sec (3 x)^{2} d x
$$

Hence

$$
u_{1}=-\sec (3 x)^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{18 \cos (3 x) \sec (3 x)^{3}}{3} d x
$$

Which simplifies to

$$
u_{2}=\int 6 \sec (3 x)^{2} d x
$$

Hence

$$
u_{2}=2 \tan (3 x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\sec (3 x)^{2} \cos (3 x)+2 \tan (3 x) \sin (3 x)
$$

Which simplifies to

$$
y_{p}(x)=-2 \cos (3 x)+\sec (3 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+(-2 \cos (3 x)+\sec (3 x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-2 \cos (3 x)+\sec (3 x) \tag{1}
\end{equation*}
$$

Figure 281: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-2 \cos (3 x)+\sec (3 x)
$$

Verified OK.

9.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 256: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (3 x) \\
& y_{2}=\frac{\sin (3 x)}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \frac{\sin (3 x)}{3} \\
\frac{d}{d x}(\cos (3 x)) & \frac{d}{d x}\left(\frac{\sin (3 x)}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \frac{\sin (3 x)}{3} \\
-3 \sin (3 x) & \cos (3 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (3 x))(\cos (3 x))-\left(\frac{\sin (3 x)}{3}\right)(-3 \sin (3 x))
$$

Which simplifies to

$$
W=\cos (3 x)^{2}+\sin (3 x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{6 \sin (3 x) \sec (3 x)^{3}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int 6 \tan (3 x) \sec (3 x)^{2} d x
$$

Hence

$$
u_{1}=-\sec (3 x)^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{18 \cos (3 x) \sec (3 x)^{3}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 18 \sec (3 x)^{2} d x
$$

Hence

$$
u_{2}=6 \tan (3 x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\sec (3 x)^{2} \cos (3 x)+2 \tan (3 x) \sin (3 x)
$$

Which simplifies to

$$
y_{p}(x)=-2 \cos (3 x)+\sec (3 x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+(-2 \cos (3 x)+\sec (3 x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-2 \cos (3 x)+\sec (3 x) \tag{1}
\end{equation*}
$$

Figure 282: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-2 \cos (3 x)+\sec (3 x)
$$

Verified OK.

9.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=18 \sec (3 x)^{3}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (3 x)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=18 \sec (3 x)^{3}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-6 \cos (3 x)\left(\int \tan (3 x) \sec (3 x)^{2} d x\right)+6 \sin (3 x)\left(\int \sec (3 x)^{2} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-2 \cos (3 x)+\sec (3 x)
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-2 \cos (3 x)+\sec (3 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)+9*y(x)=18*sec(3*x)^3,y(x), singsol=all)
```

$$
y(x)=\left(c_{1}-2\right) \cos (3 x)+\sin (3 x) c_{2}+\sec (3 x)
$$

\checkmark Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 32

```
DSolve[y''[x]+9*y[x]==18*Sec[3*x]^3,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{2} \sec (3 x)\left(\left(-2+c_{1}\right) \cos (6 x)+c_{2} \sin (6 x)+c_{1}\right)
$$

9.4 problem Problem 4

9.4.1 Solving as second order linear constant coeff ode 1745
$\begin{array}{ll}\text { 9.4.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 1749\end{array}$
9.4.3 Solving using Kovacic algorithm 1750
9.4.4 Maple step by step solution . 1755

Internal problem ID [2777]
Internal file name [OUTPUT/2269_Sunday_June_05_2022_02_57_08_AM_51508744/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_ccoeff", "linear_second__order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y^{\prime}+9 y=\frac{2 \mathrm{e}^{-3 x}}{x^{2}+1}
$$

9.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=6, C=9, f(x)=\frac{2 \mathrm{e}^{-3 x}}{x^{2}+1}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$.
y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(6)^{2}-(4)(1)(9)} \\
& =-3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \\
& y_{2}=x \mathrm{e}^{-3 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-3 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-3 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
-3 \mathrm{e}^{-3 x} & \mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-3 x}\right)\left(\mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}\right)-\left(x \mathrm{e}^{-3 x}\right)\left(-3 \mathrm{e}^{-3 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-6 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-6 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{2 x \mathrm{e}^{-6 x}}{x^{2}+1}}{\mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2 x}{x^{2}+1} d x
$$

Hence

$$
u_{1}=-\ln \left(x^{2}+1\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{2 \mathrm{e}^{-6 x}}{x^{2}+1}}{\mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x^{2}+1} d x
$$

Hence

$$
u_{2}=2 \arctan (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln \left(x^{2}+1\right) \mathrm{e}^{-3 x}+2 \arctan (x) x \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}\right)+\left(\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right)
$$

Verified OK.

9.4.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 6 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{2 \mathrm{e}^{3 x} \mathrm{e}^{-3 x}}{x^{2}+1} \\
\left(\mathrm{e}^{3 x} y\right)^{\prime \prime} & =\frac{2 \mathrm{e}^{3 x} \mathrm{e}^{-3 x}}{x^{2}+1}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{3 x} y\right)^{\prime}=2 \arctan (x)+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{3 x} y\right)=c_{1} x+2 \arctan (x) x-\ln \left(x^{2}+1\right)+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+2 \arctan (x) x-\ln \left(x^{2}+1\right)+c_{2}}{\mathrm{e}^{3 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-3 x}+2 \arctan (x) x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}-\ln \left(x^{2}+1\right) \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-3 x}+2 \arctan (x) x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}-\ln \left(x^{2}+1\right) \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-3 x}+2 \arctan (x) x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}-\ln \left(x^{2}+1\right) \mathrm{e}^{-3 x}
$$

Verified OK.

9.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =6 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. \{1,	
3	$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	

Table 258: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \\
& y_{2}=x \mathrm{e}^{-3 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-3 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-3 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
-3 \mathrm{e}^{-3 x} & \mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-3 x}\right)\left(\mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}\right)-\left(x \mathrm{e}^{-3 x}\right)\left(-3 \mathrm{e}^{-3 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-6 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-6 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{2 x \mathrm{e}^{-6 x}}{x^{2}+1}}{\mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2 x}{x^{2}+1} d x
$$

Hence

$$
u_{1}=-\ln \left(x^{2}+1\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{2 \mathrm{e}^{-6 x}}{x^{2}+1}}{\mathrm{e}^{-6 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x^{2}+1} d x
$$

Hence

$$
u_{2}=2 \arctan (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln \left(x^{2}+1\right) \mathrm{e}^{-3 x}+2 \arctan (x) x \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}\right)+\left(\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right)
$$

Verified OK.

9.4.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+9 y=\frac{2 \mathrm{e}^{-3 x}}{x^{2}+1}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+6 r+9=0
$$

- Factor the characteristic polynomial

$$
(r+3)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-3
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{2 e^{-3 x}}{x^{2}+1}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
-3 \mathrm{e}^{-3 x} & \mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-6 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-2 \mathrm{e}^{-3 x}\left(\int \frac{x}{x^{2}+1} d x-\left(\int \frac{1}{x^{2}+1} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}+\mathrm{e}^{-3 x}\left(-\ln \left(x^{2}+1\right)+2 \arctan (x) x\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
dsolve (diff $(y(x), x \$ 2)+6 * \operatorname{diff}(y(x), x)+9 * y(x)=2 * \exp (-3 * x) /\left(x^{\wedge} 2+1\right), y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-3 x}\left(c_{2}+c_{1} x-\ln \left(x^{2}+1\right)+2 x \arctan (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 31
DSolve $\left[y\right.$ '' $[x]+6 * y$ ' $[x]+9 * y[x]==2 * \operatorname{Exp}[-3 * x] /\left(x^{\wedge} 2+1\right), y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow e^{-3 x}\left(2 x \arctan (x)-\log \left(x^{2}+1\right)+c_{2} x+c_{1}\right)
$$

9.5 problem Problem 5

9.5.1 Solving as second order linear constant coeff ode 1758
9.5.2 Solving using Kovacic algorithm 1762
9.5.3 Maple step by step solution . 1768

Internal problem ID [2778]
Internal file name [OUTPUT/2270_Sunday_June_05_2022_02_57_09_AM_77182596/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y=\frac{8}{\mathrm{e}^{2 x}+1}
$$

9.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-4, f(x)=\frac{8}{\mathrm{e}^{2 x}+1}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{-2 x} \\
2 \mathrm{e}^{2 x} & -2 \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{-2 x}\right)\left(2 \mathrm{e}^{2 x}\right)
$$

Which simplifies to

$$
W=-4 \mathrm{e}^{-2 x} \mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=-4
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{8 \mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+1}}{-4} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{2 \mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+1} d x
$$

Hence

$$
u_{1}=\ln \left(\mathrm{e}^{2 x}+1\right)-\mathrm{e}^{-2 x}-2 \ln \left(\mathrm{e}^{x}\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{8 \mathrm{e}^{2 x}}{\mathrm{e}^{2 x}+1}}{-4} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{2 \mathrm{e}^{2 x}}{\mathrm{e}^{2 x}+1} d x
$$

Hence

$$
u_{2}=-\ln \left(\mathrm{e}^{2 x}+1\right)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\ln \left(\mathrm{e}^{2 x}+1\right)-\mathrm{e}^{-2 x}-2 \ln \left(\mathrm{e}^{x}\right)\right) \mathrm{e}^{2 x}-\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y_{p}(x)=\left(-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) \ln \left(\mathrm{e}^{2 x}+1\right)-2 \mathrm{e}^{2 x} \ln \left(\mathrm{e}^{x}\right)-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}\right)+\left(\left(-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) \ln \left(\mathrm{e}^{2 x}+1\right)-2 \mathrm{e}^{2 x} \ln \left(\mathrm{e}^{x}\right)-1\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}+\left(-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) \ln \left(\mathrm{e}^{2 x}+1\right)-2 \mathrm{e}^{2 x} \ln \left(\mathrm{e}^{x}\right)-1 \tag{1}
\end{equation*}
$$

Figure 283: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}+\left(-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) \ln \left(\mathrm{e}^{2 x}+1\right)-2 \mathrm{e}^{2 x} \ln \left(\mathrm{e}^{x}\right)-1
$$

Verified OK.

9.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 260: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\frac{\mathrm{e}^{2 x}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{4} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{4} \\
-2 \mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\frac{\mathrm{e}^{2 x}}{2}\right)-\left(\frac{\mathrm{e}^{2 x}}{4}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x} \mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{2 \mathrm{e}^{2 x}}{\mathrm{e}^{2 x}+1}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2 \mathrm{e}^{2 x}}{\mathrm{e}^{2 x}+1} d x
$$

Hence

$$
u_{1}=-\ln \left(\mathrm{e}^{2 x}+1\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{8 \mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+1}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{8 \mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+1} d x
$$

Hence

$$
u_{2}=4 \ln \left(\mathrm{e}^{2 x}+1\right)-4 \mathrm{e}^{-2 x}-8 \ln \left(\mathrm{e}^{x}\right)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln \left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{-2 x}+\frac{\left(4 \ln \left(\mathrm{e}^{2 x}+1\right)-4 \mathrm{e}^{-2 x}-8 \ln \left(\mathrm{e}^{x}\right)\right) \mathrm{e}^{2 x}}{4}
$$

Which simplifies to

$$
y_{p}(x)=\left(-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) \ln \left(\mathrm{e}^{2 x}+1\right)-2 \mathrm{e}^{2 x} \ln \left(\mathrm{e}^{x}\right)-1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}\right)+\left(\left(-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) \ln \left(\mathrm{e}^{2 x}+1\right)-2 \mathrm{e}^{2 x} \ln \left(\mathrm{e}^{x}\right)-1\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\left(-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) \ln \left(\mathrm{e}^{2 x}+1\right)-2 \mathrm{e}^{2 x} \ln \left(\mathrm{e}^{x}\right)-1 \tag{1}
\end{equation*}
$$

Figure 284: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\left(-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) \ln \left(\mathrm{e}^{2 x}+1\right)-2 \mathrm{e}^{2 x} \ln \left(\mathrm{e}^{x}\right)-1
$$

Verified OK.

9.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y=\frac{8}{\mathrm{e}^{2 x}+1}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial
$(r-2)(r+2)=0$
- Roots of the characteristic polynomial
$r=(-2,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{8}{\mathrm{e}^{2 x}+1}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} \\
-2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-2 \mathrm{e}^{-2 x}\left(\int \frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}+1} d x\right)+2 \mathrm{e}^{2 x}\left(\int \frac{\mathrm{e}^{-2 x}}{\mathrm{e}^{2 x}+1} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\left(-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) \ln \left(\mathrm{e}^{2 x}+1\right)-2 \mathrm{e}^{2 x} \ln \left(\mathrm{e}^{x}\right)-1
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\left(-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) \ln \left(\mathrm{e}^{2 x}+1\right)-2 \mathrm{e}^{2 x} \ln \left(\mathrm{e}^{x}\right)-1
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 43

```
dsolve(diff(y(x),x$2)-4*y(x)=8/(exp(2*x)+1),y(x), singsol=all)
```

$$
y(x)=\left(-\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) \ln \left(\mathrm{e}^{2 x}+1\right)+\left(c_{1}-2 \ln \left(\mathrm{e}^{x}\right)\right) \mathrm{e}^{2 x}+\mathrm{e}^{-2 x} c_{2}-1
$$

\checkmark Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 56
DSolve[y''[x]-4*y[x]==8/(Exp[2*x]+1),y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-2 x}\left(2 e^{4 x} \operatorname{arctanh}\left(2 e^{2 x}+1\right)-e^{2 x}-\log \left(e^{2 x}+1\right)+c_{1} e^{4 x}+c_{2}\right)
$$

9.6 problem Problem 6

9.6.1 Solving as second order linear constant coeff ode 1771
9.6.2 Solving using Kovacic algorithm 1775
9.6.3 Maple step by step solution . 1782

Internal problem ID [2779]
Internal file name [OUTPUT/2271_Sunday_June_05_2022_02_57_11_AM_47497370/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-4 y^{\prime}+5 y=\mathrm{e}^{2 x} \tan (x)
$$

9.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-4, C=5, f(x)=\mathrm{e}^{2 x} \tan (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-4^{2}-(4)(1)(5)} \\
& =2 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =2+i \\
\lambda_{2} & =2-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2+i \\
& \lambda_{2}=2-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=2$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \mathrm{e}^{2 x} \\
& y_{2}=\sin (x) \mathrm{e}^{2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) \mathrm{e}^{2 x} & \sin (x) \mathrm{e}^{2 x} \\
\frac{d}{d x}\left(\cos (x) \mathrm{e}^{2 x}\right) & \frac{d}{d x}\left(\sin (x) \mathrm{e}^{2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) \mathrm{e}^{2 x} & \sin (x) \mathrm{e}^{2 x} \\
-\sin (x) \mathrm{e}^{2 x}+2 \cos (x) \mathrm{e}^{2 x} & \cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}
\end{array}\right|
$$

Therefore
$W=\left(\cos (x) \mathrm{e}^{2 x}\right)\left(\cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}\right)-\left(\sin (x) \mathrm{e}^{2 x}\right)\left(-\sin (x) \mathrm{e}^{2 x}+2 \cos (x) \mathrm{e}^{2 x}\right)$
Which simplifies to

$$
W=\mathrm{e}^{4 x} \cos (x)^{2}+\sin (x)^{2} \mathrm{e}^{4 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \mathrm{e}^{4 x} \tan (x)}{\mathrm{e}^{4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) \sin (x) d x
$$

Hence

$$
u_{1}=\sin (x)-\ln (\sec (x)+\tan (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \mathrm{e}^{4 x} \tan (x)}{\mathrm{e}^{4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(\sin (x)-\ln (\sec (x)+\tan (x))) \cos (x) \mathrm{e}^{2 x}-\sin (x) \cos (x) \mathrm{e}^{2 x}
$$

Which simplifies to

$$
y_{p}(x)=-\cos (x) \mathrm{e}^{2 x} \ln (\sec (x)+\tan (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right)+\left(-\cos (x) \mathrm{e}^{2 x} \ln (\sec (x)+\tan (x))\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\cos (x) \mathrm{e}^{2 x} \ln (\sec (x)+\tan (x)) \tag{1}
\end{equation*}
$$

Figure 285: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\cos (x) \mathrm{e}^{2 x} \ln (\sec (x)+\tan (x))
$$

Verified OK.

9.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 262: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{2 x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{2 x}(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (x) \mathrm{e}^{2 x} c_{1}+\sin (x) \mathrm{e}^{2 x} c_{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \mathrm{e}^{2 x} \\
& y_{2}=\sin (x) \mathrm{e}^{2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) \mathrm{e}^{2 x} & \sin (x) \mathrm{e}^{2 x} \\
\frac{d}{d x}\left(\cos (x) \mathrm{e}^{2 x}\right) & \frac{d}{d x}\left(\sin (x) \mathrm{e}^{2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) \mathrm{e}^{2 x} & \sin (x) \mathrm{e}^{2 x} \\
-\sin (x) \mathrm{e}^{2 x}+2 \cos (x) \mathrm{e}^{2 x} & \cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\cos (x) \mathrm{e}^{2 x}\right)\left(\cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}\right)-\left(\sin (x) \mathrm{e}^{2 x}\right)\left(-\sin (x) \mathrm{e}^{2 x}+2 \cos (x) \mathrm{e}^{2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{4 x} \cos (x)^{2}+\sin (x)^{2} \mathrm{e}^{4 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \mathrm{e}^{4 x} \tan (x)}{\mathrm{e}^{4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) \sin (x) d x
$$

Hence

$$
u_{1}=\sin (x)-\ln (\sec (x)+\tan (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \mathrm{e}^{4 x} \tan (x)}{\mathrm{e}^{4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(\sin (x)-\ln (\sec (x)+\tan (x))) \cos (x) \mathrm{e}^{2 x}-\sin (x) \cos (x) \mathrm{e}^{2 x}
$$

Which simplifies to

$$
y_{p}(x)=-\cos (x) \mathrm{e}^{2 x} \ln (\sec (x)+\tan (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) \mathrm{e}^{2 x} c_{1}+\sin (x) \mathrm{e}^{2 x} c_{2}\right)+\left(-\cos (x) \mathrm{e}^{2 x} \ln (\sec (x)+\tan (x))\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\cos (x) \mathrm{e}^{2 x} \ln (\sec (x)+\tan (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\cos (x) \mathrm{e}^{2 x} \ln (\sec (x)+\tan (x)) \tag{1}
\end{equation*}
$$

Figure 286: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\cos (x) \mathrm{e}^{2 x} \ln (\sec (x)+\tan (x))
$$

Verified OK.

9.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y^{\prime}+5 y=\mathrm{e}^{2 x} \tan (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4 r+5=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{4 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(2-\mathrm{I}, 2+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x) \mathrm{e}^{2 x}
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x) \mathrm{e}^{2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=\cos (x) \mathrm{e}^{2 x} c_{1}+\sin (x) \mathrm{e}^{2 x} c_{2}+y_{p}(x)
$$

$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{2 x} \tan (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) \mathrm{e}^{2 x} & \sin (x) \mathrm{e}^{2 x} \\
-\sin (x) \mathrm{e}^{2 x}+2 \cos (x) \mathrm{e}^{2 x} & \cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{4 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{2 x}\left(\cos (x)\left(\int \tan (x) \sin (x) d x\right)-\sin (x)\left(\int \sin (x) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=-\cos (x) \mathrm{e}^{2 x} \ln (\sec (x)+\tan (x))
$$

- Substitute particular solution into general solution to ODE

$$
y=-\cos (x) \mathrm{e}^{2 x} \ln (\sec (x)+\tan (x))+\cos (x) \mathrm{e}^{2 x} c_{1}+\sin (x) \mathrm{e}^{2 x} c_{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

```
dsolve(diff(y(x),x$2)-4*\operatorname{diff}(y(x),x)+5*y(x)=exp(2*x)*\operatorname{tan}(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x}\left(\sin (x) c_{2}+\cos (x) c_{1}-\cos (x) \ln (\sec (x)+\tan (x))\right)
$$

\checkmark Solution by Mathematica
Time used: 0.063 (sec). Leaf size: 29
DSolve[y' ' $[\mathrm{x}]-4 * \mathrm{y}^{\prime}[\mathrm{x}]+5 * \mathrm{y}[\mathrm{x}]==\operatorname{Exp}[2 * \mathrm{x}] * \operatorname{Tan}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{2 x}\left(\cos (x)(-\operatorname{arctanh}(\sin (x)))+c_{2} \cos (x)+c_{1} \sin (x)\right)
$$

9.7 problem Problem 7

9.7.1 Solving as second order linear constant coeff ode 1784
9.7.2 Solving using Kovacic algorithm 1789
9.7.3 Maple step by step solution . 1795

Internal problem ID [2780]
Internal file name [OUTPUT/2272_Sunday_June_05_2022_02_57_14_AM_32443035/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=\frac{36}{4-\cos (3 x)^{2}}
$$

9.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=-\frac{72}{-7+\cos (6 x)}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+3 i \\
\lambda_{2}=-3 i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (3 x) \\
& y_{2}=\sin (3 x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
\frac{d}{d x}(\cos (3 x)) & \frac{d}{d x}(\sin (3 x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (3 x))(3 \cos (3 x))-(\sin (3 x))(-3 \sin (3 x))
$$

Which simplifies to

$$
W=3 \cos (3 x)^{2}+3 \sin (3 x)^{2}
$$

Which simplifies to

$$
W=3
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{72 \sin (3 x)}{-7+\cos (6 x)}}{3} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{12 \sin (3 x)}{\cos (3 x)^{2}-4} d x
$$

Hence

$$
u_{1}=\ln (\cos (3 x)+2)-\ln (\cos (3 x)-2)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{-\frac{72 \cos (3 x)}{-7+\cos (6 x)}}{3} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{12 \cos (3 x)}{\cos (3 x)^{2}-4} d x
$$

Hence

$$
u_{2}=\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right)}{3}
$$

Therefore the particular solution, from equation (1) is
$y_{p}(x)=(\ln (\cos (3 x)+2)-\ln (\cos (3 x)-2)) \cos (3 x)+\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right) \sin (3 x)}{3}$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right) \\
& +\left((\ln (\cos (3 x)+2)-\ln (\cos (3 x)-2)) \cos (3 x)+\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right) \sin (3 x)}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \cos (3 x)+c_{2} \sin (3 x)+(\ln (\cos (3 x)+2)-\ln (\cos (3 x)-2)) \cos (3 x) \\
& +\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right) \sin (3 x)}{3} \tag{1}
\end{align*}
$$

Figure 287: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \cos (3 x)+c_{2} \sin (3 x)+(\ln (\cos (3 x)+2)-\ln (\cos (3 x)-2)) \cos (3 x) \\
& +\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right) \sin (3 x)}{3}
\end{aligned}
$$

Verified OK.

9.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 264: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (3 x) \\
& y_{2}=\frac{\sin (3 x)}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \frac{\sin (3 x)}{3} \\
\frac{d}{d x}(\cos (3 x)) & \frac{d}{d x}\left(\frac{\sin (3 x)}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (3 x) & \frac{\sin (3 x)}{3} \\
-3 \sin (3 x) & \cos (3 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (3 x))(\cos (3 x))-\left(\frac{\sin (3 x)}{3}\right)(-3 \sin (3 x))
$$

Which simplifies to

$$
W=\cos (3 x)^{2}+\sin (3 x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{24 \sin (3 x)}{-7+\cos (6 x)}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{12 \sin (3 x)}{\cos (3 x)^{2}-4} d x
$$

Hence

$$
u_{1}=\ln (\cos (3 x)+2)-\ln (\cos (3 x)-2)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{-\frac{72 \cos (3 x)}{-7+\cos (6 x)}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{36 \cos (3 x)}{\cos (3 x)^{2}-4} d x
$$

Hence

$$
u_{2}=4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right)
$$

Therefore the particular solution, from equation (1) is
$y_{p}(x)=(\ln (\cos (3 x)+2)-\ln (\cos (3 x)-2)) \cos (3 x)+\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right) \sin (3 x)}{3}$
Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right) \\
& +\left((\ln (\cos (3 x)+2)-\ln (\cos (3 x)-2)) \cos (3 x)+\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right) \sin (3 x)}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+(\ln (\cos (3 x)+2)-\ln (\cos (3 x)-2)) \cos (3 x) \\
& +\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right) \sin (3 x)}{3}
\end{aligned}
$$

Figure 288: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+(\ln (\cos (3 x)+2)-\ln (\cos (3 x)-2)) \cos (3 x) \\
& +\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right) \sin (3 x)}{3}
\end{aligned}
$$

Verified OK.

9.7.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+9 y=-\frac{72}{-7+\cos (6 x)}$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (3 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-\frac{72}{-7+\cos (6 x)}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=12 \cos (3 x)\left(\int \frac{\sin (3 x)}{\cos (3 x)^{2}-4} d x\right)-12 \sin (3 x)\left(\int \frac{\cos (3 x)}{\cos (3 x)^{2}-4} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right) \sin (3 x)}{3}-\cos (3 x)(-\ln (\cos (3 x)+2)+\ln (\cos (3 x)-2))
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right) \sin (3 x)}{3}-\cos (3 x)(-\ln (\cos (3 x)+2)+\ln (\cos (3
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 61

$$
\begin{aligned}
& \text { dsolve }(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+9 * \mathrm{y}(\mathrm{x})=36 /(4-\cos (3 * \mathrm{x}) \sim 2), \mathrm{y}(\mathrm{x}) \text {, singsol=all) } \\
& \qquad \begin{aligned}
y(x)= & \frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (3 x)}{3}\right) \sin (3 x)}{3}+\sin (3 x) c_{2} \\
& +\cos (3 x) \ln (\cos (3 x)+2)-\cos (3 x) \ln (\cos (3 x)-2)+\cos (3 x) c_{1}
\end{aligned}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.227 (sec). Leaf size: 61
DSolve[y' ' $[\mathrm{x}]+9 * \mathrm{y}[\mathrm{x}]==36 /(4-\operatorname{Cos}[3 * x] \sim 2), \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) \rightarrow & \frac{4 \sin (3 x) \arctan \left(\frac{\sin (3 x)}{\sqrt{3}}\right)}{\sqrt{3}}+c_{2} \sin (3 x) \\
& +\cos (3 x)\left(-\log (2-\cos (3 x))+\log (\cos (3 x)+2)+c_{1}\right)
\end{aligned}
$$

9.8 problem Problem 8

9.8.1 Solving as second order linear constant coeff ode 1798
$\begin{array}{ll}\text { 9.8.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 1802\end{array}$
9.8.3 Solving using Kovacic algorithm 1803
9.8.4 Maple step by step solution . 1808

Internal problem ID [2781]
Internal file name [OUTPUT/2273_Sunday_June_05_2022_02_57_17_AM_45743087/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-10 y^{\prime}+25 y=\frac{2 \mathrm{e}^{5 x}}{x^{2}+4}
$$

9.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-10, C=25, f(x)=\frac{2 \mathrm{e}^{5 x}}{x^{2}+4}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$.
y_{h} is the solution to

$$
y^{\prime \prime}-10 y^{\prime}+25 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-10, C=25$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-10 \lambda \mathrm{e}^{\lambda x}+25 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-10 \lambda+25=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-10, C=25$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{10}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-10)^{2}-(4)(1)(25)} \\
& =5
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-5$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{5 x} \\
& y_{2}=x \mathrm{e}^{5 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{5 x} & x \mathrm{e}^{5 x} \\
\frac{d}{d x}\left(\mathrm{e}^{5 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{5 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{5 x} & x \mathrm{e}^{5 x} \\
5 \mathrm{e}^{5 x} & \mathrm{e}^{5 x}+5 x \mathrm{e}^{5 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{5 x}\right)\left(\mathrm{e}^{5 x}+5 x \mathrm{e}^{5 x}\right)-\left(x \mathrm{e}^{5 x}\right)\left(5 \mathrm{e}^{5 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{10 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{10 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{2 x e^{10 x}}{x^{2}+4}}{\mathrm{e}^{10 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2 x}{x^{2}+4} d x
$$

Hence

$$
u_{1}=-\ln \left(x^{2}+4\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{2 \mathrm{e}^{10 x}}{x^{2}+4}}{\mathrm{e}^{10 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x^{2}+4} d x
$$

Hence

$$
u_{2}=\arctan \left(\frac{x}{2}\right)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln \left(x^{2}+4\right) \mathrm{e}^{5 x}+\arctan \left(\frac{x}{2}\right) x \mathrm{e}^{5 x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x}\right)+\left(\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{5 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{5 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{5 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right)
$$

Verified OK.

9.8.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-10$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-10 d x} \\
& =\mathrm{e}^{-5 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{2 \mathrm{e}^{-5 x} \mathrm{e}^{5 x}}{x^{2}+4} \\
\left(\mathrm{e}^{-5 x} y\right)^{\prime \prime} & =\frac{2 \mathrm{e}^{-5 x} \mathrm{e}^{5 x}}{x^{2}+4}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-5 x} y\right)^{\prime}=\arctan \left(\frac{x}{2}\right)+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-5 x} y\right)=c_{1} x+x \arctan \left(\frac{x}{2}\right)+2 \ln (2)-\ln \left(x^{2}+4\right)+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+x \arctan \left(\frac{x}{2}\right)+2 \ln (2)-\ln \left(x^{2}+4\right)+c_{2}}{\mathrm{e}^{-5 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{5 x}+\arctan \left(\frac{x}{2}\right) x \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{5 x}-\ln \left(x^{2}+4\right) \mathrm{e}^{5 x}+2 \ln (2) \mathrm{e}^{5 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{5 x}+\arctan \left(\frac{x}{2}\right) x \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{5 x}-\ln \left(x^{2}+4\right) \mathrm{e}^{5 x}+2 \ln (2) \mathrm{e}^{5 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{5 x}+\arctan \left(\frac{x}{2}\right) x \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{5 x}-\ln \left(x^{2}+4\right) \mathrm{e}^{5 x}+2 \ln (2) \mathrm{e}^{5 x}
$$

Verified OK.

9.8.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-10 y^{\prime}+25 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-10 \tag{3}\\
& C=25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	no condition

Table 266: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-10}{1} d x} \\
& =z_{1} e^{5 x} \\
& =z_{1}\left(\mathrm{e}^{5 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{5 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-10}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{10 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{5 x}\right)+c_{2}\left(\mathrm{e}^{5 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-10 y^{\prime}+25 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{5 x} \\
& y_{2}=x \mathrm{e}^{5 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{5 x} & x \mathrm{e}^{5 x} \\
\frac{d}{d x}\left(\mathrm{e}^{5 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{5 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{5 x} & x \mathrm{e}^{5 x} \\
5 \mathrm{e}^{5 x} & \mathrm{e}^{5 x}+5 x \mathrm{e}^{5 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{5 x}\right)\left(\mathrm{e}^{5 x}+5 x \mathrm{e}^{5 x}\right)-\left(x \mathrm{e}^{5 x}\right)\left(5 \mathrm{e}^{5 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{10 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{10 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{2 x \mathrm{e}^{10 x}}{x^{2}+4}}{\mathrm{e}^{10 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{2 x}{x^{2}+4} d x
$$

Hence

$$
u_{1}=-\ln \left(x^{2}+4\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{2 \mathrm{e}^{10 x}}{x^{2}+4}}{\mathrm{e}^{10 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{2}{x^{2}+4} d x
$$

Hence

$$
u_{2}=\arctan \left(\frac{x}{2}\right)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln \left(x^{2}+4\right) \mathrm{e}^{5 x}+\arctan \left(\frac{x}{2}\right) x \mathrm{e}^{5 x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x}\right)+\left(\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{5 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{5 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{5 x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right)
$$

Verified OK.

9.8.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-10 y^{\prime}+25 y=\frac{2 \mathrm{e}^{5 x}}{x^{2}+4}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-10 r+25=0
$$

- Factor the characteristic polynomial

$$
(r-5)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=5
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{5 x}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{5 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{2 e^{5 x}}{x^{2}+4}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{5 x} & x \mathrm{e}^{5 x} \\
5 \mathrm{e}^{5 x} & \mathrm{e}^{5 x}+5 x \mathrm{e}^{5 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{10 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-2 \mathrm{e}^{5 x}\left(\int \frac{x}{x^{2}+4} d x-\left(\int \frac{1}{x^{2}+4} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{5 x}+c_{2} x \mathrm{e}^{5 x}+\mathrm{e}^{5 x}\left(-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 28

```
dsolve(diff(y(x),x$2)-10*diff (y (x),x)+25*y(x)=2*exp(5*x)/(4+x^2),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{5 x}\left(c_{2}+c_{1} x-\ln \left(x^{2}+4\right)+x \arctan \left(\frac{x}{2}\right)\right)
$$

Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 34
DSolve $\left[y\right.$ '' $[x]-10 * y$ ' $[x]+25 * y[x]==2 * \operatorname{Exp}[5 * x] /\left(4+x^{\wedge} 2\right), y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{5 x}\left(x \arctan \left(\frac{x}{2}\right)-\log \left(x^{2}+4\right)+c_{2} x+c_{1}\right)
$$

9.9 problem Problem 9

9.9.1 Solving as second order linear constant coeff ode 1811
9.9.2 Solving using Kovacic algorithm 1816
9.9.3 Maple step by step solution . 1822

Internal problem ID [2782]
Internal file name [OUTPUT/2274_Sunday_June_05_2022_02_57_19_AM_28200098/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 9.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-6 y^{\prime}+13 y=4 \mathrm{e}^{3 x} \sec (2 x)^{2}
$$

9.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-6, C=13, f(x)=4 \mathrm{e}^{3 x} \sec (2 x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-6 y^{\prime}+13 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-6, C=13$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+13 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-6^{2}-(4)(1)(13)} \\
& =3 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=3+2 i \\
& \lambda_{2}=3-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3+2 i \\
& \lambda_{2}=3-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=3$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \mathrm{e}^{3 x} \\
& y_{2}=\sin (2 x) \mathrm{e}^{3 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) \mathrm{e}^{3 x} & \sin (2 x) \mathrm{e}^{3 x} \\
\frac{d}{d x}\left(\cos (2 x) \mathrm{e}^{3 x}\right) & \frac{d}{d x}\left(\sin (2 x) \mathrm{e}^{3 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) \mathrm{e}^{3 x} & \sin (2 x) \mathrm{e}^{3 x} \\
-2 \sin (2 x) \mathrm{e}^{3 x}+3 \cos (2 x) \mathrm{e}^{3 x} & 2 \cos (2 x) \mathrm{e}^{3 x}+3 \sin (2 x) \mathrm{e}^{3 x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\cos (2 x) \mathrm{e}^{3 x}\right)\left(2 \cos (2 x) \mathrm{e}^{3 x}+3 \sin (2 x) \mathrm{e}^{3 x}\right) \\
& -\left(\sin (2 x) \mathrm{e}^{3 x}\right)\left(-2 \sin (2 x) \mathrm{e}^{3 x}+3 \cos (2 x) \mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=2 \sin (2 x)^{2} \mathrm{e}^{6 x}+2 \mathrm{e}^{6 x} \cos (2 x)^{2}
$$

Which simplifies to

$$
W=2 \mathrm{e}^{6 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4 \sin (2 x) \mathrm{e}^{6 x} \sec (2 x)^{2}}{2 \mathrm{e}^{6 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int 2 \tan (2 x) \sec (2 x) d x
$$

Hence

$$
u_{1}=-\sec (2 x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 \cos (2 x) \mathrm{e}^{6 x} \sec (2 x)^{2}}{2 \mathrm{e}^{6 x}} d x
$$

Which simplifies to

$$
u_{2}=\int 2 \sec (2 x) d x
$$

Hence

$$
u_{2}=\ln (\sec (2 x)+\tan (2 x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\sec (2 x) \cos (2 x) \mathrm{e}^{3 x}+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x) \mathrm{e}^{3 x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{3 x}(-1+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)\right)+\left(\mathrm{e}^{3 x}(-1+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x))\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\mathrm{e}^{3 x}(-1+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x)) \tag{1}
\end{equation*}
$$

Figure 289: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\mathrm{e}^{3 x}(-1+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x))
$$

Verified OK.

9.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-6 y^{\prime}+13 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 268: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x) \mathrm{e}^{3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (2 x) \mathrm{e}^{3 x}\right)+c_{2}\left(\cos (2 x) \mathrm{e}^{3 x}\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-6 y^{\prime}+13 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{3 x} \cos (2 x) c_{1}+\frac{\sin (2 x) \mathrm{e}^{3 x} c_{2}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \mathrm{e}^{3 x} \\
& y_{2}=\frac{\sin (2 x) \mathrm{e}^{3 x}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) \mathrm{e}^{3 x} & \frac{\sin (2 x) \mathrm{e}^{3 x}}{2} \\
\frac{d}{d x}\left(\cos (2 x) \mathrm{e}^{3 x}\right) & \frac{d}{d x}\left(\frac{\sin (2 x) \mathrm{e}^{3 x}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) \mathrm{e}^{3 x} & \frac{\sin (2 x) \mathrm{e}^{3 x}}{2} \\
-2 \sin (2 x) \mathrm{e}^{3 x}+3 \cos (2 x) \mathrm{e}^{3 x} & \cos (2 x) \mathrm{e}^{3 x}+\frac{3 \sin (2 x) \mathrm{e}^{3 x}}{2}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\cos (2 x) \mathrm{e}^{3 x}\right)\left(\cos (2 x) \mathrm{e}^{3 x}+\frac{3 \sin (2 x) \mathrm{e}^{3 x}}{2}\right) \\
& -\left(\frac{\sin (2 x) \mathrm{e}^{3 x}}{2}\right)\left(-2 \sin (2 x) \mathrm{e}^{3 x}+3 \cos (2 x) \mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\sin (2 x)^{2} \mathrm{e}^{6 x}+\mathrm{e}^{6 x} \cos (2 x)^{2}
$$

Which simplifies to

$$
W=\mathrm{e}^{6 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \sin (2 x) \mathrm{e}^{6 x} \sec (2 x)^{2}}{\mathrm{e}^{6 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int 2 \tan (2 x) \sec (2 x) d x
$$

Hence

$$
u_{1}=-\sec (2 x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 \cos (2 x) \mathrm{e}^{6 x} \sec (2 x)^{2}}{\mathrm{e}^{6 x}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 \sec (2 x) d x
$$

Hence

$$
u_{2}=2 \ln (\sec (2 x)+\tan (2 x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\sec (2 x) \cos (2 x) \mathrm{e}^{3 x}+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x) \mathrm{e}^{3 x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{3 x}(-1+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{3 x} \cos (2 x) c_{1}+\frac{\sin (2 x) \mathrm{e}^{3 x} c_{2}}{2}\right)+\left(\mathrm{e}^{3 x}(-1+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 x} \cos (2 x) c_{1}+\frac{\sin (2 x) \mathrm{e}^{3 x} c_{2}}{2}+\mathrm{e}^{3 x}(-1+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x)) \tag{1}
\end{equation*}
$$

Figure 290: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 x} \cos (2 x) c_{1}+\frac{\sin (2 x) \mathrm{e}^{3 x} c_{2}}{2}+\mathrm{e}^{3 x}(-1+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x))
$$

Verified OK.

9.9.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-6 y^{\prime}+13 y=4 \mathrm{e}^{3 x} \sec (2 x)^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-6 r+13=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{6 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(3-2 \mathrm{I}, 3+2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (2 x) \mathrm{e}^{3 x}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x) \mathrm{e}^{3 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{3 x} \cos (2 x) c_{1}+\sin (2 x) \mathrm{e}^{3 x} c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \mathrm{e}^{3 x} \sec (2 x)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) \mathrm{e}^{3 x} & \sin (2 x) \mathrm{e}^{3 x} \\
-2 \sin (2 x) \mathrm{e}^{3 x}+3 \cos (2 x) \mathrm{e}^{3 x} & 2 \cos (2 x) \mathrm{e}^{3 x}+3 \sin (2 x) \mathrm{e}^{3 x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{6 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=2 \mathrm{e}^{3 x}\left(-\cos (2 x)\left(\int \tan (2 x) \sec (2 x) d x\right)+\sin (2 x)\left(\int \sec (2 x) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\mathrm{e}^{3 x}(-1+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x))
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{3 x} \cos (2 x) c_{1}+\sin (2 x) \mathrm{e}^{3 x} c_{2}+\mathrm{e}^{3 x}(-1+\ln (\sec (2 x)+\tan (2 x)) \sin (2 x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 38

```
dsolve(diff(y(x),x$2)-6*diff(y(x),x)+13*y(x)=4*exp(3*x)*sec(2*x)^2,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{3 x}\left(\sin (2 x) c_{2}+c_{1} \cos (2 x)-1+\sin (2 x) \ln (\sec (2 x)+\tan (2 x))\right)
$$

\checkmark Solution by Mathematica
Time used: 0.122 (sec). Leaf size: 37
DSolve $[y$ '' $[x]-6 * y$ ' $[x]+13 * y[x]==4 * \operatorname{Exp}[3 * x] * \operatorname{Sec}[2 * x] \sim 2, y[x], x$, IncludeSingularSolutions $->$ True

$$
y(x) \rightarrow e^{3 x}\left(c_{2} \cos (2 x)+\sin (2 x) \operatorname{coth}^{-1}(\sin (2 x))+c_{1} \sin (2 x)-1\right)
$$

9.10 problem Problem 10

9.10.1 Solving as second order linear constant coeff ode 1824
9.10.2 Solving using Kovacic algorithm 1829
9.10.3 Maple step by step solution . 1835

Internal problem ID [2783]
Internal file name [OUTPUT/2275_Sunday_June_05_2022_02_57_21_AM_64945049/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y=\sec (x)+4 \mathrm{e}^{x}
$$

9.10.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\sec (x)+4 \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x)\left(\sec (x)+4 \mathrm{e}^{x}\right)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(4 \mathrm{e}^{x} \sin (x)+\tan (x)\right) d x
$$

Hence

$$
u_{1}=2 \cos (x) \mathrm{e}^{x}-2 \mathrm{e}^{x} \sin (x)+\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x)\left(\sec (x)+4 \mathrm{e}^{x}\right)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int\left(4 \cos (x) \mathrm{e}^{x}+1\right) d x
$$

Hence

$$
u_{2}=x+2 \cos (x) \mathrm{e}^{x}+2 \mathrm{e}^{x} \sin (x)
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=(2 \cos (x)-2 \sin (x)) \mathrm{e}^{x}+\ln (\cos (x)) \\
& u_{2}=x+(2 \cos (x)+2 \sin (x)) \mathrm{e}^{x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left((2 \cos (x)-2 \sin (x)) \mathrm{e}^{x}+\ln (\cos (x))\right) \cos (x) \\
& +\left(x+(2 \cos (x)+2 \sin (x)) \mathrm{e}^{x}\right) \sin (x)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\cos (x) \ln (\cos (x))+x \sin (x)+2 \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\cos (x) \ln (\cos (x))+x \sin (x)+2 \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)+2 \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 291: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)+2 \mathrm{e}^{x}
$$

Verified OK.

9.10.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 270: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x)\left(\sec (x)+4 \mathrm{e}^{x}\right)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(4 \mathrm{e}^{x} \sin (x)+\tan (x)\right) d x
$$

Hence

$$
u_{1}=2 \cos (x) \mathrm{e}^{x}-2 \mathrm{e}^{x} \sin (x)+\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x)\left(\sec (x)+4 \mathrm{e}^{x}\right)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int\left(4 \cos (x) \mathrm{e}^{x}+1\right) d x
$$

Hence

$$
u_{2}=x+2 \cos (x) \mathrm{e}^{x}+2 \mathrm{e}^{x} \sin (x)
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=(2 \cos (x)-2 \sin (x)) \mathrm{e}^{x}+\ln (\cos (x)) \\
& u_{2}=x+(2 \cos (x)+2 \sin (x)) \mathrm{e}^{x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left((2 \cos (x)-2 \sin (x)) \mathrm{e}^{x}+\ln (\cos (x))\right) \cos (x) \\
& +\left(x+(2 \cos (x)+2 \sin (x)) \mathrm{e}^{x}\right) \sin (x)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\cos (x) \ln (\cos (x))+x \sin (x)+2 \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\cos (x) \ln (\cos (x))+x \sin (x)+2 \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)+2 \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 292: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)+2 \mathrm{e}^{x}
$$

Verified OK.

9.10.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\sec (x)+4 \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+1=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (x)$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x)+4 \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=1$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int\left(4 \mathrm{e}^{x} \sin (x)+\tan (x)\right) d x\right)+\sin (x)\left(\int\left(4 \cos (x) \mathrm{e}^{x}+1\right) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\cos (x) \ln (\cos (x))+x \sin (x)+2 \mathrm{e}^{x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)+2 \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

```
dsolve(diff(y(x),x$2)+y(x)=sec(x)+4*exp(x),y(x), singsol=all)
```

$$
y(x)=\cos (x) \ln (\cos (x))+\cos (x) c_{1}+\sin (x)\left(c_{2}+x\right)+2 \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 91
DSolve $[y$ '' $[x]+y[x]==4 * \operatorname{Exp}[x] * \operatorname{Sec}[x], y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
y(x) \rightarrow & -4 i e^{x} \text { Hypergeometric2F1 }\left(-\frac{i}{2}, 1,1-\frac{i}{2},-e^{2 i x}\right) \cos (x) \\
& +\left(\frac{8}{5}+\frac{4 i}{5}\right) e^{(1+2 i) x} \text { Hypergeometric2F1 }\left(1,1-\frac{i}{2}, 2-\frac{i}{2},-e^{2 i x}\right) \cos (x) \\
& +4 e^{x} \sin (x)+c_{1} \cos (x)+c_{2} \sin (x)
\end{aligned}
$$

9.11 problem Problem 11

9.11.1 Solving as second order linear constant coeff ode 1837
9.11.2 Solving using Kovacic algorithm 1842
9.11.3 Maple step by step solution . 1848

Internal problem ID [2784]
Internal file name [OUTPUT/2276_Sunday_June_05_2022_02_57_23_AM_99059270/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y=\csc (x)+2 x^{2}+5 x+1
$$

9.11.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\csc (x)+2 x^{2}+5 x+1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x)\left(\csc (x)+2 x^{2}+5 x+1\right)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(1+\left(2 x^{2}+5 x+1\right) \sin (x)\right) d x
$$

Hence

$$
u_{1}=-x+2 x^{2} \cos (x)-3 \cos (x)-4 x \sin (x)-5 \sin (x)+5 \cos (x) x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x)\left(\csc (x)+2 x^{2}+5 x+1\right)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \cos (x)\left(\csc (x)+2 x^{2}+5 x+1\right) d x
$$

Hence

$$
u_{2}=2 x^{2} \sin (x)-3 \sin (x)+4 \cos (x) x+5 \cos (x)+5 x \sin (x)+\ln (\sin (x))
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\left(2 x^{2}+5 x-3\right) \cos (x)+(-4 x-5) \sin (x)-x \\
& u_{2}=\ln (\sin (x))+\left(2 x^{2}+5 x-3\right) \sin (x)+(4 x+5) \cos (x)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(\left(2 x^{2}+5 x-3\right) \cos (x)+(-4 x-5) \sin (x)-x\right) \cos (x) \\
& +\left(\ln (\sin (x))+\left(2 x^{2}+5 x-3\right) \sin (x)+(4 x+5) \cos (x)\right) \sin (x)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=-\cos (x) x+\sin (x) \ln (\sin (x))+2 x^{2}+5 x-3
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\cos (x) x+\sin (x) \ln (\sin (x))+2 x^{2}+5 x-3\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) x+\sin (x) \ln (\sin (x))+2 x^{2}+5 x-3 \tag{1}
\end{equation*}
$$

Figure 293: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) x+\sin (x) \ln (\sin (x))+2 x^{2}+5 x-3
$$

Verified OK.

9.11.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 272: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x)\left(\csc (x)+2 x^{2}+5 x+1\right)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(1+\left(2 x^{2}+5 x+1\right) \sin (x)\right) d x
$$

Hence

$$
u_{1}=-x+2 x^{2} \cos (x)-3 \cos (x)-4 x \sin (x)-5 \sin (x)+5 \cos (x) x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x)\left(\csc (x)+2 x^{2}+5 x+1\right)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \cos (x)\left(\csc (x)+2 x^{2}+5 x+1\right) d x
$$

Hence

$$
u_{2}=2 x^{2} \sin (x)-3 \sin (x)+4 \cos (x) x+5 \cos (x)+5 x \sin (x)+\ln (\sin (x))
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\left(2 x^{2}+5 x-3\right) \cos (x)+(-4 x-5) \sin (x)-x \\
& u_{2}=\ln (\sin (x))+\left(2 x^{2}+5 x-3\right) \sin (x)+(4 x+5) \cos (x)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(\left(2 x^{2}+5 x-3\right) \cos (x)+(-4 x-5) \sin (x)-x\right) \cos (x) \\
& +\left(\ln (\sin (x))+\left(2 x^{2}+5 x-3\right) \sin (x)+(4 x+5) \cos (x)\right) \sin (x)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=-\cos (x) x+\sin (x) \ln (\sin (x))+2 x^{2}+5 x-3
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(-\cos (x) x+\sin (x) \ln (\sin (x))+2 x^{2}+5 x-3\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) x+\sin (x) \ln (\sin (x))+2 x^{2}+5 x-3 \tag{1}
\end{equation*}
$$

Figure 294: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) x+\sin (x) \ln (\sin (x))+2 x^{2}+5 x-3
$$

Verified OK.

9.11.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\csc (x)+2 x^{2}+5 x+1
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- 1st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\csc (x)+2 x^{2}+5 x+1\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (x) & \sin (x) \\ -\sin (x) & \cos (x)\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int\left(1+\left(2 x^{2}+5 x+1\right) \sin (x)\right) d x\right)+\sin (x)\left(\int \cos (x)\left(\csc (x)+2 x^{2}+5 x+1\right)\right.
$$

- Compute integrals

$$
y_{p}(x)=-\cos (x) x+\sin (x) \ln (\sin (x))+2 x^{2}+5 x-3
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\cos (x) x+\sin (x) \ln (\sin (x))+2 x^{2}+5 x-3
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

```
dsolve(diff(y(x),x$2)+y(x)=csc(x)+2*x^2+5*x+1,y(x), singsol=all)
```

$$
y(x)=\sin (x) \ln (\sin (x))+\left(c_{1}-x\right) \cos (x)+2 x^{2}+\sin (x) c_{2}+5 x-3
$$

\checkmark Solution by Mathematica
Time used: 0.208 (sec). Leaf size: 33
DSolve[y' $\quad[x]+y[x]==C s c[x]+2 * x^{\wedge} 2+5 * x+1, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow 2 x^{2}+5 x+\left(-x+c_{1}\right) \cos (x)+\sin (x)\left(\log (\sin (x))+c_{2}\right)-3
$$

9.12 problem Problem 12

9.12.1 Solving as second order linear constant coeff ode 1850
9.12.2 Solving using Kovacic algorithm 1854
9.12.3 Maple step by step solution . 1861

Internal problem ID [2785]
Internal file name [OUTPUT/2277_Sunday_June_05_2022_02_57_26_AM_63859560/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-y=2 \tanh (x)
$$

9.12.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-1, f(x)=2 \tanh (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{-x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{-x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{-x} \\
\mathrm{e}^{x} & -\mathrm{e}^{-x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(-\mathrm{e}^{-x}\right)-\left(\mathrm{e}^{-x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=-2 \mathrm{e}^{-x} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=-2
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \mathrm{e}^{-x} \tanh (x)}{-2} d x
$$

Which simplifies to

$$
u_{1}=-\int-\mathrm{e}^{-x} \tanh (x) d x
$$

Hence

$$
u_{1}=-\sinh (x)+2 \arctan \left(\mathrm{e}^{x}\right)+\cosh (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \mathrm{e}^{x} \tanh (x)}{-2} d x
$$

Which simplifies to

$$
u_{2}=\int-\mathrm{e}^{x} \tanh (x) d x
$$

Hence

$$
u_{2}=-\sinh (x)+2 \arctan \left(\mathrm{e}^{x}\right)-\cosh (x)
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\mathrm{e}^{-x}+2 \arctan \left(\mathrm{e}^{x}\right) \\
& u_{2}=-\mathrm{e}^{x}+2 \arctan \left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(\mathrm{e}^{-x}+2 \arctan \left(\mathrm{e}^{x}\right)\right) \mathrm{e}^{x}+\left(-\mathrm{e}^{x}+2 \arctan \left(\mathrm{e}^{x}\right)\right) \mathrm{e}^{-x}
$$

Which simplifies to

$$
y_{p}(x)=2 \arctan \left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}\right)+\left(2 \arctan \left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}+2 \arctan \left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right) \tag{1}
\end{equation*}
$$

Figure 295: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}+2 \arctan \left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)
$$

Verified OK.

9.12.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 274: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\frac{\mathrm{e}^{x}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \frac{\mathrm{e}^{x}}{2} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \frac{\mathrm{e}^{x}}{2} \\
-\mathrm{e}^{-x} & \frac{\mathrm{e}^{x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{x}}{2}\right)-\left(\frac{\mathrm{e}^{x}}{2}\right)\left(-\mathrm{e}^{-x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-x} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{x} \tanh (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \mathrm{e}^{x} \tanh (x) d x
$$

Hence

$$
u_{1}=-\sinh (x)+2 \arctan \left(\mathrm{e}^{x}\right)-\cosh (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \mathrm{e}^{-x} \tanh (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 2 \mathrm{e}^{-x} \tanh (x) d x
$$

Hence

$$
u_{2}=-2 \sinh (x)+4 \arctan \left(\mathrm{e}^{x}\right)+2 \cosh (x)
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\mathrm{e}^{x}+2 \arctan \left(\mathrm{e}^{x}\right) \\
& u_{2}=2 \mathrm{e}^{-x}+4 \arctan \left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\mathrm{e}^{x}+2 \arctan \left(\mathrm{e}^{x}\right)\right) \mathrm{e}^{-x}+\frac{\left(2 \mathrm{e}^{-x}+4 \arctan \left(\mathrm{e}^{x}\right)\right) \mathrm{e}^{x}}{2}
$$

Which simplifies to

$$
y_{p}(x)=2 \arctan \left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}\right)+\left(2 \arctan \left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}+2 \arctan \left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right) \tag{1}
\end{equation*}
$$

Figure 296: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}+2 \arctan \left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)
$$

Verified OK.

9.12.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y=2 \tanh (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-1=0$
- Factor the characteristic polynomial
$(r-1)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-1,1)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \tanh (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{-x}\left(\int \mathrm{e}^{x} \tanh (x) d x\right)+\mathrm{e}^{x}\left(\int \mathrm{e}^{-x} \tanh (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=2 \arctan \left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+2 \arctan \left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)-y(x)=2*tanh(x),y(x), singsol=all)
```

$$
y(x)=\left(c_{2}+2 \arctan \left(\mathrm{e}^{x}\right)\right) \mathrm{e}^{-x}+\mathrm{e}^{x}\left(c_{1}+2 \arctan \left(\mathrm{e}^{x}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 35
DSolve[y'' $[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==2 * \operatorname{Tanh}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x}\left(2\left(e^{2 x}+1\right) \arctan \left(e^{x}\right)+c_{1} e^{2 x}+c_{2}\right)
$$

9.13 problem Problem 13

9.13.1 Solving as second order linear constant coeff ode 1863
9.13.2 Solving as linear second order ode solved by an integrating factor
ode . 1867
9.13.3 Solving using Kovacic algorithm 1868
9.13.4 Maple step by step solution . 1873

Internal problem ID [2786]
Internal file name [OUTPUT/2278_Sunday_June_05_2022_02_57_28_AM_35811178/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 m y^{\prime}+m^{2} y=\frac{\mathrm{e}^{m x}}{x^{2}+1}
$$

9.13.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2 m, C=m^{2}, f(x)=\frac{\mathrm{e}^{m x}}{x^{2}+1}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 m y^{\prime}+m^{2} y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2 m, C=m^{2}$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 m \lambda \mathrm{e}^{\lambda x}+m^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 m \lambda+m^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2 m, C=m^{2}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2 m}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2 m)^{2}-(4)(1)\left(m^{2}\right)} \\
& =m
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-m$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{m x}+c_{2} x \mathrm{e}^{m x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{m x}+c_{2} x \mathrm{e}^{m x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{m x} \\
& y_{2}=x \mathrm{e}^{m x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{m x} & x \mathrm{e}^{m x} \\
\frac{d}{d x}\left(\mathrm{e}^{m x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{m x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{m x} & x \mathrm{e}^{m x} \\
m \mathrm{e}^{m x} & \mathrm{e}^{m x}+x m \mathrm{e}^{m x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{m x}\right)\left(\mathrm{e}^{m x}+x m \mathrm{e}^{m x}\right)-\left(x \mathrm{e}^{m x}\right)\left(m \mathrm{e}^{m x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 m x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 m x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x \mathrm{e}^{2 m x}}{x^{2}+1}}{\mathrm{e}^{2 m x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x}{x^{2}+1} d x
$$

Hence

$$
u_{1}=-\frac{\ln \left(x^{2}+1\right)}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{2 m x}}{x^{2}+1}}{\mathrm{e}^{2 m x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{2}+1} d x
$$

Hence

$$
u_{2}=\arctan (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\ln \left(x^{2}+1\right) \mathrm{e}^{m x}}{2}+\arctan (x) x \mathrm{e}^{m x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{m x}\left(-\frac{\ln \left(x^{2}+1\right)}{2}+\arctan (x) x\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{m x}+c_{2} x \mathrm{e}^{m x}\right)+\left(\mathrm{e}^{m x}\left(-\frac{\ln \left(x^{2}+1\right)}{2}+\arctan (x) x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{m x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{m x}\left(-\frac{\ln \left(x^{2}+1\right)}{2}+\arctan (x) x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{m x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{m x}\left(-\frac{\ln \left(x^{2}+1\right)}{2}+\arctan (x) x\right) \tag{1}
\end{equation*}
$$

$\underline{\text { Verification of solutions }}$

$$
y=\mathrm{e}^{m x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{m x}\left(-\frac{\ln \left(x^{2}+1\right)}{2}+\arctan (x) x\right)
$$

Verified OK.

9.13.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2 m$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 m d x} \\
& =\mathrm{e}^{-m x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{\mathrm{e}^{-m x} \mathrm{e}^{m x}}{x^{2}+1} \\
\left(\mathrm{e}^{-m x} y\right)^{\prime \prime} & =\frac{\mathrm{e}^{-m x} \mathrm{e}^{m x}}{x^{2}+1}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-m x} y\right)^{\prime}=\arctan (x)+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-m x} y\right)=c_{1} x+\arctan (x) x-\frac{\ln \left(x^{2}+1\right)}{2}+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+\arctan (x) x-\frac{\ln \left(x^{2}+1\right)}{2}+c_{2}}{\mathrm{e}^{-m x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{m x}+x \arctan (x) \mathrm{e}^{m x}+c_{2} \mathrm{e}^{m x}-\frac{\mathrm{e}^{m x} \ln \left(x^{2}+1\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{m x}+x \arctan (x) \mathrm{e}^{m x}+c_{2} \mathrm{e}^{m x}-\frac{\mathrm{e}^{m x} \ln \left(x^{2}+1\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{m x}+x \arctan (x) \mathrm{e}^{m x}+c_{2} \mathrm{e}^{m x}-\frac{\mathrm{e}^{m x} \ln \left(x^{2}+1\right)}{2}
$$

Verified OK.

9.13.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 m y^{\prime}+m^{2} y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 m \tag{3}\\
& C=m^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 276: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 m}{1} d x} \\
& =z_{1} e^{m x} \\
& =z_{1}\left(\mathrm{e}^{m x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{m x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 m}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 m x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& \quad=c_{1}\left(\mathrm{e}^{m x}\right)+c_{2}\left(\mathrm{e}^{m x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 m y^{\prime}+m^{2} y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{m x}+c_{2} x \mathrm{e}^{m x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{m x} \\
& y_{2}=x \mathrm{e}^{m x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{m x} & x \mathrm{e}^{m x} \\
\frac{d}{d x}\left(\mathrm{e}^{m x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{m x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{m x} & x \mathrm{e}^{m x} \\
m \mathrm{e}^{m x} & \mathrm{e}^{m x}+x m \mathrm{e}^{m x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{m x}\right)\left(\mathrm{e}^{m x}+x m \mathrm{e}^{m x}\right)-\left(x \mathrm{e}^{m x}\right)\left(m \mathrm{e}^{m x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 m x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 m x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x \mathrm{e}^{2 m x}}{x^{2}+1}}{\mathrm{e}^{2 m x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x}{x^{2}+1} d x
$$

Hence

$$
u_{1}=-\frac{\ln \left(x^{2}+1\right)}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{2 m x}}{x^{2}+1}}{\mathrm{e}^{2 m x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{2}+1} d x
$$

Hence

$$
u_{2}=\arctan (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\mathrm{e}^{m x} \ln \left(x^{2}+1\right)}{2}+x \arctan (x) \mathrm{e}^{m x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{m x}\left(-\frac{\ln \left(x^{2}+1\right)}{2}+\arctan (x) x\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{m x}+c_{2} x \mathrm{e}^{m x}\right)+\left(\mathrm{e}^{m x}\left(-\frac{\ln \left(x^{2}+1\right)}{2}+\arctan (x) x\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{m x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{m x}\left(-\frac{\ln \left(x^{2}+1\right)}{2}+\arctan (x) x\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{m x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{m x}\left(-\frac{\ln \left(x^{2}+1\right)}{2}+\arctan (x) x\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{m x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{m x}\left(-\frac{\ln \left(x^{2}+1\right)}{2}+\arctan (x) x\right)
$$

Verified OK.

9.13.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 m y^{\prime}+m^{2} y=\frac{\frac{\mathrm{e}}{}_{m x}^{x}}{x^{2}+1}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
m^{2}-2 m r+r^{2}=0
$$

- Factor the characteristic polynomial

$$
(m-r)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=m
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{m x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{m x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{m x}+c_{2} x \mathrm{e}^{m x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{\mathrm{e}^{m x}}{x^{2}+1}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{m x} & x \mathrm{e}^{m x} \\ m \mathrm{e}^{m x} & \mathrm{e}^{m x}+x m \mathrm{e}^{m x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 m x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{m x}\left(-\left(\int \frac{x}{x^{2}+1} d x\right)+\left(\int \frac{1}{x^{2}+1} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\mathrm{e}^{m x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)\right)}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{m x}+c_{2} x \mathrm{e}^{m x}-\frac{\mathrm{e}^{m x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)\right)}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 26
dsolve(diff $(y(x), x \$ 2)-2 * m * \operatorname{diff}(y(x), x)+m^{\wedge} 2 * y(x)=\exp (m * x) /\left(1+x^{\wedge} 2\right), y(x), \quad$ singsol $\left.=a l l\right)$

$$
y(x)=\mathrm{e}^{m x}\left(c_{2}+c_{1} x-\frac{\ln \left(x^{2}+1\right)}{2}+x \arctan (x)\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 37
DSolve [y'' $[x]-2 * m * y$ ' $[x]+m^{\wedge} 2 * y[x]==\operatorname{Exp}[m * x] /\left(1+x^{\wedge} 2\right), y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2} e^{m x}\left(2 x \arctan (x)-\log \left(x^{2}+1\right)+2\left(c_{2} x+c_{1}\right)\right)
$$

9.14 problem Problem 13

9.14.1 Solving as second order linear constant coeff ode 1876
9.14.2 Solving as linear second order ode solved by an integrating factor
ode . 1880
9.14.3 Solving using Kovacic algorithm 1882
9.14.4 Maple step by step solution . 1888

Internal problem ID [2787]
Internal file name [OUTPUT/2279_Sunday_June_05_2022_02_57_30_AM_52127018/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_ccoeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{4 \mathrm{e}^{x} \ln (x)}{x^{3}}
$$

9.14.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=1, f(x)=\frac{4 \mathrm{e}^{x} \ln (x)}{x^{3}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(x \mathrm{e}^{x}+\mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{4 \mathrm{e}^{2 x} \ln (x)}{x^{2}}}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{4 \ln (x)}{x^{2}} d x
$$

Hence

$$
u_{1}=\frac{4 \ln (x)}{x}+\frac{4}{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 \mathrm{e}^{2 x} \ln (x)}{x^{3}}}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{4 \ln (x)}{x^{3}} d x
$$

Hence

$$
u_{2}=-\frac{2 \ln (x)}{x^{2}}-\frac{1}{x^{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{4 \ln (x)+4}{x} \\
& u_{2}=\frac{-1-2 \ln (x)}{x^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{(4 \ln (x)+4) \mathrm{e}^{x}}{x}+\frac{(-1-2 \ln (x)) \mathrm{e}^{x}}{x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}\right)+\left(\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x} \tag{1}
\end{equation*}
$$

Figure 297: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x}
$$

Verified OK.

9.14.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{4 \mathrm{e}^{-x} \mathrm{e}^{x} \ln (x)}{x^{3}} \\
\left(\mathrm{e}^{-x} y\right)^{\prime \prime} & =\frac{4 \mathrm{e}^{-x} \mathrm{e}^{x} \ln (x)}{x^{3}}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-x} y\right)^{\prime}=\frac{-1-2 \ln (x)}{x^{2}}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-x} y\right)=\frac{c_{1} x^{2}+2 \ln (x)+3}{x}+c_{2}
$$

Hence the solution is

$$
y=\frac{\frac{c_{1} x^{2}+2 \ln (x)+3}{x}+c_{2}}{\mathrm{e}^{-x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+\frac{2 \mathrm{e}^{x} \ln (x)}{x}+\frac{3 \mathrm{e}^{x}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+\frac{2 \mathrm{e}^{x} \ln (x)}{x}+\frac{3 \mathrm{e}^{x}}{x} \tag{1}
\end{equation*}
$$

Figure 298: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+\frac{2 \mathrm{e}^{x} \ln (x)}{x}+\frac{3 \mathrm{e}^{x}}{x}
$$

Verified OK.

9.14.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 278: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(x \mathrm{e}^{x}+\mathrm{e}^{x}\right)-\left(x \mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{4 \mathrm{e}^{2 x} \ln (x)}{x^{2}}}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{4 \ln (x)}{x^{2}} d x
$$

Hence

$$
u_{1}=\frac{4 \ln (x)}{x}+\frac{4}{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 \mathrm{e}^{2 x} \ln (x)}{x^{3}}}{\mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{4 \ln (x)}{x^{3}} d x
$$

Hence

$$
u_{2}=-\frac{2 \ln (x)}{x^{2}}-\frac{1}{x^{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{4 \ln (x)+4}{x} \\
& u_{2}=\frac{-1-2 \ln (x)}{x^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{(4 \ln (x)+4) \mathrm{e}^{x}}{x}+\frac{(-1-2 \ln (x)) \mathrm{e}^{x}}{x}
$$

Which simplifies to

$$
y_{p}(x)=\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}\right)+\left(\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x} \tag{1}
\end{equation*}
$$

Figure 299: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x}
$$

Verified OK.

9.14.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{4 \mathrm{e}^{x} \ln (x)}{x^{3}}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial
$(r-1)^{2}=0$
- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{x}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{4 \mathrm{e}^{x} \ln (x)}{x^{3}}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4 \mathrm{e}^{x}\left(\int \frac{\ln (x)}{x^{2}} d x-\left(\int \frac{\ln (x)}{x^{3}} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+\frac{2 \mathrm{e}^{x} \ln (x)+3 \mathrm{e}^{x}}{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=4*exp(x)*x^(-3)*\operatorname{ln}(x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x}\left(c_{1} x^{2}+c_{2} x+2 \ln (x)+3\right)}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 28
DSolve [y'' $[x]-2 * y$ ' $[x]+y[x]==4 * \operatorname{Exp}[x] * x^{\wedge}(-3) * \log [x], y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \frac{e^{x}\left(c_{2} x^{2}+2 \log (x)+c_{1} x+3\right)}{x}
$$

9.15 problem Problem 15

9.15.1 Solving as second order linear constant coeff ode 1891
9.15.2 Solving as linear second order ode solved by an integrating factor
ode . 1895
9.15.3 Solving using Kovacic algorithm 1897
9.15.4 Maple step by step solution . 1903

Internal problem ID [2788]
Internal file name [OUTPUT/2280_Sunday_June_05_2022_02_57_32_AM_20489786/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_byy_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+y=\frac{\mathrm{e}^{-x}}{\sqrt{-x^{2}+4}}
$$

9.15.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=1, f(x)=\frac{\mathrm{e}^{-x}}{\sqrt{-x^{2}+4}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$.
y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}-x \mathrm{e}^{-x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x}\right)\left(\mathrm{e}^{-x}-x \mathrm{e}^{-x}\right)-\left(x \mathrm{e}^{-x}\right)\left(-\mathrm{e}^{-x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x \mathrm{e}^{-2 x}}{\sqrt{-x^{2}+4}}}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x}{\sqrt{-x^{2}+4}} d x
$$

Hence

$$
u_{1}=-\frac{(x-2)(x+2)}{\sqrt{-x^{2}+4}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-2 x}}{\sqrt{-x^{2}+4}}}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{\sqrt{-x^{2}+4}} d x
$$

Hence

$$
u_{2}=\arcsin \left(\frac{x}{2}\right)
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\sqrt{-x^{2}+4} \\
& u_{2}=\arcsin \left(\frac{x}{2}\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\sqrt{-x^{2}+4} \mathrm{e}^{-x}+\arcsin \left(\frac{x}{2}\right) x \mathrm{e}^{-x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{-x}\left(\sqrt{-x^{2}+4}+x \arcsin \left(\frac{x}{2}\right)\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}\right)+\left(\mathrm{e}^{-x}\left(\sqrt{-x^{2}+4}+x \arcsin \left(\frac{x}{2}\right)\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-x}\left(\sqrt{-x^{2}+4}+x \arcsin \left(\frac{x}{2}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-x}\left(\sqrt{-x^{2}+4}+x \arcsin \left(\frac{x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Figure 300: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-x}\left(\sqrt{-x^{2}+4}+x \arcsin \left(\frac{x}{2}\right)\right)
$$

Verified OK.

9.15.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{\mathrm{e}^{x} \mathrm{e}^{-x}}{\sqrt{-x^{2}+4}} \\
\left(\mathrm{e}^{x} y\right)^{\prime \prime} & =\frac{\mathrm{e}^{x} \mathrm{e}^{-x}}{\sqrt{-x^{2}+4}}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{x} y\right)^{\prime}=\arcsin \left(\frac{x}{2}\right)+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{x} y\right)=c_{1} x+x \arcsin \left(\frac{x}{2}\right)+\sqrt{-x^{2}+4}+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+x \arcsin \left(\frac{x}{2}\right)+\sqrt{-x^{2}+4}+c_{2}}{\mathrm{e}^{x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-x}+\arcsin \left(\frac{x}{2}\right) x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}+\sqrt{-x^{2}+4} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-x}+\arcsin \left(\frac{x}{2}\right) x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}+\sqrt{-x^{2}+4} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 301: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-x}+\arcsin \left(\frac{x}{2}\right) x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}+\sqrt{-x^{2}+4} \mathrm{e}^{-x}
$$

Verified OK.

9.15.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+2 y^{\prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 280: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}-x \mathrm{e}^{-x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x}\right)\left(\mathrm{e}^{-x}-x \mathrm{e}^{-x}\right)-\left(x \mathrm{e}^{-x}\right)\left(-\mathrm{e}^{-x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x \mathrm{e}^{-2 x}}{\sqrt{-x^{2}+4}}}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x}{\sqrt{-x^{2}+4}} d x
$$

Hence

$$
u_{1}=-\frac{(x-2)(x+2)}{\sqrt{-x^{2}+4}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-2 x}}{\sqrt{-x^{2}+4}}}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{\sqrt{-x^{2}+4}} d x
$$

Hence

$$
u_{2}=\arcsin \left(\frac{x}{2}\right)
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\sqrt{-x^{2}+4} \\
& u_{2}=\arcsin \left(\frac{x}{2}\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\sqrt{-x^{2}+4} \mathrm{e}^{-x}+\arcsin \left(\frac{x}{2}\right) x \mathrm{e}^{-x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{-x}\left(\sqrt{-x^{2}+4}+x \arcsin \left(\frac{x}{2}\right)\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}\right)+\left(\mathrm{e}^{-x}\left(\sqrt{-x^{2}+4}+x \arcsin \left(\frac{x}{2}\right)\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-x}\left(\sqrt{-x^{2}+4}+x \arcsin \left(\frac{x}{2}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-x}\left(\sqrt{-x^{2}+4}+x \arcsin \left(\frac{x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Figure 302: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\mathrm{e}^{-x}\left(\sqrt{-x^{2}+4}+x \arcsin \left(\frac{x}{2}\right)\right)
$$

Verified OK.

9.15.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+y=\frac{e^{-x}}{\sqrt{-x^{2}+4}}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE $r^{2}+2 r+1=0$
- Factor the characteristic polynomial
$(r+1)^{2}=0$
- Root of the characteristic polynomial

$$
r=-1
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}+y_{p}(x)
$$

$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{\mathrm{e}^{-x}}{\sqrt{-x^{2}+4}}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}-x \mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{-x}\left(-\left(\int \frac{x}{\sqrt{-x^{2}+4}} d x\right)+\left(\int \frac{1}{\sqrt{-x^{2}+4}} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(-x \arcsin \left(\frac{x}{2}\right) \sqrt{-x^{2}+4}+x^{2}-4\right)}{\sqrt{-x^{2}+4}}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}-\frac{\mathrm{e}^{-x}\left(-x \arcsin \left(\frac{x}{2}\right) \sqrt{-x^{2}+4}+x^{2}-4\right)}{\sqrt{-x^{2}+4}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

```
dsolve(diff (y (x),x$2)+2*diff (y (x),x)+y(x)=exp(-x)/sqrt(4-x^2),y(x), singsol=all)
```

$$
y(x)=-\frac{\mathrm{e}^{-x}\left(\left(-c_{1} x-\arcsin \left(\frac{x}{2}\right) x-c_{2}\right) \sqrt{-x^{2}+4}+x^{2}-4\right)}{\sqrt{-x^{2}+4}}
$$

\checkmark Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 50
DSolve[y' $\quad[x]+2 * y$ ' $[x]+y[x]==\operatorname{Exp}[-x] / \operatorname{Sqrt}\left[4-x^{\wedge} 2\right], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(-2 x \arctan \left(\frac{\sqrt{4-x^{2}}}{x+2}\right)+\sqrt{4-x^{2}}+c_{2} x+c_{1}\right)
$$

9.16 problem Problem 16

9.16.1 Solving as second order linear constant coeff ode 1906
9.16.2 Solving using Kovacic algorithm 1911
9.16.3 Maple step by step solution . 1916

Internal problem ID [2789]
Internal file name [OUTPUT/2281_Sunday_June_05_2022_02_57_34_AM_49762758/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+17 y=\frac{64 \mathrm{e}^{-x}}{3+\sin (4 x)^{2}}
$$

9.16.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=17, f(x)=-\frac{128 \mathrm{e}^{-x}}{-7+\cos (8 x)}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+17 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=17$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+17 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+17=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=17$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(17)} \\
& =-1 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+4 i \\
& \lambda_{2}=-1-4 i
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1+4 i \\
\lambda_{2}=-1-4 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \cos (4 x) \\
& y_{2}=\mathrm{e}^{-x} \sin (4 x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (4 x) & \mathrm{e}^{-x} \sin (4 x) \\
\frac{d}{d x}\left(\mathrm{e}^{-x} \cos (4 x)\right) & \frac{d}{d x}\left(\mathrm{e}^{-x} \sin (4 x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (4 x) & \mathrm{e}^{-x} \sin (4 x) \\
-\mathrm{e}^{-x} \cos (4 x)-4 \mathrm{e}^{-x} \sin (4 x) & -\mathrm{e}^{-x} \sin (4 x)+4 \mathrm{e}^{-x} \cos (4 x)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\mathrm{e}^{-x} \cos (4 x)\right)\left(-\mathrm{e}^{-x} \sin (4 x)+4 \mathrm{e}^{-x} \cos (4 x)\right) \\
& -\left(\mathrm{e}^{-x} \sin (4 x)\right)\left(-\mathrm{e}^{-x} \cos (4 x)-4 \mathrm{e}^{-x} \sin (4 x)\right)
\end{aligned}
$$

Which simplifies to

$$
W=4 \mathrm{e}^{-2 x} \sin (4 x)^{2}+4 \mathrm{e}^{-2 x} \cos (4 x)^{2}
$$

Which simplifies to

$$
W=4 \mathrm{e}^{-2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{128 \mathrm{e}^{-2 x} \sin (4 x)}{-7+\cos (8 x)}}{4 \mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{16 \sin (4 x)}{\cos (4 x)^{2}-4} d x
$$

Hence

$$
u_{1}=\ln (\cos (4 x)+2)-\ln (\cos (4 x)-2)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{-\frac{128 \mathrm{e}^{-2 x} \cos (4 x)}{-7+\cos (8 x)}}{4 \mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{16 \cos (4 x)}{\cos (4 x)^{2}-4} d x
$$

Hence

$$
u_{2}=\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right)}{3}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & (\ln (\cos (4 x)+2)-\ln (\cos (4 x)-2)) \mathrm{e}^{-x} \cos (4 x) \\
& +\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \mathrm{e}^{-x} \sin (4 x)}{3}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{4\left(\sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \sin (4 x)-\frac{3 \cos (4 x)(-\ln (\cos (4 x)+2)+\ln (\cos (4 x)-2))}{4}\right) \mathrm{e}^{-x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{-x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)\right) \\
& +\left(\frac{4\left(\sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \sin (4 x)-\frac{3 \cos (4 x)(-\ln (\cos (4 x)+2)+\ln (\cos (4 x)-2))}{4}\right) \mathrm{e}^{-x}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{-x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right) \\
& +\frac{4\left(\sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \sin (4 x)-\frac{3 \cos (4 x)(-\ln (\cos (4 x)+2)+\ln (\cos (4 x)-2))}{4}\right) \mathrm{e}^{-x}}{3} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{-x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right) \\
& +\frac{4\left(\sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \sin (4 x)-\frac{3 \cos (4 x)(-\ln (\cos (4 x)+2)+\ln (\cos (4 x)-2))}{4}\right) \mathrm{e}^{-x}}{3}
\end{aligned}
$$

Verified OK.

9.16.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+17 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=17
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-16 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 282: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (4 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (4 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (4 x)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (4 x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (4 x)\left(\frac{\tan (4 x)}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+17 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-x} \cos (4 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (4 x) c_{2}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \cos (4 x) \\
& y_{2}=\frac{\mathrm{e}^{-x} \sin (4 x)}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (4 x) & \frac{\mathrm{e}^{-x} \sin (4 x)}{4} \\
\frac{d}{d x}\left(\mathrm{e}^{-x} \cos (4 x)\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{-x} \sin (4 x)}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (4 x) & \frac{\mathrm{e}^{-x} \sin (4 x)}{4} \\
-\mathrm{e}^{-x} \cos (4 x)-4 \mathrm{e}^{-x} \sin (4 x) & -\frac{\mathrm{e}^{-x} \sin (4 x)}{4}+\mathrm{e}^{-x} \cos (4 x)
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\mathrm{e}^{-x} \cos (4 x)\right)\left(-\frac{\mathrm{e}^{-x} \sin (4 x)}{4}+\mathrm{e}^{-x} \cos (4 x)\right) \\
& -\left(\frac{\mathrm{e}^{-x} \sin (4 x)}{4}\right)\left(-\mathrm{e}^{-x} \cos (4 x)-4 \mathrm{e}^{-x} \sin (4 x)\right)
\end{aligned}
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x} \sin (4 x)^{2}+\mathrm{e}^{-2 x} \cos (4 x)^{2}
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{32 \mathrm{e}^{-2 x} \sin (4 x)}{-7+\cos (8 x)}}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{16 \sin (4 x)}{\cos (4 x)^{2}-4} d x
$$

Hence

$$
u_{1}=\ln (\cos (4 x)+2)-\ln (\cos (4 x)-2)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{-\frac{128 \mathrm{e}^{-2 x} \cos (4 x)}{-7+\cos (8 x)}}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{64 \cos (4 x)}{\cos (4 x)^{2}-4} d x
$$

Hence

$$
u_{2}=\frac{16 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right)}{3}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & (\ln (\cos (4 x)+2)-\ln (\cos (4 x)-2)) \mathrm{e}^{-x} \cos (4 x) \\
& +\frac{4 \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \mathrm{e}^{-x} \sin (4 x)}{3}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{4\left(\sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \sin (4 x)-\frac{3 \cos (4 x)(-\ln (\cos (4 x)+2)+\ln (\cos (4 x)-2))}{4}\right) \mathrm{e}^{-x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{-x} \cos (4 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (4 x) c_{2}}{4}\right) \\
& +\left(\frac{4\left(\sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \sin (4 x)-\frac{3 \cos (4 x)(-\ln (\cos (4 x)+2)+\ln (\cos (4 x)-2))}{4}\right) \mathrm{e}^{-x}}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{-x} \cos (4 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (4 x) c_{2}}{4} \\
& +\frac{4\left(\sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \sin (4 x)-\frac{3 \cos (4 x)(-\ln (\cos (4 x)+2)+\ln (\cos (4 x)-2))}{4}\right) \mathrm{e}^{-x}}{3} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{-x} \cos (4 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (4 x) c_{2}}{4} \\
& +\frac{4\left(\sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \sin (4 x)-\frac{3 \cos (4 x)(-\ln (\cos (4 x)+2)+\ln (\cos (4 x)-2))}{4}\right) \mathrm{e}^{-x}}{3}
\end{aligned}
$$

Verified OK.

9.16.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+17 y=-\frac{128 \mathrm{e}^{-x}}{-7+\cos (8 x)}
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+17=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-2) \pm(\sqrt{-64})}{2}
$$

- Roots of the characteristic polynomial
$r=(-1-4 \mathrm{I},-1+4 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x} \cos (4 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x} \sin (4 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-x} \cos (4 x) c_{1}+\mathrm{e}^{-x} \sin (4 x) c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-\frac{128 \mathrm{e}^{-x}}{-7+\cos (8 x)}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} \cos (4 x) & \mathrm{e}^{-x} \sin (4 x) \\
-\mathrm{e}^{-x} \cos (4 x)-4 \mathrm{e}^{-x} \sin (4 x) & -\mathrm{e}^{-x} \sin (4 x)+4 \mathrm{e}^{-x} \cos (4 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=4 \mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-16 \mathrm{e}^{-x}\left(\sin (4 x)\left(\int \frac{\cos (4 x)}{\cos (4 x)^{2}-4} d x\right)-\cos (4 x)\left(\int \frac{\sin (4 x)}{\cos (4 x)^{2}-4} d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{4\left(\sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \sin (4 x)-\frac{3 \cos (4 x)(-\ln (\cos (4 x)+2)+\ln (\cos (4 x)-2))}{4}\right) \mathrm{e}^{-x}}{3}
$$

- \quad Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-x} \cos (4 x) c_{1}+\mathrm{e}^{-x} \sin (4 x) c_{2}+\frac{4\left(\sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right) \sin (4 x)-\frac{3 \cos (4 x)(-\ln (\cos (4 x)+2)+\ln (\cos (4 x)-2))}{4}\right) \mathrm{e}^{-x}}{3}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 70

```
dsolve(diff (y (x),x$2)+2*diff (y (x),x)+17*y (x)=64*exp(-x)/(3+\operatorname{sin}(4*x)~2),y(x), singsol=all)
```

$y(x)$
$=\frac{\mathrm{e}^{-x}\left(4 \sin (4 x) \sqrt{3} \arctan \left(\frac{\sqrt{3} \sin (4 x)}{3}\right)+3 \ln (\cos (4 x)+2) \cos (4 x)-3 \ln (\cos (4 x)-2) \cos (4 x)+3 \cos \right.}{3}$
\checkmark Solution by Mathematica
Time used: 0.238 (sec). Leaf size: 72
DSolve $[y$ '' $[x]+2 * y$ ' $[x]+17 * y[x]==64 * \operatorname{Exp}[-x] /(3+\operatorname{Sin}[4 * x] \sim 2), y[x], x$, IncludeSingularSolutions $->$

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{3} e^{-x}\left(4 \sqrt{3} \sin (4 x) \arctan \left(\frac{\sin (4 x)}{\sqrt{3}}\right)+3 c_{1} \sin (4 x)\right. \\
& \\
& \left.\quad+3 \cos (4 x)\left(-\log (2-\cos (4 x))+\log (\cos (4 x)+2)+c_{2}\right)\right)
\end{aligned}
$$

9.17 problem Problem 17

9.17.1 Solving as second order linear constant coeff ode 1919
9.17.2 Solving as linear second order ode solved by an integrating factor
ode . 1923
9.17.3 Solving using Kovacic algorithm 1924
9.17.4 Maple step by step solution . 1930

Internal problem ID [2790]
Internal file name [OUTPUT/2282_Sunday_June_05_2022_02_57_37_AM_58118268/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_byy_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+4 y=\frac{4 \mathrm{e}^{-2 x}}{x^{2}+1}+2 x^{2}-1
$$

9.17.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=4, C=4, f(x)=\frac{2 x^{4}-1+x^{2}+4 \mathrm{e}^{-2 x}}{x^{2}+1}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$.
y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(4)^{2}-(4)(1)(4)} \\
& =-2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=2$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}\right)-\left(x \mathrm{e}^{-2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x \mathrm{e}^{-2 x}\left(2 x^{4}-1+x^{2}+4 \mathrm{e}^{-2 x}\right)}{x^{2}+1}}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(2 x^{5}+x^{3}-x\right) \mathrm{e}^{2 x}+4 x}{x^{2}+1} d x
$$

Hence

$$
u_{1}=-2 \ln \left(4 x^{2}+4\right)-\frac{(2 x-1) \mathrm{e}^{2 x}}{4}-\frac{\mathrm{e}^{2 x}\left(8 x^{3}-12 x^{2}+4 x-2\right)}{8}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-2 x}\left(2 x^{4}-1+x^{2}+4 \mathrm{e}^{-2 x}\right)}{x^{2}+1}}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{4+\left(2 x^{4}+x^{2}-1\right) \mathrm{e}^{2 x}}{x^{2}+1} d x
$$

Hence

$$
u_{2}=4 \arctan (x)+\frac{\mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{2 x}\left(4 x^{2}-4 x-2\right)}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-2 \ln \left(x^{2}+1\right)+\frac{\left(-2 x^{3}+3 x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{2}-4 \ln (2) \\
& u_{2}=\left(x^{2}-x\right) \mathrm{e}^{2 x}+4 \arctan (x)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(-2 \ln \left(x^{2}+1\right)+\frac{\left(-2 x^{3}+3 x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{2}-4 \ln (2)\right) \mathrm{e}^{-2 x} \\
& +\left(\left(x^{2}-x\right) \mathrm{e}^{2 x}+4 \arctan (x)\right) x \mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln (2)\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+\left(\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln (2)\right)\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln \right. \tag{2}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln (2)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln (2)\right)
$$

Verified OK.

9.17.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 4 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{\mathrm{e}^{2 x}\left(2 x^{4}-1+x^{2}+4 \mathrm{e}^{-2 x}\right)}{x^{2}+1} \\
\left(\mathrm{e}^{2 x} y\right)^{\prime \prime} & =\frac{\mathrm{e}^{2 x}\left(2 x^{4}-1+x^{2}+4 \mathrm{e}^{-2 x}\right)}{x^{2}+1}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{2 x} y\right)^{\prime}=\left(x^{2}-x\right) \mathrm{e}^{2 x}+4 \arctan (x)+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{2 x} y\right)=-2 \ln \left(x^{2}+1\right)+\frac{\left(x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{2}+c_{1} x+4 \arctan (x) x+c_{2}
$$

Hence the solution is

$$
y=\frac{-2 \ln \left(x^{2}+1\right)+\frac{\left(x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{2}+c_{1} x+4 \arctan (x) x+c_{2}}{\mathrm{e}^{2 x}}
$$

Or

$$
y=\frac{x^{2}}{2}-x+c_{1} x \mathrm{e}^{-2 x}+4 \arctan (x) x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-2 \mathrm{e}^{-2 x} \ln \left(x^{2}+1\right)+\frac{1}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}}{2}-x+c_{1} x \mathrm{e}^{-2 x}+4 \arctan (x) x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-2 \mathrm{e}^{-2 x} \ln \left(x^{2}+1\right)+\frac{1}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x^{2}}{2}-x+c_{1} x \mathrm{e}^{-2 x}+4 \arctan (x) x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-2 \mathrm{e}^{-2 x} \ln \left(x^{2}+1\right)+\frac{1}{2}
$$

Verified OK.

9.17.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 284: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}\right)-\left(x \mathrm{e}^{-2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x \mathrm{e}^{-2 x}\left(2 x^{4}-1+x^{2}+4 \mathrm{e}^{-2 x}\right)}{x^{2}+1}}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(2 x^{5}+x^{3}-x\right) \mathrm{e}^{2 x}+4 x}{x^{2}+1} d x
$$

Hence

$$
u_{1}=-2 \ln \left(4 x^{2}+4\right)-\frac{(2 x-1) \mathrm{e}^{2 x}}{4}-\frac{\mathrm{e}^{2 x}\left(8 x^{3}-12 x^{2}+4 x-2\right)}{8}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-2 x}\left(2 x^{4}-1+x^{2}+4 \mathrm{e}^{-2 x}\right)}{x^{2}+1}}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{4+\left(2 x^{4}+x^{2}-1\right) \mathrm{e}^{2 x}}{x^{2}+1} d x
$$

Hence

$$
u_{2}=4 \arctan (x)+\frac{\mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{2 x}\left(4 x^{2}-4 x-2\right)}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-2 \ln \left(x^{2}+1\right)+\frac{\left(-2 x^{3}+3 x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{2}-4 \ln (2) \\
& u_{2}=\left(x^{2}-x\right) \mathrm{e}^{2 x}+4 \arctan (x)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(-2 \ln \left(x^{2}+1\right)+\frac{\left(-2 x^{3}+3 x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{2}-4 \ln (2)\right) \mathrm{e}^{-2 x} \\
& +\left(\left(x^{2}-x\right) \mathrm{e}^{2 x}+4 \arctan (x)\right) x \mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln (2)\right)
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+\left(\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln (2)\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln (2)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln (2)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln (2)\right)
$$

Verified OK.

9.17.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+4 y=\frac{2 x^{4}-1+x^{2}+4 \mathrm{e}^{-2 x}}{x^{2}+1}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+4=0
$$

- Factor the characteristic polynomial

$$
(r+2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-2
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{2 x^{4}-1+x^{2}+4 \mathrm{e}^{-2 x}}{x^{2}+1}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{-2 x}\left(-\left(\int \frac{\left(2 x^{5}+x^{3}-x\right) \mathrm{e}^{2 x}+4 x}{x^{2}+1} d x\right)+\left(\int \frac{4+\left(2 x^{4}+x^{2}-1\right) \mathrm{e}^{2 x}}{x^{2}+1} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln (2)\right)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+\frac{(x-1)^{2}}{2}-2 \mathrm{e}^{-2 x}\left(-2 \arctan (x) x+\ln \left(x^{2}+1\right)+2 \ln (2)\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

```
dsolve(diff (y (x),x$2)+4*\operatorname{diff}(y(x),x)+4*y(x)=4*exp(-2*x)/(1+x^2)+2*x^2-1,y(x), singsol=all)
```

$$
y(x)=\frac{(x-1)^{2}}{2}+\mathrm{e}^{-2 x}\left(c_{1} x+4 x \arctan (x)+c_{2}-2 \ln \left(x^{2}+1\right)\right)
$$

Solution by Mathematica

Time used: 0.58 (sec). Leaf size: 59
DSolve $\left[y{ }^{\prime}{ }^{\prime}[x]+4 * y\right.$ ' $[x]+4 * y[x]==4 * \operatorname{Exp}[-2 * x] /\left(1+x^{\wedge} 2\right)+2 * x^{\wedge} 2-1, y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow \frac{1}{2} e^{-2 x}\left(8 x \arctan (x)+e^{2 x} x^{2}-4 \log \left(x^{2}+1\right)-2 e^{2 x} x+e^{2 x}+2 c_{2} x+2 c_{1}\right)
$$

9.18 problem Problem 18

9.18.1 Solving as second order linear constant coeff ode 1933
9.18.2 Solving as linear second order ode solved by an integrating factor
ode . 1938
9.18.3 Solving using Kovacic algorithm 1939
9.18.4 Maple step by step solution . 1945

Internal problem ID [2791]
Internal file name [OUTPUT/2283_Sunday_June_05_2022_02_57_39_AM_27040637/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_byy_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+4 y=15 \ln (x) \mathrm{e}^{-2 x}+25 \cos (x)
$$

9.18.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=4, C=4, f(x)=15 \ln (x) \mathrm{e}^{-2 x}+25 \cos (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(4)^{2}-(4)(1)(4)} \\
& =-2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=2$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}\right)-\left(x \mathrm{e}^{-2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x \mathrm{e}^{-2 x}\left(15 \ln (x) \mathrm{e}^{-2 x}+25 \cos (x)\right)}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int 5 x\left(5 \cos (x) \mathrm{e}^{2 x}+3 \ln (x)\right) d x
$$

Hence

$$
u_{1}=-\frac{15 \ln (x) x^{2}}{2}+\frac{15 x^{2}}{4}-25\left(\frac{2 x}{5}-\frac{3}{25}\right) \mathrm{e}^{2 x} \cos (x)+25\left(-\frac{x}{5}+\frac{4}{25}\right) \mathrm{e}^{2 x} \sin (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-2 x}\left(15 \ln (x) \mathrm{e}^{-2 x}+25 \cos (x)\right)}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int\left(25 \cos (x) \mathrm{e}^{2 x}+15 \ln (x)\right) d x
$$

Hence

$$
u_{2}=10 \cos (x) \mathrm{e}^{2 x}+5 \sin (x) \mathrm{e}^{2 x}+15 \ln (x) x-15 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=((-10 x+3) \cos (x)+(4-5 x) \sin (x)) \mathrm{e}^{2 x}-\frac{15\left(\ln (x)-\frac{1}{2}\right) x^{2}}{2} \\
& u_{2}=5 \mathrm{e}^{2 x}(\sin (x)+2 \cos (x))+15(\ln (x)-1) x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(((-10 x+3) \cos (x)+(4-5 x) \sin (x)) \mathrm{e}^{2 x}-\frac{15\left(\ln (x)-\frac{1}{2}\right) x^{2}}{2}\right) \mathrm{e}^{-2 x} \\
& +\left(5 \mathrm{e}^{2 x}(\sin (x)+2 \cos (x))+15(\ln (x)-1) x\right) x \mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+\left(\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x) \tag{1}
\end{equation*}
$$

Figure 303: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x)
$$

Verified OK.

9.18.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 4 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\left(15 \ln (x) \mathrm{e}^{-2 x}+25 \cos (x)\right) \mathrm{e}^{2 x} \\
\left(\mathrm{e}^{2 x} y\right)^{\prime \prime} & =\left(15 \ln (x) \mathrm{e}^{-2 x}+25 \cos (x)\right) \mathrm{e}^{2 x}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{2 x} y\right)^{\prime}=5 \mathrm{e}^{2 x}(\sin (x)+2 \cos (x))+15(\ln (x)-1) x+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{2 x} y\right)=(3 \cos (x)+4 \sin (x)) \mathrm{e}^{2 x}+c_{1} x+\frac{15 \ln (x) x^{2}}{2}-\frac{45 x^{2}}{4}+c_{2}
$$

Hence the solution is

$$
y=\frac{(3 \cos (x)+4 \sin (x)) \mathrm{e}^{2 x}+c_{1} x+\frac{15 \ln (x) x^{2}}{2}-\frac{45 x^{2}}{4}+c_{2}}{\mathrm{e}^{2 x}}
$$

Or

$$
y=\frac{15 \mathrm{e}^{-2 x} \ln (x) x^{2}}{2}+3 \cos (x)+4 \sin (x)+c_{1} x \mathrm{e}^{-2 x}-\frac{45 \mathrm{e}^{-2 x} x^{2}}{4}+c_{2} \mathrm{e}^{-2 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{15 \mathrm{e}^{-2 x} \ln (x) x^{2}}{2}+3 \cos (x)+4 \sin (x)+c_{1} x \mathrm{e}^{-2 x}-\frac{45 \mathrm{e}^{-2 x} x^{2}}{4}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 304: Slope field plot

Verification of solutions

$$
y=\frac{15 \mathrm{e}^{-2 x} \ln (x) x^{2}}{2}+3 \cos (x)+4 \sin (x)+c_{1} x \mathrm{e}^{-2 x}-\frac{45 \mathrm{e}^{-2 x} x^{2}}{4}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

9.18.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =4 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 286: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}\right)-\left(x \mathrm{e}^{-2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x \mathrm{e}^{-2 x}\left(15 \ln (x) \mathrm{e}^{-2 x}+25 \cos (x)\right)}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int 5 x\left(5 \cos (x) \mathrm{e}^{2 x}+3 \ln (x)\right) d x
$$

Hence

$$
u_{1}=-\frac{15 \ln (x) x^{2}}{2}+\frac{15 x^{2}}{4}-25\left(\frac{2 x}{5}-\frac{3}{25}\right) \mathrm{e}^{2 x} \cos (x)+25\left(-\frac{x}{5}+\frac{4}{25}\right) \mathrm{e}^{2 x} \sin (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-2 x}\left(15 \ln (x) \mathrm{e}^{-2 x}+25 \cos (x)\right)}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int\left(25 \cos (x) \mathrm{e}^{2 x}+15 \ln (x)\right) d x
$$

Hence

$$
u_{2}=10 \cos (x) \mathrm{e}^{2 x}+5 \sin (x) \mathrm{e}^{2 x}+15 \ln (x) x-15 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=((-10 x+3) \cos (x)+(4-5 x) \sin (x)) \mathrm{e}^{2 x}-\frac{15\left(\ln (x)-\frac{1}{2}\right) x^{2}}{2} \\
& u_{2}=5 \mathrm{e}^{2 x}(\sin (x)+2 \cos (x))+15(\ln (x)-1) x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(((-10 x+3) \cos (x)+(4-5 x) \sin (x)) \mathrm{e}^{2 x}-\frac{15\left(\ln (x)-\frac{1}{2}\right) x^{2}}{2}\right) \mathrm{e}^{-2 x} \\
& +\left(5 \mathrm{e}^{2 x}(\sin (x)+2 \cos (x))+15(\ln (x)-1) x\right) x \mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+\left(\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x) \tag{1}
\end{equation*}
$$

Figure 305: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)+\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x)
$$

Verified OK.

9.18.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+4 y=15 \ln (x) \mathrm{e}^{-2 x}+25 \cos (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+4=0
$$

- Factor the characteristic polynomial

$$
(r+2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-2
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+y_{p}(x)
$$

$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=15 \ln (x) \mathrm{e}^{-2 x}+25 \cos (\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=5 \mathrm{e}^{-2 x}\left(-\left(\int x\left(5 \cos (x) \mathrm{e}^{2 x}+3 \ln (x)\right) d x\right)+x\left(\int\left(5 \cos (x) \mathrm{e}^{2 x}+3 \ln (x)\right) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+\frac{15 x^{2}\left(\ln (x)-\frac{3}{2}\right) \mathrm{e}^{-2 x}}{2}+3 \cos (x)+4 \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

```
dsolve(diff (y(x),x$2)+4*\operatorname{diff}(y(x),x)+4*y(x)=15*exp(-2*x)*\operatorname{ln}(x)+25*\operatorname{cos}(x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(30 \ln (x) x^{2}-45 x^{2}+4 c_{1} x+4 c_{2}\right) \mathrm{e}^{-2 x}}{4}+3 \cos (x)+4 \sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.211 (sec). Leaf size: 54
DSolve [y' ' $[\mathrm{x}]+4 * y$ ' $[\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==15 * \operatorname{Exp}[-2 * x] * \log [\mathrm{x}]+25 * \operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{1}{4} e^{-2 x}\left(-45 x^{2}+30 x^{2} \log (x)+16 e^{2 x} \sin (x)+12 e^{2 x} \cos (x)+4 c_{2} x+4 c_{1}\right)
$$

9.19 problem Problem 19

Internal problem ID [2792]
Internal file name [OUTPUT/2284_Sunday_June_05_2022_02_57_41_AM_83086885/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 19.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=\frac{2 \mathrm{e}^{x}}{x^{2}}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

The characteristic equation is

$$
\lambda^{3}-3 \lambda^{2}+3 \lambda-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+x^{2} \mathrm{e}^{x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x} \\
& y_{3}=x^{2} \mathrm{e}^{x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=\frac{2 \mathrm{e}^{x}}{x^{2}}
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{ccc}
\mathrm{e}^{x} & x \mathrm{e}^{x} & x^{2} \mathrm{e}^{x} \\
\mathrm{e}^{x} & \mathrm{e}^{x}(x+1) & \mathrm{e}^{x} x(x+2) \\
\mathrm{e}^{x} & \mathrm{e}^{x}(x+2) & \mathrm{e}^{x}\left(x^{2}+4 x+2\right)
\end{array}\right] \\
&|W|=2 \mathrm{e}^{3 x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=2 \mathrm{e}^{3 x}
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
W_{1}(x) & =\operatorname{det}\left[\begin{array}{cc}
x \mathrm{e}^{x} & x^{2} \mathrm{e}^{x} \\
\mathrm{e}^{x}(x+1) & \mathrm{e}^{x} x(x+2)
\end{array}\right] \\
& =x^{2} \mathrm{e}^{2 x} \\
W_{2}(x) & =\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{x} & x^{2} \mathrm{e}^{x} \\
\mathrm{e}^{x} & \mathrm{e}^{x} x(x+2)
\end{array}\right] \\
& =2 x \mathrm{e}^{2 x} \\
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & \mathrm{e}^{x}(x+1)
\end{array}\right] \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(\frac{2 \mathrm{e}^{x}}{x^{2}}\right)\left(x^{2} \mathrm{e}^{2 x}\right)}{(1)\left(2 \mathrm{e}^{3 x}\right)} d x \\
& =\int \frac{2 \mathrm{e}^{x} \mathrm{e}^{2 x}}{2 \mathrm{e}^{3 x}} d x \\
& =\int(1) d x \\
& =x
\end{aligned}
$$

$$
U_{2}=(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x
$$

$$
=(-1)^{1} \int \frac{\left(\frac{2 \mathrm{e}^{x}}{x^{2}}\right)\left(2 x \mathrm{e}^{2 x}\right)}{(1)\left(2 \mathrm{e}^{3 x}\right)} d x
$$

$$
=-\int \frac{\frac{4 \mathrm{e}^{x} \mathrm{e}^{2 x}}{x}}{2 \mathrm{e}^{3 x}} d x
$$

$$
=-\int\left(\frac{2}{x}\right) d x
$$

$$
=-2 \ln (x)
$$

$$
\begin{aligned}
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(\frac{2 \mathrm{e}^{x}}{x^{2}}\right)\left(\mathrm{e}^{2 x}\right)}{(1)\left(2 \mathrm{e}^{3 x}\right)} d x \\
& =\int \frac{\frac{2 \mathrm{e}^{x} \mathrm{x}^{2 x}}{x^{2}}}{2 \mathrm{e}^{3 x}} d x \\
& =\int\left(\frac{1}{x^{2}}\right) d x \\
& =-\frac{1}{x}
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =(x)\left(\mathrm{e}^{x}\right) \\
& +(-2 \ln (x))\left(x \mathrm{e}^{x}\right) \\
& +\left(-\frac{1}{x}\right)\left(x^{2} \mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=-2 \ln (x) x \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+x^{2} \mathrm{e}^{x} c_{3}\right)+\left(-2 \ln (x) x \mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)-2 \ln (x) x \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)-2 \ln (x) x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)-2 \ln (x) x \mathrm{e}^{x}
$$

Verified OK.

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

$$
y(x)=\mathrm{e}^{x}\left(-2 x \ln (x)+c_{1}+c_{2} x+c_{3} x^{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.393 (sec). Leaf size: 627
DSolve[y'''[x]-6*y''[x]+3*y'[x]-y[x]==2*x^(-2)*Exp[x],y[x],x,IncludeSingularSolutions -> Tru
$y(x)$
$2 i\left(\operatorname{Root}\left[\# 1^{3}-6 \# 1^{2}+3 \# 1-1 \&, 1\right]-\operatorname{Root}\left[\# 1^{3}-6 \# 1^{2}+3 \# 1-1 \&, 2\right]\right) \exp \left(x \operatorname{Root}\left[\# 1^{3}-6 \# 1^{2}\right.\right.$

$$
+\underline{2 i\left(\operatorname{Root}\left[\# 1^{3}-6 \# 1^{2}+3 \# 1-1 \&, 2\right]-\operatorname{Root}\left[\# 1^{3}-6 \# 1^{2}+3 \# 1-1 \&, 3\right]\right) \exp \left(x \operatorname { R o o t } \left[\# 1^{3}-6 \# 1\right.\right.}
$$

$$
2 i\left(\operatorname{Root}\left[\# 1^{3}-6 \# 1^{2}+3 \# 1-1 \&, 1\right]-\operatorname{Root}\left[\# 1^{3}-6 \# 1^{2}+3 \# 1-1 \&, 3\right]\right) \exp \left(x \operatorname { R o o t } \left[\# 1^{3}-6 \# 1\right.\right.
$$

$$
+c_{2} \exp \left(x \operatorname{Root}\left[\# 1^{3}-6 \# 1^{2}+3 \# 1-1 \&, 2\right]\right)
$$

$$
+c_{3} \exp \left(x \operatorname{Root}\left[\# 1^{3}-6 \# 1^{2}+3 \# 1-1 \&, 3\right]\right)
$$

$$
+c_{1} \exp \left(x \operatorname{Root}\left[\# 1^{3}-6 \# 1^{2}+3 \# 1-1 \&, 1\right]\right)
$$

9.20 problem Problem 20

Internal problem ID [2793]
Internal file name [OUTPUT/2285_Sunday_June_05_2022_02_57_43_AM_95749743/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 20.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=36 \mathrm{e}^{2 x} \ln (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+12 \lambda-8=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=2 \\
& \lambda_{3}=2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}+x^{2} \mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=x \mathrm{e}^{2 x} \\
& y_{3}=x^{2} \mathrm{e}^{2 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=36 \mathrm{e}^{2 x} \ln (x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
W & =\left[\begin{array}{ccc}
\mathrm{e}^{2 x} & x \mathrm{e}^{2 x} & x^{2} \mathrm{e}^{2 x} \\
2 \mathrm{e}^{2 x} & \mathrm{e}^{2 x}(1+2 x) & 2 \mathrm{e}^{2 x} x(x+1) \\
4 \mathrm{e}^{2 x} & 4 \mathrm{e}^{2 x}(x+1) & \left(4 x^{2}+8 x+2\right) \mathrm{e}^{2 x}
\end{array}\right] \\
|W| & =2 \mathrm{e}^{6 x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=2 \mathrm{e}^{6 x}
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{cc}
x \mathrm{e}^{2 x} & x^{2} \mathrm{e}^{2 x} \\
\mathrm{e}^{2 x}(1+2 x) & 2 \mathrm{e}^{2 x} x(x+1)
\end{array}\right] \\
&=x^{2} \mathrm{e}^{4 x} \\
& \begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{2 x} & x^{2} \mathrm{e}^{2 x} \\
2 \mathrm{e}^{2 x} & 2 \mathrm{e}^{2 x} x(x+1)
\end{array}\right] \\
& =2 x \mathrm{e}^{4 x} \\
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{2 x} & x \mathrm{e}^{2 x} \\
2 \mathrm{e}^{2 x} & \mathrm{e}^{2 x}(1+2 x)
\end{array}\right] \\
& =\mathrm{e}^{4 x}
\end{aligned}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(36 \mathrm{e}^{2 x} \ln (x)\right)\left(x^{2} \mathrm{e}^{4 x}\right)}{(1)\left(2 \mathrm{e}^{6 x}\right)} d x \\
& =\int \frac{36 \mathrm{e}^{2 x} \ln (x) x^{2} \mathrm{e}^{4 x}}{2 \mathrm{e}^{6 x}} d x \\
& =\int\left(18 \ln (x) x^{2}\right) d x \\
& =6 x^{3} \ln (x)-2 x^{3} \\
U_{2} & =(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(36 \mathrm{e}^{2 x} \ln (x)\right)\left(2 x \mathrm{e}^{4 x}\right)}{(1)\left(2 \mathrm{e}^{6 x}\right)} d x \\
& =-\int \frac{72 \mathrm{e}^{2 x} \ln (x) x \mathrm{e}^{4 x}}{2 \mathrm{e}^{6 x}} d x \\
& =-\int(36 \ln (x) x) d x \\
& =-18 \ln (x) x^{2}+9 x^{2} \\
& =-18 \ln (x) x^{2}+9 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(36 \mathrm{e}^{2 x} \ln (x)\right)\left(\mathrm{e}^{4 x}\right)}{(1)\left(2 \mathrm{e}^{6 x}\right)} d x \\
& =\int \frac{36 \mathrm{e}^{2 x} \ln (x) \mathrm{e}^{4 x}}{2 \mathrm{e}^{6 x}} d x \\
& =\int(18 \ln (x)) d x \\
& =18 \ln (x) x-18 x
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(6 x^{3} \ln (x)-2 x^{3}\right)\left(\mathrm{e}^{2 x}\right) \\
& +\left(-18 \ln (x) x^{2}+9 x^{2}\right)\left(x \mathrm{e}^{2 x}\right) \\
& +(18 \ln (x) x-18 x)\left(x^{2} \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=x^{3} \mathrm{e}^{2 x}(-11+6 \ln (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}+x^{2} \mathrm{e}^{2 x} c_{3}\right)+\left(x^{3} \mathrm{e}^{2 x}(-11+6 \ln (x))\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+x^{3} \mathrm{e}^{2 x}(-11+6 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+x^{3} \mathrm{e}^{2 x}(-11+6 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+x^{3} \mathrm{e}^{2 x}(-11+6 \ln (x))
$$

Verified OK.

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31
dsolve $(\operatorname{diff}(y(x), x \$ 3)-6 * \operatorname{diff}(y(x), x \$ 2)+12 * \operatorname{diff}(y(x), x)-8 * y(x)=36 * \exp (2 * x) * \ln (x), y(x)$, singso

$$
y(x)=\mathrm{e}^{2 x}\left(6 x^{3} \ln (x)-11 x^{3}+c_{1}+c_{2} x+c_{3} x^{2}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 36
DSolve[y'''[x]-6*y' $[x]+12 * y$ ' $[x]-8 * y[x]==36 * \operatorname{Exp}[2 * x] * \log [x], y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow e^{2 x}\left(-11 x^{3}+6 x^{3} \log (x)+c_{3} x^{2}+c_{2} x+c_{1}\right)
$$

9.21 problem Problem 21

Internal problem ID [2794]
Internal file name [OUTPUT/2286_Sunday_June_05_2022_02_57_46_AM_89412987/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 21.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=\frac{2 \mathrm{e}^{-x}}{x^{2}+1}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0
$$

The characteristic equation is

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}+x^{2} \mathrm{e}^{-x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=\mathrm{e}^{-x} x^{2}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=\frac{2 \mathrm{e}^{-x}}{x^{2}+1}
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
W & =\left[\begin{array}{ccc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} & \mathrm{e}^{-x} x^{2} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}(1-x) & -\mathrm{e}^{-x} x(x-2) \\
\mathrm{e}^{-x} & \mathrm{e}^{-x}(x-2) & \mathrm{e}^{-x}\left(x^{2}-4 x+2\right)
\end{array}\right] \\
|W| & =2 \mathrm{e}^{-3 x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=2 \mathrm{e}^{-3 x}
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{cc}
x \mathrm{e}^{-x} & \mathrm{e}^{-x} x^{2} \\
\mathrm{e}^{-x}(1-x) & -\mathrm{e}^{-x} x(x-2)
\end{array}\right] \\
& =\mathrm{e}^{-2 x} x^{2} \\
& \begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-x} x^{2} \\
-\mathrm{e}^{-x} & -\mathrm{e}^{-x} x(x-2)
\end{array}\right] \\
& =2 x \mathrm{e}^{-2 x} \\
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}(1-x)
\end{array}\right] \\
& =\mathrm{e}^{-2 x}
\end{aligned}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(\frac{2 \mathrm{e}^{-x}}{x^{2}+1}\right)\left(\mathrm{e}^{-2 x} x^{2}\right)}{(1)\left(2 \mathrm{e}^{-3 x}\right)} d x \\
& =\int \frac{\frac{2 \mathrm{e}^{-x} \mathrm{e}^{-2 x} x^{2}}{x^{2}+1}}{2 \mathrm{e}^{-3 x}} d x \\
& =\int\left(\frac{x^{2}}{x^{2}+1}\right) d x \\
& =x-\arctan (x)
\end{aligned}
$$

$$
\begin{aligned}
U_{2} & =(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(\frac{2 \mathrm{e}^{-x}}{x^{2}+1}\right)\left(2 x \mathrm{e}^{-2 x}\right)}{(1)\left(2 \mathrm{e}^{-3 x}\right)} d x \\
& =-\int \frac{\frac{4 \mathrm{e}^{-x} x \mathrm{e}^{-2 x}}{x^{2}+1}}{2 \mathrm{e}^{-3 x}} d x \\
& =-\int\left(\frac{2 x}{x^{2}+1}\right) d x \\
& =-\ln \left(x^{2}+1\right) \\
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(\frac{2 \mathrm{e}^{-x}}{x^{2}+1}\right)\left(\mathrm{e}^{-2 x}\right)}{(1)\left(2 \mathrm{e}^{-3 x}\right)} d x \\
& =\int \frac{\frac{2 \mathrm{e}^{-x} \mathrm{e}^{-2 x}}{x^{2}+1}}{2 \mathrm{e}^{-3 x}} d x \\
& =\int\left(\frac{1}{x^{2}+1}\right) d x \\
& =\arctan (x)
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =(x-\arctan (x))\left(\mathrm{e}^{-x}\right) \\
& +\left(-\ln \left(x^{2}+1\right)\right)\left(x \mathrm{e}^{-x}\right) \\
& +(\arctan (x))\left(\mathrm{e}^{-x} x^{2}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\mathrm{e}^{-x}\left(x-\arctan (x)-\ln \left(x^{2}+1\right) x+\arctan (x) x^{2}\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}+x^{2} \mathrm{e}^{-x} c_{3}\right)+\left(\mathrm{e}^{-x}\left(x-\arctan (x)-\ln \left(x^{2}+1\right) x+\arctan (x) x^{2}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\mathrm{e}^{-x}\left(x-\arctan (x)-\ln \left(x^{2}+1\right) x+\arctan (x) x^{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\mathrm{e}^{-x}\left(x-\arctan (x)-\ln \left(x^{2}+1\right) x+\arctan (x) x^{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\mathrm{e}^{-x}\left(x-\arctan (x)-\ln \left(x^{2}+1\right) x+\arctan (x) x^{2}\right)
$$

Verified OK.
Maple trace
-Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 3; linear nonhomogeneous with symmetry [0,1] trying high order linear exact nonhomogeneous trying differential order: 3; missing the dependent variable checking if the LODE has constant coefficients <- constant coefficients successful`

Solution by Maple
Time used: 0.015 (sec). Leaf size: 39

```
dsolve(diff (y (x),x$3)+3*\operatorname{diff (y (x),x$2)+3*diff (y (x),x)+y(x)=2*exp (-x)/(1+x^2),y(x), singsol=a}
```

$$
y(x)=\mathrm{e}^{-x}\left(x^{2} \arctan (x)-x \ln \left(x^{2}+1\right)-\arctan (x)+x+c_{1}+c_{2} x+c_{3} x^{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 42
DSolve $\left[y\right.$ '' ' $[x]+3 * y$ ' $[x]+3 * y$ ' $[x]+y[x]==2 * \operatorname{Exp}[-x] /\left(1+x^{\wedge} 2\right), y[x], x$, IncludeSingularSolutions $->~ T$

$$
y(x) \rightarrow e^{-x}\left(\left(x^{2}-1\right) \arctan (x)-x \log \left(x^{2}+1\right)+c_{3} x^{2}+x+c_{2} x+c_{1}\right)
$$

9.22 problem Problem 22

Internal problem ID [2795]
Internal file name [OUTPUT/2287_Sunday_June_05_2022_02_57_49_AM_20383296/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 22.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+9 y^{\prime}=12 \mathrm{e}^{3 x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+9 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+9 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=3 \\
& \lambda_{3}=3
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{3 x}+x \mathrm{e}^{3 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{3 x} \\
& y_{3}=x \mathrm{e}^{3 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+9 y^{\prime}=12 \mathrm{e}^{3 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
12 \mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, x \mathrm{e}^{3 x}, \mathrm{e}^{3 x}\right\}
$$

Since $\mathrm{e}^{3 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{3 x}\right\}\right]
$$

Since $x \mathrm{e}^{3 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{3 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{3 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{3 x}=12 \mathrm{e}^{3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 x^{2} \mathrm{e}^{3 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \mathrm{e}^{3 x}+x \mathrm{e}^{3 x} c_{3}\right)+\left(2 x^{2} \mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(c_{3} x+c_{2}\right) \mathrm{e}^{3 x}+c_{1}+2 x^{2} \mathrm{e}^{3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{3} x+c_{2}\right) \mathrm{e}^{3 x}+c_{1}+2 x^{2} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{3} x+c_{2}\right) \mathrm{e}^{3 x}+c_{1}+2 x^{2} \mathrm{e}^{3 x}
$$

Verified OK.

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = 6*(diff(_b(_a), _a))-9*_b(_a)
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    -> Try solving first the homogeneous part of the ODE
        checking if the LODE has constant coefficients
        <- constant coefficients successful
    <- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 3)-6 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+9 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=12 * \exp (3 * x), y(\mathrm{x})$, singsol=all)

$$
y(x)=\frac{\left(4+18 x^{2}+3\left(-4+c_{1}\right) x-c_{1}+3 c_{2}\right) \mathrm{e}^{3 x}}{9}+c_{3}
$$

\checkmark Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 39
DSolve[y'' $[\mathrm{x}]-6 * y$ '' $[\mathrm{x}]+9 * y$ ' $[\mathrm{x}]==12 * \operatorname{Exp}[3 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{9} e^{3 x}\left(18 x^{2}+3\left(-4+c_{2}\right) x+4+3 c_{1}-c_{2}\right)+c_{3}
$$

9.23 problem Problem 23

9.23.1 Solving as second order linear constant coeff ode 1967
9.23.2 Solving using Kovacic algorithm 1971
9.23.3 Maple step by step solution . 1976

Internal problem ID [2796]
Internal file name [OUTPUT/2288_Sunday_June_05_2022_02_57_51_AM_50500525/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear__constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-9 y=F(x)
$$

9.23.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-9, f(x)=F(x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-9)} \\
& = \pm 3
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+3 \\
\lambda_{2}=-3
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{3 x} \\
& y_{2}=\mathrm{e}^{-3 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{3 x} & \mathrm{e}^{-3 x} \\
\frac{d}{d x}\left(\mathrm{e}^{3 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-3 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{3 x} & \mathrm{e}^{-3 x} \\
3 \mathrm{e}^{3 x} & -3 \mathrm{e}^{-3 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{3 x}\right)\left(-3 \mathrm{e}^{-3 x}\right)-\left(\mathrm{e}^{-3 x}\right)\left(3 \mathrm{e}^{3 x}\right)
$$

Which simplifies to

$$
W=-6 \mathrm{e}^{3 x} \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
W=-6
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-3 x} F(x)}{-6} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-3 x} F(x)}{6} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\frac{\mathrm{e}^{-3 \alpha} F(\alpha)}{6} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{3 x} F(x)}{-6} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\mathrm{e}^{3 x} F(x)}{6} d x
$$

Hence

$$
u_{2}=\int_{0}^{x}-\frac{\mathrm{e}^{3 \alpha} F(\alpha)}{6} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x} \mathrm{e}^{-3 \alpha} F(\alpha) d \alpha\right)}{6} \\
& u_{2}=-\frac{\left(\int_{0}^{x} \mathrm{e}^{3 \alpha} F(\alpha) d \alpha\right)}{6}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\left(\int_{0}^{x} \mathrm{e}^{-3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}}{6}-\frac{\left(\int_{0}^{x} \mathrm{e}^{3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{-3 x}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x}\right)+\left(\frac{\left(\int_{0}^{x} \mathrm{e}^{-3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}}{6}-\frac{\left(\int_{0}^{x} \mathrm{e}^{3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{-3 x}}{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}}{6}-\frac{\left(\int_{0}^{x} \mathrm{e}^{3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{-3 x}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{-3 x}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}}{6}-\frac{\left(\int_{0}^{x} \mathrm{e}^{3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{-3 x}}{6}
$$

Verified OK.

9.23.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 288: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-3 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-3 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-3 x} \int \frac{1}{\mathrm{e}^{-6 x}} d x \\
& =\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{6 x}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{6 x}}{6}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{3 x}}{6}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \\
& y_{2}=\frac{\mathrm{e}^{3 x}}{6}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & \frac{\mathrm{e}^{3 x}}{6} \\
\frac{d}{d x}\left(\mathrm{e}^{-3 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{3 x}}{6}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & \frac{\mathrm{e}^{3 x}}{6} \\
-3 \mathrm{e}^{-3 x} & \frac{\mathrm{e}^{3 x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-3 x}\right)\left(\frac{\mathrm{e}^{3 x}}{2}\right)-\left(\frac{\mathrm{e}^{3 x}}{6}\right)\left(-3 \mathrm{e}^{-3 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{3 x} \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{3 x} F(x)}{6}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{3 x} F(x)}{6} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\mathrm{e}^{3 \alpha} F(\alpha)}{6} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-3 x} F(x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{-3 x} F(x) d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \mathrm{e}^{-3 \alpha} F(\alpha) d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\left(\int_{0}^{x} \mathrm{e}^{3 \alpha} F(\alpha) d \alpha\right)}{6} \\
& u_{2}=\int_{0}^{x} \mathrm{e}^{-3 \alpha} F(\alpha) d \alpha
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(\int_{0}^{x} \mathrm{e}^{3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{-3 x}}{6}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{3 x}}{6}\right)+\left(-\frac{\left(\int_{0}^{x} \mathrm{e}^{3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{-3 x}}{6}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{3 x}}{6}-\frac{\left(\int_{0}^{x} \mathrm{e}^{3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{-3 x}}{6}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{3 x}}{6}-\frac{\left(\int_{0}^{x} \mathrm{e}^{3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{-3 x}}{6}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-3 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}}{6}
$$

Verified OK.

9.23.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-9 y=F(x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-9=0
$$

- Factor the characteristic polynomial
$(r-3)(r+3)=0$
- Roots of the characteristic polynomial

$$
r=(-3,3)
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-3 x}$
- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{3 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{3 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=F(x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 x} & \mathrm{e}^{3 x} \\
-3 \mathrm{e}^{-3 x} & 3 \mathrm{e}^{3 x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=6$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-3 x}\left(\int \mathrm{e}^{3 x} F(x) d x\right)}{6}+\frac{\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-3 x} F(x) d x\right)}{6}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\mathrm{e}^{-3 x}\left(\int \mathrm{e}^{3 x} F(x) d x\right)}{6}+\frac{\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-3 x} F(x) d x\right)}{6}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{3 x}-\frac{\mathrm{e}^{-3 x}\left(\int \mathrm{e}^{3 x} F(x) d x\right)}{6}+\frac{\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-3 x} F(x) d x\right)}{6}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 47

```
dsolve(diff(y(x),x$2)-9*y(x)=F(x),y(x), singsol=all)
```

$$
y(x)=c_{2} \mathrm{e}^{3 x}+c_{1} \mathrm{e}^{-3 x}+\frac{\left(\int \mathrm{e}^{-3 x} F(x) d x\right) \mathrm{e}^{3 x}}{6}-\frac{\left(\int \mathrm{e}^{3 x} F(x) d x\right) \mathrm{e}^{-3 x}}{6}
$$

Solution by Mathematica
Time used: 0.063 (sec). Leaf size: 66

```
DSolve[y''[x]-y[x]==F[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-x}\left(e^{2 x} \int_{1}^{x} \frac{1}{2} e^{-K[1]} F(K[1]) d K[1]+\int_{1}^{x}-\frac{1}{2} e^{K[2]} F(K[2]) d K[2]+c_{1} e^{2 x}+c_{2}\right)
$$

9.24 problem Problem 24

9.24.1 Solving as second order linear constant coeff ode 1979
9.24.2 Solving using Kovacic algorithm 1983
9.24.3 Maple step by step solution . 1989

Internal problem ID [2797]
Internal file name [OUTPUT/2289_Sunday_June_05_2022_02_57_54_AM_36733998/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+5 y^{\prime}+4 y=F(x)
$$

9.24.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=5, C=4, f(x)=F(x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=5, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+5 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(4)} \\
& =-\frac{5}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-4) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-4 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-4 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{-4 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-4 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-4 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-4 x} \\
-\mathrm{e}^{-x} & -4 \mathrm{e}^{-4 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x}\right)\left(-4 \mathrm{e}^{-4 x}\right)-\left(\mathrm{e}^{-4 x}\right)\left(-\mathrm{e}^{-x}\right)
$$

Which simplifies to

$$
W=-3 \mathrm{e}^{-x} \mathrm{e}^{-4 x}
$$

Which simplifies to

$$
W=-3 \mathrm{e}^{-5 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-4 x} F(x)}{-3 \mathrm{e}^{-5 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{F(x) \mathrm{e}^{x}}{3} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\frac{F(\alpha) \mathrm{e}^{\alpha}}{3} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-x} F(x)}{-3 \mathrm{e}^{-5 x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{F(x) \mathrm{e}^{4 x}}{3} d x
$$

Hence

$$
u_{2}=\int_{0}^{x}-\frac{F(\alpha) \mathrm{e}^{4 \alpha}}{3} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{\alpha} d \alpha\right)}{3} \\
& u_{2}=-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{4 \alpha} d \alpha\right)}{3}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{\alpha} d \alpha\right) \mathrm{e}^{-x}}{3}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{4 \alpha} d \alpha\right) \mathrm{e}^{-4 x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-4 x}\right)+\left(\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{\alpha} d \alpha\right) \mathrm{e}^{-x}}{3}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{4 \alpha} d \alpha\right) \mathrm{e}^{-4 x}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-4 x}+\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{\alpha} d \alpha\right) \mathrm{e}^{-x}}{3}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{4 \alpha} d \alpha\right) \mathrm{e}^{-4 x}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-4 x}+\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{\alpha} d \alpha\right) \mathrm{e}^{-x}}{3}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{4 \alpha} d \alpha\right) \mathrm{e}^{-4 x}}{3}
$$

Verified OK.

9.24.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=5 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{\bar{t}} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 290: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d x} \\
& =z_{1} e^{-\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{e^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 x}\right)+c_{2}\left(\mathrm{e}^{-4 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 x}+\frac{c_{2} \mathrm{e}^{-x}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-4 x} \\
& y_{2}=\frac{\mathrm{e}^{-x}}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-4 x} & \frac{\mathrm{e}^{-x}}{3} \\
\frac{d}{d x}\left(\mathrm{e}^{-4 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{-x}}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-4 x} & \frac{\mathrm{e}^{-x}}{3} \\
-4 \mathrm{e}^{-4 x} & -\frac{\mathrm{e}^{-x}}{3}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-4 x}\right)\left(-\frac{\mathrm{e}^{-x}}{3}\right)-\left(\frac{\mathrm{e}^{-x}}{3}\right)\left(-4 \mathrm{e}^{-4 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-x} \mathrm{e}^{-4 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-5 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-x} F(x)}{3}}{\mathrm{e}^{-5 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{F(x) \mathrm{e}^{4 x}}{3} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{F(\alpha) \mathrm{e}^{4 \alpha}}{3} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-4 x} F(x)}{\mathrm{e}^{-5 x}} d x
$$

Which simplifies to

$$
u_{2}=\int F(x) \mathrm{e}^{x} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} F(\alpha) \mathrm{e}^{\alpha} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{4 \alpha} d \alpha\right)}{3} \\
& u_{2}=\int_{0}^{x} F(\alpha) \mathrm{e}^{\alpha} d \alpha
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{4 \alpha} d \alpha\right) \mathrm{e}^{-4 x}}{3}+\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{\alpha} d \alpha\right) \mathrm{e}^{-x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 x}+\frac{c_{2} \mathrm{e}^{-x}}{3}\right)+\left(-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{4 \alpha} d \alpha\right) \mathrm{e}^{-4 x}}{3}+\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{\alpha} d \alpha\right) \mathrm{e}^{-x}}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 x}+\frac{c_{2} \mathrm{e}^{-x}}{3}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{4 \alpha} d \alpha\right) \mathrm{e}^{-4 x}}{3}+\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{\alpha} d \alpha\right) \mathrm{e}^{-x}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-4 x}+\frac{c_{2} \mathrm{e}^{-x}}{3}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{4 \alpha} d \alpha\right) \mathrm{e}^{-4 x}}{3}+\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{\alpha} d \alpha\right) \mathrm{e}^{-x}}{3}
$$

Verified OK.

9.24.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+5 y^{\prime}+4 y=F(x)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+5 r+4=0$
- Factor the characteristic polynomial
$(r+4)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-4,-1)$
- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-4 x}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-4 x}+c_{2} \mathrm{e}^{-x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=F(x)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-4 x} & \mathrm{e}^{-x} \\ -4 \mathrm{e}^{-4 x} & -\mathrm{e}^{-x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{-5 x}$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-4 x}\left(\int F(x) \mathrm{e}^{4 x} d x\right)}{3}+\frac{\mathrm{e}^{-x}\left(\int F(x) \mathrm{e}^{x} d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\mathrm{e}^{-4 x}\left(\int F(x) \mathrm{e}^{4 x} d x\right)}{3}+\frac{\mathrm{e}^{-x}\left(\int F(x) \mathrm{e}^{x} d x\right)}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-4 x}+c_{2} \mathrm{e}^{-x}-\frac{\mathrm{e}^{-4 x}\left(\int F(x) \mathrm{e}^{4 x} d x\right)}{3}+\frac{\mathrm{e}^{-x}\left(\int F(x) \mathrm{e}^{x} d x\right)}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 45

```
dsolve(diff(y(x),x$2)+5*\operatorname{diff}(y(x),x)+4*y(x)=F(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x} c_{2}+\mathrm{e}^{-4 x} c_{1}+\frac{\left(\int \mathrm{e}^{x} F(x) d x\right) \mathrm{e}^{-x}}{3}-\frac{\left(\int F(x) \mathrm{e}^{4 x} d x\right) \mathrm{e}^{-4 x}}{3}
$$

Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 66
DSolve[y''[x]+5*y'[x]+4*y[x]==F[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-4 x}\left(\int_{1}^{x}-\frac{1}{3} e^{4 K[1]} F(K[1]) d K[1]+e^{3 x} \int_{1}^{x} \frac{1}{3} e^{K[2]} F(K[2]) d K[2]+c_{2} e^{3 x}+c_{1}\right)
$$

9.25 problem Problem 25

9.25.1 Solving as second order linear constant coeff ode 1991
9.25.2 Solving using Kovacic algorithm 1995
9.25.3 Maple step by step solution . 2001

Internal problem ID [2798]
Internal file name [OUTPUT/2290_Sunday_June_05_2022_02_57_57_AM_20886169/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y^{\prime}-2 y=F(x)
$$

9.25.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=1, C=-2, f(x)=F(x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-2)} \\
& =-\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{-2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{-2 x} \\
\mathrm{e}^{x} & -2 \mathrm{e}^{-2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{x}\right)\left(-2 \mathrm{e}^{-2 x}\right)-\left(\mathrm{e}^{-2 x}\right)\left(\mathrm{e}^{x}\right)
$$

Which simplifies to

$$
W=-3 \mathrm{e}^{-2 x} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=-3 \mathrm{e}^{-x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-2 x} F(x)}{-3 \mathrm{e}^{-x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-x} F(x)}{3} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\frac{\mathrm{e}^{-\alpha} F(\alpha)}{3} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{F(x) \mathrm{e}^{x}}{-3 \mathrm{e}^{-x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{F(x) \mathrm{e}^{2 x}}{3} d x
$$

Hence

$$
u_{2}=\int_{0}^{x}-\frac{F(\alpha) \mathrm{e}^{2 \alpha}}{3} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha\right)}{3} \\
& u_{2}=-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right)}{3}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\left(\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha\right) \mathrm{e}^{x}}{3}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right) \mathrm{e}^{-2 x}}{3}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\left(-\left(\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}+\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right) \mathrm{e}^{-2 x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-\frac{\left(-\left(\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}+\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right) \mathrm{e}^{-2 x}}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}-\frac{\left(-\left(\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}+\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right) \mathrm{e}^{-2 x}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}-\frac{\left(-\left(\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}+\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right) \mathrm{e}^{-2 x}}{3}
$$

Verified OK.

9.25.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 292: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\frac{\mathrm{e}^{x}}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{x}}{3} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{x}}{3} \\
-2 \mathrm{e}^{-2 x} & \frac{\mathrm{e}^{x}}{3}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\frac{\mathrm{e}^{x}}{3}\right)-\left(\frac{\mathrm{e}^{x}}{3}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{F(x) \mathrm{e}^{x}}{3}}{\mathrm{e}^{-x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{F(x) \mathrm{e}^{2 x}}{3} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{F(\alpha) \mathrm{e}^{2 \alpha}}{3} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-2 x} F(x)}{\mathrm{e}^{-x}} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{-x} F(x) d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right)}{3} \\
& u_{2}=\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right) \mathrm{e}^{-2 x}}{3}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha\right) \mathrm{e}^{x}}{3}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\left(-\left(\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}+\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right) \mathrm{e}^{-2 x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}\right)+\left(-\frac{\left(-\left(\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}+\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right) \mathrm{e}^{-2 x}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}-\frac{\left(-\left(\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}+\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right) \mathrm{e}^{-2 x}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}-\frac{\left(-\left(\int_{0}^{x} \mathrm{e}^{-\alpha} F(\alpha) d \alpha\right) \mathrm{e}^{3 x}+\int_{0}^{x} F(\alpha) \mathrm{e}^{2 \alpha} d \alpha\right) \mathrm{e}^{-2 x}}{3}
$$

Verified OK.

9.25.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y^{\prime}-2 y=F(x)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+r-2=0$
- Factor the characteristic polynomial
$(r+2)(r-1)=0$
- Roots of the characteristic polynomial
$r=(-2,1)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=F(x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{-x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\left(\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-x} F(x) d x\right)-\left(\int F(x) \mathrm{e}^{2 x} d x\right)\right) \mathrm{e}^{-2 x}}{3}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-x} F(x) d x\right)-\left(\int F(x) \mathrm{e}^{2 x} d x\right)\right) \mathrm{e}^{-2 x}}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+\frac{\left(\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-x} F(x) d x\right)-\left(\int F(x) \mathrm{e}^{2 x} d x\right)\right) \mathrm{e}^{-2 x}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 46

```
dsolve(diff(y(x),x$2)+diff(y(x),x)-2*y(x)=F(x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(\left(\int \mathrm{e}^{-x} F(x) d x\right) \mathrm{e}^{3 x}+3 c_{1} \mathrm{e}^{3 x}-\left(\int F(x) \mathrm{e}^{2 x} d x\right)+3 c_{2}\right) \mathrm{e}^{-2 x}}{3}
$$

Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 68
DSolve[y''[x]+y'[x]-2*y[x]==F[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-2 x}\left(\int_{1}^{x}-\frac{1}{3} e^{2 K[1]} F(K[1]) d K[1]+e^{3 x} \int_{1}^{x} \frac{1}{3} e^{-K[2]} F(K[2]) d K[2]+c_{2} e^{3 x}+c_{1}\right)
$$

9.26 problem Problem 26

9.26.1 Solving as second order linear constant coeff ode 2003
9.26.2 Solving using Kovacic algorithm 2007
9.26.3 Maple step by step solution . 2012

Internal problem ID [2799]
Internal file name [OUTPUT/2291_Sunday_June_05_2022_02_57_59_AM_46227829/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+4 y^{\prime}-12 y=F(x)
$$

9.26.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=4, C=-12, f(x)=F(x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}-12 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=-12$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}-12 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda-12=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=-12$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(-12)} \\
& =-2 \pm 4
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+4 \\
& \lambda_{2}=-2-4
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-6
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-6) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-6 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-6 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{-6 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{-6 x} \\
\frac{d}{d x}\left(\mathrm{e}^{2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-6 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{-6 x} \\
2 \mathrm{e}^{2 x} & -6 \mathrm{e}^{-6 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{2 x}\right)\left(-6 \mathrm{e}^{-6 x}\right)-\left(\mathrm{e}^{-6 x}\right)\left(2 \mathrm{e}^{2 x}\right)
$$

Which simplifies to

$$
W=-8 \mathrm{e}^{2 x} \mathrm{e}^{-6 x}
$$

Which simplifies to

$$
W=-8 \mathrm{e}^{-4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-6 x} F(x)}{-8 \mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-2 x} F(x)}{8} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\frac{\mathrm{e}^{-2 \alpha} F(\alpha)}{8} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{F(x) \mathrm{e}^{2 x}}{-8 \mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{F(x) \mathrm{e}^{6 x}}{8} d x
$$

Hence

$$
u_{2}=\int_{0}^{x}-\frac{F(\alpha) \mathrm{e}^{6 \alpha}}{8} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\left(\int_{0}^{x} \mathrm{e}^{-2 \alpha} F(\alpha) d \alpha\right)}{8} \\
& u_{2}=-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{6 \alpha} d \alpha\right)}{8}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\left(\int_{0}^{x} \mathrm{e}^{-2 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{2 x}}{8}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{6 \alpha} d \alpha\right) \mathrm{e}^{-6 x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-6 x}\right)+\left(\frac{\left(\int_{0}^{x} \mathrm{e}^{-2 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{2 x}}{8}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{6 \alpha} d \alpha\right) \mathrm{e}^{-6 x}}{8}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-6 x}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-2 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{2 x}}{8}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{6 \alpha} d \alpha\right) \mathrm{e}^{-6 x}}{8} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-6 x}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-2 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{2 x}}{8}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{6 \alpha} d \alpha\right) \mathrm{e}^{-6 x}}{8}
$$

Verified OK.

9.26.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}-12 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=-12
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=16 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 294: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=16$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-4 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-6 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{8 x}}{8}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-6 x}\right)+c_{2}\left(\mathrm{e}^{-6 x}\left(\frac{\mathrm{e}^{8 x}}{8}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}-12 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-6 x}+\frac{c_{2} \mathrm{e}^{2 x}}{8}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-6 x} \\
& y_{2}=\frac{\mathrm{e}^{2 x}}{8}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-6 x} & \frac{\mathrm{e}^{2 x}}{8} \\
\frac{d}{d x}\left(\mathrm{e}^{-6 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x}}{8}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-6 x} & \frac{\mathrm{e}^{2 x}}{8} \\
-6 \mathrm{e}^{-6 x} & \frac{\mathrm{e}^{2 x}}{4}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-6 x}\right)\left(\frac{\mathrm{e}^{2 x}}{4}\right)-\left(\frac{\mathrm{e}^{2 x}}{8}\right)\left(-6 \mathrm{e}^{-6 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 x} \mathrm{e}^{-6 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{F(x) \mathrm{e}^{2 x}}{8}}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{F(x) \mathrm{e}^{6 x}}{8} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{F(\alpha) \mathrm{e}^{6 \alpha}}{8} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-6 x} F(x)}{\mathrm{e}^{-4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{-2 x} F(x) d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \mathrm{e}^{-2 \alpha} F(\alpha) d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{6 \alpha} d \alpha\right)}{8} \\
& u_{2}=\int_{0}^{x} \mathrm{e}^{-2 \alpha} F(\alpha) d \alpha
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{6 \alpha} d \alpha\right) \mathrm{e}^{-6 x}}{8}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-2 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{2 x}}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-6 x}+\frac{c_{2} \mathrm{e}^{2 x}}{8}\right)+\left(-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{6 \alpha} d \alpha\right) \mathrm{e}^{-6 x}}{8}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-2 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{2 x}}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-6 x}+\frac{c_{2} \mathrm{e}^{2 x}}{8}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{6 \alpha} d \alpha\right) \mathrm{e}^{-6 x}}{8}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-2 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{2 x}}{8} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-6 x}+\frac{c_{2} \mathrm{e}^{2 x}}{8}-\frac{\left(\int_{0}^{x} F(\alpha) \mathrm{e}^{6 \alpha} d \alpha\right) \mathrm{e}^{-6 x}}{8}+\frac{\left(\int_{0}^{x} \mathrm{e}^{-2 \alpha} F(\alpha) d \alpha\right) \mathrm{e}^{2 x}}{8}
$$

Verified OK.

9.26.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}-12 y=F(x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r-12=0
$$

- Factor the characteristic polynomial
$(r+6)(r-2)=0$
- Roots of the characteristic polynomial

$$
r=(-6,2)
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-6 x}$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-6 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=F(x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-6 x} & \mathrm{e}^{2 x} \\
-6 \mathrm{e}^{-6 x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=8 \mathrm{e}^{-4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\left(\mathrm{e}^{8 x}\left(\int \mathrm{e}^{-2 x} F(x) d x\right)-\left(\int F(x) \mathrm{e}^{6 x} d x\right)\right) \mathrm{e}^{-6 x}}{8}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(\mathrm{e}^{8 x}\left(\int \mathrm{e}^{-2 x} F(x) d x\right)-\left(\int F(x) \mathrm{e}^{6 x} d x\right)\right) \mathrm{e}^{-6 x}}{8}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-6 x}+c_{2} \mathrm{e}^{2 x}+\frac{\left(\mathrm{e}^{8 x}\left(\int \mathrm{e}^{-2 x} F(x) d x\right)-\left(\int F(x) \mathrm{e}^{6 x} d x\right)\right) \mathrm{e}^{-6 x}}{8}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 45

```
dsolve(diff(y(x),x$2)+4*\operatorname{diff}(y(x),x)-12*y(x)=F(x),y(x), singsol=all)
```

$$
y(x)=-\frac{\left(-\left(\int F(x) \mathrm{e}^{-2 x} d x\right) \mathrm{e}^{8 x}-8 c_{1} \mathrm{e}^{8 x}+\int F(x) \mathrm{e}^{6 x} d x-8 c_{2}\right) \mathrm{e}^{-6 x}}{8}
$$

Solution by Mathematica
Time used: 0.077 (sec). Leaf size: 68

```
DSolve[y''[x]+4*y'[x]-12*y[x]==F[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-6 x}\left(\int_{1}^{x}-\frac{1}{8} e^{6 K[1]} F(K[1]) d K[1]+e^{8 x} \int_{1}^{x} \frac{1}{8} e^{-2 K[2]} F(K[2]) d K[2]+c_{2} e^{8 x}+c_{1}\right)
$$

9.27 problem Problem 27

9.27.1 Existence and uniqueness analysis 2016
9.27.2 Solving as second order linear constant coeff ode 2016
9.27.3 Solving as linear second order ode solved by an integrating factor
ode . 2020 ,
9.27.4 Solving using Kovacic algorithm 2023
9.27.5 Maple step by step solution . 2028

Internal problem ID [2800]
Internal file name [OUTPUT/2292_Sunday_June_05_2022_02_58_03_AM_48418941/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y^{\prime}+4 y=5 x \mathrm{e}^{2 x}
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

9.27.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-4 \\
q(x) & =4 \\
F & =5 x \mathrm{e}^{2 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y^{\prime}+4 y=5 x \mathrm{e}^{2 x}
$$

The domain of $p(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=5 x \mathrm{e}^{2 x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.27.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-4, C=4, f(x)=5 x \mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-4)^{2}-(4)(1)(4)} \\
& =2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-2$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} x \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 x \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{2 x}, x^{2} \mathrm{e}^{2 x}\right\}\right]
$$

Since $x \mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{2 x}, x^{3} \mathrm{e}^{2 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{2 x}+A_{2} x^{3} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{2 x}+6 A_{2} x \mathrm{e}^{2 x}=5 x \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{5}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5 x^{3} \mathrm{e}^{2 x}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}\right)+\left(\frac{5 x^{3} \mathrm{e}^{2 x}}{6}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+\frac{5 x^{3} \mathrm{e}^{2 x}}{6}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+\frac{5 x^{3} \mathrm{e}^{2 x}}{6} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 \mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+c_{2} \mathrm{e}^{2 x}+\frac{5 x^{2} \mathrm{e}^{2 x}}{2}+\frac{5 x^{3} \mathrm{e}^{2 x}}{3}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \mathrm{e}^{2 x}+\mathrm{e}^{2 x}+\frac{5 x^{3} \mathrm{e}^{2 x}}{6}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(1-2 x+\frac{5}{6} x^{3}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(1-2 x+\frac{5}{6} x^{3}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(1-2 x+\frac{5}{6} x^{3}\right)
$$

Verified OK.

9.27.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-4 d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =5 \mathrm{e}^{2 x} x \mathrm{e}^{-2 x} \\
\left(\mathrm{e}^{-2 x} y\right)^{\prime \prime} & =5 \mathrm{e}^{2 x} x \mathrm{e}^{-2 x}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-2 x} y\right)^{\prime}=\frac{5 x^{2}}{2}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-2 x} y\right)=\frac{5}{6} x^{3}+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{\frac{5}{6} x^{3}+c_{1} x+c_{2}}{\mathrm{e}^{-2 x}}
$$

Or

$$
y=\frac{5 x^{3} \mathrm{e}^{2 x}}{6}+c_{1} x \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{5 x^{3} \mathrm{e}^{2 x}}{6}+c_{1} x \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{5 x^{2} \mathrm{e}^{2 x}}{2}+\frac{5 x^{3} \mathrm{e}^{2 x}}{3}+\mathrm{e}^{2 x} c_{1}+2 c_{1} x \mathrm{e}^{2 x}+2 c_{2} \mathrm{e}^{2 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \mathrm{e}^{2 x}+\mathrm{e}^{2 x}+\frac{5 x^{3} \mathrm{e}^{2 x}}{6}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(1-2 x+\frac{5}{6} x^{3}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(1-2 x+\frac{5}{6} x^{3}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(1-2 x+\frac{5}{6} x^{3}\right)
$$

Verified OK.

9.27.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 296: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x}\right)+c_{2}\left(\mathrm{e}^{2 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 x \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{2 x}, x^{2} \mathrm{e}^{2 x}\right\}\right]
$$

Since $x \mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{2 x}, x^{3} \mathrm{e}^{2 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{2 x}+A_{2} x^{3} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{2 x}+6 A_{2} x \mathrm{e}^{2 x}=5 x \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{5}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5 x^{3} \mathrm{e}^{2 x}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}\right)+\left(\frac{5 x^{3} \mathrm{e}^{2 x}}{6}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+\frac{5 x^{3} \mathrm{e}^{2 x}}{6}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+\frac{5 x^{3} \mathrm{e}^{2 x}}{6} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 \mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+c_{2} \mathrm{e}^{2 x}+\frac{5 x^{2} \mathrm{e}^{2 x}}{2}+\frac{5 x^{3} \mathrm{e}^{2 x}}{3}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-2 x \mathrm{e}^{2 x}+\mathrm{e}^{2 x}+\frac{5 x^{3} \mathrm{e}^{2 x}}{6}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(1-2 x+\frac{5}{6} x^{3}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(1-2 x+\frac{5}{6} x^{3}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(1-2 x+\frac{5}{6} x^{3}\right)
$$

Verified OK.

9.27.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y^{\prime}+4 y=5 x \mathrm{e}^{2 x}, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4 r+4=0
$$

- Factor the characteristic polynomial
$(r-2)^{2}=0$
- Root of the characteristic polynomial
$r=2$
- \quad 1st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{2 x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=5 x \mathrm{e}^{2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{2 x} & x \mathrm{e}^{2 x} \\
2 \mathrm{e}^{2 x} & \mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-5 \mathrm{e}^{2 x}\left(\int x^{2} d x-\left(\int x d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{5 x^{3} \mathrm{e}^{2 x}}{6}
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}+\frac{5 x^{3} \mathrm{e}^{2 x}}{6}$
Check validity of solution $y=\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}+\frac{5 x^{3} \mathrm{e}^{2 x}}{6}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=2 \mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x} c_{2}+\frac{5 x^{2} \mathrm{e}^{2 x}}{2}+\frac{5 x^{3} \mathrm{e}^{2 x}}{3}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$

$$
0=2 c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=1, c_{2}=-2\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{2 x}\left(1-2 x+\frac{5}{6} x^{3}\right)
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{2 x}\left(1-2 x+\frac{5}{6} x^{3}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 19

```
dsolve([diff (y(x),x$2)-4*\operatorname{diff}(y(x),x)+4*y(x)=5*x*exp(2*x),y(0) = 1, D(y)(0) = 0],y(x), sings
```

$$
y(x)=\frac{\mathrm{e}^{2 x}\left(5 x^{3}-12 x+6\right)}{6}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 24
DSolve $[\{y$ ' ' $[x]-4 * y$ ' $[x]+4 * y[x]==5 * x * \operatorname{Exp}[2 * x],\{y[0]==1, y$ ' $[0]==0\}\}, y[x], x$, IncludeSingularSoluti

$$
y(x) \rightarrow \frac{1}{6} e^{2 x}\left(5 x^{3}-12 x+6\right)
$$

9.28 problem Problem 28

9.28.1 Existence and uniqueness analysis 2032
9.28.2 Solving as second order linear constant coeff ode 2033
9.28.3 Solving using Kovacic algorithm 2038
9.28.4 Maple step by step solution . 2044

Internal problem ID [2801]
Internal file name [OUTPUT/2293_Sunday_June_05_2022_02_58_06_AM_79223964/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.7, The Variation of Parameters Method. page 556
Problem number: Problem 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\sec (x)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

9.28.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =1 \\
F & =\sec (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y=\sec (x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=\sec (x)$ is

$$
\left\{x<\frac{1}{2} \pi+\pi _Z 142 \vee \frac{1}{2} \pi+\pi _Z 142<x\right\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.28.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\sec (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sec (x) \sin (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sec (x) \cos (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\cos (x) \ln (\cos (x))+x \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\cos (x) \ln (\cos (x))+x \sin (x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\cos (x) \ln (\cos (x))+x \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\sin (x) \ln (\cos (x))+\cos (x) x
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin (x)+\cos (x) \ln (\cos (x))+x \sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)
$$

Verified OK.

9.28.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 298: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sec (x) \sin (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sec (x) \cos (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\cos (x) \ln (\cos (x))+x \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(\cos (x) \ln (\cos (x))+x \sin (x))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\cos (x) \ln (\cos (x))+x \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\sin (x) \ln (\cos (x))+\cos (x) x
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin (x)+\cos (x) \ln (\cos (x))+x \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)
$$

Verified OK.

9.28.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+y=\sec (x), y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\cos (x)\left(\int \tan (x) d x\right)+\sin (x)\left(\int 1 d x\right)$
- Compute integrals

$$
y_{p}(x)=\cos (x) \ln (\cos (x))+x \sin (x)
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)$
Check validity of solution $y=c_{1} \cos (x)+c_{2} \sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)$
- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)-\sin (x) \ln (\cos (x))+\cos (x) x$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)
$$

- \quad Solution to the IVP

$$
y=\sin (x)+\cos (x) \ln (\cos (x))+x \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 18

```
dsolve([diff(y(x),x$2)+y(x)=sec(x),y(0) = 0, D(y)(0) = 1],y(x), singsol=all)
```

$$
y(x)=\sin (x)+x \sin (x)-\cos (x) \ln (\sec (x))
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 24
DSolve $\left[\left\{y y^{\prime}[x]-4 * y\right.\right.$ ' $[x]+4 * y[x]==5 * x * \operatorname{Exp}[2 * x],\{y[0]==1, y$ ' $\left.[0]==0\}\right\}, y[x], x$, IncludeSingularSoluti

$$
y(x) \rightarrow \frac{1}{6} e^{2 x}\left(5 x^{3}-12 x+6\right)
$$

10 Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567
10.1 problem Problem 14 2048
10.2 problem Problem 15 2085
10.3 problem Problem 16 2122
10.4 problem Problem 17 2150
10.5 problem Problem 18 2182
10.6 problem Problem 19 2212
10.7 problem Problem 20 2244
10.8 problem Problem 21 2271
10.9 problem Problem 22 2295
10.10problem Problem 23 2319

10.1 problem Problem 14

10.1.1 Solving as second order euler ode ode 2049
10.1.2 Solving as linear second order ode solved by an integrating factor
ode . 2052
10.1.3 Solving as second order change of variable on x method 2 ode . 2053
10.1.4 Solving as second order change of variable on x method 1 ode . 2058
10.1.5 Solving as second order change of variable on y method 1 ode . 2063
10.1.6 Solving as second order change of variable on y method 2 ode . 2068
10.1.7 Solving as second order integrable as is ode 2073
10.1.8 $\begin{aligned} & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 2074\end{aligned}$
10.1.9 Solving using Kovacic algorithm 2076
10.1.10 Solving as exact linear second order ode ode 2081

Internal problem ID [2802]
Internal file name [OUTPUT/2294_Sunday_June_05_2022_02_58_08_AM_51088327/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567
Problem number: Problem 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_variable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_1", "second_order_change_of_variable_on_y_method_2", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=4 \ln (x)
$$

10.1.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=4 x, C=2, f(x)=4 \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+4 x r x^{r-1}+2 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+4 r x^{r}+2 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+4 r+2=0
$$

Or

$$
\begin{equation*}
r^{2}+3 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=-1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=4 \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
-\frac{2}{x^{3}} & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{4 \ln (x)}{x}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 \ln (x) x d x
$$

Hence

$$
u_{1}=-2 \ln (x) x^{2}+x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 \ln (x)}{x^{2}}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 \ln (x) d x
$$

Hence

$$
u_{2}=4 \ln (x) x-4 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}(1-2 \ln (x)) \\
& u_{2}=4 \ln (x) x-4 x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=1-2 \ln (x)+\frac{4 \ln (x) x-4 x}{x}
$$

Which simplifies to

$$
y_{p}(x)=2 \ln (x)-3
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =2 \ln (x)-3+\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \ln (x)-3+\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 \ln (x)-3+\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}
$$

Verified OK.

10.1.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int \frac{4}{x} d x} \\
& =x^{2}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =4 \ln (x) \\
\left(x^{2} y\right)^{\prime \prime} & =4 \ln (x)
\end{aligned}
$$

Integrating once gives

$$
\left(x^{2} y\right)^{\prime}=4 \ln (x) x-4 x+c_{1}
$$

Integrating again gives

$$
\left(x^{2} y\right)=x\left(2 \ln (x) x+c_{1}-3 x\right)+c_{2}
$$

Hence the solution is

$$
y=\frac{x\left(2 \ln (x) x+c_{1}-3 x\right)+c_{2}}{x^{2}}
$$

Or

$$
y=2 \ln (x)+\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}-3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \ln (x)+\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}-3 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 \ln (x)+\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}-3
$$

Verified OK.

10.1.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{4}{x} d x\right)} d x \\
& =\int e^{-4 \ln (x)} d x \\
& =\int \frac{1}{x^{4}} d x \\
& =-\frac{1}{3 x^{3}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{x^{2}}}{\frac{1}{x^{8}}} \\
& =2 x^{6} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 x^{6} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
2 x^{6}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}} & \frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right)\left(\frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}\right)-\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)\left(\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3} \ln (x)+4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \ln (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{2}=2\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3} \ln (x)-\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}(\ln (x)-1) \\
& u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}(-1+2 \ln (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=2 \ln (x)-3
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}\right)+(2 \ln (x)-3)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}+2 \ln (x)-3 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}+2 \ln (x)-3
$$

Verified OK.

10.1.4 Solving as second order change of variable on x method 1 ode

 This is second order non-homogeneous ODE. In standard form the ODE is$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=4 x, C=2, f(x)=4 \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{4}{x} \frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{2} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=4 \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}} & \frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right)\left(\frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}\right)-\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)\left(\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3} \ln (x)+4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \ln (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{2}=2\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3} \ln (x)-\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}(\ln (x)-1) \\
& u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}(-1+2 \ln (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=2 \ln (x)-3
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}\right)+(2 \ln (x)-3) \\
& =2 \ln (x)-3+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Which simplifies to

$$
y=2 \ln (x)-3+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \ln (x)-3+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 \ln (x)-3+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
$$

Verified OK.

10.1.5 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(\frac{4}{x}\right)^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(-\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{2}{x^{2}}-\left(-\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{4}{2}} \\
& =\frac{1}{x^{2}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=\frac{v(x)}{x^{2}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)=4 \ln (x)
$$

Which is now solved for $v(x)$ Integrating once gives

$$
v^{\prime}(x)=4 \ln (x) x-4 x+c_{1}
$$

Integrating again gives

$$
v(x)=2 \ln (x) x^{2}-3 x^{2}+c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\frac{1}{x^{2}}
$$

Hence (7) becomes

$$
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}} & \frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right)\left(\frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}\right)-\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)\left(\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3} \ln (x)+4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \ln (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \ln (x) x^{2} d x
$$

Hence

$$
u_{2}=2\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3} \ln (x)-\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-4\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{3}(\ln (x)-1) \\
& u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{3}(-1+2 \ln (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=2 \ln (x)-3
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}}\right)+(2 \ln (x)-3)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}}+2 \ln (x)-3 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}}+2 \ln (x)-3
$$

Verified OK.

10.1.6 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=4 x, C=2, f(x)=4 \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{4 n}{x^{2}}+\frac{2}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{-\frac{c_{1}}{x}+c_{2}}{x} \\
& =\frac{c_{2} x-c_{1}}{x^{2}}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=4 \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
-\frac{2}{x^{3}} & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{4 \ln (x)}{x}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 \ln (x) x d x
$$

Hence

$$
u_{1}=-2 \ln (x) x^{2}+x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 \ln (x)}{x^{2}}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 \ln (x) d x
$$

Hence

$$
u_{2}=4 \ln (x) x-4 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}(1-2 \ln (x)) \\
& u_{2}=4 \ln (x) x-4 x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=1-2 \ln (x)+\frac{4 \ln (x) x-4 x}{x}
$$

Which simplifies to

$$
y_{p}(x)=2 \ln (x)-3
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{-\frac{c_{1}}{x}+c_{2}}{x}\right)+(2 \ln (x)-3) \\
& =2 \ln (x)-3+\frac{-\frac{c_{1}}{x}+c_{2}}{x}
\end{aligned}
$$

Which simplifies to

$$
y=2 \ln (x)-3+\frac{-\frac{c_{1}}{x}+c_{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \ln (x)-3+\frac{-\frac{c_{1}}{x}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 \ln (x)-3+\frac{-\frac{c_{1}}{x}+c_{2}}{x}
$$

Verified OK.

10.1.7 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y\right) d x=\int 4 \ln (x) d x \\
& y^{\prime} x^{2}+2 y x=4 \ln (x) x-4 x+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)\left(\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{2} y\right) & =\left(4 \ln (x) x-4 x+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int 4 \ln (x) x-4 x+c_{1} \mathrm{~d} x \\
& x^{2} y=-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}}{x^{2}}+\frac{c_{2}}{x^{2}}
$$

which simplifies to

$$
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}}
$$

Verified OK.

10.1.8 Solving as type second__order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=4 \ln (x)
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y\right) d x=\int 4 \ln (x) d x \\
& y^{\prime} x^{2}+2 y x=4 \ln (x) x-4 x+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{2}{x} d x} \\
=x^{2}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)\left(\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{2} y\right) & =\left(4 \ln (x) x-4 x+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int 4 \ln (x) x-4 x+c_{1} \mathrm{~d} x \\
& x^{2} y=-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}}{x^{2}}+\frac{c_{2}}{x^{2}}
$$

which simplifies to

$$
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}}
$$

Verified OK.

10.1.9 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=4 x \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 300: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{4} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4 x}{x^{2}} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-2 \ln (x)} \\
& =z_{1}\left(\frac{1}{x^{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
-\frac{2}{x^{3}} & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{4 \ln (x)}{x}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 \ln (x) x d x
$$

Hence

$$
u_{1}=-2 \ln (x) x^{2}+x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 \ln (x)}{x^{2}}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 \ln (x) d x
$$

Hence

$$
u_{2}=4 \ln (x) x-4 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}(1-2 \ln (x)) \\
& u_{2}=4 \ln (x) x-4 x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=1-2 \ln (x)+\frac{4 \ln (x) x-4 x}{x}
$$

Which simplifies to

$$
y_{p}(x)=2 \ln (x)-3
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}\right)+(2 \ln (x)-3)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{2} x+c_{1}}{x^{2}}+2 \ln (x)-3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} x+c_{1}}{x^{2}}+2 \ln (x)-3 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{2} x+c_{1}}{x^{2}}+2 \ln (x)-3
$$

Verified OK.

10.1.10 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x^{2} \\
& q(x)=4 x \\
& r(x)=2 \\
& s(x)=4 \ln (x)
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =4
\end{aligned}
$$

Therefore (1) becomes

$$
2-(4)+(2)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} x^{2}+2 y x=\int 4 \ln (x) d x
$$

We now have a first order ode to solve which is

$$
y^{\prime} x^{2}+2 y x=4 \ln (x) x-4 x+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)\left(\frac{4 \ln (x) x-4 x+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{2} y\right) & =\left(4 \ln (x) x-4 x+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int 4 \ln (x) x-4 x+c_{1} \mathrm{~d} x \\
& x^{2} y=-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}}{x^{2}}+\frac{c_{2}}{x^{2}}
$$

which simplifies to

$$
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-3 x^{2}+c_{1} x+2 \ln (x) x^{2}+c_{2}}{x^{2}}
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`

Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(x^2*diff (y(x),x$2)+4*x*diff (y (x),x)+2*y(x)=4*\operatorname{ln}(x),y(x), singsol=all)
```

$$
y(x)=2 \ln (x)+\frac{c_{1}}{x}-3+\frac{c_{2}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 23
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+4 * x * y$ ' $[x]+2 * y[x]==4 * \log [x], y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow \frac{c_{1}}{x^{2}}+2 \log (x)+\frac{c_{2}}{x}-3
$$

10.2 problem Problem 15

$$
\text { 10.2.1 Solving as second order euler ode ode } 2086
$$

10.2.2 Solving as linear second order ode solved by an integrating factor
ode . 2089
10.2.3 Solving as second order change of variable on x method 2 ode . 2090
10.2.4 Solving as second order change of variable on x method 1 ode . 2096
10.2.5 Solving as second order change of variable on y method 1 ode . 2101
10.2.6 Solving as second order change of variable on y method 2 ode . 2105
10.2.7 Solving as second order integrable as is ode 2110
10.2.8 $\begin{aligned} & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \\ & \text { version) . } 2112\end{aligned}$
10.2.9 Solving using Kovacic algorithm 2113
10.2.10 Solving as exact linear second order ode ode 2119

Internal problem ID [2803]
Internal file name [OUTPUT/2295_Sunday_June_05_2022_02_58_10_AM_46815860/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567
Problem number: Problem 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_variable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_1", "second_order_change_of_variable_on_y_method_2", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=\cos (x)
$$

10.2.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=4 x, C=2, f(x)=\cos (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+4 x r x^{r-1}+2 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+4 r x^{r}+2 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+4 r+2=0
$$

Or

$$
\begin{equation*}
r^{2}+3 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=-1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=\cos (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
-\frac{2}{x^{3}} & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\cos (x)}{x}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \cos (x) x d x
$$

Hence

$$
u_{1}=-x \sin (x)-\cos (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos (x)}{x^{2}}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int \cos (x) d x
$$

Hence

$$
u_{2}=\sin (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{-x \sin (x)-\cos (x)}{x^{2}}+\frac{\sin (x)}{x}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\cos (x)}{x^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{c_{2} x-\cos (x)+c_{1}}{x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} x-\cos (x)+c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{2} x-\cos (x)+c_{1}}{x^{2}}
$$

Verified OK.

10.2.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int \frac{4}{x} d x} \\
& =x^{2}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{array}{r}
(M(x) y)^{\prime \prime}=\cos (x) \\
\left(x^{2} y\right)^{\prime \prime}=\cos (x)
\end{array}
$$

Integrating once gives

$$
\left(x^{2} y\right)^{\prime}=\sin (x)+c_{1}
$$

Integrating again gives

$$
\left(x^{2} y\right)=c_{1} x-\cos (x)+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}
$$

Or

$$
y=\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}-\frac{\cos (x)}{x^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}-\frac{\cos (x)}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{c_{2}}{x^{2}}-\frac{\cos (x)}{x^{2}}
$$

Verified OK.

10.2.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{4}{x} d x\right)} d x \\
& =\int e^{-4 \ln (x)} d x \\
& =\int \frac{1}{x^{4}} d x \\
& =-\frac{1}{3 x^{3}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{x^{2}}}{\frac{1}{x^{8}}} \\
& =2 x^{6} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 x^{6} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
2 x^{6}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}} & \frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right)\left(\frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}\right)-\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)\left(\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \cos (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \cos (x) x^{2} d x
$$

Hence

$$
u_{1}=-\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \sin (x) x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \cos (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \cos (x) x^{2} d x
$$

Hence

$$
u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \cos (x) x+\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \sin (x) x^{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \sin (x) x^{2} \\
& u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x(x \sin (x)+\cos (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\sin (x)}{x}-\frac{x \sin (x)+\cos (x)}{x^{2}}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\cos (x)}{x^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}\right)+\left(-\frac{\cos (x)}{x^{2}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}-\frac{\cos (x)}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}}{3}-\frac{\cos (x)}{x^{2}}
$$

Verified OK.

10.2.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=4 x, C=2, f(x)=\cos (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{4}{x} \\
q(x) & =\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{4}{x} \frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{2} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=\cos (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}} & \frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right)\left(\frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}\right)-\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)\left(\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \cos (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \cos (x) x^{2} d x
$$

Hence

$$
u_{1}=-\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \sin (x) x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \cos (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \cos (x) x^{2} d x
$$

Hence

$$
u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \cos (x) x+\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \sin (x) x^{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \sin (x) x^{2} \\
& u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x(x \sin (x)+\cos (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\sin (x)}{x}-\frac{x \sin (x)+\cos (x)}{x^{2}}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\cos (x)}{x^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}\right)+\left(-\frac{\cos (x)}{x^{2}}\right) \\
& =-\frac{\cos (x)}{x^{2}}+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{\cos (x)}{x^{2}}+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (x)}{x^{2}}+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\cos (x)}{x^{2}}+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{3}{2}}}
$$

Verified OK.

10.2.5 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(\frac{4}{x}\right)^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(-\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{2}{x^{2}}-\left(-\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{4}{x}} \\
& =\frac{1}{x^{2}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=\frac{v(x)}{x^{2}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)=\cos (x)
$$

Which is now solved for $v(x)$ Integrating once gives

$$
v^{\prime}(x)=\sin (x)+c_{1}
$$

Integrating again gives

$$
v(x)=-\cos (x)+c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x-\cos (x)+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\frac{1}{x^{2}}
$$

Hence (7) becomes

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \\
& y_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} & \left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \\
\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}} & \frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}}\right)\left(\frac{2}{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x^{4}}\right)-\left(\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}}\right)\left(\frac{1}{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \cos (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \cos (x) x^{2} d x
$$

Hence

$$
u_{1}=-\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \sin (x) x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \cos (x)}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \cos (x) x^{2} d x
$$

Hence

$$
u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \cos (x) x+\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} \sin (x) x^{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\left(-\frac{1}{x^{3}}\right)^{\frac{2}{3}} \sin (x) x^{2} \\
& u_{2}=\left(-\frac{1}{x^{3}}\right)^{\frac{1}{3}} x(x \sin (x)+\cos (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\sin (x)}{x}-\frac{x \sin (x)+\cos (x)}{x^{2}}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\cos (x)}{x^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}\right)+\left(-\frac{\cos (x)}{x^{2}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}-\frac{\cos (x)}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}-\frac{\cos (x)}{x^{2}}
$$

Verified OK.

10.2.6 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=4 x, C=2, f(x)=\cos (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{4 n}{x^{2}}+\frac{2}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{-\frac{c_{1}}{x}+c_{2}}{x} \\
& =\frac{c_{2} x-c_{1}}{x^{2}}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=\cos (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
-\frac{2}{x^{3}} & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\cos (x)}{x}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \cos (x) x d x
$$

Hence

$$
u_{1}=-x \sin (x)-\cos (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos (x)}{x^{2}}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int \cos (x) d x
$$

Hence

$$
u_{2}=\sin (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{-x \sin (x)-\cos (x)}{x^{2}}+\frac{\sin (x)}{x}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\cos (x)}{x^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{-\frac{c_{1}}{x}+c_{2}}{x}\right)+\left(-\frac{\cos (x)}{x^{2}}\right) \\
& =-\frac{\cos (x)}{x^{2}}+\frac{-\frac{c_{1}}{x}+c_{2}}{x}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{-\cos (x)+c_{2} x-c_{1}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\cos (x)+c_{2} x-c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\cos (x)+c_{2} x-c_{1}}{x^{2}}
$$

Verified OK.

10.2.7 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y\right) d x=\int \cos (x) d x \\
& y^{\prime} x^{2}+2 y x=\sin (x)+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{\sin (x)+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{\sin (x)+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\sin (x)+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)\left(\frac{\sin (x)+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{2} y\right) & =\left(\sin (x)+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int \sin (x)+c_{1} \mathrm{~d} x \\
& x^{2} y=c_{1} x-\cos (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{c_{1} x-\cos (x)}{x^{2}}+\frac{c_{2}}{x^{2}}
$$

which simplifies to

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}
$$

Verified OK.

10.2.8 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=\cos (x)
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y\right) d x=\int \cos (x) d x \\
& y^{\prime} x^{2}+2 y x=\sin (x)+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{\sin (x)+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{\sin (x)+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\sin (x)+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)\left(\frac{\sin (x)+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{2} y\right) & =\left(\sin (x)+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int \sin (x)+c_{1} \mathrm{~d} x \\
& x^{2} y=c_{1} x-\cos (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{c_{1} x-\cos (x)}{x^{2}}+\frac{c_{2}}{x^{2}}
$$

which simplifies to

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}
$$

Verified OK.

10.2.9 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=4 x \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 301: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{14 x}{x^{2}} d x} \\
& =z_{1} e^{-2 \ln (x)} \\
& =z_{1}\left(\frac{1}{x^{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =\frac{1}{x^{2}} \\
y_{2} & =\frac{1}{x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
\frac{d}{d x}\left(\frac{1}{x^{2}}\right) & \frac{d}{d x}\left(\frac{1}{x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{2}} & \frac{1}{x} \\
-\frac{2}{x^{3}} & -\frac{1}{x^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{2}}\right)\left(-\frac{1}{x^{2}}\right)-\left(\frac{1}{x}\right)\left(-\frac{2}{x^{3}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Which simplifies to

$$
W=\frac{1}{x^{4}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\cos (x)}{x}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int \cos (x) x d x
$$

Hence

$$
u_{1}=-x \sin (x)-\cos (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos (x)}{x^{2}}}{\frac{1}{x^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int \cos (x) d x
$$

Hence

$$
u_{2}=\sin (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{-x \sin (x)-\cos (x)}{x^{2}}+\frac{\sin (x)}{x}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\cos (x)}{x^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x^{2}}+\frac{c_{2}}{x}\right)+\left(-\frac{\cos (x)}{x^{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{2} x+c_{1}}{x^{2}}-\frac{\cos (x)}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} x+c_{1}}{x^{2}}-\frac{\cos (x)}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{2} x+c_{1}}{x^{2}}-\frac{\cos (x)}{x^{2}}
$$

Verified OK.

10.2.10 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =x^{2} \\
q(x) & =4 x \\
r(x) & =2 \\
s(x) & =\cos (x)
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =4
\end{aligned}
$$

Therefore (1) becomes

$$
2-(4)+(2)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} x^{2}+2 y x=\int \cos (x) d x
$$

We now have a first order ode to solve which is

$$
y^{\prime} x^{2}+2 y x=\sin (x)+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{\sin (x)+c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{\sin (x)+c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\sin (x)+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y\right) & =\left(x^{2}\right)\left(\frac{\sin (x)+c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(x^{2} y\right) & =\left(\sin (x)+c_{1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} y=\int \sin (x)+c_{1} \mathrm{~d} x \\
& x^{2} y=c_{1} x-\cos (x)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{c_{1} x-\cos (x)}{x^{2}}+\frac{c_{2}}{x^{2}}
$$

which simplifies to

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x-\cos (x)+c_{2}}{x^{2}}
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve $\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+4 * x * \operatorname{diff}(y(x), x)+2 * y(x)=\cos (x), y(x)\right.$, singsol $\left.=a l l\right)$

$$
y(x)=\frac{c_{2}+c_{1} x-\cos (x)}{x^{2}}
$$

Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 20
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+4 * x * y$ ' $[x]+2 * y[x]==\operatorname{Cos}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{-\cos (x)+c_{2} x+c_{1}}{x^{2}}
$$

10.3 problem Problem 16

10.3.1 Solving as second order euler ode ode 2122
10.3.2 Solving as second order change of variable on x method 2 ode . 2126
10.3.3 Solving as second order change of variable on x method 1 ode . 2132
10.3.4 Solving as second order change of variable on y method 2 ode . 2136
10.3.5 Solving using Kovacic algorithm 2141

Internal problem ID [2804]
Internal file name [OUTPUT/2296_Sunday_June_05_2022_02_58_12_AM_49847731/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567
Problem number: Problem 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of__variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=9 \ln (x)
$$

10.3.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=9, f(x)=9 \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$.

Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}+9 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}+9 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r+9=0
$$

Or

$$
\begin{equation*}
r^{2}+9=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3 i \\
& r_{2}=3 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=0$ and $\beta=-3$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=0, \beta=-3$, the above becomes

$$
y=x^{0}\left(c_{1} e^{-3 i \ln (x)}+c_{2} e^{3 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=9 \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (3 \ln (x)) \\
& y_{2}=-\sin (3 \ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (3 \ln (x)) & -\sin (3 \ln (x)) \\
\frac{d}{d x}(\cos (3 \ln (x))) & \frac{d}{d x}(-\sin (3 \ln (x)))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (3 \ln (x)) & -\sin (3 \ln (x)) \\
-\frac{3 \sin (3 \ln (x))}{x} & -\frac{3 \cos (3 \ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
W=(\cos (3 \ln (x)))\left(-\frac{3 \cos (3 \ln (x))}{x}\right)-(-\sin (3 \ln (x)))\left(-\frac{3 \sin (3 \ln (x))}{x}\right)
$$

Which simplifies to

$$
W=-\frac{3\left(\cos (3 \ln (x))^{2}+\sin (3 \ln (x))^{2}\right)}{x}
$$

Which simplifies to

$$
W=-\frac{3}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-9 \sin (3 \ln (x)) \ln (x)}{-3 x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{3 \sin (3 \ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{1}=-\frac{\sin (3 \ln (x))}{3}+\cos (3 \ln (x)) \ln (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9 \cos (3 \ln (x)) \ln (x)}{-3 x} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{3 \cos (3 \ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{2}=-\frac{\cos (3 \ln (x))}{3}-\sin (3 \ln (x)) \ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(-\frac{\sin (3 \ln (x))}{3}+\cos (3 \ln (x)) \ln (x)\right) \cos (3 \ln (x)) \\
& -\left(-\frac{\cos (3 \ln (x))}{3}-\sin (3 \ln (x)) \ln (x)\right) \sin (3 \ln (x))
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\ln (x)+c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x)+c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x)+c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Verified OK.

10.3.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{9}{x^{2}}}{\frac{1}{x^{2}}} \\
& =9 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+9 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+9 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (3 \tau)+c_{2} \sin (3 \tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (3 \tau)+c_{2} \sin (3 \tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=4 \cos (\ln (x))^{3}-3 \cos (\ln (x)) \\
& y_{2}=4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
4 \cos (\ln (x))^{3}-3 \cos (\ln (x)) & 4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x)) \\
\frac{d}{d x}\left(4 \cos (\ln (x))^{3}-3 \cos (\ln (x))\right) & \frac{d}{d x}\left(4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x))\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
4 \cos (\ln (x))^{3}-3 \cos (\ln (x)) & 4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x)) \\
-\frac{12 \cos (\ln (x))^{2} \sin (\ln (x))}{x}+\frac{3 \sin (\ln (x))}{x} & \frac{4 \cos (\ln (x))^{3}}{x}-\frac{8 \sin (\ln (x))^{2} \cos (\ln (x))}{x}-\frac{\cos (\ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W=\left(4 \cos (\ln (x))^{3}-3 \cos (\ln (x))\right)(& \frac{4 \cos (\ln (x))^{3}}{x}-\frac{8 \sin (\ln (x))^{2} \cos (\ln (x))}{x} \\
& \left.-\frac{\cos (\ln (x))}{x}\right)-\left(4 \sin (\ln (x)) \cos (\ln (x))^{2}\right. \\
- & \sin (\ln (x)))\left(-\frac{12 \cos (\ln (x))^{2} \sin (\ln (x))}{x}+\frac{3 \sin (\ln (x))}{x}\right)
\end{aligned}
$$

Which simplifies to
W
$=\frac{16 \cos (\ln (x))^{6}+16 \cos (\ln (x))^{4} \sin (\ln (x))^{2}-16 \cos (\ln (x))^{4}+3 \cos (\ln (x))^{2}+3 \sin (\ln (x))^{2}}{x}$
Which simplifies to

$$
W=\frac{3}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{9\left(4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x))\right) \ln (x)}{3 x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{3 \sin (3 \ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{1}=-\frac{\sin (3 \ln (x))}{3}+\cos (3 \ln (x)) \ln (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9\left(4 \cos (\ln (x))^{3}-3 \cos (\ln (x))\right) \ln (x)}{3 x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{3 \cos (3 \ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{2}=\frac{\cos (3 \ln (x))}{3}+\sin (3 \ln (x)) \ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(-\frac{\sin (3 \ln (x))}{3}+\cos (3 \ln (x)) \ln (x)\right)\left(4 \cos (\ln (x))^{3}-3 \cos (\ln (x))\right) \\
& +\left(\frac{\cos (3 \ln (x))}{3}+\sin (3 \ln (x)) \ln (x)\right)\left(4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x))\right)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)+(\ln (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x)+c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x)+c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Verified OK.

10.3.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=9, f(x)=9 \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{3 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{3}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{3}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{3 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{3 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 3 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{3 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=9 \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=4 \cos (\ln (x))^{3}-3 \cos (\ln (x)) \\
& y_{2}=4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
4 \cos (\ln (x))^{3}-3 \cos (\ln (x)) & 4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x)) \\
\frac{d}{d x}\left(4 \cos (\ln (x))^{3}-3 \cos (\ln (x))\right) & \frac{d}{d x}\left(4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x))\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
4 \cos (\ln (x))^{3}-3 \cos (\ln (x)) & 4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x)) \\
-\frac{12 \cos (\ln (x))^{2} \sin (\ln (x))}{x}+\frac{3 \sin (\ln (x))}{x} & \frac{4 \cos (\ln (x))^{3}}{x}-\frac{8 \sin (\ln (x))^{2} \cos (\ln (x))}{x}-\frac{\cos (\ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W=\left(4 \cos (\ln (x))^{3}-3 \cos (\ln (x))\right)(& \frac{4 \cos (\ln (x))^{3}}{x}-\frac{8 \sin (\ln (x))^{2} \cos (\ln (x))}{x} \\
& \left.-\frac{\cos (\ln (x))}{x}\right)-\left(4 \sin (\ln (x)) \cos (\ln (x))^{2}\right. \\
- & \sin (\ln (x)))\left(-\frac{12 \cos (\ln (x))^{2} \sin (\ln (x))}{x}+\frac{3 \sin (\ln (x))}{x}\right)
\end{aligned}
$$

Which simplifies to
W
$=\frac{16 \cos (\ln (x))^{6}+16 \cos (\ln (x))^{4} \sin (\ln (x))^{2}-16 \cos (\ln (x))^{4}+3 \cos (\ln (x))^{2}+3 \sin (\ln (x))^{2}}{x}$
Which simplifies to

$$
W=\frac{3}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{9\left(4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x))\right) \ln (x)}{3 x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{3 \sin (3 \ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{1}=-\frac{\sin (3 \ln (x))}{3}+\cos (3 \ln (x)) \ln (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9\left(4 \cos (\ln (x))^{3}-3 \cos (\ln (x))\right) \ln (x)}{3 x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{3 \cos (3 \ln (x)) \ln (x)}{x} d x
$$

Hence

$$
u_{2}=\frac{\cos (3 \ln (x))}{3}+\sin (3 \ln (x)) \ln (x)
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(-\frac{\sin (3 \ln (x))}{3}+\cos (3 \ln (x)) \ln (x)\right)\left(4 \cos (\ln (x))^{3}-3 \cos (\ln (x))\right) \\
& +\left(\frac{\cos (3 \ln (x))}{3}+\sin (3 \ln (x)) \ln (x)\right)\left(4 \sin (\ln (x)) \cos (\ln (x))^{2}-\sin (\ln (x))\right)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\ln (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)+(\ln (x)) \\
& =\ln (x)+c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
\end{aligned}
$$

Which simplifies to

$$
y=\ln (x)+c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x)+c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x)+c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))
$$

Verified OK.

10.3.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=9, f(x)=9 \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}+\frac{9}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{6 i}{x}+\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+6 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+6 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-6 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-6 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-6 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-6 i}{x} d x \\
\ln (u) & =(-1-6 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-6 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-6 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-6 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-6 i}}{6}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{3 i} \\
& =x^{3 i} c_{2}+\frac{i x^{-3 i} c_{1}}{6}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=9 \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{3 i} \\
& y_{2}=x^{3 i} x^{-6 i}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{3 i} & x^{3 i} x^{-6 i} \\
\frac{d}{d x}\left(x^{3 i}\right) & \frac{d}{d x}\left(x^{3 i} x^{-6 i}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{3 i} & x^{3 i} x^{-6 i} \\
\frac{3 i x^{3 i}}{x} & -\frac{3 i x^{3 i} x^{-6 i}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{3 i}\right)\left(-\frac{3 i x^{3 i} x^{-6 i}}{x}\right)-\left(x^{3 i} x^{-6 i}\right)\left(\frac{3 i x^{3 i}}{x}\right)
$$

Which simplifies to

$$
W=-\frac{6 i x^{6 i} x^{-6 i}}{x}
$$

Which simplifies to

$$
W=-\frac{6 i}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{9 x^{3 i} x^{-6 i} \ln (x)}{-6 i x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{3 i x^{-1-3 i} \ln (x)}{2} d x
$$

Hence

$$
u_{1}=\text { undefined }
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9 x^{3 i} \ln (x)}{-6 i x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{3 i x^{-1+3 i} \ln (x)}{2} d x
$$

Hence

$$
u_{2}=\text { undefined }
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\text { undefined } x^{3 i}+\text { undefined } x^{3 i} x^{-6 i}
$$

Which simplifies to

$$
y_{p}(x)=\text { undefined }\left(x^{3 i}+x^{-3 i}\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{3 i}\right)+\left(\operatorname{undefined}\left(x^{3 i}+x^{-3 i}\right)\right) \\
& =\text { undefined }\left(x^{3 i}+x^{-3 i}\right)+\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{3 i}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{-3 i}}{6}+\left(\text { undefined }+c_{2}\right) x^{3 i}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{-3 i}}{6}+\left(\text { undefined }+c_{2}\right) x^{3 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{-3 i}}{6}+\left(\text { undefined }+c_{2}\right) x^{3 i}
$$

Verified OK.

10.3.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-37}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-37 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{37}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 302: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{37}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{37}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{37}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-3 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-3 i-\left(\frac{1}{2}-3 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-3 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-3 i}{x} \\
& =\frac{\frac{1}{2}-3 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-3 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+3 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-3 i}{x}\right)^{2}-\left(-\frac{37}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-3 i} x d x \\
& =x^{\frac{1}{2}-3 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-3 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{6 i}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-3 i}\right)+c_{2}\left(x^{-3 i}\left(-\frac{i x^{6 i}}{6}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+x y^{\prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=x^{-3 i} c_{1}-\frac{i c_{2} x^{3 i}}{6}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =x^{-3 i} \\
y_{2} & =-\frac{i x^{3 i}}{6}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{-3 i} & -\frac{i x^{3 i}}{6} \\
\frac{d}{d x}\left(x^{-3 i}\right) & \frac{d}{d x}\left(-\frac{i x^{3 i}}{6}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{-3 i} & -\frac{i x^{3 i}}{6} \\
-\frac{3 i x^{-3 i}}{x} & \frac{x^{3 i}}{2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{-3 i}\right)\left(\frac{x^{3 i}}{2 x}\right)-\left(-\frac{i x^{3 i}}{6}\right)\left(-\frac{3 i x^{-3 i}}{x}\right)
$$

Which simplifies to

$$
W=\frac{x^{3 i} x^{-3 i}}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{3 i x^{3 i} \ln (x)}{2}}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{3 i x^{-1+3 i} \ln (x)}{2} d x
$$

Hence

$$
u_{1}=\text { undefined }
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9 x^{-3 i} \ln (x)}{x} d x
$$

Which simplifies to

$$
u_{2}=\int 9 x^{-1-3 i} \ln (x) d x
$$

Hence

$$
u_{2}=\text { undefined }
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\text { undefined } x^{-3 i}-i \text { undefined } x^{3 i}
$$

Which simplifies to

$$
y_{p}(x)=\left(i x^{3 i}+x^{-3 i}\right) \text { undefined }
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{-3 i} c_{1}-\frac{i c_{2} x^{3 i}}{6}\right)+\left(\left(i x^{3 i}+x^{-3 i}\right) \text { undefined }\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{-3 i} c_{1}-\frac{i c_{2} x^{3 i}}{6}+\left(i x^{3 i}+x^{-3 i}\right) \text { undefined } \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{-3 i} c_{1}-\frac{i c_{2} x^{3 i}}{6}+\left(i x^{3 i}+x^{-3 i}\right) \text { undefined }
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+9*y(x)=9*\operatorname{ln}(x),y(x), singsol=all)
```

$$
y(x)=\sin (3 \ln (x)) c_{2}+\cos (3 \ln (x)) c_{1}+\ln (x)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.155 (sec). Leaf size: 24
DSolve $\left[x^{\wedge} 2 * y^{\prime \prime}[x]+x * y\right.$ ' $[x]+9 * y[x]==9 * \log [x], y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \log (x)+c_{1} \cos (3 \log (x))+c_{2} \sin (3 \log (x))
$$

10.4 problem Problem 17

10.4.1 Solving as second order euler ode ode 2150
10.4.2 Solving as second order change of variable on x method 2 ode . 2154
10.4.3 Solving as second order change of variable on x method 1 ode . 2162
10.4.4 Solving as second order change of variable on y method 2 ode . 2168
10.4.5 Solving using Kovacic algorithm 2173

Internal problem ID [2805]
Internal file name [OUTPUT/2297_Sunday_June_05_2022_02_58_15_AM_15173724/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567
Problem number: Problem 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of__variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=8 x \ln (x)^{2}
$$

10.4.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-x, C=5, f(x)=8 x \ln (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$.

Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-x r x^{r-1}+5 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-r x^{r}+5 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-r+5=0
$$

Or

$$
\begin{equation*}
r^{2}-2 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1-2 i \\
& r_{2}=1+2 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=1$ and $\beta=-2$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=1, \beta=-2$, the above becomes

$$
y=x^{1}\left(c_{1} e^{-2 i \ln (x)}+c_{2} e^{2 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=x\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=8 x \ln (x)^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x \cos (2 \ln (x)) \\
& y_{2}=-x \sin (2 \ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x \cos (2 \ln (x)) & -x \sin (2 \ln (x)) \\
\frac{d}{d x}(x \cos (2 \ln (x))) & \frac{d}{d x}(-x \sin (2 \ln (x)))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x \cos (2 \ln (x)) & -x \sin (2 \ln (x)) \\
\cos (2 \ln (x))-2 \sin (2 \ln (x)) & -\sin (2 \ln (x))-2 \cos (2 \ln (x))
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & (x \cos (2 \ln (x)))(-\sin (2 \ln (x))-2 \cos (2 \ln (x))) \\
& -(-x \sin (2 \ln (x)))(\cos (2 \ln (x))-2 \sin (2 \ln (x)))
\end{aligned}
$$

Which simplifies to

$$
W=-2 x \cos (2 \ln (x))^{2}-2 x \sin (2 \ln (x))^{2}
$$

Which simplifies to

$$
W=-2 x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-8 x^{2} \sin (2 \ln (x)) \ln (x)^{2}}{-2 x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{4 \sin (2 \ln (x)) \ln (x)^{2}}{x} d x
$$

Hence

$$
u_{1}=2 \ln (x)^{2} \cos (2 \ln (x))-\cos (2 \ln (x))-2 \sin (2 \ln (x)) \ln (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{8 x^{2} \cos (2 \ln (x)) \ln (x)^{2}}{-2 x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{4 \cos (2 \ln (x)) \ln (x)^{2}}{x} d x
$$

Hence

$$
u_{2}=-2 \sin (2 \ln (x)) \ln (x)^{2}+\sin (2 \ln (x))-2 \ln (x) \cos (2 \ln (x))
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(2 \ln (x)^{2} \cos (2 \ln (x))-\cos (2 \ln (x))-2 \sin (2 \ln (x)) \ln (x)\right) x \cos (2 \ln (x)) \\
& -\left(-2 \sin (2 \ln (x)) \ln (x)^{2}+\sin (2 \ln (x))-2 \ln (x) \cos (2 \ln (x))\right) x \sin (2 \ln (x))
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=2 x \ln (x)^{2}-x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x\left(-1+2 \ln (x)^{2}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(-1+2 \ln (x)^{2}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(-1+2 \ln (x)^{2}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)
$$

Verified OK.

10.4.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{5}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{\ln (x)} d x \\
& =\int x d x \\
& =\frac{x^{2}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{5}{x^{2}}}{x^{2}} \\
& =\frac{5}{x^{4}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{x^{4}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{5}{x^{4}}=\frac{5}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+5 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+5 \tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+5 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+5=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2}-i \\
& r_{2}=\frac{1}{2}+i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-1$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-1$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-i \ln (\tau)}+c_{2} e^{i \ln (\tau)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos (\ln (\tau))+c_{2} \sin (\ln (\tau))\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2} x\left(c_{1} \cos (-\ln (2)+2 \ln (x))+c_{2} \sin (-\ln (2)+2 \ln (x))\right)}{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{\sqrt{2} x\left(c_{1} \cos (-\ln (2)+2 \ln (x))+c_{2} \sin (-\ln (2)+2 \ln (x))\right)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1}= & \sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2} \\
& +\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x)) \\
y_{2}= & -\sqrt{2} x \sin (\ln (2)) \cos (\ln (x))^{2}+\frac{\sqrt{2} x \sin (\ln (2))}{2} \\
& +\sqrt{2} x \cos (\ln (2)) \sin (\ln (x)) \cos (\ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence
$W=\left\lvert\, \begin{gathered}\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}+\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x)) \\ \frac{d}{d x}\left(\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}+\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x))\right) \\ \frac{d}{d x}(-\sqrt{2}\end{gathered}\right.$
Which gives
$W=\left\lvert\, \begin{array}{r}\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}+\sqrt{2} x \\ \sqrt{2} \cos (\ln (2)) \cos (\ln (x))^{2}-2 \sqrt{2} \cos (\ln (2)) \cos (\ln (x)) \sin (\ln (x))-\frac{\sqrt{2} \cos (\ln (2))}{2}+\sqrt{2} \sin (\ln (2))\end{array}\right.$

Therefore

$$
\begin{aligned}
& W=\left(\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}\right. \\
& +\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x)))\left(-\sqrt{2} \sin (\ln (2)) \cos (\ln (x))^{2}\right. \\
& +2 \sqrt{2} \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x))+\frac{\sqrt{2} \sin (\ln (2))}{2} \\
& +\sqrt{2} \cos (\ln (2)) \cos (\ln (x)) \sin (\ln (x))+\sqrt{2} \cos (\ln (2)) \cos (\ln (x))^{2} \\
& \left.-\sqrt{2} \cos (\ln (2)) \sin (\ln (x))^{2}\right) \\
& -\left(-\sqrt{2} x \sin (\ln (2)) \cos (\ln (x))^{2}+\frac{\sqrt{2} x \sin (\ln (2))}{2}\right. \\
& +\sqrt{2} x \cos (\ln (2)) \sin (\ln (x)) \cos (\ln (x)))\left(\sqrt{2} \cos (\ln (2)) \cos (\ln (x))^{2}\right. \\
& -2 \sqrt{2} \cos (\ln (2)) \cos (\ln (x)) \sin (\ln (x))-\frac{\sqrt{2} \cos (\ln (2))}{2} \\
& +\sqrt{2} \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x))+\sqrt{2} \sin (\ln (2)) \cos (\ln (x))^{2} \\
& \left.-\sqrt{2} \sin (\ln (2)) \sin (\ln (x))^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & 2 x \cos (\ln (2))^{2} \cos (\ln (x))^{4}-x \cos (\ln (2))^{2} \cos (\ln (x))^{2} \\
& +x \cos (\ln (2))^{2} \sin (\ln (x))^{2}+2 x \sin (\ln (2))^{2} \cos (\ln (x))^{4} \\
& -x \sin (\ln (2))^{2} \cos (\ln (x))^{2}+x \sin (\ln (2))^{2} \sin (\ln (x))^{2} \\
& +2 x \cos (\ln (2))^{2} \cos (\ln (x))^{2} \sin (\ln (x))^{2}+2 x \sin (\ln (2))^{2} \sin (\ln (x))^{2} \cos (\ln (x))^{2}
\end{aligned}
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
\begin{aligned}
& u_{1}= \\
& \quad-\int \frac{8\left(-\sqrt{2} x \sin (\ln (2)) \cos (\ln (x))^{2}+\frac{\sqrt{2} x \sin (\ln (2))}{2}+\sqrt{2} x \cos (\ln (2)) \sin (\ln (x)) \cos (\ln (x))\right) x \ln (x)^{2}}{x^{3}}
\end{aligned}
$$

Which simplifies to

$$
u_{1}=-\int-\frac{4(\sin (\ln (2)) \cos (2 \ln (x))-\cos (\ln (2)) \sin (2 \ln (x))) \sqrt{2} \ln (x)^{2}}{x} d x
$$

Hence

$$
\begin{aligned}
u_{1}= & 4 \sqrt{2}\left(\frac{\sin (\ln (2))\left(4 \sin (2 \ln (x)) \ln (x)^{2}-2 \sin (2 \ln (x))+4 \ln (x) \cos (2 \ln (x))\right)}{8}\right. \\
& \left.-\frac{\cos (\ln (2))\left(-4 \ln (x)^{2} \cos (2 \ln (x))+2 \cos (2 \ln (x))+4 \sin (2 \ln (x)) \ln (x)\right)}{8}\right)
\end{aligned}
$$

And Eq. (3) becomes

$$
=\int \frac{8\left(\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}+\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x))\right) x \ln (x)^{2}}{x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{4(\cos (\ln (2)) \cos (2 \ln (x))+\sin (\ln (2)) \sin (2 \ln (x))) \sqrt{2} \ln (x)^{2}}{x} d x
$$

Hence

$$
\begin{aligned}
u_{2}=4 & \sqrt{2}\left(\frac{\cos (\ln (2))\left(4 \sin (2 \ln (x)) \ln (x)^{2}-2 \sin (2 \ln (x))+4 \ln (x) \cos (2 \ln (x))\right)}{8}\right. \\
& \left.+\frac{\sin (\ln (2))\left(-4 \ln (x)^{2} \cos (2 \ln (x))+2 \cos (2 \ln (x))+4 \sin (2 \ln (x)) \ln (x)\right)}{8}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
u_{1}=2 \sqrt{2}(\\
\left(\cos (\ln (2)) \ln (x)^{2}+\ln (x) \sin (\ln (2))-\frac{\cos (\ln (2))}{2}\right) \cos (2 \ln (x)) \\
\left.+\sin (2 \ln (x))\left(\ln (x)^{2} \sin (\ln (2))-\ln (x) \cos (\ln (2))-\frac{\sin (\ln (2))}{2}\right)\right) \\
u_{2}=2\left(\left(-\ln (x)^{2} \sin (\ln (2))+\ln (x) \cos (\ln (2))+\frac{\sin (\ln (2))}{2}\right) \cos (2 \ln (x))\right. \\
+ \\
\left.\sin (2 \ln (x))\left(\cos (\ln (2)) \ln (x)^{2}+\ln (x) \sin (\ln (2))-\frac{\cos (\ln (2))}{2}\right)\right) \sqrt{2}
\end{gathered}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{array}{r}
y_{p}(x)=2 \sqrt{2}\left(\left(\cos (\ln (2)) \ln (x)^{2}+\ln (x) \sin (\ln (2))-\frac{\cos (\ln (2))}{2}\right) \cos (2 \ln (x))\right. \\
+ \\
+\sin (2 \ln (x))\left(\ln (x)^{2} \sin (\ln (2))-\ln (x) \cos (\ln (2))\right. \\
\left.\left.-\frac{\sin (\ln (2))}{2}\right)\right)\left(\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}\right. \\
+\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x))) \\
+2\left(\left(-\ln (x)^{2} \sin (\ln (2))+\ln (x) \cos (\ln (2))+\frac{\sin (\ln (2))}{2}\right) \cos (2 \ln (x))\right. \\
+
\end{array} \begin{array}{r}
\sin (2 \ln (x))\left(\cos (\ln (2)) \ln (x)^{2}+\ln (x) \sin (\ln (2))\right. \\
\left.\left.-\frac{\cos (\ln (2))}{2}\right)\right) \sqrt{2}\left(-\sqrt{2} x \sin (\ln (2)) \cos (\ln (x))^{2}+\frac{\sqrt{2} x \sin (\ln (2))}{2}\right. \\
+\sqrt{2} x \cos (\ln (2)) \sin (\ln (x)) \cos (\ln (x)))
\end{array}
$$

Which simplifies to

$$
y_{p}(x)=2 x \ln (x)^{2}-x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\sqrt{2} x\left(c_{1} \cos (-\ln (2)+2 \ln (x))+c_{2} \sin (-\ln (2)+2 \ln (x))\right)}{2}\right)+\left(2 x \ln (x)^{2}-x\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=\frac{\sqrt{2} x\left(c_{1} \cos (-\ln (2)+2 \ln (x))+c_{2} \sin (-\ln (2)+2 \ln (x))\right)}{2}+2 x \ln (x)^{2}-x(1)
$$

Verification of solutions

$$
y=\frac{\sqrt{2} x\left(c_{1} \cos (-\ln (2)+2 \ln (x))+c_{2} \sin (-\ln (2)+2 \ln (x))\right)}{2}+2 x \ln (x)^{2}-x
$$

Verified OK.

10.4.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-x, C=5, f(x)=8 x \ln (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{5}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{5}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{5}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{1}{x} \frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{2 c \sqrt{5}}{5}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{2 c \sqrt{5}\left(\frac{d}{d \tau} y(\tau)\right)}{5}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{\sqrt{5} c \tau}{5}}\left(c_{1} \cos \left(\frac{2 \sqrt{5} c \tau}{5}\right)+c_{2} \sin \left(\frac{2 \sqrt{5} c \tau}{5}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{5} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=8 x \ln (x)^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1}= & \sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2} \\
& +\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x)) \\
y_{2}= & -\sqrt{2} x \sin (\ln (2)) \cos (\ln (x))^{2}+\frac{\sqrt{2} x \sin (\ln (2))}{2} \\
& +\sqrt{2} x \cos (\ln (2)) \sin (\ln (x)) \cos (\ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence
$W=\left\lvert\, \begin{array}{ccc}\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}+\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x)) & -\sqrt{2} \\ \frac{d}{d x}\left(\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}+\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x))\right) & \frac{d}{d x}(-\sqrt{2}\end{array}\right.$
Which gives
$W=\left\lvert\, \begin{array}{r}\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}+\sqrt{2} x \\ \sqrt{2} \cos (\ln (2)) \cos (\ln (x))^{2}-2 \sqrt{2} \cos (\ln (2)) \cos (\ln (x)) \sin (\ln (x))-\frac{\sqrt{2} \cos (\ln (2))}{2}+\sqrt{2} \sin (\ln (2))\end{array}\right.$

Therefore

$$
\begin{aligned}
& W=\left(\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}\right. \\
& +\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x)))\left(-\sqrt{2} \sin (\ln (2)) \cos (\ln (x))^{2}\right. \\
& +2 \sqrt{2} \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x))+\frac{\sqrt{2} \sin (\ln (2))}{2} \\
& +\sqrt{2} \cos (\ln (2)) \cos (\ln (x)) \sin (\ln (x))+\sqrt{2} \cos (\ln (2)) \cos (\ln (x))^{2} \\
& \left.-\sqrt{2} \cos (\ln (2)) \sin (\ln (x))^{2}\right) \\
& -\left(-\sqrt{2} x \sin (\ln (2)) \cos (\ln (x))^{2}+\frac{\sqrt{2} x \sin (\ln (2))}{2}\right. \\
& +\sqrt{2} x \cos (\ln (2)) \sin (\ln (x)) \cos (\ln (x)))\left(\sqrt{2} \cos (\ln (2)) \cos (\ln (x))^{2}\right. \\
& -2 \sqrt{2} \cos (\ln (2)) \cos (\ln (x)) \sin (\ln (x))-\frac{\sqrt{2} \cos (\ln (2))}{2} \\
& +\sqrt{2} \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x))+\sqrt{2} \sin (\ln (2)) \cos (\ln (x))^{2} \\
& \left.-\sqrt{2} \sin (\ln (2)) \sin (\ln (x))^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
W= & 2 x \cos (\ln (2))^{2} \cos (\ln (x))^{4}-x \cos (\ln (2))^{2} \cos (\ln (x))^{2} \\
& +x \cos (\ln (2))^{2} \sin (\ln (x))^{2}+2 x \sin (\ln (2))^{2} \cos (\ln (x))^{4} \\
& -x \sin (\ln (2))^{2} \cos (\ln (x))^{2}+x \sin (\ln (2))^{2} \sin (\ln (x))^{2} \\
& +2 x \cos (\ln (2))^{2} \cos (\ln (x))^{2} \sin (\ln (x))^{2}+2 x \sin (\ln (2))^{2} \sin (\ln (x))^{2} \cos (\ln (x))^{2}
\end{aligned}
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
\begin{aligned}
& u_{1}= \\
& \quad-\int \frac{8\left(-\sqrt{2} x \sin (\ln (2)) \cos (\ln (x))^{2}+\frac{\sqrt{2} x \sin (\ln (2))}{2}+\sqrt{2} x \cos (\ln (2)) \sin (\ln (x)) \cos (\ln (x))\right) x \ln (x)^{2}}{x^{3}}
\end{aligned}
$$

Which simplifies to

$$
u_{1}=-\int-\frac{4(\sin (\ln (2)) \cos (2 \ln (x))-\cos (\ln (2)) \sin (2 \ln (x))) \sqrt{2} \ln (x)^{2}}{x} d x
$$

Hence

$$
\begin{aligned}
u_{1}= & 4 \sqrt{2}\left(\frac{\sin (\ln (2))\left(4 \sin (2 \ln (x)) \ln (x)^{2}-2 \sin (2 \ln (x))+4 \ln (x) \cos (2 \ln (x))\right)}{8}\right. \\
& \left.-\frac{\cos (\ln (2))\left(-4 \ln (x)^{2} \cos (2 \ln (x))+2 \cos (2 \ln (x))+4 \sin (2 \ln (x)) \ln (x)\right)}{8}\right)
\end{aligned}
$$

And Eq. (3) becomes

$$
=\int \frac{8\left(\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}+\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x))\right) x \ln (x)^{2}}{x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{4(\cos (\ln (2)) \cos (2 \ln (x))+\sin (\ln (2)) \sin (2 \ln (x))) \sqrt{2} \ln (x)^{2}}{x} d x
$$

Hence

$$
\begin{aligned}
u_{2}=4 & \sqrt{2}\left(\frac{\cos (\ln (2))\left(4 \sin (2 \ln (x)) \ln (x)^{2}-2 \sin (2 \ln (x))+4 \ln (x) \cos (2 \ln (x))\right)}{8}\right. \\
& \left.+\frac{\sin (\ln (2))\left(-4 \ln (x)^{2} \cos (2 \ln (x))+2 \cos (2 \ln (x))+4 \sin (2 \ln (x)) \ln (x)\right)}{8}\right)
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
u_{1}=2 \sqrt{2}(\\
\left(\cos (\ln (2)) \ln (x)^{2}+\ln (x) \sin (\ln (2))-\frac{\cos (\ln (2))}{2}\right) \cos (2 \ln (x)) \\
\left.+\sin (2 \ln (x))\left(\ln (x)^{2} \sin (\ln (2))-\ln (x) \cos (\ln (2))-\frac{\sin (\ln (2))}{2}\right)\right) \\
u_{2}=2\left(\left(-\ln (x)^{2} \sin (\ln (2))+\ln (x) \cos (\ln (2))+\frac{\sin (\ln (2))}{2}\right) \cos (2 \ln (x))\right. \\
+ \\
\left.\quad \sin (2 \ln (x))\left(\cos (\ln (2)) \ln (x)^{2}+\ln (x) \sin (\ln (2))-\frac{\cos (\ln (2))}{2}\right)\right) \sqrt{2}
\end{gathered}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{array}{r}
y_{p}(x)=2 \sqrt{2}\left(\left(\cos (\ln (2)) \ln (x)^{2}+\ln (x) \sin (\ln (2))-\frac{\cos (\ln (2))}{2}\right) \cos (2 \ln (x))\right. \\
+ \\
+\sin (2 \ln (x))\left(\ln (x)^{2} \sin (\ln (2))-\ln (x) \cos (\ln (2))\right. \\
\left.\left.-\frac{\sin (\ln (2))}{2}\right)\right)\left(\sqrt{2} x \cos (\ln (2)) \cos (\ln (x))^{2}-\frac{\sqrt{2} x \cos (\ln (2))}{2}\right. \\
+\sqrt{2} x \sin (\ln (2)) \sin (\ln (x)) \cos (\ln (x))) \\
+2\left(\left(-\ln (x)^{2} \sin (\ln (2))+\ln (x) \cos (\ln (2))+\frac{\sin (\ln (2))}{2}\right) \cos (2 \ln (x))\right. \\
+
\end{array} \begin{array}{r}
\sin (2 \ln (x))\left(\cos (\ln (2)) \ln (x)^{2}+\ln (x) \sin (\ln (2))\right. \\
\left.\left.-\frac{\cos (\ln (2))}{2}\right)\right) \sqrt{2}\left(-\sqrt{2} x \sin (\ln (2)) \cos (\ln (x))^{2}+\frac{\sqrt{2} x \sin (\ln (2))}{2}\right. \\
\end{array}
$$

Which simplifies to

$$
y_{p}(x)=2 x \ln (x)^{2}-x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)\right)+\left(2 x \ln (x)^{2}-x\right) \\
& =2 x \ln (x)^{2}-x+x\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)
\end{aligned}
$$

Which simplifies to

$$
y=x\left(-1+2 \ln (x)^{2}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(-1+2 \ln (x)^{2}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x\left(-1+2 \ln (x)^{2}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)
$$

Verified OK.

10.4.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-x, C=5, f(x)=8 x \ln (x)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{5}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{n}{x^{2}}+\frac{5}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1+2 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2+4 i}{x}-\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+4 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+4 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-4 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-4 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-4 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-4 i}{x} d x \\
\ln (u) & =(-1-4 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-4 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-4 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-4 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-4 i}}{4}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{1+2 i} \\
& =x^{1+2 i} c_{2}+\frac{i x^{1-2 i} c_{1}}{4}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=8 x \ln (x)^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2 i} x \\
& y_{2}=x^{2 i} x x^{-4 i}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2 i} x & x^{2 i} x x^{-4 i} \\
\frac{d}{d x}\left(x^{2 i} x\right) & \frac{d}{d x}\left(x^{2 i} x x^{-4 i}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2 i} x & x^{2 i} x x^{-4 i} \\
2 i x^{2 i}+x^{2 i} & -2 i x^{2 i} x^{-4 i}+x^{2 i} x^{-4 i}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2 i} x\right)\left(-2 i x^{2 i} x^{-4 i}+x^{2 i} x^{-4 i}\right)-\left(x^{2 i} x x^{-4 i}\right)\left(2 i x^{2 i}+x^{2 i}\right)
$$

Which simplifies to

$$
W=-4 i x^{4 i} x x^{-4 i}
$$

Which simplifies to

$$
W=-4 i x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{8 x^{2 i} x^{2} x^{-4 i} \ln (x)^{2}}{-4 i x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int 2 i x^{-1-2 i} \ln (x)^{2} d x
$$

Hence

$$
u_{1}=\text { undefined }
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{8 x^{2 i} x^{2} \ln (x)^{2}}{-4 i x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int 2 i x^{-1+2 i} \ln (x)^{2} d x
$$

Hence

$$
u_{2}=\text { undefined }
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\text { undefined } x^{2 i} x+\text { undefined } x^{2 i} x x^{-4 i}
$$

Which simplifies to

$$
y_{p}(x)=\operatorname{undefined}\left(x^{1+2 i}+x^{1-2 i}\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{1+2 i}\right)+\left(\operatorname{undefined}\left(x^{1+2 i}+x^{1-2 i}\right)\right) \\
& =\text { undefined }\left(x^{1+2 i}+x^{1-2 i}\right)+\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{1+2 i}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{1-2 i}}{4}+\left(\text { undefined }+c_{2}\right) x^{1+2 i}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{1-2 i}}{4}+\left(\text { undefined }+c_{2}\right) x^{1+2 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{1-2 i}}{4}+\left(\text { undefined }+c_{2}\right) x^{1+2 i}
$$

Verified OK.

10.4.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-x y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-x \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-17}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-17 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{17}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 303: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{17}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{17}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{17}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to
determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-2 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-2 i-\left(\frac{1}{2}-2 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-2 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-2 i}{x} \\
& =\frac{\frac{1}{2}-2 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{gathered}
(0)+2\left(\frac{\frac{1}{2}-2 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+2 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-2 i}{x}\right)^{2}-\left(-\frac{17}{4 x^{2}}\right)\right)=0 \\
0=0
\end{gathered}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-2 i} x d x \\
& =x^{\frac{1}{2}-2 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{\ln (x)} \\
& =z_{1}(\sqrt{x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{1-2 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{4 i}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{1-2 i}\right)+c_{2}\left(x^{1-2 i}\left(-\frac{i x^{4 i}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=x^{1-2 i} c_{1}-\frac{i c_{2} x^{1+2 i}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{1-2 i} \\
& y_{2}=-\frac{i x^{1+2 i}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{1-2 i} & -\frac{i x^{1+2 i}}{4} \\
\frac{d}{d x}\left(x^{1-2 i}\right) & \frac{d}{d x}\left(-\frac{i x^{1+2 i}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{1-2 i} & -\frac{i x^{1+2 i}}{4} \\
\frac{(1-2 i) x^{1-2 i}}{x} & \frac{\left(\frac{1}{2}-\frac{i}{4}\right) x^{1+2 i}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{1-2 i}\right)\left(\frac{\left(\frac{1}{2}-\frac{i}{4}\right) x^{1+2 i}}{x}\right)-\left(-\frac{i x^{1+2 i}}{4}\right)\left(\frac{(1-2 i) x^{1-2 i}}{x}\right)
$$

Which simplifies to

$$
W=\frac{x^{1-2 i} x^{1+2 i}}{x}
$$

Which simplifies to

$$
W=x
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-2 i x^{1+2 i} x \ln (x)^{2}}{x^{3}} d x
$$

Which simplifies to

$$
u_{1}=-\int-2 i x^{-1+2 i} \ln (x)^{2} d x
$$

Hence

$$
u_{1}=\text { undefined }
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{8 x^{1-2 i} x \ln (x)^{2}}{x^{3}} d x
$$

Which simplifies to

$$
u_{2}=\int 8 x^{-1-2 i} \ln (x)^{2} d x
$$

Hence

$$
u_{2}=\text { undefined }
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\text { undefined } x^{1-2 i}-i \text { undefined } x^{1+2 i}
$$

Which simplifies to

$$
y_{p}(x)=\left(i x^{1+2 i}+x^{1-2 i}\right) \text { undefined }
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{1-2 i} c_{1}-\frac{i c_{2} x^{1+2 i}}{4}\right)+\left(\left(i x^{1+2 i}+x^{1-2 i}\right) \text { undefined }\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{1-2 i} c_{1}-\frac{i c_{2} x^{1+2 i}}{4}+\left(i x^{1+2 i}+x^{1-2 i}\right) \text { undefined } \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{1-2 i} c_{1}-\frac{i c_{2} x^{1+2 i}}{4}+\left(i x^{1+2 i}+x^{1-2 i}\right) \text { undefined }
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-x * \operatorname{diff}(y(x), x)+5 * y(x)=8 * x *(\ln (x))^{\wedge} 2, y(x)$, singsol=all)

$$
y(x)=x\left(-1+\sin (2 \ln (x)) c_{2}+\cos (2 \ln (x)) c_{1}+2 \ln (x)^{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.154 (sec). Leaf size: 31
DSolve[x^2*y''[x]-x*y'[x]+5*y[x]==8*x*(Log[x])^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x\left(2 \log ^{2}(x)+c_{2} \cos (2 \log (x))+c_{1} \sin (2 \log (x))-1\right)
$$

10.5 problem Problem 18

10.5.1 Solving as second order euler ode ode 2183
10.5.2 Solving as linear second order ode solved by an integrating factor
ode . 2186
10.5.3 Solving as second order change of variable on x method 2 ode . 2187
10.5.4 Solving as second order change of variable on x method 1 ode . 2192
10.5.5 Solving as second order change of variable on y method 1 ode . 2197
10.5.6 Solving as second order change of variable on y method 2 ode . 2201
10.5.7 Solving using Kovacic algorithm 2206

Internal problem ID [2806]
Internal file name [OUTPUT/2298_Sunday_June_05_2022_02_58_17_AM_89165808/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567
Problem number: Problem 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on__x_method_2", "second_order_change_of_cvariable_on_y_method_1", "second_order_change_of_variable_on_y_method_2", "linear_second__order__ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{4} \sin (x)
$$

10.5.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=x^{4} \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-4 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-4 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{2} x^{3}+c_{1} x^{2}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{4} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{7} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \sin (x) d x
$$

Hence

$$
u_{1}=-\sin (x)+\cos (x) x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (x) x^{6}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x^{2}\left(c_{2} x-\sin (x)+c_{1}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{2} x-\sin (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{2} x-\sin (x)+c_{1}\right)
$$

Verified OK.

10.5.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\sin (x) \\
\left(\frac{y}{x^{2}}\right)^{\prime \prime} & =\sin (x)
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{x^{2}}\right)^{\prime}=-\cos (x)+c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{x^{2}}\right)=c_{1} x-\sin (x)+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x-\sin (x)+c_{2}}{\frac{1}{x^{2}}}
$$

Or

$$
y=c_{1} x^{3}+c_{2} x^{2}-x^{2} \sin (x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{2}-x^{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}+c_{2} x^{2}-x^{2} \sin (x)
$$

Verified OK.

10.5.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{x} d x\right)} d x \\
& =\int \mathrm{e}^{4 \ln (x)} d x \\
& =\int x^{4} d x \\
& =\frac{x^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{x^{8}} \\
& =\frac{6}{x^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{x^{10}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{x^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{1}=\frac{\left(x^{5}\right)^{\frac{3}{5}} \cos (x)}{x^{2}}-\frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(-\sin (x)+\cos (x) x)\left(x^{5}\right)^{\frac{3}{5}}}{x^{3}} \\
& u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}\right)+\left(-x^{2} \sin (x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}-x^{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(x^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(x^{5}\right)^{\frac{3}{5}}}{5}-x^{2} \sin (x)
$$

Verified OK.

10.5.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=x^{4} \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{4}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{4} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{1}=\frac{\left(x^{5}\right)^{\frac{3}{5}} \cos (x)}{x^{2}}-\frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(-\sin (x)+\cos (x) x)\left(x^{5}\right)^{\frac{3}{5}}}{x^{3}} \\
& u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)\right)+\left(-x^{2} \sin (x)\right) \\
& =-x^{2} \sin (x)+x^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=i \sinh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{2}+\cosh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{1}-x^{2} \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=i \sinh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{2}+\cosh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{1}-x^{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=i \sinh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{2}+\cosh \left(\frac{\ln (x)}{2}\right) x^{\frac{5}{2}} c_{1}-x^{2} \sin (x)
$$

Verified OK.

10.5.5 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-4}{x}} \\
& =x^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(x) x^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)=\sin (x)
$$

Which is now solved for $v(x)$ Integrating once gives

$$
v^{\prime}(x)=-\cos (x)+c_{1}
$$

Integrating again gives

$$
v(x)=-\sin (x)+c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x-\sin (x)+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=x^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} x-\sin (x)+c_{2}\right) x^{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\left(c_{1} x-\sin (x)+c_{2}\right) x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(x^{5}\right)^{\frac{2}{5}} \\
& y_{2}=\left(x^{5}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(x^{5}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(x^{5}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(x^{5}\right)^{\frac{2}{5}} & \left(x^{5}\right)^{\frac{3}{5}} \\
\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}} & \frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(x^{5}\right)^{\frac{2}{5}}\right)\left(\frac{3 x^{4}}{\left(x^{5}\right)^{\frac{2}{5}}}\right)-\left(\left(x^{5}\right)^{\frac{3}{5}}\right)\left(\frac{2 x^{4}}{\left(x^{5}\right)^{\frac{3}{5}}}\right)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{1}=\frac{\left(x^{5}\right)^{\frac{3}{5}} \cos (x)}{x^{2}}-\frac{\left(x^{5}\right)^{\frac{3}{5}} \sin (x)}{x^{3}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} x^{4} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(x^{5}\right)^{\frac{2}{5}} \sin (x)}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(-\sin (x)+\cos (x) x)\left(x^{5}\right)^{\frac{3}{5}}}{x^{3}} \\
& u_{2}=-\frac{\left(x^{5}\right)^{\frac{2}{5}} \cos (x)}{x^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} x-\sin (x)+c_{2}\right) x^{2}\right)+\left(-x^{2} \sin (x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} x-\sin (x)+c_{2}\right) x^{2}-x^{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} x-\sin (x)+c_{2}\right) x^{2}-x^{2} \sin (x)
$$

Verified OK.

10.5.6 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-4 x, C=6, f(x)=x^{4} \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{4 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3} \\
& =\left(c_{2} x-c_{1}\right) x^{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{4} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{7} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \sin (x) d x
$$

Hence

$$
u_{1}=-\sin (x)+\cos (x) x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (x) x^{6}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3}\right)+\left(-x^{2} \sin (x)\right) \\
& =-x^{2} \sin (x)+\left(-\frac{c_{1}}{x}+c_{2}\right) x^{3}
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(-\sin (x)+c_{2} x-c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(-\sin (x)+c_{2} x-c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(-\sin (x)+c_{2} x-c_{1}\right)
$$

Verified OK.

10.5.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-4 x \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 304: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 x}{x^{2}} d x} \\
& =z_{1} e^{2 \ln (x)} \\
& =z_{1}\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x^{3}+c_{1} x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}\right)(2 x)
$$

Which simplifies to

$$
W=x^{4}
$$

Which simplifies to

$$
W=x^{4}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{7} \sin (x)}{x^{6}} d x
$$

Which simplifies to

$$
u_{1}=-\int x \sin (x) d x
$$

Hence

$$
u_{1}=-\sin (x)+\cos (x) x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (x) x^{6}}{x^{6}} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(-\sin (x)+\cos (x) x) x^{2}-\cos (x) x^{3}
$$

Which simplifies to

$$
y_{p}(x)=-x^{2} \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x^{3}+c_{1} x^{2}\right)+\left(-x^{2} \sin (x)\right)
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(c_{2} x+c_{1}\right)-x^{2} \sin (x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{2} x+c_{1}\right)-x^{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{2} x+c_{1}\right)-x^{2} \sin (x)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

```
dsolve(x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=x^4*sin(x),y(x), singsol=all)
```

$$
y(x)=x^{2}\left(c_{2} x-\sin (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 20

```
DSolve[x^2*y''[x]-4*x*y'[x]+6*y[x]==x^4*Sin[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x^{2}\left(-\sin (x)+c_{2} x+c_{1}\right)
$$

10.6 problem Problem 19

10.6.1 Solving as second order euler ode ode 2213
10.6.2 Solving as linear second order ode solved by an integrating factor ode
10.6.3 Solving as second order change of variable on x method 2 ode . 2217
10.6.4 Solving as second order change of variable on x method 1 ode . 2222
10.6.5 Solving as second order change of variable on y method 1 ode . 2227
10.6.6 Solving as second order change of variable on y method 2 ode . 2232
10.6.7 Solving using Kovacic algorithm 2237

Internal problem ID [2807]
Internal file name [OUTPUT/2299_Sunday_June_05_2022_02_58_19_AM_9664201/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567
Problem number: Problem 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order__change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_1", "second_order_change_of_variable_on_y_method_2", "linear_second__order_ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=4 \mathrm{e}^{2 x}
$$

10.6.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=6 x, C=6, f(x)=4 \mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+6 x r x^{r-1}+6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+6 r x^{r}+6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+6 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}+5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3 \\
& r_{2}=-2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x^{2}}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=4 \mathrm{e}^{2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x^{3}} \\
& y_{2}=\frac{1}{x^{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & \frac{1}{x^{2}} \\
\frac{d}{d x}\left(\frac{1}{x^{3}}\right) & \frac{d}{d x}\left(\frac{1}{x^{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & \frac{1}{x^{2}} \\
-\frac{3}{x^{4}} & -\frac{2}{x^{3}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{3}}\right)\left(-\frac{2}{x^{3}}\right)-\left(\frac{1}{x^{2}}\right)\left(-\frac{3}{x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{4 \mathrm{e}^{2 x}}{x^{2}}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 x^{2} \mathrm{e}^{2 x} d x
$$

Hence

$$
u_{1}=-\left(2 x^{2}-2 x+1\right) \mathrm{e}^{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 \mathrm{e}^{2 x}}{x^{3}}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 x \mathrm{e}^{2 x} d x
$$

Hence

$$
u_{2}=(2 x-1) \mathrm{e}^{2 x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\left(-2 x^{2}+2 x-1\right) \mathrm{e}^{2 x} \\
& u_{2}=(2 x-1) \mathrm{e}^{2 x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\left(-2 x^{2}+2 x-1\right) \mathrm{e}^{2 x}}{x^{3}}+\frac{(2 x-1) \mathrm{e}^{2 x}}{x^{2}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{(x-1) \mathrm{e}^{2 x}+c_{2} x+c_{1}}{x^{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(x-1) \mathrm{e}^{2 x}+c_{2} x+c_{1}}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(x-1) \mathrm{e}^{2 x}+c_{2} x+c_{1}}{x^{3}}
$$

Verified OK.

10.6.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=\frac{6}{x}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int \frac{6}{x} d x} \\
& =x^{3}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =4 x \mathrm{e}^{2 x} \\
\left(x^{3} y\right)^{\prime \prime} & =4 x \mathrm{e}^{2 x}
\end{aligned}
$$

Integrating once gives

$$
\left(x^{3} y\right)^{\prime}=(2 x-1) \mathrm{e}^{2 x}+c_{1}
$$

Integrating again gives

$$
\left(x^{3} y\right)=(x-1) \mathrm{e}^{2 x}+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{(x-1) \mathrm{e}^{2 x}+c_{1} x+c_{2}}{x^{3}}
$$

Or

$$
y=\frac{\mathrm{e}^{2 x}}{x^{2}}+\frac{c_{1}}{x^{2}}-\frac{\mathrm{e}^{2 x}}{x^{3}}+\frac{c_{2}}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 x}}{x^{2}}+\frac{c_{1}}{x^{2}}-\frac{\mathrm{e}^{2 x}}{x^{3}}+\frac{c_{2}}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 x}}{x^{2}}+\frac{c_{1}}{x^{2}}-\frac{\mathrm{e}^{2 x}}{x^{3}}+\frac{c_{2}}{x^{3}}
$$

Verified OK.

10.6.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{6}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{6}{x} d x\right)} d x \\
& =\int e^{-6 \ln (x)} d x \\
& =\int \frac{1}{x^{6}} d x \\
& =-\frac{1}{5 x^{5}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{6}{x^{2}}}{\frac{1}{x^{12}}} \\
& =6 x^{10} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+6 x^{10} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
6 x^{10}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}}{5}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 5^{\frac{3}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}}{5}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \\
& y_{2}=\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} & \left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} & \left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \\
\frac{2}{\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} x^{6}} & \frac{3}{\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} x^{6}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}}\right)\left(\frac{3}{\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} x^{6}}\right)-\left(\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}\right)\left(\frac{2}{\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} x^{6}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \mathrm{e}^{2 x}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \mathrm{e}^{2 x} x^{4} d x
$$

Hence

$$
u_{1}=-(2 x-1) x^{3}\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \mathrm{e}^{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \mathrm{e}^{2 x}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \mathrm{e}^{2 x} x^{4} d x
$$

Hence

$$
u_{2}=\left(2 x^{2}-2 x+1\right) x^{2}\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \mathrm{e}^{2 x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{(2 x-1) \mathrm{e}^{2 x}}{x^{2}}-\frac{\left(2 x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{x^{3}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 5^{\frac{3}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}}{5}\right)+\left(\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}}{5}+\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}}{5}+\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}
$$

Verified OK.

10.6.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=6 x, C=6, f(x)=4 \mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{6}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{x^{2}} x^{3}}}+\frac{6}{x} \frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{5}{2}}}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=4 \mathrm{e}^{2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \\
& y_{2}=\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} & \left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} & \left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \\
\frac{2}{\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} x^{6}} & \frac{3}{\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} x^{6}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}}\right)\left(\frac{3}{\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} x^{6}}\right)-\left(\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}\right)\left(\frac{2}{\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} x^{6}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \mathrm{e}^{2 x}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \mathrm{e}^{2 x} x^{4} d x
$$

Hence

$$
u_{1}=-(2 x-1) x^{3}\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \mathrm{e}^{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \mathrm{e}^{2 x}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \mathrm{e}^{2 x} x^{4} d x
$$

Hence

$$
u_{2}=\left(2 x^{2}-2 x+1\right) x^{2}\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \mathrm{e}^{2 x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{(2 x-1) \mathrm{e}^{2 x}}{x^{2}}-\frac{\left(2 x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{x^{3}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{5}{2}}}\right)+\left(\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}\right) \\
& =\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{5}{2}}}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{5}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{5}{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}+\frac{c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)}{x^{\frac{5}{2}}}
$$

Verified OK.

10.6.5 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{6}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(\frac{6}{x}\right)^{\prime}}{2}-\frac{\left(\frac{6}{x}\right)^{2}}{4} \\
& =\frac{6}{x^{2}}-\frac{\left(-\frac{6}{x^{2}}\right)}{2}-\frac{\left(\frac{36}{x^{2}}\right)}{4} \\
& =\frac{6}{x^{2}}-\left(-\frac{3}{x^{2}}\right)-\frac{9}{x^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{6}{2}} \\
& =\frac{1}{x^{3}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=\frac{v(x)}{x^{3}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)=4 x \mathrm{e}^{2 x}
$$

Which is now solved for $v(x)$ Integrating once gives

$$
v^{\prime}(x)=(2 x-1) \mathrm{e}^{2 x}+c_{1}
$$

Integrating again gives

$$
v(x)=(x-1) \mathrm{e}^{2 x}+c_{1} x+c_{2}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left((x-1) \mathrm{e}^{2 x}+c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\frac{1}{x^{3}}
$$

Hence (7) becomes

$$
y=\frac{(x-1) \mathrm{e}^{2 x}+c_{1} x+c_{2}}{x^{3}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{(x-1) \mathrm{e}^{2 x}+c_{1} x+c_{2}}{x^{3}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \\
& y_{2}=\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} & \left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \\
\frac{d}{d x}\left(\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}}\right) & \frac{d}{d x}\left(\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} & \left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \\
\frac{2}{\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} x^{6}} & \frac{3}{\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} x^{6}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}}\right)\left(\frac{3}{\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} x^{6}}\right)-\left(\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}}\right)\left(\frac{2}{\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} x^{6}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \mathrm{e}^{2 x}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \mathrm{e}^{2 x} x^{4} d x
$$

Hence

$$
u_{1}=-(2 x-1) x^{3}\left(-\frac{1}{x^{5}}\right)^{\frac{3}{5}} \mathrm{e}^{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \mathrm{e}^{2 x}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \mathrm{e}^{2 x} x^{4} d x
$$

Hence

$$
u_{2}=\left(2 x^{2}-2 x+1\right) x^{2}\left(-\frac{1}{x^{5}}\right)^{\frac{2}{5}} \mathrm{e}^{2 x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{(2 x-1) \mathrm{e}^{2 x}}{x^{2}}-\frac{\left(2 x^{2}-2 x+1\right) \mathrm{e}^{2 x}}{x^{3}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{(x-1) \mathrm{e}^{2 x}+c_{1} x+c_{2}}{x^{3}}\right)+\left(\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(x-1) \mathrm{e}^{2 x}+c_{1} x+c_{2}}{x^{3}}+\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(x-1) \mathrm{e}^{2 x}+c_{1} x+c_{2}}{x^{3}}+\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}
$$

Verified OK.

10.6.6 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=6 x, C=6, f(x)=4 \mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{6}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{6 n}{x^{2}}+\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{-\frac{c_{1}}{x}+c_{2}}{x^{2}} \\
& =\frac{c_{2} x-c_{1}}{x^{3}}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=4 \mathrm{e}^{2 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x^{3}} \\
& y_{2}=\frac{1}{x^{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & \frac{1}{x^{2}} \\
\frac{d}{d x}\left(\frac{1}{x^{3}}\right) & \frac{d}{d x}\left(\frac{1}{x^{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & \frac{1}{x^{2}} \\
-\frac{3}{x^{4}} & -\frac{2}{x^{3}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{3}}\right)\left(-\frac{2}{x^{3}}\right)-\left(\frac{1}{x^{2}}\right)\left(-\frac{3}{x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{4 \mathrm{e}^{2 x}}{x^{2}}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 x^{2} \mathrm{e}^{2 x} d x
$$

Hence

$$
u_{1}=-\left(2 x^{2}-2 x+1\right) \mathrm{e}^{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 \mathrm{e}^{2 x}}{x^{3}}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 x \mathrm{e}^{2 x} d x
$$

Hence

$$
u_{2}=(2 x-1) \mathrm{e}^{2 x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\left(-2 x^{2}+2 x-1\right) \mathrm{e}^{2 x} \\
& u_{2}=(2 x-1) \mathrm{e}^{2 x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\left(-2 x^{2}+2 x-1\right) \mathrm{e}^{2 x}}{x^{3}}+\frac{(2 x-1) \mathrm{e}^{2 x}}{x^{2}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{-\frac{c_{1}}{x}+c_{2}}{x^{2}}\right)+\left(\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}\right) \\
& =\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}+\frac{-\frac{c_{1}}{x}+c_{2}}{x^{2}}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{(x-1) \mathrm{e}^{2 x}+c_{2} x-c_{1}}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(x-1) \mathrm{e}^{2 x}+c_{2} x-c_{1}}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(x-1) \mathrm{e}^{2 x}+c_{2} x-c_{1}}{x^{3}}
$$

Verified OK.

10.6.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=6 x \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 305: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x x}{x^{2}} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-3 \ln (x)} \\
& =z_{1}\left(\frac{1}{x^{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{3}}\right)+c_{2}\left(\frac{1}{x^{3}}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+6 x y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{x^{3}} \\
& y_{2}=\frac{1}{x^{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & \frac{1}{x^{2}} \\
\frac{d}{d x}\left(\frac{1}{x^{3}}\right) & \frac{d}{d x}\left(\frac{1}{x^{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{x^{3}} & \frac{1}{x^{2}} \\
-\frac{3}{x^{4}} & -\frac{2}{x^{3}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{x^{3}}\right)\left(-\frac{2}{x^{3}}\right)-\left(\frac{1}{x^{2}}\right)\left(-\frac{3}{x^{4}}\right)
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Which simplifies to

$$
W=\frac{1}{x^{6}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{4 \mathrm{e}^{2 x}}{x^{2}}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 x^{2} \mathrm{e}^{2 x} d x
$$

Hence

$$
u_{1}=-\left(2 x^{2}-2 x+1\right) \mathrm{e}^{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{4 \mathrm{e}^{2 x}}{x^{3}}}{\frac{1}{x^{4}}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 x \mathrm{e}^{2 x} d x
$$

Hence

$$
u_{2}=(2 x-1) \mathrm{e}^{2 x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\left(-2 x^{2}+2 x-1\right) \mathrm{e}^{2 x} \\
& u_{2}=(2 x-1) \mathrm{e}^{2 x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\left(-2 x^{2}+2 x-1\right) \mathrm{e}^{2 x}}{x^{3}}+\frac{(2 x-1) \mathrm{e}^{2 x}}{x^{2}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x^{3}}+\frac{c_{2}}{x^{2}}\right)+\left(\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{2} x+c_{1}}{x^{3}}+\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} x+c_{1}}{x^{3}}+\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{2} x+c_{1}}{x^{3}}+\frac{\mathrm{e}^{2 x}(x-1)}{x^{3}}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(x^2*diff (y (x),x$2)+6*x*diff (y (x), x)+6*y (x)=4*exp (2*x),y(x), singsol=all)
```

$$
y(x)=\frac{(x-1) \mathrm{e}^{2 x}+c_{2} x-c_{1}}{x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 25
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[\mathrm{x}]+6 * \mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+6 * y[\mathrm{x}]==4 * \operatorname{Exp}[2 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{2 x}(x-1)+c_{2} x+c_{1}}{x^{3}}
$$

10.7 problem Problem 20

10.7.1 Solving as second order euler ode ode 2244
10.7.2 Solving as second order change of variable on x method 2 ode . 2248
10.7.3 Solving as second order change of variable on x method 1 ode . 2253
10.7.4 Solving as second order change of variable on y method 2 ode . 2258
10.7.5 Solving using Kovacic algorithm 2262

Internal problem ID [2808]
Internal file name [OUTPUT/2300_Sunday_June_05_2022_02_58_21_AM_59318423/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567
Problem number: Problem 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change_of__variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=\frac{x^{2}}{\ln (x)}
$$

10.7.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=\frac{x^{2}}{\ln (x)}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-3 r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-3 r+4=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=\frac{x^{2}}{\ln (x)}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 \ln (x) x
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 \ln (x) x)-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{4}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{1}{x} d x
$$

Hence

$$
u_{1}=-\ln (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{x^{4}}{\ln (x)}}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{\ln (x) x} d x
$$

Hence

$$
u_{2}=\ln (\ln (x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln (x) x^{2}+\ln (\ln (x)) \ln (x) x^{2}
$$

Which simplifies to

$$
y_{p}(x)=\ln (x) x^{2}(-1+\ln (\ln (x)))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x^{2}\left(\ln (x) \ln (\ln (x))+\left(c_{2}-1\right) \ln (x)+c_{1}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\ln (x) \ln (\ln (x))+\left(c_{2}-1\right) \ln (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(\ln (x) \ln (\ln (x))+\left(c_{2}-1\right) \ln (x)+c_{1}\right)
$$

Verified OK.

10.7.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{x^{6}} \\
& =\frac{4}{x^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{x^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{4}{x^{8}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x^{4}} \\
& y_{2}=\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & \frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}} \\
\frac{d}{d x}\left(\sqrt{x^{4}}\right) & \frac{d}{d x}\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & \frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}} \\
\frac{2 x^{3}}{\sqrt{x^{4}}} & \frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}
\end{array}\right|
$$

Therefore
$W=\left(\sqrt{x^{4}}\right)\left(\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}\right)-\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)\left(\frac{2 x^{3}}{\sqrt{x^{4}}}\right)$
Which simplifies to

$$
W=2 x^{3}
$$

Which simplifies to

$$
W=2 x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right) x^{2}}{\ln (x)}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{1}=-\int \frac{\ln (x)-\frac{\ln (2)}{2}}{x \ln (x)} d x
$$

Hence

$$
u_{1}=-\ln (x)+\frac{\ln (2) \ln (\ln (x))}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\sqrt{x^{4}} x^{2}}{\ln (x)}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{2}=\int \frac{1}{2 \ln (x) x} d x
$$

Hence

$$
u_{2}=\frac{\ln (\ln (x))}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\ln (x)+\frac{\ln (2) \ln (\ln (x))}{2}\right) \sqrt{x^{4}}+\frac{\ln (\ln (x))\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\ln (x) x^{2}(-1+\ln (\ln (x)))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}\right)+\left(\ln (x) x^{2}(-1+\ln (\ln (x)))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}+\ln (x) x^{2}(-1+\ln (\ln (x))) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}+\ln (x) x^{2}(-1+\ln (\ln (x)))
$$

Verified OK. $\{0<x\}$

10.7.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=\frac{x^{2}}{\ln (x)}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} x^{2}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=\frac{x^{2}}{\ln (x)}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x^{4}} \\
& y_{2}=\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & \frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}} \\
\frac{d}{d x}\left(\sqrt{x^{4}}\right) & \frac{d}{d x}\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & \frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}} \\
\frac{2 x^{3}}{\sqrt{x^{4}}} & \frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}
\end{array}\right|
$$

Therefore
$W=\left(\sqrt{x^{4}}\right)\left(\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}\right)-\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)\left(\frac{2 x^{3}}{\sqrt{x^{4}}}\right)$
Which simplifies to

$$
W=2 x^{3}
$$

Which simplifies to

$$
W=2 x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right) x^{2}}{\ln (x)}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{1}=-\int \frac{\ln (x)-\frac{\ln (2)}{2}}{x \ln (x)} d x
$$

Hence

$$
u_{1}=-\ln (x)+\frac{\ln (2) \ln (\ln (x))}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\sqrt{x^{4}} x^{2}}{\ln (x)}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{2}=\int \frac{1}{2 \ln (x) x} d x
$$

Hence

$$
u_{2}=\frac{\ln (\ln (x))}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\ln (x)+\frac{\ln (2) \ln (\ln (x))}{2}\right) \sqrt{x^{4}}+\frac{\ln (\ln (x))\left(\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}-\ln (2) \sqrt{x^{4}}\right)}{2}
$$

Which simplifies to

$$
y_{p}(x)=\ln (x) x^{2}(-1+\ln (\ln (x)))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}\right)+\left(\ln (x) x^{2}(-1+\ln (\ln (x)))\right) \\
& =\ln (x) x^{2}(-1+\ln (\ln (x)))+c_{1} x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(\ln (x)(-1+\ln (\ln (x)))+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\ln (x)(-1+\ln (\ln (x)))+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(\ln (x)(-1+\ln (\ln (x)))+c_{1}\right)
$$

Verified OK. $\{0<x\}$

10.7.4 Solving as second order change of variable on y method 2 ode

 This is second order non-homogeneous ODE. In standard form the ODE is$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=\frac{x^{2}}{\ln (x)}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x} & =0 \\
v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=\frac{x^{2}}{\ln (x)}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 \ln (x) x
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 \ln (x) x)-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{4}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{1}{x} d x
$$

Hence

$$
u_{1}=-\ln (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{x^{4}}{\ln (x)}}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{\ln (x) x} d x
$$

Hence

$$
u_{2}=\ln (\ln (x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln (x) x^{2}+\ln (\ln (x)) \ln (x) x^{2}
$$

Which simplifies to

$$
y_{p}(x)=\ln (x) x^{2}(-1+\ln (\ln (x)))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} \ln (x)+c_{2}\right) x^{2}\right)+\left(\ln (x) x^{2}(-1+\ln (\ln (x)))\right) \\
& =\ln (x) x^{2}(-1+\ln (\ln (x)))+\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(\ln (x) \ln (\ln (x))+\left(c_{1}-1\right) \ln (x)+c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\ln (x) \ln (\ln (x))+\left(c_{1}-1\right) \ln (x)+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(\ln (x) \ln (\ln (x))+\left(c_{1}-1\right) \ln (x)+c_{2}\right)
$$

Verified OK. $\{0<x\}$

10.7.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 306: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(\ln (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 \ln (x) x
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 \ln (x) x)-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{4}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{1}{x} d x
$$

Hence

$$
u_{1}=-\ln (x)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{x^{4}}{\ln (x)}}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{\ln (x) x} d x
$$

Hence

$$
u_{2}=\ln (\ln (x))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\ln (x) x^{2}+\ln (\ln (x)) \ln (x) x^{2}
$$

Which simplifies to

$$
y_{p}(x)=\ln (x) x^{2}(-1+\ln (\ln (x)))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}+c_{2} x^{2} \ln (x)\right)+\left(\ln (x) x^{2}(-1+\ln (\ln (x)))\right)
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+\ln (x) x^{2}(-1+\ln (\ln (x)))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+\ln (x) x^{2}(-1+\ln (\ln (x))) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+\ln (x) x^{2}(-1+\ln (\ln (x)))
$$

Verified OK. $\{0<x\}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 22

```
dsolve(x^2*diff(y(x),x$2)-3*x*diff (y(x), x)+4*y(x)=x^2/ln(x),y(x), singsol=all)
```

$$
y(x)=x^{2}\left(\ln (x) \ln (\ln (x))+\left(c_{1}-1\right) \ln (x)+c_{2}\right)
$$

Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 24
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]-3 * x * y$ ' $[x]+4 * y[x]==x^{\wedge} 2 / \log [x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}\left(\log (x)\left(\log (\log (x))-1+2 c_{2}\right)+c_{1}\right)
$$

10.8 problem Problem 21

10.8.1 Solving as second order euler ode ode 2271
10.8.2 Solving as second order change of variable on x method 2 ode . 2275
10.8.3 Solving as second order change of variable on y method 2 ode . 2281
10.8.4 Solving using Kovacic algorithm 2286

Internal problem ID [2809]
Internal file name [OUTPUT/2301_Sunday_June_05_2022_02_58_23_AM_79803279/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567
Problem number: Problem 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of__variable_on_x_method_2", "second_order_change_of__variable_on_y__method__2"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}-(2 m-1) x y^{\prime}+m^{2} y=x^{m} \ln (x)^{k}
$$

10.8.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=(-2 m+1) x, C=m^{2}, f(x)=x^{m} \ln (x)^{k}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+(-2 m+1) y^{\prime} x+m^{2} y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}(-2 m+1) x r x^{r-1}+m^{2} x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}(-2 m+1) r x^{r}+m^{2} x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)(-2 m+1) r+m^{2}=0
$$

Or

$$
\begin{equation*}
m^{2}-2 r m+r^{2}=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=m \\
& r_{2}=m
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x^{m}+c_{2} x^{m} \ln (x)
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+(-2 m+1) y^{\prime} x+m^{2} y=x^{m} \ln (x)^{k}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{m} \\
& y_{2}=x^{m} \ln (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{m} & x^{m} \ln (x) \\
\frac{d}{d x}\left(x^{m}\right) & \frac{d}{d x}\left(x^{m} \ln (x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{m} & x^{m} \ln (x) \\
\frac{x^{m} m}{x} & \frac{x^{m} m \ln (x)}{x}+\frac{x^{m}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{m}\right)\left(\frac{x^{m} m \ln (x)}{x}+\frac{x^{m}}{x}\right)-\left(x^{m} \ln (x)\right)\left(\frac{x^{m} m}{x}\right)
$$

Which simplifies to

$$
W=\frac{x^{2 m}}{x}
$$

Which simplifies to

$$
W=x^{2 m-1}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2 m} \ln (x) \ln (x)^{k}}{x^{2} x^{2 m-1}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)^{1+k}}{x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{2+k}}{2+k}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2 m} \ln (x)^{k}}{x^{2} x^{2 m-1}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)^{k}}{x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{1+k}}{1+k}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\ln (x)^{2+k} x^{m}}{2+k}+\frac{\ln (x)^{1+k} x^{m} \ln (x)}{1+k}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)^{2+k} x^{m}}{(2+k)(1+k)}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x^{m}\left(\frac{\ln (x)^{2} \ln (x)^{k}}{(2+k)(1+k)}+c_{1}+c_{2} \ln (x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{m}\left(\frac{\ln (x)^{2} \ln (x)^{k}}{(2+k)(1+k)}+c_{1}+c_{2} \ln (x)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{m}\left(\frac{\ln (x)^{2} \ln (x)^{k}}{(2+k)(1+k)}+c_{1}+c_{2} \ln (x)\right)
$$

Verified OK.

10.8.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+(-2 m x+x) y^{\prime}+m^{2} y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(-2 m x+x) y^{\prime}+m^{2} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{-2 m+1}{x} \\
& q(x)=\frac{m^{2}}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{-2 m+1}{x} d x\right)} d x \\
& =\int e^{(2 m-1) \ln (x)} d x \\
& =\int x^{2 m-1} d x \\
& =\frac{x^{2 m}}{2 m} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{m^{2}}{x^{2}}}{x^{4 m-2}} \\
& =m^{2} x^{-4 m} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+m^{2} x^{-4 m} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
m^{2} x^{-4 m}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}}\left(c_{1}+c_{2} \ln \left(\frac{x^{2 m}}{m}\right)-c_{2} \ln (2)\right)}{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}}\left(c_{1}+c_{2} \ln \left(\frac{x^{2 m}}{m}\right)-c_{2} \ln (2)\right)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{\frac{x^{2 m}}{m}} \\
& y_{2}=\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln \left(\frac{x^{2 m}}{m}\right)}{2}-\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln (2)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{\frac{x^{2 m}}{m}} & \frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln \left(\frac{x^{2 m}}{m}\right)}{2}-\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln (2)}{2} \\
\frac{d}{d x}\left(\sqrt{\frac{x^{2 m}}{m}}\right) & \frac{d}{d x}\left(\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln \left(\frac{x^{2 m}}{m}\right)}{2}-\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln (2)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{\frac{x^{2 m}}{m}} & \frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln \left(\frac{x^{2 m}}{m}\right)}{2}-\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln (2)}{2} \\
\frac{x^{2 m}}{\sqrt{\frac{x^{2 m}}{m}} x} & \frac{\sqrt{2} \ln \left(\frac{x^{2 m}}{m}\right) x^{2 m}}{2 \sqrt{\frac{x^{2 m}}{m}} x}+\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} m}{x}-\frac{\sqrt{2} \ln (2) x^{2 m}}{2 \sqrt{\frac{x^{2 m}}{m}} x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\sqrt{\frac{x^{2 m}}{m}}\right)\left(\frac{\sqrt{2} \ln \left(\frac{x^{2 m}}{m}\right) x^{2 m}}{2 \sqrt{\frac{x^{2 m}}{m}} x}+\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} m}{x}-\frac{\sqrt{2} \ln (2) x^{2 m}}{2 \sqrt{\frac{x^{2 m}}{m}} x}\right) \\
& -\left(\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln \left(\frac{x^{2 m}}{m}\right)}{2}-\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln (2)}{2}\right)\left(\frac{x^{2 m}}{\sqrt{\frac{x^{2 m}}{m}} x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\frac{\sqrt{2} x^{2 m}}{x}
$$

Which simplifies to

$$
W=x^{2 m-1} \sqrt{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln \left(\frac{x^{2 m}}{m}\right)}{2}-\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln (2)}{2}\right) x^{m} \ln (x)^{k}}{x^{2} x^{2 m-1} \sqrt{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{-1-m} \ln (x)^{k} \sqrt{\frac{x^{2 m}}{m}}\left(-\ln (2)+\ln \left(\frac{x^{2 m}}{m}\right)\right)}{2} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\alpha^{-1-m} \ln (\alpha)^{k} \sqrt{\frac{\alpha^{2 m}}{m}}\left(-\ln (2)+\ln \left(\frac{\alpha^{2 m}}{m}\right)\right)}{2} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{\frac{x^{2 m}}{m}} x^{m} \ln (x)^{k}}{x^{2} x^{2 m-1} \sqrt{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sqrt{2} x^{-1-m} \ln (x)^{k} \sqrt{\frac{x^{2 m}}{m}}}{2} d x
$$

Hence

$$
u_{2}=\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} x^{-m} \ln (x) \ln (x)^{k}}{2+2 k}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\left(\int_{0}^{x} \alpha^{-1-m} \ln (\alpha)^{k} \sqrt{\frac{\alpha^{2 m}}{m}}\left(-\ln (2)+\ln \left(\frac{\alpha^{2 m}}{m}\right)\right) d \alpha\right)}{2} \\
& u_{2}=\frac{\sqrt{2} \ln (x)^{1+k} x^{-m} \sqrt{\frac{x^{2 m}}{m}}}{2+2 k}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\frac{\left(\int_{0}^{x} \alpha^{-1-m} \ln (\alpha)^{k} \sqrt{\frac{\alpha^{2 m}}{m}}\left(-\ln (2)+\ln \left(\frac{\alpha^{2 m}}{m}\right)\right) d \alpha\right) \sqrt{\frac{x^{2 m}}{m}}}{2} \\
& +\frac{\sqrt{2} \ln (x)^{1+k} x^{-m} \sqrt{\frac{x^{2 m}}{m}}\left(\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln \left(\frac{x^{2 m}}{m}\right)}{2}-\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}} \ln (2)}{2}\right)}{2+2 k}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x) \\
& =\frac{\sqrt{\frac{x^{2 m}}{m}} m(1+k)\left(\int_{0}^{x} \alpha^{-1-m} \ln (\alpha)^{k} \sqrt{\frac{\alpha^{2 m}}{m}}\left(\ln (2)-\ln \left(\frac{\alpha^{2 m}}{m}\right)\right) d \alpha\right)+\ln (x)^{1+k} x^{m}\left(-\ln (2)+\ln \left(\frac{x^{2 m}}{m}\right)\right)}{2 m(1+k)}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}}\left(c_{1}+c_{2} \ln \left(\frac{x^{2 m}}{m}\right)-c_{2} \ln (2)\right)}{2}\right) \\
& +\left(\frac{\sqrt{\frac{x^{2 m}}{m}} m(1+k)\left(\int_{0}^{x} \alpha^{-1-m} \ln (\alpha)^{k} \sqrt{\frac{\alpha^{2 m}}{m}}\left(\ln (2)-\ln \left(\frac{\alpha^{2 m}}{m}\right)\right) d \alpha\right)+\ln (x)^{1+k} x^{m}(-\ln (2)+\ln (}{2 m(1+k)}\right.
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y & =\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}}\left(c_{1}+c_{2} \ln \left(\frac{x^{2 m}}{m}\right)-c_{2} \ln (2)\right)}{2} \\
& +\frac{\sqrt{\frac{x^{2 m}}{m}} m(1+k)\left(\int_{0}^{x} \alpha^{-1-m} \ln (\alpha)^{k} \sqrt{\frac{\alpha^{2 m}}{m}}\left(\ln (2)-\ln \left(\frac{\alpha^{2 m}}{m}\right)\right) d \alpha\right)+\ln (x)^{1+k} x^{m}\left(-\ln (2)+\ln \left(\frac{x^{2 m}}{m}\right.\right.}{2 m(1+k)}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y & =\frac{\sqrt{2} \sqrt{\frac{x^{2 m}}{m}}\left(c_{1}+c_{2} \ln \left(\frac{x^{2 m}}{m}\right)-c_{2} \ln (2)\right)}{2} \\
& +\frac{\sqrt{\frac{x^{2 m}}{m}} m(1+k)\left(\int_{0}^{x} \alpha^{-1-m} \ln (\alpha)^{k} \sqrt{\frac{\alpha^{2 m}}{m}}\left(\ln (2)-\ln \left(\frac{\alpha^{2 m}}{m}\right)\right) d \alpha\right)+\ln (x)^{1+k} x^{m}\left(-\ln (2)+\ln \left(\frac{x^{2 m}}{m}\right.\right.}{2 m(1+k)}
\end{aligned}
$$

Verified OK.

10.8.3 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-2 m x+x, C=m^{2}, f(x)=x^{m} \ln (x)^{k}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+(-2 m x+x) y^{\prime}+m^{2} y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(-2 m x+x) y^{\prime}+m^{2} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{-2 m+1}{x} \\
& q(x)=\frac{m^{2}}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n(-2 m+1)}{x^{2}}+\frac{m^{2}}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=m \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2 m}{x}+\frac{-2 m+1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{m} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{m}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+(-2 m x+x) y^{\prime}+m^{2} y=x^{m} \ln (x)^{k}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{m} \\
& y_{2}=x^{m} \ln (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{m} & x^{m} \ln (x) \\
\frac{d}{d x}\left(x^{m}\right) & \frac{d}{d x}\left(x^{m} \ln (x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{m} & x^{m} \ln (x) \\
\frac{x^{m} m}{x} & \frac{x^{m} m \ln (x)}{x}+\frac{x^{m}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{m}\right)\left(\frac{x^{m} m \ln (x)}{x}+\frac{x^{m}}{x}\right)-\left(x^{m} \ln (x)\right)\left(\frac{x^{m} m}{x}\right)
$$

Which simplifies to

$$
W=\frac{x^{2 m}}{x}
$$

Which simplifies to

$$
W=x^{2 m-1}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2 m} \ln (x) \ln (x)^{k}}{x^{2} x^{2 m-1}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)^{1+k}}{x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{2+k}}{2+k}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2 m} \ln (x)^{k}}{x^{2} x^{2 m-1}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)^{k}}{x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{1+k}}{1+k}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\ln (x)^{2+k} x^{m}}{2+k}+\frac{\ln (x)^{1+k} x^{m} \ln (x)}{1+k}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)^{2+k} x^{m}}{(2+k)(1+k)}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} \ln (x)+c_{2}\right) x^{m}\right)+\left(\frac{\ln (x)^{2+k} x^{m}}{(2+k)(1+k)}\right) \\
& =\frac{\ln (x)^{2+k} x^{m}}{(2+k)(1+k)}+\left(c_{1} \ln (x)+c_{2}\right) x^{m}
\end{aligned}
$$

Which simplifies to

$$
y=x^{m}\left(\frac{\ln (x)^{2} \ln (x)^{k}}{(2+k)(1+k)}+c_{1} \ln (x)+c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{m}\left(\frac{\ln (x)^{2} \ln (x)^{k}}{(2+k)(1+k)}+c_{1} \ln (x)+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{m}\left(\frac{\ln (x)^{2} \ln (x)^{k}}{(2+k)(1+k)}+c_{1} \ln (x)+c_{2}\right)
$$

Verified OK.

10.8.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+(-2 m x+x) y^{\prime}+m^{2} y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-2 m x+x \tag{3}\\
& C=m^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 307: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 m x+x}{x^{2}} d x} \\
& =z_{1} e^{\frac{(2 m-1) \ln (x)}{2}} \\
& =z_{1}\left(x^{m-\frac{1}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{m}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 m x+x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{(2 m-1) \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{m}\right)+c_{2}\left(x^{m}(\ln (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+(-2 m x+x) y^{\prime}+m^{2} y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x^{m}+c_{2} x^{m} \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{m} \\
& y_{2}=x^{m} \ln (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{m} & x^{m} \ln (x) \\
\frac{d}{d x}\left(x^{m}\right) & \frac{d}{d x}\left(x^{m} \ln (x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{m} & x^{m} \ln (x) \\
\frac{x^{m} m}{x} & \frac{x^{m} m \ln (x)}{x}+\frac{x^{m}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{m}\right)\left(\frac{x^{m} m \ln (x)}{x}+\frac{x^{m}}{x}\right)-\left(x^{m} \ln (x)\right)\left(\frac{x^{m} m}{x}\right)
$$

Which simplifies to

$$
W=\frac{x^{2 m}}{x}
$$

Which simplifies to

$$
W=x^{2 m-1}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2 m} \ln (x) \ln (x)^{k}}{x^{2} x^{2 m-1}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)^{1+k}}{x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{2+k}}{2+k}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2 m} \ln (x)^{k}}{x^{2} x^{2 m-1}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)^{k}}{x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{1+k}}{1+k}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\ln (x)^{2+k} x^{m}}{2+k}+\frac{\ln (x)^{1+k} x^{m} \ln (x)}{1+k}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)^{2+k} x^{m}}{(2+k)(1+k)}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{m}+c_{2} x^{m} \ln (x)\right)+\left(\frac{\ln (x)^{2+k} x^{m}}{(2+k)(1+k)}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(c_{1}+c_{2} \ln (x)\right) x^{m}+\frac{\ln (x)^{2+k} x^{m}}{(2+k)(1+k)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1}+c_{2} \ln (x)\right) x^{m}+\frac{\ln (x)^{2+k} x^{m}}{(2+k)(1+k)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1}+c_{2} \ln (x)\right) x^{m}+\frac{\ln (x)^{2+k} x^{m}}{(2+k)(1+k)}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

```
dsolve(x^2*diff(y(x),x$2)-(2*m-1)*x*diff (y(x),x)+m^2*y(x)=x^m*(ln (x))^k,y(x), singsol=all)
```

$$
y(x)=x^{m}\left(c_{2}+\ln (x) c_{1}+\frac{\ln (x)^{2} \ln (x)^{k}}{k^{2}+3 k+2}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.064 (sec). Leaf size: 35

```
DSolve[x^2*y''[x]-(2*m-1)*x*y'[x]+m^2*y[x]==x^m*(Log[x])^k,y[x],x, IncludeSingularSolutions
```

$$
y(x) \rightarrow x^{m}\left(\frac{\log ^{k+2}(x)}{k^{2}+3 k+2}+c_{2} m \log (x)+c_{1}\right)
$$

10.9 problem Problem 22

10.9.1 Existence and uniqueness analysis 2296
10.9.2 Solving as second order euler ode ode 2296
10.9.3 Solving as second order change of variable on x method 2 ode . 2299
10.9.4 Solving as second order change of variable on x method 1 ode . 2303
10.9.5 Solving as second order change of variable on y method 2 ode . 2306
10.9.6 Solving using Kovacic algorithm 2310
10.9.7 Maple step by step solution . 2316

Internal problem ID [2810]
Internal file name [OUTPUT/2302_Sunday_June_05_2022_02_58_26_AM_54237912/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567
Problem number: Problem 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cariable_on_x_method_1", "second_order_change__of__variable_on_x_method__2", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0
$$

With initial conditions

$$
\left[y(1)=\sqrt{2}, y^{\prime}(1)=3 \sqrt{2}\right]
$$

10.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{1}{x} \\
q(x) & =\frac{5}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{5 y}{x^{2}}=0
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{5}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

10.9.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-x r x^{r-1}+5 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-r x^{r}+5 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-r+5=0
$$

Or

$$
\begin{equation*}
r^{2}-2 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1-2 i \\
& r_{2}=1+2 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=1$ and $\beta=-2$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=1, \beta=-2$, the above becomes

$$
y=x^{1}\left(c_{1} e^{-2 i \ln (x)}+c_{2} e^{2 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=x\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\sqrt{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
\sqrt{2}=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))+x\left(-\frac{2 c_{1} \sin (2 \ln (x))}{x}+\frac{2 c_{2} \cos (2 \ln (x))}{x}\right)
$$

substituting $y^{\prime}=3 \sqrt{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
3 \sqrt{2}=c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\sqrt{2} \\
& c_{2}=\sqrt{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\sqrt{2} \cos (2 \ln (x)) x+\sin (2 \ln (x)) \sqrt{2} x
$$

Which simplifies to

$$
y=\sqrt{2}(\cos (2 \ln (x))+\sin (2 \ln (x))) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{2}(\cos (2 \ln (x))+\sin (2 \ln (x))) x \tag{1}
\end{equation*}
$$

Figure 311: Solution plot

Verification of solutions

$$
y=\sqrt{2}(\cos (2 \ln (x))+\sin (2 \ln (x))) x
$$

Verified OK.

10.9.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{5}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{\ln (x)} d x \\
& =\int x d x \\
& =\frac{x^{2}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{5}{x^{2}}}{x^{2}} \\
& =\frac{5}{x^{4}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
& \frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau)=0 \\
& \frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{x^{4}}=0
\end{aligned}
$$

But in terms of τ

$$
\frac{5}{x^{4}}=\frac{5}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+5 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+5 \tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+5 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+5=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
r_{1} & =\frac{1}{2}-i \\
r_{2} & =\frac{1}{2}+i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-1$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-1$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-i \ln (\tau)}+c_{2} e^{i \ln (\tau)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos (\ln (\tau))+c_{2} \sin (\ln (\tau))\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2} x\left(c_{1} \cos (-\ln (2)+2 \ln (x))+c_{2} \sin (-\ln (2)+2 \ln (x))\right)}{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{\sqrt{2} x\left(c_{1} \cos (-\ln (2)+2 \ln (x))+c_{2} \sin (-\ln (2)+2 \ln (x))\right)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\sqrt{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
\sqrt{2}=\frac{\left(c_{1} \cos (\ln (2))-c_{2} \sin (\ln (2))\right) \sqrt{2}}{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=\frac{\sqrt{2}\left(c_{1} \cos (-\ln (2)+2 \ln (x))+c_{2} \sin (-\ln (2)+2 \ln (x))\right)}{2}+\frac{\sqrt{2} x\left(-\frac{2 c_{1} \sin (-\ln (2)+2 \ln (x))}{x}+\frac{2 c_{2} \cos (-\ln }{2}\right.}{2}$
substituting $y^{\prime}=3 \sqrt{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
3 \sqrt{2}=\frac{\sqrt{2}\left(\left(c_{1}+2 c_{2}\right) \cos (\ln (2))+2 \sin (\ln (2))\left(c_{1}-\frac{c_{2}}{2}\right)\right)}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \cos (\ln (2))+2 \sin (\ln (2)) \\
& c_{2}=2 \cos (\ln (2))-2 \sin (\ln (2))
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\sqrt{2} \cos (2 \ln (x)) x+\sin (2 \ln (x)) \sqrt{2} x
$$

Which simplifies to

$$
y=\sqrt{2}(\cos (2 \ln (x))+\sin (2 \ln (x))) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{2}(\cos (2 \ln (x))+\sin (2 \ln (x))) x \tag{1}
\end{equation*}
$$

Figure 312: Solution plot

Verification of solutions

$$
y=\sqrt{2}(\cos (2 \ln (x))+\sin (2 \ln (x))) x
$$

Verified OK.

10.9.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{5}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{5}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{5}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{1}{x} \frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{2 c \sqrt{5}}{5}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{2 c \sqrt{5}\left(\frac{d}{d \tau} y(\tau)\right)}{5}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{\sqrt{5} c \tau}{5}}\left(c_{1} \cos \left(\frac{2 \sqrt{5} c \tau}{5}\right)+c_{2} \sin \left(\frac{2 \sqrt{5} c \tau}{5}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{5} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\sqrt{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
\sqrt{2}=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))+x\left(-\frac{2 c_{1} \sin (2 \ln (x))}{x}+\frac{2 c_{2} \cos (2 \ln (x))}{x}\right)
$$

substituting $y^{\prime}=3 \sqrt{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
3 \sqrt{2}=c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\sqrt{2} \\
& c_{2}=\sqrt{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\sqrt{2} \cos (2 \ln (x)) x+\sin (2 \ln (x)) \sqrt{2} x
$$

Which simplifies to

$$
y=\sqrt{2}(\cos (2 \ln (x))+\sin (2 \ln (x))) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{2}(\cos (2 \ln (x))+\sin (2 \ln (x))) x \tag{1}
\end{equation*}
$$

Figure 313: Solution plot

Verification of solutions

$$
y=\sqrt{2}(\cos (2 \ln (x))+\sin (2 \ln (x))) x
$$

Verified OK.
10.9.5 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{5}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{n}{x^{2}}+\frac{5}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1+2 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2+4 i}{x}-\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+4 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+4 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-4 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-4 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-4 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-4 i}{x} d x \\
\ln (u) & =(-1-4 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-4 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-4 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-4 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-4 i}}{4}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{1+2 i} \\
& =x^{1+2 i} c_{2}+\frac{i x^{1-2 i} c_{1}}{4}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{1+2 i} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\sqrt{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
\sqrt{2}=\frac{i c_{1}}{4}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} x^{-4 i} x^{1+2 i}}{x}+\frac{(1+2 i)\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{1+2 i}}{x}
$$

substituting $y^{\prime}=3 \sqrt{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
3 \sqrt{2}=\left(\frac{1}{2}+\frac{i}{4}\right) c_{1}+(1+2 i) c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=(2-2 i) \sqrt{2} \\
& c_{2}=\left(\frac{1}{2}-\frac{i}{2}\right) \sqrt{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{i x^{1+2 i} \sqrt{2} x^{-4 i}}{2}-\frac{i x^{1+2 i} \sqrt{2}}{2}+\frac{x^{1+2 i} \sqrt{2} x^{-4 i}}{2}+\frac{\sqrt{2} x^{1+2 i}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left((1+i) x^{1-2 i}+(1-i) x^{1+2 i}\right) \sqrt{2}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left((1+i) x^{1-2 i}+(1-i) x^{1+2 i}\right) \sqrt{2}}{2}
$$

Verified OK.

10.9.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-x y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-x \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-17}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-17 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{17}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 308: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{17}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{17}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{17}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}-2 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-2 i-\left(\frac{1}{2}-2 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-2 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-2 i}{x} \\
& =\frac{\frac{1}{2}-2 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-2 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+2 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-2 i}{x}\right)^{2}-\left(-\frac{17}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-2 i} x d x \\
& =x^{\frac{1}{2}-2 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1-x}{x^{2}} d x} \\
& =z_{1} e^{\frac{\ln (x)}{2}} \\
& =z_{1}(\sqrt{x})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{1-2 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{4 i}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{1-2 i}\right)+c_{2}\left(x^{1-2 i}\left(-\frac{i x^{4 i}}{4}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=x^{1-2 i} c_{1}-\frac{i c_{2} x^{1+2 i}}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\sqrt{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
\sqrt{2}=c_{1}-\frac{i c_{2}}{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{(1-2 i) x^{1-2 i} c_{1}}{x}+\frac{\left(\frac{1}{2}-\frac{i}{4}\right) c_{2} x^{1+2 i}}{x}
$$

substituting $y^{\prime}=3 \sqrt{2}$ and $x=1$ in the above gives

$$
\begin{equation*}
3 \sqrt{2}=(1-2 i) c_{1}+\left(\frac{1}{2}-\frac{i}{4}\right) c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) \sqrt{2} \\
& c_{2}=(2+2 i) \sqrt{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{i x^{1-2 i} \sqrt{2}}{2}-\frac{i x^{1+2 i} \sqrt{2}}{2}+\frac{x^{1-2 i} \sqrt{2}}{2}+\frac{\sqrt{2} x^{1+2 i}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left((1+i) x^{1-2 i}+(1-i) x^{1+2 i}\right) \sqrt{2}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left((1+i) x^{1-2 i}+(1-i) x^{1+2 i}\right) \sqrt{2}}{2}
$$

Verified OK.

10.9.7 Maple step by step solution

Let's solve

$$
\left[x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0, y(1)=\sqrt{2},\left.y^{\prime}\right|_{\{x=1\}}=3 \sqrt{2}\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative
$y^{\prime \prime}=\frac{y^{\prime}}{x}-\frac{5 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{5 y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}-x y^{\prime}+5 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

Substitute the change of variables back into the ODE

$$
x^{2}\left(\frac{d^{2}}{d t^{2} y(t)} x^{2}-\frac{d}{d t} y(t)\right)-\frac{d}{d t} y(t)+5 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-2 \frac{d}{d t} y(t)+5 y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-2 r+5=0
$$

- Use quadratic formula to solve for r
$r=\frac{2 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(1-2 \mathrm{I}, 1+2 \mathrm{I})$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{t} \cos (2 t)$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{t} \sin (2 t)$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{t} \cos (2 t)+c_{2} \mathrm{e}^{t} \sin (2 t)$
- \quad Change variables back using $t=\ln (x)$
$y=c_{1} x \cos (2 \ln (x))+\sin (2 \ln (x)) c_{2} x$
- \quad Simplify
$y=x\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)$
Check validity of solution $y=x\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)$
- Use initial condition $y(1)=\sqrt{2}$
$\sqrt{2}=c_{1}$
- Compute derivative of the solution
$y^{\prime}=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))+x\left(-\frac{2 c_{1} \sin (2 \ln (x))}{x}+\frac{2 c_{2} \cos (2 \ln (x))}{x}\right)$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=3 \sqrt{2}$
$3 \sqrt{2}=c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=\sqrt{2}, c_{2}=\sqrt{2}\right\}$
- Substitute constant values into general solution and simplify
$y=\sqrt{2}(\cos (2 \ln (x))+\sin (2 \ln (x))) x$
- \quad Solution to the IVP

$$
y=\sqrt{2}(\cos (2 \ln (x))+\sin (2 \ln (x))) x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

```
dsolve([x^2*diff(y(x),x$2)-x*diff (y(x),x)+5*y(x)=0,y(1) = sqrt(2), D(y)(1) = 3*sqrt(2)],y(x)
```

$$
y(x)=\sqrt{2} x(\sin (2 \ln (x))+\cos (2 \ln (x)))
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 23
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime}\right.\right.$ ' $[x]-x * y$ ' $[x]+5 * y[x]==0,\{y[1]==\operatorname{Sqrt}[2], y$ ' $\left.[1]==3 * \operatorname{Sqrt}[2]\}\right\}, y[x], x$, IncludeSingula

$$
y(x) \rightarrow \sqrt{2} x(\sin (2 \log (x))+\cos (2 \log (x)))
$$

10.10 problem Problem 23

10.10.1 Existence and uniqueness analysis 2320
10.10.2 Solving as second order euler ode ode 2320
10.10.3 Solving as second order change of variable on x method 2 ode . 2323
10.10.4 Solving as second order change of variable on x method 1 ode . 2327
10.10.5 Solving as second order change of variable on y method 2 ode . 2330
10.10.6 Solving using Kovacic algorithm 2333
10.10.7 Maple step by step solution . 2339

Internal problem ID [2811]
Internal file name [OUTPUT/2303_Sunday_June_05_2022_02_58_28_AM_51473416/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.8, A Differential Equation with Nonconstant Coefficients. page 567
Problem number: Problem 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of__variable_on_x_method__2", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(
    x)]•]
```

$$
t^{2} y^{\prime \prime}+y^{\prime} t+25 y=0
$$

With initial conditions

$$
\left[y(1)=\frac{3 \sqrt{3}}{2}, y^{\prime}(1)=\frac{15}{2}\right]
$$

10.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{1}{t} \\
q(t) & =\frac{25}{t^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{y^{\prime}}{t}+\frac{25 y}{t^{2}}=0
$$

The domain of $p(t)=\frac{1}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=1$ is inside this domain. The domain of $q(t)=\frac{25}{t^{2}}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=1$ is also inside this domain. Hence solution exists and is unique.

10.10.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}+t r t^{r-1}+25 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}+r t^{r}+25 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)+r+25=0
$$

Or

$$
\begin{equation*}
r^{2}+25=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-5 i \\
& r_{2}=5 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=0$ and $\beta=-5$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} t^{r_{1}}+c_{2} t^{r_{2}} \\
& =c_{1} t^{\alpha+i \beta}+c_{2} t^{\alpha-i \beta} \\
& =t^{\alpha}\left(c_{1} t^{i \beta}+c_{2} t^{-i \beta}\right) \\
& =t^{\alpha}\left(c_{1} e^{\ln \left(t^{i \beta}\right)}+c_{2} e^{\ln \left(t^{-i \beta}\right)}\right) \\
& =t^{\alpha}\left(c_{1} e^{i(\beta \ln t)}+c_{2} e^{-i(\beta \ln t)}\right)
\end{aligned}
$$

Using the values for $\alpha=0, \beta=-5$, the above becomes

$$
y=t^{0}\left(c_{1} e^{-5 i \ln (t)}+c_{2} e^{5 i \ln (t)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=c_{1} \cos (5 \ln (t))+c_{2} \sin (5 \ln (t))
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (5 \ln (t))+c_{2} \sin (5 \ln (t)) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{3 \sqrt{3}}{2}$ and $t=1$ in the above gives

$$
\begin{equation*}
\frac{3 \sqrt{3}}{2}=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{5 c_{1} \sin (5 \ln (t))}{t}+\frac{5 c_{2} \cos (5 \ln (t))}{t}
$$

substituting $y^{\prime}=\frac{15}{2}$ and $t=1$ in the above gives

$$
\begin{equation*}
\frac{15}{2}=5 c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{3 \sqrt{3}}{2} \\
& c_{2}=\frac{3}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 \cos (5 \ln (t)) \sqrt{3}}{2}+\frac{3 \sin (5 \ln (t))}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \cos (5 \ln (t)) \sqrt{3}}{2}+\frac{3 \sin (5 \ln (t))}{2} \tag{1}
\end{equation*}
$$

Figure 314: Solution plot

Verification of solutions

$$
y=\frac{3 \cos (5 \ln (t)) \sqrt{3}}{2}+\frac{3 \sin (5 \ln (t))}{2}
$$

Verified OK.
10.10.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+y^{\prime} t+25 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{1}{t} \\
& q(t)=\frac{25}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{t} d t\right)} d t \\
& =\int e^{-\ln (t)} d t \\
& =\int \frac{1}{t} d t \\
& =\ln (t) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{25}{t^{2}}}{\frac{1}{t^{2}}} \\
& =25 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+25 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=25$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+25 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+25=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=25$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(25)} \\
& = \pm 5 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+5 i \\
& \lambda_{2}=-5 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=5 i \\
& \lambda_{2}=-5 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=5$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (5 \tau)+c_{2} \sin (5 \tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (5 \tau)+c_{2} \sin (5 \tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (5 \ln (t))+c_{2} \sin (5 \ln (t))
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (5 \ln (t))+c_{2} \sin (5 \ln (t)) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{3 \sqrt{3}}{2}$ and $t=1$ in the above gives

$$
\begin{equation*}
\frac{3 \sqrt{3}}{2}=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{5 c_{1} \sin (5 \ln (t))}{t}+\frac{5 c_{2} \cos (5 \ln (t))}{t}
$$

substituting $y^{\prime}=\frac{15}{2}$ and $t=1$ in the above gives

$$
\begin{equation*}
\frac{15}{2}=5 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{3 \sqrt{3}}{2} \\
& c_{2}=\frac{3}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 \cos (5 \ln (t)) \sqrt{3}}{2}+\frac{3 \sin (5 \ln (t))}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \cos (5 \ln (t)) \sqrt{3}}{2}+\frac{3 \sin (5 \ln (t))}{2} \tag{1}
\end{equation*}
$$

Figure 315: Solution plot

Verification of solutions

$$
y=\frac{3 \cos (5 \ln (t)) \sqrt{3}}{2}+\frac{3 \sin (5 \ln (t))}{2}
$$

Verified OK.
10.10.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+y^{\prime} t+25 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{1}{t} \\
q(t) & =\frac{25}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{5 \sqrt{\frac{1}{t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{5}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{5}{c \sqrt{\frac{1}{t^{2}} t^{3}}}+\frac{1}{t} \frac{5 \sqrt{\frac{1}{t^{2}}}}{c}}{\left(\frac{5 \sqrt{\frac{1}{t^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int 5 \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{5 \sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (5 \ln (t))+c_{2} \sin (5 \ln (t))
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (5 \ln (t))+c_{2} \sin (5 \ln (t)) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{3 \sqrt{3}}{2}$ and $t=1$ in the above gives

$$
\begin{equation*}
\frac{3 \sqrt{3}}{2}=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{5 c_{1} \sin (5 \ln (t))}{t}+\frac{5 c_{2} \cos (5 \ln (t))}{t}
$$

substituting $y^{\prime}=\frac{15}{2}$ and $t=1$ in the above gives

$$
\begin{equation*}
\frac{15}{2}=5 c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{3 \sqrt{3}}{2} \\
& c_{2}=\frac{3}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 \cos (5 \ln (t)) \sqrt{3}}{2}+\frac{3 \sin (5 \ln (t))}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \cos (5 \ln (t)) \sqrt{3}}{2}+\frac{3 \sin (5 \ln (t))}{2} \tag{1}
\end{equation*}
$$

Figure 316: Solution plot

Verification of solutions

$$
y=\frac{3 \cos (5 \ln (t)) \sqrt{3}}{2}+\frac{3 \sin (5 \ln (t))}{2}
$$

Verified OK.

10.10.5 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+y^{\prime} t+25 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{1}{t} \\
& q(t)=\frac{25}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n}{t^{2}}+\frac{25}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=5 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\left(\frac{10 i}{t}+\frac{1}{t}\right) v^{\prime}(t) & =0 \\
v^{\prime \prime}(t)+\frac{(1+10 i) v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{(1+10 i) u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{(-1-10 i) u}{t}
\end{aligned}
$$

Where $f(t)=\frac{-1-10 i}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-10 i}{t} d t \\
\int \frac{1}{u} d u & =\int \frac{-1-10 i}{t} d t \\
\ln (u) & =(-1-10 i) \ln (t)+c_{1} \\
u & =\mathrm{e}^{(-1-10 i) \ln (t)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-10 i) \ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{1} t^{-10 i}}{t}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =\frac{i c_{1} t^{-10 i}}{10}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(\frac{i c_{1} t^{-10 i}}{10}+c_{2}\right) t^{5 i} \\
& =t^{5 i} c_{2}+\frac{i t^{-5 i} c_{1}}{10}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(\frac{i c_{1} t^{-10 i}}{10}+c_{2}\right) t^{5 i} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{3 \sqrt{3}}{2}$ and $t=1$ in the above gives

$$
\begin{equation*}
\frac{3 \sqrt{3}}{2}=\frac{i c_{1}}{10}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} t^{-10 i} t^{5 i}}{t}+\frac{5 i\left(\frac{i c_{1} t^{-10 i}}{10}+c_{2}\right) t^{5 i}}{t}
$$

substituting $y^{\prime}=\frac{15}{2}$ and $t=1$ in the above gives

$$
\begin{equation*}
\frac{15}{2}=\frac{c_{1}}{2}+5 i c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{15}{2}-\frac{15 i \sqrt{3}}{2} \\
& c_{2}=-\frac{3 i}{4}+\frac{3 \sqrt{3}}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 i t^{5 i} t^{-10 i}}{4}+\frac{3 t^{5 i} \sqrt{3} t^{-10 i}}{4}-\frac{3 i t^{5 i}}{4}+\frac{3 t^{5 i} \sqrt{3}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(3 i+3 \sqrt{3}) t^{-5 i}}{4}-\frac{3 t^{5 i}(i-\sqrt{3})}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(3 i+3 \sqrt{3}) t^{-5 i}}{4}-\frac{3 t^{5 i}(i-\sqrt{3})}{4}
$$

Verified OK.

10.10.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}+y^{\prime} t+25 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=t \tag{3}\\
& C=25
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-101}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-101 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{101}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 310: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{101}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{101}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+5 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-5 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{101}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{101}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+5 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-5 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{101}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+5 i$	$\frac{1}{2}-5 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+5 i$	$\frac{1}{2}-5 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}-5 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-5 i-\left(\frac{1}{2}-5 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-5 i}{t}+(-)(0) \\
& =\frac{\frac{1}{2}-5 i}{t} \\
& =\frac{\frac{1}{2}-5 i}{t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-5 i}{t}\right)(0)+\left(\left(\frac{-\frac{1}{2}+5 i}{t^{2}}\right)+\left(\frac{\frac{1}{2}-5 i}{t}\right)^{2}-\left(-\frac{101}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2}-5 i} t d t \\
& =t^{\frac{1}{2}-5 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{t}{t^{2}} d t} \\
& =z_{1} e^{-\frac{\ln (t)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{t}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t^{-5 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-\ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-\frac{i t^{10 i}}{10}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(t^{-5 i}\right)+c_{2}\left(t^{-5 i}\left(-\frac{i t^{10 i}}{10}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=t^{-5 i} c_{1}-\frac{i c_{2} t^{5 i}}{10} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{3 \sqrt{3}}{2}$ and $t=1$ in the above gives

$$
\begin{equation*}
\frac{3 \sqrt{3}}{2}=c_{1}-\frac{i c_{2}}{10} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{5 i t^{-5 i} c_{1}}{t}+\frac{c_{2} t^{5 i}}{2 t}
$$

substituting $y^{\prime}=\frac{15}{2}$ and $t=1$ in the above gives

$$
\begin{equation*}
\frac{15}{2}=-5 i c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{3 i}{4}+\frac{3 \sqrt{3}}{4} \\
& c_{2}=\frac{15}{2}+\frac{15 i \sqrt{3}}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 i t^{-5 i}}{4}+\frac{3 \sqrt{3} t^{-5 i}}{4}-\frac{3 i t^{5 i}}{4}+\frac{3 t^{5 i} \sqrt{3}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(3 i+3 \sqrt{3}) t^{-5 i}}{4}-\frac{3 t^{5 i}(i-\sqrt{3})}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(3 i+3 \sqrt{3}) t^{-5 i}}{4}-\frac{3 t^{5 i}(i-\sqrt{3})}{4}
$$

Verified OK.

10.10.7 Maple step by step solution

Let's solve

$$
\left[t^{2} y^{\prime \prime}+y^{\prime} t+25 y=0, y(1)=\frac{3 \sqrt{3}}{2},\left.y^{\prime}\right|_{\{t=1\}}=\frac{15}{2}\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{t}-\frac{25 y}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{t}+\frac{25 y}{t^{2}}=0$
- Multiply by denominators of the ODE

$$
t^{2} y^{\prime \prime}+y^{\prime} t+25 y=0
$$

- Make a change of variables
$s=\ln (t)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to t , using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}$
- Calculate the 2nd derivative of y with respect to t , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}
$$

Substitute the change of variables back into the ODE

$$
t^{2}\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right)+\frac{d}{d s} y(s)+25 y(s)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)+25 y(s)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+25=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-100})}{2}$
- Roots of the characteristic polynomial
$r=(-5 \mathrm{I}, 5 \mathrm{I})$
- 1st solution of the ODE
$y_{1}(s)=\cos (5 s)$
- $\quad 2$ nd solution of the ODE
$y_{2}(s)=\sin (5 s)$
- General solution of the ODE
$y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)$
- \quad Substitute in solutions
$y(s)=c_{1} \cos (5 s)+c_{2} \sin (5 s)$
- \quad Change variables back using $s=\ln (t)$
$y=c_{1} \cos (5 \ln (t))+c_{2} \sin (5 \ln (t))$
Check validity of solution $y=c_{1} \cos (5 \ln (t))+c_{2} \sin (5 \ln (t))$
- Use initial condition $y(1)=\frac{3 \sqrt{3}}{2}$
$\frac{3 \sqrt{3}}{2}=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-\frac{5 c_{1} \sin (5 \ln (t))}{t}+\frac{5 c_{2} \cos (5 \ln (t))}{t}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=1\}}=\frac{15}{2}$
$\frac{15}{2}=5 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=\frac{3 \sqrt{3}}{2}, c_{2}=\frac{3}{2}\right\}$
- Substitute constant values into general solution and simplify
$y=\frac{3 \cos (5 \ln (t)) \sqrt{3}}{2}+\frac{3 \sin (5 \ln (t))}{2}$
- \quad Solution to the IVP
$y=\frac{3 \cos (5 \ln (t)) \sqrt{3}}{2}+\frac{3 \sin (5 \ln (t))}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22
dsolve ([t^2*diff $(y(t), t \$ 2)+t * \operatorname{diff}(y(t), t)+25 * y(t)=0, y(1)=3 / 2 * \operatorname{sqrt}(3), D(y)(1)=15 / 2], y(t)$

$$
y(t)=\frac{3 \sin (5 \ln (t))}{2}+\frac{3 \sqrt{3} \cos (5 \ln (t))}{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 26
DSolve $[\{t \wedge 2 * y$ ' ' $[t]+t * y$ ' $[t]+25 * y[t]==0,\{y[1]==3 * S q r t[3] / 2, y$ '[1] $==15 / 2\}\}, y[t], t$, IncludeSingula

$$
y(t) \rightarrow \frac{3}{2}(\sin (5 \log (t))+\sqrt{3} \cos (5 \log (t)))
$$

11 Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
11.1 problem Problem 1 2343
11.2 problem Problem 2 2347
11.3 problem Problem 3 2352
11.4 problem Problem 4 2357
11.5 problem Problem 5 2362
11.6 problem Problem 6 2367
11.7 problem Problem 10 2372
11.8 problem Problem 11 2379
11.9 problem Problem 12 2384
11.10problem Problem 13 2389
11.11problem Problem 14 2396
11.12problem Problem 15 2403

11.1 problem Problem 1

11.1.1 Maple step by step solution

Internal problem ID [2812]
Internal file name [OUTPUT/2304_Sunday_June_05_2022_02_58_31_AM_30789350/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_culer_ode", "second_order_change__of_cvariable_on_x_method_1", "second_order_change_of_variable_on_x_method_2", "second__order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type

$$
\begin{aligned}
& \text { [[_Emden, _Fowler], [_2nd_order, _linear, - _with_symmetry_ [0,F(} \\
& \text { x)]]] } \\
& x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
\end{aligned}
$$

Given that one solution of the ode is

$$
y_{1}=x^{2}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{3}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x^{2}\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)}}{x^{4}} d x\right) \\
& y_{2}(x)=x^{2} \int \frac{x^{3}}{x^{4}} d x \\
& y_{2}(x)=x^{2}\left(\int \frac{1}{x} d x\right) \\
& y_{2}(x)=\ln (x) x^{2}
\end{aligned}
$$

Hence the solution is

$$
\begin{gathered}
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
=c_{1} x^{2}+c_{2} x^{2} \ln (x)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}+c_{2} x^{2} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Verified OK.

11.1.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{3 y^{\prime}}{x}-\frac{4 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{3 y^{\prime}}{x}+\frac{4 y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1 st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{d^{2} d^{2} y(t)}{d^{2}} x^{2}-\frac{d}{d t} y(t)
$$

Substitute the change of variables back into the ODE

$$
x^{2}\left(\frac{\frac{d^{2}}{d t t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d} y(t)}{x^{2}}\right)-3 \frac{d}{d t} y(t)+4 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-4 \frac{d}{d t} y(t)+4 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-4 r+4=0$
- Factor the characteristic polynomial

$$
(r-2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=2
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{2 t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence

$$
y_{2}(t)=t \mathrm{e}^{2 t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} t \mathrm{e}^{2 t}
$$

- Change variables back using $t=\ln (x)$

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

- \quad Simplify

$$
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([x^2*diff(y(x), x$2)-3*x*diff(y(x),x)+4*y(x)=0, (^^2],singsol=all)
```

$$
y(x)=x^{2}\left(c_{2} \ln (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 18

```
DSolve[x^2*y''[x]-3*x*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x^{2}\left(2 c_{2} \log (x)+c_{1}\right)
$$

11.2 problem Problem 2

11.2.1 Maple step by step solution

Internal problem ID [2813]
Internal file name [OUTPUT/2305_Sunday_June_05_2022_02_58_32_AM_13488917/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x y^{\prime \prime}+(1-2 x) y^{\prime}+y(x-1)=0
$$

Given that one solution of the ode is

$$
y_{1}=\mathrm{e}^{x}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{1-2 x}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{x}\left(\int \mathrm{e}^{-\left(\int \frac{1-2 x}{x} d x\right)} \mathrm{e}^{-2 x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{x} \int \frac{\mathrm{e}^{2 x-\ln (x)}}{\mathrm{e}^{2 x}}, d x \\
& y_{2}(x)=\mathrm{e}^{x}\left(\int \frac{1}{x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{x} \ln (x)
\end{aligned}
$$

Hence the solution is

$$
\begin{gathered}
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{x} \ln (x)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{x} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{x} \ln (x)
$$

Verified OK.

11.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+(1-2 x) y^{\prime}+y(x-1)=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{(x-1) y}{x}+\frac{(2 x-1) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(2 x-1) y^{\prime}}{x}+\frac{(x-1) y}{x}=0$Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{2 x-1}{x}, P_{3}(x)=\frac{x-1}{x}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x+(1-2 x) y^{\prime}+y(x-1)=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r^{2} x^{-1+r}+\left(a_{1}(1+r)^{2}-a_{0}(1+2 r)\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+1+r)^{2}-a_{k}(2 k+2 r+1)+a_{k-1}\right) x^{2}\right.
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation
$r^{2}=0$
- Values of r that satisfy the indicial equation
$r=0$
- Each term must be 0
$a_{1}(1+r)^{2}-a_{0}(1+2 r)=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k+1}(k+1)^{2}+(-2 k-1) a_{k}+a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+2}(k+2)^{2}+(-2 k-3) a_{k+1}+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=\frac{2 k a_{k+1}-a_{k}+3 a_{k+1}}{(k+2)^{2}}$
- Recursion relation for $r=0$
$a_{k+2}=\frac{2 k a_{k+1}-a_{k}+3 a_{k+1}}{(k+2)^{2}}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{2 k a_{k+1}-a_{k}+3 a_{k+1}}{(k+2)^{2}}, a_{1}-a_{0}=0\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve([x*diff(y(x),x$2)+(1-2*x)*diff(y(x),x)+(x-1)*y(x)=0,exp(x)],singsol=all)
```

$$
y(x)=\mathrm{e}^{x}\left(c_{2} \ln (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 17

```
DSolve \([x * y\) ' ' \([x]+(1-2 * x) * y\) ' \([x]+(x-1) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
```

$$
y(x) \rightarrow e^{x}\left(c_{2} \log (x)+c_{1}\right)
$$

11.3 problem Problem 3

11.3.1 Maple step by step solution

Internal problem ID [2814]
Internal file name [OUTPUT/2306_Sunday_June_05_2022_02_58_34_AM_54069979/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_bessel_ode", "second_order_change_of_cvariable_on_y_method__1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}+\left(x^{2}+2\right) y=0
$$

Given that one solution of the ode is

$$
y_{1}=x \sin (x)
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{2}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x \sin (x)\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{2}{x} d x\right)}}{x^{2} \sin (x)^{2}} d x\right) \\
& y_{2}(x)=x \sin (x) \int \frac{x^{2}}{\sin (x)^{2} x^{2}}, d x \\
& y_{2}(x)=x \sin (x)\left(\int \csc (x)^{2} d x\right) \\
& y_{2}(x)=-x \sin (x) \cot (x)
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x \sin (x)-c_{2} x \sin (x) \cot (x)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \sin (x)-c_{2} x \sin (x) \cot (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x \sin (x)-c_{2} x \sin (x) \cot (x)
$$

Verified OK.

11.3.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}+\left(x^{2}+2\right) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(x^{2}+2\right) y}{x^{2}}+\frac{2 y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{2 y^{\prime}}{x}+\frac{\left(x^{2}+2\right) y}{x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{2}{x}, P_{3}(x)=\frac{x^{2}+2}{x^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-2$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=2$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}+\left(x^{2}+2\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(-1+r)(-2+r) x^{r}+a_{1} r(-1+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r-1)(k+r-2)+a_{k-2}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
(-1+r)(-2+r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\{1,2\}
$$

- \quad Each term must be 0
$a_{1} r(-1+r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r-1)(k+r-2)+a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(k+1+r)(k+r)+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{a_{k}}{(k+1+r)(k+r)}$
- Recursion relation for $r=1$
$a_{k+2}=-\frac{a_{k}}{(k+2)(k+1)}$
- \quad Solution for $r=1$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+2}=-\frac{a_{k}}{(k+2)(k+1)}, a_{1}=0\right]$
- Recursion relation for $r=2$
$a_{k+2}=-\frac{a_{k}}{(k+3)(k+2)}$
- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+2}=-\frac{a_{k}}{(k+3)(k+2)}, a_{1}=0\right]
$$

- \quad Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{1+k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{2+k}\right), a_{2+k}=-\frac{a_{k}}{(2+k)(1+k)}, a_{1}=0, b_{2+k}=-\frac{b_{k}}{(k+3)(2+k)}, b_{1}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 15
dsolve([$\left.x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-2 * x * \operatorname{diff}(y(x), x)+\left(x^{\wedge} 2+2\right) * y(x)=0, x * \sin (x)\right]$, singsol=all)

$$
y(x)=x\left(c_{1} \sin (x)+c_{2} \cos (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 33
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]-2 * x * y$ ' $[x]+\left(x^{\wedge} 2+2\right) * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} e^{-i x} x-\frac{1}{2} i c_{2} e^{i x} x
$$

11.4 problem Problem 4

11.4.1 Maple step by step solution

Internal problem ID [2815]
Internal file name [OUTPUT/2307_Sunday_June_05_2022_02_58_35_AM_78314112/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of__variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[_Gegenbauer]

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

Given that one solution of the ode is

$$
y_{1}=x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{2 x}{-x^{2}+1}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{2 x}{-x^{2}+1} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\mathrm{e}^{-\ln (x-1)-\ln (x+1)}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int \frac{1}{x^{2}\left(x^{2}-1\right)} d x\right) \\
& y_{2}(x)=x\left(-\frac{\ln (x+1)}{2}+\frac{1}{x}+\frac{\ln (x-1)}{2}\right)
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} x\left(-\frac{\ln (x+1)}{2}+\frac{1}{x}+\frac{\ln (x-1)}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} x\left(-\frac{\ln (x+1)}{2}+\frac{1}{x}+\frac{\ln (x-1)}{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2} x\left(-\frac{\ln (x+1)}{2}+\frac{1}{x}+\frac{\ln (x-1)}{2}\right)
$$

Verified OK.

11.4.1 Maple step by step solution

Let's solve

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2 nd derivative

$$
y^{\prime \prime}=-\frac{2 x y^{\prime}}{x^{2}-1}+\frac{2 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{2 y}{x^{2}-1}=0$
Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{2}{x^{2}-1}\right]$
- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=1$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$y^{\prime \prime}\left(x^{2}-1\right)+2 x y^{\prime}-2 y=0$
- Change variables using $x=u-1$ so that the regular singular point is at $u=0$ $\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)-2 y(u)=0$
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$ $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions
$-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}+a_{k}(k+r+2)(k+r-1)\right) u^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r^{2}=0$
- Values of r that satisfy the indicial equation
$r=0$
- Each term in the series must be 0 , giving the recursion relation
$-2 a_{k+1}(k+1)^{2}+a_{k}(k+2)(k-1)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}$
- Recursion relation for $r=0$; series terminates at $k=1$
$a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}$
- Apply recursion relation for $k=0$
$a_{1}=-a_{0}$
- Terminating series solution of the ODE for $r=0$. Use reduction of order to find the second li $y(u)=a_{0} \cdot(-u+1)$
- \quad Revert the change of variables $u=x+1$
[$\left.y=-a_{0} x\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve([(1-x^2)*diff(y(x),x$2)-2*x*diff (y (x),x)+2*y(x)=0,x], singsol=all)
```

$$
y(x)=-\frac{c_{2} \ln (x+1) x}{2}+\frac{c_{2} \ln (x-1) x}{2}+c_{1} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 33
DSolve[(1- $\left.x^{\wedge} 2\right) * y^{\prime}$ '[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} x-\frac{1}{2} c_{2}(x \log (1-x)-x \log (x+1)+2)
$$

11.5 problem Problem 5

11.5.1 Maple step by step solution

2364
Internal problem ID [2816]
Internal file name [OUTPUT/2308_Sunday_June_05_2022_02_58_37_AM_97888430/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_bessel_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change_of__variable_on_x_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(x)]•]

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}+4 x^{2} y=0
$$

Given that one solution of the ode is

$$
y_{1}=\sin \left(x^{2}\right)
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{1}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\sin \left(x^{2}\right)\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)}}{\sin \left(x^{2}\right)^{2}} d x\right) \\
& y_{2}(x)=\sin \left(x^{2}\right) \int \frac{x}{\sin \left(x^{2}\right)^{2}}, d x \\
& y_{2}(x)=\sin \left(x^{2}\right)\left(\int \csc \left(x^{2}\right)^{2} x d x\right) \\
& y_{2}(x)=-\frac{\sin \left(x^{2}\right) \cot \left(x^{2}\right)}{2}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\sin \left(x^{2}\right) c_{1}-\frac{c_{2} \sin \left(x^{2}\right) \cot \left(x^{2}\right)}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(x^{2}\right) c_{1}-\frac{c_{2} \sin \left(x^{2}\right) \cot \left(x^{2}\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sin \left(x^{2}\right) c_{1}-\frac{c_{2} \sin \left(x^{2}\right) \cot \left(x^{2}\right)}{2}
$$

Verified OK.

11.5.1 Maple step by step solution

Let's solve
$y^{\prime \prime}-\frac{y^{\prime}}{x}+4 x^{2} y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{1}{x}, P_{3}(x)=4 x^{2}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$4 y x^{3}+y^{\prime \prime} x-y^{\prime}=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{3} \cdot y$ to series expansion

$$
x^{3} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+3}
$$

- Shift index using $k->k-3$
$x^{3} \cdot y=\sum_{k=3}^{\infty} a_{k-3} x^{k+r}$
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-2+r) x^{-1+r}+a_{1}(1+r)(-1+r) x^{r}+a_{2}(2+r) r x^{1+r}+a_{3}(3+r)(1+r) x^{2+r}+\left(\sum_{k=3}^{\infty}\left(a_{k}\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- \quad The coefficients of each power of x must be 0
$\left[a_{1}(1+r)(-1+r)=0, a_{2}(2+r) r=0, a_{3}(3+r)(1+r)=0\right]$
- \quad Solve for the dependent coefficient(s)
$\left\{a_{1}=0, a_{2}=0, a_{3}=0\right\}$
- Each term in the series must be 0, giving the recursion relation
$a_{k+1}(k+1+r)(k+r-1)+4 a_{k-3}=0$
- \quad Shift index using $k->k+3$
$a_{k+4}(k+4+r)(k+2+r)+4 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+4}=-\frac{4 a_{k}}{(k+4+r)(k+2+r)}$
- Recursion relation for $r=0$
$a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}$
- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
$$

- \quad Recursion relation for $r=2$

$$
a_{k+4}=-\frac{4 a_{k}}{(k+6)(k+4)}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+4}=-\frac{4 a_{k}}{(k+6)(k+4)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{2+k}\right), a_{k+4}=-\frac{4 a_{k}}{(k+4)(2+k)}, a_{1}=0, a_{2}=0, a_{3}=0, b_{k+4}=-\frac{4 b_{k}}{(k+6)(k+4)}\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve([diff(y(x),x$2)-1/x*diff(y(x),x)+4*x^2*y(x)=0, sin(x^2)],singsol=all)
```

$$
y(x)=c_{1} \sin \left(x^{2}\right)+c_{2} \cos \left(x^{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 20
DSolve[y''[x]-1/x*y'[x]+4*x~2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \cos \left(x^{2}\right)+c_{2} \sin \left(x^{2}\right)
$$

11.6 problem Problem 6

11.6.1 Maple step by step solution

2368
Internal problem ID [2817]
Internal file name [OUTPUT/2309_Sunday_June_05_2022_02_58_39_AM_19257038/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_bessel_ode", "second_order_change_of_cvariable_on_y_method__1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0
$$

Given that one solution of the ode is

$$
y_{1}=\frac{\sin (x)}{\sqrt{x}}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{1}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\frac{\sin (x)\left(\int \frac{\mathrm{e}^{-\left(\int \frac{1}{x} x x\right)}}{\sin (x)^{2}} d x\right)}{\sqrt{x}} \\
& y_{2}(x)=\frac{\sin (x)}{\sqrt{x}} \int \frac{\frac{1}{x}}{\frac{\sin (x)^{2}}{x}} d x \\
& y_{2}(x)=\frac{\sin (x)\left(\int \csc (x)^{2} d x\right)}{\sqrt{x}} \\
& y_{2}(x)=-\frac{\sin (x) \cot (x)}{\sqrt{x}}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{\sin (x) c_{1}}{\sqrt{x}}-\frac{c_{2} \sin (x) \cot (x)}{\sqrt{x}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (x) c_{1}}{\sqrt{x}}-\frac{c_{2} \sin (x) \cot (x)}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sin (x) c_{1}}{\sqrt{x}}-\frac{c_{2} \sin (x) \cot (x)}{\sqrt{x}}
$$

Verified OK.

11.6.1 Maple step by step solution

Let's solve

$$
4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-1}{4 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0
$$

- Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+2 r)(-1+2 r) x^{r}+a_{1}(3+2 r)(1+2 r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k-}\right.\right.$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-1+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}$
- \quad Each term must be 0
$a_{1}(3+2 r)(1+2 r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}\left(4 k^{2}+8 k r+4 r^{2}-1\right)+4 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-1\right)+4 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+15}$
- \quad Recursion relation for $r=-\frac{1}{2}$
$a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}$
- \quad Solution for $r=-\frac{1}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0\right]$
- Recursion relation for $r=\frac{1}{2}$
$a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}$
- \quad Solution for $r=\frac{1}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}, a_{1}=0\right]$
- \quad Combine solutions and rename parameters
$\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{2+k}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0, b_{2+k}=-\frac{4 b_{k}}{4 k^{2}+20 k+24}, b_{1}=0\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 17

```
dsolve([4*x^2*diff(y(x),x$2)+4*x*diff (y(x),x)+(4*x^2-1)*y(x)=0,sin(x)/x^(1/2)],singsol=all)
```

$$
y(x)=\frac{c_{1} \sin (x)+c_{2} \cos (x)}{\sqrt{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 39

DSolve $\left[4 * x^{\wedge} 2 * y^{\prime \prime}[x]+4 * x * y^{\prime}[x]+\left(4 * x^{\wedge} 2-1\right) * y[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \frac{e^{-i x}\left(2 c_{1}-i c_{2} e^{2 i x}\right)}{2 \sqrt{x}}
$$

11.7 problem Problem 10

11.7.1 Maple step by step solution 2376

Internal problem ID [2818]
Internal file name [OUTPUT/2310_Sunday_June_05_2022_02_58_41_AM_27045713/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y=\csc (x)
$$

Given that one solution of the ode is

$$
y_{1}=\sin (x)
$$

This is second order nonhomogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\csc (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the inhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=0
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\sin (x)\left(\int \frac{\mathrm{e}^{-\left(\int 0 d x\right)}}{\sin (x)^{2}} d x\right) \\
& y_{2}(x)=\sin (x) \int \frac{1}{\sin (x)^{2}}, d x \\
& y_{2}(x)=\sin (x)\left(\int \csc (x)^{2} d x\right) \\
& y_{2}(x)=-\cot (x) \sin (x)
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sin (x)-c_{2} \cot (x) \sin (x)
\end{aligned}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \sin (x)-c_{2} \cot (x) \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sin (x) \\
& y_{2}=-\cot (x) \sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sin (x) & -\cot (x) \sin (x) \\
\frac{d}{d x}(\sin (x)) & \frac{d}{d x}(-\cot (x) \sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sin (x) & -\cot (x) \sin (x) \\
\cos (x) & -\left(-1-\cot (x)^{2}\right) \sin (x)-\cos (x) \cot (x)
\end{array}\right|
$$

Therefore

$$
W=(\sin (x))\left(-\left(-1-\cot (x)^{2}\right) \sin (x)-\cos (x) \cot (x)\right)-(-\cot (x) \sin (x))(\cos (x))
$$

Which simplifies to

$$
W=\cot (x)^{2} \sin (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\cot (x) \sin (x) \csc (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int-\cot (x) d x
$$

Hence

$$
u_{1}=\ln (\sin (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (x) \csc (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\sin (x) \ln (\sin (x))-x \sin (x) \cot (x)
$$

Which simplifies to

$$
y_{p}(x)=\sin (x) \ln (\sin (x))-\cos (x) x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \sin (x)-c_{2} \cot (x) \sin (x)\right)+(\sin (x) \ln (\sin (x))-\cos (x) x)
\end{aligned}
$$

Which simplifies to

$$
y=-c_{2} \cos (x)+c_{1} \sin (x)+\sin (x) \ln (\sin (x))-\cos (x) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-c_{2} \cos (x)+c_{1} \sin (x)+\sin (x) \ln (\sin (x))-\cos (x) x \tag{1}
\end{equation*}
$$

Figure 317: Slope field plot

Verification of solutions

$$
y=-c_{2} \cos (x)+c_{1} \sin (x)+\sin (x) \ln (\sin (x))-\cos (x) x
$$

Verified OK.

11.7.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\csc (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r $r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\csc (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int 1 d x\right)+\sin (x)\left(\int \cot (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\sin (x) \ln (\sin (x))-\cos (x) x
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\sin (x) \ln (\sin (x))-\cos (x) x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve ([diff $(y(x), x \$ 2)+y(x)=\csc (x), \sin (x)]$, singsol=all)

$$
y(x)=-\ln (\csc (x)) \sin (x)+\left(c_{1}-x\right) \cos (x)+\sin (x) c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 24
DSolve[y''[x]+y[x]==Csc[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow\left(-x+c_{1}\right) \cos (x)+\sin (x)\left(\log (\sin (x))+c_{2}\right)
$$

11.8 problem Problem 11

Internal problem ID [2819]
Internal file name [OUTPUT/2311_Sunday_June_05_2022_02_58_43_AM_14688829/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order__ode_non_constant__coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x y^{\prime \prime}-(1+2 x) y^{\prime}+2 y=8 x^{2} \mathrm{e}^{2 x}
$$

Given that one solution of the ode is

$$
y_{1}=\mathrm{e}^{2 x}
$$

This is second order nonhomogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x, B=-1-2 x, C=2, f(x)=8 x^{2} \mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the inhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$.
y_{h} is the solution to

$$
x y^{\prime \prime}+(-1-2 x) y^{\prime}+2 y=0
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{-1-2 x}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-\left(\int \frac{-1-2 x}{x} d x\right)} \mathrm{e}^{-4 x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{2 x} \int \frac{\mathrm{e}^{2 x+\ln (x)}}{\mathrm{e}^{4 x}}, d x \\
& y_{2}(x)=\mathrm{e}^{2 x}\left(\int x \mathrm{e}^{-2 x} d x\right) \\
& y_{2}(x)=-\frac{\mathrm{e}^{2 x}(1+2 x) \mathrm{e}^{-2 x}}{4}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\mathrm{e}^{2 x} c_{1}-\frac{c_{2} \mathrm{e}^{2 x}(1+2 x) \mathrm{e}^{-2 x}}{4}
\end{aligned}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x} c_{1}-\frac{c_{2} \mathrm{e}^{2 x}(1+2 x) \mathrm{e}^{-2 x}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=-\frac{\mathrm{e}^{2 x}(1+2 x) \mathrm{e}^{-2 x}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & -\frac{\mathrm{e}^{2 x}(1+2 x) \mathrm{e}^{-2 x}}{4} \\
\frac{d}{d x}\left(\mathrm{e}^{2 x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{2 x}(1+2 x) \mathrm{e}^{-2 x}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & -\frac{\mathrm{e}^{2 x}(1+2 x) \mathrm{e}^{-2 x}}{4} \\
2 \mathrm{e}^{2 x} & -\frac{\mathrm{e}^{2 x} \mathrm{e}^{-2 x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{2 x}\right)\left(-\frac{\mathrm{e}^{2 x} \mathrm{e}^{-2 x}}{2}\right)-\left(-\frac{\mathrm{e}^{2 x}(1+2 x) \mathrm{e}^{-2 x}}{4}\right)\left(2 \mathrm{e}^{2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{4 x} \mathrm{e}^{-2 x} x
$$

Which simplifies to

$$
W=x \mathrm{e}^{2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-2 \mathrm{e}^{4 x}(1+2 x) \mathrm{e}^{-2 x} x^{2}}{x^{2} \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int(-2-4 x) d x
$$

Hence

$$
u_{1}=2 x^{2}+2 x
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{8 x^{2} \mathrm{e}^{4 x}}{x^{2} \mathrm{e}^{2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int 8 \mathrm{e}^{2 x} d x
$$

Hence

$$
u_{2}=4 \mathrm{e}^{2 x}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(2 x^{2}+2 x\right) \mathrm{e}^{2 x}-\mathrm{e}^{4 x}(1+2 x) \mathrm{e}^{-2 x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{2 x}\left(2 x^{2}-1\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}-\frac{c_{2} \mathrm{e}^{2 x}(1+2 x) \mathrm{e}^{-2 x}}{4}\right)+\left(\mathrm{e}^{2 x}\left(2 x^{2}-1\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x} c_{1}+\frac{(-1-2 x) c_{2}}{4}+\mathrm{e}^{2 x}\left(2 x^{2}-1\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+\frac{(-1-2 x) c_{2}}{4}+\mathrm{e}^{2 x}\left(2 x^{2}-1\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+\frac{(-1-2 x) c_{2}}{4}+\mathrm{e}^{2 x}\left(2 x^{2}-1\right)
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve([x*diff (y (x),x$2)-(2*x+1)*diff (y (x),x)+2*y(x)=8*x^2*exp(2*x),exp(2*x)],singsol=all)
```

$$
y(x)=2 \mathrm{e}^{2 x} x^{2}+c_{1} \mathrm{e}^{2 x}+2 c_{2} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 32
DSolve $\left[x * y\right.$ ' ' $[x]-(2 * x+1) * y$ ' $[x]+2 * y[x]==8 * x^{\wedge} 2 * \operatorname{Exp}[2 * x], y[x], x$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow e^{2 x}\left(2 x^{2}-1+c_{1}\right)-\frac{1}{4} c_{2}(2 x+1)
$$

11.9 problem Problem 12

Internal problem ID [2820]
Internal file name [OUTPUT/2312_Sunday_June_05_2022_02_58_45_AM_2793161/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order__euler__ode", "second__order_change__of_cariable_oon_x_method_1", "second_order_change_of_cvariable_on_x_method_2", "second_order_change_of_cvariable__on_y_method__2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=8 x^{4}
$$

Given that one solution of the ode is

$$
y_{1}=x^{2}
$$

This is second order nonhomogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=8 x^{4}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the inhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{3}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x^{2}\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)}}{x^{4}} d x\right) \\
& y_{2}(x)=x^{2} \int \frac{x^{3}}{x^{4}}, d x \\
& y_{2}(x)=x^{2}\left(\int \frac{1}{x} d x\right) \\
& y_{2}(x)=\ln (x) x^{2}
\end{aligned}
$$

Hence the solution is

$$
\begin{array}{r}
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
=c_{1} x^{2}+c_{2} x^{2} \ln (x)
\end{array}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 \ln (x) x
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 \ln (x) x)-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{8 \ln (x) x^{6}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int 8 \ln (x) x d x
$$

Hence

$$
u_{1}=-4 \ln (x) x^{2}+2 x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{8 x^{6}}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int 8 x d x
$$

Hence

$$
u_{2}=4 x^{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-4 \ln (x) x^{2}+2 x^{2}\right) x^{2}+4 x^{4} \ln (x)
$$

Which simplifies to

$$
y_{p}(x)=2 x^{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}+c_{2} x^{2} \ln (x)\right)+\left(2 x^{4}\right)
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+2 x^{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+2 x^{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+2 x^{4}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve([x^2*diff (y (x),x$2)-3*x*diff (y (x),x)+4*y(x)=8*x^4, x^2],singsol=all)
```

$$
y(x)=x^{2}\left(\ln (x) c_{1}+2 x^{2}+c_{2}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 23
DSolve $\left[x^{\wedge} 2 * y\right.$ ' $[x]-3 * x * y$ ' $[x]+4 * y[x]==8 * x \wedge 4, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}\left(2 x^{2}+2 c_{2} \log (x)+c_{1}\right)
$$

11.10 problem Problem 13

11.10.1 Maple step by step solution . 2393

Internal problem ID [2821]
Internal file name [OUTPUT/2313_Sunday_June_05_2022_02_58_47_AM_39415246/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order__linear__constant_coeff", "linear_second__order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-6 y^{\prime}+9 y=15 \mathrm{e}^{3 x} \sqrt{x}
$$

Given that one solution of the ode is

$$
y_{1}=\mathrm{e}^{3 x}
$$

This is second order nonhomogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-6, C=9, f(x)=15 \mathrm{e}^{3 x} \sqrt{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the inhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-6
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{3 x}\left(\int \mathrm{e}^{-\left(\int(-6) d x\right)} \mathrm{e}^{-6 x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{3 x} \int \frac{\mathrm{e}^{6 x}}{\mathrm{e}^{6 x}}, d x \\
& y_{2}(x)=\mathrm{e}^{3 x}\left(\int 1 d x\right) \\
& y_{2}(x)=x \mathrm{e}^{3 x}
\end{aligned}
$$

Hence the solution is

$$
\begin{gathered}
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}
\end{gathered}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{3 x} \\
& y_{2}=x \mathrm{e}^{3 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{3 x} & x \mathrm{e}^{3 x} \\
\frac{d}{d x}\left(\mathrm{e}^{3 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{3 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{3 x} & x \mathrm{e}^{3 x} \\
3 \mathrm{e}^{3 x} & \mathrm{e}^{3 x}+3 x \mathrm{e}^{3 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{3 x}\right)\left(\mathrm{e}^{3 x}+3 x \mathrm{e}^{3 x}\right)-\left(x \mathrm{e}^{3 x}\right)\left(3 \mathrm{e}^{3 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{6 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{6 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{15 x^{\frac{3}{2}} \mathrm{e}^{6 x}}{\mathrm{e}^{6 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int 15 x^{\frac{3}{2}} d x
$$

Hence

$$
u_{1}=-6 x^{\frac{5}{2}}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{15 \mathrm{e}^{6 x} \sqrt{x}}{\mathrm{e}^{6 x}} d x
$$

Which simplifies to

$$
u_{2}=\int 15 \sqrt{x} d x
$$

Hence

$$
u_{2}=10 x^{\frac{3}{2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=4 x^{\frac{5}{2}} \mathrm{e}^{3 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}\right)+\left(4 x^{\frac{5}{2}} \mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+4 x^{\frac{5}{2}} \mathrm{e}^{3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+4 x^{\frac{5}{2}} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Figure 318: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)+4 x^{\frac{5}{2}} \mathrm{e}^{3 x}
$$

Verified OK.

11.10.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-6 y^{\prime}+9 y=15 \mathrm{e}^{3 x} \sqrt{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-6 r+9=0
$$

- Factor the characteristic polynomial

$$
(r-3)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=3
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{3 x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}+y_{p}(x)
$$

$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=15 \mathrm{e}^{3 x} \sqrt{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{3 x} & x \mathrm{e}^{3 x} \\
3 \mathrm{e}^{3 x} & \mathrm{e}^{3 x}+3 x \mathrm{e}^{3 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{6 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-15 \mathrm{e}^{3 x}\left(-\left(\int \sqrt{x} d x\right) x+\int x^{\frac{3}{2}} d x\right)
$$

- Compute integrals

$$
y_{p}(x)=4 x^{\frac{5}{2}} \mathrm{e}^{3 x}
$$

- Substitute particular solution into general solution to ODE

$$
y=4 x^{\frac{5}{2}} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}+c_{1} \mathrm{e}^{3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve([diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-6 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+9 * \mathrm{y}(\mathrm{x})=15 * \exp (3 * x) * \operatorname{sqrt}(\mathrm{x}), \exp (3 * x)]$, singsol=all)

$$
y(x)=\mathrm{e}^{3 x}\left(c_{2}+c_{1} x+4 x^{\frac{5}{2}}\right)
$$

Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 25
DSolve[y''[x]-6*y'[x]+9*y[x]==15*Exp[3*x]*Sqrt[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{3 x}\left(4 x^{5 / 2}+c_{2} x+c_{1}\right)
$$

11.11 problem Problem 14

11.11.1 Maple step by step solution 2400

Internal problem ID [2822]
Internal file name [OUTPUT/2314_Sunday_June_05_2022_02_58_49_AM_58434158/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order__linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y^{\prime}+4 y=4 \mathrm{e}^{2 x} \ln (x)
$$

Given that one solution of the ode is

$$
y_{1}=\mathrm{e}^{2 x}
$$

This is second order nonhomogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-4, C=4, f(x)=4 \mathrm{e}^{2 x} \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the inhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-4
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-\left(\int(-4) d x\right)} \mathrm{e}^{-4 x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{2 x} \int \frac{\mathrm{e}^{4 x}}{\mathrm{e}^{4 x}}, d x \\
& y_{2}(x)=\mathrm{e}^{2 x}\left(\int 1 d x\right) \\
& y_{2}(x)=x \mathrm{e}^{2 x}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}
\end{aligned}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=x \mathrm{e}^{2 x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & x \mathrm{e}^{2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{2 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{2 x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & x \mathrm{e}^{2 x} \\
2 \mathrm{e}^{2 x} & \mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{2 x}\right)\left(\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}\right)-\left(x \mathrm{e}^{2 x}\right)\left(2 \mathrm{e}^{2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{4 x}
$$

Which simplifies to

$$
W=\mathrm{e}^{4 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4 x \mathrm{e}^{4 x} \ln (x)}{\mathrm{e}^{4 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int 4 \ln (x) x d x
$$

Hence

$$
u_{1}=-2 \ln (x) x^{2}+x^{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 \mathrm{e}^{4 x} \ln (x)}{\mathrm{e}^{4 x}} d x
$$

Which simplifies to

$$
u_{2}=\int 4 \ln (x) d x
$$

Hence

$$
u_{2}=4 \ln (x) x-4 x
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=x^{2}(1-2 \ln (x)) \\
& u_{2}=4 \ln (x) x-4 x
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=x^{2}(1-2 \ln (x)) \mathrm{e}^{2 x}+(4 \ln (x) x-4 x) x \mathrm{e}^{2 x}
$$

Which simplifies to

$$
y_{p}(x)=x^{2} \mathrm{e}^{2 x}(2 \ln (x)-3)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}\right)+\left(x^{2} \mathrm{e}^{2 x}(2 \ln (x)-3)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{2 x}(2 \ln (x)-3)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{2 x}(2 \ln (x)-3) \tag{1}
\end{equation*}
$$

Figure 319: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)+x^{2} \mathrm{e}^{2 x}(2 \ln (x)-3)
$$

Verified OK.

11.11.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y^{\prime}+4 y=4 \mathrm{e}^{2 x} \ln (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4 r+4=0
$$

- Factor the characteristic polynomial

$$
(r-2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=2
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{2 x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \mathrm{e}^{2 x} \ln (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{2 x} & x \mathrm{e}^{2 x} \\
2 \mathrm{e}^{2 x} & \mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4 \mathrm{e}^{2 x}\left(\int \ln (x) x d x-\left(\int \ln (x) d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=x^{2} \mathrm{e}^{2 x}(2 \ln (x)-3)
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{2 x} c_{1}+x \mathrm{e}^{2 x} c_{2}+x^{2} \mathrm{e}^{2 x}(2 \ln (x)-3)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
dsolve([diff $(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+4 * y(x)=4 * \exp (2 * x) * \ln (x), \exp (2 * x)]$, singsol=all)

$$
y(x)=\mathrm{e}^{2 x}\left(2 \ln (x) x^{2}+c_{1} x-3 x^{2}+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 30
DSolve[y''[x]-4*y'[x]+4*y[x]==4*Exp[2*x]*Log[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{2 x}\left(-3 x^{2}+2 x^{2} \log (x)+c_{2} x+c_{1}\right)
$$

11.12 problem Problem 15

Internal problem ID [2823]
Internal file name [OUTPUT/2315_Sunday_June_05_2022_02_58_51_AM_49321136/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.9, Reduction of Order. page 572
Problem number: Problem 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_euler_ode"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
4 x^{2} y^{\prime \prime}+y=\sqrt{x} \ln (x)
$$

Given that one solution of the ode is

$$
y_{1}=\sqrt{x}
$$

This is second order nonhomogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=4 x^{2}, B=0, C=1, f(x)=\sqrt{x} \ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the inhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$.
y_{h} is the solution to

$$
4 x^{2} y^{\prime \prime}+y=0
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=0
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\sqrt{x}\left(\int \frac{\mathrm{e}^{-\left(\int 0 d x\right)}}{x} d x\right) \\
& y_{2}(x)=\sqrt{x} \int \frac{1}{x}, d x \\
& y_{2}(x)=\sqrt{x}\left(\int \frac{1}{x} d x\right) \\
& y_{2}(x)=\sqrt{x} \ln (x)
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sqrt{x}+c_{2} \sqrt{x} \ln (x)
\end{aligned}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \sqrt{x}+c_{2} \sqrt{x} \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x} \\
& y_{2}=\sqrt{x} \ln (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x} & \sqrt{x} \ln (x) \\
\frac{d}{d x}(\sqrt{x}) & \frac{d}{d x}(\sqrt{x} \ln (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x} & \sqrt{x} \ln (x) \\
\frac{1}{2 \sqrt{x}} & \frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}
\end{array}\right|
$$

Therefore

$$
W=(\sqrt{x})\left(\frac{\ln (x)}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right)-(\sqrt{x} \ln (x))\left(\frac{1}{2 \sqrt{x}}\right)
$$

Which simplifies to

$$
W=1
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x \ln (x)^{2}}{4 x^{2}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)^{2}}{4 x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{3}}{12}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\ln (x) x}{4 x^{2}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)}{4 x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{2}}{8}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\ln (x)^{3} \sqrt{x}}{24}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \sqrt{x}+c_{2} \sqrt{x} \ln (x)\right)+\left(\frac{\ln (x)^{3} \sqrt{x}}{24}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(c_{1}+c_{2} \ln (x)\right) \sqrt{x}+\frac{\ln (x)^{3} \sqrt{x}}{24}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1}+c_{2} \ln (x)\right) \sqrt{x}+\frac{\ln (x)^{3} \sqrt{x}}{24} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1}+c_{2} \ln (x)\right) \sqrt{x}+\frac{\ln (x)^{3} \sqrt{x}}{24}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve([4*x^2*diff (y (x), x$2)+y(x)=sqrt (x)*\operatorname{ln}(x),sqrt(x)],singsol=all)
```

$$
y(x)=\left(c_{2}+\ln (x) c_{1}+\frac{\ln (x)^{3}}{24}\right) \sqrt{x}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 29
DSolve[4*x^2*y' ${ }^{\prime}[x]+y[x]==$ Sqrt $[x] * \log [x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{24} \sqrt{x}\left(\log ^{3}(x)+12 c_{2} \log (x)+24 c_{1}\right)
$$

12 Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
12.1 problem Problem 7 2409
12.2 problem Problem 8 2414
12.3 problem Problem 18 2419
12.4 problem Problem 19 2431
12.5 problem Problem 20 2443
12.6 problem Problem 21 2451
12.7 problem Problem 22 2459
12.8 problem Problem 27 2468
12.9 problem Problem 28 2479
12.10problem Problem 29 2492
12.11 problem Problem 30 2504]
12.12problem Problem 31 2514
12.13problem Problem 32 2529
12.14problem Problem 33 2541
12.15problem Problem 34 2554

12.1 problem Problem 7

12.1.1 Maple step by step solution . 2410

Internal problem ID [2824]
Internal file name [OUTPUT/2316_Sunday_June_05_2022_02_58_53_AM_69895820/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 7.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}-4 y=0
$$

The characteristic equation is

$$
\lambda^{3}+3 \lambda^{2}-4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=-2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+c_{3} \mathrm{e}^{x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x} \\
& y_{3}=\mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+c_{3} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+c_{3} \mathrm{e}^{x}
$$

Verified OK.

12.1.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}-4 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-3 y_{3}(x)+4 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-3 y_{3}(x)+4 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & 0 & -3
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & 0 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue -2

$$
\vec{y}_{1}(x)=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-2$ is the eigenvalue, a $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -2

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & 0 & -3
\end{array}\right]-(-2) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{8} \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue -2

$$
\vec{y}_{2}(x)=\mathrm{e}^{-2 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{8} \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{8} \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(8 \mathrm{e}^{3 x} c_{3}+2 c_{2} x+2 c_{1}+c_{2}\right) \mathrm{e}^{-2 x}}{8}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(x),x$3)+3*diff(y(x),x$2)-4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{1} \mathrm{e}^{3 x}+c_{3} x+c_{2}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26
DSolve[y'''[x]+3*y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-2 x}\left(c_{2} x+c_{3} e^{3 x}+c_{1}\right)
$$

12.2 problem Problem 8

12.2.1 Maple step by step solution . 2415

Internal problem ID [2825]
Internal file name [OUTPUT/2317_Sunday_June_05_2022_02_58_54_AM_85631151/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 8.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+11 y^{\prime \prime}+36 y^{\prime}+26 y=0
$$

The characteristic equation is

$$
\lambda^{3}+11 \lambda^{2}+36 \lambda+26=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =-5-i \\
\lambda_{3} & =-5+i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{(-5-i) x} c_{2}+\mathrm{e}^{(-5+i) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{(-5-i) x} \\
& y_{3}=\mathrm{e}^{(-5+i) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{(-5-i) x} c_{2}+\mathrm{e}^{(-5+i) x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{(-5-i) x} c_{2}+\mathrm{e}^{(-5+i) x} c_{3}
$$

Verified OK.

12.2.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime}+11 y^{\prime \prime}+36 y^{\prime}+26 y=0$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-11 y_{3}(x)-36 y_{2}(x)-26 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-11 y_{3}(x)-36 y_{2}(x)-26 y_{1}(x)\right]$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-26 & -36 & -11
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-26 & -36 & -11
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[-5-\mathrm{I},\left[\begin{array}{c}
\frac{6}{169}-\frac{5 \mathrm{I}}{338} \\
-\frac{5}{26}+\frac{\mathrm{I}}{26} \\
1
\end{array}\right]\right],\left[-5+\mathrm{I},\left[\begin{array}{c}
\frac{6}{169}+\frac{5 \mathrm{I}}{338} \\
-\frac{5}{26}-\frac{\mathrm{I}}{26} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-5-\mathrm{I},\left[\begin{array}{c}
\frac{6}{169}-\frac{5 \mathrm{I}}{338} \\
-\frac{5}{26}+\frac{\mathrm{I}}{26} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-5-\mathrm{I}) x} \cdot\left[\begin{array}{c}
\frac{6}{169}-\frac{5 \mathrm{I}}{338} \\
-\frac{5}{26}+\frac{\mathrm{I}}{26} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-5 x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
\frac{6}{169}-\frac{5 \mathrm{I}}{338} \\
-\frac{5}{26}+\frac{\mathrm{I}}{26} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-5 x} \cdot\left[\begin{array}{c}
\left(\frac{6}{169}-\frac{5 \mathrm{I}}{338}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\left(-\frac{5}{26}+\frac{\mathrm{I}}{26}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-5 x} \cdot\left[\begin{array}{c}
\frac{6 \cos (x)}{169}-\frac{5 \sin (x)}{338} \\
-\frac{5 \cos (x)}{26}+\frac{\sin (x)}{26} \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-5 x} \cdot\left[\begin{array}{c}
-\frac{6 \sin (x)}{169}-\frac{5 \cos (x)}{338} \\
\frac{5 \sin (x)}{26}+\frac{\cos (x)}{26} \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-5 x} \cdot\left[\begin{array}{c}
\frac{6 \cos (x)}{169}-\frac{5 \sin (x)}{338} \\
-\frac{5 \cos (x)}{26}+\frac{\sin (x)}{26} \\
\cos (x)
\end{array}\right]+\mathrm{e}^{-5 x} c_{3} \cdot\left[\begin{array}{c}
-\frac{6 \sin (x)}{169}-\frac{5 \cos (x)}{338} \\
\frac{5 \sin (x)}{26}+\frac{\cos (x)}{26} \\
-\sin (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(\left(12 c_{2}-5 c_{3}\right) \cos (x)-5\left(c_{2}+\frac{12 c_{3}}{5}\right) \sin (x)\right) \mathrm{e}^{-5 x}}{338}+c_{1} \mathrm{e}^{-x}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff (y (x),x$3)+11*\operatorname{diff}(y(x),x$2)+36*\operatorname{diff}(y(x),x)+26*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x} c_{1}+c_{2} \mathrm{e}^{-5 x} \sin (x)+c_{3} \mathrm{e}^{-5 x} \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 30
DSolve[y'' $\quad[x]+11 * y$ '' $[x]+36 * y$ ' $[x]+26 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-5 x}\left(c_{3} e^{4 x}+c_{2} \cos (x)+c_{1} \sin (x)\right)
$$

12.3 problem Problem 18

12.3.1 Solving as second order linear constant coeff ode 2419
$\begin{array}{ll}\text { 12.3.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 2422\end{array}$
12.3.3 Solving using Kovacic algorithm 2424
12.3.4 Maple step by step solution . 2429

Internal problem ID [2826]
Internal file name [OUTPUT/2318_Sunday_June_05_2022_02_58_56_AM_58418777/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+6 y^{\prime}+9 y=4 \mathrm{e}^{-3 x}
$$

12.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=6, C=9, f(x)=4 \mathrm{e}^{-3 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(6)^{2}-(4)(1)(9)} \\
& =-3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{-3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-3 x}, \mathrm{e}^{-3 x}\right\}
$$

Since $\mathrm{e}^{-3 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{x \mathrm{e}^{-3 x}\right\}\right]
$$

Since $x \mathrm{e}^{-3 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{-3 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{-3 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{-3 x}=4 \mathrm{e}^{-3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 x^{2} \mathrm{e}^{-3 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}\right)+\left(2 x^{2} \mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+2 x^{2} \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+2 x^{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Figure 320: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+2 x^{2} \mathrm{e}^{-3 x}
$$

Verified OK.

12.3.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 6 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =4 \mathrm{e}^{3 x} \mathrm{e}^{-3 x} \\
\left(\mathrm{e}^{3 x} y\right)^{\prime \prime} & =4 \mathrm{e}^{3 x} \mathrm{e}^{-3 x}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{3 x} y\right)^{\prime}=4 x+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{3 x} y\right)=x\left(c_{1}+2 x\right)+c_{2}
$$

Hence the solution is

$$
y=\frac{x\left(c_{1}+2 x\right)+c_{2}}{\mathrm{e}^{3 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-3 x}+2 x^{2} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

Figure 321: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-3 x}+2 x^{2} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}
$$

Verified OK.

12.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =6 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 323: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{-3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-3 x}, \mathrm{e}^{-3 x}\right\}
$$

Since $\mathrm{e}^{-3 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{x \mathrm{e}^{-3 x}\right\}\right]
$$

Since $x \mathrm{e}^{-3 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{-3 x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{-3 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{-3 x}=4 \mathrm{e}^{-3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 x^{2} \mathrm{e}^{-3 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}\right)+\left(2 x^{2} \mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+2 x^{2} \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

Figure 322: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+2 x^{2} \mathrm{e}^{-3 x}
$$

Verified OK.

12.3.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+9 y=4 \mathrm{e}^{-3 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+6 r+9=0$
- Factor the characteristic polynomial
$(r+3)^{2}=0$
- Root of the characteristic polynomial

$$
r=-3
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-3 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \mathrm{e}^{-3 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
-3 \mathrm{e}^{-3 x} & \mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-6 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4 \mathrm{e}^{-3 x}\left(\int x d x-\left(\int 1 d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=2 x^{2} \mathrm{e}^{-3 x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{2} x \mathrm{e}^{-3 x}+2 x^{2} \mathrm{e}^{-3 x}+c_{1} \mathrm{e}^{-3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

```
dsolve(diff (y(x),x$2)+6*diff (y(x),x)+9*y(x)=4*exp(-3*x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-3 x}\left(c_{1} x+2 x^{2}+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 23

```
DSolve[y''[x]+6*y'[x]+9*y[x]==4*Exp[-3*x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-3 x}\left(2 x^{2}+c_{2} x+c_{1}\right)
$$

12.4 problem Problem 19

12.4.1 Solving as second order linear constant coeff ode 2431
12.4.2 Solving as linear second order ode solved by an integrating factor
ode . 2434$]$
12.4.3 Solving using Kovacic algorithm 2436
12.4.4 Maple step by step solution . 2441

Internal problem ID [2827]
Internal file name [OUTPUT/2319_Sunday_June_05_2022_02_58_58_AM_80909504/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+6 y^{\prime}+9 y=4 \mathrm{e}^{-2 x}
$$

12.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=6, C=9, f(x)=4 \mathrm{e}^{-2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(6)^{2}-(4)(1)(9)} \\
& =-3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-3 x}, \mathrm{e}^{-3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \mathrm{e}^{-2 x}=4 \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=4 \mathrm{e}^{-2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}\right)+\left(4 \mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+4 \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+4 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 323: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+4 \mathrm{e}^{-2 x}
$$

Verified OK.

12.4.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 6 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =4 \mathrm{e}^{3 x} \mathrm{e}^{-2 x} \\
\left(\mathrm{e}^{3 x} y\right)^{\prime \prime} & =4 \mathrm{e}^{3 x} \mathrm{e}^{-2 x}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{3 x} y\right)^{\prime}=4 \mathrm{e}^{x}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{3 x} y\right)=c_{1} x+4 \mathrm{e}^{x}+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+4 \mathrm{e}^{x}+c_{2}}{\mathrm{e}^{3 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}+4 \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

Figure 324: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}+4 \mathrm{e}^{-2 x}
$$

Verified OK.

12.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =6 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 325: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{-2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-3 x}, \mathrm{e}^{-3 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \mathrm{e}^{-2 x}=4 \mathrm{e}^{-2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=4\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=4 \mathrm{e}^{-2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}\right)+\left(4 \mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+4 \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+4 \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 325: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)+4 \mathrm{e}^{-2 x}
$$

Verified OK.

12.4.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+9 y=4 \mathrm{e}^{-2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+6 r+9=0$
- Factor the characteristic polynomial
$(r+3)^{2}=0$
- Root of the characteristic polynomial

$$
r=-3
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-3 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \mathrm{e}^{-2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 x} & x \mathrm{e}^{-3 x} \\
-3 \mathrm{e}^{-3 x} & \mathrm{e}^{-3 x}-3 x \mathrm{e}^{-3 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-6 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4 \mathrm{e}^{-3 x}\left(\int x \mathrm{e}^{x} d x-\left(\int \mathrm{e}^{x} d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=4 \mathrm{e}^{-2 x}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{2} x \mathrm{e}^{-3 x}+c_{1} \mathrm{e}^{-3 x}+4 \mathrm{e}^{-2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve(diff (y (x),x$2)+6*diff (y(x),x)+9*y(x)=4*exp(-2*x),y(x), singsol=all)
```

$$
y(x)=\left(c_{1} x+c_{2}\right) \mathrm{e}^{-3 x}+4 \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 23

```
DSolve[y''[x]+6*y'[x]+9*y[x]==4*Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-3 x}\left(4 e^{x}+c_{2} x+c_{1}\right)
$$

12.5 problem Problem 20

12.5.1 Maple step by step solution . 2445

Internal problem ID [2828]
Internal file name [OUTPUT/2320_Sunday_June_05_2022_02_59_01_AM_7048863/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 20.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _missing_y]]
```

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+25 y^{\prime}=x^{2}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+25 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+25 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=3+4 i \\
& \lambda_{3}=3-4 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+\mathrm{e}^{(3+4 i) x} c_{2}+\mathrm{e}^{(3-4 i) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{(3+4 i) x} \\
& y_{3}=\mathrm{e}^{(3-4 i) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+25 y^{\prime}=x^{2}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, \mathrm{e}^{(3-4 i) x}, \mathrm{e}^{(3+4 i) x}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}, x^{3}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{3} x^{3}+A_{2} x^{2}+A_{1} x
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
75 x^{2} A_{3}+50 x A_{2}-36 x A_{3}+25 A_{1}-12 A_{2}+6 A_{3}=x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{22}{15625}, A_{2}=\frac{6}{625}, A_{3}=\frac{1}{75}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{75} x^{3}+\frac{6}{625} x^{2}+\frac{22}{15625} x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\mathrm{e}^{(3+4 i) x} c_{2}+\mathrm{e}^{(3-4 i) x} c_{3}\right)+\left(\frac{1}{75} x^{3}+\frac{6}{625} x^{2}+\frac{22}{15625} x\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\mathrm{e}^{(3+4 i) x} c_{2}+\mathrm{e}^{(3-4 i) x} c_{3}+\frac{x^{3}}{75}+\frac{6 x^{2}}{625}+\frac{22 x}{15625} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+\mathrm{e}^{(3+4 i) x} c_{2}+\mathrm{e}^{(3-4 i) x} c_{3}+\frac{x^{3}}{75}+\frac{6 x^{2}}{625}+\frac{22 x}{15625}
$$

Verified OK.

12.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+25 y^{\prime}=x^{2}
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=x^{2}+6 y_{3}(x)-25 y_{2}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x^{2}+6 y_{3}(x)-25 y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -25 & 6
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
x^{2}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ x^{2}\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -25 & 6\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[3-4 \mathrm{I},\left[\begin{array}{c}
-\frac{7}{625}+\frac{24 \mathrm{I}}{625} \\
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
1
\end{array}\right]\right],\left[3+4 \mathrm{I},\left[\begin{array}{c}
-\frac{7}{625}-\frac{24 \mathrm{I}}{625} \\
\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[3-4 \mathrm{I},\left[\begin{array}{c}
-\frac{7}{625}+\frac{24 \mathrm{I}}{625} \\
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{(3-4 \mathrm{I}) x} \cdot\left[\begin{array}{c}
-\frac{7}{625}+\frac{24 \mathrm{I}}{625} \\
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{3 x} \cdot(\cos (4 x)-\mathrm{I} \sin (4 x)) \cdot\left[\begin{array}{c}
-\frac{7}{625}+\frac{24 \mathrm{I}}{625} \\
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
1
\end{array}\right]
$$

- Simplify expression
$\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}\left(-\frac{7}{625}+\frac{24 \mathrm{I}}{625}\right)(\cos (4 x)-\mathrm{I} \sin (4 x)) \\ \left(\frac{3}{25}+\frac{4 \mathrm{I}}{25}\right)(\cos (4 x)-\mathrm{I} \sin (4 x)) \\ \cos (4 x)-\mathrm{I} \sin (4 x)\end{array}\right]$
- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
-\frac{7 \cos (4 x)}{625}+\frac{24 \sin (4 x)}{625} \\
\frac{3 \cos (4 x)}{25}+\frac{4 \sin (4 x)}{25} \\
\cos (4 x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{7 \sin (4 x)}{625}+\frac{24 \cos (4 x)}{625} \\
-\frac{3 \sin (4 x)}{25}+\frac{4 \cos (4 x)}{25} \\
-\sin (4 x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
1 & \mathrm{e}^{3 x}\left(-\frac{7 \cos (4 x)}{625}+\frac{24 \sin (4 x)}{625}\right) & \mathrm{e}^{3 x}\left(\frac{7 \sin (4 x)}{625}+\frac{24 \cos (4 x)}{625}\right) \\
0 & \mathrm{e}^{3 x}\left(\frac{3 \cos (4 x)}{25}+\frac{4 \sin (4 x)}{25}\right) & \mathrm{e}^{3 x}\left(-\frac{3 \sin (4 x)}{25}+\frac{4 \cos (4 x)}{25}\right) \\
0 & \mathrm{e}^{3 x} \cos (4 x) & -\mathrm{e}^{3 x} \sin (4 x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & \mathrm{e}^{3 x}\left(-\frac{7 \cos (4 x)}{625}+\frac{24 \sin (4 x)}{625}\right) & \mathrm{e}^{3 x}\left(\frac{7 \sin (4 x)}{625}+\frac{24 \cos (4 x)}{625}\right) \\
0 & \mathrm{e}^{3 x}\left(\frac{3 \cos (4 x)}{25}+\frac{4 \sin (4 x)}{25}\right) & \mathrm{e}^{3 x}\left(-\frac{3 \sin (4 x)}{25}+\frac{4 \cos (4 x)}{25}\right) \\
0 & \mathrm{e}^{3 x} \cos (4 x) & -\mathrm{e}^{3 x} \sin (4 x)
\end{array}\right] \cdot \frac{}{\left[\begin{array}{ccc}
1 & -\frac{7}{625} & \frac{24}{625} \\
0 & \frac{3}{25} & \frac{4}{25} \\
0 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & -\frac{6}{25}+\frac{\mathrm{e}^{3 x}(7 \sin (4 x)+24 \cos (4 x))}{100} & \frac{1}{25}+\frac{(3 \sin (4 x)-4 \cos (4 x)) \mathrm{e}^{3 x}}{100} \\
0 & \frac{\mathrm{e}^{3 x}(-3 \sin (4 x)+4 \cos (4 x))}{4} & \frac{\mathrm{e}^{3 x} \sin (4 x)}{4} \\
0 & -\frac{25 \mathrm{e}^{3 x} \sin (4 x)}{4} & \frac{\mathrm{e}^{3 x}(4 \cos (4 x)+3 \sin (4 x))}{4}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{168}{390625}+\frac{(336 \cos (4 x)-527 \sin (4 x)) \mathrm{e}^{3 x}}{781250}+\frac{x^{3}}{75}+\frac{6 x^{2}}{625}+\frac{22 x}{15625} \\
\frac{(-44 \cos (4 x)-117 \sin (4 x)) \mathrm{e}^{3 x}}{31250}+\frac{x^{2}}{25}+\frac{12 x}{625}+\frac{22}{15625} \\
\frac{(-7 \sin (4 x)-24 \cos (4 x)) \mathrm{e}^{3 x}}{1250}+\frac{2 x}{25}+\frac{12}{625}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
-\frac{168}{390625}+\frac{(336 \cos (4 x)-527 \sin (4 x)) \mathrm{e}^{3 x}}{781250}+\frac{x^{3}}{75}+\frac{6 x^{2}}{625}+\frac{22 x}{15625} \\
\frac{(-44 \cos (4 x)-117 \sin (4 x)) \mathrm{e}^{3 x}}{31250}+\frac{x^{2}}{25}+\frac{12 x}{625}+\frac{22}{15625} \\
\frac{(-7 \sin (4 x)-24 \cos (4 x)) \mathrm{e}^{3 x}}{1250}+\frac{2 x}{25}+\frac{12}{625}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-\frac{168}{390625}+\frac{\left(\left(168-4375 c_{2}+15000 c_{3}\right) \cos (4 x)+15000 \sin (4 x)\left(c_{2}+\frac{7 c_{3}}{24}-\frac{527}{30000}\right)\right) \mathrm{e}^{3 x}}{390625}+\frac{x^{3}}{75}+\frac{6 x^{2}}{625}+\frac{22 x}{15625}+c_{1}$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, $\operatorname{diff}\left(\operatorname{diff}\left(_b\left(_a\right), \quad\right.\right.$ a), _a) = _a^2+6*(diff(_b(_a), _a))-25*
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE checking if the LODE has constant coefficients <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful-
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

```
dsolve(diff(y(x),x$3)-6*diff(y(x),x$2)+25*diff(y(x),x)=x^2,y(x), singsol=all)
```

$$
y(x)=\frac{\left(\left(3 c_{1}-4 c_{2}\right) \cos (4 x)+4 \sin (4 x)\left(c_{1}+\frac{3 c_{2}}{4}\right)\right) \mathrm{e}^{3 x}}{25}+\frac{x^{3}}{75}+\frac{6 x^{2}}{625}+\frac{22 x}{15625}+c_{3}
$$

Solution by Mathematica
Time used: 0.272 (sec). Leaf size: 71
DSolve[y'''[x]-6*y''[x]+25*y'[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{x^{3}}{75}+\frac{6 x^{2}}{625}+\frac{22 x}{15625}-\frac{1}{25}\left(4 c_{1}-3 c_{2}\right) e^{3 x} \cos (4 x)+\frac{1}{25}\left(3 c_{1}+4 c_{2}\right) e^{3 x} \sin (4 x)+c_{3}
$$

12.6 problem Problem 21

12.6.1 Maple step by step solution . 2453

Internal problem ID [2829]
Internal file name [OUTPUT/2321_Sunday_June_05_2022_02_59_04_AM_48998655/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 21.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+25 y^{\prime}=\sin (4 x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+25 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+25 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=3+4 i \\
& \lambda_{3}=3-4 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+\mathrm{e}^{(3+4 i) x} c_{2}+\mathrm{e}^{(3-4 i) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{(3+4 i) x} \\
& y_{3}=\mathrm{e}^{(3-4 i) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+25 y^{\prime}=\sin (4 x)
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (4 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (4 x), \sin (4 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, \mathrm{e}^{(3-4 i) x}, \mathrm{e}^{(3+4 i) x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (4 x)+A_{2} \sin (4 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-36 A_{1} \sin (4 x)+36 A_{2} \cos (4 x)+96 A_{1} \cos (4 x)+96 A_{2} \sin (4 x)=\sin (4 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{292}, A_{2}=\frac{2}{219}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\cos (4 x)}{292}+\frac{2 \sin (4 x)}{219}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\mathrm{e}^{(3+4 i) x} c_{2}+\mathrm{e}^{(3-4 i) x} c_{3}\right)+\left(-\frac{\cos (4 x)}{292}+\frac{2 \sin (4 x)}{219}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\mathrm{e}^{(3+4 i) x} c_{2}+\mathrm{e}^{(3-4 i) x} c_{3}-\frac{\cos (4 x)}{292}+\frac{2 \sin (4 x)}{219} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+\mathrm{e}^{(3+4 i) x} c_{2}+\mathrm{e}^{(3-4 i) x} c_{3}-\frac{\cos (4 x)}{292}+\frac{2 \sin (4 x)}{219}
$$

Verified OK.

12.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+25 y^{\prime}=\sin (4 x)
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=\sin (4 x)+6 y_{3}(x)-25 y_{2}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=\sin (4 x)+6 y_{3}(x)-25 y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -25 & 6
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
\sin (4 x)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
\sin (4 x)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -25 & 6
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[3-4 \mathrm{I},\left[\begin{array}{c}
-\frac{7}{625}+\frac{24 \mathrm{I}}{625} \\
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
1
\end{array}\right]\right],\left[3+4 \mathrm{I},\left[\begin{array}{c}
-\frac{7}{625}-\frac{24 \mathrm{I}}{625} \\
\frac{3}{25}-\frac{4 \mathrm{I}}{25} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[3-4 \mathrm{I},\left[\begin{array}{c}
-\frac{7}{625}+\frac{24 \mathrm{I}}{625} \\
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{(3-4 \mathrm{I}) x} \cdot\left[\begin{array}{c}
-\frac{7}{625}+\frac{24 \mathrm{I}}{625} \\
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{3 x} \cdot(\cos (4 x)-\mathrm{I} \sin (4 x)) \cdot\left[\begin{array}{c}
-\frac{7}{625}+\frac{24 \mathrm{I}}{625} \\
\frac{3}{25}+\frac{4 \mathrm{I}}{25} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\left(-\frac{7}{625}+\frac{24 \mathrm{I}}{625}\right)(\cos (4 x)-\mathrm{I} \sin (4 x)) \\
\left(\frac{3}{25}+\frac{4 \mathrm{I}}{25}\right)(\cos (4 x)-\mathrm{I} \sin (4 x)) \\
\cos (4 x)-\mathrm{I} \sin (4 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
-\frac{7 \cos (4 x)}{625}+\frac{24 \sin (4 x)}{625} \\
\frac{3 \cos (4 x)}{25}+\frac{4 \sin (4 x)}{25} \\
\cos (4 x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{7 \sin (4 x)}{65}+\frac{24 \cos (4 x)}{625} \\
-\frac{3 \sin (4 x)}{25}+\frac{4 \cos (4 x)}{25} \\
-\sin (4 x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
1 & \mathrm{e}^{3 x}\left(-\frac{7 \cos (4 x)}{625}+\frac{24 \sin (4 x)}{625}\right) & \mathrm{e}^{3 x}\left(\frac{7 \sin (4 x)}{625}+\frac{24 \cos (4 x)}{625}\right) \\
0 & \mathrm{e}^{3 x}\left(\frac{3 \cos (4 x)}{25}+\frac{4 \sin (4 x)}{25}\right) & \mathrm{e}^{3 x}\left(-\frac{3 \sin (4 x)}{25}+\frac{4 \cos (4 x)}{25}\right) \\
0 & \mathrm{e}^{3 x} \cos (4 x) & -\mathrm{e}^{3 x} \sin (4 x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & \mathrm{e}^{3 x}\left(-\frac{7 \cos (4 x)}{625}+\frac{24 \sin (4 x)}{625}\right) & \mathrm{e}^{3 x}\left(\frac{7 \sin (4 x)}{625}+\frac{24 \cos (4 x)}{625}\right) \\
0 & \mathrm{e}^{3 x}\left(\frac{3 \cos (4 x)}{25}+\frac{4 \sin (4 x)}{25}\right) & \mathrm{e}^{3 x}\left(-\frac{3 \sin (4 x)}{25}+\frac{4 \cos (4 x)}{25}\right) \\
0 & \mathrm{e}^{3 x} \cos (4 x) & -\mathrm{e}^{3 x} \sin (4 x)
\end{array}\right] \cdot \frac{}{\left[\begin{array}{ccc}
1 & -\frac{7}{625} & \frac{24}{625} \\
0 & \frac{3}{25} & \frac{4}{25} \\
0 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & -\frac{6}{25}+\frac{\mathrm{e}^{3 x}(7 \sin (4 x)+24 \cos (4 x))}{100} & \frac{1}{25}+\frac{(3 \sin (4 x)-4 \cos (4 x)) \mathrm{e}^{3 x}}{100} \\
0 & \frac{\mathrm{e}^{3 x}(-3 \sin (4 x)+4 \cos (4 x))}{4} & \frac{\mathrm{e}^{3 x} \sin (4 x)}{4} \\
0 & -\frac{25 \mathrm{e}^{3 x} \sin (4 x)}{4} & \frac{\mathrm{e}^{3 x}(4 \cos (4 x)+3 \sin (4 x))}{4}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{1}{100}+\frac{\left(-25-48 \mathrm{e}^{3 x}\right) \cos (4 x)}{7300}-\frac{23 \mathrm{e}^{3 x} \sin (4 x)}{5475}+\frac{2 \sin (4 x)}{219} \\
\frac{\left(-8 \mathrm{e}^{3 x}+8\right) \cos (4 x)}{219}+\frac{\sin (4 x)\left(\mathrm{e}^{3 x}+1\right)}{73} \\
\frac{4\left(-\mathrm{e}^{3 x}+1\right) \cos (4 x)}{73}+\frac{41 \mathrm{e}^{3 x} \sin (4 x)}{219}-\frac{32 \sin (4 x)}{219}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
\frac{1}{100}+\frac{\left(-25-48 \mathrm{e}^{3 x}\right) \cos (4 x)}{7300}-\frac{23 \mathrm{e}^{3 x} \sin (4 x)}{5475}+\frac{2 \sin (4 x)}{219} \\
\frac{\left(-8 \mathrm{e}^{3 x}+8\right) \cos (4 x)}{219}+\frac{\sin (4 x)\left(\mathrm{e}^{3 x}+1\right)}{73} \\
\frac{4\left(-\mathrm{e}^{3 x}+1\right) \cos (4 x)}{73}+\frac{41 \mathrm{e}^{3 x} \sin (4 x)}{219}-\frac{32 \sin (4 x)}{219}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{1}{100}+\frac{\left(\left(-300-511 c_{2}+1752 c_{3}\right) \cos (4 x)+1752\left(c_{2}+\frac{7 c_{3}}{24}-\frac{575}{5256}\right) \sin (4 x)\right) \mathrm{e}^{3 x}}{45625}+c_{1}-\frac{\cos (4 x)}{292}+\frac{2 \sin (4 x)}{219}
$$

Maple trace

```
MMethods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = 6*(diff(_b(_a), _a))-25*_b(_a
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    -> Try solving first the homogeneous part of the ODE
        checking if the LODE has constant coefficients
        <- constant coefficients successful
    <- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 48

```
dsolve(diff(y(x),x$3)-6*diff(y(x),x$2)+25*diff(y(x),x)=sin(4*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(\left(3 c_{1}-4 c_{2}\right) \cos (4 x)+4 \sin (4 x)\left(c_{1}+\frac{3 c_{2}}{4}\right)\right) \mathrm{e}^{3 x}}{25}+c_{3}-\frac{\cos (4 x)}{292}+\frac{2 \sin (4 x)}{219}
$$

\checkmark Solution by Mathematica
Time used: 0.686 (sec). Leaf size: 60

```
DSolve[y'''[x]-6*y''[x]+25*y'[x]==Sin[4*x],y[x],x,IncludeSingularSolutions -> True]
y(x)->-\frac{(25+292(4\mp@subsup{c}{1}{}-3\mp@subsup{c}{2}{})\mp@subsup{e}{}{3x})\operatorname{cos}(4x)}{7300}+\frac{(50+219(3\mp@subsup{c}{1}{}+4\mp@subsup{c}{2}{})\mp@subsup{e}{}{3x})\operatorname{sin}(4x)}{5475}+\mp@subsup{c}{3}{}
```


12.7 problem Problem 22

12.7.1 Maple step by step solution . 2461

Internal problem ID [2830]
Internal file name [OUTPUT/2322_Sunday_June_05_2022_02_59_06_AM_37579000/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 22.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
y^{\prime \prime \prime}+9 y^{\prime \prime}+24 y^{\prime}+16 y=8 \mathrm{e}^{-x}+1
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+9 y^{\prime \prime}+24 y^{\prime}+16 y=0
$$

The characteristic equation is

$$
\lambda^{3}+9 \lambda^{2}+24 \lambda+16=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =-4 \\
\lambda_{3} & =-4
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-4 x}+x \mathrm{e}^{-4 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{-4 x} \\
& y_{3}=x \mathrm{e}^{-4 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+9 y^{\prime \prime}+24 y^{\prime}+16 y=8 \mathrm{e}^{-x}+1
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
8 e^{-x}+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{\mathrm{e}^{-x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-4 x}, \mathrm{e}^{-4 x}, \mathrm{e}^{-x}\right\}
$$

Since e^{-x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\{1\},\left\{x \mathrm{e}^{-x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1}+A_{2} x \mathrm{e}^{-x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{2} \mathrm{e}^{-x}+16 A_{1}=8 \mathrm{e}^{-x}+1
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{16}, A_{2}=\frac{8}{9}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{16}+\frac{8 x \mathrm{e}^{-x}}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-4 x}+x \mathrm{e}^{-4 x} c_{3}\right)+\left(\frac{1}{16}+\frac{8 x \mathrm{e}^{-x}}{9}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(c_{3} x+c_{2}\right) \mathrm{e}^{-4 x}+c_{1} \mathrm{e}^{-x}+\frac{1}{16}+\frac{8 x \mathrm{e}^{-x}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{3} x+c_{2}\right) \mathrm{e}^{-4 x}+c_{1} \mathrm{e}^{-x}+\frac{1}{16}+\frac{8 x \mathrm{e}^{-x}}{9} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{3} x+c_{2}\right) \mathrm{e}^{-4 x}+c_{1} \mathrm{e}^{-x}+\frac{1}{16}+\frac{8 x \mathrm{e}^{-x}}{9}
$$

Verified OK.

12.7.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+9 y^{\prime \prime}+24 y^{\prime}+16 y=8 \mathrm{e}^{-x}+1
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=8 \mathrm{e}^{-x}+1-9 y_{3}(x)-24 y_{2}(x)-16 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=8 \mathrm{e}^{-x}+1-9 y_{3}(x)-24 y_{2}(x)-16 y_{1}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- \quad System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -16 & -24 & -9\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}0 \\ 0 \\ 8 \mathrm{e}^{-x}+1\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 8 \mathrm{e}^{-x}+1\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -16 & -24 & -9\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-4,\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{4} \\
1
\end{array}\right]\right],\left[-4,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-4,\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{4} \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue -4

$$
\vec{y}_{1}(x)=\mathrm{e}^{-4 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{4} \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-4$ is the eigenvalue, a $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -4

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-16 & -24 & -9
\end{array}\right]-(-4) \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{4} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{64} \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue -4

$$
\vec{y}_{2}(x)=\mathrm{e}^{-4 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{4} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{64} \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-4 x}}{16} & \mathrm{e}^{-4 x}\left(\frac{x}{16}+\frac{1}{64}\right) & \mathrm{e}^{-x} \\
-\frac{\mathrm{e}^{-4 x}}{4} & -\frac{x \mathrm{e}^{-4 x}}{4} & -\mathrm{e}^{-x} \\
\mathrm{e}^{-4 x} & x \mathrm{e}^{-4 x} & \mathrm{e}^{-x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-4 x}}{16} & \mathrm{e}^{-4 x}\left(\frac{x}{16}+\frac{1}{64}\right) & \mathrm{e}^{-x} \\
-\frac{\mathrm{e}^{-4 x}}{4} & -\frac{x \mathrm{e}^{-4 x}}{4} & -\mathrm{e}^{-x} \\
\mathrm{e}^{-4 x} & x \mathrm{e}^{-4 x} & \mathrm{e}^{-x}
\end{array}\right] \cdot \frac{}{\left[\begin{array}{ccc}
\frac{1}{16} & \frac{1}{64} & 1 \\
-\frac{1}{4} & 0 & -1 \\
1 & 0 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-4 x}(4 x+1) & \frac{4 \mathrm{e}^{-4 x}}{3}+5 x \mathrm{e}^{-4 x}-\frac{4 \mathrm{e}^{-x}}{3} & \frac{\mathrm{e}^{-4 x}}{3}+x \mathrm{e}^{-4 x}-\frac{\mathrm{e}^{-x}}{3} \\
-16 x \mathrm{e}^{-4 x} & -\frac{\mathrm{e}^{-4 x}}{3}-20 x \mathrm{e}^{-4 x}+\frac{4 \mathrm{e}^{-x}}{3} & -\frac{\mathrm{e}^{-4 x}}{3}-4 x \mathrm{e}^{-4 x}+\frac{\mathrm{e}^{-x}}{3} \\
64 x \mathrm{e}^{-4 x} & \frac{4 \mathrm{e}^{-4 x}}{3}+80 x \mathrm{e}^{-4 x}-\frac{4 \mathrm{e}^{-x}}{3} & \frac{4 \mathrm{e}^{-4 x}}{3}+16 x \mathrm{e}^{-4 x}-\frac{\mathrm{e}^{-x}}{3}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution $\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)$
- Integrate to solve for $\vec{v}(x)$
$\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
-\frac{3}{16}+\frac{(-420 x-277) \mathrm{e}^{-4 x}}{144}+\frac{(19-24 x) \mathrm{e}^{-x}}{9} \\
\frac{(105 x+43) \mathrm{e}^{-4 x}}{9}+\frac{\mathrm{e}^{-x}(24 x-43)}{9} \\
1+\frac{4(-105 x-43) \mathrm{e}^{-4 x}}{9}+\frac{(-24 x+163) \mathrm{e}^{-x}}{9}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
-\frac{3}{16}+\frac{(-420 x-277) \mathrm{e}^{-4 x}}{144}+\frac{(19-24 x) \mathrm{e}^{-x}}{9} \\
\frac{(105 x+43) \mathrm{e}^{-4 x}}{9}+\frac{\mathrm{e}^{-x}(24 x-43)}{9} \\
1+\frac{4(-105 x-43) \mathrm{e}^{-4 x}}{9}+\frac{(-24 x+163) \mathrm{e}^{-x}}{9}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(\left(36 c_{2}-1680\right) x+36 c_{1}+9 c_{2}-1108\right) \mathrm{e}^{-4 x}}{576}-\frac{3}{16}+\frac{\left(-1536 x+576 c_{3}+1216\right) \mathrm{e}^{-x}}{576}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(diff(y(x),x$3)+9*diff(y(x),x$2)+24*diff(y(x),x)+16*y(x)=8*exp(-x)+1,y(x), singsol=all
```

$$
y(x)=\frac{1}{16}+\frac{\left(-16+24 x+27 c_{2}\right) \mathrm{e}^{-x}}{27}+\left(c_{3} x+c_{1}\right) \mathrm{e}^{-4 x}
$$

\checkmark Solution by Mathematica
Time used: 0.076 (sec). Leaf size: 39
DSolve[y'' ' $[\mathrm{x}]+9 * \mathrm{y}$ '' $[\mathrm{x}]+24 * \mathrm{y}$ ' $[\mathrm{x}]+16 * \mathrm{y}[\mathrm{x}]==8 * \operatorname{Exp}[-\mathrm{x}]+1, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $\rightarrow \mathrm{Tr}$

$$
y(x) \rightarrow e^{-4 x}\left(c_{2} x+c_{1}\right)+e^{-x}\left(\frac{8 x}{9}-\frac{16}{27}+c_{3}\right)+\frac{1}{16}
$$

12.8 problem Problem 27

12.8.1 Solving as second order linear constant coeff ode 2468
12.8.2 Solving using Kovacic algorithm 2471
12.8.3 Maple step by step solution . 2476

Internal problem ID [2831]
Internal file name [OUTPUT/2323_Sunday_June_05_2022_02_59_08_AM_34903683/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear__constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-4 y=5 \mathrm{e}^{x}
$$

12.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-4, f(x)=5 \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1} \mathrm{e}^{x}=5 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{5}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{5 \mathrm{e}^{x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-\frac{5 \mathrm{e}^{x}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}-\frac{5 \mathrm{e}^{x}}{3} \tag{1}
\end{equation*}
$$

Figure 326: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}-\frac{5 \mathrm{e}^{x}}{3}
$$

Verified OK.

12.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 330: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 x}}{4}, \mathrm{e}^{-2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1} \mathrm{e}^{x}=5 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{5}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{5 \mathrm{e}^{x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}\right)+\left(-\frac{5 \mathrm{e}^{x}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}-\frac{5 \mathrm{e}^{x}}{3} \tag{1}
\end{equation*}
$$

Figure 327: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}-\frac{5 \mathrm{e}^{x}}{3}
$$

Verified OK.

12.8.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y=5 \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial
$r=(-2,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=5 \mathrm{e}^{x}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} \\ -2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{5 \mathrm{e}^{-2 x}\left(\int \mathrm{e}^{3 x} d x\right)}{4}+\frac{5 \mathrm{e}^{2 x}\left(\int \mathrm{e}^{-x} d x\right)}{4}$
- Compute integrals

$$
y_{p}(x)=-\frac{5 \mathrm{e}^{x}}{3}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}-\frac{5 \mathrm{e}^{x}}{3}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$2)-4*y(x)=5*exp(x),y(x), singsol=all)
```

$$
y(x)=-\frac{\left(-3 \mathrm{e}^{4 x} c_{1}+5 \mathrm{e}^{3 x}-3 c_{2}\right) \mathrm{e}^{-2 x}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 29
DSolve[y'' $[x]-4 * y[x]==5 * \operatorname{Exp}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{5 e^{x}}{3}+c_{1} e^{2 x}+c_{2} e^{-2 x}
$$

12.9 problem Problem 28

12.9.1 Solving as second order linear constant coeff ode 2479
12.9.2 Solving as linear second order ode solved by an integrating factor
ode . 2482
12.9.3 Solving using Kovacic algorithm 2484
12.9.4 Maple step by step solution . 2489

Internal problem ID [2832]
Internal file name [OUTPUT/2324_Sunday_June_05_2022_02_59_10_AM_4803815/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+y=2 x \mathrm{e}^{-x}
$$

12.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=1, f(x)=2 x \mathrm{e}^{-x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 x \mathrm{e}^{-x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}
$$

Since e^{-x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x} x^{2}\right\}\right]
$$

Since $x \mathrm{e}^{-x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3} \mathrm{e}^{-x}, \mathrm{e}^{-x} x^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{3} \mathrm{e}^{-x}+A_{2} \mathrm{e}^{-x} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} x \mathrm{e}^{-x}+2 A_{2} \mathrm{e}^{-x}=2 x \mathrm{e}^{-x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{3} \mathrm{e}^{-x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}\right)+\left(\frac{x^{3} \mathrm{e}^{-x}}{3}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3} \tag{1}
\end{equation*}
$$

Figure 328: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3}
$$

Verified OK.
12.9.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =2 \mathrm{e}^{x} x \mathrm{e}^{-x} \\
\left(\mathrm{e}^{x} y\right)^{\prime \prime} & =2 \mathrm{e}^{x} x \mathrm{e}^{-x}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{x} y\right)^{\prime}=x^{2}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{x} y\right)=\frac{1}{3} x^{3}+c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{\frac{1}{3} x^{3}+c_{1} x+c_{2}}{\mathrm{e}^{x}}
$$

Or

$$
y=\frac{x^{3} \mathrm{e}^{-x}}{3}+c_{1} x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3} \mathrm{e}^{-x}}{3}+c_{1} x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 329: Slope field plot

Verification of solutions

$$
y=\frac{x^{3} \mathrm{e}^{-x}}{3}+c_{1} x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

12.9.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 332: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 x \mathrm{e}^{-x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}
$$

Since e^{-x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x} x^{2}\right\}\right]
$$

Since $x \mathrm{e}^{-x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3} \mathrm{e}^{-x}, \mathrm{e}^{-x} x^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{3} \mathrm{e}^{-x}+A_{2} \mathrm{e}^{-x} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} x \mathrm{e}^{-x}+2 A_{2} \mathrm{e}^{-x}=2 x \mathrm{e}^{-x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{3} \mathrm{e}^{-x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}\right)+\left(\frac{x^{3} \mathrm{e}^{-x}}{3}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3} \tag{1}
\end{equation*}
$$

Figure 330: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{3} \mathrm{e}^{-x}}{3}
$$

Verified OK.

12.9.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+y=2 x \mathrm{e}^{-x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r+1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-1
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{-x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 x \mathrm{e}^{-x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}-x \mathrm{e}^{-x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-2 \mathrm{e}^{-x}\left(\int x^{2} d x-\left(\int x d x\right) x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{x^{3} \mathrm{e}^{-x}}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{2} x \mathrm{e}^{-x}+c_{1} \mathrm{e}^{-x}+\frac{x^{3} \mathrm{e}^{-x}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{y}(\mathrm{x})=2 * \mathrm{x} * \exp (-\mathrm{x}), \mathrm{y}(\mathrm{x}), \quad$ singsol=all)

$$
y(x)=\mathrm{e}^{-x}\left(c_{2}+c_{1} x+\frac{1}{3} x^{3}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 27
DSolve[y''[x]+2*y'[x]+y[x]==2*x*Exp[-x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{3} e^{-x}\left(x^{3}+3 c_{2} x+3 c_{1}\right)
$$

12.10 problem Problem 29

12.10.1 Solving as second order linear constant coeff ode 2492
12.10.2 Solving using Kovacic algorithm 2495
12.10.3 Maple step by step solution . 2501

Internal problem ID [2833]
Internal file name [OUTPUT/2325_Sunday_June_05_2022_02_59_13_AM_75321258/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-y=4 \mathrm{e}^{x}
$$

12.10.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-1, f(x)=4 \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}=4 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 x \mathrm{e}^{x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}\right)+\left(2 x \mathrm{e}^{x}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 331: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{x}
$$

Verified OK.

12.10.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 334: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\frac{\mathrm{e}^{x}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \frac{\mathrm{e}^{x}}{2} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & \frac{\mathrm{e}^{x}}{2} \\
-\mathrm{e}^{-x} & \frac{\mathrm{e}^{x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x}\right)\left(\frac{\mathrm{e}^{x}}{2}\right)-\left(\frac{\mathrm{e}^{x}}{2}\right)\left(-\mathrm{e}^{-x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-x} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \mathrm{e}^{2 x}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int 2 \mathrm{e}^{2 x} d x
$$

Hence

$$
u_{1}=-\mathrm{e}^{2 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 \mathrm{e}^{-x} \mathrm{e}^{x}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 4 d x
$$

Hence

$$
u_{2}=4 x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\mathrm{e}^{2 x} \mathrm{e}^{-x}+2 x \mathrm{e}^{x}
$$

Which simplifies to

$$
y_{p}(x)=\mathrm{e}^{x}(2 x-1)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}\right)+\left(\mathrm{e}^{x}(2 x-1)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}+\mathrm{e}^{x}(2 x-1) \tag{1}
\end{equation*}
$$

Figure 332: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}+\mathrm{e}^{x}(2 x-1)
$$

Verified OK.

12.10.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y=4 \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial
$(r-1)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-1,1)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{x} \\ -\mathrm{e}^{-x} & \mathrm{e}^{x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-2 \mathrm{e}^{-x}\left(\int \mathrm{e}^{2 x} d x\right)+2 \mathrm{e}^{x}\left(\int 1 d x\right)$
- Compute integrals

$$
y_{p}(x)=\mathrm{e}^{x}(2 x-1)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{x}(2 x-1)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve(diff $(y(x), x \$ 2)-y(x)=4 * \exp (x), y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-x} c_{2}+2 \mathrm{e}^{x}\left(x+\frac{c_{1}}{2}\right)
$$

Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 25
DSolve[y''[x]-y[x]==4*Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x}\left(2 x-1+c_{1}\right)+c_{2} e^{-x}
$$

12.11 problem Problem 30

12.11.1 Solving as second order airy ode 2504
12.11.2 Solving as second order bessel ode ode 2508

Internal problem ID [2834]
Internal file name [OUTPUT/2326_Sunday_June_05_2022_02_59_15_AM_6621393/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 30.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y x=\sin (x)
$$

12.11.1 Solving as second order airy ode

This is Airy ODE. It has the general form

$$
a y^{\prime \prime}+b y^{\prime}+c y x=F(x)
$$

Where in this case

$$
\begin{aligned}
a & =1 \\
b & =0 \\
c & =1 \\
F & =\sin (x)
\end{aligned}
$$

Therefore the solution to the homogeneous Airy ODE becomes

$$
y=\mathrm{e}^{-\frac{b x}{2 a}}\left(c_{1} \operatorname{AiryAi}\left(-\frac{\left(\frac{c}{a}\right)^{\frac{1}{3}}\left(c x a-\frac{b^{2}}{4}\right)}{c a}\right)+c_{2} \operatorname{AiryBi}\left(-\frac{\left(\frac{c}{a}\right)^{\frac{1}{3}}\left(c x a-\frac{b^{2}}{4}\right)}{c a}\right)\right)
$$

Substituting the values for a, b, c gives

$$
y=c_{1} \operatorname{AiryAi}(-x)+c_{2} \operatorname{AiryBi}(-x)
$$

Since this is inhomogeneous Airy ODE, then we need to find the particular solution and add that to the homogeneous above. The particular solution is found using variation of parameters. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(-x) \\
& y_{2}=\operatorname{AiryBi}(-x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(-x) & \operatorname{AiryBi}(-x) \\
\frac{d}{d x}(\operatorname{AiryAi}(-x)) & \frac{d}{d x}(\operatorname{AiryBi}(-x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(-x) & \operatorname{AiryBi}(-x) \\
-\operatorname{AiryAi}(1,-x) & -\operatorname{AiryBi}(1,-x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(-x))(-\operatorname{AiryBi}(1,-x))-(\operatorname{AiryBi}(-x))(-\operatorname{AiryAi}(1,-x))
$$

Which simplifies to

$$
W=-\operatorname{Airy} \operatorname{Ai}(-x) \operatorname{AiryBi}(1,-x)+\operatorname{AiryBi}(-x) \operatorname{AiryAi}(1,-x)
$$

Which simplifies to

$$
W=-\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(-x) \sin (x)}{-\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\operatorname{AiryBi}(-x) \sin (x) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\operatorname{AiryBi}(-\alpha) \sin (\alpha) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(-x) \sin (x)}{-\frac{1}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int-\operatorname{AiryAi}(-x) \sin (x) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x}-\operatorname{AiryAi}(-\alpha) \sin (\alpha) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\pi\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \\
& u_{2}=-\pi\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \pi\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryAi}(-x) \\
& -\pi\left(\int_{0}^{x} \operatorname{Airy} \operatorname{Ai}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryBi}(-x)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)=\pi\left(\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{Airy} \operatorname{Ai}(-x)\right. \\
&\left.-\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryBi}(-x)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
&=\left(c_{1} \operatorname{AiryAi}(-x)+c_{2} \operatorname{AiryBi}(-x)\right)+\left(\pi \left(\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryAi}(-x)\right.\right. \\
&\left.\left.-\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryBi}(-x)\right)\right) \\
&=\pi\left(\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryAi}(-x)\right. \\
&\left.-\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryBi}(-x)\right)+c_{1} \operatorname{AiryAi}(-x)+c_{2} \operatorname{AiryBi}(-x)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \pi\left(\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryAi}(-x)\right. \\
& \left.-\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryBi}(-x)^{(1)}\right) \\
& +c_{1} \operatorname{AiryAi}(-x)+c_{2} \operatorname{AiryBi}(-x)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & \pi\left(\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryAi}(-x)\right. \\
& \left.-\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryBi}(-x)\right)+c_{1} \operatorname{AiryAi}(-x)+c_{2} \operatorname{AiryBi}(-x)
\end{aligned}
$$

Verified OK.

12.11.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y x^{3}=x^{2} \sin (x) \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE and y_{p} is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =\frac{1}{2} \\
\beta & =\frac{2}{3} \\
n & =\frac{1}{3} \\
\gamma & =\frac{3}{2}
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\operatorname{AiryAi}(-x) \\
& y_{2}=\operatorname{AiryBi}(-x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(-x) & \operatorname{AiryBi}(-x) \\
\frac{d}{d x}(\operatorname{AiryAi}(-x)) & \frac{d}{d x}(\operatorname{AiryBi}(-x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\operatorname{AiryAi}(-x) & \operatorname{AiryBi}(-x) \\
-\operatorname{AiryAi}(1,-x) & -\operatorname{AiryBi}(1,-x)
\end{array}\right|
$$

Therefore

$$
W=(\operatorname{AiryAi}(-x))(-\operatorname{AiryBi}(1,-x))-(\operatorname{AiryBi}(-x))(-\operatorname{Airy} \operatorname{Ai}(1,-x))
$$

Which simplifies to

$$
W=-\operatorname{AiryAi}(-x) \operatorname{AiryBi}(1,-x)+\operatorname{AiryBi}(-x) \operatorname{AiryAi}(1,-x)
$$

Which simplifies to

$$
W=-\frac{1}{\pi}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\operatorname{AiryBi}(-x) x^{2} \sin (x)}{-\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\operatorname{AiryBi}(-x) \sin (x) \pi d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x}-\operatorname{AiryBi}(-\alpha) \sin (\alpha) \pi d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\operatorname{AiryAi}(-x) x^{2} \sin (x)}{-\frac{x^{2}}{\pi}} d x
$$

Which simplifies to

$$
u_{2}=\int-\operatorname{AiryAi}(-x) \sin (x) \pi d x
$$

Hence

$$
u_{2}=\int_{0}^{x}-\operatorname{AiryAi}(-\alpha) \sin (\alpha) \pi d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\pi\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \\
& u_{2}=-\pi\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \pi\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryAi}(-x) \\
& -\pi\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryBi}(-x)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& y_{p}(x)=\pi\left(\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryAi}(-x)\right. \\
&\left.-\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryBi}(-x)\right)
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)\right) \\
& +\left(\pi \left(\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryAi}(-x)\right.\right. \\
& \left.\left.-\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryBi}(-x)\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{x} \text { BesselJ }\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right) \\
+ & \pi\left(\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryAi}(-x)\right. \tag{1}\\
& \left.-\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryBi}(-x)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{x} \operatorname{BesselJ}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right)+c_{2} \sqrt{x} \operatorname{BesselY}\left(\frac{1}{3}, \frac{2 x^{\frac{3}{2}}}{3}\right) \\
& +\pi\left(\left(\int_{0}^{x} \operatorname{AiryBi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryAi}(-x)\right. \\
& \left.-\left(\int_{0}^{x} \operatorname{AiryAi}(-\alpha) \sin (\alpha) d \alpha\right) \operatorname{AiryBi}(-x)\right)
\end{aligned}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 48

```
dsolve(diff (y(x), x$2)+x*y(x)=sin(x),y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & \pi\left(\int \operatorname{AiryBi}(-x) \sin (x) d x\right) \operatorname{AiryAi}(-x) \\
& -\pi\left(\int \operatorname{AiryAi}(-x) \sin (x) d x\right) \operatorname{AiryBi}(-x)+\operatorname{AiryBi}(-x) c_{1}+\operatorname{AiryAi}(-x) c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 105.448 (sec). Leaf size: 99
DSolve[y'' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}[\mathrm{x}]==\operatorname{Sin}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{array}{r}
y(x) \rightarrow \operatorname{AiryAi}(\sqrt[3]{-1} x) \int_{1}^{x}(-1)^{2 / 3} \pi \operatorname{AiryBi}(\sqrt[3]{-1} K[1]) \sin (K[1]) d K[1] \\
+\operatorname{AiryBi}(\sqrt[3]{-1} x) \int_{1}^{x}-(-1)^{2 / 3} \pi \operatorname{Airy} \operatorname{Ai}(\sqrt[3]{-1} K[2]) \sin (K[2]) d K[2] \\
+c_{1} \operatorname{Airy} \operatorname{Ai}(\sqrt[3]{-1} x)+c_{2} \operatorname{AiryBi}(\sqrt[3]{-1} x)
\end{array}
$$

12.12 problem Problem 31

12.12.1 Solving as second order linear constant coeff ode 2514
12.12.2 Solving using Kovacic algorithm 2519
12.12.3 Maple step by step solution . 2526

Internal problem ID [2835]
Internal file name [OUTPUT/2327_Sunday_June_05_2022_02_59_17_AM_17275767/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 31.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\ln (x)
$$

12.12.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=\ln (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\sin (2 x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}(\sin (2 x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 x))(2 \cos (2 x))-(\sin (2 x))(-2 \sin (2 x))
$$

Which simplifies to

$$
W=2 \cos (2 x)^{2}+2 \sin (2 x)^{2}
$$

Which simplifies to

$$
W=2
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (2 x) \ln (x)}{2} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (2 x) \ln (x)}{2} d x
$$

Hence

$$
u_{1}=\frac{i \pi(\operatorname{csgn}(x)-1) \operatorname{csgn}(i x)}{8}+\frac{\cos (2 x) \ln (x)}{4}+\frac{\gamma}{4}+\frac{\ln (2)}{4}-\frac{\mathrm{Ci}(2 x)}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (2 x) \ln (x)}{2} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (2 x) \ln (x)}{2} d x
$$

Hence

$$
u_{2}=\frac{\sin (2 x) \ln (x)}{4}+\frac{\pi}{8}-\frac{\operatorname{Si}(2 x)}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\cos (2 x) \ln (x)}{4}+\frac{\gamma}{4}+\frac{\ln (2)}{4}-\frac{\mathrm{Ci}(2 x)}{4} \\
& u_{2}=\frac{\sin (2 x) \ln (x)}{4}+\frac{\pi}{8}-\frac{\operatorname{Si}(2 x)}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(\frac{\cos (2 x) \ln (x)}{4}+\frac{\gamma}{4}+\frac{\ln (2)}{4}-\frac{\mathrm{Ci}(2 x)}{4}\right) \cos (2 x) \\
& +\left(\frac{\sin (2 x) \ln (x)}{4}+\frac{\pi}{8}-\frac{\mathrm{Si}(2 x)}{4}\right) \sin (2 x)
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)= & \frac{\ln (x) \cos (2 x)^{2}}{4}+\frac{(2 \gamma+2 \ln (2)-2 \operatorname{Ci}(2 x)) \cos (2 x)}{8} \\
& +\frac{\sin (2 x)(2 \sin (2 x) \ln (x)-2 \operatorname{Si}(2 x)+\pi)}{8}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& \begin{aligned}
&=\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\frac{\ln (x) \cos (2 x)^{2}}{4}+\frac{(2 \gamma+2 \ln (2)-2 \mathrm{Ci}(2 x)) \cos (2 x)}{8}\right. \\
&\left.+\frac{\sin (2 x)(2 \sin (2 x) \ln (x)-2 \operatorname{Si}(2 x)+\pi)}{8}\right)
\end{aligned}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\ln (x) \cos (2 x)^{2}}{4}+\frac{(2 \gamma+2 \ln (2)-2 \mathrm{Ci}(2 x)) \cos (2 x)}{8} \tag{1}\\
& +\frac{\sin (2 x)(2 \sin (2 x) \ln (x)-2 \operatorname{Si}(2 x)+\pi)}{8}
\end{align*}
$$

Figure 333: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\ln (x) \cos (2 x)^{2}}{4}+\frac{(2 \gamma+2 \ln (2)-2 \mathrm{Ci}(2 x)) \cos (2 x)}{8} \\
& +\frac{\sin (2 x)(2 \sin (2 x) \ln (x)-2 \operatorname{Si}(2 x)+\pi)}{8}
\end{aligned}
$$

Verified OK. $\{0<\mathrm{x}\}$

12.12.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 336: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\frac{\sin (2 x)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}\left(\frac{\sin (2 x)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
-2 \sin (2 x) & \cos (2 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 x))(\cos (2 x))-\left(\frac{\sin (2 x)}{2}\right)(-2 \sin (2 x))
$$

Which simplifies to

$$
W=\cos (2 x)^{2}+\sin (2 x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin (2 x) \ln (x)}{2}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (2 x) \ln (x)}{2} d x
$$

Hence

$$
u_{1}=\frac{i \pi(\operatorname{csgn}(x)-1) \operatorname{csgn}(i x)}{8}+\frac{\cos (2 x) \ln (x)}{4}+\frac{\gamma}{4}+\frac{\ln (2)}{4}-\frac{\mathrm{Ci}(2 x)}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (2 x) \ln (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \cos (2 x) \ln (x) d x
$$

Hence

$$
u_{2}=\frac{\sin (2 x) \ln (x)}{2}+\frac{\pi}{4}-\frac{\operatorname{Si}(2 x)}{2}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{\cos (2 x) \ln (x)}{4}+\frac{\gamma}{4}+\frac{\ln (2)}{4}-\frac{\mathrm{Ci}(2 x)}{4} \\
& u_{2}=\frac{\sin (2 x) \ln (x)}{2}+\frac{\pi}{4}-\frac{\operatorname{Si}(2 x)}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(\frac{\cos (2 x) \ln (x)}{4}+\frac{\gamma}{4}+\frac{\ln (2)}{4}-\frac{\mathrm{Ci}(2 x)}{4}\right) \cos (2 x) \\
& +\frac{\left(\frac{\sin (2 x) \ln (x)}{2}+\frac{\pi}{4}-\frac{\operatorname{Si}(2 x)}{2}\right) \sin (2 x)}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
y_{p}(x)= & \frac{\ln (x) \cos (2 x)^{2}}{4}+\frac{(2 \gamma+2 \ln (2)-2 \mathrm{Ci}(2 x)) \cos (2 x)}{8} \\
& +\frac{\sin (2 x)(2 \sin (2 x) \ln (x)-2 \operatorname{Si}(2 x)+\pi)}{8}
\end{aligned}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& \begin{aligned}
&=\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(\frac{\ln (x) \cos (2 x)^{2}}{4}+\frac{(2 \gamma+2 \ln (2)-2 \operatorname{Ci}(2 x)) \cos (2 x)}{8}\right. \\
&\left.+\frac{\sin (2 x)(2 \sin (2 x) \ln (x)-2 \operatorname{Si}(2 x)+\pi)}{8}\right)
\end{aligned}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{\ln (x) \cos (2 x)^{2}}{4}+\frac{(2 \gamma+2 \ln (2)-2 \operatorname{Ci}(2 x)) \cos (2 x)}{8} \\
& +\frac{\sin (2 x)(2 \sin (2 x) \ln (x)-2 \operatorname{Si}(2 x)+\pi)}{8}
\end{aligned}
$$

Figure 334: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{\ln (x) \cos (2 x)^{2}}{4}+\frac{(2 \gamma+2 \ln (2)-2 \mathrm{Ci}(2 x)) \cos (2 x)}{8} \\
& +\frac{\sin (2 x)(2 \sin (2 x) \ln (x)-2 \operatorname{Si}(2 x)+\pi)}{8}
\end{aligned}
$$

Verified OK. $\{0<\mathrm{x}\}$

12.12.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=\ln (x)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- 1st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (2 x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\ln (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (2 x)\left(\int \sin (2 x) \ln (x) d x\right)}{2}+\frac{\sin (2 x)\left(\int \cos (2 x) \ln (x) d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{I} \cos (2 x)(\operatorname{csgn}(x)-1) \pi \operatorname{csgn}(\mathrm{I} x)}{8}-\frac{\cos (2 x) \operatorname{Ci}(2 x)}{4}+\frac{(\pi \operatorname{csgn}(x)-2 \operatorname{Si}(2 x)) \sin (2 x)}{8}+\frac{\ln (x)}{4}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\mathrm{I} \cos (2 x)(\operatorname{csgn}(x)-1) \pi \operatorname{csgn}(\mathrm{I} x)}{8}-\frac{\cos (2 x) \mathrm{Ci}(2 x)}{4}+\frac{(\pi \operatorname{csgn}(x)-2 \operatorname{Si}(2 x)) \sin (2 x)}{8}+\frac{\ln (}{4}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 62

```
dsolve(diff(y(x), x$2)+4*y(x)=ln(x),y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & \frac{i \cos (2 x) \pi(-1+\operatorname{csgn}(x)) \operatorname{csgn}(i x)}{8}+\frac{\left(8 c_{1}-2 \mathrm{Ci}(2 x)\right) \cos (2 x)}{8} \\
& +\frac{\left(\pi \operatorname{csgn}(x)+8 c_{2}-2 \operatorname{Si}(2 x)\right) \sin (2 x)}{8}+\frac{\ln (x)}{4}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 48

```
DSolve[y''[x] +4*y[x]==Log[x],y[x],x,IncludeSingularSolutions -> True]
```

$y(x) \rightarrow \frac{1}{4}\left(-\right.$ CosIntegral $\left.(2 x) \cos (2 x)-\operatorname{Si}(2 x) \sin (2 x)+\log (x)+4 c_{1} \cos (2 x)+4 c_{2} \sin (2 x)\right)$

12.13 problem Problem 32

12.13.1 Solving as second order linear constant coeff ode 2529
12.13.2 Solving using Kovacic algorithm 2532
12.13.3 Maple step by step solution . 2538

Internal problem ID [2836]
Internal file name [OUTPUT/2328_Sunday_June_05_2022_02_59_21_AM_46981541/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 32.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+2 y^{\prime}-3 y=5 \mathrm{e}^{x}
$$

12.13.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=-3, f(x)=5 \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=-3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda-3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=-3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(-3)} \\
& =-1 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+2 \\
& \lambda_{2}=-1-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-3 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-3 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{-3 x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \mathrm{e}^{x}=5 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{5}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5 x \mathrm{e}^{x}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-3 x}\right)+\left(\frac{5 x \mathrm{e}^{x}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-3 x}+\frac{5 x \mathrm{e}^{x}}{4} \tag{1}
\end{equation*}
$$

Figure 335: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-3 x}+\frac{5 x \mathrm{e}^{x}}{4}
$$

Verified OK.

12.13.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 338: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \\
& y_{2}=\frac{\mathrm{e}^{x}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & \frac{\mathrm{e}^{x}}{4} \\
\frac{d}{d x}\left(\mathrm{e}^{-3 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-3 x} & \frac{\mathrm{e}^{x}}{4} \\
-3 \mathrm{e}^{-3 x} & \frac{\mathrm{e}^{x}}{4}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-3 x}\right)\left(\frac{\mathrm{e}^{x}}{4}\right)-\left(\frac{\mathrm{e}^{x}}{4}\right)\left(-3 \mathrm{e}^{-3 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-3 x} \mathrm{e}^{x}
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{5 \mathrm{e}^{2 x}}{4}}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{5 \mathrm{e}^{4 x}}{4} d x
$$

Hence

$$
u_{1}=-\frac{5 \mathrm{e}^{4 x}}{16}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{5 \mathrm{e}^{-3 x} \mathrm{e}^{x}}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int 5 d x
$$

Hence

$$
u_{2}=5 x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{5 \mathrm{e}^{-3 x} \mathrm{e}^{4 x}}{16}+\frac{5 x \mathrm{e}^{x}}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{5 \mathrm{e}^{x}(-1+4 x)}{16}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}\right)+\left(\frac{5 \mathrm{e}^{x}(-1+4 x)}{16}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}+\frac{5 \mathrm{e}^{x}(-1+4 x)}{16} \tag{1}
\end{equation*}
$$

Figure 336: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}+\frac{5 \mathrm{e}^{x}(-1+4 x)}{16}
$$

Verified OK.

12.13.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}-3 y=5 \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r-3=0
$$

- Factor the characteristic polynomial
$(r+3)(r-1)=0$
- Roots of the characteristic polynomial
$r=(-3,1)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-3 x}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=5 \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 x} & \mathrm{e}^{x} \\ -3 \mathrm{e}^{-3 x} & \mathrm{e}^{x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4 \mathrm{e}^{-2 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=\frac{5\left(\mathrm{e}^{4 x}\left(\int 1 d x\right)-\left(\int \mathrm{e}^{4 x} d x\right)\right) \mathrm{e}^{-3 x}}{4}$
- Compute integrals
$y_{p}(x)=\frac{5 \mathrm{e}^{x}(-1+4 x)}{16}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{x}+\frac{5 \mathrm{e}^{x}(-1+4 x)}{16}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

```
dsolve(diff(y(x),x$2)+2*diff(y(x),x)-3*y(x)=5*exp(x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(5 x+4 c_{1}\right) \mathrm{e}^{-3 x} \mathrm{e}^{4 x}}{4}+\mathrm{e}^{-3 x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 29
DSolve[y''[x]+2*y'[x]-3*y[x]==5*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} e^{-3 x}+e^{x}\left(\frac{5 x}{4}-\frac{5}{16}+c_{2}\right)
$$

12.14 problem Problem 33

12.14.1 Solving as second order linear constant coeff ode 2541
12.14.2 Solving using Kovacic algorithm 2546
12.14.3 Maple step by step solution . 2551

Internal problem ID [2837]
Internal file name [OUTPUT/2329_Sunday_June_05_2022_02_59_23_AM_29122666/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 33.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y=\tan (x)
$$

12.14.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\tan (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\tan (x) \sin (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) \sin (x) d x
$$

Hence

$$
u_{1}=\sin (x)-\ln (\sec (x)+\tan (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \tan (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(\sin (x)-\ln (\sec (x)+\tan (x))) \cos (x)-\sin (x) \cos (x)
$$

Which simplifies to

$$
y_{p}(x)=-\ln (\sec (x)+\tan (x)) \cos (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(-\ln (\sec (x)+\tan (x)) \cos (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\sec (x)+\tan (x)) \cos (x) \tag{1}
\end{equation*}
$$

Figure 337: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\sec (x)+\tan (x)) \cos (x)
$$

Verified OK.

12.14.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 340: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\tan (x) \sin (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) \sin (x) d x
$$

Hence

$$
u_{1}=\sin (x)-\ln (\sec (x)+\tan (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (x) \tan (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(\sin (x)-\ln (\sec (x)+\tan (x))) \cos (x)-\sin (x) \cos (x)
$$

Which simplifies to

$$
y_{p}(x)=-\ln (\sec (x)+\tan (x)) \cos (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+(-\ln (\sec (x)+\tan (x)) \cos (x))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\sec (x)+\tan (x)) \cos (x) \tag{1}
\end{equation*}
$$

Figure 338: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\sec (x)+\tan (x)) \cos (x)
$$

Verified OK.

12.14.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\tan (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\tan (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \tan (x) \sin (x) d x\right)+\sin (x)\left(\int \sin (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\ln (\sec (x)+\tan (x)) \cos (x)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)-\ln (\sec (x)+\tan (x)) \cos (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)+y(x)=tan(x),y(x), singsol=all)
```

$$
y(x)=\sin (x) c_{2}+\cos (x) c_{1}-\cos (x) \ln (\sec (x)+\tan (x))
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 23
DSolve[y''[x]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \cos (x)(-\operatorname{arctanh}(\sin (x)))+c_{1} \cos (x)+c_{2} \sin (x)
$$

12.15 problem Problem 34

12.15.1 Solving as second order linear constant coeff ode 2554
12.15.2 Solving using Kovacic algorithm 2557
12.15.3 Maple step by step solution . 2562

Internal problem ID [2838]
Internal file name [OUTPUT/2330_Sunday_June_05_2022_02_59_25_AM_93733018/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number: Problem 34.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y=4 \cos (2 x)+3 \mathrm{e}^{x}
$$

12.15.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=4 \cos (2 x)+3 \mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \cos (2 x)+3 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\{\cos (2 x), \sin (2 x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2} \cos (2 x)+A_{3} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}-3 A_{2} \cos (2 x)-3 A_{3} \sin (2 x)=4 \cos (2 x)+3 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{2}, A_{2}=-\frac{4}{3}, A_{3}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \mathrm{e}^{x}}{2}-\frac{4 \cos (2 x)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{3 \mathrm{e}^{x}}{2}-\frac{4 \cos (2 x)}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 \mathrm{e}^{x}}{2}-\frac{4 \cos (2 x)}{3} \tag{1}
\end{equation*}
$$

Figure 339: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 \mathrm{e}^{x}}{2}-\frac{4 \cos (2 x)}{3}
$$

Verified OK.

12.15.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 342: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \cos (2 x)+3 \mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\},\{\cos (2 x), \sin (2 x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}+A_{2} \cos (2 x)+A_{3} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{x}-3 A_{2} \cos (2 x)-3 A_{3} \sin (2 x)=4 \cos (2 x)+3 \mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{2}, A_{2}=-\frac{4}{3}, A_{3}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \mathrm{e}^{x}}{2}-\frac{4 \cos (2 x)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\left(\frac{3 \mathrm{e}^{x}}{2}-\frac{4 \cos (2 x)}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 \mathrm{e}^{x}}{2}-\frac{4 \cos (2 x)}{3} \tag{1}
\end{equation*}
$$

Figure 340: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 \mathrm{e}^{x}}{2}-\frac{4 \cos (2 x)}{3}
$$

Verified OK.

12.15.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=4 \cos (2 x)+3 \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \cos (2 x)+3 \mathrm{e}^{x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \sin (x)\left(4 \cos (2 x)+3 \mathrm{e}^{x}\right) d x\right)+\sin (x)\left(\int \cos (x)\left(4 \cos (2 x)+3 \mathrm{e}^{x}\right) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{3 \mathrm{e}^{x}}{2}-\frac{4 \cos (2 x)}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+\frac{3 \mathrm{e}^{x}}{2}-\frac{4 \cos (2 x)}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff (y(x),x$2)+y(x)=4*\operatorname{cos}(2*x)+3*exp(x),y(x), singsol=all)
```

$$
y(x)=\sin (x) c_{2}+\cos (x) c_{1}-\frac{4 \cos (2 x)}{3}+\frac{3 \mathrm{e}^{x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 30
DSolve[y'' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==4 * \operatorname{Cos}[\mathrm{x}] * 3 * \operatorname{Exp}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{12}{5} e^{x}(2 \sin (x)+\cos (x))+c_{1} \cos (x)+c_{2} \sin (x)
$$

13 Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
13.1 problem Problem 1 2566
13.2 problem Problem 2 2571
13.3 problem Problem 3 2576
13.4 problem Problem 4 2581
13.5 problem Problem 5 2586
13.6 problem Problem 6 2591
13.7 problem Problem 7 2596
13.8 problem Problem 8 2601
13.9 problem Problem 9 2606
13.10problem Problem 10 2611
13.11problem Problem 11 2617
13.12problem Problem 12 2623
13.13problem Problem 13 2629
13.14problem Problem 14 2635
13.15problem Problem 15 2641
13.16problem Problem 16 2647
13.17problem Problem 17 2653
13.18problem Problem 18 2659
13.19problem Problem 19 2665
13.20problem Problem 20 2671
13.21problem Problem 21 2677
13.22problem Problem 22 2683
13.23problem Problem 23 2689
13.24problem Problem 24 2695
13.25problem Problem 25 2701
13.26problem Problem 26 2707
13.27problem Problem 27 2713
13.28problem Problem 28 2719

13.1 problem Problem 1

13.1.1 Existence and uniqueness analysis 2566
13.1.2 Solving as laplace ode . 2567
13.1.3 Maple step by step solution . 2568

Internal problem ID [2839]
Internal file name [OUTPUT/2331_Sunday_June_05_2022_02_59_29_AM_68412706/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y=6 \mathrm{e}^{5 t}
$$

With initial conditions

$$
[y(0)=3]
$$

13.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-2 \\
q(t) & =6 \mathrm{e}^{5 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=6 \mathrm{e}^{5 t}
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=6 \mathrm{e}^{5 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

13.1.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-2 Y(s)=\frac{6}{s-5} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-3-2 Y(s)=\frac{6}{s-5}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{-9+3 s}{(s-5)(s-2)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{1}{s-2}+\frac{2}{s-5}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
& \mathcal{L}^{-1}\left(\frac{1}{s-2}\right)=\mathrm{e}^{2 t} \\
& \mathcal{L}^{-1}\left(\frac{2}{s-5}\right)=2 \mathrm{e}^{5 t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=2 \mathrm{e}^{5 t}+\mathrm{e}^{2 t}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{5 t}+\mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{5 t}+\mathrm{e}^{2 t}
$$

Verified OK.

13.1.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 y=6 \mathrm{e}^{5 t}, y(0)=3\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative

$$
y^{\prime}=2 y+6 \mathrm{e}^{5 t}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-2 y=6 \mathrm{e}^{5 t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-2 y\right)=6 \mu(t) \mathrm{e}^{5 t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 6 \mu(t) \mathrm{e}^{5 t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 6 \mu(t) \mathrm{e}^{5 t} d t+c_{1}$
- Solve for y
$y=\frac{\int 6 \mu(t) e^{t} t d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-2 t}$
$y=\frac{\int 6 \mathrm{e}^{-2 t} \mathrm{e}^{5} t d t+c_{1}}{\mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{2 \mathrm{e}^{3 t}+c_{1}}{\mathrm{e}^{-2 t}}$
- Simplify
$y=\mathrm{e}^{2 t}\left(2 \mathrm{e}^{3 t}+c_{1}\right)$
- Use initial condition $y(0)=3$
$3=2+c_{1}$
- Solve for c_{1}
$c_{1}=1$
- Substitute $c_{1}=1$ into general solution and simplify
$y=\mathrm{e}^{2 t}\left(2 \mathrm{e}^{3 t}+1\right)$
- Solution to the IVP

$$
y=\mathrm{e}^{2 t}\left(2 \mathrm{e}^{3 t}+1\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.891 (sec). Leaf size: 15

```
dsolve([diff(y(t),t)-2*y(t)=6*exp(5*t),y(0) = 3],y(t), singsol=all)
```

$$
y(t)=2 \mathrm{e}^{5 t}+\mathrm{e}^{2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 18
DSolve $\left[\left\{y^{\prime}[t]-2 * y[t]==6 * \operatorname{Exp}[5 * t],\{y[0]==3\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{2 t}+2 e^{5 t}
$$

13.2 problem Problem 2

13.2.1 Existence and uniqueness analysis 2571
13.2.2 Solving as laplace ode . 2572
13.2.3 Maple step by step solution . 2573

Internal problem ID [2840]
Internal file name [OUTPUT/2332_Sunday_June_05_2022_02_59_31_AM_54659613/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=8 \mathrm{e}^{3 t}
$$

With initial conditions

$$
[y(0)=2]
$$

13.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =8 \mathrm{e}^{3 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=8 \mathrm{e}^{3 t}
$$

The domain of $p(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=8 \mathrm{e}^{3 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

13.2.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+Y(s)=\frac{8}{-3+s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-2+Y(s)=\frac{8}{-3+s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{2}{-3+s}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{2}{-3+s}\right) \\
& =2 \mathrm{e}^{3 t}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{3 t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 \mathrm{e}^{3 t}
$$

Verified OK.

13.2.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+y=8 \mathrm{e}^{3 t}, y(0)=2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+8 \mathrm{e}^{3 t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=8 \mathrm{e}^{3 t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$

$$
\mu(t)\left(y^{\prime}+y\right)=8 \mu(t) \mathrm{e}^{3 t}
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 8 \mu(t) \mathrm{e}^{3 t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 8 \mu(t) \mathrm{e}^{3 t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 8 \mu(t) \mathrm{e}^{3 t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{t}$
$y=\frac{\int 8 \mathrm{e}^{t} \mathrm{e}^{3 t} d t+c_{1}}{\mathrm{e}^{t}}$
- Evaluate the integrals on the rhs
$y=\frac{2 \mathrm{e}^{4 t}+c_{1}}{\mathrm{e}^{t}}$
- Simplify
$y=2 \mathrm{e}^{3 t}+c_{1} \mathrm{e}^{-t}$
- Use initial condition $y(0)=2$
$2=2+c_{1}$
- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=2 \mathrm{e}^{3 t}$
- \quad Solution to the IVP
$y=2 \mathrm{e}^{3 t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.703 (sec). Leaf size: 10

```
dsolve([diff(y(t),t)+y(t)=8*exp(3*t),y(0) = 2],y(t), singsol=all)
```

$$
y(t)=2 \mathrm{e}^{3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 12
DSolve[\{y' $[\mathrm{t}]+\mathrm{y}[\mathrm{t}]==8 * \operatorname{Exp}[3 * \mathrm{t}],\{\mathrm{y}[0]==2\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow 2 e^{3 t}
$$

13.3 problem Problem 3

13.3.1 Existence and uniqueness analysis 2576
13.3.2 Solving as laplace ode . 2577
13.3.3 Maple step by step solution . 2578

Internal problem ID [2841]
Internal file name [OUTPUT/2333_Sunday_June_05_2022_02_59_33_AM_65921000/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+3 y=2 \mathrm{e}^{-t}
$$

With initial conditions

$$
[y(0)=3]
$$

13.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =3 \\
q(t) & =2 \mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+3 y=2 \mathrm{e}^{-t}
$$

The domain of $p(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2 \mathrm{e}^{-t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

13.3.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+3 Y(s)=\frac{2}{1+s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-3+3 Y(s)=\frac{2}{1+s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{5+3 s}{(1+s)(s+3)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{2}{s+3}+\frac{1}{1+s}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
& \mathcal{L}^{-1}\left(\frac{2}{s+3}\right)=2 \mathrm{e}^{-3 t} \\
& \mathcal{L}^{-1}\left(\frac{1}{1+s}\right)=\mathrm{e}^{-t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=2 \mathrm{e}^{-3 t}+\mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{-3 t}+\mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{-3 t}+\mathrm{e}^{-t}
$$

Verified OK.

13.3.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+3 y=2 \mathrm{e}^{-t}, y(0)=3\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative

$$
y^{\prime}=-3 y+2 \mathrm{e}^{-t}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+3 y=2 \mathrm{e}^{-t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+3 y\right)=2 \mu(t) \mathrm{e}^{-t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+3 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=3 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{3 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 2 \mu(t) \mathrm{e}^{-t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 2 \mu(t) \mathrm{e}^{-t} d t+c_{1}$
- Solve for y
$y=\frac{\int 2 \mu(t) e^{-t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{3 t}$
$y=\frac{\int 2 \mathrm{e}^{3 t}-e^{t} d t+c_{1}}{\mathrm{e}^{3 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{2 t}+c_{1}}{\mathrm{e}^{3 t}}$
- Simplify
$y=\mathrm{e}^{-3 t}\left(\mathrm{e}^{2 t}+c_{1}\right)$
- Use initial condition $y(0)=3$
$3=c_{1}+1$
- \quad Solve for c_{1}
$c_{1}=2$
- Substitute $c_{1}=2$ into general solution and simplify
$y=\mathrm{e}^{-3 t}\left(\mathrm{e}^{2 t}+2\right)$
- Solution to the IVP

$$
y=\mathrm{e}^{-3 t}\left(\mathrm{e}^{2 t}+2\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.937 (sec). Leaf size: 15

```
dsolve([diff(y(t),t)+3*y(t)=2*exp(-t),y(0) = 3],y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{-t}+2 \mathrm{e}^{-3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 18
DSolve[\{y' $[t]+3 * y[t]==2 * \operatorname{Exp}[-t],\{y[0]==3\}\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow e^{-3 t}\left(e^{2 t}+2\right)
$$

13.4 problem Problem 4

13.4.1 Existence and uniqueness analysis 2581
13.4.2 Solving as laplace ode . 2582
13.4.3 Maple step by step solution . 2584

Internal problem ID [2842]
Internal file name [OUTPUT/2334_Sunday_June_05_2022_02_59_35_AM_75677719/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+2 y=4 t
$$

With initial conditions

$$
[y(0)=1]
$$

13.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =4 t
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=4 t
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4 t$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

13.4.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+2 Y(s)=\frac{4}{s^{2}} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-1+2 Y(s)=\frac{4}{s^{2}}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{s^{2}+4}{s^{2}(s+2)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{2}{s^{2}}-\frac{1}{s}+\frac{2}{s+2}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{2}{s^{2}}\right) & =2 t \\
\mathcal{L}^{-1}\left(-\frac{1}{s}\right) & =-1 \\
\mathcal{L}^{-1}\left(\frac{2}{s+2}\right) & =2 \mathrm{e}^{-2 t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=2 t-1+2 \mathrm{e}^{-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 t-1+2 \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 t-1+2 \mathrm{e}^{-2 t}
$$

Verified OK.

13.4.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+2 y=4 t, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 y+4 t$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+2 y=4 t$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+2 y\right)=4 \mu(t) t$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) t d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t) t d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(t) t d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{2 t}$
$y=\frac{\int 4 \mathrm{e}^{2 t} t d t+c_{1}}{\mathrm{e}^{2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{(2 t-1) \mathrm{e}^{2 t}+c_{1}}{\mathrm{e}^{2 t}}$
- Simplify
$y=2 t-1+c_{1} \mathrm{e}^{-2 t}$
- Use initial condition $y(0)=1$
$1=c_{1}-1$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify
$y=2 t-1+2 \mathrm{e}^{-2 t}$
- Solution to the IVP
$y=2 t-1+2 \mathrm{e}^{-2 t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 1.703 (sec). Leaf size: 15

```
dsolve([diff(y(t),t)+2*y(t)=4*t,y(0) = 1],y(t), singsol=all)
```

$$
y(t)=2 t+2 \mathrm{e}^{-2 t}-1
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 17
DSolve $\left[\left\{y^{\prime}[\mathrm{t}]+2 * \mathrm{y}[\mathrm{t}]==4 * \mathrm{t},\{\mathrm{y}[0]==1\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(t) \rightarrow 2 t+2 e^{-2 t}-1
$$

13.5 problem Problem 5

13.5.1 Existence and uniqueness analysis 2586
13.5.2 Solving as laplace ode . 2587
13.5.3 Maple step by step solution . 2589

Internal problem ID [2843]
Internal file name [OUTPUT/2335_Sunday_June_05_2022_02_59_38_AM_59406789/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=6 \cos (t)
$$

With initial conditions

$$
[y(0)=2]
$$

13.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-1 \\
q(t) & =6 \cos (t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=6 \cos (t)
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=6 \cos (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

13.5.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-Y(s)=\frac{6 s}{s^{2}+1} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-2-Y(s)=\frac{6 s}{s^{2}+1}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{2 s^{2}+6 s+2}{\left(s^{2}+1\right)(s-1)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{5}{s-1}+\frac{-\frac{3}{2}-\frac{3 i}{2}}{s-i}+\frac{-\frac{3}{2}+\frac{3 i}{2}}{s+i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{5}{s-1}\right) & =5 \mathrm{e}^{t} \\
\mathcal{L}^{-1}\left(\frac{-\frac{3}{2}-\frac{3 i}{2}}{s-i}\right) & =\left(-\frac{3}{2}-\frac{3 i}{2}\right) \mathrm{e}^{i t} \\
\mathcal{L}^{-1}\left(\frac{-\frac{3}{2}+\frac{3 i}{2}}{s+i}\right) & =\left(-\frac{3}{2}+\frac{3 i}{2}\right) \mathrm{e}^{-i t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=5 \mathrm{e}^{t}-3 \cos (t)+3 \sin (t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=5 \mathrm{e}^{t}-3 \cos (t)+3 \sin (t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=5 \mathrm{e}^{t}-3 \cos (t)+3 \sin (t)
$$

Verified OK.

13.5.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y=6 \cos (t), y(0)=2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=y+6 \cos (t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y=6 \cos (t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-y\right)=6 \mu(t) \cos (t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 6 \mu(t) \cos (t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 6 \mu(t) \cos (t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 6 \mu(t) \cos (t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-t}$
$y=\frac{\int 6 \mathrm{e}^{-t} \cos (t) d t+c_{1}}{\mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs
$y=\frac{-3 \mathrm{e}^{-t} \cos (t)+3 \mathrm{e}^{-t} \sin (t)+c_{1}}{\mathrm{e}^{-t}}$
- Simplify
$y=c_{1} \mathrm{e}^{t}-3 \cos (t)+3 \sin (t)$
- Use initial condition $y(0)=2$
$2=c_{1}-3$
- \quad Solve for c_{1}
$c_{1}=5$
- \quad Substitute $c_{1}=5$ into general solution and simplify
$y=5 \mathrm{e}^{t}-3 \cos (t)+3 \sin (t)$
- Solution to the IVP
$y=5 \mathrm{e}^{t}-3 \cos (t)+3 \sin (t)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 1.89 (sec). Leaf size: 17

```
dsolve([diff(y(t),t)-y(t)=6*\operatorname{cos}(t),y(0) = 2],y(t), singsol=all)
```

$$
y(t)=5 \mathrm{e}^{t}-3 \cos (t)+3 \sin (t)
$$

\checkmark Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 19
DSolve[\{y' [t]-y[t]==6*Cos[t],\{y[0]==2\}\},y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow 5 e^{t}+3 \sin (t)-3 \cos (t)
$$

13.6 problem Problem 6

13.6.1 Existence and uniqueness analysis 2591
13.6.2 Solving as laplace ode . 2592
13.6.3 Maple step by step solution . 2594

Internal problem ID [2844]
Internal file name [OUTPUT/2336_Sunday_June_05_2022_02_59_41_AM_78593161/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=5 \sin (2 t)
$$

With initial conditions

$$
[y(0)=-1]
$$

13.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-1 \\
q(t) & =5 \sin (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=5 \sin (2 t)
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5 \sin (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

13.6.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-Y(s)=\frac{10}{s^{2}+4} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)+1-Y(s)=\frac{10}{s^{2}+4}
$$

Solving for $Y(s)$ gives

$$
Y(s)=-\frac{s^{2}-6}{\left(s^{2}+4\right)(s-1)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{-1+\frac{i}{2}}{s-2 i}+\frac{-1-\frac{i}{2}}{s+2 i}+\frac{1}{s-1}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{-1+\frac{i}{2}}{s-2 i}\right) & =\left(-1+\frac{i}{2}\right) \mathrm{e}^{2 i t} \\
\mathcal{L}^{-1}\left(\frac{-1-\frac{i}{2}}{s+2 i}\right) & =\left(-1-\frac{i}{2}\right) \mathrm{e}^{-2 i t} \\
\mathcal{L}^{-1}\left(\frac{1}{s-1}\right) & =\mathrm{e}^{t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\mathrm{e}^{t}-2 \cos (2 t)-\sin (2 t)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{t}-2 \cos (2 t)-\sin (2 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{t}-2 \cos (2 t)-\sin (2 t)
$$

Verified OK.

13.6.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y=5 \sin (2 t), y(0)=-1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=y+5 \sin (2 t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y=5 \sin (2 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-y\right)=5 \mu(t) \sin (2 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 5 \mu(t) \sin (2 t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 5 \mu(t) \sin (2 t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 5 \mu(t) \sin (2 t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-t}$
$y=\frac{\int 5 \mathrm{e}^{-t} \sin (2 t) d t+c_{1}}{\mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs
$y=\frac{-2 \mathrm{e}^{-t} \cos (2 t)-\mathrm{e}^{-t} \sin (2 t)+c_{1}}{\mathrm{e}^{-t}}$
- Simplify
$y=c_{1} \mathrm{e}^{t}-\sin (2 t)-2 \cos (2 t)$
- Use initial condition $y(0)=-1$
$-1=c_{1}-2$
- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify
$y=\mathrm{e}^{t}-2 \cos (2 t)-\sin (2 t)$
- \quad Solution to the IVP
$y=\mathrm{e}^{t}-2 \cos (2 t)-\sin (2 t)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.984 (sec). Leaf size: 19

```
dsolve([diff(y(t),t)-y(t)=5*\operatorname{sin}(2*t),y(0) = -1],y(t), singsol=all)
```

$$
y(t)=-2 \cos (2 t)-\sin (2 t)+\mathrm{e}^{t}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.09 (sec). Leaf size: 21
DSolve[\{y' $[t]-y[t]==5 * \operatorname{Sin}[2 * t],\{y[0]==-1\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{t}-\sin (2 t)-2 \cos (2 t)
$$

13.7 problem Problem 7

13.7.1 Existence and uniqueness analysis 2596
13.7.2 Solving as laplace ode . 2597
13.7.3 Maple step by step solution . 2599

Internal problem ID [2845]
Internal file name [OUTPUT/2337_Sunday_June_05_2022_02_59_43_AM_1185400/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=5 \mathrm{e}^{t} \sin (t)
$$

With initial conditions

$$
[y(0)=1]
$$

13.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =5 \mathrm{e}^{t} \sin (t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=5 \mathrm{e}^{t} \sin (t)
$$

The domain of $p(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5 \mathrm{e}^{t} \sin (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

13.7.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+Y(s)=\frac{5}{(s-1)^{2}+1} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-1+Y(s)=\frac{5}{(s-1)^{2}+1}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{s^{2}-2 s+7}{\left(s^{2}-2 s+2\right)(s+1)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{-\frac{1}{2}-i}{s-1-i}+\frac{-\frac{1}{2}+i}{s-1+i}+\frac{2}{s+1}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{-\frac{1}{2}-i}{s-1-i}\right) & =\left(-\frac{1}{2}-i\right) \mathrm{e}^{(1+i) t} \\
\mathcal{L}^{-1}\left(\frac{-\frac{1}{2}+i}{s-1+i}\right) & =\left(-\frac{1}{2}+i\right) \mathrm{e}^{(1-i) t} \\
\mathcal{L}^{-1}\left(\frac{2}{s+1}\right) & =2 \mathrm{e}^{-t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=(-\cos (t)+2 \sin (t)) \mathrm{e}^{t}+2 \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-\cos (t)+2 \sin (t)) \mathrm{e}^{t}+2 \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=(-\cos (t)+2 \sin (t)) \mathrm{e}^{t}+2 \mathrm{e}^{-t}
$$

Verified OK.

13.7.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+y=5 \mathrm{e}^{t} \sin (t), y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+5 \mathrm{e}^{t} \sin (t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=5 \mathrm{e}^{t} \sin (t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+y\right)=5 \mu(t) \mathrm{e}^{t} \sin (t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 5 \mu(t) \mathrm{e}^{t} \sin (t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 5 \mu(t) \mathrm{e}^{t} \sin (t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 5 \mu(t) e^{t} \sin (t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{t}$
$y=\frac{\int 5\left(\mathrm{e}^{t}\right)^{2} \sin (t) d t+c_{1}}{\mathrm{e}^{t}}$
- Evaluate the integrals on the rhs
$y=\frac{-\mathrm{e}^{2 t} \cos (t)+2 \sin (t) \mathrm{e}^{2 t}+c_{1}}{\mathrm{e}^{t}}$
- Simplify

$$
y=c_{1} \mathrm{e}^{-t}-(\cos (t)-2 \sin (t)) \mathrm{e}^{t}
$$

- Use initial condition $y(0)=1$
$1=c_{1}-1$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify
$y=(-\cos (t)+2 \sin (t)) \mathrm{e}^{t}+2 \mathrm{e}^{-t}$
- \quad Solution to the IVP
$y=(-\cos (t)+2 \sin (t)) \mathrm{e}^{t}+2 \mathrm{e}^{-t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 3.125 (sec). Leaf size: 23

```
dsolve([diff(y(t),t)+y(t)=5*exp(t)*\operatorname{sin}(t),y(0)=1],y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{t}(2 \sin (t)-\cos (t))+2 \mathrm{e}^{-t}
$$

\checkmark Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 27
DSolve[\{y' $[t]+y[t]==5 * \operatorname{Exp}[t] * \operatorname{Sin}[t],\{y[0]==1\}\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow 2 e^{-t}+2 e^{t} \sin (t)-e^{t} \cos (t)
$$

13.8 problem Problem 8

13.8.1 Existence and uniqueness analysis 2601
13.8.2 Maple step by step solution . 2604

Internal problem ID [2846]
Internal file name [OUTPUT/2338_Sunday_June_05_2022_02_59_45_AM_22223891/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=4\right]
$$

13.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =-2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

The domain of $p(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+s Y(s)-y(0)-2 Y(s)=0 \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =4
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-5-s+s Y(s)-2 Y(s)=0
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s+5}{s^{2}+s-2}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{1}{s+2}+\frac{2}{s-1}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{s+2}\right) & =-\mathrm{e}^{-2 t} \\
\mathcal{L}^{-1}\left(\frac{2}{s-1}\right) & =2 \mathrm{e}^{t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=2 \mathrm{e}^{t}-\mathrm{e}^{-2 t}
$$

Simplifying the solution gives

$$
y=\left(2 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(2 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\left(2 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}
$$

Verified OK.

13.8.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}-2 y=0, y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=4\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+r-2=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r-1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,1)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-2 t}
$$

- $\quad 2 \mathrm{nd}$ solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{t}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{t}$

- Use initial condition $y(0)=1$

$$
1=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{t}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=4$

$$
4=-2 c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2} $\left\{c_{1}=-1, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify

$$
y=\left(2 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}
$$

- \quad Solution to the IVP

$$
y=\left(2 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 1.75 (sec). Leaf size: 15

```
dsolve([diff(y(t),t$2)+diff(y(t),t)-2*y(t)=0,y(0) = 1, D(y)(0) = 4],y(t), singsol=all)
```

$$
y(t)=\left(2 \mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18
DSolve[\{y''[t]+y'[t]-2*y[t]==0,\{y[0]==1,y'[0]==4\}\},y[t],t,IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow 2 e^{t}-e^{-2 t}
$$

13.9 problem Problem 9

13.9.1 Existence and uniqueness analysis 2606
13.9.2 Maple step by step solution . 2609

Internal problem ID [2847]
Internal file name [OUTPUT/2339_Sunday_June_05_2022_02_59_47_AM_86262074/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 9.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant__coeff", "second__order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y=0
$$

With initial conditions

$$
\left[y(0)=5, y^{\prime}(0)=1\right]
$$

13.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=0
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+4 Y(s)=0 \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =5 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-5 s+4 Y(s)=0
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{5 s+1}{s^{2}+4}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{\frac{5}{2}-\frac{i}{4}}{s-2 i}+\frac{\frac{5}{2}+\frac{i}{4}}{s+2 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{\frac{5}{2}-\frac{i}{4}}{s-2 i}\right) & =\left(\frac{5}{2}-\frac{i}{4}\right) \mathrm{e}^{2 i t} \\
\mathcal{L}^{-1}\left(\frac{\frac{5}{2}+\frac{i}{4}}{s+2 i}\right) & =\left(\frac{5}{2}+\frac{i}{4}\right) \mathrm{e}^{-2 i t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=5 \cos (2 t)+\frac{\sin (2 t)}{2}
$$

Simplifying the solution gives

$$
y=5 \cos (2 t)+\frac{\sin (2 t)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=5 \cos (2 t)+\frac{\sin (2 t)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=5 \cos (2 t)+\frac{\sin (2 t)}{2}
$$

Verified OK.

13.9.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=0, y(0)=5,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(t)=\cos (2 t)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\sin (2 t)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)$

- Use initial condition $y(0)=5$

$$
5=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$

$$
1=2 c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=5, c_{2}=\frac{1}{2}\right\}$
- Substitute constant values into general solution and simplify

$$
y=5 \cos (2 t)+\frac{\sin (2 t)}{2}
$$

- \quad Solution to the IVP

$$
y=5 \cos (2 t)+\frac{\sin (2 t)}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 1.938 (sec). Leaf size: 17

```
dsolve([diff(y(t),t$2)+4*y(t)=0,y(0) = 5, D(y)(0) = 1],y(t), singsol=all)
```

$$
y(t)=5 \cos (2 t)+\frac{\sin (2 t)}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 17
DSolve[\{y' ' $\left.[t]+4 * y[t]==0,\left\{y[0]==5, y^{\prime}[0]==1\right\}\right\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow 5 \cos (2 t)+\sin (t) \cos (t)
$$

13.10 problem Problem 10

13.10.1 Existence and uniqueness analysis 2611
13.10.2 Maple step by step solution . 2614

Internal problem ID [2848]
Internal file name [OUTPUT/2340_Sunday_June_05_2022_02_59_49_AM_35004514/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-3 y^{\prime}+2 y=4
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

13.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-3 \\
q(t) & =2 \\
F & =4
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-3 y^{\prime}+2 y=4
$$

The domain of $p(t)=-3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-3 s Y(s)+3 y(0)+2 Y(s)=\frac{4}{s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-3 s Y(s)+2 Y(s)=\frac{4}{s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{4+s}{s\left(s^{2}-3 s+2\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{5}{s-1}+\frac{3}{s-2}+\frac{2}{s}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{5}{s-1}\right) & =-5 \mathrm{e}^{t} \\
\mathcal{L}^{-1}\left(\frac{3}{s-2}\right) & =3 \mathrm{e}^{2 t} \\
\mathcal{L}^{-1}\left(\frac{2}{s}\right) & =2
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=2-5 \mathrm{e}^{t}+3 \mathrm{e}^{2 t}
$$

Simplifying the solution gives

$$
y=2-5 \mathrm{e}^{t}+3 \mathrm{e}^{2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2-5 \mathrm{e}^{t}+3 \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=2-5 \mathrm{e}^{t}+3 \mathrm{e}^{2 t}
$$

Verified OK.

13.10.2 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}-3 y^{\prime}+2 y=4, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=1\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-3 r+2=0$
- Factor the characteristic polynomial
$(r-1)(r-2)=0$
- Roots of the characteristic polynomial
$r=(1,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{t}$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=4\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{t} & \mathrm{e}^{2 t} \\
\mathrm{e}^{t} & 2 \mathrm{e}^{2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{3 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-4 \mathrm{e}^{t}\left(\int \mathrm{e}^{-t} d t\right)+4 \mathrm{e}^{2 t}\left(\int \mathrm{e}^{-2 t} d t\right)
$$

- Compute integrals

$$
y_{p}(t)=2
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+2
$$

Check validity of solution $y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+2$

- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}+2
$$

- Compute derivative of the solution
$y^{\prime}=c_{1} \mathrm{e}^{t}+2 c_{2} \mathrm{e}^{2 t}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$
$1=c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-5, c_{2}=3\right\}$
- Substitute constant values into general solution and simplify
$y=2-5 \mathrm{e}^{t}+3 \mathrm{e}^{2 t}$
- \quad Solution to the IVP
$y=2-5 \mathrm{e}^{t}+3 \mathrm{e}^{2 t}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 1.703 (sec). Leaf size: 16
dsolve([diff $(y(t), t \$ 2)-3 * \operatorname{diff}(y(t), t)+2 * y(t)=4, y(0)=0, D(y)(0)=1], y(t)$, singsol=all)

$$
y(t)=3 \mathrm{e}^{2 t}-5 \mathrm{e}^{t}+2
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 19
DSolve[\{y''[t]-3*y'[t]+2*y[t]==4,\{y[0]==0,y'[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True

$$
y(t) \rightarrow-5 e^{t}+3 e^{2 t}+2
$$

13.11 problem Problem 11

13.11.1 Existence and uniqueness analysis 2617
13.11.2 Maple step by step solution . 2620

Internal problem ID [2849]
Internal file name [OUTPUT/2341_Sunday_June_05_2022_02_59_51_AM_39782151/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y^{\prime}-12 y=36
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=12\right]
$$

13.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-1 \\
q(t) & =-12 \\
F & =36
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-12 y=36
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-12$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=36$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-s Y(s)+y(0)-12 Y(s)=\frac{36}{s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =12
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-12-s Y(s)-12 Y(s)=\frac{36}{s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{12}{(s-4) s}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{3}{s}+\frac{3}{s-4}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{3}{s}\right) & =-3 \\
\mathcal{L}^{-1}\left(\frac{3}{s-4}\right) & =3 \mathrm{e}^{4 t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=3 \mathrm{e}^{4 t}-3
$$

Simplifying the solution gives

$$
y=3 \mathrm{e}^{4 t}-3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{4 t}-3 \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=3 \mathrm{e}^{4 t}-3
$$

Verified OK.

13.11.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-12 y=36, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=12\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE $r^{2}-r-12=0$
- Factor the characteristic polynomial
$(r+3)(r-4)=0$
- Roots of the characteristic polynomial

$$
r=(-3,4)
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-3 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{4 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{4 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=36\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 t} & \mathrm{e}^{4 t} \\
-3 \mathrm{e}^{-3 t} & 4 \mathrm{e}^{4 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=7 \mathrm{e}^{t}
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=\frac{36\left(\mathrm{e}^{7 t}\left(\int \mathrm{e}^{-4 t} d t\right)-\left(\int \mathrm{e}^{3 t} d t\right)\right) \mathrm{e}^{-3 t}}{7}$
- Compute integrals
$y_{p}(t)=-3$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{4 t}-3$
Check validity of solution $y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{4 t}-3$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-3$
- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 t}+4 c_{2} \mathrm{e}^{4 t}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=12$
$12=-3 c_{1}+4 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=3\right\}$
- Substitute constant values into general solution and simplify
$y=3 \mathrm{e}^{4 t}-3$
- \quad Solution to the IVP
$y=3 \mathrm{e}^{4 t}-3$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 1.813 (sec). Leaf size: 12
dsolve([diff $(y(t), t \$ 2)-\operatorname{diff}(y(t), t)-12 * y(t)=36, y(0)=0, D(y)(0)=12], y(t)$, singsol=all)

$$
y(t)=3 \mathrm{e}^{4 t}-3
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 14
DSolve $\left[\left\{y\right.\right.$ '' $[t]-y$ ' $\left.[t]-12 * y[t]==36,\left\{y[0]==0, y^{\prime}[0]==12\right\}\right\}, y[t], t$, IncludeSingularSolutions $->$ Tru

$$
y(t) \rightarrow 3\left(e^{4 t}-1\right)
$$

13.12 problem Problem 12

13.12.1 Existence and uniqueness analysis 2623
13.12.2 Maple step by step solution . 2626

Internal problem ID [2850]
Internal file name [OUTPUT/2342_Sunday_June_05_2022_02_59_53_AM_95848996/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime}-2 y=10 \mathrm{e}^{-t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

13.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =-2 \\
F & =10 \mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}-2 y=10 \mathrm{e}^{-t}
$$

The domain of $p(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=10 \mathrm{e}^{-t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+s Y(s)-y(0)-2 Y(s)=\frac{10}{1+s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1+s Y(s)-2 Y(s)=\frac{10}{1+s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{11+s}{(1+s)\left(s^{2}+s-2\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{2}{s-1}+\frac{3}{s+2}-\frac{5}{1+s}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{2}{s-1}\right) & =2 \mathrm{e}^{t} \\
\mathcal{L}^{-1}\left(\frac{3}{s+2}\right) & =3 \mathrm{e}^{-2 t} \\
\mathcal{L}^{-1}\left(-\frac{5}{1+s}\right) & =-5 \mathrm{e}^{-t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-3 \cosh (t)+7 \sinh (t)+3 \mathrm{e}^{-2 t}
$$

Simplifying the solution gives

$$
y=-3 \cosh (t)+7 \sinh (t)+3 \mathrm{e}^{-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3 \cosh (t)+7 \sinh (t)+3 \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-3 \cosh (t)+7 \sinh (t)+3 \mathrm{e}^{-2 t}
$$

Verified OK.

13.12.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}-2 y=10 \mathrm{e}^{-t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+r-2=0
$$

- Factor the characteristic polynomial
$(r+2)(r-1)=0$
- Roots of the characteristic polynomial
$r=(-2,1)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=10 \mathrm{e}^{-t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 t} & \mathrm{e}^{t} \\ -2 \mathrm{e}^{-2 t} & \mathrm{e}^{t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{-t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=\frac{10\left(\mathrm{e}^{3 t}\left(\int \mathrm{e}^{-2 t} d t\right)-\left(\int \mathrm{e}^{t} d t\right)\right) \mathrm{e}^{-2 t}}{3}$
- Compute integrals

$$
y_{p}(t)=-5 \mathrm{e}^{-t}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{t}-5 \mathrm{e}^{-t}$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{t}-5 \mathrm{e}^{-t}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-5$
- Compute derivative of the solution
$y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{t}+5 \mathrm{e}^{-t}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$
$1=-2 c_{1}+c_{2}+5$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify
$y=\left(2 \mathrm{e}^{3 t}-5 \mathrm{e}^{t}+3\right) \mathrm{e}^{-2 t}$
- \quad Solution to the IVP
$y=\left(2 \mathrm{e}^{3 t}-5 \mathrm{e}^{t}+3\right) \mathrm{e}^{-2 t}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.094 (sec). Leaf size: 19
dsolve([diff $(y(t), t \$ 2)+\operatorname{diff}(y(t), t)-2 * y(t)=10 * \exp (-t), y(0)=0, D(y)(0)=1], y(t)$, singsol=a

$$
y(t)=-3 \cosh (t)+7 \sinh (t)+3 \mathrm{e}^{-2 t}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 25
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+y\right.\right.$ ' $\left.[t]-2 * y[t]==10 * \operatorname{Exp}[-t],\left\{y[0]==0, y^{\prime}[0]==1\right\}\right\}, y[t], t$, IncludeSingularSolutions

$$
y(t) \rightarrow e^{-2 t}\left(-5 e^{t}+2 e^{3 t}+3\right)
$$

13.13 problem Problem 13

13.13.1 Existence and uniqueness analysis 2629
13.13.2 Maple step by step solution . 2632

Internal problem ID [2851]
Internal file name [OUTPUT/2343_Sunday_June_05_2022_02_59_56_AM_12307777/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-3 y^{\prime}+2 y=4 \mathrm{e}^{3 t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

13.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-3 \\
q(t) & =2 \\
F & =4 \mathrm{e}^{3 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-3 y^{\prime}+2 y=4 \mathrm{e}^{3 t}
$$

The domain of $p(t)=-3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=4 \mathrm{e}^{3 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-3 s Y(s)+3 y(0)+2 Y(s)=\frac{4}{-3+s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-3 s Y(s)+2 Y(s)=\frac{4}{-3+s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{4}{(-3+s)\left(s^{2}-3 s+2\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{2}{s-1}+\frac{2}{-3+s}-\frac{4}{s-2}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{2}{s-1}\right) & =2 \mathrm{e}^{t} \\
\mathcal{L}^{-1}\left(\frac{2}{-3+s}\right) & =2 \mathrm{e}^{3 t} \\
\mathcal{L}^{-1}\left(-\frac{4}{s-2}\right) & =-4 \mathrm{e}^{2 t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=2 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}-4 \mathrm{e}^{2 t}
$$

Simplifying the solution gives

$$
y=2 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}-4 \mathrm{e}^{2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}-4 \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}-4 \mathrm{e}^{2 t}
$$

Verified OK.

13.13.2 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}-3 y^{\prime}+2 y=4 \mathrm{e}^{3 t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}-3 r+2=0
$$

- Factor the characteristic polynomial
$(r-1)(r-2)=0$
- Roots of the characteristic polynomial
$r=(1,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=4 \mathrm{e}^{3 t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{t} & \mathrm{e}^{2 t} \\
\mathrm{e}^{t} & 2 \mathrm{e}^{2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{3 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-4 \mathrm{e}^{t}\left(\int \mathrm{e}^{2 t} d t\right)+4 \mathrm{e}^{2 t}\left(\int \mathrm{e}^{t} d t\right)
$$

- Compute integrals

$$
y_{p}(t)=2 \mathrm{e}^{3 t}
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+2 \mathrm{e}^{3 t}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+2 \mathrm{e}^{3 t}$

- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}+2
$$

- Compute derivative of the solution

$$
y^{\prime}=c_{1} \mathrm{e}^{t}+2 c_{2} \mathrm{e}^{2 t}+6 \mathrm{e}^{3 t}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=c_{1}+2 c_{2}+6
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=-4\right\}$
- Substitute constant values into general solution and simplify

$$
y=2 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}-4 \mathrm{e}^{2 t}
$$

- \quad Solution to the IVP

$$
y=2 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}-4 \mathrm{e}^{2 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 2.203 (sec). Leaf size: 21

```
dsolve([diff(y(t),t$2)-3*diff (y(t),t)+2*y(t)=4*exp(3*t),y(0) = 0, D(y) (0) = 0],y(t), singsol
```

$$
y(t)=2 \mathrm{e}^{3 t}-4 \mathrm{e}^{2 t}+2 \mathrm{e}^{t}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 17
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]-3 * y\right.\right.$ ' $\left.[t]+2 * y[t]==4 * \operatorname{Exp}[3 * t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolution

$$
y(t) \rightarrow 2 e^{t}\left(e^{t}-1\right)^{2}
$$

13.14 problem Problem 14

13.14.1 Existence and uniqueness analysis 2635
13.14.2 Maple step by step solution . 2638

Internal problem ID [2852]
Internal file name [OUTPUT/2344_Sunday_June_05_2022_02_59_58_AM_93310471/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime}-2 y^{\prime}=30 \mathrm{e}^{-3 t}
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

13.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-2 \\
q(t) & =0 \\
F & =30 \mathrm{e}^{-3 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}=30 \mathrm{e}^{-3 t}
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $F=30 \mathrm{e}^{-3 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-2 s Y(s)+2 y(0)=\frac{30}{3+s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+2-s-2 s Y(s)=\frac{30}{3+s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{2}+s+24}{(3+s) s(s-2)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{3}{s-2}+\frac{2}{3+s}-\frac{4}{s}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{3}{s-2}\right) & =3 \mathrm{e}^{2 t} \\
\mathcal{L}^{-1}\left(\frac{2}{3+s}\right) & =2 \mathrm{e}^{-3 t} \\
\mathcal{L}^{-1}\left(-\frac{4}{s}\right) & =-4
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-4+2 \mathrm{e}^{-3 t}+3 \mathrm{e}^{2 t}
$$

Simplifying the solution gives

$$
y=\left(3 \mathrm{e}^{5 t}-4 \mathrm{e}^{3 t}+2\right) \mathrm{e}^{-3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(3 \mathrm{e}^{5 t}-4 \mathrm{e}^{3 t}+2\right) \mathrm{e}^{-3 t} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\left(3 \mathrm{e}^{5 t}-4 \mathrm{e}^{3 t}+2\right) \mathrm{e}^{-3 t}
$$

Verified OK.

13.14.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}=30 \mathrm{e}^{-3 t}, y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r=0
$$

- Factor the characteristic polynomial

$$
r(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(0,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=1
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=30 \mathrm{e}^{-3 t}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
1 & \mathrm{e}^{2 t} \\
0 & 2 \mathrm{e}^{2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{2 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-15\left(\int \mathrm{e}^{-3 t} d t\right)+15 \mathrm{e}^{2 t}\left(\int \mathrm{e}^{-5 t} d t\right)
$$

- Compute integrals

$$
y_{p}(t)=2 \mathrm{e}^{-3 t}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1}+c_{2} \mathrm{e}^{2 t}+2 \mathrm{e}^{-3 t}
$$

Check validity of solution $y=c_{1}+c_{2} \mathrm{e}^{2 t}+2 \mathrm{e}^{-3 t}$

- Use initial condition $y(0)=1$

$$
1=c_{1}+c_{2}+2
$$

- Compute derivative of the solution

$$
y^{\prime}=2 c_{2} \mathrm{e}^{2 t}-6 \mathrm{e}^{-3 t}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=2 c_{2}-6
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-4, c_{2}=3\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\left(3 \mathrm{e}^{5 t}-4 \mathrm{e}^{3 t}+2\right) \mathrm{e}^{-3 t}
$$

- \quad Solution to the IVP

$$
y=\left(3 \mathrm{e}^{5 t}-4 \mathrm{e}^{3 t}+2\right) \mathrm{e}^{-3 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = 2*_b(_a)+30*exp(-3*_a), _b(_a)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

\checkmark Solution by Maple
Time used: 2.781 (sec). Leaf size: 18
dsolve ([diff $(y(t), t \$ 2)-2 * \operatorname{diff}(y(t), t)=30 * \exp (-3 * t), y(0)=1, D(y)(0)=0], y(t)$, singsol=all)

$$
y(t)=\left(3 \mathrm{e}^{5 t}-4 \mathrm{e}^{3 t}+2\right) \mathrm{e}^{-3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.071 (sec). Leaf size: 21
DSolve [\{y' ' $\left.[\mathrm{t}]-2 * \mathrm{y}^{\prime}[\mathrm{t}]==30 * \operatorname{Exp}[-3 * \mathrm{t}],\left\{y[0]==1, \mathrm{y}^{\prime}[0]==0\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$

$$
y(t) \rightarrow 2 e^{-3 t}+3 e^{2 t}-4
$$

13.15 problem Problem 15

13.15.1 Existence and uniqueness analysis 2641
13.15.2 Maple step by step solution . 2644

Internal problem ID [2853]
Internal file name [OUTPUT/2345_Sunday_June_05_2022_02_59_59_AM_98155230/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y=12 \mathrm{e}^{2 t}
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=1\right]
$$

13.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =-1 \\
F & =12 \mathrm{e}^{2 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y=12 \mathrm{e}^{2 t}
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=12 \mathrm{e}^{2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-Y(s)=\frac{12}{s-2} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-s-Y(s)=\frac{12}{s-2}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{2}-s+10}{(s-2)\left(s^{2}-1\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{2}{s+1}-\frac{5}{s-1}+\frac{4}{s-2}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{2}{s+1}\right) & =2 \mathrm{e}^{-t} \\
\mathcal{L}^{-1}\left(-\frac{5}{s-1}\right) & =-5 \mathrm{e}^{t} \\
\mathcal{L}^{-1}\left(\frac{4}{s-2}\right) & =4 \mathrm{e}^{2 t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-3 \cosh (t)-7 \sinh (t)+4 \mathrm{e}^{2 t}
$$

Simplifying the solution gives

$$
y=-3 \cosh (t)-7 \sinh (t)+4 \mathrm{e}^{2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3 \cosh (t)-7 \sinh (t)+4 \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-3 \cosh (t)-7 \sinh (t)+4 \mathrm{e}^{2 t}
$$

Verified OK.

13.15.2 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}-y=12 \mathrm{e}^{2 t}, y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=1\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial
$(r-1)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-1,1)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=12 \mathrm{e}^{2 t}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-t} & \mathrm{e}^{t} \\ -\mathrm{e}^{-t} & \mathrm{e}^{t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-6 \mathrm{e}^{-t}\left(\int \mathrm{e}^{3 t} d t\right)+6 \mathrm{e}^{t}\left(\int \mathrm{e}^{t} d t\right)$
- Compute integrals
$y_{p}(t)=4 \mathrm{e}^{2 t}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+4 \mathrm{e}^{2 t}$
Check validity of solution $y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+4 \mathrm{e}^{2 t}$
- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}+4$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+8 \mathrm{e}^{2 t}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$
$1=-c_{1}+c_{2}+8$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=-5\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=2 \mathrm{e}^{-t}-5 \mathrm{e}^{t}+4 \mathrm{e}^{2 t}
$$

- \quad Solution to the IVP
$y=2 \mathrm{e}^{-t}-5 \mathrm{e}^{t}+4 \mathrm{e}^{2 t}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.953 (sec). Leaf size: 19

```
dsolve([diff(y(t),t$2)-y(t)=12*exp(2*t),y(0) = 1, D(y)(0) = 1],y(t), singsol=all)
```

$$
y(t)=-3 \cosh (t)-7 \sinh (t)+4 \mathrm{e}^{2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 25
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]-y[t]==12 * \operatorname{Exp}[2 * t],\left\{y[0]==1, y^{\prime}[0]==1\right\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True

$$
y(t) \rightarrow 2 e^{-t}-5 e^{t}+4 e^{2 t}
$$

13.16 problem Problem 16

13.16.1 Existence and uniqueness analysis 2647
13.16.2 Maple step by step solution . 2650

Internal problem ID [2854]
Internal file name [OUTPUT/2346_Sunday_June_05_2022_03_00_02_AM_77690956/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y=10 \mathrm{e}^{-t}
$$

With initial conditions

$$
\left[y(0)=4, y^{\prime}(0)=0\right]
$$

13.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =10 \mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=10 \mathrm{e}^{-t}
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=10 \mathrm{e}^{-t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+4 Y(s)=\frac{10}{1+s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =4 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-4 s+4 Y(s)=\frac{10}{1+s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{4 s^{2}+4 s+10}{(1+s)\left(s^{2}+4\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{1-\frac{i}{2}}{s-2 i}+\frac{1+\frac{i}{2}}{s+2 i}+\frac{2}{1+s}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1-\frac{i}{2}}{s-2 i}\right) & =\left(1-\frac{i}{2}\right) \mathrm{e}^{2 i t} \\
\mathcal{L}^{-1}\left(\frac{1+\frac{i}{2}}{s+2 i}\right) & =\left(1+\frac{i}{2}\right) \mathrm{e}^{-2 i t} \\
\mathcal{L}^{-1}\left(\frac{2}{1+s}\right) & =2 \mathrm{e}^{-t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=2 \mathrm{e}^{-t}+2 \cos (2 t)+\sin (2 t)
$$

Simplifying the solution gives

$$
y=2 \mathrm{e}^{-t}+2 \cos (2 t)+\sin (2 t)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{-t}+2 \cos (2 t)+\sin (2 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{-t}+2 \cos (2 t)+\sin (2 t)
$$

Verified OK.

13.16.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=10 \mathrm{e}^{-t}, y(0)=4,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (2 t)$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(t)=\sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=10 \mathrm{e}^{-t}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-5 \cos (2 t)\left(\int \mathrm{e}^{-t} \sin (2 t) d t\right)+5 \sin (2 t)\left(\int \mathrm{e}^{-t} \cos (2 t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=2 \mathrm{e}^{-t}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+2 \mathrm{e}^{-t}
$$

Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+2 \mathrm{e}^{-t}$

- Use initial condition $y(0)=4$

$$
4=2+c_{1}
$$

- Compute derivative of the solution
$y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-2 \mathrm{e}^{-t}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-2+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify $y=2 \mathrm{e}^{-t}+2 \cos (2 t)+\sin (2 t)$
- \quad Solution to the IVP
$y=2 \mathrm{e}^{-t}+2 \cos (2 t)+\sin (2 t)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.25 (sec). Leaf size: 21

```
dsolve([diff(y(t),t$2)+4*y(t)=10*exp(-t),y(0) = 4, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=2 \mathrm{e}^{-t}+2 \cos (2 t)+\sin (2 t)
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 23
DSolve $\left[\left\{y^{\prime \prime}[t]+4 * y[t]==10 * \operatorname{Exp}[-t],\left\{y[0]==4, y^{\prime}[0]==0\right\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow Tru

$$
y(t) \rightarrow 2 e^{-t}+\sin (2 t)+2 \cos (2 t)
$$

13.17 problem Problem 17

13.17.1 Existence and uniqueness analysis 2653
13.17.2 Maple step by step solution . 2656

Internal problem ID [2855]
Internal file name [OUTPUT/2347_Sunday_June_05_2022_03_00_04_AM_15118246/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y^{\prime}-6 y=12-6 \mathrm{e}^{t}
$$

With initial conditions

$$
\left[y(0)=5, y^{\prime}(0)=-3\right]
$$

13.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-1 \\
q(t) & =-6 \\
F & =12-6 \mathrm{e}^{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-6 y=12-6 \mathrm{e}^{t}
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=12-6 \mathrm{e}^{t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-s Y(s)+y(0)-6 Y(s)=\frac{6 s-12}{s(s-1)} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =5 \\
y^{\prime}(0) & =-3
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+8-5 s-s Y(s)-6 Y(s)=\frac{6 s-12}{s(s-1)}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{5 s^{3}-13 s^{2}+14 s-12}{s(s-1)\left(s^{2}-s-6\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{1}{s-1}+\frac{8}{5(s-3)}+\frac{22}{5(s+2)}-\frac{2}{s}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{s-1}\right) & =\mathrm{e}^{t} \\
\mathcal{L}^{-1}\left(\frac{8}{5(s-3)}\right) & =\frac{8 \mathrm{e}^{3 t}}{5} \\
\mathcal{L}^{-1}\left(\frac{22}{5(s+2)}\right) & =\frac{22 \mathrm{e}^{-2 t}}{5} \\
\mathcal{L}^{-1}\left(-\frac{2}{s}\right) & =-2
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-2+\mathrm{e}^{t}+\frac{22 \mathrm{e}^{-2 t}}{5}+\frac{8 \mathrm{e}^{3 t}}{5}
$$

Simplifying the solution gives

$$
y=\frac{\left(8 \mathrm{e}^{5 t}+5 \mathrm{e}^{3 t}-10 \mathrm{e}^{2 t}+22\right) \mathrm{e}^{-2 t}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(8 \mathrm{e}^{5 t}+5 \mathrm{e}^{3 t}-10 \mathrm{e}^{2 t}+22\right) \mathrm{e}^{-2 t}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(8 \mathrm{e}^{5 t}+5 \mathrm{e}^{3 t}-10 \mathrm{e}^{2 t}+22\right) \mathrm{e}^{-2 t}}{5}
$$

Verified OK.

13.17.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-6 y=12-6 \mathrm{e}^{t}, y(0)=5,\left.y^{\prime}\right|_{\{t=0\}}=-3\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-r-6=0$
- Factor the characteristic polynomial
$(r+2)(r-3)=0$
- Roots of the characteristic polynomial

$$
r=(-2,3)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-2 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{3 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{3 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=12-6 \mathrm{e}^{t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & \mathrm{e}^{3 t} \\
-2 \mathrm{e}^{-2 t} & 3 \mathrm{e}^{3 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=5 \mathrm{e}^{t}
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=\frac{6\left(-\mathrm{e}^{5 t}\left(\int\left(-2+\mathrm{e}^{t}\right) \mathrm{e}^{-3 t} d t\right)+\int\left(-2+\mathrm{e}^{t}\right) \mathrm{e}^{2 t} d t\right) \mathrm{e}^{-2 t}}{5}$
- Compute integrals
$y_{p}(t)=-2+\mathrm{e}^{t}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{3 t}-2+\mathrm{e}^{t}$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{3 t}-2+\mathrm{e}^{t}$
- Use initial condition $y(0)=5$

$$
5=c_{1}+c_{2}-1
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}+3 c_{2} \mathrm{e}^{3 t}+\mathrm{e}^{t}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-3$

$$
-3=-2 c_{1}+3 c_{2}+1
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{22}{5}, c_{2}=\frac{8}{5}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\left(8 \mathrm{e}^{5 t}+5 \mathrm{e}^{3 t}-10 \mathrm{e}^{2 t}+22\right) \mathrm{e}^{-2 t}}{5}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(8 \mathrm{e}^{5 t}+5 \mathrm{e}^{3 t}-10 \mathrm{e}^{2 t}+22\right) \mathrm{e}^{-2 t}}{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 1.859 (sec). Leaf size: 20

```
dsolve([diff(y(t),t$2)-diff(y(t),t)-6*y(t)=6*(2-exp(t)),y(0) = 5, D(y)(0) = -3],y(t), singso
```

$$
y(t)=\frac{\left(8 \mathrm{e}^{5 t}+5 \mathrm{e}^{3 t}-10 \mathrm{e}^{2 t}+22\right) \mathrm{e}^{-2 t}}{5}
$$

Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 28
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]-y\right.\right.$ ' $\left.[t]-6 * y[t]==6 *(2-\operatorname{Exp}[t]),\left\{y[0]==5, y^{\prime}[0]==-3\right\}\right\}, y[t], t$, IncludeSingularSolutio

$$
y(t) \rightarrow \frac{22 e^{-2 t}}{5}+e^{t}+\frac{8 e^{3 t}}{5}-2
$$

13.18 problem Problem 18

13.18.1 Existence and uniqueness analysis 2659
13.18.2 Maple step by step solution . 2662

Internal problem ID [2856]
Internal file name [OUTPUT/2348_Sunday_June_05_2022_03_00_05_AM_82525205/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y=6 \cos (t)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=4\right]
$$

13.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =-1 \\
F & =6 \cos (t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y=6 \cos (t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=6 \cos (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-Y(s)=\frac{6 s}{s^{2}+1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =4
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-4-Y(s)=\frac{6 s}{s^{2}+1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{4 s^{2}+6 s+4}{\left(s^{2}+1\right)\left(s^{2}-1\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{3}{2(s-i)}-\frac{3}{2(s+i)}-\frac{1}{2(s+1)}+\frac{7}{2(s-1)}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{3}{2(s-i)}\right) & =-\frac{3 \mathrm{e}^{i t}}{2} \\
\mathcal{L}^{-1}\left(-\frac{3}{2(s+i)}\right) & =-\frac{3 \mathrm{e}^{-i t}}{2} \\
\mathcal{L}^{-1}\left(-\frac{1}{2(s+1)}\right) & =-\frac{\mathrm{e}^{-t}}{2} \\
\mathcal{L}^{-1}\left(\frac{7}{2(s-1)}\right) & =\frac{7 \mathrm{e}^{t}}{2}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=4 \sinh (t)-3 \cos (t)+3 \cosh (t)
$$

Simplifying the solution gives

$$
y=4 \sinh (t)-3 \cos (t)+3 \cosh (t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \sinh (t)-3 \cos (t)+3 \cosh (t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=4 \sinh (t)-3 \cos (t)+3 \cosh (t)
$$

Verified OK.

13.18.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y=6 \cos (t), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=4\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-1=0$
- Factor the characteristic polynomial
$(r-1)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-t}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+y_{p}(t)$
$\square \quad$ Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=6 \cos (t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} & \mathrm{e}^{t} \\
-\mathrm{e}^{-t} & \mathrm{e}^{t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-3 \mathrm{e}^{-t}\left(\int \mathrm{e}^{t} \cos (t) d t\right)+3 \mathrm{e}^{t}\left(\int \mathrm{e}^{-t} \cos (t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=-3 \cos (t)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}-3 \cos (t)
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}-3 \cos (t)$

- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-3$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+3 \sin (t)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=4$
$4=-c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{1}{2}, c_{2}=\frac{7}{2}\right\}$
- Substitute constant values into general solution and simplify

$$
y=-\frac{\mathrm{e}^{-t}}{2}+\frac{7 \mathrm{e}^{t}}{2}-3 \cos (t)
$$

- \quad Solution to the IVP

$$
y=-\frac{\mathrm{e}^{-t}}{2}+\frac{7 \mathrm{e}^{t}}{2}-3 \cos (t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 1.859 (sec). Leaf size: 17
dsolve([diff $(y(t), t \$ 2)-y(t)=6 * \cos (t), y(0)=0, D(y)(0)=4], y(t)$, singsol=all)

$$
y(t)=4 \sinh (t)-3 \cos (t)+3 \cosh (t)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 26
DSolve[\{y''[t]-y[t]==6*Cos[t],\{y[0]==0,y'[0]==4\}\},y[t],t,IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{1}{2}\left(-e^{-t}+7 e^{t}-6 \cos (t)\right)
$$

13.19 problem Problem 19

13.19.1 Existence and uniqueness analysis 2665
13.19.2 Maple step by step solution . 2668

Internal problem ID [2857]
Internal file name [OUTPUT/2349_Sunday_June_05_2022_03_00_07_AM_36585125/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-9 y=13 \sin (2 t)
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=1\right]
$$

13.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =-9 \\
F & =13 \sin (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-9 y=13 \sin (2 t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-9$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=13 \sin (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-9 Y(s)=\frac{26}{s^{2}+4} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{array}{r}
y(0)=3 \\
y^{\prime}(0)=1
\end{array}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-3 s-9 Y(s)=\frac{26}{s^{2}+4}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{3 s^{3}+s^{2}+12 s+30}{\left(s^{2}+4\right)\left(s^{2}-9\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{2}{s-3}+\frac{i}{2 s-4 i}-\frac{i}{2(s+2 i)}+\frac{1}{s+3}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{2}{s-3}\right) & =2 \mathrm{e}^{3 t} \\
\mathcal{L}^{-1}\left(\frac{i}{2 s-4 i}\right) & =\frac{i \mathrm{e}^{2 i t}}{2} \\
\mathcal{L}^{-1}\left(-\frac{i}{2(s+2 i)}\right) & =-\frac{i \mathrm{e}^{-2 i t}}{2} \\
\mathcal{L}^{-1}\left(\frac{1}{s+3}\right) & =\mathrm{e}^{-3 t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\mathrm{e}^{-3 t}-\sin (2 t)+2 \mathrm{e}^{3 t}
$$

Simplifying the solution gives

$$
y=\mathrm{e}^{-3 t}-\sin (2 t)+2 \mathrm{e}^{3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 t}-\sin (2 t)+2 \mathrm{e}^{3 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 t}-\sin (2 t)+2 \mathrm{e}^{3 t}
$$

Verified OK.

13.19.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-9 y=13 \sin (2 t), y(0)=3,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-9=0
$$

- Factor the characteristic polynomial
$(r-3)(r+3)=0$
- Roots of the characteristic polynomial
$r=(-3,3)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-3 t}$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{3 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{3 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=13 \sin (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 t} & \mathrm{e}^{3 t} \\ -3 \mathrm{e}^{-3 t} & 3 \mathrm{e}^{3 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=6$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{13 \mathrm{e}^{-3 t}\left(\int \mathrm{e}^{3 t} \sin (2 t) d t\right)}{6}+\frac{13 \mathrm{e}^{3 t}\left(\int \mathrm{e}^{-3 t} \sin (2 t) d t\right)}{6}$
- Compute integrals
$y_{p}(t)=-\sin (2 t)$
- \quad Substitute particular solution into general solution to ODE $y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{3 t}-\sin (2 t)$
Check validity of solution $y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{3 t}-\sin (2 t)$
- Use initial condition $y(0)=3$
$3=c_{1}+c_{2}$
- Compute derivative of the solution
$y^{\prime}=-3 c_{1} \mathrm{e}^{-3 t}+3 c_{2} \mathrm{e}^{3 t}-2 \cos (2 t)$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$
$1=-3 c_{1}+3 c_{2}-2$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{-3 t}-\sin (2 t)+2 \mathrm{e}^{3 t}
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{-3 t}-\sin (2 t)+2 \mathrm{e}^{3 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.75 (sec). Leaf size: 21

```
dsolve([diff(y(t),t$2)-9*y(t)=13*\operatorname{sin}(2*t),y(0) = 3, D(y)(0) = 1],y(t), singsol=all)
```

$$
y(t)=-\sin (2 t)+2 \mathrm{e}^{3 t}+\mathrm{e}^{-3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 24
DSolve $\left[\left\{y^{\prime}\right.\right.$ ' $\left.[t]-9 * y[t]==13 * \operatorname{Sin}[2 * t],\left\{y[0]==3, y^{\prime}[0]==1\right\}\right\}, y[t], t$, IncludeSingularSolutions $\rightarrow \operatorname{Tr}$

$$
y(t) \rightarrow e^{-3 t}+2 e^{3 t}-\sin (2 t)
$$

13.20 problem Problem 20

13.20.1 Existence and uniqueness analysis 2671
13.20.2 Maple step by step solution . 2674

Internal problem ID [2858]
Internal file name [OUTPUT/2350_Sunday_June_05_2022_03_00_09_AM_52079326/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y=8 \sin (t)-6 \cos (t)
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=-1\right]
$$

13.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =-1 \\
F & =8 \sin (t)-6 \cos (t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y=8 \sin (t)-6 \cos (t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=8 \sin (t)-6 \cos (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-Y(s)=-\frac{2(-4+3 s)}{s^{2}+1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =2 \\
y^{\prime}(0) & =-1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+1-2 s-Y(s)=-\frac{2(-4+3 s)}{s^{2}+1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{2 s^{3}-s^{2}-4 s+7}{\left(s^{2}+1\right)\left(s^{2}-1\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{2}{s+1}+\frac{1}{s-1}+\frac{\frac{3}{2}+2 i}{s-i}+\frac{\frac{3}{2}-2 i}{s+i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{2}{s+1}\right) & =-2 \mathrm{e}^{-t} \\
\mathcal{L}^{-1}\left(\frac{1}{s-1}\right) & =\mathrm{e}^{t} \\
\mathcal{L}^{-1}\left(\frac{\frac{3}{2}+2 i}{s-i}\right) & =\left(\frac{3}{2}+2 i\right) \mathrm{e}^{i t} \\
\mathcal{L}^{-1}\left(\frac{\frac{3}{2}-2 i}{s+i}\right) & =\left(\frac{3}{2}-2 i\right) \mathrm{e}^{-i t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-4 \sin (t)+3 \sinh (t)-\cosh (t)+3 \cos (t)
$$

Simplifying the solution gives

$$
y=-4 \sin (t)+3 \sinh (t)-\cosh (t)+3 \cos (t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-4 \sin (t)+3 \sinh (t)-\cosh (t)+3 \cos (t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-4 \sin (t)+3 \sinh (t)-\cosh (t)+3 \cos (t)
$$

Verified OK.

13.20.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y=8 \sin (t)-6 \cos (t), y(0)=2,\left.y^{\prime}\right|_{\{t=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-1=0$
- Factor the characteristic polynomial
$(r-1)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-t}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+y_{p}(t)$
$\square \quad$ Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=8 \sin (t)-6 \cos (t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} & \mathrm{e}^{t} \\
-\mathrm{e}^{-t} & \mathrm{e}^{t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\mathrm{e}^{-t}\left(\int(-4 \sin (t)+3 \cos (t)) \mathrm{e}^{t} d t\right)-\mathrm{e}^{t}\left(\int(-4 \sin (t)+3 \cos (t)) \mathrm{e}^{-t} d t\right)
$$

- Compute integrals

$$
y_{p}(t)=-4 \sin (t)+3 \cos (t)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}-4 \sin (t)+3 \cos (t)
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}-4 \sin (t)+3 \cos (t)$

- Use initial condition $y(0)=2$

$$
2=c_{1}+c_{2}+3
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}-4 \cos (t)-3 \sin (t)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-1$
$-1=-c_{1}+c_{2}-4$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-2, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify

$$
y=-2 \mathrm{e}^{-t}+\mathrm{e}^{t}-4 \sin (t)+3 \cos (t)
$$

- \quad Solution to the IVP

$$
y=-2 \mathrm{e}^{-t}+\mathrm{e}^{t}-4 \sin (t)+3 \cos (t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 1.953 (sec). Leaf size: 21
dsolve([diff $(y(t), t \$ 2)-y(t)=8 * \sin (t)-6 * \cos (t), y(0)=2, D(y)(0)=-1], y(t)$, singsol=all)

$$
y(t)=-4 \sin (t)+3 \cos (t)+3 \sinh (t)-\cosh (t)
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 24
DSolve[\{y''[t]-y[t]==8*Sin[t]-6*Cos[t],\{y[0]==2,y'[0]==-1\}\},y[t],t,IncludeSingularSolutions

$$
y(t) \rightarrow-2 e^{-t}+e^{t}-4 \sin (t)+3 \cos (t)
$$

13.21 problem Problem 21

13.21.1 Existence and uniqueness analysis 2677
13.21.2 Maple step by step solution . 2680

Internal problem ID [2859]
Internal file name [OUTPUT/2351_Sunday_June_05_2022_03_00_11_AM_52807654/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}-2 y=10 \cos (t)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=-1\right]
$$

13.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-1 \\
q(t) & =-2 \\
F & =10 \cos (t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-2 y=10 \cos (t)
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=10 \cos (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-s Y(s)+y(0)-2 Y(s)=\frac{10 s}{s^{2}+1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =-1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+1-s Y(s)-2 Y(s)=\frac{10 s}{s^{2}+1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{s^{2}-10 s+1}{\left(s^{2}+1\right)\left(s^{2}-s-2\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{1}{s-2}+\frac{2}{s+1}+\frac{-\frac{3}{2}+\frac{i}{2}}{s-i}+\frac{-\frac{3}{2}-\frac{i}{2}}{s+i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{s-2}\right) & =\mathrm{e}^{2 t} \\
\mathcal{L}^{-1}\left(\frac{2}{s+1}\right) & =2 \mathrm{e}^{-t} \\
\mathcal{L}^{-1}\left(\frac{-\frac{3}{2}+\frac{i}{2}}{s-i}\right) & =\left(-\frac{3}{2}+\frac{i}{2}\right) \mathrm{e}^{i t} \\
\mathcal{L}^{-1}\left(\frac{-\frac{3}{2}-\frac{i}{2}}{s+i}\right) & =\left(-\frac{3}{2}-\frac{i}{2}\right) \mathrm{e}^{-i t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-3 \cos (t)-\sin (t)+2 \mathrm{e}^{-t}+\mathrm{e}^{2 t}
$$

Simplifying the solution gives

$$
y=-3 \cos (t)-\sin (t)+2 \mathrm{e}^{-t}+\mathrm{e}^{2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3 \cos (t)-\sin (t)+2 \mathrm{e}^{-t}+\mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-3 \cos (t)-\sin (t)+2 \mathrm{e}^{-t}+\mathrm{e}^{2 t}
$$

Verified OK.

13.21.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-2 y=10 \cos (t), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=10 \cos (t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} & \mathrm{e}^{2 t} \\
-\mathrm{e}^{-t} & 2 \mathrm{e}^{2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{10 \mathrm{e}^{-t}\left(\int \mathrm{e}^{t} \cos (t) d t\right)}{3}+\frac{10 \mathrm{e}^{2 t}\left(\int \cos (t) \mathrm{e}^{-2 t} d t\right)}{3}
$$

- Compute integrals

$$
y_{p}(t)=-3 \cos (t)-\sin (t)
$$

- Substitute particular solution into general solution to ODE $y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}-3 \cos (t)-\sin (t)$
Check validity of solution $y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}-3 \cos (t)-\sin (t)$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-3$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}+2 c_{2} \mathrm{e}^{2 t}+3 \sin (t)-\cos (t)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-1$
$-1=-c_{1}+2 c_{2}-1$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify

$$
y=-3 \cos (t)-\sin (t)+2 \mathrm{e}^{-t}+\mathrm{e}^{2 t}
$$

- \quad Solution to the IVP

$$
y=-3 \cos (t)-\sin (t)+2 \mathrm{e}^{-t}+\mathrm{e}^{2 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 1.891 (sec). Leaf size: 23
dsolve([diff $(y(t), t \$ 2)-\operatorname{diff}(y(t), t)-2 * y(t)=10 * \cos (t), y(0)=0, D(y)(0)=-1], y(t)$, singsol=a

$$
y(t)=2 \mathrm{e}^{-t}+\mathrm{e}^{2 t}-3 \cos (t)-\sin (t)
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 26
DSolve [\{y' ' $[\mathrm{t}]-\mathrm{y}$ ' $\left.[\mathrm{t}]-2 * \mathrm{y}[\mathrm{t}]==10 * \operatorname{Cos}[\mathrm{t}],\left\{\mathrm{y}[0]==0, \mathrm{y}^{\prime}[0]==-1\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions

$$
y(t) \rightarrow 2 e^{-t}+e^{2 t}-\sin (t)-3 \cos (t)
$$

13.22 problem Problem 22

13.22.1 Existence and uniqueness analysis 2683
13.22.2 Maple step by step solution . 2686

Internal problem ID [2860]
Internal file name [OUTPUT/2352_Sunday_June_05_2022_03_00_13_AM_40746384/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+5 y^{\prime}+4 y=20 \sin (2 t)
$$

With initial conditions

$$
\left[y(0)=-1, y^{\prime}(0)=2\right]
$$

13.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =5 \\
q(t) & =4 \\
F & =20 \sin (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+5 y^{\prime}+4 y=20 \sin (2 t)
$$

The domain of $p(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=20 \sin (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+5 s Y(s)-5 y(0)+4 Y(s)=\frac{40}{s^{2}+4} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =-1 \\
y^{\prime}(0) & =2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+3+s+5 s Y(s)+4 Y(s)=\frac{40}{s^{2}+4}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{s^{3}+3 s^{2}+4 s-28}{\left(s^{2}+4\right)\left(s^{2}+5 s+4\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{1}{s-2 i}-\frac{1}{s+2 i}-\frac{1}{s+4}+\frac{2}{s+1}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{s-2 i}\right) & =-\mathrm{e}^{2 i t} \\
\mathcal{L}^{-1}\left(-\frac{1}{s+2 i}\right) & =-\mathrm{e}^{-2 i t} \\
\mathcal{L}^{-1}\left(-\frac{1}{s+4}\right) & =-\mathrm{e}^{-4 t} \\
\mathcal{L}^{-1}\left(\frac{2}{s+1}\right) & =2 \mathrm{e}^{-t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-\mathrm{e}^{-4 t}-2 \cos (2 t)+2 \mathrm{e}^{-t}
$$

Simplifying the solution gives

$$
y=-\mathrm{e}^{-4 t}-2 \cos (2 t)+2 \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-4 t}-2 \cos (2 t)+2 \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{-4 t}-2 \cos (2 t)+2 \mathrm{e}^{-t}
$$

Verified OK.

13.22.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+5 y^{\prime}+4 y=20 \sin (2 t), y(0)=-1,\left.y^{\prime}\right|_{\{t=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+5 r+4=0
$$

- Factor the characteristic polynomial
$(r+4)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-4,-1)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-4 t}$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=20 \sin (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-4 t} & \mathrm{e}^{-t} \\ -4 \mathrm{e}^{-4 t} & -\mathrm{e}^{-t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{-5 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{20 \mathrm{e}^{-4 t}\left(\int \sin (2 t) \mathrm{e}^{4 t} d t\right)}{3}+\frac{20 \mathrm{e}^{-t}\left(\int \sin (2 t) \mathrm{e}^{t} d t\right)}{3}$
- Compute integrals
$y_{p}(t)=-2 \cos (2 t)$
- Substitute particular solution into general solution to ODE $y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-t}-2 \cos (2 t)$
Check validity of solution $y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-t}-2 \cos (2 t)$
- Use initial condition $y(0)=-1$
$-1=c_{1}+c_{2}-2$
- Compute derivative of the solution
$y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-c_{2} \mathrm{e}^{-t}+4 \sin (2 t)$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=2$

$$
2=-4 c_{1}-c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=-1, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify

$$
y=-\mathrm{e}^{-4 t}-2 \cos (2 t)+2 \mathrm{e}^{-t}
$$

- \quad Solution to the IVP

$$
y=-\mathrm{e}^{-4 t}-2 \cos (2 t)+2 \mathrm{e}^{-t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.875 (sec). Leaf size: 23
dsolve([diff $(y(t), t \$ 2)+5 * \operatorname{diff}(y(t), t)+4 * y(t)=20 * \sin (2 * t), y(0)=-1, D(y)(0)=2], y(t)$, sings

$$
y(t)=2 \mathrm{e}^{-t}-\mathrm{e}^{-4 t}-2 \cos (2 t)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 27
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+5 * y\right.\right.$ ' $\left.[t]+4 * y[t]==20 * \operatorname{Sin}[2 * t],\left\{y[0]==-1, y^{\prime}[0]==2\right\}\right\}, y[t], t$, IncludeSingularSoluti

$$
y(t) \rightarrow e^{-4 t}\left(2 e^{3 t}-1\right)-2 \cos (2 t)
$$

13.23 problem Problem 23

13.23.1 Existence and uniqueness analysis 2689
13.23.2 Maple step by step solution . 2692

Internal problem ID [2861]
Internal file name [OUTPUT/2353_Sunday_June_05_2022_03_00_15_AM_14461231/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+5 y^{\prime}+4 y=20 \sin (2 t)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-2\right]
$$

13.23.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =5 \\
q(t) & =4 \\
F & =20 \sin (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+5 y^{\prime}+4 y=20 \sin (2 t)
$$

The domain of $p(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=20 \sin (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+5 s Y(s)-5 y(0)+4 Y(s)=\frac{40}{s^{2}+4} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =-2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-3-s+5 s Y(s)+4 Y(s)=\frac{40}{s^{2}+4}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{3}+3 s^{2}+4 s+52}{\left(s^{2}+4\right)\left(s^{2}+5 s+4\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{10}{3(s+1)}-\frac{1}{3(s+4)}-\frac{1}{s-2 i}-\frac{1}{s+2 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{10}{3(s+1)}\right) & =\frac{10 \mathrm{e}^{-t}}{3} \\
\mathcal{L}^{-1}\left(-\frac{1}{3(s+4)}\right) & =-\frac{\mathrm{e}^{-4 t}}{3} \\
\mathcal{L}^{-1}\left(-\frac{1}{s-2 i}\right) & =-\mathrm{e}^{2 i t} \\
\mathcal{L}^{-1}\left(-\frac{1}{s+2 i}\right) & =-\mathrm{e}^{-2 i t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-\frac{\mathrm{e}^{-4 t}}{3}-2 \cos (2 t)+\frac{10 \mathrm{e}^{-t}}{3}
$$

Simplifying the solution gives

$$
y=-\frac{\mathrm{e}^{-4 t}}{3}-2 \cos (2 t)+\frac{10 \mathrm{e}^{-t}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-4 t}}{3}-2 \cos (2 t)+\frac{10 \mathrm{e}^{-t}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-4 t}}{3}-2 \cos (2 t)+\frac{10 \mathrm{e}^{-t}}{3}
$$

Verified OK.

13.23.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+5 y^{\prime}+4 y=20 \sin (2 t), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=-2\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+5 r+4=0$
- Factor the characteristic polynomial
$(r+4)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-4,-1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-4 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=20 \sin (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-4 t} & \mathrm{e}^{-t} \\
-4 \mathrm{e}^{-4 t} & -\mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{-5 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{20 \mathrm{e}^{-4 t}\left(\int \sin (2 t) \mathrm{e}^{4 t} d t\right)}{3}+\frac{20 \mathrm{e}^{-t}\left(\int \sin (2 t) \mathrm{e}^{t} d t\right)}{3}$
- Compute integrals
$y_{p}(t)=-2 \cos (2 t)$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-t}-2 \cos (2 t)$
Check validity of solution $y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-t}-2 \cos (2 t)$
- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}-2$
- Compute derivative of the solution
$y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-c_{2} \mathrm{e}^{-t}+4 \sin (2 t)$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-2$
$-2=-4 c_{1}-c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{3}, c_{2}=\frac{10}{3}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\mathrm{e}^{-4 t}}{3}-2 \cos (2 t)+\frac{10 \mathrm{e}^{-t}}{3}
$$

- \quad Solution to the IVP

$$
y=-\frac{\mathrm{e}^{-4 t}}{3}-2 \cos (2 t)+\frac{10 \mathrm{e}^{-t}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 1.562 (sec). Leaf size: 23

```
dsolve([diff (y(t),t$2)+5*\operatorname{diff}(y(t),t)+4*y(t)=20*\operatorname{sin}(2*t),y(0)=1,D(y)(0)=-2],y(t), sings
```

$$
y(t)=\frac{10 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{-4 t}}{3}-2 \cos (2 t)
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 30
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+5 * y\right.\right.$ ' $[t]+4 * y[t]==20 * \operatorname{Sin}[2 * t],\{y[0]==1, y$ ' $\left.[0]==-2\}\right\}, y[t], t$, IncludeSingularSoluti

$$
y(t) \rightarrow \frac{1}{3} e^{-4 t}\left(10 e^{3 t}-1\right)-2 \cos (2 t)
$$

13.24 problem Problem 24

13.24.1 Existence and uniqueness analysis 2695
13.24.2 Maple step by step solution . 2698

Internal problem ID [2862]
Internal file name [OUTPUT/2354_Sunday_June_05_2022_03_00_17_AM_33117395/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-3 y^{\prime}+2 y=3 \cos (t)+\sin (t)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=1\right]
$$

13.24.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-3 \\
q(t) & =2 \\
F & =3 \cos (t)+\sin (t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-3 y^{\prime}+2 y=3 \cos (t)+\sin (t)
$$

The domain of $p(t)=-3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=3 \cos (t)+\sin (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-3 s Y(s)+3 y(0)+2 Y(s)=\frac{3 s+1}{s^{2}+1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+2-s-3 s Y(s)+2 Y(s)=\frac{3 s+1}{s^{2}+1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{3}-2 s^{2}+4 s-1}{\left(s^{2}+1\right)\left(s^{2}-3 s+2\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{1}{s-1}+\frac{\frac{3}{10}+\frac{2 i}{5}}{s-i}+\frac{\frac{3}{10}-\frac{2 i}{5}}{s+i}+\frac{7}{5(s-2)}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{s-1}\right) & =-\mathrm{e}^{t} \\
\mathcal{L}^{-1}\left(\frac{\frac{3}{10}+\frac{2 i}{5}}{s-i}\right) & =\left(\frac{3}{10}+\frac{2 i}{5}\right) \mathrm{e}^{i t} \\
\mathcal{L}^{-1}\left(\frac{\frac{3}{10}-\frac{2 i}{5}}{s+i}\right) & =\left(\frac{3}{10}-\frac{2 i}{5}\right) \mathrm{e}^{-i t} \\
\mathcal{L}^{-1}\left(\frac{7}{5(s-2)}\right) & =\frac{7 \mathrm{e}^{2 t}}{5}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-\mathrm{e}^{t}+\frac{3 \cos (t)}{5}-\frac{4 \sin (t)}{5}+\frac{7 \mathrm{e}^{2 t}}{5}
$$

Simplifying the solution gives

$$
y=-\mathrm{e}^{t}+\frac{3 \cos (t)}{5}-\frac{4 \sin (t)}{5}+\frac{7 \mathrm{e}^{2 t}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{t}+\frac{3 \cos (t)}{5}-\frac{4 \sin (t)}{5}+\frac{7 \mathrm{e}^{2 t}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\mathrm{e}^{t}+\frac{3 \cos (t)}{5}-\frac{4 \sin (t)}{5}+\frac{7 \mathrm{e}^{2 t}}{5}
$$

Verified OK.

13.24.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-3 y^{\prime}+2 y=3 \cos (t)+\sin (t), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-3 r+2=0$
- Factor the characteristic polynomial
$(r-1)(r-2)=0$
- Roots of the characteristic polynomial

$$
r=(1,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{t}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=3 \cos (t)+\sin (t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{t} & \mathrm{e}^{2 t} \\
\mathrm{e}^{t} & 2 \mathrm{e}^{2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{3 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\mathrm{e}^{t}\left(\int(3 \cos (t)+\sin (t)) \mathrm{e}^{-t} d t\right)+\mathrm{e}^{2 t}\left(\int(3 \cos (t)+\sin (t)) \mathrm{e}^{-2 t} d t\right)
$$

- Compute integrals
$y_{p}(t)=\frac{3 \cos (t)}{5}-\frac{4 \sin (t)}{5}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+\frac{3 \cos (t)}{5}-\frac{4 \sin (t)}{5}$
Check validity of solution $y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+\frac{3 \cos (t)}{5}-\frac{4 \sin (t)}{5}$
- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}+\frac{3}{5}$
- Compute derivative of the solution
$y^{\prime}=c_{1} \mathrm{e}^{t}+2 c_{2} \mathrm{e}^{2 t}-\frac{3 \sin (t)}{5}-\frac{4 \cos (t)}{5}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$
$1=c_{1}+2 c_{2}-\frac{4}{5}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-1, c_{2}=\frac{7}{5}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\mathrm{e}^{t}+\frac{3 \cos (t)}{5}-\frac{4 \sin (t)}{5}+\frac{7 \mathrm{e}^{2 t}}{5}
$$

- \quad Solution to the IVP

$$
y=-\mathrm{e}^{t}+\frac{3 \cos (t)}{5}-\frac{4 \sin (t)}{5}+\frac{7 \mathrm{e}^{2 t}}{5}
$$

Maple trace
$`$ Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form $[x i=0$, eta= $F(x)$] successful`

Solution by Maple
Time used: 2.0 (sec). Leaf size: 23

```
dsolve([diff(y(t),t$2)-3*diff(y(t),t)+2*y(t)=3*\operatorname{cos}(t)+\operatorname{sin}(t),y(0)=1,D(y)(0)=1],y(t),
```

$$
y(t)=\frac{7 \mathrm{e}^{2 t}}{5}-\mathrm{e}^{t}-\frac{4 \sin (t)}{5}+\frac{3 \cos (t)}{5}
$$

Solution by Mathematica
Time used: 0.112 (sec). Leaf size: 29
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]-3 * y\right.\right.$ ' $\left.[t]+2 * y[t]==3 * \operatorname{Cos}[t]+\operatorname{Sin}[t],\left\{y[0]==1, y^{\prime}[0]==1\right\}\right\}, y[t], t$, IncludeSingularSol

$$
y(t) \rightarrow \frac{1}{5}\left(e^{t}\left(7 e^{t}-5\right)-4 \sin (t)+3 \cos (t)\right)
$$

13.25 problem Problem 25

13.25.1 Existence and uniqueness analysis 2701
13.25.2 Maple step by step solution . 2704

Internal problem ID [2863]
Internal file name [OUTPUT/2355_Sunday_June_05_2022_03_00_19_AM_47489344/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=9 \sin (t)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-1\right]
$$

13.25.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =9 \sin (t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=9 \sin (t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=9 \sin (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+4 Y(s)=\frac{9}{s^{2}+1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =-1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+1-s+4 Y(s)=\frac{9}{s^{2}+1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{3}-s^{2}+s+8}{\left(s^{2}+1\right)\left(s^{2}+4\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{\frac{1}{2}+i}{s-2 i}+\frac{\frac{1}{2}-i}{s+2 i}-\frac{3 i}{2(s-i)}+\frac{3 i}{2(s+i)}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{\frac{1}{2}+i}{s-2 i}\right) & =\left(\frac{1}{2}+i\right) \mathrm{e}^{2 i t} \\
\mathcal{L}^{-1}\left(\frac{\frac{1}{2}-i}{s+2 i}\right) & =\left(\frac{1}{2}-i\right) \mathrm{e}^{-2 i t} \\
\mathcal{L}^{-1}\left(-\frac{3 i}{2(s-i)}\right) & =-\frac{3 i \mathrm{e}^{i t}}{2} \\
\mathcal{L}^{-1}\left(\frac{3 i}{2(s+i)}\right) & =\frac{3 i \mathrm{e}^{-i t}}{2}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\cos (2 t)-2 \sin (2 t)+3 \sin (t)
$$

Simplifying the solution gives

$$
y=\cos (2 t)-2 \sin (2 t)+3 \sin (t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (2 t)-2 \sin (2 t)+3 \sin (t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\cos (2 t)-2 \sin (2 t)+3 \sin (t)
$$

Verified OK.

13.25.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=9 \sin (t), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (2 t)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(t)=\sin (2 t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=9 \sin (t)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\cos (2 t) & \sin (2 t) \\ -2 \sin (2 t) & 2 \cos (2 t)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-9 \cos (2 t)\left(\int \cos (t) \sin (t)^{2} d t\right)+\frac{9 \sin (2 t)\left(\int(\sin (3 t)-\sin (t)) d t\right)}{4}$
- Compute integrals

$$
y_{p}(t)=3 \sin (t)
$$

- Substitute particular solution into general solution to ODE $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+3 \sin (t)$
Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+3 \sin (t)$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)+3 \cos (t)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-1$
$-1=3+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=-2\right\}$
- Substitute constant values into general solution and simplify

$$
y=\cos (2 t)-2 \sin (2 t)+3 \sin (t)
$$

- Solution to the IVP

$$
y=\cos (2 t)-2 \sin (2 t)+3 \sin (t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.047 (sec). Leaf size: 19

```
dsolve([diff(y(t),t$2)+4*y(t)=9*sin(t),y(0) = 1, D(y)(0) = -1],y(t), singsol=all)
```

$$
y(t)=\cos (2 t)-2 \sin (2 t)+3 \sin (t)
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime \prime}[t]+4 * y[t]==9 * \operatorname{Sin}[t],\left\{y[0]==1, y^{\prime}[0]==-1\right\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True

$$
y(t) \rightarrow 3 \sin (t)-2 \sin (2 t)+\cos (2 t)
$$

13.26 problem Problem 26

13.26.1 Existence and uniqueness analysis 2707
13.26.2 Maple step by step solution . 2710

Internal problem ID [2864]
Internal file name [OUTPUT/2356_Sunday_June_05_2022_03_00_21_AM_92629855/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=6 \cos (2 t)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=2\right]
$$

13.26.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =1 \\
F & =6 \cos (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y=6 \cos (2 t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=6 \cos (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+Y(s)=\frac{6 s}{s^{2}+4} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-2+Y(s)=\frac{6 s}{s^{2}+4}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{2 s^{2}+6 s+8}{\left(s^{2}+4\right)\left(s^{2}+1\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{1}{s-2 i}-\frac{1}{s+2 i}+\frac{1-i}{s-i}+\frac{1+i}{s+i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{s-2 i}\right) & =-\mathrm{e}^{2 i t} \\
\mathcal{L}^{-1}\left(-\frac{1}{s+2 i}\right) & =-\mathrm{e}^{-2 i t} \\
\mathcal{L}^{-1}\left(\frac{1-i}{s-i}\right) & =(1-i) \mathrm{e}^{i t} \\
\mathcal{L}^{-1}\left(\frac{1+i}{s+i}\right) & =(1+i) \mathrm{e}^{-i t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-2 \cos (2 t)+2 \cos (t)+2 \sin (t)
$$

Simplifying the solution gives

$$
y=-2 \cos (2 t)+2 \cos (t)+2 \sin (t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 \cos (2 t)+2 \cos (t)+2 \sin (t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 \cos (2 t)+2 \cos (t)+2 \sin (t)
$$

Verified OK.

13.26.2 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+y=6 \cos (2 t), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=2\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+1=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (t)$
- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(t)=\sin (t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (t)+c_{2} \sin (t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=6 \cos (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=1
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-3 \cos (t)\left(\int(\sin (3 t)-\sin (t)) d t\right)+3 \sin (t)\left(\int(\cos (t)+\cos (3 t)) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=-2 \cos (2 t)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (t)+c_{2} \sin (t)-2 \cos (2 t)
$$

Check validity of solution $y=c_{1} \cos (t)+c_{2} \sin (t)-2 \cos (2 t)$

- Use initial condition $y(0)=0$
$0=c_{1}-2$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \sin (t)+c_{2} \cos (t)+4 \sin (2 t)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=2$
$2=c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=2\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-2 \cos (2 t)+2 \cos (t)+2 \sin (t)
$$

- \quad Solution to the IVP

$$
y=-2 \cos (2 t)+2 \cos (t)+2 \sin (t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 1.906 (sec). Leaf size: 19

```
dsolve([diff(y(t),t$2)+y(t)=6*\operatorname{cos}(2*t),y(0) = 0, D(y)(0) = 2],y(t), singsol=all)
```

$$
y(t)=-2 \cos (2 t)+2 \cos (t)+2 \sin (t)
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 18
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+y[t]==6 * \operatorname{Cos}[2 * t],\left\{y[0]==0, y^{\prime}[0]==2\right\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow 2(\sin (t)+\cos (t)-\cos (2 t))
$$

13.27 problem Problem 27

13.27.1 Existence and uniqueness analysis 2713
13.27.2 Maple step by step solution . 2716

Internal problem ID [2865]
Internal file name [OUTPUT/2357_Sunday_June_05_2022_03_00_23_AM_86244952/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=7 \sin (4 t)+14 \cos (4 t)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=2\right]
$$

13.27.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =9 \\
F & =7 \sin (4 t)+14 \cos (4 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+9 y=7 \sin (4 t)+14 \cos (4 t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=9$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=7 \sin (4 t)+14 \cos (4 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+9 Y(s)=\frac{14 s+28}{s^{2}+16} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-2-s+9 Y(s)=\frac{14 s+28}{s^{2}+16}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{3}+2 s^{2}+30 s+60}{\left(s^{2}+16\right)\left(s^{2}+9\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{-1+\frac{i}{2}}{s-4 i}+\frac{-1-\frac{i}{2}}{s+4 i}+\frac{\frac{3}{2}-i}{s-3 i}+\frac{\frac{3}{2}+i}{s+3 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{-1+\frac{i}{2}}{s-4 i}\right) & =\left(-1+\frac{i}{2}\right) \mathrm{e}^{4 i t} \\
\mathcal{L}^{-1}\left(\frac{-1-\frac{i}{2}}{s+4 i}\right) & =\left(-1-\frac{i}{2}\right) \mathrm{e}^{-4 i t} \\
\mathcal{L}^{-1}\left(\frac{\frac{3}{2}-i}{s-3 i}\right) & =\left(\frac{3}{2}-i\right) \mathrm{e}^{3 i t} \\
\mathcal{L}^{-1}\left(\frac{\frac{3}{2}+i}{s+3 i}\right) & =\left(\frac{3}{2}+i\right) \mathrm{e}^{-3 i t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=3 \cos (3 t)+2 \sin (3 t)-2 \cos (4 t)-\sin (4 t)
$$

Simplifying the solution gives

$$
y=3 \cos (3 t)+2 \sin (3 t)-2 \cos (4 t)-\sin (4 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \cos (3 t)+2 \sin (3 t)-2 \cos (4 t)-\sin (4 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \cos (3 t)+2 \sin (3 t)-2 \cos (4 t)-\sin (4 t)
$$

Verified OK.

13.27.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+9 y=7 \sin (4 t)+14 \cos (4 t), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- \quad 1st solution of the homogeneous ODE
$y_{1}(t)=\cos (3 t)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\sin (3 t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=7 \sin (4 t)+14 \cos (4 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (3 t) & \sin (3 t) \\
-3 \sin (3 t) & 3 \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=3
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{7 \cos (3 t)\left(\int \sin (3 t)(\sin (4 t)+2 \cos (4 t)) d t\right)}{3}+\frac{7 \sin (3 t)\left(\int \cos (3 t)(\sin (4 t)+2 \cos (4 t)) d t\right)}{3}
$$

- Compute integrals

$$
y_{p}(t)=-\sin (4 t)-2 \cos (4 t)
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (3 t)+c_{2} \sin (3 t)-\sin (4 t)-2 \cos (4 t)$
Check validity of solution $y=c_{1} \cos (3 t)+c_{2} \sin (3 t)-\sin (4 t)-2 \cos (4 t)$
- Use initial condition $y(0)=1$
$1=c_{1}-2$
- Compute derivative of the solution $y^{\prime}=-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)-4 \cos (4 t)+8 \sin (4 t)$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=2$
$2=-4+3 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify
$y=3 \cos (3 t)+2 \sin (3 t)-2 \cos (4 t)-\sin (4 t)$
- \quad Solution to the IVP
$y=3 \cos (3 t)+2 \sin (3 t)-2 \cos (4 t)-\sin (4 t)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 3.047 (sec). Leaf size: 29

```
dsolve([diff(y(t),t$2)+9*y(t)=7*\operatorname{sin}(4*t)+14*\operatorname{cos}(4*t),y(0)=1,D(y)(0) = 2],y(t), singsol=al
```

$$
y(t)=-2 \cos (4 t)-\sin (4 t)+3 \cos (3 t)+2 \sin (3 t)
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 49
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+8 * y[t]==7 * \operatorname{Sin}[4 * t]+14 * \operatorname{Cos}[4 * t],\left\{y[0]==1, y^{\prime}[0]==2\right\}\right\}, y[t], t\right.$, IncludeSingularSolu

$$
y(t) \rightarrow \frac{1}{8}(-7 \sin (4 t)+11 \sqrt{2} \sin (2 \sqrt{2} t)-14 \cos (4 t)+22 \cos (2 \sqrt{2} t))
$$

13.28 problem Problem 28

13.28.1 Existence and uniqueness analysis 2719
13.28.2 Maple step by step solution . 2721

Internal problem ID [2866]
Internal file name [OUTPUT/2358_Sunday_June_05_2022_03_00_26_AM_76402982/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.4. page 689
Problem number: Problem 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second__order_linear_constant_coeff", "second__order_ode_can__be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y=0
$$

With initial conditions

$$
\left[y(0)=A, y^{\prime}(0)=B\right]
$$

13.28.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =-1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y=0
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-Y(s)=0 \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =A \\
y^{\prime}(0) & =B
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-B-s A-Y(s)=0
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s A+B}{s^{2}-1}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{\frac{A}{2}-\frac{B}{2}}{s+1}+\frac{\frac{A}{2}+\frac{B}{2}}{s-1}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{\frac{A}{2}-\frac{B}{2}}{s+1}\right) & =\frac{(A-B) \mathrm{e}^{-t}}{2} \\
\mathcal{L}^{-1}\left(\frac{\frac{A}{2}+\frac{B}{2}}{s-1}\right) & =\frac{(A+B) \mathrm{e}^{t}}{2}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=A \cosh (t)+B \sinh (t)
$$

Simplifying the solution gives

$$
y=A \cosh (t)+B \sinh (t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=A \cosh (t)+B \sinh (t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=A \cosh (t)+B \sinh (t)
$$

Verified OK.

13.28.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y=0, y(0)=A,\left.y^{\prime}\right|_{\{t=0\}}=B\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-t}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}$

- Use initial condition $y(0)=A$

$$
A=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=B$

$$
B=-c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{A}{2}-\frac{B}{2}, c_{2}=\frac{A}{2}+\frac{B}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{(A-B) \mathrm{e}^{-t}}{2}+\frac{(A+B) \mathrm{e}^{t}}{2}
$$

- Solution to the IVP

$$
y=\frac{(A-B) \mathrm{e}^{-t}}{2}+\frac{(A+B) e^{t}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 1.703 (sec). Leaf size: 13
dsolve([diff(y(t),t\$2)-y(t)=0,y(0)=A,D(y)(0)=B],y(t), singsol=all)

$$
y(t)=A \cosh (t)+B \sinh (t)
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 33
DSolve[\{y' $\left.{ }^{[t]}\right]-\mathrm{y}[\mathrm{t}]==0,\{\mathrm{y}[0]=\mathrm{a}, \mathrm{y}$ ' $\left.[0]==\mathrm{b}\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{2} e^{-t}\left(a\left(e^{2 t}+1\right)+b\left(e^{2 t}-1\right)\right)
$$

14 Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
14.1 problem Problem 27 2725
14.2 problem Problem 28 2730
14.3 problem Problem 29 2735
14.4 problem Problem 30 2740
14.5 problem Problem 31 2745
14.6 problem Problem 32 2752
14.7 problem Problem 33 2759
14.8 problem Problem 34 2764
14.9 problem Problem 35 2770
14.10problem Problem 36 2776
14.11problem Problem 37 2782
14.12problem Problem 38 2788
14.13problem Problem 39 2794
14.14problem Problem 40 2800
14.15problem Problem 41 2806
14.16problem Problem 46 part a 2813
14.17problem Problem 46 part b 2819

14.1 problem Problem 27

14.1.1 Existence and uniqueness analysis 2725
14.1.2 Solving as laplace ode . 2726
14.1.3 Maple step by step solution . 2727

Internal problem ID [2867]
Internal file name [OUTPUT/2359_Sunday_June_05_2022_03_00_28_AM_89142793/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+2 y=2 \text { Heaviside }(t-1)
$$

With initial conditions

$$
[y(0)=1]
$$

14.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =2 \text { Heaviside }(t-1)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=2 \text { Heaviside }(t-1)
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ Heaviside $(t-1)$ is

$$
\{t<1 \vee 1<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

14.1.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+2 Y(s)=\frac{2 \mathrm{e}^{-s}}{s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-1+2 Y(s)=\frac{2 \mathrm{e}^{-s}}{s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{2 \mathrm{e}^{-s}+s}{s(s+2)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{2 \mathrm{e}^{-s}+s}{s(s+2)}\right) \\
& =\text { Heaviside }(t-1)\left(1-\mathrm{e}^{-2 t+2}\right)+\mathrm{e}^{-2 t}
\end{aligned}
$$

Hence the final solution is

$$
y=\operatorname{Heaviside}(t-1)\left(1-\mathrm{e}^{-2 t+2}\right)+\mathrm{e}^{-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{Heaviside}(t-1)\left(1-\mathrm{e}^{-2 t+2}\right)+\mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\operatorname{Heaviside}(t-1)\left(1-\mathrm{e}^{-2 t+2}\right)+\mathrm{e}^{-2 t}
$$

Verified OK.

14.1.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+2 y=2 \operatorname{Heaviside}(t-1), y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative

$$
y^{\prime}=-2 y+2 \operatorname{Heaviside}(t-1)
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+2 y=2 \operatorname{Heaviside}(t-1)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+2 y\right)=2 \mu(t)$ Heaviside $(t-1)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 2 \mu(t) \operatorname{Heaviside}(t-1) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 2 \mu(t)$ Heaviside $(t-1) d t+c_{1}$
- Solve for y
$y=\frac{\int 2 \mu(t) \text { Heariside }(t-1) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{2 t}$
$y=\frac{\int 2 \mathrm{e}^{2 t} H e a v i s i d e(t-1) d t+c_{1}}{\mathrm{e}^{2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{2 t} \text { Heaviside }(t-1)-\text { Heaviside }(t-1) \mathrm{e}^{2}+c_{1}}{\mathrm{e}^{2 t}}$
- Simplify
$y=$ Heaviside $(t-1)-$ Heaviside $(t-1) \mathrm{e}^{-2 t+2}+c_{1} \mathrm{e}^{-2 t}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- Substitute $c_{1}=1$ into general solution and simplify
$y=\operatorname{Heaviside}(t-1)-\operatorname{Heaviside}(t-1) \mathrm{e}^{-2 t+2}+\mathrm{e}^{-2 t}$
- Solution to the IVP

$$
y=\operatorname{Heaviside}(t-1)-\operatorname{Heaviside}(t-1) \mathrm{e}^{-2 t+2}+\mathrm{e}^{-2 t}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.328 (sec). Leaf size: 24
dsolve([diff $(y(t), t)+2 * y(t)=2 * H e a v i s i d e(t-1), y(0)=1], y(t)$, singsol=all)

$$
y(t)=-\operatorname{Heaviside}(t-1) \mathrm{e}^{-2 t+2}+\operatorname{Heaviside}(t-1)+\mathrm{e}^{-2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 26
DSolve[\{y'[t]-y[t]==2*UnitStep[t-1],\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow\left\{\begin{array}{cc}
e^{t} & t \leq 1 \\
-2+2 e^{t-1}+e^{t} & \text { True }
\end{array}\right.
$$

14.2 problem Problem 28

14.2.1 Existence and uniqueness analysis 2730
14.2.2 Solving as laplace ode . 2731
14.2.3 Maple step by step solution . 2732

Internal problem ID [2868]
Internal file name [OUTPUT/2360_Sunday_June_05_2022_03_00_33_AM_15085754/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y=\text { Heaviside }(t-2) \mathrm{e}^{t-2}
$$

With initial conditions

$$
[y(0)=2]
$$

14.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-2 \\
q(t) & =\text { Heaviside }(t-2) \mathrm{e}^{t-2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=\text { Heaviside }(t-2) \mathrm{e}^{t-2}
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\operatorname{Heaviside}(t-2) \mathrm{e}^{t-2}$ is

$$
\{t<2 \vee 2<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

14.2.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-2 Y(s)=\frac{\mathrm{e}^{-2 s}}{s-1} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-2-2 Y(s)=\frac{\mathrm{e}^{-2 s}}{s-1}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{\mathrm{e}^{-2 s}+2 s-2}{(s-1)(s-2)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-2 s}+2 s-2}{(s-1)(s-2)}\right) \\
& =\left(\mathrm{e}^{t-2}-\mathrm{e}^{2 t-4}\right) \text { Heaviside }(-t+2)+2 \mathrm{e}^{2 t}-\mathrm{e}^{t-2}+\mathrm{e}^{2 t-4}
\end{aligned}
$$

Hence the final solution is

$$
y=\left(\mathrm{e}^{t-2}-\mathrm{e}^{2 t-4}\right) \text { Heaviside }(-t+2)+2 \mathrm{e}^{2 t}-\mathrm{e}^{t-2}+\mathrm{e}^{2 t-4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\mathrm{e}^{t-2}-\mathrm{e}^{2 t-4}\right) \text { Heaviside }(-t+2)+2 \mathrm{e}^{2 t}-\mathrm{e}^{t-2}+\mathrm{e}^{2 t-4} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\left(\mathrm{e}^{t-2}-\mathrm{e}^{2 t-4}\right) \text { Heaviside }(-t+2)+2 \mathrm{e}^{2 t}-\mathrm{e}^{t-2}+\mathrm{e}^{2 t-4}
$$

Verified OK.

14.2.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 y=\operatorname{Heaviside}(t-2) \mathrm{e}^{t-2}, y(0)=2\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative

$$
y^{\prime}=2 y+\operatorname{Heaviside}(t-2) \mathrm{e}^{t-2}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-2 y=\operatorname{Heaviside}(t-2) \mathrm{e}^{t-2}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu(t)$ Heaviside $(t-2) \mathrm{e}^{t-2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)$ Heaviside $(t-2) \mathrm{e}^{t-2} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)$ Heaviside $(t-2) \mathrm{e}^{t-2} d t+c_{1}$
- Solve for y
$y=\frac{\int \mu(t) \text { Heaviside }(t-2) e^{t-2} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-2 t}$
$y=\frac{\int \mathrm{e}^{-2 t} \text { Heaviside }(t-2) \mathrm{e}^{t-2} d t+c_{1}}{\mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{-\mathrm{e}^{-t-2} \text { Heaviside }(t-2)+\text { Heaviside }(t-2) \mathrm{e}^{-4}+c_{1}}{\mathrm{e}^{-2 t}}$
- Simplify
$y=\mathrm{e}^{2 t}\left(-\mathrm{e}^{-t-2}\right.$ Heaviside $(t-2)+$ Heaviside $\left.(t-2) \mathrm{e}^{-4}+c_{1}\right)$
- Use initial condition $y(0)=2$
$2=c_{1}$
- \quad Solve for c_{1}
$c_{1}=2$
- Substitute $c_{1}=2$ into general solution and simplify
$y=\mathrm{e}^{2 t}\left(-\mathrm{e}^{-t-2}\right.$ Heaviside $(t-2)+$ Heaviside $\left.(t-2) \mathrm{e}^{-4}+2\right)$
- Solution to the IVP

$$
y=\mathrm{e}^{2 t}\left(-\mathrm{e}^{-t-2} \text { Heaviside }(t-2)+\operatorname{Heaviside}(t-2) \mathrm{e}^{-4}+2\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.297 (sec). Leaf size: 43

```
dsolve([diff(y(t),t)-2*y(t)=Heaviside(t-2)*exp(t-2),y(0) = 2],y(t), singsol=all)
```

$$
y(t)=-\operatorname{Heaviside}(t-2) \mathrm{e}^{t-2}+\text { Heaviside }(t-2) \mathrm{e}^{-4+2 t}+2 \mathrm{e}^{2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.088 (sec). Leaf size: 40
DSolve[\{y' $[t]-2 * y[t]==$ UnitStep $[t-2] * \operatorname{Exp}[t-2],\{y[0]==2\}\}, y[t], t$, IncludeSingularSolutions $->$ I

$$
y(t) \rightarrow\left\{\begin{array}{cc}
2 e^{2 t} & t \leq 2 \\
e^{t-4}\left(-e^{2}+e^{t}+2 e^{t+4}\right) & \text { True }
\end{array}\right.
$$

14.3 problem Problem 29

14.3.1 Existence and uniqueness analysis 2735
14.3.2 Solving as laplace ode . 2736
14.3.3 Maple step by step solution . 2737

Internal problem ID [2869]
Internal file name [OUTPUT/2361_Sunday_June_05_2022_03_00_39_AM_56517254/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=4 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right)
$$

With initial conditions

$$
[y(0)=1]
$$

14.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-1 \\
q(t) & =4 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=4 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right)
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ Heaviside $\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right)$ is

$$
\left\{t<\frac{\pi}{4} \vee \frac{\pi}{4}<t\right\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

14.3.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-Y(s)=\frac{4 \mathrm{e}^{-\frac{s \pi}{4}} s}{s^{2}+1} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-1-Y(s)=\frac{4 \mathrm{e}^{-\frac{s \pi}{4}} s}{s^{2}+1}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{4 \mathrm{e}^{-\frac{s \pi}{4}} s+s^{2}+1}{\left(s^{2}+1\right)(s-1)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{4 \mathrm{e}^{-\frac{s \pi}{4}} s+s^{2}+1}{\left(s^{2}+1\right)(s-1)}\right) \\
& =-2 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \cos (t) \sqrt{2}+\mathrm{e}^{t}+2\left(1-\text { Heaviside }\left(-t+\frac{\pi}{4}\right)\right) \mathrm{e}^{t-\frac{\pi}{4}}
\end{aligned}
$$

Hence the final solution is

$$
y=-2 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \cos (t) \sqrt{2}+\mathrm{e}^{t}+2\left(1-\text { Heaviside }\left(-t+\frac{\pi}{4}\right)\right) \mathrm{e}^{t-\frac{\pi}{4}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-2 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \cos (t) \sqrt{2}+\mathrm{e}^{t}+2\left(1-\text { Heaviside }\left(-t+\frac{\pi}{4}\right)\right) \mathrm{e}^{t-\frac{\pi}{4}} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-2 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \cos (t) \sqrt{2}+\mathrm{e}^{t}+2\left(1-\operatorname{Heaviside}\left(-t+\frac{\pi}{4}\right)\right) \mathrm{e}^{t-\frac{\pi}{4}}
$$

Verified OK.

14.3.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y=4 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right), y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Isolate the derivative
$y^{\prime}=y+4$ Heaviside $\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y=4$ Heaviside $\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-y\right)=4 \mu(t)$ Heaviside $\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t)$ Heaviside $\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t)$ Heaviside $\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(t) \text { Heaviside }\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-t}$
$y=\frac{\int 4 \mathrm{e}^{-t} \text { Heaviside }\left(t-\frac{\pi}{4}\right) \sin \left(t+\frac{\pi}{4}\right) d t+c_{1}}{\mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs
$y=\frac{4\left(-\frac{\mathrm{e}^{-t} \cos \left(t+\frac{\pi}{4}\right)}{2}-\frac{\mathrm{e}^{-t} \sin \left(t+\frac{\pi}{4}\right)}{2}\right) \text { Heaviside }\left(t-\frac{\pi}{4}\right)+2 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-\frac{\pi}{4}}+c_{1}}{\mathrm{e}^{-t}}$
- Simplify
$y=\left(-2 \cos \left(t+\frac{\pi}{4}\right)+2 \mathrm{e}^{t-\frac{\pi}{4}}-2 \sin \left(t+\frac{\pi}{4}\right)\right)$ Heaviside $\left(t-\frac{\pi}{4}\right)+c_{1} \mathrm{e}^{t}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- Substitute $c_{1}=1$ into general solution and simplify

$$
y=\left(-2 \cos \left(t+\frac{\pi}{4}\right)+2 \mathrm{e}^{t-\frac{\pi}{4}}-2 \sin \left(t+\frac{\pi}{4}\right)\right) \text { Heaviside }\left(t-\frac{\pi}{4}\right)+\mathrm{e}^{t}
$$

- Solution to the IVP

$$
y=\left(-2 \cos \left(t+\frac{\pi}{4}\right)+2 \mathrm{e}^{t-\frac{\pi}{4}}-2 \sin \left(t+\frac{\pi}{4}\right)\right) \text { Heaviside }\left(t-\frac{\pi}{4}\right)+\mathrm{e}^{t}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.329 (sec). Leaf size: 40

```
dsolve([diff(y(t),t)-y(t)=4*Heaviside(t-Pi/4)*\operatorname{cos}(t-Pi/4),y(0) = 1],y(t), singsol=all)
```

$$
y(t)=\left(-2 \cos (t) \sqrt{2}+2 \mathrm{e}^{t-\frac{\pi}{4}}\right) \text { Heaviside }\left(t-\frac{\pi}{4}\right)+\mathrm{e}^{t}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.112 (sec). Leaf size: 40
DSolve [\{y' $[t]-y[t]==4 *$ UnitStep $[t-\mathrm{Pi} / 4] * \operatorname{Cos}[t-\mathrm{Pi} / 4],\{y[0]==1\}\}, y[t], t$, IncludeSingularSolution

$$
y(t) \rightarrow\left\{\begin{array}{cc}
e^{t} & 4 t \leq \pi \\
& -2 \sqrt{2} \cos (t)+e^{t}+2 e^{t-\frac{\pi}{4}}
\end{array} \quad\right. \text { True }
$$

14.4 problem Problem 30

14.4.1 Existence and uniqueness analysis 2740
14.4.2 Solving as laplace ode . 2741
14.4.3 Maple step by step solution . 2742

Internal problem ID [2870]
Internal file name [OUTPUT/2362_Sunday_June_05_2022_03_00_46_AM_64087347/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 30.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+2 y=\operatorname{Heaviside}(t-\pi) \sin (2 t)
$$

With initial conditions

$$
[y(0)=3]
$$

14.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =\text { Heaviside }(t-\pi) \sin (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=\text { Heaviside }(t-\pi) \sin (2 t)
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=$ Heaviside $(t-\pi) \sin (2 t)$ is

$$
\{t<\pi \vee \pi<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

14.4.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+2 Y(s)=\frac{2 \mathrm{e}^{-s \pi}}{s^{2}+4} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-3+2 Y(s)=\frac{2 \mathrm{e}^{-s \pi}}{s^{2}+4}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{3 s^{2}+2 \mathrm{e}^{-s \pi}+12}{\left(s^{2}+4\right)(s+2)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{3 s^{2}+2 \mathrm{e}^{-s \pi}+12}{\left(s^{2}+4\right)(s+2)}\right) \\
& =3 \mathrm{e}^{-2 t}+\frac{\text { Heaviside }(t-\pi)\left(\mathrm{e}^{-t+\pi} \cosh (t-\pi)-\cos (t)^{2}+\sin (t) \cos (t)\right)}{2}
\end{aligned}
$$

Hence the final solution is

$$
y=3 \mathrm{e}^{-2 t}+\frac{\text { Heaviside }(t-\pi)\left(\mathrm{e}^{-t+\pi} \cosh (t-\pi)-\cos (t)^{2}+\sin (t) \cos (t)\right)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{-2 t}+\frac{\operatorname{Heaviside}(t-\pi)\left(\mathrm{e}^{-t+\pi} \cosh (t-\pi)-\cos (t)^{2}+\sin (t) \cos (t)\right)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{-2 t}+\frac{\text { Heaviside }(t-\pi)\left(\mathrm{e}^{-t+\pi} \cosh (t-\pi)-\cos (t)^{2}+\sin (t) \cos (t)\right)}{2}
$$

Verified OK.

14.4.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+2 y=\operatorname{Heaviside}(t-\pi) \sin (2 t), y(0)=3\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 y+\operatorname{Heaviside}(t-\pi) \sin (2 t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+2 y=$ Heaviside $(t-\pi) \sin (2 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+2 y\right)=\mu(t) \operatorname{Heaviside}(t-\pi) \sin (2 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \operatorname{Heaviside}(t-\pi) \sin (2 t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)$ Heaviside $(t-\pi) \sin (2 t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) \text { Heaviside }(t-\pi) \sin (2 t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{2 t}$
$y=\frac{\int \mathrm{e}^{2 t} \text { Heaviside }(t-\pi) \sin (2 t) d t+c_{1}}{\mathrm{e}^{2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\left(-\frac{\mathrm{e}^{2 t} \cos (2 t)}{4}+\frac{\mathrm{e}^{2 t} \sin (2 t)}{4}\right) \text { Heaviside }(t-\pi)+\frac{\text { Heaviside }(t-\pi) \mathrm{e}^{2 \pi}}{4}+c_{1}}{\mathrm{e}^{2 t}}$
- Simplify
$y=\frac{\mathrm{e}^{-2 t+2 \pi} \text { Heaviside }(t-\pi)}{4}+\frac{\text { Heaviside }(t-\pi)(-\cos (2 t)+\sin (2 t))}{4}+c_{1} \mathrm{e}^{-2 t}$
- Use initial condition $y(0)=3$
$3=c_{1}$
- \quad Solve for c_{1}
$c_{1}=3$
- \quad Substitute $c_{1}=3$ into general solution and simplify

$$
y=\frac{\mathrm{e}^{-2 t+2 \pi} \operatorname{Heaviside}(t-\pi)}{4}+\frac{\operatorname{Heaviside}(t-\pi)(-\cos (2 t)+\sin (2 t))}{4}+3 \mathrm{e}^{-2 t}
$$

- Solution to the IVP

$$
y=\frac{\mathrm{e}^{-2 t+2 \pi} \text { Heaviside }(t-\pi)}{4}+\frac{\text { Heaviside }(t-\pi)(-\cos (2 t)+\sin (2 t))}{4}+3 \mathrm{e}^{-2 t}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.312 (sec). Leaf size: 43
dsolve([diff($y(t), t)+2 * y(t)=H e a v i s i d e(t-P i) * \sin (2 * t), y(0)=3], y(t)$, singsol=all)

$$
y(t)=\frac{\operatorname{Heaviside}(t-\pi) \mathrm{e}^{-2 t+2 \pi}}{4}+\frac{\operatorname{Heaviside}(t-\pi)(-\cos (2 t)+\sin (2 t))}{4}+3 \mathrm{e}^{-2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.117 (sec). Leaf size: 55
DSolve [\{y' $[t]+2 * y[t]==$ UnitStep $[t-P i] * \operatorname{Sin}[2 * t],\{y[0]==3\}\}, y[t], t$, IncludeSingularSolutions $->$

$$
y(t) \rightarrow\left\{\begin{array}{cc}
3 e^{-2 t} & t \leq \pi \\
\frac{1}{4} e^{-2 t}\left(-e^{2 t} \cos (2 t)+e^{2 t} \sin (2 t)+e^{2 \pi}+12\right) & \text { True }
\end{array}\right.
$$

14.5 problem Problem 31

14.5.1 Existence and uniqueness analysis 2745
14.5.2 Solving as laplace ode . 2746
14.5.3 Maple step by step solution . 2748

Internal problem ID [2871]
Internal file name [OUTPUT/2363_Sunday_June_05_2022_03_00_53_AM_61815175/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+3 y=\left\{\begin{array}{cc}
1 & 0 \leq t<1 \\
0 & 1 \leq t
\end{array}\right.
$$

With initial conditions

$$
[y(0)=1]
$$

14.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=3 \\
& q(t)= \begin{cases}0 & t<0 \\
1 & t<1 \\
0 & 1 \leq t\end{cases}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+3 y= \begin{cases}0 & t<0 \\ 1 & t<1 \\ 0 & 1 \leq t\end{cases}
$$

The domain of $p(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\left\{\begin{array}{ll}0 & t<0 \\ 1 & t<1 \\ 0 & 1 \leq t\end{array}\right.$ is

$$
\{0 \leq t \leq 1,1 \leq t \leq \infty,-\infty \leq t \leq 0\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

14.5.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+3 Y(s)=\frac{1-\mathrm{e}^{-s}}{s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-1+3 Y(s)=\frac{1-\mathrm{e}^{-s}}{s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=-\frac{-1+\mathrm{e}^{-s}-s}{s(s+3)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(-\frac{-1+\mathrm{e}^{-s}-s}{s(s+3)}\right) \\
& =\frac{\text { Heaviside }(1-t)}{3}+\frac{\text { Heaviside }(t-1) \mathrm{e}^{-3 t+3}}{3}+\frac{2 \mathrm{e}^{-3 t}}{3}
\end{aligned}
$$

Hence the final solution is

$$
y=\frac{\operatorname{Heaviside}(1-t)}{3}+\frac{\text { Heaviside }(t-1) \mathrm{e}^{-3 t+3}}{3}+\frac{2 \mathrm{e}^{-3 t}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\operatorname{Heaviside}(1-t)}{3}+\frac{\text { Heaviside }(t-1) \mathrm{e}^{-3 t+3}}{3}+\frac{2 \mathrm{e}^{-3 t}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\operatorname{Heaviside}(1-t)}{3}+\frac{\operatorname{Heaviside}(t-1) \mathrm{e}^{-3 t+3}}{3}+\frac{2 \mathrm{e}^{-3 t}}{3}
$$

Verified OK.

14.5.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+3 y=\left\{\begin{array}{cc}
1 & 0 \leq t<1 \\
0 & 1 \leq t
\end{array}, y(0)=1\right]\right.
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative

$$
y^{\prime}=-3 y+\left\{\begin{array}{cc}
1 & 0 \leq t<1 \\
0 & 1 \leq t
\end{array}\right.
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+3 y=\left\{\begin{array}{cc}1 & 0 \leq t<1 \\ 0 & 1 \leq t\end{array}\right.$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+3 y\right)=\mu(t)\left(\left\{\begin{array}{cc}1 & 0 \leq t<1 \\ 0 & 1 \leq t\end{array}\right)\right.$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+3 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=3 \mu(t)$
- \quad Solve to find the integrating factor

$$
\mu(t)=\mathrm{e}^{3 t}
$$

- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(\left\{\begin{array}{cc}1 & 0 \leq t<1 \\ 0 & 1 \leq t\end{array}\right) d t+c_{1}\right.$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(\left\{\begin{array}{cc}1 & 0 \leq t<1 \\ 0 & 1 \leq t\end{array}\right) d t+c_{1}\right.$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(\left\{\begin{array}{cc}1 & 0 \leq t<1 \\ 0 & 1 \leq t\end{array}\right) d t+c_{1}\right.}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{3 t}$
$y=\frac{\int \mathrm{e}^{3 t}\left(\left\{\begin{array}{cc}1 & 0 \leq t<1 \\ 0 & 1 \leq t\end{array}\right) d t+c_{1}\right.}{\mathrm{e}^{3 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\left\{\begin{array}{cl}0 & t \leq 0 \\ \frac{\mathrm{e}^{3 t}}{3}-\frac{1}{3} & t \leq 1+c_{1} \\ \frac{\mathrm{e}^{3}}{3}-\frac{1}{3} & 1<t\end{array}\right.}{\mathrm{e}^{3 t}}$
- Simplify
$y=-\frac{\mathrm{e}^{-3 t}\left(\left\{\begin{array}{cl}0 & t \leq 0 \\ 1-\mathrm{e}^{3 t} & t \leq 1-3 c_{1} \\ 1-\mathrm{e}^{3} & 1<t\end{array}\right)\right.}{3}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify

$$
y=-\frac{\mathrm{e}^{-3 t}\left(\left\{\begin{array}{cc}
0 & t \leq 0 \\
1-\mathrm{e}^{3 t} & t \leq 1-3 \\
1-\mathrm{e}^{3} & 1<t
\end{array}\right)\right.}{3}
$$

- \quad Solution to the IVP

$$
y=-\frac{\mathrm{e}^{-3 t}\left(\left\{\begin{array}{cc}
0 & t \leq 0 \\
1-\mathrm{e}^{3 t} & t \leq 1-3 \\
1-\mathrm{e}^{3} & 1<t
\end{array}\right)\right.}{3}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 3.688 (sec). Leaf size: 43
dsolve([diff $(y(t), t)+3 * y(t)=$ piecewise ($0<=t$ and $t\langle 1,1, t\rangle=1,0), y(0)=1], y(t)$, singsol=all)

$$
y(t)=\frac{\left(\left\{\begin{array}{cc}
1+2 \mathrm{e}^{-3 t} & t<1 \\
2 \mathrm{e}^{-3}+2 & t=1 \\
2 \mathrm{e}^{-3 t}+\mathrm{e}^{-3 t+3} & 1<t
\end{array}\right)\right.}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 47
DSolve [\{y' $[\mathrm{t}]+3 * y[\mathrm{t}]==$ Piecewise $[\{\{1,0<=\mathrm{t}<1\},\{0, \mathrm{t}>=1\}\}],\{\mathrm{y}[0]==1\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSo

$$
y(t) \rightarrow\left\{\begin{array}{cc}
e^{-3 t} & t \leq 0 \\
\frac{1}{3} e^{-3 t}\left(2+e^{3}\right) & t>1 \\
& \frac{1}{3}+\frac{2 e^{-3 t}}{3}
\end{array},\right. \text { True }
$$

14.6 problem Problem 32

14.6.1 Existence and uniqueness analysis 2752
14.6.2 Solving as laplace ode . 2753
14.6.3 Maple step by step solution . 2755

Internal problem ID [2872]
Internal file name [OUTPUT/2364_Sunday_June_05_2022_03_00_59_AM_2867957/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 32.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-3 y=\left\{\begin{array}{cc}
\sin (t) & 0 \leq t<\frac{\pi}{2} \\
1 & \frac{\pi}{2} \leq t
\end{array}\right.
$$

With initial conditions

$$
[y(0)=2]
$$

14.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-3 \\
& q(t)=\left\{\begin{array}{cc}
0 & t<0 \\
\sin (t) & t<\frac{\pi}{2} \\
1 & \frac{\pi}{2} \leq t
\end{array}\right.
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 y=\left\{\begin{array}{cc}
0 & t<0 \\
\sin (t) & t<\frac{\pi}{2} \\
1 & \frac{\pi}{2} \leq t
\end{array}\right.
$$

The domain of $p(t)=-3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\left\{\begin{array}{cc}0 & t<0 \\ \sin (t) & t<\frac{\pi}{2} \\ 1 & \frac{\pi}{2} \leq t\end{array}\right.$ is

$$
\left\{0 \leq t \leq \frac{\pi}{2}, \frac{\pi}{2} \leq t \leq \infty,-\infty \leq t \leq 0\right\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

14.6.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-3 Y(s)=\frac{\mathrm{e}^{-\frac{s \pi}{2}}+s}{\left(s^{2}+1\right) s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-2-3 Y(s)=\frac{\mathrm{e}^{-\frac{s \pi}{2}}+s}{\left(s^{2}+1\right) s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{2 s^{3}+\mathrm{e}^{-\frac{s \pi}{2}}+3 s}{\left(s^{2}+1\right) s(s-3)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{2 s^{3}+\mathrm{e}^{-\frac{s \pi}{2}}+3 s}{\left(s^{2}+1\right) s(s-3)}\right)
\end{aligned}
$$

$$
=-\frac{\operatorname{Heaviside}\left(t-\frac{\pi}{2}\right)}{3}+\frac{21 \mathrm{e}^{3 t}}{10}+\frac{\mathrm{e}^{-\frac{3 \pi}{2}+3 t}}{30}-\frac{\operatorname{Heaviside}\left(\frac{\pi}{2}-t\right)\left(3 \cos (t)+\mathrm{e}^{-\frac{3 \pi}{2}+3 t}+9 \sin (t)\right)}{30}
$$

Hence the final solution is

$$
\begin{aligned}
y= & -\frac{\operatorname{Heaviside}\left(t-\frac{\pi}{2}\right)}{3}+\frac{21 \mathrm{e}^{3 t}}{10}+\frac{\mathrm{e}^{-\frac{3 \pi}{2}+3 t}}{30} \\
& -\frac{\operatorname{Heaviside}\left(\frac{\pi}{2}-t\right)\left(3 \cos (t)+\mathrm{e}^{-\frac{3 \pi}{2}+3 t}+9 \sin (t)\right)}{30}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{\operatorname{Heaviside}\left(t-\frac{\pi}{2}\right)}{3}+\frac{21 \mathrm{e}^{3 t}}{10}+\frac{\mathrm{e}^{-\frac{3 \pi}{2}+3 t}}{30} \tag{1}\\
& -\frac{\operatorname{Heaviside}\left(\frac{\pi}{2}-t\right)\left(3 \cos (t)+\mathrm{e}^{-\frac{3 \pi}{2}+3 t}+9 \sin (t)\right)}{30}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & -\frac{\operatorname{Heaviside~}\left(t-\frac{\pi}{2}\right)}{3}+\frac{21 \mathrm{e}^{3 t}}{10}+\frac{\mathrm{e}^{-\frac{3 \pi}{2}+3 t}}{30} \\
& -\frac{\text { Heaviside }\left(\frac{\pi}{2}-t\right)\left(3 \cos (t)+\mathrm{e}^{-\frac{3 \pi}{2}+3 t}+9 \sin (t)\right)}{30}
\end{aligned}
$$

Verified OK.

14.6.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-3 y=\left\{\begin{array}{cc}
\sin (t) & 0 \leq t<\frac{\pi}{2} \\
1 & \frac{\pi}{2} \leq t
\end{array}, y(0)=2\right]\right.
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative

$$
y^{\prime}=3 y+\left\{\begin{array}{cc}
\sin (t) & 0 \leq t<\frac{\pi}{2} \\
1 & \frac{\pi}{2} \leq t
\end{array}\right.
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-3 y=\left\{\begin{array}{cc}\sin (t) & 0 \leq t<\frac{\pi}{2} \\ 1 & \frac{\pi}{2} \leq t\end{array}\right.$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-3 y\right)=\mu(t)\left(\left\{\begin{array}{cc}\sin (t) & 0 \leq t<\frac{\pi}{2} \\ 1 & \frac{\pi}{2} \leq t\end{array}\right)\right.$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-3 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-3 \mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-3 t}$
- Integrate both sides with respect to t

$$
\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(\left\{\begin{array}{cc}
\sin (t) & 0 \leq t<\frac{\pi}{2} \\
1 & \frac{\pi}{2} \leq t
\end{array}\right) d t+c_{1}\right.
$$

- Evaluate the integral on the lhs

$$
\mu(t) y=\int \mu(t)\left(\left\{\begin{array}{cc}
\sin (t) & 0 \leq t<\frac{\pi}{2} \\
1 & \frac{\pi}{2} \leq t
\end{array}\right) d t+c_{1}\right.
$$

- \quad Solve for y
$y=\frac{\int \mu(t)\left(\left\{\begin{array}{cc}\sin (t) & 0 \leq t<\frac{\pi}{2} \\ 1 & \frac{\pi}{2} \leq t\end{array}\right) d t+c_{1}\right.}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-3 t}$
$y=\frac{\int \mathrm{e}^{-3 t}\left(\left\{\begin{array}{cc}\sin (t) & 0 \leq t<\frac{\pi}{2} \\ 1 & \frac{\pi}{2} \leq t\end{array}\right) d t+c_{1}\right.}{\mathrm{e}^{-3 t}}$
- Evaluate the integrals on the rhs

$$
y=\frac{\left\{\begin{array}{cl}
0 & t \leq 0 \\
-\frac{\mathrm{e}^{-3 t} \cos (t)}{10}-\frac{3 \mathrm{e}^{-3 t} \sin (t)}{10}+\frac{1}{10} & t \leq \frac{\pi}{2}+c_{1} \\
-\frac{\mathrm{e}^{-3 t}}{3}+\frac{1}{10}+\frac{\mathrm{e}^{-\frac{3 \pi}{2}}}{30} & \frac{\pi}{2}<t
\end{array} \mathrm{e}^{-3 t}\right.}{}
$$

- Simplify

- Use initial condition $y(0)=2$

$$
2=c_{1}
$$

- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify

$$
y=\left\{\begin{array}{cc}
2 \mathrm{e}^{3 t} & t \leq 0 \\
\frac{21 \mathrm{e}^{3 t}}{10}-\frac{\cos (t)}{10}-\frac{3 \sin (t)}{10} & t \leq \frac{\pi}{2} \\
\frac{21 \mathrm{e}^{3 t}}{10}+\frac{\mathrm{e}^{-\frac{3 \pi}{2}+3 t}}{30}-\frac{1}{3} & \frac{\pi}{2}<t
\end{array}\right.
$$

- Solution to the IVP

$$
y=\left\{\begin{array}{cc}
2 \mathrm{e}^{3 t} & t \leq 0 \\
\frac{21 \mathrm{e}^{3 t}}{10}-\frac{\cos (t)}{10}-\frac{3 \sin (t)}{10} & t \leq \frac{\pi}{2} \\
\frac{21 \mathrm{e}^{3 t}}{10}+\frac{\mathrm{e}^{-\frac{3 \pi}{2}+3 t}}{30}-\frac{1}{3} & \frac{\pi}{2}<t
\end{array}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 3.703 (sec). Leaf size: 61
dsolve([diff $(y(t), t)-3 * y(t)=$ piecewise $(0<=t$ and $t<P i / 2, \sin (t), t>=P i / 2,1), y(0)=2], y(t)$, sing

$$
y(t)=\frac{\left(\left\{\begin{array}{cc}
21 \mathrm{e}^{3 t}-\cos (t)-3 \sin (t) & t<\frac{\pi}{2} \\
-\frac{19}{3}+21 \mathrm{e}^{\frac{3 \pi}{2}} & t=\frac{\pi}{2} \\
21 \mathrm{e}^{3 t}+\frac{\mathrm{e}^{3 t-\frac{3 \pi}{2}}}{3}-\frac{10}{3} & \frac{\pi}{2}<t
\end{array}\right)\right.}{10}
$$

Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 68
DSolve[\{y' [t]-3*y[t]==Piecewise[\{\{Sin[t],0<=t<Pi/2\},\{1,t>=Pi/2\}\}],\{y[0]==2\}\},y[t],t,Includ

$$
y(t) \rightarrow\left\{\begin{array}{cc}
2 e^{3 t} & t \leq 0 \\
\frac{1}{30}\left(-10+63 e^{3 t}+e^{3 t-\frac{3 \pi}{2}}\right) & 2 t>\pi \\
\frac{1}{10}\left(-\cos (t)+21 e^{3 t}-3 \sin (t)\right) & \text { True }
\end{array}\right.
$$

14.7 problem Problem 33

14.7.1 Existence and uniqueness analysis 2759
14.7.2 Solving as laplace ode . 2760
14.7.3 Maple step by step solution . 2761

Internal problem ID [2873]
Internal file name [OUTPUT/2365_Sunday_June_05_2022_03_01_07_AM_93783359/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 33.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-3 y=-10 \mathrm{e}^{-t+a} \sin (-2 t+2 a) \text { Heaviside }(t-a)
$$

With initial conditions

$$
[y(0)=5]
$$

14.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-3 \\
q(t) & =-10 \mathrm{e}^{-t+a} \sin (-2 t+2 a) \text { Heaviside }(t-a)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 y=-10 \mathrm{e}^{-t+a} \sin (-2 t+2 a) \text { Heaviside }(t-a)
$$

The domain of $p(t)=-3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-10 \mathrm{e}^{-t+a} \sin (-2 t+2 a)$ Heaviside $(t-a)$ is

$$
\{t<a \vee a<t\}
$$

But the point $t_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

14.7.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-3 Y(s)=10 \text { laplace }\left(-\mathrm{e}^{-t+a} \sin (-2 t+2 a) \text { Heaviside }(t-a), t, s\right) \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-5-3 Y(s)=10 \text { laplace }\left(-\mathrm{e}^{-t+a} \sin (-2 t+2 a) \text { Heaviside }(t-a), t, s\right)
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{10 \text { laplace }\left(-\mathrm{e}^{-t+a} \sin (-2 t+2 a) \text { Heaviside }(t-a), t, s\right)+5}{s-3}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{10 \text { laplace }\left(-\mathrm{e}^{-t+a} \sin (-2 t+2 a) \text { Heaviside }(t-a), t, s\right)+5}{s-3}\right) \\
& =5 \mathrm{e}^{3 t}-\mathrm{e}^{-t+a} \text { Heaviside }(t-a)(\cos (-2 t+2 a)-2 \sin (-2 t+2 a))+\operatorname{Heaviside}(-a)\left(-\mathrm{e}^{-3 a+3 t}+\mathrm{e}^{a+3 t}\right.
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & 5 \mathrm{e}^{3 t}-\mathrm{e}^{-t+a} \text { Heaviside }(t-a)(\cos (-2 t+2 a)-2 \sin (-2 t+2 a)) \\
& + \text { Heaviside }(-a)\left(-\mathrm{e}^{-3 a+3 t}+\mathrm{e}^{a+3 t}(\cos (2 a)-2 \sin (2 a))\right) \\
& +(1-\text { Heaviside }(-t+a)) \mathrm{e}^{-3 a+3 t}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & 5 \mathrm{e}^{3 t}-\mathrm{e}^{-t+a} \operatorname{Heaviside}(t-a)(\cos (-2 t+2 a)-2 \sin (-2 t+2 a)) \\
& + \text { Heaviside }(-a)\left(-\mathrm{e}^{-3 a+3 t}+\mathrm{e}^{a+3 t}(\cos (2 a)-2 \sin (2 a))\right) \tag{1}\\
& +(1-\operatorname{Heaviside}(-t+a)) \mathrm{e}^{-3 a+3 t}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & 5 \mathrm{e}^{3 t}-\mathrm{e}^{-t+a} \operatorname{Heaviside}(t-a)(\cos (-2 t+2 a)-2 \sin (-2 t+2 a)) \\
& +\operatorname{Heaviside}(-a)\left(-\mathrm{e}^{-3 a+3 t}+\mathrm{e}^{a+3 t}(\cos (2 a)-2 \sin (2 a))\right) \\
& +(1-\operatorname{Heaviside}(-t+a)) \mathrm{e}^{-3 a+3 t}
\end{aligned}
$$

Verified OK.

14.7.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-3 y=-10 \mathrm{e}^{-t+a} \sin (-2 t+2 a) \text { Heaviside }(t-a), y(0)=5\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=3 y-10 \mathrm{e}^{-t+a} \sin (-2 t+2 a)$ Heaviside $(t-a)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-3 y=-10 \mathrm{e}^{-t+a} \sin (-2 t+2 a)$ Heaviside $(t-a)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$ $\mu(t)\left(y^{\prime}-3 y\right)=-10 \mu(t) \mathrm{e}^{-t+a} \sin (-2 t+2 a)$ Heaviside $(t-a)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$

$$
\mu(t)\left(y^{\prime}-3 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}
$$

- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-3 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-3 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int-10 \mu(t) \mathrm{e}^{-t+a} \sin (-2 t+2 a)$ Heaviside $(t-a) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int-10 \mu(t) \mathrm{e}^{-t+a} \sin (-2 t+2 a) \operatorname{Heaviside}(t-a) d t+c_{1}$
- \quad Solve for y

$$
y=\frac{\int-10 \mu(t) \mathrm{e}^{-t+a} \sin (-2 t+2 a) \text { Heaviside }(t-a) d t+c_{1}}{\mu(t)}
$$

- \quad Substitute $\mu(t)=\mathrm{e}^{-3 t}$
$y=\frac{\int-10 \mathrm{e}^{-3 t} \mathrm{e}^{-t+a} \sin (-2 t+2 a) \text { Heaviside }(t-a) d t+c_{1}}{\mathrm{e}^{-3 t}}$
- Evaluate the integrals on the rhs
$y=\frac{10\left(\frac{\mathrm{e}^{a} \cos (a)^{2} \mathrm{e}^{-4 t}(-4 \sin (2 t)-2 \cos (2 t))}{10}-\frac{\mathrm{e}^{a} \mathrm{e}^{-4 t}(-4 \sin (2 t)-2 \cos (2 t))}{20}-4 \mathrm{e}^{a} \cos (a) \sin (a)\left(\frac{(-4 \cos (t)+2 \sin (t)) \mathrm{e}^{-4 t} \cos (t)}{20}-\frac{1}{40\left(e^{t}\right)^{4}}\right)-\frac{\mathrm{e}}{}\right.}{}$
- Simplify
$y=\left(c_{1} \mathrm{e}^{3 a+4 t}-4\left(\left(\frac{1}{4}+\left(\cos (t)^{2}+2 \sin (t) \cos (t)-\frac{1}{2}\right) \cos (a)^{2}+\sin (a)\left(\sin (t) \cos (t)-2 \cos (t)^{2}\right.\right.\right.\right.$
- Use initial condition $y(0)=5$
$5=\left(c_{1} \mathrm{e}^{3 a}-4\left(\left(-\frac{1}{4}+\frac{\cos (a)^{2}}{2}-\sin (a) \cos (a)\right) \mathrm{e}^{4 a}-\frac{1}{4}\right)\right.$ Heaviside $\left.(-a)\right) \mathrm{e}^{-3 a}$
- \quad Solve for c_{1}
$c_{1}=\frac{2 \cos (a)^{2} \mathrm{e}^{-3 a} \text { Heaviside }(-a) \mathrm{e}^{4 a}-4 \cos (a) \sin (a) \mathrm{e}^{-3 a} \text { Heaviside }(-a) \mathrm{e}^{4 a}-\mathrm{e}^{-3 a} \text { Heaviside }(-a) \mathrm{e}^{4 a}-\mathrm{e}^{-3 a} \text { Heaviside }(-a)+5}{\mathrm{e}^{3 a} \mathrm{e}^{-3 a}}$
- \quad Substitute $c_{1}=\frac{2 \cos (a)^{2} \mathrm{e}^{-3 a} \text { Heaviside }(-a) \mathrm{e}^{4 a}-4 \cos (a) \sin (a) \mathrm{e}^{-3 a} H e a v i s i d e(-a) \mathrm{e}^{4 a}-\mathrm{e}^{-3 a} \text { Heaviside }(-a) \mathrm{e}^{4 a}-\mathrm{e}^{-3 a} \text { Heaviside }}{\mathrm{e}^{3 a} \mathrm{e}^{-3 a}}$ $y=\mathrm{e}^{-6 a-t}\left(-2(\right.$ Heaviside $(a)-1)\left(\cos (a)^{2}-2 \sin (a) \cos (a)-\frac{1}{2}\right) \mathrm{e}^{7 a+4 t}+($ Heaviside $(t-a)+H e$
- Solution to the IVP
$y=\mathrm{e}^{-6 a-t}\left(-2(\right.$ Heaviside $(a)-1)\left(\cos (a)^{2}-2 \sin (a) \cos (a)-\frac{1}{2}\right) \mathrm{e}^{7 a+4 t}+($ Heaviside $(t-a)+H e$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 3.907 (sec). Leaf size: 97

```
dsolve([diff (y (t),t)-3*y(t)=10*exp(-(t-a))*\operatorname{sin}(2*(t-a))*Heaviside(t-a),y(0) = 5],y(t), sings
```

$y(t)=($ Heaviside $(t-a)+\operatorname{Heaviside}(a)-1) \mathrm{e}^{-3 a+3 t}-((\cos (2 t)+2 \sin (2 t)) \cos (2 a)$
$\left.-2 \sin (2 a)\left(\cos (2 t)-\frac{\sin (2 t)}{2}\right)\right) \mathrm{e}^{-t+a} \operatorname{Heaviside}(t-a)$
$-($ Heaviside $(a)-1)(\cos (2 a)-2 \sin (2 a)) \mathrm{e}^{3 t+a}+5 \mathrm{e}^{3 t}$
\checkmark Solution by Mathematica
Time used: 0.461 (sec). Leaf size: 103
DSolve $\left[\left\{y^{\prime}[t]-3 * y[t]==10 * \operatorname{Exp}[-(t-a)] * \operatorname{Sin}[2 *(t-a)] * \operatorname{UnitStep}[t-a],\{y[0]==5\}\right\}, y[t], t\right.$, IncludeSin

$$
\begin{aligned}
y(t) \rightarrow e^{-3 a-t} & \left(e^{4 t} \theta(-a)\left(-2 e^{4 a} \sin (2 a)+e^{4 a} \cos (2 a)-1\right)\right. \\
& \left.+\theta(t-a)\left(2 e^{4 a} \sin (2(a-t))-e^{4 a} \cos (2(a-t))+e^{4 t}\right)+5 e^{3 a+4 t}\right)
\end{aligned}
$$

14.8 problem Problem 34

14.8.1 Existence and uniqueness analysis 2764
14.8.2 Maple step by step solution . 2767

Internal problem ID [2874]
Internal file name [OUTPUT/2366_Sunday_June_05_2022_03_01_21_AM_82718483/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 34.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant__coeff", "second__order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y=\text { Heaviside }(t-1)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

14.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =-1 \\
F & =\text { Heaviside }(t-1)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y=\text { Heaviside }(t-1)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\operatorname{Heaviside}(t-1)$ is

$$
\{t<1 \vee 1<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-Y(s)=\frac{\mathrm{e}^{-s}}{s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-s-Y(s)=\frac{\mathrm{e}^{-s}}{s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{2}+\mathrm{e}^{-s}}{s\left(s^{2}-1\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{s^{2}+\mathrm{e}^{-s}}{s\left(s^{2}-1\right)}\right) \\
& =\cosh (t)+2 \text { Heaviside }(t-1) \sinh \left(\frac{t}{2}-\frac{1}{2}\right)^{2}
\end{aligned}
$$

Hence the final solution is

$$
y=\cosh (t)+2 \text { Heaviside }(t-1) \sinh \left(\frac{t}{2}-\frac{1}{2}\right)^{2}
$$

Simplifying the solution gives

$$
y=\cosh (t)+\operatorname{Heaviside}(t-1)(-1+\cosh (t-1))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cosh (t)+\operatorname{Heaviside}(t-1)(-1+\cosh (t-1)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\cosh (t)+\operatorname{Heaviside}(t-1)(-1+\cosh (t-1))
$$

Verified OK.

14.8.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y=\operatorname{Heaviside}(t-1), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-t}
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Heaviside}(t-1)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} & \mathrm{e}^{t} \\
-\mathrm{e}^{-t} & \mathrm{e}^{t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-t}\left(\int \mathrm{e}^{t} H \text { Heaviside }(t-1) d t\right)}{2}+\frac{\mathrm{e}^{t}\left(\int \mathrm{e}^{-t} H \text { eaviside }(t-1) d t\right)}{2}$
- Compute integrals
$y_{p}(t)=\frac{\operatorname{Heaviside}(t-1)\left(-2+\mathrm{e}^{1-t}+\mathrm{e}^{t-1}\right)}{2}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+\frac{\text { Heaviside }(t-1)\left(-2+\mathrm{e}^{1-t}+\mathrm{e}^{t-1}\right)}{2}$
Check validity of solution $y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+\frac{\text { Heaviside }(t-1)\left(-2+\mathrm{e}^{1-t}+\mathrm{e}^{t-1}\right)}{2}$
- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}$
- Compute derivative of the solution
$y^{\prime}=-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+\frac{\operatorname{Dirac}(t-1)\left(-2+\mathrm{e}^{1-t}+\mathrm{e}^{t-1}\right)}{2}+\frac{\text { Heaviside }(t-1)\left(-\mathrm{e}^{1-t}+\mathrm{e}^{t-1}\right)}{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=-c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{1}{2}, c_{2}=\frac{1}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\text { Heaviside }(t-1) \mathrm{e}^{1-t}}{2}+\frac{\left(\mathrm{e}^{t-1}-2\right) \operatorname{Heaviside}(t-1)}{2}+\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{\text { Heaviside }(t-1) \mathrm{e}^{1-t}}{2}+\frac{\left(\mathrm{e}^{t-1}-2\right) \operatorname{Heaviside}(t-1)}{2}+\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.203 (sec). Leaf size: 21
dsolve([diff($y(t), t \$ 2)-y(t)=H e a v i s i d e(t-1), y(0)=1, D(y)(0)=0], y(t)$, singsol=all)

$$
y(t)=\cosh (t)+\operatorname{Heaviside}(t-1)(-1+\cosh (t-1))
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 57
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]-y[t]==\right.\right.$ UnitStep $\left.[t-1],\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions $\rightarrow \mathrm{Tr}$

$$
y(t) \rightarrow \frac{1}{2} e^{-t-1}\left(\left(e-e^{t}\right)^{2}(-\theta(1-t))+e^{2 t}-2 e^{t+1}+e^{2 t+1}+e^{2}+e\right)
$$

14.9 problem Problem 35

14.9.1 Existence and uniqueness analysis 2770
14.9.2 Maple step by step solution . 2773

Internal problem ID [2875]
Internal file name [OUTPUT/2367_Sunday_June_05_2022_03_01_27_AM_4958839/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 35.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}-2 y=1-3 \text { Heaviside }(t-2)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-2\right]
$$

14.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-1 \\
q(t) & =-2 \\
F & =1-3 \text { Heaviside }(t-2)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-2 y=1-3 \text { Heaviside }(t-2)
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=1-3$ Heaviside $(t-2)$ is

$$
\{t<2 \vee 2<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-s Y(s)+y(0)-2 Y(s)=\frac{1-3 \mathrm{e}^{-2 s}}{s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =-2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+3-s-s Y(s)-2 Y(s)=\frac{1-3 \mathrm{e}^{-2 s}}{s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{-s^{2}+3 \mathrm{e}^{-2 s}+3 s-1}{s\left(s^{2}-s-2\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(-\frac{-s^{2}+3 \mathrm{e}^{-2 s}+3 s-1}{s\left(s^{2}-s-2\right)}\right) \\
& =-\frac{1}{2}+\frac{5 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{2 t}}{6}+\frac{\mathrm{e}^{2 t-4}(-1+\operatorname{Heaviside}(-t+2))}{2}+\frac{\text { Heaviside }(t-2)\left(3-2 \mathrm{e}^{-t+2}\right)}{2}
\end{aligned}
$$

Hence the final solution is

$$
y=-\frac{1}{2}+\frac{5 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{2 t}}{6}+\frac{\mathrm{e}^{2 t-4}(-1+\operatorname{Heaviside}(-t+2))}{2}+\frac{\text { Heaviside }(t-2)\left(3-2 \mathrm{e}^{-t+2}\right)}{2}
$$

Simplifying the solution gives

$$
\begin{aligned}
y= & -\frac{1}{2}+\frac{5 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{2 t}}{6}-\frac{\mathrm{e}^{2 t-4} \operatorname{Heaviside}(t-2)}{2} \\
& -\operatorname{Heaviside}(t-2) \mathrm{e}^{-t+2}+\frac{3 \text { Heaviside }(t-2)}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{1}{2}+\frac{5 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{2 t}}{6}-\frac{\mathrm{e}^{2 t-4} \operatorname{Heaviside}(t-2)}{2} \tag{1}\\
& - \text { Heaviside }(t-2) \mathrm{e}^{-t+2}+\frac{3 \text { Heaviside }(t-2)}{2}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & -\frac{1}{2}+\frac{5 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{2 t}}{6}-\frac{\mathrm{e}^{2 t-4} \operatorname{Heaviside}(t-2)}{2} \\
& -\operatorname{Heaviside}(t-2) \mathrm{e}^{-t+2}+\frac{3 \operatorname{Heaviside}(t-2)}{2}
\end{aligned}
$$

Verified OK.

14.9.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-2 y=1-3 H \operatorname{Heaviside}(t-2), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=-2\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-r-2=0$
- Factor the characteristic polynomial
$(r+1)(r-2)=0$
- Roots of the characteristic polynomial
$r=(-1,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=1-3 H e a v i s i d e(t-2)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} & \mathrm{e}^{2 t} \\
-\mathrm{e}^{-t} & 2 \mathrm{e}^{2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{\mathrm{e}^{-t}\left(\int \mathrm{e}^{t}(-1+3 \text { Heaviside }(t-2)) d t\right)}{3}-\frac{\mathrm{e}^{2 t}\left(\int \mathrm{e}^{-2 t}(-1+3 \text { Heaviside }(t-2)) d t\right)}{3}
$$

- Compute integrals
$y_{p}(t)=\frac{3 \text { Heaviside }(t-2)}{2}-\operatorname{Heaviside}(t-2) \mathrm{e}^{-t+2}-\frac{1}{2}-\frac{\mathrm{e}^{2 t-4} \text { Heaviside }(t-2)}{2}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}+\frac{3 \text { Heaviside }(t-2)}{2}-\operatorname{Heaviside}(t-2) \mathrm{e}^{-t+2}-\frac{1}{2}-\frac{\mathrm{e}^{2 t-4} \text { Heaviside }(t-2)}{2}$
Check validity of solution $y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}+\frac{3 \text { Heaviside }(t-2)}{2}-\operatorname{Heaviside}(t-2) \mathrm{e}^{-t+2}-\frac{1}{2}-\frac{\mathrm{e}^{2 t-4} h}{}$
- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}-\frac{1}{2}$
- Compute derivative of the solution
$y^{\prime}=-c_{1} \mathrm{e}^{-t}+2 c_{2} \mathrm{e}^{2 t}+\frac{3 \text { Dirac }(t-2)}{2}-\operatorname{Dirac}(t-2) \mathrm{e}^{-t+2}+$ Heaviside $(t-2) \mathrm{e}^{-t+2}-\mathrm{e}^{2 t-4}$ Heaviside
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-2$
$-2=-c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=\frac{5}{3}, c_{2}=-\frac{1}{6}\right\}$
- Substitute constant values into general solution and simplify
$y=-\frac{1}{2}+\frac{5 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{2 t}}{6}-\frac{\mathrm{e}^{2 t-4} \text { Heaviside }(t-2)}{2}-\operatorname{Heaviside}(t-2) \mathrm{e}^{-t+2}+\frac{3 \text { Heaviside }(t-2)}{2}$
- \quad Solution to the IVP
$y=-\frac{1}{2}+\frac{5 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{2 t}}{6}-\frac{\mathrm{e}^{2 t-4} \operatorname{Heaviside}(t-2)}{2}-\operatorname{Heaviside}(t-2) \mathrm{e}^{-t+2}+\frac{3 \text { Heaviside }(t-2)}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.218 (sec). Leaf size: 50

```
dsolve([diff(y(t),t$2)-diff(y(t),t)-2*y(t)=1-3*Heaviside(t-2),y(0) = 1, D(y)(0) = -2],y(t),
```

$$
\begin{aligned}
y(t)= & -\frac{1}{2}+\frac{5 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{2 t}}{6}-\frac{\operatorname{Heaviside}(t-2) \mathrm{e}^{-4+2 t}}{2} \\
& - \text { Heaviside }(t-2) \mathrm{e}^{2-t}+\frac{3 \text { Heaviside }(t-2)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 70
DSolve[\{y' ' $[t]-y$ ' $[t]-2 * y[t]==1-3 *$ UnitStep $\left.[t-2],\left\{y[0]==1, y^{\prime}[0]==-2\right\}\right\}, y[t], t$, IncludeSingularSo

$$
y(t) \rightarrow\left\{\begin{array}{cc}
-\frac{1}{6} e^{-t}\left(-10+3 e^{t}+e^{3 t}\right) & t \leq 2 \\
\frac{1}{6}\left(6-6 e^{2-t}+10 e^{-t}-e^{2 t}-3 e^{2 t-4}\right) & \text { True }
\end{array}\right.
$$

14.10 problem Problem 36

14.10.1 Existence and uniqueness analysis 2776
14.10.2 Maple step by step solution . 2779

Internal problem ID [2876]
Internal file name [DUTPUT/2368_Sunday_June_05_2022_03_01_34_AM_567848/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 36.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant__coeff", "second__order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y=\operatorname{Heaviside}(t-1)-\operatorname{Heaviside}(t-2)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=4\right]
$$

14.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =-4 \\
F & =\text { Heaviside }(t-1)-\operatorname{Heaviside}(t-2)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y=\operatorname{Heaviside}(t-1)-\operatorname{Heaviside}(t-2)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\operatorname{Heaviside}(t-1)-$ Heaviside $(t-2)$ is

$$
\{1 \leq t \leq 2,2 \leq t \leq \infty,-\infty \leq t \leq 1\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-4 Y(s)=\frac{\mathrm{e}^{-s}-\mathrm{e}^{-2 s}}{s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =4
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-4-4 Y(s)=\frac{\mathrm{e}^{-s}-\mathrm{e}^{-2 s}}{s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-s}-\mathrm{e}^{-2 s}+4 s}{s\left(s^{2}-4\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-s}-\mathrm{e}^{-2 s}+4 s}{s\left(s^{2}-4\right)}\right) \\
& =\frac{\text { Heaviside }(t-1) \sinh (t-1)^{2}}{2}-\frac{\text { Heaviside }(t-2) \sinh (t-2)^{2}}{2}+2 \sinh (2 t)
\end{aligned}
$$

Hence the final solution is

$$
y=\frac{\operatorname{Heaviside}(t-1) \sinh (t-1)^{2}}{2}-\frac{\operatorname{Heaviside}(t-2) \sinh (t-2)^{2}}{2}+2 \sinh (2 t)
$$

Simplifying the solution gives

$$
y=\frac{\text { Heaviside }(t-1) \sinh (t-1)^{2}}{2}-\frac{\text { Heaviside }(t-2) \sinh (t-2)^{2}}{2}+2 \sinh (2 t)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\text { Heaviside }(t-1) \sinh (t-1)^{2}}{2}-\frac{\text { Heaviside }(t-2) \sinh (t-2)^{2}}{2}+2 \sinh (2 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\text { Heaviside }(t-1) \sinh (t-1)^{2}}{2}-\frac{\text { Heaviside }(t-2) \sinh (t-2)^{2}}{2}+2 \sinh (2 t)
$$

Verified OK.

14.10.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y=\operatorname{Heaviside}(t-1)-\operatorname{Heaviside}(t-2), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=4\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-4=0$
- Factor the characteristic polynomial
$(r-2)(r+2)=0$
- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-2 t}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=H e a v i s i d e(t-1)-H e a v i s i\right.$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & \mathrm{e}^{2 t} \\
-2 \mathrm{e}^{-2 t} & 2 \mathrm{e}^{2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=4
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{2 t}(\text { Heaviside }(t-1)-\text { Heaviside }(t-2)) d t\right)}{4}+\frac{\mathrm{e}^{2 t}\left(\int \mathrm{e}^{-2 t}(\text { Heaviside }(t-1)-H e a v i s i d e(t-2)) d t\right)}{4}
$$

- Compute integrals
$y_{p}(t)=-\frac{\text { Heaviside }(t-1)}{4}+\frac{\text { Heaviside }(t-1) \mathrm{e}^{-2 t+2}}{8}+\frac{\text { Heaviside }(t-2)}{4}-\frac{\text { Heaviside }(t-2) \mathrm{e}^{-2 t+4}}{8}+\frac{\text { Heaviside }(t-1) \mathrm{e}^{2 t-2}}{8}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}-\frac{\text { Heaviside }(t-1)}{4}+\frac{\text { Heaviside }(t-1) \mathrm{e}^{-2 t+2}}{8}+\frac{\text { Heaviside }(t-2)}{4}-\frac{\text { Heaviside }(t-2) \mathrm{e}^{-2 t+4}}{8}+\frac{\text { Heavisid }}{}$ Check validity of solution $y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}-\frac{\text { Heaviside }(t-1)}{4}+\frac{\text { Heaviside }(t-1) \mathrm{e}^{-2 t+2}}{8}+\frac{\text { Heaviside }(t-2)}{4}-$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}+2 c_{2} \mathrm{e}^{2 t}-\frac{\operatorname{Dirac}(t-1)}{4}+\frac{\operatorname{Dirac}(t-1) \mathrm{e}^{-2 t+2}}{8}-\frac{\text { Heaviside }(t-1) \mathrm{e}^{-2 t+2}}{4}+\frac{\operatorname{Dirac}(t-2)}{4}-\frac{\operatorname{Dirac}(t-2) \mathrm{e}^{-2}}{8}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=4$

$$
4=-2 c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=-1, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify
$y=-\mathrm{e}^{-2 t}+\mathrm{e}^{2 t}-\frac{\text { Heaviside }(t-1)}{4}+\frac{\text { Heaviside }(t-1) \mathrm{e}^{-2 t+2}}{8}+\frac{\text { Heaviside }(t-2)}{4}-\frac{\text { Heaviside }(t-2) \mathrm{e}^{-2 t+4}}{8}+\frac{\text { Heaviside }(t)}{8}$
- \quad Solution to the IVP
$y=-\mathrm{e}^{-2 t}+\mathrm{e}^{2 t}-\frac{\text { Heaviside }(t-1)}{4}+\frac{\text { Heaviside }(t-1) \mathrm{e}^{-2 t+2}}{8}+\frac{\text { Heaviside }(t-2)}{4}-\frac{\text { Heaviside }(t-2) \mathrm{e}^{-2 t+4}}{8}+\frac{\text { Heaviside }(t)}{8}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.579 (sec). Leaf size: 35

```
dsolve([diff(y(t),t$2)-4*y(t)=Heaviside(t-1)-Heaviside(t-2),y(0) = 0, D(y)(0)=4],y(t), sin
```

$$
y(t)=\frac{\text { Heaviside }(t-1) \sinh (t-1)^{2}}{2}-\frac{\text { Heaviside }(t-2) \sinh (t-2)^{2}}{2}+2 \sinh (2 t)
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 113
DSolve[\{y' ' $[\mathrm{t}]-4 * y[\mathrm{t}]==$ UnitStep $[\mathrm{t}-1]$-UnitStep $\left.[\mathrm{t}-2],\left\{y[0]==0, \mathrm{y}^{\prime}[0]==4\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingula

$$
y(t) \rightarrow\left\{\begin{array}{cc}
e^{-2 t}\left(-1+e^{4 t}\right) & t \leq 1 \\
\frac{1}{8}\left(-2+e^{2-2 t}-8 e^{-2 t}+8 e^{2 t}+e^{2 t-2}\right) & 1<t \leq 2 \\
\frac{1}{8} e^{-2(t+2)}\left(-8 e^{4}+e^{6}-e^{8}-e^{4 t}+e^{4 t+2}+8 e^{4 t+4}\right) & \text { True }
\end{array}\right.
$$

14.11 problem Problem 37

14.11.1 Existence and uniqueness analysis 2782
14.11.2 Maple step by step solution . 2785

Internal problem ID [2877]
Internal file name [OUTPUT/2369_Sunday_June_05_2022_03_01_43_AM_94568775/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 37.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=t-\text { Heaviside }(t-1)(t-1)
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=1\right]
$$

14.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =1 \\
F & =- \text { Heaviside }(t-1) t+\text { Heaviside }(t-1)+t
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y=-\operatorname{Heaviside}(t-1) t+\operatorname{Heaviside}(t-1)+t
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=-\operatorname{Heaviside}(t-1) t+$ Heaviside $(t-1)+t$ is

$$
\{t<1 \vee 1<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+Y(s)=\frac{1-\mathrm{e}^{-s}}{s^{2}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =2 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-2 s+Y(s)=\frac{1-\mathrm{e}^{-s}}{s^{2}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{-2 s^{3}-s^{2}+\mathrm{e}^{-s}-1}{s^{2}\left(s^{2}+1\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(-\frac{-2 s^{3}-s^{2}+\mathrm{e}^{-s}-1}{s^{2}\left(s^{2}+1\right)}\right) \\
& =2 \cos (t)-\text { Heaviside }(t-1)(t-1-\sin (t-1))+t
\end{aligned}
$$

Hence the final solution is

$$
y=2 \cos (t)-\text { Heaviside }(t-1)(t-1-\sin (t-1))+t
$$

Simplifying the solution gives

$$
y=(-t+1+\sin (t-1)) \text { Heaviside }(t-1)+t+2 \cos (t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-t+1+\sin (t-1)) \text { Heaviside }(t-1)+t+2 \cos (t) \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=(-t+1+\sin (t-1)) \text { Heaviside }(t-1)+t+2 \cos (t)
$$

Verified OK.

14.11.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y=-\operatorname{Heaviside}(t-1) t+\operatorname{Heaviside}(t-1)+t, y(0)=2,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (t)
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(t)=\sin (t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (t)+c_{2} \sin (t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-\operatorname{Heaviside}(t-1) t+H e a ?\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=1$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\cos (t)\left(\int(-t+\operatorname{Heaviside}(t-1)(t-1)) \sin (t) d t\right)-\sin (t)\left(\int(-t+\operatorname{Heaviside}(t-1)(t\right.
$$

- Compute integrals

$$
y_{p}(t)=(-\cos (t) \sin (1)+\sin (t) \cos (1)-t+1) \operatorname{Heaviside}(t-1)+t
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (t)+c_{2} \sin (t)+(-\cos (t) \sin (1)+\sin (t) \cos (1)-t+1) \text { Heaviside }(t-1)+t
$$

Check validity of solution $y=c_{1} \cos (t)+c_{2} \sin (t)+(-\cos (t) \sin (1)+\sin (t) \cos (1)-t+1) H$

- Use initial condition $y(0)=2$

$$
2=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \sin (t)+c_{2} \cos (t)+(\sin (t) \sin (1)+\cos (t) \cos (1)-1) \text { Heaviside }(t-1)+(-\cos (t) \sin
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$

$$
1=c_{2}+1
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=2 \cos (t)+(-\cos (t) \sin (1)+\sin (t) \cos (1)-t+1) \text { Heaviside }(t-1)+t
$$

- \quad Solution to the IVP

$$
y=2 \cos (t)+(-\cos (t) \sin (1)+\sin (t) \cos (1)-t+1) \text { Heaviside }(t-1)+t
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.156 (sec). Leaf size: 25
dsolve $([\operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t} \$ 2)+\mathrm{y}(\mathrm{t})=\mathrm{t}-\mathrm{Heaviside}(\mathrm{t}-1) *(\mathrm{t}-1), \mathrm{y}(0)=2, \mathrm{D}(\mathrm{y})(0)=1], \mathrm{y}(\mathrm{t})$, singsol=all)

$$
y(t)=(-t+\sin (t-1)+1) \text { Heaviside }(t-1)+t+2 \cos (t)
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 31
DSolve $\left[\left\{y '\right.\right.$ ' $[t]+y[t]==t-$ UnitStep $\left.[t-1] *(t-1),\left\{y[0]==2, y^{\prime}[0]==1\right\}\right\}, y[t], t$, IncludeSingularSolutio

$$
y(t) \rightarrow\left\{\begin{array}{cc}
t+2 \cos (t) & t \leq 1 \\
2 \cos (t)-\sin (1-t)+1 & \text { True }
\end{array}\right.
$$

14.12 problem Problem 38

14.12.1 Existence and uniqueness analysis 2788
14.12.2 Maple step by step solution . 2791

Internal problem ID [2878]
Internal file name [OUTPUT/2370_Sunday_June_05_2022_03_01_48_AM_51361726/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 38.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y^{\prime}+2 y=-10 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \cos \left(t+\frac{\pi}{4}\right)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

14.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =3 \\
q(t) & =2 \\
F & =-10 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \cos \left(t+\frac{\pi}{4}\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+3 y^{\prime}+2 y=-10 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \cos \left(t+\frac{\pi}{4}\right)
$$

The domain of $p(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=-10$ Heaviside $\left(t-\frac{\pi}{4}\right) \cos \left(t+\frac{\pi}{4}\right)$ is

$$
\left\{t<\frac{\pi}{4} \vee \frac{\pi}{4}<t\right\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+3 s Y(s)-3 y(0)+2 Y(s)=\frac{10 \mathrm{e}^{-\frac{s \pi}{4}}}{s^{2}+1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-3-s+3 s Y(s)+2 Y(s)=\frac{10 \mathrm{e}^{-\frac{s \pi}{4}}}{s^{2}+1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{3}+3 s^{2}+10 \mathrm{e}^{-\frac{s \pi}{4}}+s+3}{\left(s^{2}+1\right)\left(s^{2}+3 s+2\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{s^{3}+3 s^{2}+10 \mathrm{e}^{-\frac{s \pi}{4}}+s+3}{\left(s^{2}+1\right)\left(s^{2}+3 s+2\right)}\right) \\
& =-\mathrm{e}^{-2 t}+2 \mathrm{e}^{-t}+\frac{\sqrt{2}\left(5 \sqrt{2} \mathrm{e}^{-t+\frac{\pi}{4}}-2 \sqrt{2} \mathrm{e}^{-2 t+\frac{\pi}{2}}-2 \sin (t)-4 \cos (t)\right) \text { Heaviside }\left(t-\frac{\pi}{4}\right)}{2}
\end{aligned}
$$

Hence the final solution is
$y=-\mathrm{e}^{-2 t}+2 \mathrm{e}^{-t}+\frac{\sqrt{2}\left(5 \sqrt{2} \mathrm{e}^{-t+\frac{\pi}{4}}-2 \sqrt{2} \mathrm{e}^{-2 t+\frac{\pi}{2}}-2 \sin (t)-4 \cos (t)\right) \text { Heaviside }\left(t-\frac{\pi}{4}\right)}{2}$
Simplifying the solution gives

$$
\begin{aligned}
y= & -2 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-2 t+\frac{\pi}{2}}+5 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-t+\frac{\pi}{4}} \\
& -2\left(\cos (t)+\frac{\sin (t)}{2}\right) \sqrt{2} \text { Heaviside }\left(t-\frac{\pi}{4}\right)-\mathrm{e}^{-2 t}+2 \mathrm{e}^{-t}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & -2 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-2 t+\frac{\pi}{2}}+5 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-t+\frac{\pi}{4}} \\
& -2\left(\cos (t)+\frac{\sin (t)}{2}\right) \sqrt{2} \text { Heaviside }\left(t-\frac{\pi}{4}\right)-\mathrm{e}^{-2 t}+2 \mathrm{e}^{-t} \tag{1}
\end{align*}
$$

(a) Solution plot

Verification of solutions

$$
\begin{aligned}
y= & -2 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-2 t+\frac{\pi}{2}}+5 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-t+\frac{\pi}{4}} \\
& -2\left(\cos (t)+\frac{\sin (t)}{2}\right) \sqrt{2} \text { Heaviside }\left(t-\frac{\pi}{4}\right)-\mathrm{e}^{-2 t}+2 \mathrm{e}^{-t}
\end{aligned}
$$

Verified OK.

14.12.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+3 y^{\prime}+2 y=-10 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \cos \left(t+\frac{\pi}{4}\right), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+3 r+2=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,-1)
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- 2nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-10 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \cos (t\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & \mathrm{e}^{-t} \\
-2 \mathrm{e}^{-2 t} & -\mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-3 t}
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=10 \mathrm{e}^{-2 t}\left(\int \operatorname{Heaviside}\left(t-\frac{\pi}{4}\right) \cos \left(t+\frac{\pi}{4}\right) \mathrm{e}^{2 t} d t\right)-10 \mathrm{e}^{-t}\left(\int \operatorname{Heaviside}\left(t-\frac{\pi}{4}\right) \cos \left(t+\frac{\pi}{4}\right) \mathrm{e}^{t} d\right.$
- Compute integrals
$y_{p}(t)=\operatorname{Heaviside}\left(t-\frac{\pi}{4}\right)\left(-\cos \left(t+\frac{\pi}{4}\right)-3 \sin \left(t+\frac{\pi}{4}\right)-2 \mathrm{e}^{-2 t+\frac{\pi}{2}}+5 \mathrm{e}^{-t+\frac{\pi}{4}}\right)$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+$ Heaviside $\left(t-\frac{\pi}{4}\right)\left(-\cos \left(t+\frac{\pi}{4}\right)-3 \sin \left(t+\frac{\pi}{4}\right)-2 \mathrm{e}^{-2 t+\frac{\pi}{2}}+5 \mathrm{e}^{-t+\frac{\pi}{4}}\right)$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+\operatorname{Heaviside}\left(t-\frac{\pi}{4}\right)\left(-\cos \left(t+\frac{\pi}{4}\right)-3 \sin \left(t+\frac{\pi}{4}\right)-\right.$
- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-c_{2} \mathrm{e}^{-t}+\operatorname{Dirac}\left(t-\frac{\pi}{4}\right)\left(-\cos \left(t+\frac{\pi}{4}\right)-3 \sin \left(t+\frac{\pi}{4}\right)-2 \mathrm{e}^{-2 t+\frac{\pi}{2}}+5 \mathrm{e}^{-t+\frac{\pi}{4}}\right)+H e
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=-2 c_{1}-c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-1, c_{2}=2\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\left(-\cos \left(t+\frac{\pi}{4}\right)-3 \sin \left(t+\frac{\pi}{4}\right)\right) \text { Heaviside }\left(t-\frac{\pi}{4}\right)-2 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-2 t+\frac{\pi}{2}}+5 \text { Heaviside }(\hat{1}
$$

- \quad Solution to the IVP

$$
y=\left(-\cos \left(t+\frac{\pi}{4}\right)-3 \sin \left(t+\frac{\pi}{4}\right)\right) \text { Heaviside }\left(t-\frac{\pi}{4}\right)-2 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-2 t+\frac{\pi}{2}}+5 \text { Heaviside }(
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

Solution by Maple
Time used: 2.375 (sec). Leaf size: 63

```
dsolve([diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=10*Heaviside(t-Pi/4)*sin(t-Pi/4),y(0) = 1, D(y)
```

$$
\begin{aligned}
y(t)= & -2 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{\frac{\pi}{2}-2 t}+5 \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-t+\frac{\pi}{4}} \\
& -2 \sqrt{2}\left(\cos (t)+\frac{\sin (t)}{2}\right) \text { Heaviside }\left(t-\frac{\pi}{4}\right)-\mathrm{e}^{-2 t}+2 \mathrm{e}^{-t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 87
DSolve[\{y' ' [t] $+3 * y$ ' [t$]+2 * y[\mathrm{t}]==10 *$ UnitStep $\left.[\mathrm{t}-\mathrm{Pi} / 4] * \operatorname{Sin}[\mathrm{t}-\mathrm{Pi} / 4],\left\{y[0]==1, \mathrm{y}^{\prime}[0]==0\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}, \mathrm{In}$

$$
y(t) \rightarrow\left\{\begin{array}{cc}
e^{-2 t}\left(-1+2 e^{t}\right) & 4 t \leq \pi \\
-e^{-2 t}\left(2 \sqrt{2} e^{2 t} \cos (t)-2 e^{t}-5 e^{t+\frac{\pi}{4}}+\sqrt{2} e^{2 t} \sin (t)+2 e^{\pi / 2}+1\right) & \text { True }
\end{array}\right.
$$

14.13 problem Problem 39

14.13.1 Existence and uniqueness analysis 2794
14.13.2 Maple step by step solution . 2797

Internal problem ID [2879]
Internal file name [OUTPUT/2371_Sunday_June_05_2022_03_01_56_AM_85053664/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 39.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y^{\prime}-6 y=30 \text { Heaviside }(t-1) \mathrm{e}^{1-t}
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=-4\right]
$$

14.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =-6 \\
F & =30 \text { Heaviside }(t-1) \mathrm{e}^{1-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}-6 y=30 \text { Heaviside }(t-1) \mathrm{e}^{1-t}
$$

The domain of $p(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=30$ Heaviside $(t-1) \mathrm{e}^{1-t}$ is

$$
\{t<1 \vee 1<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+s Y(s)-y(0)-6 Y(s)=\frac{30 \mathrm{e}^{-s}}{1+s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =3 \\
y^{\prime}(0) & =-4
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+1-3 s+s Y(s)-6 Y(s)=\frac{30 \mathrm{e}^{-s}}{1+s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{3 s^{2}+30 \mathrm{e}^{-s}+2 s-1}{(1+s)\left(s^{2}+s-6\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{3 s^{2}+30 \mathrm{e}^{-s}+2 s-1}{(1+s)\left(s^{2}+s-6\right)}\right) \\
& =2 \mathrm{e}^{-3 t}+\mathrm{e}^{2 t}+2(1-\text { Heaviside }(1-t)) \mathrm{e}^{2 t-2}+\left(-5 \mathrm{e}^{1-t}+3 \mathrm{e}^{-3 t+3}\right) \text { Heaviside }(t-1)
\end{aligned}
$$

Hence the final solution is
$y=2 \mathrm{e}^{-3 t}+\mathrm{e}^{2 t}+2(1-$ Heaviside $(1-t)) \mathrm{e}^{2 t-2}+\left(-5 \mathrm{e}^{1-t}+3 \mathrm{e}^{-3 t+3}\right)$ Heaviside $(t-1)$

Simplifying the solution gives

$$
\begin{array}{r}
y=\left(-5 \mathrm{e}^{2 t+1} \text { Heaviside }(t-1)+3 \mathrm{e}^{3} \text { Heaviside }(t-1)+2 \mathrm{e}^{5 t-2} \operatorname{Heaviside}(t-1)+\mathrm{e}^{5 t}\right. \\
+2) \mathrm{e}^{-3 t}
\end{array}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y=\left(-5 \mathrm{e}^{2 t+1} \text { Heaviside }(t-1)+3 \mathrm{e}^{3} \text { Heaviside }(t-1)+2 \mathrm{e}^{5 t-2} \text { Heaviside }(t-1)\right. \\
& \left.+\mathrm{e}^{5 t}+2\right) \mathrm{e}^{-3 t}
\end{aligned}
$$

Verification of solutions

$$
\begin{array}{r}
y=\left(-5 \mathrm{e}^{2 t+1} \text { Heaviside }(t-1)+3 \mathrm{e}^{3} \text { Heaviside }(t-1)+2 \mathrm{e}^{5 t-2} \text { Heaviside }(t-1)+\mathrm{e}^{5 t}\right. \\
+2) \mathrm{e}^{-3 t}
\end{array}
$$

Verified OK.

14.13.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}-6 y=30 \text { Heaviside }(t-1) \mathrm{e}^{1-t}, y(0)=3,\left.y^{\prime}\right|_{\{t=0\}}=-4\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+r-6=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-3 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=30 \text { Heaviside }(t-1) \mathrm{e}^{1-t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 t} & \mathrm{e}^{2 t} \\
-3 \mathrm{e}^{-3 t} & 2 \mathrm{e}^{2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=5 \mathrm{e}^{-t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-6\left(-\mathrm{e}^{5 t}\left(\int \text { Heaviside }(t-1) \mathrm{e}^{-3 t+1} d t\right)+\int \mathrm{e}^{2 t+1} \operatorname{Heaviside}(t-1) d t\right) \mathrm{e}^{-3 t}
$$

- Compute integrals

$$
y_{p}(t)=\operatorname{Heaviside}(t-1) \mathrm{e}^{-3 t}\left(-5 \mathrm{e}^{2 t+1}+3 \mathrm{e}^{3}+2 \mathrm{e}^{5 t-2}\right)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{2 t}+\text { Heaviside }(t-1) \mathrm{e}^{-3 t}\left(-5 \mathrm{e}^{2 t+1}+3 \mathrm{e}^{3}+2 \mathrm{e}^{5 t-2}\right)
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{2 t}+\operatorname{Heaviside}(t-1) \mathrm{e}^{-3 t}\left(-5 \mathrm{e}^{2 t+1}+3 \mathrm{e}^{3}+2 \mathrm{e}^{5 t-2}\right)$

- Use initial condition $y(0)=3$

$$
3=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 t}+2 c_{2} \mathrm{e}^{2 t}+\operatorname{Dirac}(t-1) \mathrm{e}^{-3 t}\left(-5 \mathrm{e}^{2 t+1}+3 \mathrm{e}^{3}+2 \mathrm{e}^{5 t-2}\right)-3 \text { Heaviside }(t-1) \mathrm{e}^{-3 t}(-5
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-4$
$-4=-3 c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\left(-5 \mathrm{e}^{2 t+1} \text { Heaviside }(t-1)+3 \mathrm{e}^{3} \text { Heaviside }(t-1)+2 \mathrm{e}^{5 t-2} \operatorname{Heaviside}(t-1)+\mathrm{e}^{5 t}+2\right) \mathrm{e}^{-3 t}
$$

- \quad Solution to the IVP
$y=\left(-5 \mathrm{e}^{2 t+1}\right.$ Heaviside $(t-1)+3 \mathrm{e}^{3}$ Heaviside $\left.(t-1)+2 \mathrm{e}^{5 t-2} \operatorname{Heaviside}(t-1)+\mathrm{e}^{5 t}+2\right) \mathrm{e}^{-3 t}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.265 (sec). Leaf size: 55

```
dsolve([diff(y(t),t$2)+diff(y(t),t)-6*y(t)=30*Heaviside(t-1)*exp(-(t-1)),y(0)=3,D(y)(0) =
```

$$
y(t)=\left(-5 \text { Heaviside }(t-1) \mathrm{e}^{1+2 t}+3 \text { Heaviside }(t-1) \mathrm{e}^{3}+2 \mathrm{e}^{-2+5 t} \operatorname{Heaviside}(t-1)\right.
$$

$$
\left.+\mathrm{e}^{5 t}+2\right) \mathrm{e}^{-3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.087 (sec). Leaf size: 66
DSolve [\{y' ' $[\mathrm{t}]+\mathrm{y}$ ' $[\mathrm{t}]-6 * \mathrm{y}[\mathrm{t}]==30 *$ UnitStep $\left.[\mathrm{t}-1] * \operatorname{Exp}[-(\mathrm{t}-1)],\left\{\mathrm{y}[0]==3, \mathrm{y}^{\prime}[0]==-4\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, Includ

$$
y(t) \rightarrow\left\{\begin{array}{cc}
e^{-3 t}\left(2+e^{5 t}\right) & t \leq 1 \\
e^{-3 t-2}\left(2 e^{2}+3 e^{5}+2 e^{5 t}-5 e^{2 t+3}+e^{5 t+2}\right) & \text { True }
\end{array}\right.
$$

14.14 problem Problem 40

14.14.1 Existence and uniqueness analysis 2800
14.14.2 Maple step by step solution . 2803

Internal problem ID [2880]
Internal file name [OUTPUT/2372_Sunday_June_05_2022_03_02_03_AM_30140179/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 40.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+5 y=5 \text { Heaviside }(t-3)
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=1\right]
$$

14.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =5 \\
F & =5 \text { Heaviside }(t-3)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+5 y=5 \text { Heaviside }(t-3)
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=5$ Heaviside $(t-3)$ is

$$
\{t<3 \vee 3<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+4 s Y(s)-4 y(0)+5 Y(s)=\frac{5 \mathrm{e}^{-3 s}}{s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =2 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-9-2 s+4 s Y(s)+5 Y(s)=\frac{5 \mathrm{e}^{-3 s}}{s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{2 s^{2}+5 \mathrm{e}^{-3 s}+9 s}{s\left(s^{2}+4 s+5\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{2 s^{2}+5 \mathrm{e}^{-3 s}+9 s}{s\left(s^{2}+4 s+5\right)}\right) \\
& =\mathrm{e}^{-2 t}(2 \cos (t)+5 \sin (t))+\left(\frac{1}{10}+\frac{i}{5}\right)\left(2-4 i-5 \mathrm{e}^{(-2-i)(t-3)}+(3+4 i) \mathrm{e}^{(-2+i)(t-3)}\right) \text { Heaviside }(t-3)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & \mathrm{e}^{-2 t}(2 \cos (t)+5 \sin (t)) \\
& +\left(\frac{1}{10}+\frac{i}{5}\right)\left(2-4 i-5 \mathrm{e}^{(-2-i)(t-3)}+(3+4 i) \mathrm{e}^{(-2+i)(t-3)}\right) \text { Heaviside }(t-3)
\end{aligned}
$$

Simplifying the solution gives

$$
\begin{aligned}
y= & \left(-\frac{1}{2}-i\right) \text { Heaviside }(t-3) \mathrm{e}^{(-2-i)(t-3)}+\left(-\frac{1}{2}+i\right) \text { Heaviside }(t-3) \mathrm{e}^{(-2+i)(t-3)} \\
& + \text { Heaviside }(t-3)+\mathrm{e}^{-2 t}(2 \cos (t)+5 \sin (t))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \left(-\frac{1}{2}-i\right) \text { Heaviside }(t-3) \mathrm{e}^{(-2-i)(t-3)}+\left(-\frac{1}{2}+i\right) \text { Heaviside }(t-3) \mathrm{e}^{(-2+i)(t-3)}(1) \\
& + \text { Heaviside }(t-3)+\mathrm{e}^{-2 t}(2 \cos (t)+5 \sin (t))
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(-\frac{1}{2}-i\right) \text { Heaviside }(t-3) \mathrm{e}^{(-2-i)(t-3)}+\left(-\frac{1}{2}+i\right) \text { Heaviside }(t-3) \mathrm{e}^{(-2+i)(t-3)} \\
& + \text { Heaviside }(t-3)+\mathrm{e}^{-2 t}(2 \cos (t)+5 \sin (t))
\end{aligned}
$$

Verified OK.

14.14.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+5 y=5 \text { Heaviside }(t-3), y(0)=2,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+5=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-4) \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2-\mathrm{I},-2+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (t) \mathrm{e}^{-2 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\sin (t) \mathrm{e}^{-2 t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (t) \mathrm{e}^{-2 t}+c_{2} \sin (t) \mathrm{e}^{-2 t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=5 \text { Heaviside }(t-3)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (t) \mathrm{e}^{-2 t} & \sin (t) \mathrm{e}^{-2 t} \\
-\sin (t) \mathrm{e}^{-2 t}-2 \cos (t) \mathrm{e}^{-2 t} & \cos (t) \mathrm{e}^{-2 t}-2 \sin (t) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-5 \mathrm{e}^{-2 t}\left(\cos (t)\left(\int \operatorname{Heaviside}(t-3) \sin (t) \mathrm{e}^{2 t} d t\right)-\sin (t)\left(\int \operatorname{Heaviside}(t-3) \cos (t) \mathrm{e}^{2 t} d t\right)\right.$
- Compute integrals
$y_{p}(t)=-$ Heaviside $(t-3)\left(-1+\left((\cos (t)+2 \sin (t)) \cos (3)-2 \sin (3)\left(\cos (t)-\frac{\sin (t)}{2}\right)\right) \mathrm{e}^{-2 t+6}\right.$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (t) \mathrm{e}^{-2 t}+c_{2} \sin (t) \mathrm{e}^{-2 t}-H e a v i s i d e(t-3)(-1+((\cos (t)+2 \sin (t)) \cos (3)-2 \sin (3$
Check validity of solution $y=c_{1} \cos (t) \mathrm{e}^{-2 t}+c_{2} \sin (t) \mathrm{e}^{-2 t}-\operatorname{Heaviside}(t-3)(-1+((\cos (t)$
- Use initial condition $y(0)=2$
$2=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \sin (t) \mathrm{e}^{-2 t}-2 c_{1} \cos (t) \mathrm{e}^{-2 t}+c_{2} \cos (t) \mathrm{e}^{-2 t}-2 c_{2} \sin (t) \mathrm{e}^{-2 t}-\operatorname{Dirac}(t-3)(-1+((c c
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$
$1=-2 c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=5\right\}$
- Substitute constant values into general solution and simplify
$y=-\left((\cos (3)-2 \sin (3)) \cos (t)+2\left(\cos (3)+\frac{\sin (3)}{2}\right) \sin (t)\right)$ Heaviside $(t-3) \mathrm{e}^{-2 t+6}+$ Heavisi
- \quad Solution to the IVP
$y=-\left((\cos (3)-2 \sin (3)) \cos (t)+2\left(\cos (3)+\frac{\sin (3)}{2}\right) \sin (t)\right)$ Heaviside $(t-3) \mathrm{e}^{-2 t+6}+$ Heavisi

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 4.297 (sec). Leaf size: 53

```
dsolve([diff(y(t),t$2)+4*diff(y(t),t)+5*y(t)=5*Heaviside(t-3),y(0) = 2, D(y)(0) = 1],y(t),
```

$$
\begin{aligned}
y(t)= & \left(-\frac{1}{2}-i\right) \text { Heaviside }(-3+t) \mathrm{e}^{(-2-i)(-3+t)} \\
& +\left(-\frac{1}{2}+i\right) \text { Heaviside }(-3+t) \mathrm{e}^{(-2+i)(-3+t)} \\
& + \text { Heaviside }(-3+t)+\mathrm{e}^{-2 t}(2 \cos (t)+5 \sin (t))
\end{aligned}
$$

Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 68

```
DSolve[{y''[t]+4*y'[t]+5*y[t]==5*UnitStep[t-3],{y[0]==2,y'[0]==1}},y[t],t,IncludeSingularSol
```

$$
y(t) \rightarrow\left\{\begin{array}{cc}
e^{-2 t}(2 \cos (t)+5 \sin (t)) & t \leq 3 \\
e^{-2 t}\left(-e^{6} \cos (3-t)+e^{2 t}+2 \cos (t)+2 e^{6} \sin (3-t)+5 \sin (t)\right) & \text { True }
\end{array}\right.
$$

14.15 problem Problem 41

14.15.1 Existence and uniqueness analysis 2806
14.15.2 Maple step by step solution . 2809

Internal problem ID [2881]
Internal file name [OUTPUT/2373_Sunday_June_05_2022_03_02_12_AM_772570/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 41.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+5 y=2 \sin (t)+\text { Heaviside }\left(t-\frac{\pi}{2}\right)(1+\cos (t))
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

14.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-2 \\
q(t) & =5 \\
F & =\text { Heaviside }\left(t-\frac{\pi}{2}\right) \cos (t)+2 \sin (t)+\text { Heaviside }\left(t-\frac{\pi}{2}\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+5 y=\text { Heaviside }\left(t-\frac{\pi}{2}\right) \cos (t)+2 \sin (t)+\text { Heaviside }\left(t-\frac{\pi}{2}\right)
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=$ Heaviside $\left(t-\frac{\pi}{2}\right) \cos (t)+$ $2 \sin (t)+$ Heaviside $\left(t-\frac{\pi}{2}\right)$ is

$$
\left\{t<\frac{\pi}{2} \vee \frac{\pi}{2}<t\right\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-2 s Y(s)+2 y(0)+5 Y(s)=\frac{\mathrm{e}^{-\frac{s \pi}{2}}}{s}+\frac{2-\mathrm{e}^{-\frac{s \pi}{2}}}{s^{2}+1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-2 s Y(s)+5 Y(s)=\frac{\mathrm{e}^{-\frac{s \pi}{2}}}{s}+\frac{2-\mathrm{e}^{-\frac{s \pi}{2}}}{s^{2}+1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-\frac{s \pi}{2}} s^{2}-s \mathrm{e}^{-\frac{s \pi}{2}}+\mathrm{e}^{-\frac{s \pi}{2}}+2 s}{s\left(s^{2}+1\right)\left(s^{2}-2 s+5\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-\frac{s \pi}{2}} s^{2}-s \mathrm{e}^{-\frac{s \pi}{2}}+\mathrm{e}^{-\frac{s \pi}{2}}+2 s}{s\left(s^{2}+1\right)\left(s^{2}-2 s+5\right)}\right) \\
& =\frac{\cos (t)}{5}+\frac{2 \sin (t)}{5}-\frac{\mathrm{e}^{t}(2 \cos (2 t)+\sin (2 t))}{10}+\frac{(-2 \cos (2 t)+3 \sin (2 t))\left(\text { Heaviside }\left(\frac{\pi}{2}-t\right)-1\right) \mathrm{e}^{t-\frac{\pi}{2}}}{20}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & \frac{\cos (t)}{5}+\frac{2 \sin (t)}{5}-\frac{\mathrm{e}^{t}(2 \cos (2 t)+\sin (2 t))}{10} \\
& +\frac{(-2 \cos (2 t)+3 \sin (2 t))\left(\text { Heaviside }\left(\frac{\pi}{2}-t\right)-1\right) \mathrm{e}^{t-\frac{\pi}{2}}}{20} \\
& +\frac{\text { Heaviside }\left(t-\frac{\pi}{2}\right)(-\sin (t)+2 \cos (t)+2)}{10}
\end{aligned}
$$

Simplifying the solution gives

$$
\begin{aligned}
y= & \frac{\left(\mathrm{e}^{t-\frac{\pi}{2}}\left(2 \cos (t)^{2}-3 \sin (t) \cos (t)-1\right)+2 \cos (t)-\sin (t)+2\right) \text { Heaviside }\left(t-\frac{\pi}{2}\right)}{10} \\
& -\frac{2 \cos (t)^{2} \mathrm{e}^{t}}{5}-\frac{\sin (t) \cos (t) \mathrm{e}^{t}}{5}+\frac{\cos (t)}{5}+\frac{\mathrm{e}^{t}}{5}+\frac{2 \sin (t)}{5}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{\left(\mathrm{e}^{t-\frac{\pi}{2}}\left(2 \cos (t)^{2}-3 \sin (t) \cos (t)-1\right)+2 \cos (t)-\sin (t)+2\right) \text { Heaviside }\left(t-\frac{\pi}{2}\right)}{10} \\
& -\frac{2 \cos (t)^{2} \mathrm{e}^{t}}{5}-\frac{\sin (t) \cos (t) \mathrm{e}^{t}}{5}+\frac{\cos (t)}{5}+\frac{\mathrm{e}^{t}}{5}+\frac{2 \sin (t)}{5} \tag{1}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & \frac{\left(\mathrm{e}^{t-\frac{\pi}{2}}\left(2 \cos (t)^{2}-3 \sin (t) \cos (t)-1\right)+2 \cos (t)-\sin (t)+2\right) \text { Heaviside }\left(t-\frac{\pi}{2}\right)}{10} \\
& -\frac{2 \cos (t)^{2} \mathrm{e}^{t}}{5}-\frac{\sin (t) \cos (t) \mathrm{e}^{t}}{5}+\frac{\cos (t)}{5}+\frac{\mathrm{e}^{t}}{5}+\frac{2 \sin (t)}{5}
\end{aligned}
$$

Verified OK.

14.15.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}+5 y=\text { Heaviside }\left(t-\frac{\pi}{2}\right) \cos (t)+2 \sin (t)+\operatorname{Heaviside}\left(t-\frac{\pi}{2}\right), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+5=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{2 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(1-2 \mathrm{I}, 1+2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (2 t) \mathrm{e}^{t}$
- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(t)=\sin (2 t) \mathrm{e}^{t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 t) \mathrm{e}^{t}+c_{2} \sin (2 t) \mathrm{e}^{t}+y_{p}(t)
$$

$\square \quad$ Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Heaviside}\left(t-\frac{\pi}{2}\right) \cos (t)+\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) \mathrm{e}^{t} & \sin (2 t) \mathrm{e}^{t} \\
-2 \sin (2 t) \mathrm{e}^{t}+\cos (2 t) \mathrm{e}^{t} & 2 \cos (2 t) \mathrm{e}^{t}+\sin (2 t) \mathrm{e}^{t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{2 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{\mathrm{e}^{t}\left(\sin (2 t)\left(\int \cos (2 t)\left(\text { Heaviside }\left(t-\frac{\pi}{2}\right) \cos (t)+2 \sin (t)+\text { Heaviside }\left(t-\frac{\pi}{2}\right)\right) \mathrm{e}^{-t} d t\right)-2 \cos (2 t)\left(\int \mathrm{e}^{-t} \sin (t) \cos (t)(\text { Heaviside }(t-\right.\right.}{2}
$$

- Compute integrals

$$
y_{p}(t)=\frac{\left(\mathrm{e}^{t-\frac{\pi}{2}}\left(2 \cos (t)^{2}-3 \sin (t) \cos (t)-1\right)+2 \cos (t)-\sin (t)+2\right) \text { Heaviside }\left(t-\frac{\pi}{2}\right)}{10}+\frac{\cos (t)}{5}+\frac{2 \sin (t)}{5}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 t) \mathrm{e}^{t}+c_{2} \sin (2 t) \mathrm{e}^{t}+\frac{\left(\mathrm{e}^{t-\frac{\pi}{2}}\left(2 \cos (t)^{2}-3 \sin (t) \cos (t)-1\right)+2 \cos (t)-\sin (t)+2\right) \text { Heaviside }\left(t-\frac{\pi}{2}\right)}{10}+\frac{\cos (t)}{5}$.
Check validity of solution $y=c_{1} \cos (2 t) \mathrm{e}^{t}+c_{2} \sin (2 t) \mathrm{e}^{t}+\frac{\left(\mathrm{e}^{t-\frac{\pi}{2}}\left(2 \cos (t)^{2}-3 \sin (t) \cos (t)-1\right)+2 \cos (t)-\operatorname{si}\right.}{10}$
- Use initial condition $y(0)=0$
$0=c_{1}+\frac{1}{5}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 t) \mathrm{e}^{t}+c_{1} \cos (2 t) \mathrm{e}^{t}+2 c_{2} \cos (2 t) \mathrm{e}^{t}+c_{2} \sin (2 t) \mathrm{e}^{t}+\underline{\left(\mathrm{e}^{t-\frac{\pi}{2}}\left(2 \cos (t)^{2}-3 \sin (t) \cos (t)-1\right)+\mathrm{e}\right.}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=\frac{2}{5}+c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{5}, c_{2}=-\frac{1}{10}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\left(\mathrm{e}^{t-\frac{\pi}{2}}\left(2 \cos (t)^{2}-3 \sin (t) \cos (t)-1\right)+2 \cos (t)-\sin (t)+2\right) \text { Heaviside }\left(t-\frac{\pi}{2}\right)}{10}-\frac{2 \cos (t)^{2} \mathrm{e}^{t}}{5}-\frac{\sin (t) \cos (t) \mathrm{e}^{t}}{5}+\frac{\cos (t)}{5}+\frac{\mathrm{e}^{t}}{5}-
$$

- \quad Solution to the IVP

$$
y=\frac{\left(\mathrm{e}^{t-\frac{\pi}{2}}\left(2 \cos (t)^{2}-3 \sin (t) \cos (t)-1\right)+2 \cos (t)-\sin (t)+2\right) \text { Heaviside }\left(t-\frac{\pi}{2}\right)}{10}-\frac{2 \cos (t)^{2} \mathrm{e}^{t}}{5}-\frac{\sin (t) \cos (t) \mathrm{e}^{t}}{5}+\frac{\cos (t)}{5}+\frac{\mathrm{e}^{t}}{5} .
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.515 (sec). Leaf size: 77

```
dsolve([diff(y(t),t$2)-2*diff(y(t),t)+5*y(t)=2*\operatorname{sin}(t)+Heaviside(t-Pi/2)*(1-sin}(t-Pi/2)),y(0
```

$$
\begin{aligned}
y(t)= & \frac{\left(\left(2 \cos (t)^{2}-3 \cos (t) \sin (t)-1\right) \mathrm{e}^{t-\frac{\pi}{2}}+2 \cos (t)-\sin (t)+2\right) \text { Heaviside }\left(t-\frac{\pi}{2}\right)}{10} \\
& -\frac{2 \mathrm{e}^{t} \cos (t)^{2}}{5}-\frac{\sin (t) \cos (t) \mathrm{e}^{t}}{5}+\frac{\cos (t)}{5}+\frac{\mathrm{e}^{t}}{5}+\frac{2 \sin (t)}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.502 (sec). Leaf size: 98
DSolve [\{y' ' $[t]-2 * y$ ' $\left.[t]+5 * y[t]==2 * \operatorname{Sin}[t]+U n i t S t e p[t-P i / 2] *(1-\operatorname{Sin}[t-P i / 2]),\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}$
$y(t)$
$\rightarrow\left\{\begin{array}{cc}\frac{1}{5}\left(-e^{t} \sin (t) \cos (t)+\cos (t)-e^{t} \cos (2 t)+2 \sin (t)\right) & 2 t \leq \pi \\ \frac{1}{20}\left(8 \cos (t)+2 e^{t}\left(-2+e^{-\pi / 2}\right) \cos (2 t)+6 \sin (t)-2 e^{t} \sin (2 t)-3 e^{t-\frac{\pi}{2}} \sin (2 t)+4\right) & \text { True }\end{array}\right.$

14.16 problem Problem 46 part a

14.16.1 Existence and uniqueness analysis 2813
14.16.2 Solving as laplace ode . 2814
14.16.3 Maple step by step solution . 2816

Internal problem ID [2882]
Internal file name [OUTPUT/2374_Sunday_June_05_2022_03_02_20_AM_82997815/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 46 part a.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=\left\{\begin{array}{cc}
2 & 0 \leq t<1 \\
-1 & 1 \leq t
\end{array}\right.
$$

With initial conditions

$$
[y(0)=1]
$$

14.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-1 \\
& q(t)=\left\{\begin{array}{cc}
0 & t<0 \\
2 & t<1 \\
-1 & 1 \leq t
\end{array}\right.
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=\left\{\begin{array}{cc}
0 & t<0 \\
2 & t<1 \\
-1 & 1 \leq t
\end{array}\right.
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\left\{\begin{array}{cc}0 & t<0 \\ 2 & t<1 \\ -1 & 1 \leq t\end{array}\right.$ is

$$
\{0 \leq t \leq 1,1 \leq t \leq \infty,-\infty \leq t \leq 0\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

14.16.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-Y(s)=\frac{2-3 \mathrm{e}^{-s}}{s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-1-Y(s)=\frac{2-3 \mathrm{e}^{-s}}{s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=-\frac{-2+3 \mathrm{e}^{-s}-s}{s(s-1)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(-\frac{-2+3 \mathrm{e}^{-s}-s}{s(s-1)}\right) \\
& =-2+3 \text { Heaviside }(t-1)+3 \mathrm{e}^{t}+3 \mathrm{e}^{t-1}(-1+\text { Heaviside }(1-t))
\end{aligned}
$$

Hence the final solution is

$$
y=-2+3 \operatorname{Heaviside}(t-1)+3 \mathrm{e}^{t}+3 \mathrm{e}^{t-1}(-1+\operatorname{Heaviside}(1-t))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-2+3 \text { Heaviside }(t-1)+3 \mathrm{e}^{t}+3 \mathrm{e}^{t-1}(-1+\operatorname{Heaviside}(1-t)) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-2+3 \text { Heaviside }(t-1)+3 \mathrm{e}^{t}+3 \mathrm{e}^{t-1}(-1+\operatorname{Heaviside}(1-t))
$$

Verified OK.

14.16.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y=\left\{\begin{array}{cc}
2 & 0 \leq t<1 \\
-1 & 1 \leq t
\end{array}, y(0)=1\right]\right.
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=y+\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right.$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-y=\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right.$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-y\right)=\mu(t)\left(\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right)\right.$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t}$
- Integrate both sides with respect to t

$$
\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(\left\{\begin{array}{cc}
2 & 0 \leq t<1 \\
-1 & 1 \leq t
\end{array}\right) d t+c_{1}\right.
$$

- Evaluate the integral on the lhs

$$
\mu(t) y=\int \mu(t)\left(\left\{\begin{array}{cc}
2 & 0 \leq t<1 \\
-1 & 1 \leq t
\end{array}\right) d t+c_{1}\right.
$$

- \quad Solve for y
$y=\frac{\int \mu(t)\left(\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right) d t+c_{1}\right.}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-t}$
$y=\frac{\int \mathrm{e}^{-t}\left(\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right) d t+c_{1}\right.}{\mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs
$y=\frac{\left\{\begin{array}{cl}0 & t \leq 0 \\ -2 \mathrm{e}^{-t}+2 & t \leq 1+c_{1} \\ \mathrm{e}^{-t}-3 \mathrm{e}^{-1}+2 & 1<t\end{array}\right.}{\mathrm{e}^{-t}}$
- Simplify
$y=\mathrm{e}^{t}\left(\left\{\begin{array}{cl}0 & t \leq 0 \\ -2 \mathrm{e}^{-t}+2 & t \leq 1 \\ \mathrm{e}^{-t}-3 \mathrm{e}^{-1}+2 & 1<t\end{array}\right)\right.$
- Use initial condition $y(0)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- Substitute $c_{1}=1$ into general solution and simplify

$$
y=\left\{\begin{array}{cc}
\mathrm{e}^{t} & t \leq 0 \\
-2+3 \mathrm{e}^{t} & t \leq 1 \\
1+3 \mathrm{e}^{t}-3 \mathrm{e}^{t-1} & 1<t
\end{array}\right.
$$

- \quad Solution to the IVP
$y=\left\{\begin{array}{cc}\mathrm{e}^{t} & t \leq 0 \\ -2+3 \mathrm{e}^{t} & t \leq 1 \\ 1+3 \mathrm{e}^{t}-3 \mathrm{e}^{t-1} & 1<t\end{array}\right.$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.938 (sec). Leaf size: 38
dsolve([diff($y(t), t)-y(t)=$ piecewise ($0<=t$ and $t<1,2, t>=1,-1), y(0)=1], y(t)$, singsol=all)

$$
y(t)=\left\{\begin{array}{cc}
-2+3 \mathrm{e}^{t} & t<1 \\
1+3 \mathrm{e} & t=1 \\
1+3 \mathrm{e}^{t}-3 \mathrm{e}^{t-1} & 1<t
\end{array}\right.
$$

\checkmark Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 42
DSolve[\{y' $[t]-y[t]==$ Piecewise $[\{\{2,0<=t<1\},\{-1, t>=1\}\}],\{y[0]==1\}\}, y[t], t$, IncludeSingularSolut

$$
y(t) \rightarrow\left\{\begin{array}{cc}
e^{t} & t \leq 0 \\
-2+3 e^{t} & 0<t \leq 1 \\
1-3 e^{t-1}+3 e^{t} & \text { True }
\end{array}\right.
$$

14.17 problem Problem 46 part b

14.17.1 Existence and uniqueness analysis 2819
14.17.2 Solving as linear ode . 2820
14.17.3 Solving as first order ode lie symmetry lookup ode 2823
14.17.4 Maple step by step solution . 2827

Internal problem ID [2883]
Internal file name [OUTPUT/2375_Sunday_June_05_2022_03_02_26_AM_22789862/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.7. page 704
Problem number: Problem 46 part b.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=\left\{\begin{array}{cc}
2 & 0 \leq t<1 \\
-1 & 1 \leq t
\end{array}\right.
$$

With initial conditions

$$
[y(0)=1]
$$

14.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-1 \\
& q(t)=\left\{\begin{array}{cc}
0 & t<0 \\
2 & t<1 \\
-1 & 1 \leq t
\end{array}\right.
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=\left\{\begin{array}{cc}
0 & t<0 \\
2 & t<1 \\
-1 & 1 \leq t
\end{array}\right.
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\left\{\begin{array}{cc}0 & t<0 \\ 2 & t<1 \\ -1 & 1 \leq t\end{array}\right.$ is

$$
\{0 \leq t \leq 1,1 \leq t \leq \infty,-\infty \leq t \leq 0\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

14.17.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\left\{\begin{array}{cc}
0 & t<0 \\
2 & t<1 \\
-1 & 1 \leq t
\end{array}\right)\right. \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t} y\right) & =\left(\mathrm{e}^{-t}\right)\left(\left\{\begin{array}{cc}
0 & t<0 \\
2 & t<1 \\
-1 & 1 \leq t
\end{array}\right)\right. \\
\mathrm{d}\left(\mathrm{e}^{-t} y\right) & =\left(\left(\left\{\begin{array}{cc}
0 & t<0 \\
2 & t<1 \\
-1 & 1 \leq t
\end{array}\right) \mathrm{e}^{-t}\right) \mathrm{d} t\right.
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-t} y=\int\left(\begin{array}{cc}
0 & t<0 \\
2 & t<1 \\
-1 & 1 \leq t
\end{array}\right) \mathrm{e}^{-t} \mathrm{~d} t \\
& \mathrm{e}^{-t} y=\left\{\begin{array}{cc}
0 & t \leq 0 \\
-2 \mathrm{e}^{-t}+2 & t \leq 1 \\
\mathrm{e}^{-t}-3 \mathrm{e}^{-1}+2 & 1<t
\end{array}\right.
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-t}$ results in

$$
y=\mathrm{e}^{t}\left(\left\{\begin{array}{cc}
0 & t \leq 0 \\
-2 \mathrm{e}^{-t}+2 & t \leq 1 \\
\mathrm{e}^{-t}-3 \mathrm{e}^{-1}+2 & 1<t
\end{array}\right)+c_{1} \mathrm{e}^{t}\right.
$$

which simplifies to

$$
y=\mathrm{e}^{t}\left(\left(\left\{\begin{array}{cc}
0 & t \leq 0 \\
-2 \mathrm{e}^{-t}+2 & t \leq 1 \\
\mathrm{e}^{-t}-3 \mathrm{e}^{-1}+2 & 1<t
\end{array}\right)+c_{1}\right)\right.
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=c_{1}
$$

$$
c_{1}=1
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left\{\begin{array}{cc}
\mathrm{e}^{t} & t \leq 0 \\
-2+3 \mathrm{e}^{t} & t \leq 1 \\
1+3 \mathrm{e}^{t}-3 \mathrm{e}^{t-1} & 1<t \\
\mathrm{e}^{t} & \text { otherwise }
\end{array}\right.
$$

Summary
The solution(s) found are the following

$$
y=\left\{\begin{array}{cc}
\mathrm{e}^{t} & t \leq 0 \tag{1}\\
-2+3 \mathrm{e}^{t} & t \leq 1 \\
1+3 \mathrm{e}^{t}-3 \mathrm{e}^{t-1} & 1<t \\
\mathrm{e}^{t} & \text { otherwise }
\end{array}\right.
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=\left\{\begin{array}{cc}
\mathrm{e}^{t} & t \leq 0 \\
-2+3 \mathrm{e}^{t} & t \leq 1 \\
1+3 \mathrm{e}^{t}-3 \mathrm{e}^{t-1} & 1<t \\
\mathrm{e}^{t} & \text { otherwise }
\end{array}\right.
$$

Verified OK.

14.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y+\left(\left\{\begin{array}{cc}
2 & 0 \leq t<1 \\
-1 & 1 \leq t
\end{array}\right)\right. \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 388: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y+\left(\left\{\begin{array}{cc}
2 & 0 \leq t<1 \\
-1 & 1 \leq t
\end{array}\right)\right.
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\mathrm{e}^{-t} y \\
S_{y} & =\mathrm{e}^{-t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\frac{d S}{d R}=\left(\left\{\begin{array}{cc}
0 & t<0 \tag{2~A}\\
2 & t<1 \\
-1 & 1 \leq t
\end{array}\right) \mathrm{e}^{-t}\right.
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left(\left\{\begin{array}{cc}
0 & R<0 \\
2 & R<1 \\
-1 & 1 \leq R
\end{array}\right) \mathrm{e}^{-R}\right.
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
S(R)=\left\{\begin{array}{cc}
c_{1} & R<0 \tag{4}\\
c_{1}-2 \mathrm{e}^{-R}+2 & R<1 \\
c_{1}+\mathrm{e}^{-R}-3 \mathrm{e}^{-1}+2 & 1 \leq R
\end{array}\right.
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-t} y=\left\{\begin{array}{cc}
c_{1} & t<0 \\
c_{1}-2 \mathrm{e}^{-t}+2 & t<1 \\
c_{1}+\mathrm{e}^{-t}-3 \mathrm{e}^{-1}+2 & 1 \leq t
\end{array}\right.
$$

Which simplifies to

$$
\mathrm{e}^{-t} y=\left\{\begin{array}{cc}
c_{1} & t<0 \\
c_{1}-2 \mathrm{e}^{-t}+2 & t<1 \\
c_{1}+\mathrm{e}^{-t}-3 \mathrm{e}^{-1}+2 & 1 \leq t
\end{array}\right.
$$

Which gives

$$
y=\left\{\begin{array}{cc}
{\left[c_{1} \mathrm{e}^{t}\right]} & t<0 \\
{\left[-2+\left(2+c_{1}\right) \mathrm{e}^{t}\right]} & t<1 \\
{\left[-3 \mathrm{e}^{t-1}+1+\left(2+c_{1}\right) \mathrm{e}^{t}\right]} & 1 \leq t
\end{array}\right.
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y+\left(\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right)\right.$		$\frac{d S}{d R}=\left(\left\{\begin{array}{cc}0 & R<0 \\ 2 & R<1 \\ -1 & 1 \leq R\end{array}\right) \mathrm{e}^{-R}\right.$
	$\begin{aligned} R & =t \\ S & =\mathrm{e}^{-t} y \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\left[c_{1}\right]
$$

Unable to solve for constant of integration. Verification of solutions N/A

14.17.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y=\left\{\begin{array}{cc}
2 & 0 \leq t<1 \\
-1 & 1 \leq t
\end{array}, y(0)=1\right]\right.
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative
$y^{\prime}=y+\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right.$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-y=\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right.$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-y\right)=\mu(t)\left(\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right)\right.$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right) d t+c_{1}\right.$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right) d t+c_{1}\right.$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right) d t+c_{1}\right.}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-t}$
$y=\frac{\int \mathrm{e}^{-t}\left(\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ -1 & 1 \leq t\end{array}\right) d t+c_{1}\right.}{\mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs

$$
y=\frac{\left\{\begin{array}{cl}
0 & t \leq 0 \\
-2 \mathrm{e}^{-t}+2 & t \leq 1+c_{1} \\
\mathrm{e}^{-t}-3 \mathrm{e}^{-1}+2 & 1<t
\end{array} \mathrm{e}^{-t}\right.}{}
$$

- Simplify

$$
y=\mathrm{e}^{t}\left(\left\{\begin{array}{cc}
0 & t \leq 0 \\
-2 \mathrm{e}^{-t}+2 & t \leq 1 \\
\mathrm{e}^{-t}-3 \mathrm{e}^{-1}+2 & 1<t
\end{array}\right)\right.
$$

- Use initial condition $y(0)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify

$$
y=\left\{\begin{array}{cc}
\mathrm{e}^{t} & t \leq 0 \\
-2+3 \mathrm{e}^{t} & t \leq 1 \\
1+3 \mathrm{e}^{t}-3 \mathrm{e}^{t-1} & 1<t
\end{array}\right.
$$

- \quad Solution to the IVP

$$
y=\left\{\begin{array}{cc}
\mathrm{e}^{t} & t \leq 0 \\
-2+3 \mathrm{e}^{t} & t \leq 1 \\
1+3 \mathrm{e}^{t}-3 \mathrm{e}^{t-1} & 1<t
\end{array}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.344 (sec). Leaf size: 34
dsolve([diff $(y(t), t)-y(t)=$ piecewise $(0<=t$ and $t<1,2, t>=1,-1), y(0)=1], y(t)$, singsol=all)

$$
y(t)=\left\{\begin{array}{cc}
\mathrm{e}^{t} & t<0 \\
-2+3 \mathrm{e}^{t} & t<1 \\
1+3 \mathrm{e}^{t}-3 \mathrm{e}^{t-1} & 1 \leq t
\end{array}\right.
$$

\checkmark Solution by Mathematica
Time used: 0.071 (sec). Leaf size: 42
DSolve $\left[\left\{y^{\prime}[t]-y[t]==\right.\right.$ Piecewise $\left.[\{\{2,0<=t<1\},\{-1, t>=1\}\}],\{y[0]==1\}\right\}, y[t], t$, IncludeSingularSolut

$$
y(t) \rightarrow\left\{\begin{array}{cc}
e^{t} & t \leq 0 \\
-2+3 e^{t} & 0<t \leq 1 \\
1-3 e^{t-1}+3 e^{t} & \text { True }
\end{array}\right.
$$

15 Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
15.1 problem Problem 1 2832
15.2 problem Problem 2 2837
15.3 problem Problem 3 2842
15.4 problem Problem 4 2847
15.5 problem Problem 5 2852
15.6 problem Problem 6 2858
15.7 problem Problem 7 2864
15.8 problem Problem 8 2870
15.9 problem Problem 9 2876
15.10problem Problem 10 2882
15.11problem Problem 11 2888
15.12problem Problem 12 2894
15.13problem Problem 13 2900

15.1 problem Problem 1

15.1.1 Existence and uniqueness analysis 2832
15.1.2 Solving as laplace ode . 2833
15.1.3 Maple step by step solution . 2834

Internal problem ID [2884]
Internal file name [OUTPUT/2376_Sunday_June_05_2022_03_02_37_AM_41964257/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=\delta(t-5)
$$

With initial conditions

$$
[y(0)=3]
$$

15.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =\delta(t-5)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=\delta(t-5)
$$

The domain of $p(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\delta(t-5)$ is

$$
\{t<5 \vee 5<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

15.1.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+Y(s)=\mathrm{e}^{-5 s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-3+Y(s)=\mathrm{e}^{-5 s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{\mathrm{e}^{-5 s}+3}{s+1}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-5 s}+3}{s+1}\right) \\
& =\text { Heaviside }(t-5) \mathrm{e}^{-t+5}+3 \mathrm{e}^{-t}
\end{aligned}
$$

Hence the final solution is

$$
y=\text { Heaviside }(t-5) \mathrm{e}^{-t+5}+3 \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\text { Heaviside }(t-5) \mathrm{e}^{-t+5}+3 \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\text { Heaviside }(t-5) \mathrm{e}^{-t+5}+3 \mathrm{e}^{-t}
$$

Verified OK.

15.1.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+y=\operatorname{Dirac}(t-5), y(0)=3\right]$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Isolate the derivative

$$
y^{\prime}=-y+\operatorname{Dirac}(t-5)
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=\operatorname{Dirac}(t-5)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+y\right)=\mu(t) \operatorname{Dirac}(t-5)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \operatorname{Dirac}(t-5) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \operatorname{Dirac}(t-5) d t+c_{1}$
- Solve for y
$y=\frac{\int \mu(t) D i r a c(t-5) d t+c_{1}}{\mu(t)}$
- Substitute $\mu(t)=\mathrm{e}^{t}$
$y=\frac{\int e^{t} D \operatorname{irac}(t-5) d t+c_{1}}{e^{t}}$
- Evaluate the integrals on the rhs
$y=\frac{\text { Heaviside }(t-5) e^{5}+c_{1}}{e^{t}}$
- Simplify
$y=\mathrm{e}^{-t}\left(\right.$ Heaviside $\left.(t-5) \mathrm{e}^{5}+c_{1}\right)$
- Use initial condition $y(0)=3$
$3=c_{1}$
- \quad Solve for c_{1}
$c_{1}=3$
- Substitute $c_{1}=3$ into general solution and simplify
$y=\mathrm{e}^{-t}\left(\right.$ Heaviside $\left.(t-5) \mathrm{e}^{5}+3\right)$
- Solution to the IVP

$$
y=\mathrm{e}^{-t}\left(\text { Heaviside }(t-5) \mathrm{e}^{5}+3\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.219 (sec). Leaf size: 22
dsolve([diff $(y(t), t)+y(t)=\operatorname{Dirac}(t-5), y(0)=3], y(t)$, singsol=all)

$$
y(t)=\text { Heaviside }(t-5) \mathrm{e}^{-t+5}+3 \mathrm{e}^{-t}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 21
DSolve[\{y' $[t]+y[t]==\operatorname{DiracDelta}[t-5],\{y[0]==3\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{-t}\left(e^{5} \theta(t-5)+3\right)
$$

15.2 problem Problem 2

15.2.1 Existence and uniqueness analysis 2837
15.2.2 Solving as laplace ode . 2838
15.2.3 Maple step by step solution . 2839

Internal problem ID [2885]
Internal file name [OUTPUT/2377_Sunday_June_05_2022_03_02_43_AM_57791878/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y=\delta(t-2)
$$

With initial conditions

$$
[y(0)=1]
$$

15.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-2 \\
& q(t)=\delta(t-2)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=\delta(t-2)
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\delta(t-2)$ is

$$
\{t<2 \vee 2<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

15.2.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-2 Y(s)=\mathrm{e}^{-2 s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-1-2 Y(s)=\mathrm{e}^{-2 s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{\mathrm{e}^{-2 s}+1}{s-2}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-2 s}+1}{s-2}\right) \\
& =\mathrm{e}^{2 t}+\mathrm{e}^{2 t-4}(- \text { Heaviside }(-t+2)+1)
\end{aligned}
$$

Hence the final solution is

$$
y=\mathrm{e}^{2 t}+\mathrm{e}^{2 t-4}(- \text { Heaviside }(-t+2)+1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 t}+\mathrm{e}^{2 t-4}(- \text { Heaviside }(-t+2)+1) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 t}+\mathrm{e}^{2 t-4}(- \text { Heaviside }(-t+2)+1)
$$

Verified OK.

15.2.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-2 y=\operatorname{Dirac}(t-2), y(0)=1\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=2 y+\operatorname{Dirac}(t-2)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-2 y=\operatorname{Dirac}(t-2)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu(t) \operatorname{Dirac}(t-2)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \operatorname{Dirac}(t-2) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \operatorname{Dirac}(t-2) d t+c_{1}$
- Solve for y
$y=\frac{\int \mu(t) \operatorname{Dirac}(t-2) d t+c_{1}}{\mu(t)}$
- Substitute $\mu(t)=\mathrm{e}^{-2 t}$
$y=\frac{\int \mathrm{e}^{-2 t} \operatorname{Dirac}(t-2) d t+c_{1}}{\mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\text { Heaviside }(t-2) \mathrm{e}^{-4}+c_{1}}{\mathrm{e}^{-2 t}}$
- Simplify
$y=\mathrm{e}^{2 t}\left(\right.$ Heaviside $\left.(t-2) \mathrm{e}^{-4}+c_{1}\right)$
- Use initial condition $y(0)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- Substitute $c_{1}=1$ into general solution and simplify
$y=\mathrm{e}^{2 t}\left(\right.$ Heaviside $\left.(t-2) \mathrm{e}^{-4}+1\right)$
- Solution to the IVP

$$
y=\mathrm{e}^{2 t}\left(\text { Heaviside }(t-2) \mathrm{e}^{-4}+1\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.234 (sec). Leaf size: 26

```
dsolve([diff(y(t),t)-2*y(t)=Dirac(t-2),y(0) = 1],y(t), singsol=all)
```

$$
y(t)=\operatorname{Heaviside}(t-2) \mathrm{e}^{-4+2 t}+\mathrm{e}^{2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 23
DSolve[\{y' $[t]-2 * y[t]==\operatorname{DiracDelta}[t-2],\{y[0]==3\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{2 t-4}\left(\theta(t-2)+3 e^{4}\right)
$$

15.3 problem Problem 3

15.3.1 Existence and uniqueness analysis 2842
15.3.2 Solving as laplace ode . 2843
15.3.3 Maple step by step solution . 2844

Internal problem ID [2886]
Internal file name [OUTPUT/2378_Sunday_June_05_2022_03_02_49_AM_12555487/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first__order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+4 y=3 \delta(t-1)
$$

With initial conditions

$$
[y(0)=2]
$$

15.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =3 \delta(t-1)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+4 y=3 \delta(t-1)
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3 \delta(t-1)$ is

$$
\{t<1 \vee 1<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

15.3.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)+4 Y(s)=3 \mathrm{e}^{-s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-2+4 Y(s)=3 \mathrm{e}^{-s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{3 \mathrm{e}^{-s}+2}{s+4}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{3 \mathrm{e}^{-s}+2}{s+4}\right) \\
& =3 \text { Heaviside }(t-1) \mathrm{e}^{-4 t+4}+2 \mathrm{e}^{-4 t}
\end{aligned}
$$

Hence the final solution is

$$
y=3 \text { Heaviside }(t-1) \mathrm{e}^{-4 t+4}+2 \mathrm{e}^{-4 t}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=3 \text { Heaviside }(t-1) \mathrm{e}^{-4 t+4}+2 \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=3 \text { Heaviside }(t-1) \mathrm{e}^{-4 t+4}+2 \mathrm{e}^{-4 t}
$$

Verified OK.

15.3.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+4 y=3 \operatorname{Dirac}(t-1), y(0)=2\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative

$$
y^{\prime}=-4 y+3 \operatorname{Dirac}(t-1)
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+4 y=3 \operatorname{Dirac}(t-1)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+4 y\right)=3 \mu(t) \operatorname{Dirac}(t-1)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+4 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=4 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{4 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 3 \mu(t) \operatorname{Dirac}(t-1) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 3 \mu(t) \operatorname{Dirac}(t-1) d t+c_{1}$
- Solve for y
$y=\frac{\int 3 \mu(t) \operatorname{Dirac}(t-1) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{4 t}$
$y=\frac{\int 3 \mathrm{e}^{4 t} \operatorname{Dirac}(t-1) d t+c_{1}}{\mathrm{e}^{4 t}}$
- Evaluate the integrals on the rhs
$y=\frac{3 \text { Heaviside }(t-1) e^{4}+c_{1}}{\mathrm{e}^{4 t}}$
- Simplify
$y=\mathrm{e}^{-4 t}\left(3\right.$ Heaviside $\left.(t-1) \mathrm{e}^{4}+c_{1}\right)$
- Use initial condition $y(0)=2$
$2=c_{1}$
- \quad Solve for c_{1}
$c_{1}=2$
- Substitute $c_{1}=2$ into general solution and simplify
$y=3$ Heaviside $(t-1) \mathrm{e}^{-4 t} \mathrm{e}^{4}+2 \mathrm{e}^{-4 t}$
- Solution to the IVP

$$
y=3 \operatorname{Heaviside}(t-1) \mathrm{e}^{-4 t} \mathrm{e}^{4}+2 \mathrm{e}^{-4 t}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.422 (sec). Leaf size: 23

```
dsolve([diff(y(t),t)+4*y(t)=3*Dirac(t-1),y(0) = 2],y(t), singsol=all)
```

$$
y(t)=3 \text { Heaviside }(t-1) \mathrm{e}^{-4 t+4}+2 \mathrm{e}^{-4 t}
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 22
DSolve [\{y' $[\mathrm{t}]+4 * y[\mathrm{t}]==3 * \operatorname{DiracDelta}[\mathrm{t}-1],\{\mathrm{y}[0]==2\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow e^{-4 t}\left(3 e^{4} \theta(t-1)+2\right)
$$

15.4 problem Problem 4

15.4.1 Existence and uniqueness analysis 2847
15.4.2 Solving as laplace ode . 2848
15.4.3 Maple step by step solution . 2849

Internal problem ID [2887]
Internal file name [OUTPUT/2379_Sunday_June_05_2022_03_02_55_AM_59375699/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-5 y=2 \mathrm{e}^{-t}+\delta(t-3)
$$

With initial conditions

$$
[y(0)=0]
$$

15.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-5 \\
& q(t)=2 \mathrm{e}^{-t}+\delta(t-3)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-5 y=2 \mathrm{e}^{-t}+\delta(t-3)
$$

The domain of $p(t)=-5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2 \mathrm{e}^{-t}+\delta(t-3)$ is

$$
\{t<3 \vee 3<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

15.4.2 Solving as laplace ode

Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0)
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s Y(s)-y(0)-5 Y(s)=\frac{2}{1+s}+\mathrm{e}^{-3 s} \tag{1}
\end{equation*}
$$

Replacing initial condition gives

$$
s Y(s)-5 Y(s)=\frac{2}{1+s}+\mathrm{e}^{-3 s}
$$

Solving for $Y(s)$ gives

$$
Y(s)=\frac{\mathrm{e}^{-3 s} s+\mathrm{e}^{-3 s}+2}{(1+s)(s-5)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-3 s} s+\mathrm{e}^{-3 s}+2}{(1+s)(s-5)}\right) \\
& =\frac{2 \mathrm{e}^{2 t} \sinh (3 t)}{3}+\mathrm{e}^{-15+5 t}(- \text { Heaviside }(-t+3)+1)
\end{aligned}
$$

Hence the final solution is

$$
y=\frac{2 \mathrm{e}^{2 t} \sinh (3 t)}{3}+\mathrm{e}^{-15+5 t}(- \text { Heaviside }(-t+3)+1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \mathrm{e}^{2 t} \sinh (3 t)}{3}+\mathrm{e}^{-15+5 t}(- \text { Heaviside }(-t+3)+1) \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{2 \mathrm{e}^{2 t} \sinh (3 t)}{3}+\mathrm{e}^{-15+5 t}(- \text { Heaviside }(-t+3)+1)
$$

Verified OK.

15.4.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-5 y=2 \mathrm{e}^{-t}+\operatorname{Dirac}(t-3), y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1
- Isolate the derivative
$y^{\prime}=5 y+2 \mathrm{e}^{-t}+\operatorname{Dirac}(t-3)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-5 y=2 \mathrm{e}^{-t}+\operatorname{Dirac}(t-3)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-5 y\right)=\mu(t)\left(2 \mathrm{e}^{-t}+\operatorname{Dirac}(t-3)\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-5 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-5 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-5 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(2 \mathrm{e}^{-t}+\operatorname{Dirac}(t-3)\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(2 \mathrm{e}^{-t}+\operatorname{Dirac}(t-3)\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(2 \mathrm{e}^{-t}+\operatorname{Dirac}(t-3)\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-5 t}$
$y=\frac{\int \mathrm{e}^{-5 t}\left(2 \mathrm{e}^{-t}+\operatorname{Dirac}(t-3)\right) d t+c_{1}}{\mathrm{e}^{-5 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\text { Heaviside }(t-3) e^{-15}-\frac{e^{-6 t}}{3}+c_{1}}{\mathrm{e}^{-5 t}}$
- Simplify
$y=c_{1} \mathrm{e}^{5 t}+\mathrm{e}^{-15+5 t}$ Heaviside $(t-3)-\frac{\mathrm{e}^{-t}}{3}$
- Use initial condition $y(0)=0$
$0=c_{1}-\frac{1}{3}$
- \quad Solve for c_{1}
$c_{1}=\frac{1}{3}$
- \quad Substitute $c_{1}=\frac{1}{3}$ into general solution and simplify

$$
y=\frac{\mathrm{e}^{5 t}}{3}+\mathrm{e}^{-15+5 t} \text { Heaviside }(t-3)-\frac{\mathrm{e}^{-t}}{3}
$$

- Solution to the IVP

$$
y=\frac{\mathrm{e}^{5 t}}{3}+\mathrm{e}^{-15+5 t} \operatorname{Heaviside}(t-3)-\frac{\mathrm{e}^{-t}}{3}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 2.578 (sec). Leaf size: 32

```
dsolve([diff(y(t),t)-5*y(t)=2*exp(-t)+Dirac(t-3),y(0) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{2 \mathrm{e}^{2 t} \sinh (3 t)}{3}+\text { Heaviside }(-3+t) \mathrm{e}^{5 t-15}
$$

\checkmark Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 34

```
DSolve[{y'[t]-5*y[t]==2*Exp[-t]+DiracDelta[t-3],{y[0]==0}},y[t],t,IncludeSingularSolutions -
```

$$
y(t) \rightarrow \frac{1}{3} e^{-t}\left(3 e^{6 t-15} \theta(t-3)+e^{6 t}-1\right)
$$

15.5 problem Problem 5

15.5.1 Existence and uniqueness analysis 2852
15.5.2 Maple step by step solution . 2855

Internal problem ID [2888]
Internal file name [OUTPUT/2380_Sunday_June_05_2022_03_03_13_AM_99697359/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-3 y^{\prime}+2 y=\delta(t-1)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

15.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-3 \\
q(t) & =2 \\
F & =\delta(t-1)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-3 y^{\prime}+2 y=\delta(t-1)
$$

The domain of $p(t)=-3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\delta(t-1)$ is

$$
\{t<1 \vee 1<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-3 s Y(s)+3 y(0)+2 Y(s)=\mathrm{e}^{-s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+3-s-3 s Y(s)+2 Y(s)=\mathrm{e}^{-s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-s}+s-3}{s^{2}-3 s+2}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-s}+s-3}{s^{2}-3 s+2}\right) \\
& =\left(-\mathrm{e}^{2 t-2}+\mathrm{e}^{t-1}\right) \text { Heaviside }(1-t)+2 \mathrm{e}^{t}-\mathrm{e}^{2 t}+\mathrm{e}^{2 t-2}-\mathrm{e}^{t-1}
\end{aligned}
$$

Hence the final solution is

$$
y=\left(-\mathrm{e}^{2 t-2}+\mathrm{e}^{t-1}\right) \text { Heaviside }(1-t)+2 \mathrm{e}^{t}-\mathrm{e}^{2 t}+\mathrm{e}^{2 t-2}-\mathrm{e}^{t-1}
$$

Simplifying the solution gives

$$
y=\operatorname{Heaviside}(t-1) \mathrm{e}^{2 t-2}-\operatorname{Heaviside}(t-1) \mathrm{e}^{t-1}+2 \mathrm{e}^{t}-\mathrm{e}^{2 t}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{Heaviside}(t-1) \mathrm{e}^{2 t-2}-\operatorname{Heaviside}(t-1) \mathrm{e}^{t-1}+2 \mathrm{e}^{t}-\mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\operatorname{Heaviside}(t-1) \mathrm{e}^{2 t-2}-\operatorname{Heaviside}(t-1) \mathrm{e}^{t-1}+2 \mathrm{e}^{t}-\mathrm{e}^{2 t}
$$

Verified OK.

15.5.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-3 y^{\prime}+2 y=\operatorname{Dirac}(t-1), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-3 r+2=0$
- Factor the characteristic polynomial
$(r-1)(r-2)=0$
- Roots of the characteristic polynomial

$$
r=(1,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Dirac}(t-1)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{t} & \mathrm{e}^{2 t} \\
\mathrm{e}^{t} & 2 \mathrm{e}^{2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{3 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\left(\int \operatorname{Dirac}(t-1) d t\right)\left(\mathrm{e}^{2 t-2}-\mathrm{e}^{t-1}\right)
$$

- Compute integrals

$$
y_{p}(t)=\operatorname{Heaviside}(t-1)\left(\mathrm{e}^{2 t-2}-\mathrm{e}^{t-1}\right)
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+\operatorname{Heaviside}(t-1)\left(\mathrm{e}^{2 t-2}-\mathrm{e}^{t-1}\right)$
Check validity of solution $y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+\operatorname{Heaviside}(t-1)\left(\mathrm{e}^{2 t-2}-\mathrm{e}^{t-1}\right)$
- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=c_{1} \mathrm{e}^{t}+2 c_{2} \mathrm{e}^{2 t}+\operatorname{Dirac}(t-1)\left(\mathrm{e}^{2 t-2}-\mathrm{e}^{t-1}\right)+\operatorname{Heaviside}(t-1)\left(2 \mathrm{e}^{2 t-2}-\mathrm{e}^{t-1}\right)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=-1\right\}$
- Substitute constant values into general solution and simplify

$$
y=\operatorname{Heaviside}(t-1) \mathrm{e}^{2 t-2}-\operatorname{Heaviside}(t-1) \mathrm{e}^{t-1}+2 \mathrm{e}^{t}-\mathrm{e}^{2 t}
$$

- \quad Solution to the IVP

$$
y=H e a v i s i d e(t-1) \mathrm{e}^{2 t-2}-H e a v i s i d e(t-1) \mathrm{e}^{t-1}+2 \mathrm{e}^{t}-\mathrm{e}^{2 t}
$$

Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 2.375 (sec). Leaf size: 47
dsolve([diff $(y(t), t \$ 2)-3 * \operatorname{diff}(y(t), t)+2 * y(t)=\operatorname{Dirac}(t-1), y(0)=1, D(y)(0)=0], y(t)$, singsol

$$
y(t)=-\operatorname{Heaviside}(t-1) \mathrm{e}^{t-1}+\operatorname{Heaviside}(t-1) \mathrm{e}^{2 t-2}-\mathrm{e}^{2 t}+2 \mathrm{e}^{t}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 31
DSolve [\{y' ' $\left.[t]-3 * y '[t]+2 * y[t]==\operatorname{DiracDelta}[t-1],\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSol

$$
y(t) \rightarrow e^{t}\left(\frac{\left(e^{t}-e\right) \theta(t-1)}{e^{2}}-e^{t}+2\right)
$$

15.6 problem Problem 6

15.6.1 Existence and uniqueness analysis 2858
15.6.2 Maple step by step solution . 2861

Internal problem ID [2889]
Internal file name [OUTPUT/2381_Sunday_June_05_2022_03_03_19_AM_18570981/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff", "second__order_ode_can__be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y=\delta(t-3)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

15.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =-4 \\
F & =\delta(t-3)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y=\delta(t-3)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\delta(t-3)$ is

$$
\{t<3 \vee 3<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-4 Y(s)=\mathrm{e}^{-3 s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-4 Y(s)=\mathrm{e}^{-3 s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-3 s}+1}{s^{2}-4}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-3 s}+1}{s^{2}-4}\right) \\
& =\frac{\text { Heaviside }(t-3) \sinh (2 t-6)}{2}+\frac{\sinh (2 t)}{2}
\end{aligned}
$$

Hence the final solution is

$$
y=\frac{\operatorname{Heaviside}(t-3) \sinh (2 t-6)}{2}+\frac{\sinh (2 t)}{2}
$$

Simplifying the solution gives

$$
y=\frac{\text { Heaviside }(t-3) \sinh (2 t-6)}{2}+\frac{\sinh (2 t)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\operatorname{Heaviside}(t-3) \sinh (2 t-6)}{2}+\frac{\sinh (2 t)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\operatorname{Heaviside}(t-3) \sinh (2 t-6)}{2}+\frac{\sinh (2 t)}{2}
$$

Verified OK.

15.6.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y=\operatorname{Dirac}(t-3), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE $r^{2}-4=0$
- Factor the characteristic polynomial
$(r-2)(r+2)=0$
- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-2 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Dirac}(t-3)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & \mathrm{e}^{2 t} \\
-2 \mathrm{e}^{-2 t} & 2 \mathrm{e}^{2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=4
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\left(\int \operatorname{Dirac}(t-3) d t\right)\left(\mathrm{e}^{-2 t+6}-\mathrm{e}^{2 t-6}\right)}{4}$
- Compute integrals
$y_{p}(t)=-\frac{\operatorname{Heaviside}(t-3)\left(\mathrm{e}^{-2 t+6}-\mathrm{e}^{2 t-6}\right)}{4}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}-\frac{\text { Heaviside }(t-3)\left(\mathrm{e}^{-2 t+6}-\mathrm{e}^{2 t-6}\right)}{4}$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}-\frac{\text { Heaviside }(t-3)\left(\mathrm{e}^{-2 t+6}-\mathrm{e}^{2 t-6}\right)}{4}$
- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}+2 c_{2} \mathrm{e}^{2 t}-\frac{\operatorname{Dirac}(t-3)\left(\mathrm{e}^{-2 t+6}-\mathrm{e}^{2 t-6}\right)}{4}-\frac{\text { Heaviside }(t-3)\left(-2 \mathrm{e}^{-2 t+6}-2 \mathrm{e}^{2 t-6}\right)}{4}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$

$$
1=-2 c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{1}{4}, c_{2}=\frac{1}{4}\right\}$
- Substitute constant values into general solution and simplify
$y=-\frac{\mathrm{e}^{-2 t}}{4}+\frac{\mathrm{e}^{2 t}}{4}-\frac{\text { Heaviside }(t-3) \mathrm{e}^{-2 t+6}}{4}+\frac{\text { Heaviside }(t-3) \mathrm{e}^{2 t-6}}{4}$
- Solution to the IVP

$$
y=-\frac{\mathrm{e}^{-2 t}}{4}+\frac{\mathrm{e}^{2 t}}{4}-\frac{\text { Heaviside }(t-3) \mathrm{e}^{-2 t+6}}{4}+\frac{\text { Heaviside }(t-3) \mathrm{e}^{2 t-6}}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.594 (sec). Leaf size: 23
dsolve([diff $(y(t), t \$ 2)-4 * y(t)=\operatorname{Dirac}(t-3), y(0)=0, D(y)(0)=1], y(t)$, singsol=all)

$$
y(t)=\frac{\text { Heaviside }(-3+t) \sinh (2 t-6)}{2}+\frac{\sinh (2 t)}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 44
DSolve[\{y'' $\left.[t]-4 * y[t]==\operatorname{DiracDelta}[t-3],\left\{y[0]==0, y^{\prime}[0]==1\right\}\right\}, y[t], t$, IncludeSingularSolutions

$$
y(t) \rightarrow \frac{1}{4} e^{-2(t+3)}\left(\left(e^{4 t}-e^{12}\right) \theta(t-3)+e^{6}\left(e^{4 t}-1\right)\right)
$$

15.7 problem Problem 7

15.7.1 Existence and uniqueness analysis 2864
15.7.2 Maple step by step solution . 2867

Internal problem ID [2890]
Internal file name [OUTPUT/2382_Sunday_June_05_2022_03_03_24_AM_94482554/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+5 y=\delta\left(t-\frac{\pi}{2}\right)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=2\right]
$$

15.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =5 \\
F & =\delta\left(t-\frac{\pi}{2}\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+5 y=\delta\left(t-\frac{\pi}{2}\right)
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\delta\left(t-\frac{\pi}{2}\right)$ is

$$
\left\{t<\frac{\pi}{2} \vee \frac{\pi}{2}<t\right\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+2 s Y(s)-2 y(0)+5 Y(s)=\mathrm{e}^{-\frac{s \pi}{2}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-2+2 s Y(s)+5 Y(s)=\mathrm{e}^{-\frac{s \pi}{2}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-\frac{s \pi}{2}}+2}{s^{2}+2 s+5}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-\frac{s \pi}{2}}+2}{s^{2}+2 s+5}\right) \\
& =\frac{\sin (2 t)\left(- \text { Heaviside }\left(t-\frac{\pi}{2}\right) \mathrm{e}^{\frac{\pi}{2}-t}+2 \mathrm{e}^{-t}\right)}{2}
\end{aligned}
$$

Converting the above solution to piecewise it becomes

$$
y=\left\{\begin{array}{cc}
\mathrm{e}^{-t} \sin (2 t) & t \leq \frac{\pi}{2} \\
\frac{\sin (2 t)\left(2 \mathrm{e}^{-t}-\mathrm{e}^{\frac{\pi}{2}-t}\right)}{2} & \frac{\pi}{2}<t
\end{array}\right.
$$

Simplifying the solution gives

$$
y=\sin (2 t)\left(\mathrm{e}^{-t}-\left(\left\{\begin{array}{cc}
0 & t \leq \frac{\pi}{2} \\
\frac{\mathrm{e}^{\frac{\pi}{2}-t}}{2} & \frac{\pi}{2}<t
\end{array}\right)\right)\right.
$$

Summary
The solution(s) found are the following

$$
y=\sin (2 t)\left(\mathrm{e}^{-t}-\left(\left\{\begin{array}{cc}
0 & t \leq \frac{\pi}{2} \tag{1}\\
\frac{\mathrm{e}^{\frac{\pi}{2}-t}}{2} & \frac{\pi}{2}<t
\end{array}\right)\right)\right.
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sin (2 t)\left(\mathrm{e}^{-t}-\left(\left\{\begin{array}{cc}
0 & t \leq \frac{\pi}{2} \\
\frac{\mathrm{e}^{\frac{\pi}{2}-t}}{2} & \frac{\pi}{2}<t
\end{array}\right)\right)\right.
$$

Verified OK.

15.7.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+5 y=\operatorname{Dirac}\left(t-\frac{\pi}{2}\right), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+5=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-2) \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-1-2 \mathrm{I},-1+2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-t} \cos (2 t)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-t} \sin (2 t)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Dirac}\left(t-\frac{\pi}{2}\right)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (2 t) & \mathrm{e}^{-t} \sin (2 t) \\
-\mathrm{e}^{-t} \cos (2 t)-2 \mathrm{e}^{-t} \sin (2 t) & -\mathrm{e}^{-t} \sin (2 t)+2 \mathrm{e}^{-t} \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-2 t}
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\left(\int \operatorname{Dirac}\left(t-\frac{\pi}{2}\right) d t\right) \sin (2 t) \mathrm{e}^{\frac{\pi}{2}-t}}{2}$
- Compute integrals

$$
y_{p}(t)=-\frac{\text { Heaviside }\left(t-\frac{\pi}{2}\right) \sin (2 t) \mathrm{e}^{\frac{\pi}{2}-t}}{2}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)-\frac{\text { Heaviside }\left(t-\frac{\pi}{2}\right) \sin (2 t) \mathrm{e}^{\frac{\pi}{2}-t}}{2}$
Check validity of solution $y=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)-\frac{\text { Heaviside }\left(t-\frac{\pi}{2}\right) \sin (2 t) \mathrm{e}^{\frac{\pi}{2}-t}}{2}$
- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (2 t)-2 c_{1} \mathrm{e}^{-t} \sin (2 t)-c_{2} \mathrm{e}^{-t} \sin (2 t)+2 c_{2} \mathrm{e}^{-t} \cos (2 t)-\frac{D i r a c\left(t-\frac{\pi}{2}\right) \sin (2 t) \mathrm{e}^{\frac{\pi}{2}-t}}{2}-H e
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=2$
$2=-c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify
$y=-\frac{\sin (2 t)\left(\text { Heaviside }\left(t-\frac{\pi}{2}\right) \mathrm{e}^{\frac{\pi}{2}-t}-2 \mathrm{e}^{-t}\right)}{2}$
- \quad Solution to the IVP

$$
y=-\frac{\sin (2 t)\left(\text { Heaviside }\left(t-\frac{\pi}{2}\right) \mathrm{e}^{\frac{\pi}{2}-t}-2 \mathrm{e}^{-t}\right)}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.204 (sec). Leaf size: 33
dsolve([diff $(y(t), t \$ 2)+2 * \operatorname{diff}(y(t), t)+5 * y(t)=\operatorname{Dirac}(t-P i / 2), y(0)=0, D(y)(0)=2], y(t)$, sing

$$
y(t)=\sin (2 t)\left(-\frac{\text { Heaviside }\left(t-\frac{\pi}{2}\right) \mathrm{e}^{-t+\frac{\pi}{2}}}{2}+\mathrm{e}^{-t}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 34
DSolve[\{y' ' $[\mathrm{t}]+2 * y$ ' $[\mathrm{t}]+5 * \mathrm{y}[\mathrm{t}]==\operatorname{DiracDelta}[\mathrm{t}-\mathrm{Pi} / 2],\{y[0]==0, \mathrm{y}$ ' $[0]==2\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingular

$$
y(t) \rightarrow-e^{-t}\left(e^{\pi / 2} \theta(2 t-\pi)-2\right) \sin (t) \cos (t)
$$

15.8 problem Problem 8

15.8.1 Existence and uniqueness analysis 2870
15.8.2 Maple step by step solution . 2873

Internal problem ID [2891]
Internal file name [OUTPUT/2383_Sunday_June_05_2022_03_03_31_AM_69290317/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y^{\prime}+13 y=\delta\left(t-\frac{\pi}{4}\right)
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=0\right]
$$

15.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-4 \\
q(t) & =13 \\
F & =\delta\left(t-\frac{\pi}{4}\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y^{\prime}+13 y=\delta\left(t-\frac{\pi}{4}\right)
$$

The domain of $p(t)=-4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=13$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\delta\left(t-\frac{\pi}{4}\right)$ is

$$
\left\{t<\frac{\pi}{4} \vee \frac{\pi}{4}<t\right\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-4 s Y(s)+4 y(0)+13 Y(s)=\mathrm{e}^{-\frac{s \pi}{4}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =3 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+12-3 s-4 s Y(s)+13 Y(s)=\mathrm{e}^{-\frac{s \pi}{4}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-\frac{s \pi}{4}}+3 s-12}{s^{2}-4 s+13}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-\frac{s \pi}{4}}+3 s-12}{s^{2}-4 s+13}\right) \\
& =\frac{\mathrm{e}^{2 t-\frac{\pi}{2}} \sin \left(3 t+\frac{\pi}{4}\right)\left(-1+\operatorname{Heaviside}\left(-t+\frac{\pi}{4}\right)\right)}{3}+\mathrm{e}^{2 t}(3 \cos (3 t)-2 \sin (3 t))
\end{aligned}
$$

Hence the final solution is

$$
y=\frac{\mathrm{e}^{2 t-\frac{\pi}{2}} \sin \left(3 t+\frac{\pi}{4}\right)\left(-1+\operatorname{Heaviside}\left(-t+\frac{\pi}{4}\right)\right)}{3}+\mathrm{e}^{2 t}(3 \cos (3 t)-2 \sin (3 t))
$$

Simplifying the solution gives

$$
y=-\frac{\sqrt{2}(\sin (3 t)+\cos (3 t)) \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{2 t-\frac{\pi}{2}}}{6}+3 \mathrm{e}^{2 t}\left(\cos (3 t)-\frac{2 \sin (3 t)}{3}\right)
$$

Summary
The solution(s) found are the following

$$
y=-\frac{\sqrt{2}(\sin (3 t)+\cos (3 t)) \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{2 t-\frac{\pi}{2}}}{6}+3 \mathrm{e}^{2 t}\left(\cos (3 t)-\frac{2 \sin (3 t)}{3}\right)(1)
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\sqrt{2}(\sin (3 t)+\cos (3 t)) \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{2 t-\frac{\pi}{2}}}{6}+3 \mathrm{e}^{2 t}\left(\cos (3 t)-\frac{2 \sin (3 t)}{3}\right)
$$

Verified OK.

15.8.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y^{\prime}+13 y=\operatorname{Dirac}\left(t-\frac{\pi}{4}\right), y(0)=3,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-4 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{4 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(2-3 \mathrm{I}, 2+3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{2 t} \cos (3 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{2 t} \sin (3 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{2 t} \cos (3 t)+c_{2} \mathrm{e}^{2 t} \sin (3 t)+y_{p}(t)$
$\square \quad$ Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Dirac}\left(t-\frac{\pi}{4}\right)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{2 t} \cos (3 t) & \mathrm{e}^{2 t} \sin (3 t) \\
2 \mathrm{e}^{2 t} \cos (3 t)-3 \mathrm{e}^{2 t} \sin (3 t) & 2 \mathrm{e}^{2 t} \sin (3 t)+3 \mathrm{e}^{2 t} \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{4 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\sqrt{2} \mathrm{e}^{2 t-\frac{\pi}{2}}(\sin (3 t)+\cos (3 t))\left(\int \operatorname{Dirac}\left(t-\frac{\pi}{4}\right) d t\right)}{6}
$$

- Compute integrals

$$
y_{p}(t)=-\frac{\sqrt{2}(\sin (3 t)+\cos (3 t)) \text { Heaviside }\left(t-\frac{\pi}{4}\right) e^{2 t-\frac{\pi}{2}}}{6}
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{2 t} \cos (3 t)+c_{2} \mathrm{e}^{2 t} \sin (3 t)-\frac{\sqrt{2}(\sin (3 t)+\cos (3 t)) \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{2 t-\frac{\pi}{2}}}{6}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{2 t} \cos (3 t)+c_{2} \mathrm{e}^{2 t} \sin (3 t)-\frac{\sqrt{2}(\sin (3 t)+\cos (3 t)) \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{2 t-\frac{\pi}{2}}}{6}$

- Use initial condition $y(0)=3$

$$
3=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 t} \cos (3 t)-3 c_{1} \mathrm{e}^{2 t} \sin (3 t)+2 c_{2} \mathrm{e}^{2 t} \sin (3 t)+3 c_{2} \mathrm{e}^{2 t} \cos (3 t)-\frac{\sqrt{2}(3 \cos (3 t)-3 \sin (3 t)) \text { Heaviside }(t}{6}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=2 c_{1}+3 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=-2\right\}$
- Substitute constant values into general solution and simplify
$y=-\frac{\sqrt{2}(\sin (3 t)+\cos (3 t)) \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{2 t-\frac{\pi}{2}}}{6}+3 \mathrm{e}^{2 t}\left(\cos (3 t)-\frac{2 \sin (3 t)}{3}\right)$
- \quad Solution to the IVP
$y=-\frac{\sqrt{2}(\sin (3 t)+\cos (3 t)) \text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{2 t-\frac{\pi}{2}}}{6}+3 \mathrm{e}^{2 t}\left(\cos (3 t)-\frac{2 \sin (3 t)}{3}\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 3.344 (sec). Leaf size: 51
dsolve ([diff $(y(t), t \$ 2)-4 * \operatorname{diff}(y(t), t)+13 * y(t)=\operatorname{Dirac}(t-P i / 4), y(0)=3, D(y)(0)=0], y(t), \sin$
$y(t)=-\frac{\sqrt{2} \mathrm{e}^{-\frac{\pi}{2}+2 t} \text { Heaviside }\left(t-\frac{\pi}{4}\right)(\sin (3 t)+\cos (3 t))}{6}+3 \mathrm{e}^{2 t}\left(\cos (3 t)-\frac{2 \sin (3 t)}{3}\right)$
$\sqrt{ }$ Solution by Mathematica
Time used: 0.211 (sec). Leaf size: 61

$$
y(t) \rightarrow \frac{1}{6} e^{2 t}\left(6(3 \cos (3 t)-2 \sin (3 t))-\sqrt{2} e^{-\pi / 2} \theta(12 t-3 \pi)(\sin (3 t)+\cos (3 t))\right)
$$

15.9 problem Problem 9

15.9.1 Existence and uniqueness analysis 2876
15.9.2 Maple step by step solution . 2879

Internal problem ID [2892]
Internal file name [OUTPUT/2384_Sunday_June_05_2022_03_03_38_AM_53352669/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 9.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+3 y=\delta(t-2)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-1\right]
$$

15.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =3 \\
F & =\delta(t-2)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+3 y=\delta(t-2)
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\delta(t-2)$ is

$$
\{t<2 \vee 2<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+4 s Y(s)-4 y(0)+3 Y(s)=\mathrm{e}^{-2 s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =-1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-3-s+4 s Y(s)+3 Y(s)=\mathrm{e}^{-2 s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-2 s}+s+3}{s^{2}+4 s+3}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-2 s}+s+3}{s^{2}+4 s+3}\right) \\
& =\text { Heaviside }(t-2) \mathrm{e}^{-2 t+4} \sinh (t-2)+\mathrm{e}^{-t}
\end{aligned}
$$

Hence the final solution is

$$
y=\operatorname{Heaviside}(t-2) \mathrm{e}^{-2 t+4} \sinh (t-2)+\mathrm{e}^{-t}
$$

Simplifying the solution gives

$$
y=\operatorname{Heaviside}(t-2) \mathrm{e}^{-2 t+4} \sinh (t-2)+\mathrm{e}^{-t}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{Heaviside}(t-2) \mathrm{e}^{-2 t+4} \sinh (t-2)+\mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\operatorname{Heaviside}(t-2) \mathrm{e}^{-2 t+4} \sinh (t-2)+\mathrm{e}^{-t}
$$

Verified OK.

15.9.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+3 y=\operatorname{Dirac}(t-2), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+3=0
$$

- Factor the characteristic polynomial
$(r+3)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-3,-1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-3 t}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Dirac}(t-2)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 t} & \mathrm{e}^{-t} \\
-3 \mathrm{e}^{-3 t} & -\mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-4 t}
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\left(\int \operatorname{Dirac}(t-2) d t\right)\left(\mathrm{e}^{-3 t+6}-\mathrm{e}^{-t+2}\right)}{2}$
- Compute integrals
$y_{p}(t)=-\frac{\operatorname{Heaviside}(t-2)\left(\mathrm{e}^{-3 t+6}-\mathrm{e}^{-t+2}\right)}{2}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-t}-\frac{\text { Heaviside }(t-2)\left(\mathrm{e}^{-3 t+6}-\mathrm{e}^{-t+2}\right)}{2}$
Check validity of solution $y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-t}-\frac{\text { Heaviside }(t-2)\left(\mathrm{e}^{-3 t+6}-\mathrm{e}^{-t+2}\right)}{2}$
- Use initial condition $y(0)=1$

$$
1=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 t}-c_{2} \mathrm{e}^{-t}-\frac{\operatorname{Dirac}(t-2)\left(\mathrm{e}^{-3 t+6}-\mathrm{e}^{-t+2}\right)}{2}-\frac{\operatorname{Heaviside}(t-2)\left(-3 \mathrm{e}^{-3 t+6}+\mathrm{e}^{-t+2}\right)}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-1$

$$
-1=-3 c_{1}-c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{\text { Heaviside }(t-2) \mathrm{e}^{-t+2}}{2}-\frac{\text { Heaviside }(t-2) \mathrm{e}^{-3 t+6}}{2}+\mathrm{e}^{-t}
$$

- Solution to the IVP
$y=\frac{\text { Heaviside }(t-2) \mathrm{e}^{-t+2}}{2}-\frac{\text { Heaviside }(t-2) \mathrm{e}^{-3 t+6}}{2}+\mathrm{e}^{-t}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.406 (sec). Leaf size: 24
dsolve([diff $(y(t), t \$ 2)+4 * \operatorname{diff}(y(t), t)+3 * y(t)=\operatorname{Dirac}(t-2), y(0)=1, D(y)(0)=-1], y(t)$, singso

$$
y(t)=\operatorname{Heaviside}(t-2) \mathrm{e}^{-2 t+4} \sinh (t-2)+\mathrm{e}^{-t}
$$

\checkmark Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 37
DSolve[\{y' ' $[t]+4 * y$ ' $\left.[t]+3 * y[t]==\operatorname{DiracDelta}[t-2],\left\{y[0]==1, y^{\prime}[0]==-1\right\}\right\}, y[t], t$, IncludeSingularSo

$$
y(t) \rightarrow \frac{1}{2} e^{2-3 t}\left(e^{2 t}-e^{4}\right) \theta(t-2)+e^{-t}
$$

15.10 problem Problem 10

15.10.1 Existence and uniqueness analysis 2882
15.10.2 Maple step by step solution . 2885

Internal problem ID [2893]
Internal file name [OUTPUT/2385_Sunday_June_05_2022_03_03_45_AM_83974142/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y^{\prime}+13 y=\delta\left(t-\frac{\pi}{4}\right)
$$

With initial conditions

$$
\left[y(0)=5, y^{\prime}(0)=5\right]
$$

15.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =13 \\
F & =\delta\left(t-\frac{\pi}{4}\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+13 y=\delta\left(t-\frac{\pi}{4}\right)
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=13$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\delta\left(t-\frac{\pi}{4}\right)$ is

$$
\left\{t<\frac{\pi}{4} \vee \frac{\pi}{4}<t\right\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+6 s Y(s)-6 y(0)+13 Y(s)=\mathrm{e}^{-\frac{s \pi}{4}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =5 \\
y^{\prime}(0) & =5
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-35-5 s+6 s Y(s)+13 Y(s)=\mathrm{e}^{-\frac{s \pi}{4}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-\frac{s \pi}{4}}+5 s+35}{s^{2}+6 s+13}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-\frac{s \pi}{4}}+5 s+35}{s^{2}+6 s+13}\right) \\
& =-\frac{\text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-3 t+\frac{3 \pi}{4}} \cos (2 t)}{2}+5 \mathrm{e}^{-3 t}(\cos (2 t)+2 \sin (2 t))
\end{aligned}
$$

Hence the final solution is

$$
y=-\frac{\text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-3 t+\frac{3 \pi}{4}} \cos (2 t)}{2}+5 \mathrm{e}^{-3 t}(\cos (2 t)+2 \sin (2 t))
$$

Simplifying the solution gives

$$
y=-\frac{\text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-3 t+\frac{3 \pi}{4}} \cos (2 t)}{2}+5 \mathrm{e}^{-3 t}(\cos (2 t)+2 \sin (2 t))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-3 t+\frac{3 \pi}{4}} \cos (2 t)}{2}+5 \mathrm{e}^{-3 t}(\cos (2 t)+2 \sin (2 t)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-3 t+\frac{3 \pi}{4}} \cos (2 t)}{2}+5 \mathrm{e}^{-3 t}(\cos (2 t)+2 \sin (2 t))
$$

Verified OK.

15.10.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+6 y^{\prime}+13 y=\operatorname{Dirac}\left(t-\frac{\pi}{4}\right), y(0)=5,\left.y^{\prime}\right|_{\{t=0\}}=5\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+6 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-3-2 \mathrm{I},-3+2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-3 t} \cos (2 t)$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-3 t} \sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+c_{2} \mathrm{e}^{-3 t} \sin (2 t)+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Dirac}\left(t-\frac{\pi}{4}\right)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 t} \cos (2 t) & \mathrm{e}^{-3 t} \sin (2 t) \\
-3 \mathrm{e}^{-3 t} \cos (2 t)-2 \mathrm{e}^{-3 t} \sin (2 t) & -3 \mathrm{e}^{-3 t} \sin (2 t)+2 \mathrm{e}^{-3 t} \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-6 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\left(\int \operatorname{Dirac}\left(t-\frac{\pi}{4}\right) d t\right) \cos (2 t) \mathrm{e}^{-3 t+\frac{3 \pi}{4}}}{2}
$$

- Compute integrals

$$
y_{p}(t)=-\frac{\text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-3 t+\frac{3 \pi}{4}} \cos (2 t)}{2}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+c_{2} \mathrm{e}^{-3 t} \sin (2 t)-\frac{\text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-3 t+\frac{3 \pi}{4}} \cos (2 t)}{2}$
$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+c_{2} \mathrm{e}^{-3 t} \sin (2 t)-\frac{\text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-3 t+\frac{3 \pi}{4}} \cos (2 t)}{2}$
- Use initial condition $y(0)=5$

$$
5=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 t} \cos (2 t)-2 c_{1} \mathrm{e}^{-3 t} \sin (2 t)-3 c_{2} \mathrm{e}^{-3 t} \sin (2 t)+2 c_{2} \mathrm{e}^{-3 t} \cos (2 t)-\frac{D \text { irac }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-3 t+\frac{3 \pi}{4}} \cos (}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=5$

$$
5=-3 c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=5, c_{2}=10\right\}$
- Substitute constant values into general solution and simplify
$y=-\frac{\text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-3 t+\frac{3 \pi}{4}} \cos (2 t)}{2}+5 \mathrm{e}^{-3 t}(\cos (2 t)+2 \sin (2 t))$
- \quad Solution to the IVP
$y=-\frac{\text { Heaviside }\left(t-\frac{\pi}{4}\right) \mathrm{e}^{-3 t+\frac{3 \pi}{4}} \cos (2 t)}{2}+5 \mathrm{e}^{-3 t}(\cos (2 t)+2 \sin (2 t))$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 2.531 (sec). Leaf size: 42

```
dsolve([diff(y(t),t$2)+6*\operatorname{diff}(y(t),t)+13*y(t)=\operatorname{Dirac}(t-Pi/4),y(0) = 5, D(y)(0)= 5],y(t), sin
```

$$
y(t)=-\frac{\text { Heaviside }\left(t-\frac{\pi}{4}\right) \cos (2 t) \mathrm{e}^{\frac{3 \pi}{4}-3 t}}{2}+5 \mathrm{e}^{-3 t}(\cos (2 t)+2 \sin (2 t))
$$

Solution by Mathematica
Time used: 0.287 (sec). Leaf size: 121
DSolve [\{y' ' $[\mathrm{t}]+46 * y$ ' $\left.[\mathrm{t}]+13 * y[\mathrm{t}]==\operatorname{DiracDelta}[\mathrm{t}-\mathrm{Pi} / 4],\left\{y[0]==1, \mathrm{y}^{\prime}[0]==-1\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingu

$$
\begin{aligned}
y(t) \rightarrow \frac{1}{516} e^{-2 \sqrt{129} t-23 t-\frac{\sqrt{129} \pi}{2}}\left(2 e^{\frac{\sqrt{129} \pi}{2}}(\right. & \left.(129+11 \sqrt{129}) e^{4 \sqrt{129} t}+129-11 \sqrt{129}\right) \\
& \left.-\sqrt{129} e^{23 \pi / 4}\left(e^{\sqrt{129} \pi}-e^{4 \sqrt{129} t}\right) \theta(4 t-\pi)\right)
\end{aligned}
$$

15.11 problem Problem 11

15.11.1 Existence and uniqueness analysis 2888
15.11.2 Maple step by step solution . 2891

Internal problem ID [2894]
Internal file name [OUTPUT/2386_Sunday_June_05_2022_03_03_52_AM_56924303/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=15 \sin (2 t)+\delta\left(t-\frac{\pi}{6}\right)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

15.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =9 \\
F & =15 \sin (2 t)+\delta\left(t-\frac{\pi}{6}\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+9 y=15 \sin (2 t)+\delta\left(t-\frac{\pi}{6}\right)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=9$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=15 \sin (2 t)+\delta\left(t-\frac{\pi}{6}\right)$ is

$$
\left\{t<\frac{\pi}{6} \vee \frac{\pi}{6}<t\right\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+9 Y(s)=\frac{30}{s^{2}+4}+\mathrm{e}^{-\frac{s \pi}{6}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+9 Y(s)=\frac{30}{s^{2}+4}+\mathrm{e}^{-\frac{s \pi}{6}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-\frac{s \pi}{6}} s^{2}+4 \mathrm{e}^{-\frac{s \pi}{6}}+30}{\left(s^{2}+4\right)\left(s^{2}+9\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-\frac{s \pi}{6}} s^{2}+4 \mathrm{e}^{-\frac{s \pi}{6}}+30}{\left(s^{2}+4\right)\left(s^{2}+9\right)}\right) \\
& =-\frac{\text { Heaviside }\left(t-\frac{\pi}{6}\right) \cos (3 t)}{3}-2 \sin (3 t)+3 \sin (2 t)
\end{aligned}
$$

Hence the final solution is

$$
y=-\frac{\text { Heaviside }\left(t-\frac{\pi}{6}\right) \cos (3 t)}{3}-2 \sin (3 t)+3 \sin (2 t)
$$

Simplifying the solution gives

$$
y=-\frac{\text { Heaviside }\left(t-\frac{\pi}{6}\right) \cos (3 t)}{3}-2 \sin (3 t)+3 \sin (2 t)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\text { Heaviside }\left(t-\frac{\pi}{6}\right) \cos (3 t)}{3}-2 \sin (3 t)+3 \sin (2 t) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{\text { Heaviside }\left(t-\frac{\pi}{6}\right) \cos (3 t)}{3}-2 \sin (3 t)+3 \sin (2 t)
$$

Verified OK.

15.11.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+9 y=15 \sin (2 t)+\operatorname{Dirac}\left(t-\frac{\pi}{6}\right), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-36})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (3 t)
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(t)=\sin (3 t)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=15 \sin (2 t)+\operatorname{Dirac}\left(t-\frac{\pi}{6}\right)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (3 t) & \sin (3 t) \\
-3 \sin (3 t) & 3 \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=3
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\cos (3 t)\left(\int\left(-120 \cos (t)^{5}+150 \cos (t)^{3}+\text { Dirac }\left(t-\frac{\pi}{6}\right)-30 \cos (t)\right) d t\right)}{3}+\frac{5 \sin (3 t)\left(\int(\sin (5 t)-\sin (t)) d t\right)}{2}
$$

- Compute integrals

$$
y_{p}(t)=-\frac{\cos (t)\left(\left(4 \cos (t)^{2}-3\right) \text { Heaviside }\left(t-\frac{\pi}{6}\right)-18 \sin (t)\right)}{3}
$$

- Substitute particular solution into general solution to ODE $y=c_{1} \cos (3 t)+c_{2} \sin (3 t)-\frac{\cos (t)\left(\left(4 \cos (t)^{2}-3\right) \text { Heaviside }\left(t-\frac{\pi}{6}\right)-18 \sin (t)\right)}{3}$
Check validity of solution $y=c_{1} \cos (3 t)+c_{2} \sin (3 t)-\frac{\cos (t)\left(\left(4 \cos (t)^{2}-3\right) \text { Heaviside }\left(t-\frac{\pi}{6}\right)-18 \sin (t)\right)}{3}$
- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)+\frac{\sin (t)\left(\left(4 \cos (t)^{2}-3\right) \text { Heaviside }\left(t-\frac{\pi}{6}\right)-18 \sin (t)\right)}{3}-\frac{\cos (t)(-8 \sin (t) \cos (t) \text { Heavisid }}{}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=6+3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=-2\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\left(-4 \cos (t)^{3}+3 \cos (t)\right) \text { Heaviside }\left(t-\frac{\pi}{6}\right)}{3}-8(\cos (t)-1) \sin (t)\left(\cos (t)+\frac{1}{4}\right)
$$

- \quad Solution to the IVP

$$
y=\frac{\left(-4 \cos (t)^{3}+3 \cos (t)\right) \text { Heaviside }\left(t-\frac{\pi}{6}\right)}{3}-8(\cos (t)-1) \sin (t)\left(\cos (t)+\frac{1}{4}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 3.438 (sec). Leaf size: 29

```
dsolve([diff(y(t),t$2)+9*y(t)=15*\operatorname{sin}(2*t)+Dirac(t-Pi/6),y(0) = 0, D(y)(0) = 0],y(t), singsol
```

$$
y(t)=-\frac{\cos (3 t) \text { Heaviside }\left(t-\frac{\pi}{6}\right)}{3}-2 \sin (3 t)+3 \sin (2 t)
$$

Solution by Mathematica
Time used: 0.075 (sec). Leaf size: 34
DSolve $\left[\left\{y\right.\right.$ ' ' $\left.[\mathrm{t}]+9 * y[\mathrm{t}]==15 * \operatorname{Sin}[2 * \mathrm{t}]+\operatorname{DiracDelta}[\mathrm{t}-\mathrm{Pi} / 6],\left\{y[0]==0, \mathrm{y}^{\prime}[0]==0\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSing

$$
y(t) \rightarrow-\frac{1}{3} \theta(6 t-\pi) \cos (3 t)+3 \sin (2 t)-2 \sin (3 t)
$$

15.12 problem Problem 12

15.12.1 Existence and uniqueness analysis 2894
15.12.2 Maple step by step solution . 2897

Internal problem ID [2895]
Internal file name [OUTPUT/2387_Sunday_June_05_2022_03_03_59_AM_82386455/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+16 y=4 \cos (3 t)+\delta\left(t-\frac{\pi}{3}\right)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

15.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =16 \\
F & =4 \cos (3 t)+\delta\left(t-\frac{\pi}{3}\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+16 y=4 \cos (3 t)+\delta\left(t-\frac{\pi}{3}\right)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=16$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=4 \cos (3 t)+\delta\left(t-\frac{\pi}{3}\right)$ is

$$
\left\{t<\frac{\pi}{3} \vee \frac{\pi}{3}<t\right\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+16 Y(s)=\frac{4 s}{s^{2}+9}+\mathrm{e}^{-\frac{s \pi}{3}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+16 Y(s)=\frac{4 s}{s^{2}+9}+\mathrm{e}^{-\frac{s \pi}{3}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-\frac{s \pi}{3}} s^{2}+9 \mathrm{e}^{-\frac{s \pi}{3}}+4 s}{\left(s^{2}+9\right)\left(s^{2}+16\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-\frac{s \pi}{3}} s^{2}+9 \mathrm{e}^{-\frac{s \pi}{3}}+4 s}{\left(s^{2}+9\right)\left(s^{2}+16\right)}\right) \\
& =\frac{\text { Heaviside }\left(t-\frac{\pi}{3}\right) \cos \left(4 t+\frac{\pi}{6}\right)}{4}+\frac{4 \cos (3 t)}{7}-\frac{4 \cos (4 t)}{7}
\end{aligned}
$$

Hence the final solution is

$$
y=\frac{\text { Heaviside }\left(t-\frac{\pi}{3}\right) \cos \left(4 t+\frac{\pi}{6}\right)}{4}+\frac{4 \cos (3 t)}{7}-\frac{4 \cos (4 t)}{7}
$$

Simplifying the solution gives

$$
y=\frac{\text { Heaviside }\left(t-\frac{\pi}{3}\right)(\cos (4 t) \sqrt{3}-\sin (4 t))}{8}+\frac{4 \cos (3 t)}{7}-\frac{4 \cos (4 t)}{7}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\operatorname{Heaviside}\left(t-\frac{\pi}{3}\right)(\cos (4 t) \sqrt{3}-\sin (4 t))}{8}+\frac{4 \cos (3 t)}{7}-\frac{4 \cos (4 t)}{7} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\text { Heaviside }\left(t-\frac{\pi}{3}\right)(\cos (4 t) \sqrt{3}-\sin (4 t))}{8}+\frac{4 \cos (3 t)}{7}-\frac{4 \cos (4 t)}{7}
$$

Verified OK.

15.12.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+16 y=4 \cos (3 t)+\operatorname{Dirac}\left(t-\frac{\pi}{3}\right), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+16=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial
$r=(-4 \mathrm{I}, 4 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (4 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (4 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (4 t)+c_{2} \sin (4 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=4 \cos (3 t)+\operatorname{Dirac}\left(t-\frac{\pi}{3}\right)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (4 t) & \sin (4 t) \\
-4 \sin (4 t) & 4 \cos (4 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=4
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\cos (4 t)\left(\int\left(-\sqrt{3} \operatorname{Dirac}\left(t-\frac{\pi}{3}\right)+8 \sin (4 t) \cos (3 t)\right) d t\right)}{8}+\frac{\sin (4 t)\left(\int\left(8 \cos (4 t) \cos (3 t)-\operatorname{Dirac}\left(t-\frac{\pi}{3}\right)\right) d t\right)}{8}
$$

- Compute integrals

$$
y_{p}(t)=\frac{\left(\left(8 \cos (t)^{4}-8 \cos (t)^{2}+1\right) \sqrt{3}-8 \sin (t) \cos (t)^{3}+4 \sin (t) \cos (t)\right) \text { Heaviside }\left(t-\frac{\pi}{3}\right)}{8}+\frac{16 \cos (t)^{3}}{7}-\frac{12 \cos (t)}{7}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (4 t)+c_{2} \sin (4 t)+\frac{\left(\left(8 \cos (t)^{4}-8 \cos (t)^{2}+1\right) \sqrt{3}-8 \sin (t) \cos (t)^{3}+4 \sin (t) \cos (t)\right) \text { Heaviside }\left(t-\frac{\pi}{3}\right)}{8}+\frac{16 \cos (t)}{7}$
Check validity of solution $y=c_{1} \cos (4 t)+c_{2} \sin (4 t)+\frac{\left(\left(8 \cos (t)^{4}-8 \cos (t)^{2}+1\right) \sqrt{3}-8 \sin (t) \cos (t)^{3}+4 \sin (t)\right.}{8}$
- Use initial condition $y(0)=0$
$0=c_{1}+\frac{4}{7}$
- Compute derivative of the solution
$y^{\prime}=-4 c_{1} \sin (4 t)+4 c_{2} \cos (4 t)+\frac{\left(\left(-32 \sin (t) \cos (t)^{3}+16 \sin (t) \cos (t)\right) \sqrt{3}-8 \cos (t)^{4}+24 \sin (t)^{2} \cos (t)^{2}+4 \cos (t)^{2}-4 \operatorname{si}\right.}{8}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=4 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{4}{7}, c_{2}=0\right\}$
- Substitute constant values into general solution and simplify
$y=-\frac{4}{7}+\frac{\left(\left(8 \cos (t)^{4}-8 \cos (t)^{2}+1\right) \sqrt{3}-8 \sin (t) \cos (t)^{3}+4 \sin (t) \cos (t)\right) \text { Heaviside }\left(t-\frac{\pi}{3}\right)}{8}-\frac{32 \cos (t)^{4}}{7}+\frac{16 \cos (t)^{3}}{7}+\frac{32 \cos }{7}$
- \quad Solution to the IVP

$$
y=-\frac{4}{7}+\frac{\left(\left(8 \cos (t)^{4}-8 \cos (t)^{2}+1\right) \sqrt{3}-8 \sin (t) \cos (t)^{3}+4 \sin (t) \cos (t)\right) \text { Heaviside }\left(t-\frac{\pi}{3}\right)}{8}-\frac{32 \cos (t)^{4}}{7}+\frac{16 \cos (t)^{3}}{7}+\frac{32 \cos }{7}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 3.609 (sec). Leaf size: 33

```
dsolve([diff(y(t),t$2)+16*y(t)=4*\operatorname{cos}(3*t)+Dirac(t-Pi/3),y(0) = 0, D(y)(0) = 0],y(t), singsol
```

$$
y(t)=\frac{(\cos (4 t) \sqrt{3}-\sin (4 t)) \text { Heaviside }\left(t-\frac{\pi}{3}\right)}{8}-\frac{4 \cos (4 t)}{7}+\frac{4 \cos (3 t)}{7}
$$

Solution by Mathematica
Time used: 0.159 (sec). Leaf size: 50
DSolve [\{y' ' $[\mathrm{t}]+16 * y[\mathrm{t}]==4 * \operatorname{Cos}[3 * \mathrm{t}]+\operatorname{DiracDelta[t-Pi/3],\{ y[0]==0,y'[0]==0\} \} ,y[t],t,\text {IncludeSing}.}$

$$
y(t) \rightarrow \frac{1}{8} \theta(3 t-\pi)(\sqrt{3} \cos (4 t)-\sin (4 t))+\frac{4}{7}(\cos (3 t)-\cos (4 t))
$$

15.13 problem Problem 13

15.13.1 Existence and uniqueness analysis 2900
15.13.2 Maple step by step solution . 2903

Internal problem ID [2896]
Internal file name [OUTPUT/2388_Sunday_June_05_2022_03_04_08_AM_19570783/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 10, The Laplace Transform and Some Elementary Applications. Exercises for 10.8. page 710
Problem number: Problem 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+5 y=4 \sin (t)+\delta\left(t-\frac{\pi}{6}\right)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

15.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =5 \\
F & =4 \sin (t)+\delta\left(t-\frac{\pi}{6}\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+5 y=4 \sin (t)+\delta\left(t-\frac{\pi}{6}\right)
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=4 \sin (t)+\delta\left(t-\frac{\pi}{6}\right)$ is

$$
\left\{t<\frac{\pi}{6} \vee \frac{\pi}{6}<t\right\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+2 s Y(s)-2 y(0)+5 Y(s)=\frac{4}{s^{2}+1}+\mathrm{e}^{-\frac{s \pi}{6}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1+2 s Y(s)+5 Y(s)=\frac{4}{s^{2}+1}+\mathrm{e}^{-\frac{s \pi}{6}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-\frac{s \pi}{6}} s^{2}+s^{2}+\mathrm{e}^{-\frac{s \pi}{6}}+5}{\left(s^{2}+1\right)\left(s^{2}+2 s+5\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-\frac{s \pi}{6}} s^{2}+s^{2}+\mathrm{e}^{-\frac{s \pi}{6}}+5}{\left(s^{2}+1\right)\left(s^{2}+2 s+5\right)}\right) \\
& =-\frac{\text { Heaviside }\left(t-\frac{\pi}{6}\right) \mathrm{e}^{-t+\frac{\pi}{6}} \cos \left(2 t+\frac{\pi}{6}\right)}{2}-\frac{2 \cos (t)}{5}+\frac{4 \sin (t)}{5}+\frac{\mathrm{e}^{-t}(4 \cos (2 t)+3 \sin (2 t))}{10}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & -\frac{\operatorname{Heaviside~}\left(t-\frac{\pi}{6}\right) \mathrm{e}^{-t+\frac{\pi}{6}} \cos \left(2 t+\frac{\pi}{6}\right)}{2}-\frac{2 \cos (t)}{5} \\
& +\frac{4 \sin (t)}{5}+\frac{\mathrm{e}^{-t}(4 \cos (2 t)+3 \sin (2 t))}{10}
\end{aligned}
$$

Simplifying the solution gives

$$
\begin{aligned}
y= & -\frac{\operatorname{Heaviside}\left(t-\frac{\pi}{6}\right)\left(\cos (t)^{2} \sqrt{3}-\sin (t) \cos (t)-\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-t+\frac{\pi}{6}}}{2} \\
& +\frac{\left(4 \cos (t)^{2}+3 \sin (t) \cos (t)-2\right) \mathrm{e}^{-t}}{5}-\frac{2 \cos (t)}{5}+\frac{4 \sin (t)}{5}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{\operatorname{Heaviside}\left(t-\frac{\pi}{6}\right)\left(\cos (t)^{2} \sqrt{3}-\sin (t) \cos (t)-\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-t+\frac{\pi}{6}}}{2} \tag{1}\\
& +\frac{\left(4 \cos (t)^{2}+3 \sin (t) \cos (t)-2\right) \mathrm{e}^{-t}}{5}-\frac{2 \cos (t)}{5}+\frac{4 \sin (t)}{5}
\end{align*}
$$

(a) Solution plot

Verification of solutions

$$
\begin{aligned}
y= & -\frac{\operatorname{Heaviside}\left(t-\frac{\pi}{6}\right)\left(\cos (t)^{2} \sqrt{3}-\sin (t) \cos (t)-\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-t+\frac{\pi}{6}}}{2} \\
& +\frac{\left(4 \cos (t)^{2}+3 \sin (t) \cos (t)-2\right) \mathrm{e}^{-t}}{5}-\frac{2 \cos (t)}{5}+\frac{4 \sin (t)}{5}
\end{aligned}
$$

Verified OK.

15.13.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+5 y=4 \sin (t)+\operatorname{Dirac}\left(t-\frac{\pi}{6}\right), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+5=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-2) \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial
$r=(-1-2 \mathrm{I},-1+2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-t} \cos (2 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-t} \sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=4 \sin (t)+\operatorname{Dirac}\left(t-\frac{\pi}{6}\right)\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (2 t) & \mathrm{e}^{-t} \sin (2 t) \\
-\mathrm{e}^{-t} \cos (2 t)-2 \mathrm{e}^{-t} \sin (2 t) & -\mathrm{e}^{-t} \sin (2 t)+2 \mathrm{e}^{-t} \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-2 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=\frac{\mathrm{e}^{-t}\left(-\cos (2 t)\left(\int\left(16 \sin (t)^{2} \cos (t) \mathrm{e}^{t}+\sqrt{3} \mathrm{e}^{\frac{\pi}{6}} \operatorname{Dirac}\left(t-\frac{\pi}{6}\right)\right) d t\right)+\sin (2 t)\left(\int\left(8 \cos (2 t) \sin (t) \mathrm{e}^{t}+\mathrm{e}^{\frac{\pi}{6}} \operatorname{Dirac}\left(t-\frac{\pi}{6}\right)\right) d t\right)\right)}{4}$
- Compute integrals

$$
y_{p}(t)=-\frac{\text { Heaviside }\left(t-\frac{\pi}{6}\right)\left(\cos (t)^{2} \sqrt{3}-\sin (t) \cos (t)-\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-t+\frac{\pi}{6}}}{2}-\frac{2 \cos (t)}{5}+\frac{4 \sin (t)}{5}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)-\frac{\text { Heaviside }\left(t-\frac{\pi}{6}\right)\left(\cos (t)^{2} \sqrt{3}-\sin (t) \cos (t)-\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-t+\frac{\pi}{6}}}{2}-\frac{2 \cos (t)}{5}+\frac{4 \sin (t)}{5}$
Check validity of solution $y=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)-\frac{\text { Heaviside }\left(t-\frac{\pi}{6}\right)\left(\cos (t)^{2} \sqrt{3}-\sin (t) \cos (t)-\frac{\sqrt{3}}{2}\right.}{2}$
- Use initial condition $y(0)=0$

$$
0=c_{1}-\frac{2}{5}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (2 t)-2 c_{1} \mathrm{e}^{-t} \sin (2 t)-c_{2} \mathrm{e}^{-t} \sin (2 t)+2 c_{2} \mathrm{e}^{-t} \cos (2 t)-\frac{\operatorname{Dirac}\left(t-\frac{\pi}{6}\right)\left(\cos (t)^{2} \sqrt{3}-\sin (t) \operatorname{co}\right.}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$

$$
1=-c_{1}+\frac{4}{5}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{2}{5}, c_{2}=\frac{3}{10}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\text { Heaviside }\left(t-\frac{\pi}{6}\right)\left(\cos (t)^{2} \sqrt{3}-\sin (t) \cos (t)-\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-t+\frac{\pi}{6}}}{2}+\frac{\left(4 \cos (t)^{2}+3 \sin (t) \cos (t)-2\right) \mathrm{e}^{-t}}{5}-\frac{2 \cos (t)}{5}+\frac{4 \sin (t)}{5}
$$

- \quad Solution to the IVP

$$
y=-\frac{\operatorname{Heaviside}\left(t-\frac{\pi}{6}\right)\left(\cos (t)^{2} \sqrt{3}-\sin (t) \cos (t)-\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-t+\frac{\pi}{6}}}{2}+\frac{\left(4 \cos (t)^{2}+3 \sin (t) \cos (t)-2\right) \mathrm{e}^{-t}}{5}-\frac{2 \cos (t)}{5}+\frac{4 \sin (t)}{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 3.406 (sec). Leaf size: 56

```
dsolve([diff (y (t),t$2)+2*\operatorname{diff}(y(t),t)+5*y(t)=4*\operatorname{sin}(t)+\operatorname{Dirac}(t-Pi/6),y(0)=0,D(y)(0)=1],y
```

$$
\begin{aligned}
y(t)= & -\frac{\operatorname{Heaviside}\left(t-\frac{\pi}{6}\right)\left(\sqrt{3} \cos (t)^{2}-\cos (t) \sin (t)-\frac{\sqrt{3}}{2}\right) \mathrm{e}^{-t+\frac{\pi}{6}}}{2} \\
& +\frac{\left(4 \cos (t)^{2}+3 \cos (t) \sin (t)-2\right) \mathrm{e}^{-t}}{5}-\frac{2 \cos (t)}{5}+\frac{4 \sin (t)}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.644 (sec). Leaf size: 75
DSolve[\{y' '[t] $+2 * y$ ' $[t]+5 * y[t]==4 * \operatorname{Sin}[t]+\operatorname{DiracDelta[t-Pi/6],\{ y[0]==0,y'[0]==1\} \} ,y[t],t,Includ~}$

$$
\begin{aligned}
& y(t) \rightarrow \frac{1}{20} e^{-t}\left(-5 e^{\pi / 6} \theta(6 t-\pi)(\sqrt{3} \cos (2 t)-\sin (2 t))+\right. 16 e^{t} \sin (t)+6 \sin (2 t) \\
&\left.-8 e^{t} \cos (t)+8 \cos (2 t)\right)
\end{aligned}
$$

16 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page739
16.1 problem Problem 1 2908
16.2 problem Problem 2 2918
16.3 problem Problem 3 2927
16.4 problem Problem 4 2936
16.5 problem Problem 5 2945
16.6 problem Problem 6 2954
16.7 problem Problem 7 2963
16.8 problem Problem 8 2973
16.9 problem Problem 9 2983
16.10problem Problem 10 2992
16.11problem Problem 11 3000
16.12problem Problem 12 3011
16.13problem Problem 13 3022
16.14problem Problem 14 3032
16.15problem Problem 15 3043
16.16problem Problem 17 3054
16.17problem Problem 18 3066
16.18problem Problem 19 3076
16.19problem Problem 20 3088
16.20problem Problem 21 3098

16.1 problem Problem 1

16.1.1 Maple step by step solution

2915
Internal problem ID [2897]
Internal file name [OUTPUT/2389_Sunday_June_05_2022_03_04_16_AM_27712915/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff", "second_order_ode_can_be_made_integrable", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{610}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{611}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=y^{\prime}(0) \\
& F_{2}=y(0) \\
& F_{3}=y^{\prime}(0) \\
& F_{4}=y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{1}{720} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
2 a_{2}-a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=\frac{a_{0}}{2}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{120}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{720}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{5040}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{6} a_{1} x^{3}+\frac{1}{24} a_{0} x^{4}+\frac{1}{120} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) a_{0}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y & =\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{1}{720} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
y & =\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 396: Slope field plot

Verification of solutions

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{1}{720} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.1.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-y=0$
- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial $r=(-1,1)$
- 1 st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- 2nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{x}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff(y(x),x$2)-y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue[y''[x]-y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{120}+\frac{x^{3}}{6}+x\right)+c_{1}\left(\frac{x^{4}}{24}+\frac{x^{2}}{2}+1\right)
$$

16.2 problem Problem 2

16.2.1 Maple step by step solution

2925
Internal problem ID [2898]
Internal file name [OUTPUT/2390_Sunday_June_05_2022_03_04_17_AM_4644177/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[_erf]
```

$$
y^{\prime \prime}+2 x y^{\prime}+4 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{613}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{614}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-2 x y^{\prime}-4 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =4 y^{\prime} x^{2}+8 y x-6 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-8 y^{\prime} x^{3}-16 x^{2} y+28 x y^{\prime}+32 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(16 x^{4}-96 x^{2}+60\right) y^{\prime}+\left(32 x^{3}-144 x\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-32 x^{5}+288 x^{3}-456 x\right) y^{\prime}-64 y\left(x^{4}-\frac{15}{2} x^{2}+6\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-4 y(0) \\
& F_{1}=-6 y^{\prime}(0) \\
& F_{2}=32 y(0) \\
& F_{3}=60 y^{\prime}(0) \\
& F_{4}=-384 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-2 x^{2}+\frac{4}{3} x^{4}-\frac{8}{15} x^{6}\right) y(0)+\left(x-x^{3}+\frac{1}{2} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-2 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 2 n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+4 a_{0}=0 \\
a_{2}=-2 a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+2 n a_{n}+4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{2 a_{n}}{n+1} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+6 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-a_{1}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+8 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{4 a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+10 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{2}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{8 a_{0}}{15}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+14 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{6}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-2 a_{0} x^{2}-a_{1} x^{3}+\frac{4}{3} a_{0} x^{4}+\frac{1}{2} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-2 x^{2}+\frac{4}{3} x^{4}\right) a_{0}+\left(x-x^{3}+\frac{1}{2} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-2 x^{2}+\frac{4}{3} x^{4}\right) c_{1}+\left(x-x^{3}+\frac{1}{2} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-2 x^{2}+\frac{4}{3} x^{4}-\frac{8}{15} x^{6}\right) y(0)+\left(x-x^{3}+\frac{1}{2} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-2 x^{2}+\frac{4}{3} x^{4}\right) c_{1}+\left(x-x^{3}+\frac{1}{2} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-2 x^{2}+\frac{4}{3} x^{4}-\frac{8}{15} x^{6}\right) y(0)+\left(x-x^{3}+\frac{1}{2} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-2 x^{2}+\frac{4}{3} x^{4}\right) c_{1}+\left(x-x^{3}+\frac{1}{2} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-2 x y^{\prime}-4 y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+2 x y^{\prime}+4 y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+2 a_{k}(k+2)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation
$(k+2)\left(k a_{k+2}+2 a_{k}+a_{k+2}\right)=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{2 a_{k}}{k+1}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff ( }\textrm{y}(\textrm{x}),\textrm{x}$2)+2*x*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+4*y(\textrm{x})=0,y(\textrm{x}),\mathrm{ ,type='series', x=0);
```

$$
y(x)=\left(1-2 x^{2}+\frac{4}{3} x^{4}\right) y(0)+\left(x-x^{3}+\frac{1}{2} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 38

AsymptoticDSolveValue $\left[\mathrm{y}^{\prime \prime}\right.$ ' $[\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}$ ' $\left.[\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{2}-x^{3}+x\right)+c_{1}\left(\frac{4 x^{4}}{3}-2 x^{2}+1\right)
$$

16.3 problem Problem 3

16.3.1 Maple step by step solution

2934
Internal problem ID [2899]
Internal file name [OUTPUT/2391_Sunday_June_05_2022_03_04_19_AM_59879883/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
y^{\prime \prime}-2 x y^{\prime}-2 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{616}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{617}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =2 x y^{\prime}+2 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =4 y^{\prime} x^{2}+4 y x+4 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =8 y^{\prime} x^{3}+8 x^{2} y+20 x y^{\prime}+12 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(16 x^{4}+72 x^{2}+32\right) y^{\prime}+\left(16 x^{3}+56 x\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(32 x^{5}+224 x^{3}+264 x\right) y^{\prime}+32\left(x^{4}+6 x^{2}+\frac{15}{4}\right) y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=2 y(0) \\
& F_{1}=4 y^{\prime}(0) \\
& F_{2}=12 y(0) \\
& F_{3}=32 y^{\prime}(0) \\
& F_{4}=120 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}\right) y(0)+\left(x+\frac{2}{3} x^{3}+\frac{4}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-2 n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-2 n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-2 a_{0}=0 \\
a_{2}=a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-2 n a_{n}-2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{2 a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{2 a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-6 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{2}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-8 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{4 a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-10 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{6}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-12 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{8 a_{1}}{105}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+a_{0} x^{2}+\frac{2}{3} a_{1} x^{3}+\frac{1}{2} a_{0} x^{4}+\frac{4}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+x^{2}+\frac{1}{2} x^{4}\right) a_{0}+\left(x+\frac{2}{3} x^{3}+\frac{4}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+x^{2}+\frac{1}{2} x^{4}\right) c_{1}+\left(x+\frac{2}{3} x^{3}+\frac{4}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}\right) y(0)+\left(x+\frac{2}{3} x^{3}+\frac{4}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+x^{2}+\frac{1}{2} x^{4}\right) c_{1}+\left(x+\frac{2}{3} x^{3}+\frac{4}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}\right) y(0)+\left(x+\frac{2}{3} x^{3}+\frac{4}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+x^{2}+\frac{1}{2} x^{4}\right) c_{1}+\left(x+\frac{2}{3} x^{3}+\frac{4}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.3.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=2 x y^{\prime}+2 y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-2 x y^{\prime}-2 y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-2 a_{k}(k+1)\right) x^{k}=0
$$

- Each term in the series must be 0, giving the recursion relation
$(k+1)\left(a_{k+2}(k+2)-2 a_{k}\right)=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{2 a_{k}}{k+2}\right]$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 32

```
Order:=6;
dsolve(diff(y(x),x$2)-2*x*diff (y (x),x)-2*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1+x^{2}+\frac{1}{2} x^{4}\right) y(0)+\left(x+\frac{2}{3} x^{3}+\frac{4}{15} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 38
AsymptoticDSolveValue[y' $[\mathrm{x}]-2 * \mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]-2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{4 x^{5}}{15}+\frac{2 x^{3}}{3}+x\right)+c_{1}\left(\frac{x^{4}}{2}+x^{2}+1\right)
$$

16.4 problem Problem 4

16.4.1 Maple step by step solution

2943
Internal problem ID [2900]
Internal file name [OUTPUT/2392_Sunday_June_05_2022_03_04_21_AM_28661475/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
y^{\prime \prime}-y^{\prime} x^{2}-2 y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{619}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{620}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y^{\prime} x^{2}+2 y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(x^{4}+4 x\right) y^{\prime}+\left(2 x^{3}+2\right) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{6}+10 x^{3}+6\right) y^{\prime}+2 x^{2} y\left(x^{3}+7\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =x\left(\left(x^{7}+18 x^{4}+50 x\right) y^{\prime}+2 y\left(x^{6}+15 x^{3}+20\right)\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(x^{10}+28 x^{7}+170 x^{4}+140 x\right) y^{\prime}+2 y\left(x^{9}+25 x^{6}+110 x^{3}+20\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=2 y(0) \\
& F_{2}=6 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=40 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{3} x^{3}+\frac{1}{18} x^{6}\right) y(0)+\left(x+\frac{1}{4} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{2}+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n x^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty}\left(-n x^{1+n} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-(n-1) a_{n-1} x^{n}\right) \\
\sum_{n=0}^{\infty}\left(-2 x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n}\right)
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\sum_{n=2}^{\infty}\left(-(n-1) a_{n-1} x^{n}\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=1$ gives

$$
6 a_{3}-2 a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{0}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)-(n-1) a_{n-1}-2 a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n-1}}{n+2} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-3 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{1}}{4}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-4 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-5 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{18}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-6 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{28}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{3} a_{0} x^{3}+\frac{1}{4} a_{1} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{x^{3}}{3}\right) a_{0}+\left(x+\frac{1}{4} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{x^{3}}{3}\right) c_{1}+\left(x+\frac{1}{4} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{3} x^{3}+\frac{1}{18} x^{6}\right) y(0)+\left(x+\frac{1}{4} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{x^{3}}{3}\right) c_{1}+\left(x+\frac{1}{4} x^{4}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{1}{3} x^{3}+\frac{1}{18} x^{6}\right) y(0)+\left(x+\frac{1}{4} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{x^{3}}{3}\right) c_{1}+\left(x+\frac{1}{4} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.4.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=y^{\prime} x^{2}+2 y x
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-y^{\prime} x^{2}-2 y x=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

- Shift index using $k->k-1$

$$
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}
$$

- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k+1}
$$

- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1) x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k-1}(k+1)\right) x^{k}\right)=0$
- \quad Each term must be 0

$$
2 a_{2}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
(k+1)\left(a_{k+2}(k+2)-a_{k-1}\right)=0
$$

- \quad Shift index using $k->k+1$

$$
(k+2)\left(a_{k+3}(k+3)-a_{k}\right)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{a_{k}}{k+3}, 2 a_{2}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff(y(x),x$2)-x^2*diff (y (x),x)-2*x*y(x)=0,y(x),type='series', x=0);
\[
y(x)=\left(1+\frac{x^{3}}{3}\right) y(0)+\left(x+\frac{1}{4} x^{4}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28
AsymptoticDSolveValue[y''[x]-x^2*y'[x]-2*x*y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{2}\left(\frac{x^{4}}{4}+x\right)+c_{1}\left(\frac{x^{3}}{3}+1\right)
$$

16.5 problem Problem 5

16.5.1 Maple step by step solution

2952
Internal problem ID [2901]
Internal file name [OUTPUT/2393_Sunday_June_05_2022_03_04_23_AM_61835031/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
y^{\prime \prime}+y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{622}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{623}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-x y^{\prime}-y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-2 y^{\prime}+x^{2} y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =x\left(x y^{\prime}+4 y\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-y x^{3}+6 x y^{\prime}+4 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-y(0) \\
& F_{2}=-2 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=4 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{0}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{180}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{504}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{6} a_{0} x^{3}-\frac{1}{12} a_{1} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{3}}{6}\right) a_{0}+\left(x-\frac{1}{12} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y x
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y x=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion
$x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}$
- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}$
- Convert $y^{\prime \prime}$ to series expansion
$y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}$
- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k-1}\right) x^{k}\right)=0$
- \quad Each term must be 0
$2 a_{2}=0$
- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}+a_{k-1}=0$
- \quad Shift index using $k->k+1$

$$
\left((k+1)^{2}+3 k+5\right) a_{k+3}+a_{k}=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k}}{k^{2}+5 k+6}, 2 a_{2}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff(y(x),x$2)+x*y(x)=0,y(x),type='series',x=0);
\[
y(x)=\left(1-\frac{x^{3}}{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28

```
AsymptoticDSolveValue[y''[x]+x*y[x]==0,y[x],{x,0,5}]
```

$$
y(x) \rightarrow c_{2}\left(x-\frac{x^{4}}{12}\right)+c_{1}\left(1-\frac{x^{3}}{6}\right)
$$

16.6 problem Problem 6

16.6.1 Maple step by step solution

2961
Internal problem ID [2902]
Internal file name [OUTPUT/2394_Sunday_June_05_2022_03_04_25_AM_72312463/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+x y^{\prime}+3 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{625}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{626}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-x y^{\prime}-3 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x^{2}+3 y x-4 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-y^{\prime} x^{3}-3 x^{2} y+9 x y^{\prime}+15 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-15 x^{2}+24\right) y^{\prime}+3 x y\left(x^{2}-11\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}+22 x^{3}-87 x\right) y^{\prime}-3 y\left(x^{4}-18 x^{2}+35\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-3 y(0) \\
& F_{1}=-4 y^{\prime}(0) \\
& F_{2}=15 y(0) \\
& F_{3}=24 y^{\prime}(0) \\
& F_{4}=-105 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{3}{2} x^{2}+\frac{5}{8} x^{4}-\frac{7}{48} x^{6}\right) y(0)+\left(x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-3\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+3 a_{0}=0 \\
a_{2}=-\frac{3 a_{0}}{2}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+3 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}(n+3)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{2 a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+5 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{5 a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+6 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{5}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+7 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{7 a_{0}}{48}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+8 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{4 a_{1}}{105}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{3}{2} a_{0} x^{2}-\frac{2}{3} a_{1} x^{3}+\frac{5}{8} a_{0} x^{4}+\frac{1}{5} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{3}{2} x^{2}+\frac{5}{8} x^{4}\right) a_{0}+\left(x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{3}{2} x^{2}+\frac{5}{8} x^{4}\right) c_{1}+\left(x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{3}{2} x^{2}+\frac{5}{8} x^{4}-\frac{7}{48} x^{6}\right) y(0)+\left(x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{3}{2} x^{2}+\frac{5}{8} x^{4}\right) c_{1}+\left(x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{3}{2} x^{2}+\frac{5}{8} x^{4}-\frac{7}{48} x^{6}\right) y(0)+\left(x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{3}{2} x^{2}+\frac{5}{8} x^{4}\right) c_{1}+\left(x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-x y^{\prime}-3 y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+x y^{\prime}+3 y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+3)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation $\left(k^{2}+3 k+2\right) a_{k+2}+a_{k}(k+3)=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}(k+3)}{k^{2}+3 k+2}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Kummer successful
    <- special function solution successful
    -> Trying to convert hypergeometric functions to elementary form...
    <- elementary form could result into a too large expression - returning special functi
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff(y(x),x$2)+x*diff (y(x),x)+3*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{3}{2} x^{2}+\frac{5}{8} x^{4}\right) y(0)+\left(x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue[y''[x]+x*y'[x]+3*y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{5}-\frac{2 x^{3}}{3}+x\right)+c_{1}\left(\frac{5 x^{4}}{8}-\frac{3 x^{2}}{2}+1\right)
$$

16.7 problem Problem 7

16.7.1 Maple step by step solution 2970

Internal problem ID [2903]
Internal file name [OUTPUT/2395_Sunday_June_05_2022_03_04_27_AM_94002059/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-y^{\prime} x^{2}-3 y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{628}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{629}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y^{\prime} x^{2}+3 y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(x^{4}+5 x\right) y^{\prime}+\left(3 x^{3}+3\right) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{6}+12 x^{3}+8\right) y^{\prime}+3\left(x^{5}+8 x^{2}\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =x\left(\left(x^{7}+21 x^{4}+68 x\right) y^{\prime}+3 y\left(x^{6}+17 x^{3}+24\right)\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(x^{10}+32 x^{7}+224 x^{4}+208 x\right) y^{\prime}+3 y\left(x^{3}+6\right)\left(x^{6}+22 x^{3}+4\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=3 y(0) \\
& F_{2}=8 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=72 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{2} x^{3}+\frac{1}{10} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{2}+3\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n x^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-3 x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty}\left(-n x^{1+n} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-(n-1) a_{n-1} x^{n}\right) \\
\sum_{n=0}^{\infty}\left(-3 x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-3 a_{n-1} x^{n}\right)
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\sum_{n=2}^{\infty}\left(-(n-1) a_{n-1} x^{n}\right)+\sum_{n=1}^{\infty}\left(-3 a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=1$ gives

$$
6 a_{3}-3 a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{0}}{2}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)-(n-1) a_{n-1}-3 a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n-1}}{1+n} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{1}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-5 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-6 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{10}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-7 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{18}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{2} a_{0} x^{3}+\frac{1}{3} a_{1} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{x^{3}}{2}\right) a_{0}+\left(x+\frac{1}{3} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{x^{3}}{2}\right) c_{1}+\left(x+\frac{1}{3} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{2} x^{3}+\frac{1}{10} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{x^{3}}{2}\right) c_{1}+\left(x+\frac{1}{3} x^{4}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{1}{2} x^{3}+\frac{1}{10} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{x^{3}}{2}\right) c_{1}+\left(x+\frac{1}{3} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.7.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=y^{\prime} x^{2}+3 y x
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-y^{\prime} x^{2}-3 y x=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

- Shift index using $k->k-1$

$$
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}
$$

- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k+1}
$$

- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1) x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k-1}(k+2)\right) x^{k}\right)=0$
- \quad Each term must be 0

$$
2 a_{2}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
(k+2)\left(k a_{k+2}-a_{k-1}+a_{k+2}\right)=0
$$

- \quad Shift index using $k->k+1$

$$
(k+3)\left((k+1) a_{k+3}-a_{k}+a_{k+3}\right)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{a_{k}}{k+2}, 2 a_{2}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff (y (x), x$2)-x^2*diff (y(x),x)-3*x*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1+\frac{x^{3}}{2}\right) y(0)+\left(x+\frac{1}{3} x^{4}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28
AsymptoticDSolveValue[y' ' $[\mathrm{x}]-\mathrm{x}^{2} 2 * \mathrm{y}$ ' $\left.[\mathrm{x}]-3 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{4}}{3}+x\right)+c_{1}\left(\frac{x^{3}}{2}+1\right)
$$

16.8 problem Problem 8

16.8.1 Maple step by step solution

2980
Internal problem ID [2904]
Internal file name [OUTPUT/2396_Sunday_June_05_2022_03_04_29_AM_63670586/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+2 y^{\prime} x^{2}+2 y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{631}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{632}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-2 y^{\prime} x^{2}-2 y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =4 y^{\prime} x^{4}+4 y x^{3}-6 x y^{\prime}-2 y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(-8 x^{6}+32 x^{3}-8\right) y^{\prime}-8 x^{2} y\left(x^{3}-3\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =16\left(\left(x^{7}-\frac{15}{2} x^{4}+\frac{17}{2} x\right) y^{\prime}+y\left(x^{6}-\frac{13}{2} x^{3}+4\right)\right) x \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-32 x^{10}+384 x^{7}-976 x^{4}+336 x\right) y^{\prime}-32\left(x^{9}-11 x^{6}+\frac{43}{2} x^{3}-2\right) y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-2 y(0) \\
& F_{2}=-8 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=64 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{3} x^{3}+\frac{4}{45} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{2}-2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 2 n x^{1+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty} 2 n x^{1+n} a_{n} & =\sum_{n=2}^{\infty} 2(n-1) a_{n-1} x^{n} \\
\sum_{n=0}^{\infty} 2 x^{1+n} a_{n} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=2}^{\infty} 2(n-1) a_{n-1} x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=1$ gives

$$
6 a_{3}+2 a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{0}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+2(n-1) a_{n-1}+2 a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{2 a_{n-1} n}{(n+2)(1+n)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{1}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+6 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+8 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{4 a_{0}}{45}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+10 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{5 a_{1}}{63}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{3} a_{0} x^{3}-\frac{1}{3} a_{1} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{3}}{3}\right) a_{0}+\left(x-\frac{1}{3} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{3}}{3}\right) c_{1}+\left(x-\frac{1}{3} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{3} x^{3}+\frac{4}{45} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{3}}{3}\right) c_{1}+\left(x-\frac{1}{3} x^{4}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{3} x^{3}+\frac{4}{45} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{3}}{3}\right) c_{1}+\left(x-\frac{1}{3} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.8.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-2 y^{\prime} x^{2}-2 y x
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+2 y^{\prime} x^{2}+2 y x=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

- Shift index using $k->k-1$

$$
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}
$$

- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k+1}
$$

- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1) x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+2 a_{k-1} k\right) x^{k}\right)=0$
- \quad Each term must be 0

$$
2 a_{2}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
\left(k^{2}+3 k+2\right) a_{k+2}+2 a_{k-1} k=0
$$

- \quad Shift index using $k->k+1$

$$
\left((k+1)^{2}+3 k+5\right) a_{k+3}+2 a_{k}(k+1)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{2 a_{k}(k+1)}{k^{2}+5 k+6}, 2 a_{2}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff(y(x),x$2)+2*x^2*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1-\frac{x^{3}}{3}\right) y(0)+\left(x-\frac{1}{3} x^{4}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28
AsymptoticDSolveValue[y' $\quad[\mathrm{x}]+2 * \mathrm{x}^{\wedge} 2 * \mathrm{y}$ ' $\left.[\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(x-\frac{x^{4}}{3}\right)+c_{1}\left(1-\frac{x^{3}}{3}\right)
$$

16.9 problem Problem 9

Internal problem ID [2905]
Internal file name [OUTPUT/2397_Sunday_June_05_2022_03_04_31_AM_78629810/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 9.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
\left(x^{2}-3\right) y^{\prime \prime}-3 x y^{\prime}-5 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{634}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{635}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{3 x y^{\prime}+5 y}{x^{2}-3} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{11 y^{\prime} x^{2}+5 y x-24 y^{\prime}}{\left(x^{2}-3\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{16 y^{\prime} x^{3}+40 x^{2} y-57 x y^{\prime}-135 y}{\left(x^{2}-3\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(40 x^{4}-285 x^{2}+576\right) y^{\prime}+\left(-80 x^{3}+285 x\right) y}{\left(x^{2}-3\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-120 x^{5}+900 x^{3}-2025 x\right) y^{\prime}+600\left(x^{4}-\frac{9}{2} x^{2}+\frac{27}{8}\right) y}{\left(x^{2}-3\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-\frac{5 y(0)}{3} \\
& F_{1}=-\frac{8 y^{\prime}(0)}{3} \\
& F_{2}=5 y(0) \\
& F_{3}=\frac{64 y^{\prime}(0)}{9} \\
& F_{4}=-\frac{25 y(0)}{3}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{5}{6} x^{2}+\frac{5}{24} x^{4}-\frac{5}{432} x^{6}\right) y(0)+\left(x-\frac{4}{9} x^{3}+\frac{8}{135} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}-3\right) y^{\prime \prime}-3 x y^{\prime}-5 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}-3\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-3 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-5\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=2}^{\infty}\left(-3 n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-3 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-5 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty}\left(-3 n(n-1) a_{n} x^{n-2}\right)=\sum_{n=0}^{\infty}\left(-3(n+2) a_{n+2}(n+1) x^{n}\right)
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=0}^{\infty}\left(-3(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& \quad+\sum_{n=1}^{\infty}\left(-3 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-5 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
-6 a_{2}-5 a_{0}=0 \\
a_{2}=-\frac{5 a_{0}}{6}
\end{gathered}
$$

$n=1$ gives

$$
-18 a_{3}-8 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{4 a_{1}}{9}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)-3(n+2) a_{n+2}(n+1)-3 n a_{n}-5 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{(n-5) a_{n}}{3 n+6} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
-9 a_{2}-36 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{5 a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
-8 a_{3}-60 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{8 a_{1}}{135}
$$

For $n=4$ the recurrence equation gives

$$
-5 a_{4}-90 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{5 a_{0}}{432}
$$

For $n=5$ the recurrence equation gives

$$
-126 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{5}{6} a_{0} x^{2}-\frac{4}{9} a_{1} x^{3}+\frac{5}{24} a_{0} x^{4}+\frac{8}{135} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{5}{6} x^{2}+\frac{5}{24} x^{4}\right) a_{0}+\left(x-\frac{4}{9} x^{3}+\frac{8}{135} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{5}{6} x^{2}+\frac{5}{24} x^{4}\right) c_{1}+\left(x-\frac{4}{9} x^{3}+\frac{8}{135} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{5}{6} x^{2}+\frac{5}{24} x^{4}-\frac{5}{432} x^{6}\right) y(0)+\left(x-\frac{4}{9} x^{3}+\frac{8}{135} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{5}{6} x^{2}+\frac{5}{24} x^{4}\right) c_{1}+\left(x-\frac{4}{9} x^{3}+\frac{8}{135} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{5}{6} x^{2}+\frac{5}{24} x^{4}-\frac{5}{432} x^{6}\right) y(0)+\left(x-\frac{4}{9} x^{3}+\frac{8}{135} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{5}{6} x^{2}+\frac{5}{24} x^{4}\right) c_{1}+\left(x-\frac{4}{9} x^{3}+\frac{8}{135} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve((x^2-3)*diff (y (x), x$2)-3*x*diff (y (x), x) -5*y (x)=0,y(x),type='series',x=0);
    y(x)=(1-\frac{5}{6}\mp@subsup{x}{}{2}+\frac{5}{24}\mp@subsup{x}{}{4})y(0)+(x-\frac{4}{9}\mp@subsup{x}{}{3}+\frac{8}{135}\mp@subsup{x}{}{5})D(y)(0)+O(\mp@subsup{x}{}{6})
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2-3\right) * y '\right.$ ' $\left.[x]-3 * x * y '[x]-5 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{8 x^{5}}{135}-\frac{4 x^{3}}{9}+x\right)+c_{1}\left(\frac{5 x^{4}}{24}-\frac{5 x^{2}}{6}+1\right)
$$

16.10 problem Problem 10

Internal problem ID [2906]
Internal file name [OUTPUT/2398_Sunday_June_05_2022_03_04_33_AM_14543886/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable__as_is", "second order series method. Ordinary point", "second_order_change_of_cvariable_on_y_method_1", "linear_second_order_ode_solved__by__an_integrating_factor", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
\left(x^{2}+1\right) y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{637}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{638}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{2\left(2 x y^{\prime}+y\right)}{x^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{18 y^{\prime} x^{2}+12 y x-6 y^{\prime}}{\left(x^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-96 y^{\prime} x^{3}-72 x^{2} y+96 x y^{\prime}+24 y}{\left(x^{2}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{120\left(5 x^{4}-10 x^{2}+1\right) y^{\prime}+480\left(x^{3}-x\right) y}{\left(x^{2}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-4320 x^{5}+14400 x^{3}-4320 x\right) y^{\prime}-3600 y\left(x^{4}-2 x^{2}+\frac{1}{5}\right)}{\left(x^{2}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-2 y(0) \\
& F_{1}=-6 y^{\prime}(0) \\
& F_{2}=24 y(0) \\
& F_{3}=120 y^{\prime}(0) \\
& F_{4}=-720 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(-x^{6}+x^{4}-x^{2}+1\right) y(0)+\left(x^{5}-x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+1\right) y^{\prime \prime}+4 x y^{\prime}+2 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+4 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 4 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} 4 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+2 a_{0}=0 \\
a_{2}=-a_{0}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}+6 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-a_{1}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(n+1)+4 n a_{n}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-a_{n} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=a_{0}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=a_{1}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-a_{0}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-a_{1}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{1} x^{5}+a_{0} x^{4}-a_{1} x^{3}-a_{0} x^{2}+a_{1} x+a_{0}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(x^{4}-x^{2}+1\right) a_{0}+\left(x^{5}-x^{3}+x\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(x^{4}-x^{2}+1\right) c_{1}+\left(x^{5}-x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(-x^{6}+x^{4}-x^{2}+1\right) y(0)+\left(x^{5}-x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(x^{4}-x^{2}+1\right) c_{1}+\left(x^{5}-x^{3}+x\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(-x^{6}+x^{4}-x^{2}+1\right) y(0)+\left(x^{5}-x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(x^{4}-x^{2}+1\right) c_{1}+\left(x^{5}-x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
Order:=6;
dsolve((1+x^2)*diff(y(x),x$2)+4*x*diff (y (x),x)+2*y(x)=0,y(x),type='series',x=0);
\[
y(x)=\left(x^{4}-x^{2}+1\right) y(0)+\left(x^{5}-x^{3}+x\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 30

```
AsymptoticDSolveValue[(1+x^2)*y''[x]+4*x*y'[x]+2*y[x]==0,y[x],{x,0,5}]
```

$$
y(x) \rightarrow c_{2}\left(x^{5}-x^{3}+x\right)+c_{1}\left(x^{4}-x^{2}+1\right)
$$

16.11 problem Problem 11

16.11.1 Maple step by step solution 3007

Internal problem ID [2907]
Internal file name [OUTPUT/2399_Sunday_June_05_2022_03_04_35_AM_57249669/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[_Gegenbauer]
```

$$
\left(-4 x^{2}+1\right) y^{\prime \prime}-20 x y^{\prime}-16 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{640}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{641}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{4\left(5 x y^{\prime}+4 y\right)}{4 x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{416 y^{\prime} x^{2}+448 y x+36 y^{\prime}}{\left(4 x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-\frac{16\left(616 y^{\prime} x^{3}+752 x^{2} y+161 x y^{\prime}+64 y\right)}{\left(4 x^{2}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(267264 x^{4}+140544 x^{2}+3600\right) y^{\prime}+\left(350208 x^{3}+89856 x\right) y}{\left(4 x^{2}-1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-8220672 x^{5}-7243776 x^{3}-558144 x\right) y^{\prime}-11280384 y\left(x^{4}+\frac{631}{1224} x^{2}+\frac{2}{153}\right)}{\left(4 x^{2}-1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=16 y(0) \\
& F_{1}=36 y^{\prime}(0) \\
& F_{2}=1024 y(0) \\
& F_{3}=3600 y^{\prime}(0) \\
& F_{4}=147456 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+8 x^{2}+\frac{128}{3} x^{4}+\frac{1024}{5} x^{6}\right) y(0)+\left(30 x^{5}+6 x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-4 x^{2}+1\right) y^{\prime \prime}-20 x y^{\prime}-16 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-4 x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-20 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-16\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-4 x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-20 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-16 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
\sum_{n=2}^{\infty} & \left(-4 x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=1}^{\infty}\left(-20 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-16 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-16 a_{0}=0 \\
a_{2}=8 a_{0}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}-36 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=6 a_{1}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-4 n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-20 n a_{n}-16 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{4(n+2) a_{n}}{n+1} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
-64 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{128 a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
-100 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=30 a_{1}
$$

For $n=4$ the recurrence equation gives

$$
-144 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{1024 a_{0}}{5}
$$

For $n=5$ the recurrence equation gives

$$
-196 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=140 a_{1}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+8 a_{0} x^{2}+6 a_{1} x^{3}+\frac{128}{3} a_{0} x^{4}+30 a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+8 x^{2}+\frac{128}{3} x^{4}\right) a_{0}+\left(30 x^{5}+6 x^{3}+x\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+8 x^{2}+\frac{128}{3} x^{4}\right) c_{1}+\left(30 x^{5}+6 x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+8 x^{2}+\frac{128}{3} x^{4}+\frac{1024}{5} x^{6}\right) y(0)+\left(30 x^{5}+6 x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+8 x^{2}+\frac{128}{3} x^{4}\right) c_{1}+\left(30 x^{5}+6 x^{3}+x\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+8 x^{2}+\frac{128}{3} x^{4}+\frac{1024}{5} x^{6}\right) y(0)+\left(30 x^{5}+6 x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+8 x^{2}+\frac{128}{3} x^{4}\right) c_{1}+\left(30 x^{5}+6 x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.11.1 Maple step by step solution

Let's solve
$\left(-4 x^{2}+1\right) y^{\prime \prime}-20 x y^{\prime}-16 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{20 x y^{\prime}}{4 x^{2}-1}-\frac{16 y}{4 x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{20 x y^{\prime}}{4 x^{2}-1}+\frac{16 y}{4 x^{2}-1}=0$

Check to see if x_{0} is a regular singular point

- Define functions
$\left[P_{2}(x)=\frac{20 x}{4 x^{2}-1}, P_{3}(x)=\frac{16}{4 x^{2}-1}\right]$
- $\quad\left(x+\frac{1}{2}\right) \cdot P_{2}(x)$ is analytic at $x=-\frac{1}{2}$
$\left.\left(\left(x+\frac{1}{2}\right) \cdot P_{2}(x)\right)\right|_{x=-\frac{1}{2}}=\frac{5}{2}$
- $\quad\left(x+\frac{1}{2}\right)^{2} \cdot P_{3}(x)$ is analytic at $x=-\frac{1}{2}$
$\left.\left(\left(x+\frac{1}{2}\right)^{2} \cdot P_{3}(x)\right)\right|_{x=-\frac{1}{2}}=0$
- $x=-\frac{1}{2}$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=-\frac{1}{2}$

- Multiply by denominators

$$
y^{\prime \prime}\left(4 x^{2}-1\right)+20 x y^{\prime}+16 y=0
$$

- \quad Change variables using $x=u-\frac{1}{2}$ so that the regular singular point is at $u=0$ $\left(4 u^{2}-4 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(20 u-10)\left(\frac{d}{d u} y(u)\right)+16 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}$
- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}$
- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions
$-2 a_{0} r(3+2 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)(2 k+5+2 r)+4 a_{k}(k+r+2)^{2}\right) u^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r(3+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0,-\frac{3}{2}\right\}$
- Each term in the series must be 0 , giving the recursion relation
$4 a_{k}(k+r+2)^{2}-4\left(k+\frac{5}{2}+r\right) a_{k+1}(k+1+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{2 a_{k}(k+r+2)^{2}}{(2 k+5+2 r)(k+1+r)}$
- \quad Recursion relation for $r=0$

$$
a_{k+1}=\frac{2 a_{k}(k+2)^{2}}{(2 k+5)(k+1)}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{2 a_{k}(k+2)^{2}}{(2 k+5)(k+1)}\right]
$$

- \quad Revert the change of variables $u=x+\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{1}{2}\right)^{k}, a_{k+1}=\frac{2 a_{k}(k+2)^{2}}{(2 k+5)(k+1)}\right]
$$

- Recursion relation for $r=-\frac{3}{2}$

$$
a_{k+1}=\frac{2 a_{k}\left(k+\frac{1}{2}\right)^{2}}{(2 k+2)\left(k-\frac{1}{2}\right)}
$$

- \quad Solution for $r=-\frac{3}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{3}{2}}, a_{k+1}=\frac{2 a_{k}\left(k+\frac{1}{2}\right)^{2}}{(2 k+2)\left(k-\frac{1}{2}\right)}\right]
$$

- \quad Revert the change of variables $u=x+\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(x+\frac{1}{2}\right)^{k-\frac{3}{2}}, a_{k+1}=\frac{2 a_{k}\left(k+\frac{1}{2}\right)^{2}}{(2 k+2)\left(k-\frac{1}{2}\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}\left(x+\frac{1}{2}\right)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}\left(x+\frac{1}{2}\right)^{k-\frac{3}{2}}\right), a_{1+k}=\frac{2 a_{k}(2+k)^{2}}{(2 k+5)(1+k)}, b_{1+k}=\frac{2 b_{k}\left(k+\frac{1}{2}\right)^{2}}{(2+2 k)\left(k-\frac{1}{2}\right)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve((1-4*x^2)*diff(y(x),x$2)-20*x*diff(y(x),x)-16*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1+8 x^{2}+\frac{128}{3} x^{4}\right) y(0)+\left(30 x^{5}+6 x^{3}+x\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36
AsymptoticDSolveValue[(1-4*x^2)*y' $\quad[\mathrm{x}]-20 * \mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]-16 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(30 x^{5}+6 x^{3}+x\right)+c_{1}\left(\frac{128 x^{4}}{3}+8 x^{2}+1\right)
$$

16.12 problem Problem 12

16.12.1 Maple step by step solution 3018

Internal problem ID [2908]
Internal file name [OUTPUT/2400_Sunday_June_05_2022_03_04_36_AM_38874925/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[_Gegenbauer]
```

$$
\left(x^{2}-1\right) y^{\prime \prime}-6 x y^{\prime}+12 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{643}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{644}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{6 x y^{\prime}-12 y}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{18 y^{\prime} x^{2}-48 y x+6 y^{\prime}}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{24 y^{\prime} x^{3}-72 x^{2} y+24 x y^{\prime}-24 y}{\left(x^{2}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =0 \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =0
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=12 y(0) \\
& F_{1}=6 y^{\prime}(0) \\
& F_{2}=24 y(0) \\
& F_{3}=0 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(x^{4}+6 x^{2}+1\right) y(0)+\left(x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}-1\right) y^{\prime \prime}-6 x y^{\prime}+12 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)\left(x^{2}-1\right)-6 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+12\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-6 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 12 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right)=\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(n+1) x^{n}\right)
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& \quad+\sum_{n=1}^{\infty}\left(-6 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 12 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
-2 a_{2}+12 a_{0}=0 \\
a_{2}=6 a_{0} \\
-6 a_{3}+6 a_{1}=0
\end{gathered}
$$

$n=1$ gives

Which after substituting earlier equations, simplifies to

$$
a_{3}=a_{1}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)-(n+2) a_{n+2}(n+1)-6 n a_{n}+12 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}\left(n^{2}-7 n+12\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
2 a_{2}-12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=a_{0}
$$

For $n=3$ the recurrence equation gives

$$
-20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
-30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
2 a_{5}-42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0} x^{4}+a_{1} x^{3}+6 a_{0} x^{2}+a_{1} x+a_{0}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(x^{4}+6 x^{2}+1\right) a_{0}+\left(x^{3}+x\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(x^{4}+6 x^{2}+1\right) c_{1}+\left(x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(x^{4}+6 x^{2}+1\right) y(0)+\left(x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(x^{4}+6 x^{2}+1\right) c_{1}+\left(x^{3}+x\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(x^{4}+6 x^{2}+1\right) y(0)+\left(x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(x^{4}+6 x^{2}+1\right) c_{1}+\left(x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.12.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}\left(x^{2}-1\right)-6 x y^{\prime}+12 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{6 x y^{\prime}}{x^{2}-1}-\frac{12 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{6 x y^{\prime}}{x^{2}-1}+\frac{12 y}{x^{2}-1}=0$
Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{6 x}{x^{2}-1}, P_{3}(x)=\frac{12}{x^{2}-1}\right]$
- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=-3$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$y^{\prime \prime}\left(x^{2}-1\right)-6 x y^{\prime}+12 y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-6 u+6)\left(\frac{d}{d u} y(u)\right)+12 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0} r(-4+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)(k+r-3)+a_{k}(k+r-3)(k+r-4)\right) u^{k+r}\right)
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r(-4+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,4\}$
- Each term in the series must be 0, giving the recursion relation
$\left((-2 k-2 r-2) a_{k+1}+a_{k}(k+r-4)\right)(k+r-3)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r-4)}{2(k+1+r)}$
- Recursion relation for $r=0$; series terminates at $k=4$
$a_{k+1}=\frac{a_{k}(k-4)}{2(k+1)}$
- Apply recursion relation for $k=0$
$a_{1}=-2 a_{0}$
- Apply recursion relation for $k=1$
$a_{2}=-\frac{3 a_{1}}{4}$
- Express in terms of a_{0}
$a_{2}=\frac{3 a_{0}}{2}$
- Apply recursion relation for $k=2$

$$
a_{3}=-\frac{a_{2}}{3}
$$

- Express in terms of a_{0}

$$
a_{3}=-\frac{a_{0}}{2}
$$

- Apply recursion relation for $k=3$
$a_{4}=-\frac{a_{3}}{8}$
- \quad Express in terms of a_{0}
$a_{4}=\frac{a_{0}}{16}$
- Terminating series solution of the ODE for $r=0$. Use reduction of order to find the second li

$$
y(u)=a_{0} \cdot\left(1-2 u+\frac{3}{2} u^{2}-\frac{1}{2} u^{3}+\frac{1}{16} u^{4}\right)
$$

- Revert the change of variables $u=x+1$

$$
\left[y=\frac{a_{0}(x-1)^{4}}{16}\right]
$$

- \quad Recursion relation for $r=4$

$$
a_{k+1}=\frac{a_{k} k}{2(k+5)}
$$

- \quad Solution for $r=4$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+4}, a_{k+1}=\frac{a_{k} k}{2(k+5)}\right]
$$

- \quad Revert the change of variables $u=x+1$
$\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k+4}, a_{k+1}=\frac{a_{k} k}{2(k+5)}\right]$
- Combine solutions and rename parameters
$\left[y=\frac{a_{0}(x-1)^{4}}{16}+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k+4}\right), b_{1+k}=\frac{b_{k} k}{2(k+5)}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
Order:=6;
dsolve((x^2-1)*diff (y(x),x$2)-6*x*diff (y (x),x)+12*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(x^{4}+6 x^{2}+1\right) y(0)+\left(x^{3}+x\right) D(y)(0)+O\left(x^{6}\right)
$$

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 25
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2-1\right) * y\right.$ ' $'[x]-6 * x * y$ ' $\left.[x]+12 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(x^{3}+x\right)+c_{1}\left(x^{4}+6 x^{2}+1\right)
$$

16.13 problem Problem 13

16.13.1 Maple step by step solution

Internal problem ID [2909]
Internal file name [OUTPUT/2401_Sunday_June_05_2022_03_04_38_AM_85255342/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_airy", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+2 y^{\prime}+4 y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{646}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{647}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-2 y^{\prime}-4 y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =(-4 x+4) y^{\prime}+(8 x-4) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =16(x-1) y^{\prime}+16\left(x^{2}-x+\frac{1}{2}\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(16 x^{2}-48 x+56\right) y^{\prime}-64 y\left(x^{2}-\frac{3}{2} x+\frac{1}{4}\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-96 x^{2}+224 x-176\right) y^{\prime}-64\left(x^{3}-3 x^{2}+\frac{11}{2} x-\frac{3}{2}\right) y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-2 y^{\prime}(0) \\
& F_{1}=4 y^{\prime}(0)-4 y(0) \\
& F_{2}=-16 y^{\prime}(0)+8 y(0) \\
& F_{3}=56 y^{\prime}(0)-16 y(0) \\
& F_{4}=-176 y^{\prime}(0)+96 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{2}{3} x^{3}+\frac{1}{3} x^{4}-\frac{2}{15} x^{5}+\frac{2}{15} x^{6}\right) y(0) \\
& +\left(x-x^{2}+\frac{2}{3} x^{3}-\frac{2}{3} x^{4}+\frac{7}{15} x^{5}-\frac{11}{45} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} 4 x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1} & =\sum_{n=0}^{\infty} 2(1+n) a_{1+n} x^{n} \\
\sum_{n=0}^{\infty} 4 x^{1+n} a_{n} & =\sum_{n=1}^{\infty} 4 a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=0}^{\infty} 2(1+n) a_{1+n} x^{n}\right)+\left(\sum_{n=1}^{\infty} 4 a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+2 a_{1}=0 \\
a_{2}=-a_{1}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+2(1+n) a_{1+n}+4 a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{2\left(n a_{1+n}+a_{1+n}+2 a_{n-1}\right)}{(n+2)(1+n)} \\
& =-\frac{2 a_{1+n}}{n+2}-\frac{4 a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+4 a_{2}+4 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{2 a_{1}}{3}-\frac{2 a_{0}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+6 a_{3}+4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{2 a_{1}}{3}+\frac{a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+8 a_{4}+4 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{7 a_{1}}{15}-\frac{2 a_{0}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+10 a_{5}+4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{11 a_{1}}{45}+\frac{2 a_{0}}{15}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+12 a_{6}+4 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{2 a_{1}}{15}-\frac{22 a_{0}}{315}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{1} x^{2}+\left(\frac{2 a_{1}}{3}-\frac{2 a_{0}}{3}\right) x^{3}+\left(-\frac{2 a_{1}}{3}+\frac{a_{0}}{3}\right) x^{4}+\left(\frac{7 a_{1}}{15}-\frac{2 a_{0}}{15}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{2}{3} x^{3}+\frac{1}{3} x^{4}-\frac{2}{15} x^{5}\right) a_{0}+\left(x-x^{2}+\frac{2}{3} x^{3}-\frac{2}{3} x^{4}+\frac{7}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{2}{3} x^{3}+\frac{1}{3} x^{4}-\frac{2}{15} x^{5}\right) c_{1}+\left(x-x^{2}+\frac{2}{3} x^{3}-\frac{2}{3} x^{4}+\frac{7}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{2}{3} x^{3}+\frac{1}{3} x^{4}-\frac{2}{15} x^{5}+\frac{2}{15} x^{6}\right) y(0) \tag{1}\\
& +\left(x-x^{2}+\frac{2}{3} x^{3}-\frac{2}{3} x^{4}+\frac{7}{15} x^{5}-\frac{11}{45} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\frac{2}{3} x^{3}+\frac{1}{3} x^{4}-\frac{2}{15} x^{5}\right) c_{1}+\left(x-x^{2}+\frac{2}{3} x^{3}-\frac{2}{3} x^{4}+\frac{7}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{2}{3} x^{3}+\frac{1}{3} x^{4}-\frac{2}{15} x^{5}+\frac{2}{15} x^{6}\right) y(0) \\
& +\left(x-x^{2}+\frac{2}{3} x^{3}-\frac{2}{3} x^{4}+\frac{7}{15} x^{5}-\frac{11}{45} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1-\frac{2}{3} x^{3}+\frac{1}{3} x^{4}-\frac{2}{15} x^{5}\right) c_{1}+\left(x-x^{2}+\frac{2}{3} x^{3}-\frac{2}{3} x^{4}+\frac{7}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.13.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-2 y^{\prime}-4 y x
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+2 y^{\prime}+4 y x=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Rewrite ODE with series expansions

- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}$
- Convert y^{\prime} to series expansion

$$
y^{\prime}=\sum_{k=1}^{\infty} a_{k} k x^{k-1}
$$

- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=0}^{\infty} a_{k+1}(k+1) x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions

$$
2 a_{2}+2 a_{1}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+2 a_{k+1}(k+1)+4 a_{k-1}\right) x^{k}\right)=0
$$

- Each term must be 0

$$
2 a_{2}+2 a_{1}=0
$$

- Each term in the series must be 0, giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}+2 a_{k+1} k+4 a_{k-1}+2 a_{k+1}=0$
- \quad Shift index using $k->k+1$

$$
\left((k+1)^{2}+3 k+5\right) a_{k+3}+2 a_{k+2}(k+1)+4 a_{k}+2 a_{k+2}=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{2\left(k a_{k+2}+2 a_{k}+2 a_{k+2}\right)}{k^{2}+5 k+6}, 2 a_{2}+2 a_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

```
Order:=6;
dsolve(diff ( }\textrm{y}(\textrm{x}),\textrm{x}$2)+2*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+4*x*y(x)=0,y(x),type='series',x=0)
```

$y(x)=\left(1-\frac{2}{3} x^{3}+\frac{1}{3} x^{4}-\frac{2}{15} x^{5}\right) y(0)+\left(x-x^{2}+\frac{2}{3} x^{3}-\frac{2}{3} x^{4}+\frac{7}{15} x^{5}\right) D(y)(0)+O\left(x^{6}\right)$
\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 61
AsymptoticDSolveValue[y''[x]+2*y'[x]+4*x*y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(-\frac{2 x^{5}}{15}+\frac{x^{4}}{3}-\frac{2 x^{3}}{3}+1\right)+c_{2}\left(\frac{7 x^{5}}{15}-\frac{2 x^{4}}{3}+\frac{2 x^{3}}{3}-x^{2}+x\right)
$$

16.14 problem Problem 14

16.14.1 Maple step by step solution 3039

Internal problem ID [2910]
Internal file name [OUTPUT/2402_Sunday_June_05_2022_03_04_41_AM_11973721/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+x y^{\prime}+(x+2) y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{649}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{650}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-x y^{\prime}-y x-2 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(x^{2}-x-3\right) y^{\prime}+y\left(x^{2}+2 x-1\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(-x^{3}+2 x^{2}+7 x-2\right) y^{\prime}-y\left(x^{3}+x^{2}-7 x-8\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-3 x^{3}-11 x^{2}+13 x+15\right) y^{\prime}+y\left(x^{4}-14 x^{2}-14 x+11\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}+4 x^{4}+15 x^{3}-36 x^{2}-51 x+24\right) y^{\prime}-y\left(x^{5}-x^{4}-21 x^{3}-9 x^{2}+69 x+44\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-2 y(0) \\
& F_{1}=-3 y^{\prime}(0)-y(0) \\
& F_{2}=-2 y^{\prime}(0)+8 y(0) \\
& F_{3}=15 y^{\prime}(0)+11 y(0) \\
& F_{4}=24 y^{\prime}(0)-44 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-x^{2}-\frac{1}{6} x^{3}+\frac{1}{3} x^{4}+\frac{11}{120} x^{5}-\frac{11}{180} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{3}-\frac{1}{12} x^{4}+\frac{1}{8} x^{5}+\frac{1}{30} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
2 a_{2}+2 a_{0}=0
$$

$$
a_{2}=-a_{0}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+n a_{n}+a_{n-1}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n a_{n}+2 a_{n}+a_{n-1}}{(n+2)(1+n)} \\
& =-\frac{a_{n}}{1+n}-\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+3 a_{1}+a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{1}}{2}-\frac{a_{0}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+4 a_{2}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{3}-\frac{a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+5 a_{3}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{8}+\frac{11 a_{0}}{120}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+6 a_{4}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{11 a_{0}}{180}+\frac{a_{1}}{30}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+7 a_{5}+a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{19 a_{1}}{1008}-\frac{13 a_{0}}{560}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{0} x^{2}+\left(-\frac{a_{1}}{2}-\frac{a_{0}}{6}\right) x^{3}+\left(\frac{a_{0}}{3}-\frac{a_{1}}{12}\right) x^{4}+\left(\frac{a_{1}}{8}+\frac{11 a_{0}}{120}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}-\frac{1}{6} x^{3}+\frac{1}{3} x^{4}+\frac{11}{120} x^{5}\right) a_{0}+\left(x-\frac{1}{2} x^{3}-\frac{1}{12} x^{4}+\frac{1}{8} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-x^{2}-\frac{1}{6} x^{3}+\frac{1}{3} x^{4}+\frac{11}{120} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{3}-\frac{1}{12} x^{4}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-x^{2}-\frac{1}{6} x^{3}+\frac{1}{3} x^{4}+\frac{11}{120} x^{5}-\frac{11}{180} x^{6}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{2} x^{3}-\frac{1}{12} x^{4}+\frac{1}{8} x^{5}+\frac{1}{30} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-x^{2}-\frac{1}{6} x^{3}+\frac{1}{3} x^{4}+\frac{11}{120} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{3}-\frac{1}{12} x^{4}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-x^{2}-\frac{1}{6} x^{3}+\frac{1}{3} x^{4}+\frac{11}{120} x^{5}-\frac{11}{180} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{3}-\frac{1}{12} x^{4}+\frac{1}{8} x^{5}+\frac{1}{30} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1-x^{2}-\frac{1}{6} x^{3}+\frac{1}{3} x^{4}+\frac{11}{120} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{3}-\frac{1}{12} x^{4}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

16.14.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-x y^{\prime}-y x-2 y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2 nd derivative

$$
y^{\prime \prime}=(-2-x) y-x y^{\prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+x y^{\prime}+(x+2) y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

$\square \quad$ Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- \quad Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions

$$
2 a_{2}+2 a_{0}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+2)+a_{k-1}\right) x^{k}\right)=0
$$

- \quad Each term must be 0
$2 a_{2}+2 a_{0}=0$
- Each term in the series must be 0, giving the recursion relation

$$
\left(k^{2}+3 k+2\right) a_{k+2}+a_{k} k+2 a_{k}+a_{k-1}=0
$$

- \quad Shift index using $k->k+1$
$\left((k+1)^{2}+3 k+5\right) a_{k+3}+a_{k+1}(k+1)+2 a_{k+1}+a_{k}=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{k a_{k+1}+a_{k}+3 a_{k+1}}{k^{2}+5 k+6}, 2 a_{2}+2 a_{0}=0\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        <- heuristic approach successful
    <- hypergeometric successful
    <- special function solution successful
        -> Trying to convert hypergeometric functions to elementary form...
    <- elementary form could result into a too large expression - returning special functi
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

```
Order:=6;
dsolve(diff(y(x),x$2)+x*diff(y(x),x)+(2+x)*y(x)=0,y(x),type='series',x=0);
```

$y(x)=\left(1-x^{2}-\frac{1}{6} x^{3}+\frac{1}{3} x^{4}+\frac{11}{120} x^{5}\right) y(0)+\left(x-\frac{1}{2} x^{3}-\frac{1}{12} x^{4}+\frac{1}{8} x^{5}\right) D(y)(0)+O\left(x^{6}\right)$
\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 61
AsymptoticDSolveValue [y' ' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+(2+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{8}-\frac{x^{4}}{12}-\frac{x^{3}}{2}+x\right)+c_{1}\left(\frac{11 x^{5}}{120}+\frac{x^{4}}{3}-\frac{x^{3}}{6}-x^{2}+1\right)
$$

16.15 problem Problem 15

Internal problem ID [2911]
Internal file name [OUTPUT/2403_Sunday_June_05_2022_03_04_43_AM_47532475/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode_form_A", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}-\mathrm{e}^{x} y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{652}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{653}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\mathrm{e}^{x} y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\mathrm{e}^{x}\left(y^{\prime}+y\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\mathrm{e}^{x}\left(\mathrm{e}^{x} y+2 y^{\prime}+y\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(4 y+y^{\prime}\right) \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(y+3 y^{\prime}\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(11 y+6 y^{\prime}\right) \mathrm{e}^{2 x}+y \mathrm{e}^{3 x}+\mathrm{e}^{x}\left(y+4 y^{\prime}\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=y^{\prime}(0)+y(0) \\
& F_{2}=2 y(0)+2 y^{\prime}(0) \\
& F_{3}=5 y(0)+4 y^{\prime}(0) \\
& F_{4}=13 y(0)+10 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}+\frac{13}{720} x^{6}\right) y(0) \\
& +\left(x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{30} x^{5}+\frac{1}{72} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\mathrm{e}^{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Expanding $-\mathrm{e}^{x}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
-\mathrm{e}^{x} & =-1-x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}-\frac{1}{720} x^{6}+\ldots \\
& =-1-x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}-\frac{1}{720} x^{6}
\end{aligned}
$$

Hence the ODE in Eq (1) becomes

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) \\
& +\left(-1-x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}-\frac{1}{720} x^{6}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Expanding the second term in (1) gives

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+-1 \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-x \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\frac{x^{2}}{2} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& -\frac{x^{3}}{6} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\frac{x^{4}}{24} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\frac{x^{5}}{120} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\frac{x^{6}}{720} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{x^{n+2} a_{n}}{2}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+3} a_{n}}{6}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+4} a_{n}}{24}\right) \tag{2}\\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{x^{n+5} a_{n}}{120}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+6} a_{n}}{720}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+2} a_{n}}{2}\right) & =\sum_{n=2}^{\infty}\left(-\frac{a_{n-2} x^{n}}{2}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+3} a_{n}}{6}\right) & =\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n}}{6}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+4} a_{n}}{24}\right) & =\sum_{n=4}^{\infty}\left(-\frac{a_{n-4} x^{n}}{24}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+5} a_{n}}{120}\right) & =\sum_{n=5}^{\infty}\left(-\frac{a_{n-5} x^{n}}{120}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+6} a_{n}}{720}\right) & =\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{n}}{720}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers
of x are the same and equal to n.

$$
\begin{aligned}
& \left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right) \\
& \quad+\sum_{n=2}^{\infty}\left(-\frac{a_{n-2} x^{n}}{2}\right)+\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n}}{6}\right)+\sum_{n=4}^{\infty}\left(-\frac{a_{n-4} x^{n}}{24}\right) \\
& \quad+\sum_{n=5}^{\infty}\left(-\frac{a_{n-5} x^{n}}{120}\right)+\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{n}}{720}\right)=0
\end{aligned}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-a_{0}=0 \\
a_{2}=\frac{a_{0}}{2}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}-a_{1}-a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{0}}{6}+\frac{a_{1}}{6}
$$

$n=2$ gives

$$
12 a_{4}-a_{2}-a_{1}-\frac{a_{0}}{2}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{4}=\frac{a_{0}}{12}+\frac{a_{1}}{12}
$$

$n=3$ gives

$$
20 a_{5}-a_{3}-a_{2}-\frac{a_{1}}{2}-\frac{a_{0}}{6}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{5}=\frac{a_{0}}{24}+\frac{a_{1}}{30}
$$

$n=4$ gives

$$
30 a_{6}-a_{4}-a_{3}-\frac{a_{2}}{2}-\frac{a_{1}}{6}-\frac{a_{0}}{24}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{6}=\frac{13 a_{0}}{720}+\frac{a_{1}}{72}
$$

$n=5$ gives

$$
42 a_{7}-a_{5}-a_{4}-\frac{a_{3}}{2}-\frac{a_{2}}{6}-\frac{a_{1}}{24}-\frac{a_{0}}{120}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{7}=\frac{a_{0}}{140}+\frac{29 a_{1}}{5040}
$$

For $6 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)-a_{n}-a_{n-1}-\frac{a_{n-2}}{2}-\frac{a_{n-3}}{6}-\frac{a_{n-4}}{24}-\frac{a_{n-5}}{120}-\frac{a_{n-6}}{720}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{aligned}
a_{n+2}= & \frac{720 a_{n}+720 a_{n-1}+360 a_{n-2}+120 a_{n-3}+30 a_{n-4}+6 a_{n-5}+a_{n-6}}{720(n+2)(1+n)} \\
(5)= & \frac{a_{n}}{(n+2)(1+n)}+\frac{a_{n-6}}{720(n+2)(1+n)}+\frac{a_{n-5}}{120(n+2)(1+n)} \\
& +\frac{a_{n-4}}{24(n+2)(1+n)}+\frac{a_{n-3}}{6(n+2)(1+n)}+\frac{a_{n-2}}{2(n+2)(1+n)}+\frac{a_{n-1}}{(n+2)(1+n)}
\end{aligned}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{a_{0} x^{2}}{2}+\left(\frac{a_{0}}{6}+\frac{a_{1}}{6}\right) x^{3}+\left(\frac{a_{0}}{12}+\frac{a_{1}}{12}\right) x^{4}+\left(\frac{a_{0}}{24}+\frac{a_{1}}{30}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) a_{0}+\left(x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{30} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{30} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}+\frac{13}{720} x^{6}\right) y(0) \tag{1}\\
& +\left(x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{30} x^{5}+\frac{1}{72} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{30} x^{5}\right) c_{2}+O\left(x^{6}\right)(2)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}+\frac{13}{720} x^{6}\right) y(0) \\
& +\left(x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{30} x^{5}+\frac{1}{72} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{30} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
    Change of variables used:
        [x = ln(t)]
    Linear ODE actually solved:
        -u(t)+diff(u(t),t)+t*diff(diff(u(t),t),t) = 0
<- change of variables successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

```
Order:=6;
dsolve(diff(y(x),x$2)-exp(x)*y(x)=0,y(x),type='series',x=0);
```

$y(x)=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{30} x^{5}\right) D(y)(0)+O\left(x^{6}\right)$
\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63
AsymptoticDSolveValue[y' '[x]-Exp $[\mathrm{x}] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{30}+\frac{x^{4}}{12}+\frac{x^{3}}{6}+x\right)+c_{1}\left(\frac{x^{5}}{24}+\frac{x^{4}}{12}+\frac{x^{3}}{6}+\frac{x^{2}}{2}+1\right)
$$

16.16 problem Problem 17

16.16.1 Maple step by step solution . 3062

Internal problem ID [2912]
Internal file name [OUTPUT/2404_Sunday_June_05_2022_03_04_45_AM_57572708/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x y^{\prime \prime}-(x-1) y^{\prime}-y x=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x y^{\prime \prime}+(1-x) y^{\prime}-y x=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{x-1}{x} \\
& q(x)=-1
\end{aligned}
$$

Table 416: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x-1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-1$	
singularity	type

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x y^{\prime \prime}+(1-x) y^{\prime}-y x=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x \tag{1}\\
& +(1-x)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r-1}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r-1}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
$$

Or

$$
\left(x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{-1+r} r^{2}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{-1+r} r^{2}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution $y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=\frac{r}{(1+r)^{2}}
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+a_{n}(n+r)-a_{n-2}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{n a_{n-1}+r a_{n-1}+a_{n-2}-a_{n-1}}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=\frac{(n-1) a_{n-1}+a_{n-2}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(1+r)^{2}}$	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{2 r+1}{(1+r)(r+2)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{2}=\frac{1}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(1+r)^{2}}$	0
a_{2}	$\frac{2 r+1}{(1+r)(r+2)^{2}}$	$\frac{1}{4}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{3 r^{2}+5 r+1}{(1+r)^{2}(r+2)(r+3)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{3}=\frac{1}{18}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(1+r)^{2}}$	0
a_{2}	$\frac{2 r+1}{(1+r)(r+2)^{2}}$	$\frac{1}{4}$
a_{3}	$\frac{3 r^{2}+5 r+1}{(1+r)^{2}(r+2)(r+3)^{2}}$	$\frac{1}{18}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{5 r^{3}+20 r^{2}+21 r+5}{(r+2)^{2}(1+r)^{2}(r+3)(r+4)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{5}{192}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(1+r)^{2}}$	0
a_{2}	$\frac{2 r+1}{(1+r)(r+2)^{2}}$	$\frac{1}{4}$
a_{3}	$\frac{3 r^{2}+5 r+1}{(1+r)^{2}(r+2)(r+3)^{2}}$	$\frac{1}{18}$
a_{4}	$\frac{5 r^{3}+20 r^{2}+21 r+5}{(r+2)^{2}(1+r)^{2}(r+3)(r+4)^{2}}$	$\frac{5}{192}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{8 r^{4}+58 r^{3}+136 r^{2}+114 r+23}{(r+3)^{2}(1+r)^{2}(r+2)^{2}(r+4)(r+5)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{5}=\frac{23}{3600}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(1+r)^{2}}$	0
a_{2}	$\frac{2 r+1}{(1+r)(r+2)^{2}}$	$\frac{1}{4}$
a_{3}	$\frac{3 r^{2}+5 r+1}{(1+r)^{2}(r+2)(r+3)^{2}}$	$\frac{1}{18}$
a_{4}	$\frac{5 r^{3}+20 r^{2}+21 r+5}{(r+2)^{2}(1+r)^{2}(r+3)(r+4)^{2}}$	$\frac{5}{192}$
a_{5}	$\frac{8 r^{4}+58 r^{3}+136 r^{2}+114 r+23}{(r+3)^{2}(1+r)^{2}(r+2)^{2}(r+4)(r+5)^{2}}$	$\frac{23}{3600}$

Using the above table, then the first solution $y_{1}(x)$ becomes

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{5 x^{4}}{192}+\frac{23 x^{5}}{3600}+O\left(x^{6}\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=0$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$\frac{r}{(1+r)^{2}}$	0	$\frac{1-r}{(1+r)^{3}}$	1
b_{2}	$\frac{2 r+1}{(1+r)(r+2)^{2}}$	$\frac{1}{4}$	$\frac{-4 r^{2}-5 r}{(r+2)^{3}(1+r)^{2}}$	0
b_{3}	$\frac{3 r^{2}+5 r+1}{(1+r)^{2}(r+2)(r+3)^{2}}$	$\frac{1}{18}$	$\frac{-9 r^{4}-44 r^{3}-66 r^{2}-24 r+11}{(r+3)^{3}(1+r)^{3}(r+2)^{2}}$	$\frac{11}{108}$
b_{4}	$\frac{5 r^{3}+20 r^{2}+21 r+5}{(r+2)^{2}(1+r)^{2}(r+3)(r+4)^{2}}$	$\frac{5}{192}$	$\frac{-20 r^{6}-215 r^{5}-891 r^{4}-1768 r^{3}-1656 r^{2}-552 r+44}{(r+4)^{3}(r+2)^{3}(1+r)^{3}(r+3)^{2}}$	$\frac{11}{1152}$
b_{5}	$\frac{8 r^{4}+58 r^{3}+136 r^{2}+114 r+23}{(r+3)^{2}(1+r)^{2}(r+2)^{2}(r+4)(r+5)^{2}}$	$\frac{23}{3600}$	$\frac{-40 r^{8}-740 r^{7}-5696 r^{6}-23580 r^{5}-56475 r^{4}-77715 r^{3}-55823 r^{2}-14473 r+1766}{(r+5)^{3}(r+3)^{3}(1+r)^{3}(r+2)^{3}(r+4)^{2}}$	$\frac{883}{216000}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =\left(1+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{5 x^{4}}{192}+\frac{23 x^{5}}{3600}+O\left(x^{6}\right)\right) \ln (x)+x+\frac{11 x^{3}}{108}+\frac{11 x^{4}}{1152}+\frac{883 x^{5}}{216000}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{5 x^{4}}{192}+\frac{23 x^{5}}{3600}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{5 x^{4}}{192}+\frac{23 x^{5}}{3600}+O\left(x^{6}\right)\right) \ln (x)+x+\frac{11 x^{3}}{108}+\frac{11 x^{4}}{1152}\right. \\
& \left.+\frac{883 x^{5}}{216000}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
y=y_{h}
$$

$$
\begin{aligned}
& =c_{1}\left(1+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{5 x^{4}}{192}+\frac{23 x^{5}}{3600}+O\left(x^{6}\right)\right) \\
& \quad+c_{2}\left(\left(1+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{5 x^{4}}{192}+\frac{23 x^{5}}{3600}+O\left(x^{6}\right)\right) \ln (x)+x+\frac{11 x^{3}}{108}+\frac{11 x^{4}}{1152}+\frac{883 x^{5}}{216000}\right. \\
&
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=c_{1}\left(1+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{5 x^{4}}{192}+\frac{23 x^{5}}{3600}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{5 x^{4}}{192}+\frac{23 x^{5}}{3600}+O\left(x^{6}\right)\right) \ln (x)+x+\frac{11 x^{3}}{108}+\frac{11 x^{4}}{1152}\right. \tag{1}\\
& \left.+\frac{883 x^{5}}{216000}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}\left(1+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{5 x^{4}}{192}+\frac{23 x^{5}}{3600}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(1+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{5 x^{4}}{192}+\frac{23 x^{5}}{3600}+O\left(x^{6}\right)\right) \ln (x)+x+\frac{11 x^{3}}{108}+\frac{11 x^{4}}{1152}+\frac{883 x^{5}}{216000}\right. \\
& \left.+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

16.16.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+(1-x) y^{\prime}-y x=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{(x-1) y^{\prime}}{x}+y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(x-1) y^{\prime}}{x}-y=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{x-1}{x}, P_{3}(x)=-1\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x+(1-x) y^{\prime}-y x=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion
$x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}$
- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}$
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r^{2} x^{-1+r}+\left(a_{1}(1+r)^{2}-a_{0} r\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+r+1)^{2}-a_{k}(k+r)-a_{k-1}\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r^{2}=0$
- Values of r that satisfy the indicial equation
$r=0$
- Each term must be 0
$a_{1}(1+r)^{2}-a_{0} r=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k+1}(k+1)^{2}-a_{k} k-a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+2}(k+2)^{2}-a_{k+1}(k+1)-a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=\frac{k a_{k+1}+a_{k}+a_{k+1}}{(k+2)^{2}}$
- Recursion relation for $r=0$
$a_{k+2}=\frac{k a_{k+1}+a_{k}+a_{k+1}}{(k+2)^{2}}$
- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{k a_{k+1}+a_{k}+a_{k+1}}{(k+2)^{2}}, a_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Kummer successful
<- special function solution successful
```


Solution by Maple

Time used: 0.016 (sec). Leaf size: 53

```
Order:=6;
dsolve(x*diff(y(x),x$2)-(x-1)*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1+\frac{1}{4} x^{2}+\frac{1}{18} x^{3}+\frac{5}{192} x^{4}+\frac{23}{3600} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left(x+\frac{11}{108} x^{3}+\frac{11}{1152} x^{4}+\frac{883}{216000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 96
AsymptoticDSolveValue[x*y' $[\mathrm{x}]-(\mathrm{x}-1) * \mathrm{y}$ ' $[\mathrm{x}]-\mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{23 x^{5}}{3600}+\frac{5 x^{4}}{192}+\frac{x^{3}}{18}+\frac{x^{2}}{4}+1\right) \\
& +c_{2}\left(\frac{883 x^{5}}{216000}+\frac{11 x^{4}}{1152}+\frac{11 x^{3}}{108}+\left(\frac{23 x^{5}}{3600}+\frac{5 x^{4}}{192}+\frac{x^{3}}{18}+\frac{x^{2}}{4}+1\right) \log (x)+x\right)
\end{aligned}
$$

16.17 problem Problem 18

16.17.1 Existence and uniqueness analysis 3066

Internal problem ID [2913]
Internal file name [OUTPUT/2405_Sunday_June_05_2022_03_04_49_AM_13349022/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(2 x^{2}+1\right) y^{\prime \prime}+7 x y^{\prime}+2 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

With the expansion point for the power series method at $x=0$.

16.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{7 x}{2 x^{2}+1} \\
q(x) & =\frac{2}{2 x^{2}+1} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{7 x y^{\prime}}{2 x^{2}+1}+\frac{2 y}{2 x^{2}+1}=0
$$

The domain of $p(x)=\frac{7 x}{2 x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{2}{2 x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{656}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{657}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{7 x y^{\prime}+2 y}{2 x^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{59 y^{\prime} x^{2}+22 y x-9 y^{\prime}}{\left(2 x^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-605 y^{\prime} x^{3}-250 x^{2} y+275 x y^{\prime}+40 y}{\left(2 x^{2}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(7365 x^{4}-6660 x^{2}+315\right) y^{\prime}+\left(3210 x^{3}-1530 x\right) y}{\left(2 x^{2}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-104055 x^{5}+156150 x^{3}-22095 x\right) y^{\prime}+\left(-46830 x^{4}+44370 x^{2}-2160\right) y}{\left(2 x^{2}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=0$ and $y^{\prime}(0)=1$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-9 \\
& F_{2}=0 \\
& F_{3}=315 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=x-\frac{3 x^{3}}{2}+\frac{21 x^{5}}{8}+O\left(x^{6}\right)
$$

$$
y=x-\frac{3 x^{3}}{2}+\frac{21 x^{5}}{8}+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(2 x^{2}+1\right) y^{\prime \prime}+7 x y^{\prime}+2 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(2 x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+7 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} 2 x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 7 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} 2 x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} 7 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+2 a_{0}=0 \\
a_{2}=-a_{0} \\
6 a_{3}+9 a_{1}=0
\end{gathered}
$$

$n=1$ gives

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{3 a_{1}}{2}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
2 n a_{n}(n-1)+(n+2) a_{n+2}(n+1)+7 n a_{n}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{(2 n+1) a_{n}}{n+1} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
20 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{5 a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
35 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{21 a_{1}}{8}
$$

For $n=4$ the recurrence equation gives

$$
54 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-3 a_{0}
$$

For $n=5$ the recurrence equation gives

$$
77 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{77 a_{1}}{16}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{0} x^{2}-\frac{3}{2} a_{1} x^{3}+\frac{5}{3} a_{0} x^{4}+\frac{21}{8} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}+\frac{5}{3} x^{4}\right) a_{0}+\left(x-\frac{3}{2} x^{3}+\frac{21}{8} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-x^{2}+\frac{5}{3} x^{4}\right) c_{1}+\left(x-\frac{3}{2} x^{3}+\frac{21}{8} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=x-\frac{3 x^{3}}{2}+\frac{21 x^{5}}{8}+O\left(x^{6}\right)
\end{gathered}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=x-\frac{3 x^{3}}{2}+\frac{21 x^{5}}{8}+O\left(x^{6}\right) \tag{1}\\
& y=x-\frac{3 x^{3}}{2}+\frac{21 x^{5}}{8}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x-\frac{3 x^{3}}{2}+\frac{21 x^{5}}{8}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=x-\frac{3 x^{3}}{2}+\frac{21 x^{5}}{8}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        <- Legendre successful
    <- special function solution successful
        -> Trying to convert hypergeometric functions to elementary form...
        <- elementary form is not straightforward to achieve - returning special function solu
    <- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([(1+2*x^2)*\operatorname{diff (y (x),x$2)+7*x*diff (y (x),x)+2*y(x)=0,y(0) = 0,D(y)(0) = 1],y(x),type=}=0,
```

$$
y(x)=x-\frac{3}{2} x^{3}+\frac{21}{8} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue $\left[\left\{\left(1+2 * x^{\wedge} 2\right) * y{ }^{\prime \prime}[x]+7 * x * y '[x]+2 * y[x]==0,\left\{y[0]==0, y^{\prime}[0]==1\right\}\right\}, y[x],\{x, 0,5\}\right.$

$$
y(x) \rightarrow \frac{21 x^{5}}{8}-\frac{3 x^{3}}{2}+x
$$

16.18 problem Problem 19

16.18.1 Existence and uniqueness analysis 3076
16.18.2 Maple step by step solution . 3084

Internal problem ID [2914]
Internal file name [OUTPUT/2406_Sunday_June_05_2022_03_04_53_AM_66127838/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Lienard]

$$
4 y^{\prime \prime}+x y^{\prime}+4 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

With the expansion point for the power series method at $x=0$.

16.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{x}{4} \\
q(x) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{x y^{\prime}}{4}+y=0
$$

The domain of $p(x)=\frac{x}{4}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{659}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{660}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{x y^{\prime}}{4}-y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{y^{\prime} x^{2}}{16}+\frac{y x}{4}-\frac{5 y^{\prime}}{4} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(-x^{3}+44 x\right) y^{\prime}}{64}+\frac{\left(-4 x^{2}+96\right) y}{64} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(x^{4}-72 x^{2}+560\right) y^{\prime}}{256}+\frac{x y\left(x^{2}-52\right)}{64} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-x^{5}+104 x^{3}-1968 x\right) y^{\prime}}{1024}-\frac{y\left(x^{4}-84 x^{2}+768\right)}{256}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=1$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
& F_{0}=-1 \\
& F_{1}=0 \\
& F_{2}=\frac{3}{2} \\
& F_{3}=0 \\
& F_{4}=-3
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=1-\frac{x^{2}}{2}+\frac{x^{4}}{16}-\frac{x^{6}}{240}+O\left(x^{6}\right)
$$

$$
y=1-\frac{x^{2}}{2}+\frac{x^{4}}{16}-\frac{x^{6}}{240}+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\frac{x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)}{4}-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 4(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
8 a_{2}+4 a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
4(n+2) a_{n+2}(n+1)+n a_{n}+4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}(n+4)}{4(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
24 a_{3}+5 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{5 a_{1}}{24}
$$

For $n=2$ the recurrence equation gives

$$
48 a_{4}+6 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{16}
$$

For $n=3$ the recurrence equation gives

$$
80 a_{5}+7 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{7 a_{1}}{384}
$$

For $n=4$ the recurrence equation gives

$$
120 a_{6}+8 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{240}
$$

For $n=5$ the recurrence equation gives

$$
168 a_{7}+9 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{1024}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{5}{24} a_{1} x^{3}+\frac{1}{16} a_{0} x^{4}+\frac{7}{384} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{16} x^{4}\right) a_{0}+\left(x-\frac{5}{24} x^{3}+\frac{7}{384} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{16} x^{4}\right) c_{1}+\left(x-\frac{5}{24} x^{3}+\frac{7}{384} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=1-\frac{x^{2}}{2}+\frac{x^{4}}{16}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=1-\frac{x^{2}}{2}+\frac{x^{4}}{16}-\frac{x^{6}}{240}+O\left(x^{6}\right) \tag{1}\\
& y=1-\frac{x^{2}}{2}+\frac{x^{4}}{16}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=1-\frac{x^{2}}{2}+\frac{x^{4}}{16}-\frac{x^{6}}{240}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=1-\frac{x^{2}}{2}+\frac{x^{4}}{16}+O\left(x^{6}\right)
$$

Verified OK.

16.18.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-\frac{x y^{\prime}}{4}-y, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{x y^{\prime}}{4}+y=0
$$

- Multiply by denominators

$$
4 y^{\prime \prime}+x y^{\prime}+4 y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

\square
Rewrite DE with series expansions

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(4 a_{k+2}(k+2)(k+1)+a_{k}(k+4)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation $4\left(k^{2}+3 k+2\right) a_{k+2}+a_{k}(k+4)=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}(k+4)}{4\left(k^{2}+3 k+2\right)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Kummer successful
    <- special function solution successful
        Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
        -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        -> Trying to convert hypergeometric functions to elementary form...
    <- elementary form could result into a too large expression - returning special functi
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([4*diff (y (x), x$2)+x*diff (y(x),x)+4*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x
```

$$
y(x)=1-\frac{1}{2} x^{2}+\frac{1}{16} x^{4}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue[\{4*y''[x]+x*y'[x]+4*y[x]==0,\{y[0]==1,y'[0]==0\}\},y[x],\{x,0,5\}],

$$
y(x) \rightarrow \frac{x^{4}}{16}-\frac{x^{2}}{2}+1
$$

16.19 problem Problem 20

Internal problem ID [2915]
Internal file name [OUTPUT/2407_Sunday_June_05_2022_03_04_56_AM_36856607/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime} x^{2}+y x=2 \cos (x)
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{662}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{663}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-2 y^{\prime} x^{2}-y x+2 \cos (x) \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(4 x^{4}-5 x\right) y^{\prime}+2 y x^{3}-4 x^{2} \cos (x)-y-2 \sin (x) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(-8 x^{6}+28 x^{3}-6\right) y^{\prime}+\left(8 x^{4}-18 x-2\right) \cos (x)-4\left(\left(x^{3}-\frac{11}{4}\right) y-\sin (x)\right) x^{2} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(16 x^{8}-108 x^{5}+107 x^{2}\right) y^{\prime}+\left(-16 x^{6}+88 x^{3}+4 x^{2}-30\right) \cos (x)+\left(-8 x^{4}+26 x+2\right) \sin (x)+8\left(x^{6}\right. \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-32 x^{10}+352 x^{7}-802 x^{4}+242 x\right) y^{\prime}+\left(32 x^{8}-312 x^{5}-8 x^{4}+478 x^{2}+34 x+2\right) \cos (x)+\left(16 x^{6}-\right.
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=2 \\
& F_{1}=-y(0) \\
& F_{2}=-2-6 y^{\prime}(0) \\
& F_{3}=-30 \\
& F_{4}=2+28 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{7}{180} x^{6}\right) y(0)+\left(x-\frac{1}{4} x^{4}\right) y^{\prime}(0)+x^{2}-\frac{x^{4}}{12}-\frac{x^{5}}{4}+\frac{x^{6}}{360}+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{2}-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x+2 \cos (x) \tag{1}
\end{equation*}
$$

Expanding $2 \cos (x)$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
2 \cos (x) & =2-x^{2}+\frac{1}{12} x^{4}+\ldots \\
& =2-x^{2}+\frac{1}{12} x^{4}
\end{aligned}
$$

Hence the ODE in Eq (1) becomes

$$
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{2}+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=2-x^{2}+\frac{1}{12} x^{4}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 2 n x^{1+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)=2-x^{2}+\frac{1}{12} x^{4} \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the
power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty} 2 n x^{1+n} a_{n} & =\sum_{n=2}^{\infty} 2(n-1) a_{n-1} x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.
$\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=2}^{\infty} 2(n-1) a_{n-1} x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)=2-x^{2}+\frac{1}{12} x^{4}$
$n=0$ gives

$$
\begin{array}{r}
\left(2 a_{2}\right) 1=2 \\
2 a_{2}=2
\end{array}
$$

Or

$$
a_{2}=1
$$

$n=1$ gives

$$
6 a_{3}+a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{0}}{6}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
\left((n+2) a_{n+2}(1+n)+2(n-1) a_{n-1}+a_{n-1}\right) x^{n}=2-x^{2}+\frac{1}{12} x^{4} \tag{4}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
\begin{array}{r}
\left(12 a_{4}+3 a_{1}\right) x^{2}=-x^{2} \\
12 a_{4}+3 a_{1}=-1
\end{array}
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{1}{12}-\frac{a_{1}}{4}
$$

For $n=3$ the recurrence equation gives

$$
\begin{array}{r}
\left(20 a_{5}+5 a_{2}\right) x^{3}=0 \\
20 a_{5}+5 a_{2}=0
\end{array}
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{1}{4}
$$

For $n=4$ the recurrence equation gives

$$
\begin{aligned}
\left(30 a_{6}+7 a_{3}\right) x^{4} & =\frac{x^{4}}{12} \\
30 a_{6}+7 a_{3} & =\frac{1}{12}
\end{aligned}
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{1}{360}+\frac{7 a_{0}}{180}
$$

For $n=5$ the recurrence equation gives

$$
\begin{array}{r}
\left(42 a_{7}+9 a_{4}\right) x^{5}=0 \\
42 a_{7}+9 a_{4}=0
\end{array}
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{1}{56}+\frac{3 a_{1}}{56}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+x^{2}-\frac{a_{0} x^{3}}{6}+\left(-\frac{1}{12}-\frac{a_{1}}{4}\right) x^{4}-\frac{x^{5}}{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{3}}{6}\right) a_{0}+\left(x-\frac{1}{4} x^{4}\right) a_{1}+x^{2}-\frac{x^{4}}{12}-\frac{x^{5}}{4}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{4} x^{4}\right) c_{2}+x^{2}-\frac{x^{4}}{12}-\frac{x^{5}}{4}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{6} x^{3}+\frac{7}{180} x^{6}\right) y(0)+\left(x-\frac{1}{4} x^{4}\right) y^{\prime}(0)+x^{2}-\frac{x^{4}}{12}-\frac{x^{5}}{4}+\frac{x^{6}}{360}+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{4} x^{4}\right) c_{2}+x^{2}-\frac{x^{4}}{12}-\frac{x^{5}}{4}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{7}{180} x^{6}\right) y(0)+\left(x-\frac{1}{4} x^{4}\right) y^{\prime}(0)+x^{2}-\frac{x^{4}}{12}-\frac{x^{5}}{4}+\frac{x^{6}}{360}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{4} x^{4}\right) c_{2}+x^{2}-\frac{x^{4}}{12}-\frac{x^{5}}{4}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
            <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        <- Kummer successful
    <- special function solution successful
<- solving first the homogeneous part of the ODE successful`
```


Solution by Maple

Time used: 0.015 (sec). Leaf size: 30

```
Order:=6;
dsolve(diff (y (x),x$2)+2*x^2*diff(y(x),x)+x*y(x)=2*\operatorname{cos}(x),y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{x^{3}}{6}\right) y(0)+\left(x-\frac{1}{4} x^{4}\right) D(y)(0)+x^{2}-\frac{x^{4}}{12}-\frac{x^{5}}{4}+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 45
AsymptoticDSolveValue[y' ' $[\mathrm{x}]+2 * \mathrm{x}^{\wedge} 2 * \mathrm{y}$ ' $\left.[\mathrm{x}]+\mathrm{x} * \mathrm{y}[\mathrm{x}]==2 * \operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow-\frac{x^{5}}{4}-\frac{x^{4}}{12}+c_{2}\left(x-\frac{x^{4}}{4}\right)+c_{1}\left(1-\frac{x^{3}}{6}\right)+x^{2}
$$

16.20 problem Problem 21

Internal problem ID [2916]
Internal file name [OUTPUT/2408_Sunday_June_05_2022_03_04_58_AM_50285274/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.2. page 739
Problem number: Problem 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+x y^{\prime}-4 y=6 \mathrm{e}^{x}
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{665}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{666}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-x y^{\prime}+4 y+6 \mathrm{e}^{x} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x^{2}-6 x \mathrm{e}^{x}-4 y x+6 \mathrm{e}^{x}+3 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(-x^{3}-5 x\right) y^{\prime}+6\left(x^{2}-x+3\right) \mathrm{e}^{x}+4\left(x^{2}+2\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}+6 x^{2}+3\right) y^{\prime}+6\left(-x^{3}+x^{2}-4 x+2\right) \mathrm{e}^{x}-4 x y\left(x^{2}+3\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}-6 x^{3}-3 x\right) y^{\prime}+6\left(x^{4}-x^{3}+4 x^{2}-2 x+1\right) \mathrm{e}^{x}+4 x^{2} y\left(x^{2}+3\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=6+4 y(0) \\
& F_{1}=6+3 y^{\prime}(0) \\
& F_{2}=18+8 y(0) \\
& F_{3}=12+3 y^{\prime}(0) \\
& F_{4}=6
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+2 x^{2}+\frac{1}{3} x^{4}\right) y(0)+\left(x+\frac{1}{2} x^{3}+\frac{1}{40} x^{5}\right) y^{\prime}(0)+3 x^{2}+x^{3}+\frac{3 x^{4}}{4}+\frac{x^{5}}{10}+\frac{x^{6}}{120}+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+6 \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Expanding $6 \mathrm{e}^{x}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
6 \mathrm{e}^{x} & =6+6 x+3 x^{2}+x^{3}+\frac{1}{4} x^{4}+\frac{1}{20} x^{5}+\ldots \\
& =6+6 x+3 x^{2}+x^{3}+\frac{1}{4} x^{4}+\frac{1}{20} x^{5}
\end{aligned}
$$

Hence the ODE in Eq (1) becomes

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& =6+6 x+3 x^{2}+x^{3}+\frac{1}{4} x^{4}+\frac{1}{20} x^{5}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right) \tag{2}\\
& =6+6 x+3 x^{2}+x^{3}+\frac{1}{4} x^{4}+\frac{1}{20} x^{5}
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right) \tag{3}\\
& =6+6 x+3 x^{2}+x^{3}+\frac{1}{4} x^{4}+\frac{1}{20} x^{5}
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
\left(2 a_{2}-4 a_{0}\right) x^{0}=6 \\
2 a_{2}-4 a_{0}=6 \\
a_{2}=2 a_{0}+3
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
\left((n+2) a_{n+2}(n+1)+n a_{n}-4 a_{n}\right) x^{n}=6+6 x+3 x^{2}+x^{3}+\frac{1}{4} x^{4}+\frac{1}{20} x^{5} \tag{4}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
\begin{aligned}
\left(6 a_{3}-3 a_{1}\right) x & =6 x \\
6 a_{3}-3 a_{1} & =6
\end{aligned}
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=1+\frac{a_{1}}{2}
$$

For $n=2$ the recurrence equation gives

$$
\begin{aligned}
\left(12 a_{4}-2 a_{2}\right) x^{2} & =3 x^{2} \\
12 a_{4}-2 a_{2} & =3
\end{aligned}
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{3}{4}+\frac{a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
\begin{array}{r}
\left(20 a_{5}-a_{3}\right) x^{3}=x^{3} \\
20 a_{5}-a_{3}=1
\end{array}
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{1}{10}+\frac{a_{1}}{40}
$$

For $n=4$ the recurrence equation gives

$$
\begin{aligned}
\left(30 a_{6}\right) x^{4} & =\frac{x^{4}}{4} \\
30 a_{6} & =\frac{1}{4}
\end{aligned}
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{1}{120}
$$

For $n=5$ the recurrence equation gives

$$
\begin{aligned}
\left(42 a_{7}+a_{5}\right) x^{5} & =\frac{x^{5}}{20} \\
42 a_{7}+a_{5} & =\frac{1}{20}
\end{aligned}
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{1}{840}-\frac{a_{1}}{1680}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\left(2 a_{0}+3\right) x^{2}+\left(1+\frac{a_{1}}{2}\right) x^{3}+\left(\frac{3}{4}+\frac{a_{0}}{3}\right) x^{4}+\left(\frac{1}{10}+\frac{a_{1}}{40}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+2 x^{2}+\frac{1}{3} x^{4}\right) a_{0}+\left(x+\frac{1}{2} x^{3}+\frac{1}{40} x^{5}\right) a_{1}+3 x^{2}+x^{3}+\frac{3 x^{4}}{4}+\frac{x^{5}}{10}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+2 x^{2}+\frac{1}{3} x^{4}\right) c_{1}+\left(x+\frac{1}{2} x^{3}+\frac{1}{40} x^{5}\right) c_{2}+3 x^{2}+x^{3}+\frac{3 x^{4}}{4}+\frac{x^{5}}{10}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y=\left(1+2 x^{2}+\frac{1}{3} x^{4}\right) y(0)+\left(x+\frac{1}{2} x^{3}+\frac{1}{40} x^{5}\right) y^{\prime}(0)+3 x^{2}+x^{3}+\frac{3 x^{4}}{4}+\frac{x^{5}}{10}+\frac{x^{6}}{120}+O\left(x^{6}\right) \\
& y=\left(1+2 x^{2}+\frac{1}{3} x^{4}\right) c_{1}+\left(x+\frac{1}{2} x^{3}+\frac{1}{40} x^{5}\right) c_{2}+3 x^{2}+x^{3}+\frac{3 x^{4}}{4}+\frac{x^{5}}{10}+O\left(x^{6}\right)(2)
\end{aligned}
$$

Verification of solutions

$$
y=\left(1+2 x^{2}+\frac{1}{3} x^{4}\right) y(0)+\left(x+\frac{1}{2} x^{3}+\frac{1}{40} x^{5}\right) y^{\prime}(0)+3 x^{2}+x^{3}+\frac{3 x^{4}}{4}+\frac{x^{5}}{10}+\frac{x^{6}}{120}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+2 x^{2}+\frac{1}{3} x^{4}\right) c_{1}+\left(x+\frac{1}{2} x^{3}+\frac{1}{40} x^{5}\right) c_{2}+3 x^{2}+x^{3}+\frac{3 x^{4}}{4}+\frac{x^{5}}{10}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace Kovacic algorithm successful

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
\rightarrow Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Kummer successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function s
<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful-
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 42

```
Order:=6;
dsolve(diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=6*exp(x),y(x),type='series',x=0);
```

$$
y(x)=\left(1+2 x^{2}+\frac{1}{3} x^{4}\right) y(0)+\left(x+\frac{1}{2} x^{3}+\frac{1}{40} x^{5}\right) D(y)(0)+3 x^{2}+x^{3}+\frac{3 x^{4}}{4}+\frac{x^{5}}{10}+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 62
AsymptoticDSolveValue[y' $\quad[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]-4 * \mathrm{y}[\mathrm{x}]==6 * \operatorname{Exp}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow \frac{x^{5}}{10}+\frac{3 x^{4}}{4}+x^{3}+3 x^{2}+c_{2}\left(\frac{x^{5}}{40}+\frac{x^{3}}{2}+x\right)+c_{1}\left(\frac{x^{4}}{3}+2 x^{2}+1\right)
$$

17 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page758
17.1 problem 1 3109
17.2 problem 3 3120
17.3 problem 4 3131
17.4 problem 5 3149
17.5 problem 6 3153
17.6 problem 7 3168
17.7 problem 8 3179
17.8 problem 9 3192
17.9 problem 10 3202
17.10problem 11 3216
17.11problem 12 3230
17.12problem 13 3245
17.13problem 14 3257
17.14problem 15 3271
17.15problem 16 3285
17.16problem 17 3301
17.17problem 18 3315
17.18problem 19 3327
17.19problem 20 3341
17.20problem 21 3352

17.1 problem 1

Internal problem ID [2917]
Internal file name [OUTPUT/2409_Sunday_June_05_2022_03_05_02_AM_46963906/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+\frac{y^{\prime}}{1-x}+y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{668}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{669}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{x^{2} y-y x-y^{\prime}}{x-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{-y^{\prime} x^{2}-2 y x+x y^{\prime}+y}{x-1} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(-4 x^{2}+6 x-2\right) y^{\prime}+y\left(x^{4}-2 x^{3}+x^{2}+1\right)}{(x-1)^{2}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(x^{5}-3 x^{4}+3 x^{3}-5 x^{2}+9 x-5\right) y^{\prime}+6\left(x^{4}-\frac{8}{3} x^{3}+\frac{7}{3} x^{2}-\frac{2}{3} x-\frac{1}{3}\right) y}{(x-1)^{3}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{3\left(3 x^{5}-11 x^{4}+15 x^{3}-9 x^{2}+x+1\right) y^{\prime}-y\left(x^{7}-4 x^{6}+6 x^{5}-14 x^{4}+38 x^{3}-48 x^{2}+25 x-10\right)}{(x-1)^{4}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y^{\prime}(0) \\
& F_{1}=-y(0) \\
& F_{2}=y(0)-2 y^{\prime}(0) \\
& F_{3}=2 y(0)+5 y^{\prime}(0) \\
& F_{4}=10 y(0)+3 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{60} x^{5}+\frac{1}{72} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}+\frac{1}{24} x^{5}+\frac{1}{240} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
y^{\prime \prime}(x-1)-y^{\prime}+x(x-1) y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)(x-1)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+x(x-1)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1)\right)+\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right) \tag{2}\\
& \quad+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} x^{n+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the
power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty}(1+n) a_{1+n} n x^{n} \\
\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right) & =\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(1+n) x^{n}\right) \\
\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right) & =\sum_{n=0}^{\infty}\left(-(1+n) a_{1+n} x^{n}\right) \\
\sum_{n=0}^{\infty} x^{n+2} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty}(1+n) a_{1+n} n x^{n}\right)+\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(1+n) x^{n}\right) \tag{3}\\
& \quad+\sum_{n=0}^{\infty}\left(-(1+n) a_{1+n} x^{n}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
-2 a_{2}-a_{1}=0 \\
a_{2}=-\frac{a_{1}}{2}
\end{gathered}
$$

$n=1$ gives

$$
-6 a_{3}-a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{0}}{6}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(1+n) a_{1+n} n-(n+2) a_{n+2}(1+n)-(1+n) a_{1+n}+a_{n-2}-a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =\frac{n^{2} a_{1+n}-a_{1+n}+a_{n-2}-a_{n-1}}{(n+2)(1+n)} \\
& =\frac{\left(n^{2}-1\right) a_{1+n}}{(n+2)(1+n)}+\frac{a_{n-2}}{(n+2)(1+n)}-\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
3 a_{3}-12 a_{4}+a_{0}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{24}-\frac{a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
8 a_{4}-20 a_{5}+a_{1}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{60}+\frac{a_{1}}{24}
$$

For $n=4$ the recurrence equation gives

$$
15 a_{5}-30 a_{6}+a_{2}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{72}+\frac{a_{1}}{240}
$$

For $n=5$ the recurrence equation gives

$$
24 a_{6}-42 a_{7}+a_{3}-a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{0}}{336}+\frac{11 a_{1}}{2520}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{a_{1} x^{2}}{2}-\frac{a_{0} x^{3}}{6}+\left(\frac{a_{0}}{24}-\frac{a_{1}}{12}\right) x^{4}+\left(\frac{a_{0}}{60}+\frac{a_{1}}{24}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{60} x^{5}\right) a_{0}+\left(x-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{60} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{60} x^{5}+\frac{1}{72} x^{6}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}+\frac{1}{24} x^{5}+\frac{1}{240} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{60} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{60} x^{5}+\frac{1}{72} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}+\frac{1}{24} x^{5}+\frac{1}{240} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{60} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
```

 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
 trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear $\mathrm{ODF}_{1} 8^{\text {with }}$ constant coefficients
trying to convert to an ODE of Bessel type
trying to convert to an ODE of Bessel type
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 44

```
Order:=6;
dsolve(diff(y(x),x$2)+1/(1-x)*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);
```

$y(x)=\left(1-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{60} x^{5}\right) y(0)+\left(x-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) D(y)(0)+O\left(x^{6}\right)$
\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56
AsymptoticDSolveValue[y' ' $[\mathrm{x}]+1 /(1-\mathrm{x}) * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{5}}{60}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+1\right)+c_{2}\left(\frac{x^{5}}{24}-\frac{x^{4}}{12}-\frac{x^{2}}{2}+x\right)
$$

17.2 problem 3

17.2.1 Maple step by step solution

3127
Internal problem ID [2918]
Internal file name [OUTPUT/2410_Sunday_June_05_2022_03_05_05_AM_52069117/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+\frac{x y^{\prime}}{\left(-x^{2}+1\right)^{2}}+y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\frac{x y^{\prime}}{\left(x^{2}-1\right)^{2}}+y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x\left(x^{2}-1\right)^{2}} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Table 419: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x\left(x^{2}-1\right)^{2}}$	
singularity	type
$x=-1$	"irregular"
$x=0$	"regular"
$x=1$	"irregular"

$q(x)=\frac{1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty]$
Irregular singular points : $[-1,1]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
y^{\prime \prime} x^{2}\left(x^{2}-1\right)^{2}+x y^{\prime}+y\left(x^{2}-1\right)^{2}=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2}\left(x^{2}-1\right)^{2} \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)\left(x^{2}-1\right)^{2}=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r+4} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-2 x^{n+r+2} a_{n}(n+r)(n+r-1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r+4} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r+4} a_{n}(n+r)(n+r-1) & =\sum_{n=4}^{\infty} a_{n-4}(n-4+r)(n-5+r) x^{n+r} \\
\sum_{n=0}^{\infty}\left(-2 x^{n+r+2} a_{n}(n+r)(n+r-1)\right) & =\sum_{n=2}^{\infty}\left(-2 a_{n-2}(n+r-2)(n-3+r) x^{n+r}\right) \\
\sum_{n=0}^{\infty} x^{n+r+4} a_{n} & =\sum_{n=4}^{\infty} a_{n-4} x^{n+r} \\
\sum_{n=0}^{\infty}\left(-2 x^{n+r+2} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-2 a_{n-2} x^{n+r}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=4}^{\infty} a_{n-4}(n-4+r)(n-5+r) x^{n+r}\right) \\
& +\sum_{n=2}^{\infty}\left(-2 a_{n-2}(n+r-2)(n-3+r) x^{n+r}\right) \tag{2~B}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \\
& \quad+\left(\sum_{n=4}^{\infty} a_{n-4} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-2 a_{n-2} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}+1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=i \\
& r_{2}=-i
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}+1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+i} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-i}
\end{aligned}
$$

$y_{1}(x)$ is found first. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{2 r^{2}-2 r+2}{r^{2}+4 r+5}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=0
$$

For $4 \leq n$ the recursive equation is

$$
\begin{align*}
& a_{n-4}(n-4+r)(n-5+r)-2 a_{n-2}(n+r-2)(n-3+r) \tag{3}\\
& \quad+a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-4}-2 a_{n-2}+a_{n}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{n^{2} a_{n-4}-2 n^{2} a_{n-2}+2 n r a_{n-4}-4 n r a_{n-2}+r^{2} a_{n-4}-2 r^{2} a_{n-2}-9 n a_{n-4}+10 n a_{n-2}-9 r a_{n-4}+10 r}{n^{2}+2 n r+r^{2}+1} \tag{4}
\end{equation*}
$$

Which for the root $r=i$ becomes
$a_{n}=\frac{\left(-a_{n-4}+2 a_{n-2}\right) n^{2}+\left((9-2 i) a_{n-4}+(-10+4 i) a_{n-2}\right) n+(-20+9 i) a_{n-4}+(12-10 i) a_{n-2}}{n(2 i+n)}$
At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=i$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{2 r^{2}-2 r+2}{r^{2}+4 r+5}$	$-\frac{1}{4}-\frac{i}{4}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{3 r^{4}+5 r^{3}+2 r^{2}+r+7}{\left(r^{2}+4 r+5\right)\left(r^{2}+8 r+17\right)}
$$

Which for the root $r=i$ becomes

$$
a_{4}=-\frac{1}{80}-\frac{7 i}{80}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{2 r^{2}-2 r+2}{r^{2}+4 r+5}$	$-\frac{1}{4}-\frac{i}{4}$
a_{3}	0	0
a_{4}	$\frac{3 r^{4}+5 r^{3}+2 r^{2}+r+7}{\left(r^{2}+4 r+5\right)\left(r^{2}+8 r+17\right)}$	$-\frac{1}{80}-\frac{7 i}{80}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{2 r^{2}-2 r+2}{r^{2}+4 r+5}$	$-\frac{1}{4}-\frac{i}{4}$
a_{3}	0	0
a_{4}	$\frac{3 r^{4}+5 r^{3}+2 r^{2}+r+7}{\left(r^{2}+4 r+5\right)\left(r^{2}+8 r+17\right)}$	$-\frac{1}{80}-\frac{7 i}{80}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{i}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{i}\left(1+\left(-\frac{1}{4}-\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}-\frac{7 i}{80}\right) x^{4}+O\left(x^{6}\right)\right)
\end{aligned}
$$

The second solution $y_{2}(x)$ is found by taking the complex conjugate of $y_{1}(x)$ which gives

$$
y_{2}(x)=x^{-i}\left(1+\left(-\frac{1}{4}+\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}+\frac{7 i}{80}\right) x^{4}+O\left(x^{6}\right)\right)
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{i}\left(1+\left(-\frac{1}{4}-\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}-\frac{7 i}{80}\right) x^{4}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{-i}\left(1+\left(-\frac{1}{4}+\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}+\frac{7 i}{80}\right) x^{4}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{i}\left(1+\left(-\frac{1}{4}-\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}-\frac{7 i}{80}\right) x^{4}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{-i}\left(1+\left(-\frac{1}{4}+\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}+\frac{7 i}{80}\right) x^{4}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{i}\left(1+\left(-\frac{1}{4}-\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}-\frac{7 i}{80}\right) x^{4}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2} x^{-i}\left(1+\left(-\frac{1}{4}+\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}+\frac{7 i}{80}\right) x^{4}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{i}\left(1+\left(-\frac{1}{4}-\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}-\frac{7 i}{80}\right) x^{4}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{-i}\left(1+\left(-\frac{1}{4}+\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}+\frac{7 i}{80}\right) x^{4}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

17.2.1 Maple step by step solution

Let's solve
$y^{\prime \prime} x^{2}\left(x^{2}-1\right)^{2}+x y^{\prime}+y\left(x^{2}-1\right)^{2}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{y^{\prime}}{x\left(x^{2}-1\right)^{2}}-\frac{y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x\left(x^{2}-1\right)^{2}}+\frac{y}{x^{2}}=0$
Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x\left(x^{2}-1\right)^{2}}, P_{3}(x)=\frac{1}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1$
- $x=0$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x^{2}\left(x^{2}-1\right)^{2}+x y^{\prime}+y\left(x^{2}-1\right)^{2}=0
$$

- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .4$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{m} \cdot y^{\prime \prime}$ to series expansion for $m=2 . .6$
$x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}$
- Shift index using $k->k+2-m$
$x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}\left(r^{2}+1\right) x^{r}+a_{1}\left(r^{2}+2 r+2\right) x^{1+r}+\left(\left(r^{2}+4 r+5\right) a_{2}-2 a_{0}\left(r^{2}-r+1\right)\right) x^{2+r}+\left(a_{3}\left(r^{2}+6 r+\right.\right.$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$r^{2}+1=0$
- Values of r that satisfy the indicial equation
$r \in\{-\mathrm{I}, \mathrm{I}\}$
- \quad The coefficients of each power of x must be 0
$\left[a_{1}\left(r^{2}+2 r+2\right)=0,\left(r^{2}+4 r+5\right) a_{2}-2 a_{0}\left(r^{2}-r+1\right)=0, a_{3}\left(r^{2}+6 r+10\right)-2 a_{1}\left(r^{2}+r+1\right)\right.$
- \quad Solve for the dependent coefficient(s)
$\left\{a_{1}=0, a_{2}=\frac{2 a_{0}\left(r^{2}-r+1\right)}{r^{2}+4 r+5}, a_{3}=0\right\}$
- Each term in the series must be 0 , giving the recursion relation
$\left(a_{k}+a_{k-4}-2 a_{k-2}\right) k^{2}+\left(\left(2 a_{k}+2 a_{k-4}-4 a_{k-2}\right) r-9 a_{k-4}+10 a_{k-2}\right) k+\left(a_{k}+a_{k-4}-2 a_{k-2}\right) r^{2}$
- \quad Shift index using $k->k+4$
$\left(a_{k+4}+a_{k}-2 a_{k+2}\right)(k+4)^{2}+\left(\left(2 a_{k+4}+2 a_{k}-4 a_{k+2}\right) r-9 a_{k}+10 a_{k+2}\right)(k+4)+\left(a_{k+4}+a_{k}-\right.$
- Recursion relation that defines series solution to ODE
$a_{k+4}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+2}+2 k r a_{k}-4 k r a_{k+2}+r^{2} a_{k}-2 r^{2} a_{k+2}-k a_{k}-6 k a_{k+2}-r a_{k}-6 r a_{k+2}+a_{k}-6 a_{k+2}}{k^{2}+2 k r+r^{2}+8 k+8 r+17}$
- \quad Recursion relation for $r=-\mathrm{I}$
$a_{k+4}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+2}-2 \mathrm{I} k a_{k}+4 \mathrm{I} k a_{k+2}-4 a_{k+2}-k a_{k}-6 k a_{k+2}+\mathrm{I} a_{k}+6 \mathrm{I} a_{k+2}}{k^{2}-2 \mathrm{I} k+16-8 \mathrm{I}+8 k}$
- \quad Solution for $r=-\mathrm{I}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\mathrm{I}}, a_{k+4}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+2}-2 \mathrm{I} k a_{k}+4 \mathrm{I} k a_{k+2}-4 a_{k+2}-k a_{k}-6 k a_{k+2}+\mathrm{I} a_{k}+6 \mathrm{I} a_{k+2}}{k^{2}-2 \mathrm{I} k+16-8 \mathrm{I}+8 k}, a_{1}=0, a_{2}=\left(-\frac{1}{4}\right.\right.
$$

- \quad Recursion relation for $r=\mathrm{I}$

$$
a_{k+4}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+2}+2 \mathrm{I} k a_{k}-4 \mathrm{I} k a_{k+2}-4 a_{k+2}-k a_{k}-6 k a_{k+2}-\mathrm{I} a_{k}-6 \mathrm{I} a_{k+2}}{k^{2}+2 \mathrm{I} k+16+8 \mathrm{I}+8 k}
$$

- \quad Solution for $r=\mathrm{I}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\mathrm{I}}, a_{k+4}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+2}+2 \mathrm{I} k a_{k}-4 \mathrm{I} k a_{k+2}-4 a_{k+2}-k a_{k}-6 k a_{k+2}-\mathrm{I} a_{k}-6 \mathrm{I} a_{k+2}}{k^{2}+2 \mathrm{I} k+16+8 \mathrm{I}+8 k}, a_{1}=0, a_{2}=\left(-\frac{1}{4}\right.\right.
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\mathrm{I}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\mathrm{I}}\right), a_{k+4}=-\frac{k^{2} a_{k}-2 k^{2} a_{2+k}-2 \mathrm{I} k a_{k}+4 \mathrm{I} k a_{2+k}-4 a_{2+k}-k a_{k}-6 k a_{2+k}+\mathrm{I} a_{k}+6 \mathrm{I} a_{2}}{k^{2}-2 \mathrm{I} k+16-8 \mathrm{I}+8 k}\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a = 0, e <> 0, c <>
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 45

```
Order:=6;
dsolve(x^2*diff (y(x),x$2)+x/(1-x^2)^2*diff ( }\textrm{y}(\textrm{x}),\textrm{x})+\textrm{y}(\textrm{x})=0,y(x),\mathrm{ type='series', x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{-i}\left(1+\left(-\frac{1}{4}+\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}+\frac{7 i}{80}\right) x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x^{i}\left(1+\left(-\frac{1}{4}-\frac{i}{4}\right) x^{2}+\left(-\frac{1}{80}-\frac{7 i}{80}\right) x^{4}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 70
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime \prime} \cdot[x]+x /\left(1-x^{\wedge} 2\right) \wedge 2 * y '[x]+y[x]==0, y[x],\{x, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & \left(\frac{1}{80}+\frac{3 i}{80}\right) c_{2} x^{-i}\left((2+i) x^{4}+(4+8 i) x^{2}+(8-24 i)\right) \\
& -\left(\frac{3}{80}+\frac{i}{80}\right) c_{1} x^{i}\left((1+2 i) x^{4}+(8+4 i) x^{2}-(24-8 i)\right)
\end{aligned}
$$

17.3 problem 4

Internal problem ID [2919]
Internal file name [OUTPUT/2411_Sunday_June_05_2022_03_06_51_AM_76483647/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(x-2)^{2} y^{\prime \prime}+(x-2) \mathrm{e}^{x} y^{\prime}+\frac{4 y}{x}=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
\left(x^{2}-4 x+4\right) y^{\prime \prime}+\left(x \mathrm{e}^{x}-2 \mathrm{e}^{x}\right) y^{\prime}+\frac{4 y}{x}=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{\mathrm{e}^{x}}{x-2} \\
q(x) & =\frac{4}{(x-2)^{2} x}
\end{aligned}
$$

Table 421: Table $p(x), q(x)$ singularites.

$p(x)=\frac{\mathrm{e}^{x}}{x-2}$	
singularity	type
$x=2$	"regular"
$x=\infty$	"regular"

$q(x)=\frac{4}{(x-2)^{2} x}$	
singularity	type
$x=0$	"regular"
$x=2$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[2, \infty, 0]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x\left(x^{2}-4 x+4\right) y^{\prime \prime}+\mathrm{e}^{x} x(x-2) y^{\prime}+4 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x\left(x^{2}-4 x+4\right)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\mathrm{e}^{x} x(x-2)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Expanding $(x-2) \mathrm{e}^{x} x$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
(x-2) \mathrm{e}^{x} x & =-2 x-x^{2}+\frac{1}{6} x^{4}+\frac{1}{12} x^{5}+\frac{1}{40} x^{6}+\ldots \\
& =-2 x-x^{2}+\frac{1}{6} x^{4}+\frac{1}{12} x^{5}+\frac{1}{40} x^{6}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-4 x^{n+r} a_{n}(n+r)(n+r-1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 4 x^{n+r-1} a_{n}(n+r)(n+r-1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}(n+r)}{40}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}(n+r)}{12}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}(n+r)}{6}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-2 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) x^{n+r-1} \\
\sum_{n=0}^{\infty}\left(-4 x^{n+r} a_{n}(n+r)(n+r-1)\right) & =\sum_{n=1}^{\infty}\left(-4 a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}(n+r)}{40} & =\sum_{n=6}^{\infty} \frac{a_{n-6}(n+r-6) x^{n+r-1}}{40} \\
\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}(n+r)}{12} & =\sum_{n=5}^{\infty} \frac{a_{n-5}(n+r-5) x^{n+r-1}}{12} \\
\sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}(n+r)}{6} & =\sum_{n=4}^{\infty} \frac{a_{n-4}(n+r-4) x^{n+r-1}}{6}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=2}^{\infty}\left(-a_{n-2}(n+r-2) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty}\left(-2 x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty} 4 a_{n} x^{n+r} & =\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) x^{n+r-1}\right) \\
& +\sum_{n=1}^{\infty}\left(-4 a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 4 x^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2~B}\\
& \quad+\left(\sum_{n=6}^{\infty} \frac{a_{n-6}(n+r-6) x^{n+r-1}}{40}\right)+\left(\sum_{n=5}^{\infty} \frac{a_{n-5}(n+r-5) x^{n+r-1}}{12}\right) \\
& \quad+\left(\sum_{n=4}^{\infty} \frac{a_{n-4}(n+r-4) x^{n+r-1}}{6}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2}(n+r-2) x^{n+r-1}\right) \\
& \quad+\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r-1}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r-1} a_{n}(n+r)(n+r-1)=0
$$

When $n=0$ the above becomes

$$
4 x^{-1+r} a_{0} r(-1+r)=0
$$

Or

$$
4 x^{-1+r} a_{0} r(-1+r)=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
4 x^{-1+r} r(-1+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
4 x^{-1+r} r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=\frac{2 r^{2}-r-2}{2 r(1+r)}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{3 r^{4}+5 r^{3}-7 r^{2}-5 r+2}{4 r(1+r)^{2}(2+r)}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=\frac{2 r^{6}+13 r^{5}+18 r^{4}-13 r^{3}-28 r^{2}-7 r+2}{4 r(1+r)^{2}(2+r)^{2}(3+r)}
$$

Substituting $n=4$ in Eq. (2B) gives

$$
a_{4}=\frac{15 r^{8}+208 r^{7}+984 r^{6}+1798 r^{5}+363 r^{4}-2576 r^{3}-2562 r^{2}-486 r+156}{48 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}
$$

Substituting $n=5$ in Eq. (2B) gives

$$
a_{5}=\frac{18 r^{10}+425 r^{9}+3902 r^{8}+17872 r^{7}+41868 r^{6}+38587 r^{5}-27540 r^{4}-88804 r^{3}-61280 r^{2}-7068 r+}{96 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}
$$

For $6 \leq n$ the recursive equation is

$$
\begin{align*}
& a_{n-2}(n+r-2)(n-3+r)-4 a_{n-1}(n+r-1)(n+r-2) \\
& +4 a_{n}(n+r)(n+r-1)+\frac{a_{n-6}(n+r-6)}{40}+\frac{a_{n-5}(n+r-5)}{12} \tag{3}\\
& +\frac{a_{n-4}(n+r-4)}{6}-a_{n-2}(n+r-2)-2 a_{n-1}(n+r-1)+4 a_{n-1}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{align*}
& a_{n}=-\frac{120 n^{2} a_{n-2}-480 n^{2} a_{n-1}+240 n r a_{n-2}-960 n r a_{n-1}+120 r^{2} a_{n-2}-480 r^{2} a_{n-1}+3 n a_{n-6}+10 n a_{n-5}}{} \tag{5}\\
& \text { Which for the root } r=1 \text { becomes } \\
& a_{n}=\frac{\left(-120 a_{n-2}+480 a_{n-1}\right) n^{2}+\left(-3 a_{n-6}-10 a_{n-5}-20 a_{n-4}+480 a_{n-2}-240 a_{n-1}\right) n+15 a_{n-6}+40 a_{n-}}{480 n(1+n)}
\end{align*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2 r^{2}-r-2}{2 r(1+r)}$	$-\frac{1}{4}$
a_{2}	$\frac{3 r^{4}+5 r^{3}-7 r^{2}-5 r+2}{4 r(1+r)^{2}(2+r)}$	$-\frac{1}{24}$
a_{3}	$\frac{2 r^{6}+13 r^{5}+18 r^{4}-13 r^{3}-28 r^{2}-7 r+2}{4 r(1+r)^{2}(2+r)^{2}(3+r)}$	$-\frac{13}{576}$
a_{4}	$\frac{15 r^{8}+208 r^{7}+984 r^{6}+1798 r^{5}+363 r^{4}-2576 r^{3}-2562 r^{2}-486 r+156}{48 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}$	$-\frac{35}{2304}$
a_{5}	$\frac{18 r^{10}+425 r^{9}+3902 r^{8}+17872 r^{7}+41868 r^{6}+38587 r^{5}-27540 r^{4}-88804 r^{3}-61280 r^{2}-7068 r+4200}{96 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}$	$-\frac{1297}{138240}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1-\frac{x}{4}-\frac{x^{2}}{24}-\frac{13 x^{3}}{576}-\frac{35 x^{4}}{2304}-\frac{1297 x^{5}}{138240}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{2 r^{2}-r-2}{2 r(1+r)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{2 r^{2}-r-2}{2 r(1+r)} & =\lim _{r \rightarrow 0} \frac{2 r^{2}-r-2}{2 r(1+r)} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x\left(x^{2}-4 x+4\right) y^{\prime \prime}+\mathrm{e}^{x} x(x-2) y^{\prime}+4 y=0$ gives

$$
\begin{aligned}
& x\left(x^{2}-4 x+4\right)\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\mathrm{e}^{x} x(x-2)\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +4 C y_{1}(x) \ln (x)+4\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x\left(x^{2}-4 x+4\right) y_{1}^{\prime \prime}(x)+\mathrm{e}^{x}(x-2) x y_{1}^{\prime}(x)+4 y_{1}(x)\right) \ln (x)\right. \\
& \left.+x\left(x^{2}-4 x+4\right)\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+\mathrm{e}^{x}(x-2) y_{1}(x)\right) C \tag{7}\\
& +x\left(x^{2}-4 x+4\right)\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\mathrm{e}^{x}(x-2) x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+4\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x\left(x^{2}-4 x+4\right) y_{1}^{\prime \prime}(x)+\mathrm{e}^{x}(x-2) x y_{1}^{\prime}(x)+4 y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x\left(x^{2}-4 x+4\right)\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+\mathrm{e}^{x}(x-2) y_{1}(x)\right) C \\
& +x\left(x^{2}-4 x+4\right)\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +\mathrm{e}^{x}(x-2) x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+4\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{aligned}
& \frac{\left(2 x(x-2)^{2}\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right)+(x-2)\left(x \mathrm{e}^{x}-x+2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C}{x} \\
& +\frac{x^{2}(x-2)^{2}\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)+\mathrm{e}^{x} x^{2}(x-2)\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right)+4\left(\sum_{n=0}^{\infty} b_{r}\right.}{x} \\
& =0
\end{aligned}
$$

Since $r_{1}=1$ and $r_{2}=0$ then the above becomes

$$
\begin{align*}
& \frac{\left(2 x(x-2)^{2}\left(\sum_{n=0}^{\infty} x^{n} a_{n}(1+n)\right)+(x-2)\left(x \mathrm{e}^{x}-x+2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{1+n}\right)\right) C}{x} \\
& +\frac{x^{2}(x-2)^{2}\left(\sum_{n=0}^{\infty} x^{n-2} b_{n} n(n-1)\right)+\mathrm{e}^{x} x^{2}(x-2)\left(\sum_{n=0}^{\infty} x^{n-1} b_{n} n\right)+4\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) x}{x}=0 \tag{10}
\end{align*}
$$

Expanding $C \mathrm{e}^{x} x^{2}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
C \mathrm{e}^{x} x^{2} & =C x^{2}+C x^{3}+\frac{1}{2} C x^{4}+\frac{1}{6} C x^{5}+\frac{1}{24} C x^{6}+\ldots \\
& =C x^{2}+C x^{3}+\frac{1}{2} C x^{4}+\frac{1}{6} C x^{5}+\frac{1}{24} C x^{6}
\end{aligned}
$$

Expanding $-2 C \mathrm{e}^{x} x$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
-2 C \mathrm{e}^{x} x & =-2 C x-2 C x^{2}-C x^{3}-\frac{1}{3} C x^{4}-\frac{1}{12} C x^{5}-\frac{1}{60} C x^{6}+\ldots \\
& =-2 C x-2 C x^{2}-C x^{3}-\frac{1}{3} C x^{4}-\frac{1}{12} C x^{5}-\frac{1}{60} C x^{6}
\end{aligned}
$$

Expanding $x \mathrm{e}^{x}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
x \mathrm{e}^{x} & =x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\frac{1}{120} x^{6}+\ldots \\
& =x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\frac{1}{120} x^{6}
\end{aligned}
$$

Expanding $-2 \mathrm{e}^{x}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
-2 \mathrm{e}^{x} & =-2-2 x-x^{2}-\frac{1}{3} x^{3}-\frac{1}{12} x^{4}-\frac{1}{60} x^{5}-\frac{1}{360} x^{6}+\ldots \\
& =-2-2 x-x^{2}-\frac{1}{3} x^{3}-\frac{1}{12} x^{4}-\frac{1}{60} x^{5}-\frac{1}{360} x^{6}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} C x^{n+3} a_{n}\right)+\left(\sum_{n=0}^{\infty} n x^{1+n} b_{n}\right)+\left(\sum_{n=0}^{\infty} \frac{C x^{n+4} a_{n}}{2}\right) \\
& +\left(\sum_{n=0}^{\infty} n x^{n+2} b_{n}\right)+\sum_{n=0}^{\infty}\left(-2 C x^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n} C\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{n x^{n+6} b_{n}}{360}\right)+\left(\sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(1+n)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{n x^{n+5} b_{n}}{24}\right)+\left(\sum_{n=0}^{\infty} \frac{n x^{n+6} b_{n}}{120}\right)+\left(\sum_{n=0}^{\infty} n x^{1+n} b_{n}(n-1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{C x^{n+5} a_{n}}{6}\right)+\sum_{n=0}^{\infty}\left(-2 C x^{n+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{C x^{n+5} a_{n}}{12}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{C x^{n+6} a_{n}}{60}\right)+\left(\sum_{n=0}^{\infty} \frac{n x^{n+3} b_{n}}{2}\right)+\sum_{n=0}^{\infty}\left(-\frac{n x^{n+4} b_{n}}{12}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-4 x^{n} b_{n} n(n-1)\right)+\sum_{n=0}^{\infty}\left(-\frac{n x^{n+5} b_{n}}{60}\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-C x^{n+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 x^{n} b_{n} n\right)+\left(\sum_{n=0}^{\infty} C x^{n+2} a_{n}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{n x^{n+3} b_{n}}{3}\right)+\left(\sum_{n=0}^{\infty} 4 C x^{1+n} a_{n}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-8 C x^{1+n} a_{n}(1+n)\right)+\sum_{n=0}^{\infty}\left(-\frac{C x^{n+4} a_{n}}{3}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-C x^{n+3} a_{n}\right)+\left(\sum_{n=0}^{\infty} 4 n x^{n-1} b_{n}(n-1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{C x^{n+6} a_{n}}{24}\right)+\sum_{n=0}^{\infty}\left(-2 n x^{1+n} b_{n}\right)+\sum_{n=0}^{\infty}\left(-n x^{n+2} b_{n}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 4 b_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} \frac{n x^{n+4} b_{n}}{6}\right)+\left(\sum_{n=0}^{\infty} 8 C x^{n} a_{n}(1+n)\right)=0 \\
& \quad
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and
adjusting the power and the corresponding index gives

$$
\begin{aligned}
& \sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(1+n)=\sum_{n=3}^{\infty} 2 C a_{n-3}(n-2) x^{n-1} \\
& \sum_{n=0}^{\infty}\left(-8 C x^{1+n} a_{n}(1+n)\right)=\sum_{n=2}^{\infty}\left(-8 C a_{n-2}(n-1) x^{n-1}\right) \\
& \sum_{n=0}^{\infty} 8 C x^{n} a_{n}(1+n)=\sum_{n=1}^{\infty} 8 C a_{n-1} n x^{n-1} \\
& \sum_{n=0}^{\infty} C x^{n+2} a_{n}=\sum_{n=3}^{\infty} C a_{n-3} x^{n-1} \\
& \sum_{n=0}^{\infty} C x^{n+3} a_{n}=\sum_{n=4}^{\infty} C a_{n-4} x^{n-1} \\
& \sum_{n=0}^{\infty} \frac{C x^{n+4} a_{n}}{2}=\sum_{n=5}^{\infty} \frac{C a_{n-5} x^{n-1}}{2} \\
& \sum_{n=0}^{\infty} \frac{C x^{n+5} a_{n}}{6}=\sum_{n=6}^{\infty} \frac{C a_{n-6} x^{n-1}}{6} \\
& \sum_{n=0}^{\infty} \frac{C x^{n+6} a_{n}}{24}=\sum_{n=7}^{\infty} \frac{C a_{n-7} x^{n-1}}{24} \\
& \sum_{n=0}^{\infty}\left(-C x^{n+2} a_{n}\right)=\sum_{n=3}^{\infty}\left(-C a_{n-3} x^{n-1}\right) \\
& \sum_{n=0}^{\infty}\left(-2 C x^{1+n} a_{n}\right)=\sum_{n=2}^{\infty}\left(-2 C a_{n-2} x^{n-1}\right) \\
& \sum_{n=0}^{\infty}\left(-2 C x^{n+2} a_{n}\right)=\sum_{n=3}^{\infty}\left(-2 C a_{n-3} x^{n-1}\right) \\
& \sum_{n=0}^{\infty}\left(-C x^{n+3} a_{n}\right)=\sum_{n=4}^{\infty}\left(-C a_{n-4} x^{n-1}\right) \\
& \sum_{n=0}^{\infty}\left(-\frac{C x^{n+4} a_{n}}{3}\right)=\sum_{n=5}^{\infty}\left(-\frac{C a_{n-5} x^{n-1}}{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(-\frac{C x^{n+5} a_{n}}{12}\right)=\sum_{n=6}^{\infty}\left(-\frac{C a_{n-6} x^{n-1}}{12}\right) \\
& \sum_{n=0}^{\infty}\left(-\frac{C x^{n+6} a_{n}}{60}\right)=\sum_{n=7}^{\infty}\left(-\frac{C a_{n-7} x^{n-1}}{60}\right) \\
& \sum_{n=0}^{\infty} 4 C x^{1+n} a_{n}=\sum_{n=2}^{\infty} 4 C a_{n-2} x^{n-1} \\
& \sum_{n=0}^{\infty}\left(-4 a_{n} x^{n} C\right)=\sum_{n=1}^{\infty}\left(-4 C a_{n-1} x^{n-1}\right) \\
& \sum_{n=0}^{\infty} n x^{1+n} b_{n}(n-1)=\sum_{n=2}^{\infty}(n-2) b_{n-2}(n-3) x^{n-1} \\
& \sum_{n=0}^{\infty}\left(-4 x^{n} b_{n} n(n-1)\right)=\sum_{n=1}^{\infty}\left(-4(n-1) b_{n-1}(n-2) x^{n-1}\right) \\
& \sum_{n=0}^{\infty} n x^{1+n} b_{n}=\sum_{n=2}^{\infty}(n-2) b_{n-2} x^{n-1} \\
& \sum_{n=0}^{\infty} n x^{n+2} b_{n}=\sum_{n=3}^{\infty}(n-3) b_{n-3} x^{n-1} \\
& \sum_{n=0}^{\infty} \frac{n x^{n+3} b_{n}}{2}=\sum_{n=4}^{\infty} \frac{(n-4) b_{n-4} x^{n-1}}{2} \\
& \sum_{n=0}^{\infty} \frac{n x^{n+4} b_{n}}{6}=\sum_{n=5}^{\infty} \frac{(n-5) b_{n-5} x^{n-1}}{6} \\
& \sum_{n=0}^{\infty} \frac{n x^{n+5} b_{n}}{24}=\sum_{n=6}^{\infty} \frac{(n-6) b_{n-6} x^{n-1}}{24} \\
& \sum_{n=0}^{\infty} \frac{n x^{n+6} b_{n}}{120}=\sum_{n=7}^{\infty} \frac{(n-7) b_{n-7} x^{n-1}}{120} \\
& \sum_{n=0}^{\infty}\left(-2 x^{n} b_{n} n\right)=\sum_{n=1}^{\infty}\left(-2(n-1) b_{n-1} x^{n-1}\right) \\
& \sum_{n=0}^{\infty}\left(-2 n x^{1+n} b_{n}\right)=\sum_{n=2}^{\infty}\left(-2(n-2) b_{n-2} x^{n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-n x^{n+2} b_{n}\right) & =\sum_{n=3}^{\infty}\left(-(n-3) b_{n-3} x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{n x^{n+3} b_{n}}{3}\right) & =\sum_{n=4}^{\infty}\left(-\frac{(n-4) b_{n-4} x^{n-1}}{3}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{n x^{n+4} b_{n}}{12}\right) & =\sum_{n=5}^{\infty}\left(-\frac{(n-5) b_{n-5} x^{n-1}}{12}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{n x^{n+5} b_{n}}{60}\right) & =\sum_{n=6}^{\infty}\left(-\frac{(n-6) b_{n-6} x^{n-1}}{60}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{n x^{n+6} b_{n}}{360}\right) & =\sum_{n=7}^{\infty}\left(-\frac{(n-7) b_{n-7} x^{n-1}}{360}\right) \\
\sum_{n=0}^{\infty} 4 b_{n} x^{n} & =\sum_{n=1}^{\infty} 4 b_{n-1} x^{n-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.
Expression too large to display

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=N$, where $N=1$ which is the difference between the two roots, we are free to choose $b_{1}=0$. Hence for $n=1, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
4 C+4=0
$$

Which is solved for C. Solving for C gives

$$
C=-1
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-6 a_{0}+12 a_{1}\right) C+2 b_{1}+8 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
9+8 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-\frac{9}{8}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-14 a_{1}+20 a_{2}\right) C-b_{1}-8 b_{2}+24 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{19}{3}+24 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=-\frac{19}{72}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(2 a_{1}-22 a_{2}+28 a_{3}\right) C-26 b_{3}+48 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{1019}{144}+48 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{1019}{6912}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\frac{\left(a_{0}+24 a_{2}-180 a_{3}+216 a_{4}\right) C}{6}+\frac{b_{1}}{6}+3 b_{3}-52 b_{4}+80 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{5827}{864}+80 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=-\frac{5827}{69120}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-1$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & (-1)\left(x\left(1-\frac{x}{4}-\frac{x^{2}}{24}-\frac{13 x^{3}}{576}-\frac{35 x^{4}}{2304}-\frac{1297 x^{5}}{138240}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +1-\frac{9 x^{2}}{8}-\frac{19 x^{3}}{72}-\frac{1019 x^{4}}{6912}-\frac{5827 x^{5}}{69120}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-\frac{x}{4}-\frac{x^{2}}{24}-\frac{13 x^{3}}{576}-\frac{35 x^{4}}{2304}-\frac{1297 x^{5}}{138240}+O\left(x^{6}\right)\right) \\
& +c_{2}\left((-1)\left(x\left(1-\frac{x}{4}-\frac{x^{2}}{24}-\frac{13 x^{3}}{576}-\frac{35 x^{4}}{2304}-\frac{1297 x^{5}}{138240}+O\left(x^{6}\right)\right)\right) \ln (x)+1\right. \\
& \left.\quad-\frac{9 x^{2}}{8}-\frac{19 x^{3}}{72}-\frac{1019 x^{4}}{6912}-\frac{5827 x^{5}}{69120}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& \begin{aligned}
= & c_{1} x\left(1-\frac{x}{4}-\frac{x^{2}}{24}-\frac{13 x^{3}}{576}-\frac{35 x^{4}}{2304}-\frac{1297 x^{5}}{138240}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-x\left(1-\frac{x}{4}-\frac{x^{2}}{24}-\frac{13 x^{3}}{576}-\frac{35 x^{4}}{2304}-\frac{1297 x^{5}}{138240}+O\left(x^{6}\right)\right) \ln (x)+1-\frac{9 x^{2}}{8}\right. \\
& \left.-\frac{19 x^{3}}{72}-\frac{1019 x^{4}}{6912}-\frac{5827 x^{5}}{69120}+O\left(x^{6}\right)\right)
\end{aligned}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1} x\left(1-\frac{x}{4}-\frac{x^{2}}{24}-\frac{13 x^{3}}{576}-\frac{35 x^{4}}{2304}-\frac{1297 x^{5}}{138240}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-x\left(1-\frac{x}{4}-\frac{x^{2}}{24}-\frac{13 x^{3}}{576}-\frac{35 x^{4}}{2304}-\frac{1297 x^{5}}{138240}+O\left(x^{6}\right)\right) \ln (x)+1-\frac{9 x^{2}}{8}(1)\right. \\
& \left.-\frac{19 x^{3}}{72}-\frac{1019 x^{4}}{6912}-\frac{5827 x^{5}}{69120}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1-\frac{x}{4}-\frac{x^{2}}{24}-\frac{13 x^{3}}{576}-\frac{35 x^{4}}{2304}-\frac{1297 x^{5}}{138240}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-x\left(1-\frac{x}{4}-\frac{x^{2}}{24}-\frac{13 x^{3}}{576}-\frac{35 x^{4}}{2304}-\frac{1297 x^{5}}{138240}+O\left(x^{6}\right)\right) \ln (x)+1-\frac{9 x^{2}}{8}\right. \\
& \left.-\frac{19 x^{3}}{72}-\frac{1019 x^{4}}{6912}-\frac{5827 x^{5}}{69120}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x})$ * Y where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $\mathrm{y}(\mathrm{x})$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) $* 2 \mathrm{~F} 1$
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
\rightarrow trying a solution of the form $r 0(x) * Y+r 1(x) * Y$ where $Y=\exp (\operatorname{int}(r(x), d x)) *$ trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form $[\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]$
-> trying a symmetry pattern 3147 the form $[0, F(x) * G(y)]$
-> trying a symmetry pattern of the form $[F(x), G(x) * y+H(x)]$
Trying Lie symmetry methods, 2nd order ---
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 60

```
Order:=6;
dsolve((x-2)^2*diff(y(x), x$2)+(x-2)*exp(x)*diff (y(x),x)+4/x*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
& y(x)=c_{1} x\left(1-\frac{1}{4} x-\frac{1}{24} x^{2}-\frac{13}{576} x^{3}-\frac{35}{2304} x^{4}-\frac{1297}{138240} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(\ln (x)\left(-x+\frac{1}{4} x^{2}+\frac{1}{24} x^{3}+\frac{13}{576} x^{4}+\frac{35}{2304} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right. \\
& \left.+\left(1+\frac{1}{2} x-\frac{5}{4} x^{2}-\frac{41}{144} x^{3}-\frac{1097}{6912} x^{4}-\frac{397}{4320} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.063 (sec). Leaf size: 87
AsymptoticDSolveValue $\left[(x-2)^{\wedge} 2 * y\right.$ ' ' $[\mathrm{x}]+(\mathrm{x}-2) * \operatorname{Exp}[\mathrm{x}] * \mathrm{y}$ ' $\left.[\mathrm{x}]+4 / \mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{1}{576} x\left(13 x^{3}+24 x^{2}+144 x-576\right) \log (x)\right. \\
& \left.+\frac{-1097 x^{4}-1968 x^{3}-8640 x^{2}+3456 x+6912}{6912}\right) \\
& +c_{2}\left(-\frac{35 x^{5}}{2304}-\frac{13 x^{4}}{576}-\frac{x^{3}}{24}-\frac{x^{2}}{4}+x\right)
\end{aligned}
$$

17.4 problem 5

Internal problem ID [2920]
Internal file name [OUTPUT/2412_Sunday_June_05_2022_03_06_58_AM_35030435/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Irregular singular point"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{x(x-3)}-\frac{y}{x^{3}(x+3)}=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{x(x-3)}-\frac{y}{x^{3}(x+3)}=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{2}{x(x-3)} \\
q(x) & =-\frac{1}{x^{3}(x+3)}
\end{aligned}
$$

Table 422: Table $p(x), q(x)$ singularites.

$p(x)=\frac{2}{x(x-3)}$	
singularity	type
$x=0$	"regular"
$x=3$	"regular"

$q(x)=-\frac{1}{x^{3}(x+3)}$	
singularity	type
$x=-3$	"regular"
$x=0$	"irregular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[3,-3, \infty]$
Irregular singular points : [0]
Since $x=0$ is not an ordinary point, then we will now check if it is a regular singular point. Unable to solve since $x=0$ is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
```

 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
 trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear QDE, with constant coefficients
trying to convert to an ODE of Bessel type
trying to convert to an ODE of Bessel type
X Solution by Maple

```
Order:=6;
dsolve(diff (y (x), x$2)+2/(x*(x-3))*diff (y(x),x)-1/( (x^3*(x+3))*y(x)=0,y(x),type='series', x=0);
```

No solution found
\checkmark Solution by Mathematica
Time used: 0.223 (sec). Leaf size: 258
AsymptoticDSolveValue[y' $[\mathrm{x}]+2 /(\mathrm{x} *(\mathrm{x}-3)) * \mathrm{y}$ ' $\left.[\mathrm{x}]-1 /\left(\mathrm{x}^{-} 3 *(\mathrm{x}+3)\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow c_{1} e^{-\frac{2}{\sqrt{3} \sqrt{x}}}\left(\frac{10879996003390494539 x^{9 / 2}}{6059672463464202240 \sqrt{3}}+\frac{64713480610417 x^{7 / 2}}{328758271672320 \sqrt{3}}+\frac{287821451 x^{5 / 2}}{3397386240 \sqrt{3}}\right. \\
+\frac{19817 x^{3 / 2}}{73728 \sqrt{3}}-\frac{4894564486149401320457 x^{5}}{1246561192484064460800}-\frac{116612812982297797 x^{4}}{378729528966512640} \\
-\frac{22160647459 x^{3}}{587068342272}+\frac{463507 x^{2}}{42467328}+\frac{587 x}{4608}+\frac{25 \sqrt{x}}{16 \sqrt{3}} \\
+1) x^{13 / 12}+c_{2} e^{\frac{2}{\sqrt{3} \sqrt{x}}}\left(-\frac{10879996003390494539 x^{9 / 2}}{6059672463464202240 \sqrt{3}}-\frac{64713480610417 x^{7 / 2}}{328758271672320 \sqrt{3}}-\frac{287821451 x^{5 / 2}}{3397386240 \sqrt{3}}-\frac{19817 x}{73728}\right.
\end{aligned}
$$

17.5 problem 6

17.5.1 Maple step by step solution

3164
Internal problem ID [2921]
Internal file name [OUTPUT/2413_Sunday_June_05_2022_03_07_03_AM_688095/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x(1-x) y^{\prime}-7 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}-7 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{x-1}{x} \\
& q(x)=-\frac{7}{x^{2}}
\end{aligned}
$$

Table 423: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x-1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{7}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}-7 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-x^{2}+x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-7\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-7 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right)=\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-7 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-7 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-7 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-7 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-7\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-7=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\sqrt{7} \\
& r_{2}=-\sqrt{7}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-7\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2 \sqrt{7}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\sqrt{7}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\sqrt{7}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+a_{n}(n+r)-7 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}-7} \tag{4}
\end{equation*}
$$

Which for the root $r=\sqrt{7}$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+\sqrt{7}-1)}{n(2 \sqrt{7}+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\sqrt{7}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{r}{r^{2}+2 r-6}
$$

Which for the root $r=\sqrt{7}$ becomes

$$
a_{1}=\frac{\sqrt{7}}{1+2 \sqrt{7}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{r^{2}+2 r-6}$	$\frac{\sqrt{7}}{1+2 \sqrt{7}}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{r(r+1)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)}
$$

Which for the root $r=\sqrt{7}$ becomes

$$
a_{2}=\frac{\sqrt{7}}{4+8 \sqrt{7}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{r^{2}+2 r-6}$	$\frac{\sqrt{7}}{1+2 \sqrt{7}}$
a_{2}	$\frac{r(r+1)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)}$	$\frac{\sqrt{7}}{4+8 \sqrt{7}}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{r(r+1)(2+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)}
$$

Which for the root $r=\sqrt{7}$ becomes

$$
a_{3}=\frac{(2+\sqrt{7}) \sqrt{7}}{372+96 \sqrt{7}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{r^{2}+2 r-6}$	$\frac{\sqrt{7}}{1+2 \sqrt{7}}$
a_{2}	$\frac{r(r+1)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)}$	$\frac{\sqrt{7}}{4+8 \sqrt{7}}$
a_{3}	$\frac{r(r+1)(2+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)}$	$\frac{(2+\sqrt{7}) \sqrt{7}}{372+96 \sqrt{7}}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{r(r+1)(2+r)(3+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)\left(r^{2}+8 r+9\right)}
$$

Which for the root $r=\sqrt{7}$ becomes

$$
a_{4}=\frac{\sqrt{7}(3+\sqrt{7})}{2976+768 \sqrt{7}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{r^{2}+2 r-6}$	$\frac{\sqrt{7}}{1+2 \sqrt{7}}$
a_{2}	$\frac{r(r+1)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)}$	$\frac{\sqrt{7}}{4+8 \sqrt{7}}$
a_{3}	$\frac{r(r+1)(2+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)}$	$\frac{(2+\sqrt{7}) \sqrt{7}}{372+96 \sqrt{7}}$
a_{4}	$\frac{r(r+1)(2+r)(3+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)\left(r^{2}+8 r+9\right)}$	$\frac{\sqrt{7}(3+\sqrt{7})}{2976+768 \sqrt{7}}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{r(r+1)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)\left(r^{2}+8 r+9\right)\left(r^{2}+10 r+18\right)}
$$

Which for the root $r=\sqrt{7}$ becomes

$$
a_{5}=\frac{\sqrt{7}(3+\sqrt{7})(4+\sqrt{7})}{48960 \sqrt{7}+128160}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{r^{2}+2 r-6}$	$\frac{\sqrt{7}}{1+2 \sqrt{7}}$
a_{2}	$\frac{r(r+1)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)}$	$\frac{\sqrt{7}}{4+8 \sqrt{7}}$
a_{3}	$\frac{r(r+1)(2+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)}$	$\frac{(2+\sqrt{7}) \sqrt{7}}{372+96 \sqrt{7}}$
a_{4}	$\frac{r(r+1)(2+r)(3+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)\left(r^{2}+8 r+9\right)}$	$\frac{\sqrt{7}(3+\sqrt{7})}{2976+768 \sqrt{7}}$
a_{5}	$\frac{r(r+1)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)\left(r^{2}+8 r+9\right)\left(r^{2}+10 r+18\right)}$	$\frac{\sqrt{7}(3+\sqrt{7})(4+\sqrt{7})}{48960 \sqrt{7}+128160}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\sqrt{7}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\sqrt{7}}\left(1+\frac{\sqrt{7} x}{1+2 \sqrt{7}}+\frac{\sqrt{7} x^{2}}{4+8 \sqrt{7}}+\frac{(2+\sqrt{7}) \sqrt{7} x^{3}}{372+96 \sqrt{7}}+\frac{\sqrt{7}(3+\sqrt{7}) x^{4}}{2976+768 \sqrt{7}}+\frac{\sqrt{7}(3+\sqrt{7})(4+\sqrt{7}) x^{5}}{48960 \sqrt{7}+128160}\right.
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)-b_{n-1}(n+r-1)+b_{n}(n+r)-7 b_{n}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}-7} \tag{4}
\end{equation*}
$$

Which for the root $r=-\sqrt{7}$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}(-n+\sqrt{7}+1)}{n(2 \sqrt{7}-n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\sqrt{7}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{r}{r^{2}+2 r-6}
$$

Which for the root $r=-\sqrt{7}$ becomes

$$
b_{1}=\frac{\sqrt{7}}{-1+2 \sqrt{7}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{r^{2}+2 r-6}$	$\frac{\sqrt{7}}{-1+2 \sqrt{7}}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{r(r+1)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)}
$$

Which for the root $r=-\sqrt{7}$ becomes

$$
b_{2}=\frac{\sqrt{7}}{-4+8 \sqrt{7}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{r^{2}+2 r-6}$	$\frac{\sqrt{7}}{-1+2 \sqrt{7}}$
b_{2}	$\frac{r(r+1)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)}$	$\frac{\sqrt{7}}{-4+8 \sqrt{7}}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{r(r+1)(2+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)}
$$

Which for the root $r=-\sqrt{7}$ becomes

$$
b_{3}=\frac{\sqrt{7}(-2+\sqrt{7})}{372-96 \sqrt{7}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{r^{2}+2 r-6}$	$\frac{\sqrt{7}}{-1+2 \sqrt{7}}$
b_{2}	$\frac{r(r+1)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)}$	$\frac{\sqrt{7}}{-4+8 \sqrt{7}}$
b_{3}	$\frac{r(r+1)(2+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)}$	$\frac{\sqrt{7}(-2+\sqrt{7})}{372-96 \sqrt{7}}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{r(r+1)(2+r)(3+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)\left(r^{2}+8 r+9\right)}
$$

Which for the root $r=-\sqrt{7}$ becomes

$$
b_{4}=\frac{\sqrt{7}(-3+\sqrt{7})}{2976-768 \sqrt{7}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{r^{2}+2 r-6}$	$\frac{\sqrt{7}}{-1+2 \sqrt{7}}$
b_{2}	$\frac{r(r+1)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)}$	$\frac{\sqrt{7}}{-4+8 \sqrt{7}}$
b_{3}	$\frac{r(r+1)(2+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)}$	$\frac{\sqrt{7}(-2+\sqrt{7})}{372-96 \sqrt{7}}$
b_{4}	$\frac{r(r+1)(2+r)(3+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)\left(r^{2}+8 r+9\right)}$	$\frac{\sqrt{7}(-3+\sqrt{7})}{2976-768 \sqrt{7}}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{r(r+1)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)\left(r^{2}+8 r+9\right)\left(r^{2}+10 r+18\right)}
$$

Which for the root $r=-\sqrt{7}$ becomes

$$
b_{5}=\frac{\sqrt{7}(-3+\sqrt{7})(-4+\sqrt{7})}{48960 \sqrt{7}-128160}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{r^{2}+2 r-6}$	$\frac{\sqrt{7}}{-1+2 \sqrt{7}}$
b_{2}	$\frac{r(r+1)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)}$	$\frac{\sqrt{7}}{-4+8 \sqrt{7}}$
b_{3}	$\frac{r(r+1)(2+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)}$	$\frac{\sqrt{7}(-2+\sqrt{7})}{372-96 \sqrt{7}}$
b_{4}	$\frac{r(r+1)(2+r)(3+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)\left(r^{2}+8 r+9\right)}$	$\frac{\sqrt{7}(-3+\sqrt{7})}{2976-768 \sqrt{7}}$
b_{5}	$\frac{r(r+1)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r-6\right)\left(r^{2}+4 r-3\right)\left(r^{2}+6 r+2\right)\left(r^{2}+8 r+9\right)\left(r^{2}+10 r+18\right)}$	$\frac{\sqrt{7}(-3+\sqrt{7})(-4+\sqrt{7})}{48960 \sqrt{7}-128160}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\sqrt{7}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =x^{-\sqrt{7}}\left(1+\frac{\sqrt{7} x}{-1+2 \sqrt{7}}+\frac{\sqrt{7} x^{2}}{-4+8 \sqrt{7}}+\frac{\sqrt{7}(-2+\sqrt{7}) x^{3}}{372-96 \sqrt{7}}+\frac{\sqrt{7}(-3+\sqrt{7}) x^{4}}{2976-768 \sqrt{7}}+\frac{\sqrt{7}(-3+\sqrt{7})(}{48960 \sqrt{7}-}\right.
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& \begin{array}{r}
=c_{1} x^{\sqrt{7}}\left(1+\frac{\sqrt{7} x}{1+2 \sqrt{7}}+\frac{\sqrt{7} x^{2}}{4+8 \sqrt{7}}+\frac{(2+\sqrt{7}) \sqrt{7} x^{3}}{372+96 \sqrt{7}}+\frac{\sqrt{7}(3+\sqrt{7}) x^{4}}{2976+768 \sqrt{7}}\right. \\
\\
\left.\quad+\frac{\sqrt{7}(3+\sqrt{7})(4+\sqrt{7}) x^{5}}{48960 \sqrt{7}+128160}+O\left(x^{6}\right)\right)
\end{array} \\
& +c_{2} x^{-\sqrt{7}\left(1+\frac{\sqrt{7} x}{-1+2 \sqrt{7}}+\frac{\sqrt{7} x^{2}}{-4+8 \sqrt{7}}\right.}+\begin{array}{r}
\sqrt{7}(-2+\sqrt{7}) x^{3} \\
372-96 \sqrt{7}
\end{array}+\frac{\sqrt{7}(-3+\sqrt{7}) x^{4}}{2976-768 \sqrt{7}} \\
& \\
& \left.+\frac{\sqrt{7}(-3+\sqrt{7})(-4+\sqrt{7}) x^{5}}{48960 \sqrt{7}-128160}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y= y_{h} \\
&=c_{1} x^{\sqrt{7}}\left(1+\frac{\sqrt{7} x}{1+2 \sqrt{7}}+\frac{\sqrt{7} x^{2}}{4+8 \sqrt{7}}+\frac{(2+\sqrt{7}) \sqrt{7} x^{3}}{372+96 \sqrt{7}}+\frac{\sqrt{7}(3+\sqrt{7}) x^{4}}{2976+768 \sqrt{7}}\right. \\
&\left.+\frac{\sqrt{7}(3+\sqrt{7})(4+\sqrt{7}) x^{5}}{48960 \sqrt{7}+128160}+O\left(x^{6}\right)\right)+c_{2} x^{-\sqrt{7}}\left(1+\frac{\sqrt{7} x}{-1+2 \sqrt{7}}+\frac{\sqrt{7} x^{2}}{-4+8 \sqrt{7}}\right. \\
&\left.+\frac{\sqrt{7}(-2+\sqrt{7}) x^{3}}{372-96 \sqrt{7}}+\frac{\sqrt{7}(-3+\sqrt{7}) x^{4}}{2976-768 \sqrt{7}}+\frac{\sqrt{7}(-3+\sqrt{7})(-4+\sqrt{7}) x^{5}}{48960 \sqrt{7}-128160}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y= c_{1} x^{\sqrt{7}}(1+ \\
& \frac{\sqrt{7} x}{1+2 \sqrt{7}}+\frac{\sqrt{7} x^{2}}{4+8 \sqrt{7}}+\frac{(2+\sqrt{7}) \sqrt{7} x^{3}}{372+96 \sqrt{7}}+\frac{\sqrt{7}(3+\sqrt{7}) x^{4}}{2976+768 \sqrt{7}} \tag{1}\\
&\left.+\frac{\sqrt{7}(3+\sqrt{7})(4+\sqrt{7}) x^{5}}{48960 \sqrt{7}+128160}+O\left(x^{6}\right)\right) \\
&+c_{2} x^{-\sqrt{7}}(1+ \frac{\sqrt{7} x}{-1+2 \sqrt{7}}+\frac{\sqrt{7} x^{2}}{-4+8 \sqrt{7}}+\frac{\sqrt{7}(-2+\sqrt{7}) x^{3}}{372-96 \sqrt{7}} \\
&\left.+\frac{\sqrt{7}(-3+\sqrt{7}) x^{4}}{2976-768 \sqrt{7}}+\frac{\sqrt{7}(-3+\sqrt{7})(-4+\sqrt{7}) x^{5}}{48960 \sqrt{7}-128160}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\sqrt{7}}\left(1+\frac{\sqrt{7} x}{1+2 \sqrt{7}}+\frac{\sqrt{7} x^{2}}{4+8 \sqrt{7}}+\frac{(2+\sqrt{7}) \sqrt{7} x^{3}}{372+96 \sqrt{7}}+\frac{\sqrt{7}(3+\sqrt{7}) x^{4}}{2976+768 \sqrt{7}}\right. \\
& \left.+\frac{\sqrt{7}(3+\sqrt{7})(4+\sqrt{7}) x^{5}}{48960 \sqrt{7}+128160}+O\left(x^{6}\right)\right)+c_{2} x^{-\sqrt{7}}\left(1+\frac{\sqrt{7} x}{-1+2 \sqrt{7}}+\frac{\sqrt{7} x^{2}}{-4+8 \sqrt{7}}\right. \\
& \left.+\frac{\sqrt{7}(-2+\sqrt{7}) x^{3}}{372-96 \sqrt{7}}+\frac{\sqrt{7}(-3+\sqrt{7}) x^{4}}{2976-768 \sqrt{7}}+\frac{\sqrt{7}(-3+\sqrt{7})(-4+\sqrt{7}) x^{5}}{48960 \sqrt{7}-128160}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

17.5.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}-7 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{7 y}{x^{2}}+\frac{(x-1) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{(x-1) y^{\prime}}{x}-\frac{7 y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{x-1}{x}, P_{3}(x)=-\frac{7}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-7$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}-x(x-1) y^{\prime}-7 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}\left(r^{2}-7\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}\left(k^{2}+2 k r+r^{2}-7\right)-a_{k-1}(k+r-1)\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
r^{2}-7=0
$$

- Values of r that satisfy the indicial equation
$r \in\{\sqrt{7},-\sqrt{7}\}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}\left(k^{2}+2 k r+r^{2}-7\right)-a_{k-1}(k+r-1)=0$
- \quad Shift index using $k->k+1$
$a_{k+1}\left((k+1)^{2}+2(k+1) r+r^{2}-7\right)-a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r)}{k^{2}+2 k r+r^{2}+2 k+2 r-6}$
- \quad Recursion relation for $r=\sqrt{7}$
$a_{k+1}=\frac{a_{k}(k+\sqrt{7})}{k^{2}+2 k \sqrt{7}+1+2 k+2 \sqrt{7}}$
- \quad Solution for $r=\sqrt{7}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\sqrt{7}}, a_{k+1}=\frac{a_{k}(k+\sqrt{7})}{k^{2}+2 k \sqrt{7}+1+2 k+2 \sqrt{7}}\right]
$$

- \quad Recursion relation for $r=-\sqrt{7}$

$$
a_{k+1}=\frac{a_{k}(k-\sqrt{7})}{k^{2}-2 k \sqrt{7}+1+2 k-2 \sqrt{7}}
$$

- \quad Solution for $r=-\sqrt{7}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\sqrt{7}}, a_{k+1}=\frac{a_{k}(k-\sqrt{7})}{k^{2}-2 k \sqrt{7}+1+2 k-2 \sqrt{7}}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\sqrt{7}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\sqrt{7}}\right), a_{1+k}=\frac{a_{k}(k+\sqrt{7})}{k^{2}+2 k \sqrt{7}+1+2 k+2 \sqrt{7}}, b_{1+k}=\frac{b_{k}(k-\sqrt{7})}{k^{2}-2 k \sqrt{7}+1+2 k-2 \sqrt{7}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Kummer successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 478

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*(1-x)*diff (y(x),x)-7*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)=c_{1} & x^{-\sqrt{7}}\left(1+\frac{\sqrt{7}}{-1+2 \sqrt{7}} x+\frac{\sqrt{7}}{-4+8 \sqrt{7}} x^{2}+\frac{\sqrt{7}(\sqrt{7}-2)}{372-96 \sqrt{7}} x^{3}+\frac{\sqrt{7}(\sqrt{7}-3)}{2976-768 \sqrt{7}} x^{4}\right. \\
& \left.+\frac{(\sqrt{7}-4)(\sqrt{7}-3) \sqrt{7}}{48960 \sqrt{7}-128160} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{2} x^{\sqrt{7}}\left(1+\frac{\sqrt{7}}{1+2 \sqrt{7}} x+\frac{\sqrt{7}}{4+8 \sqrt{7}} x^{2}\right. \\
& \left.+\frac{\sqrt{7}(\sqrt{7}+2)}{372+96 \sqrt{7}} x^{3}+\frac{(\sqrt{7}+3) \sqrt{7}}{2976+768 \sqrt{7}} x^{4}+\frac{(\sqrt{7}+4)(\sqrt{7}+3) \sqrt{7}}{48960 \sqrt{7}+128160} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 1066
AsymptoticDSolveValue $\left[\mathrm{x} \wedge 2 * \mathrm{y}\right.$ ' ${ }^{\prime}[\mathrm{x}]+\mathrm{x} *(1-\mathrm{x}) * \mathrm{y}$ ' $\left.[\mathrm{x}]-7 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
\begin{aligned}
& y(x) \\
& \rightarrow\left(\frac{\sqrt{7}(1+\sqrt{7})(2+\sqrt{7})(3+\sqrt{7})(4+\sqrt{7})}{(-6+\sqrt{7}+\sqrt{7}(1+\sqrt{7}))(-5+\sqrt{7}+(1+\sqrt{7})(2+\sqrt{7}))(-4+\sqrt{7}+(2+\sqrt{7})(3+\sqrt{7}))(-3-}\right. \\
& +\frac{\sqrt{7}(1+\sqrt{7})(2+\sqrt{7})(3+\sqrt{7}) x^{4}}{(-6+\sqrt{7}+\sqrt{7}(1+\sqrt{7}))(-5+\sqrt{7}+(1+\sqrt{7})(2+\sqrt{7}))(-4+\sqrt{7}+(2+\sqrt{7})(3+\sqrt{7}))(-3} \\
& +\frac{\sqrt{7}(1+\sqrt{7})(2+\sqrt{7}) x^{3}}{(-6+\sqrt{7}+\sqrt{7}(1+\sqrt{7}))(-5+\sqrt{7}+(1+\sqrt{7})(2+\sqrt{7}))(-4+\sqrt{7}+(2+\sqrt{7})(3+\sqrt{7}))} \\
& +\frac{\sqrt{7}(1+\sqrt{7}) x^{2}}{(-6+\sqrt{7}+\sqrt{7}(1+\sqrt{7}))(-5+\sqrt{7}+(1+\sqrt{7})(2+\sqrt{7}))} \\
& \left.+\frac{\sqrt{7} x}{-6+\sqrt{7}+\sqrt{7}(1+\sqrt{7})}+1\right) c_{1} x^{\sqrt{7}} \\
& +\left(-\frac{\sqrt{7}(1-\sqrt{7})(2-\sqrt{7})(3-\sqrt{7})(4-}{(-6-\sqrt{7}-\sqrt{7}(1-\sqrt{7}))(-5-\sqrt{7}+(1-\sqrt{7})(2-\sqrt{7}))(-4-\sqrt{7}+(2-\sqrt{7})(3-\sqrt{7}))(}\right. \\
& -\frac{\sqrt{7}(1-\sqrt{7})(2-\sqrt{7})(3-\sqrt{7}) x^{4}}{(-6-\sqrt{7}-\sqrt{7}(1-\sqrt{7}))(-5-\sqrt{7}+(1-\sqrt{7})(2-\sqrt{7}))(-4-\sqrt{7}+(2-\sqrt{7})(3-\sqrt{7}))(-3} \\
& -\frac{\sqrt{7}(1-\sqrt{7})(2-\sqrt{7}) x^{3}}{(-6-\sqrt{7}-\sqrt{7}(1-\sqrt{7}))(-5-\sqrt{7}+(1-\sqrt{7})(2-\sqrt{7}))(-4-\sqrt{7}+(2-\sqrt{7})(3-\sqrt{7}))} \\
& -\frac{\sqrt{7}(1-\sqrt{7}) x^{2}}{(-6-\sqrt{7}-\sqrt{7}(1-\sqrt{7}))(-5-\sqrt{7}+(1-\sqrt{7})(2-\sqrt{7}))} \\
& \left.-\frac{\sqrt{7} x}{-6-\sqrt{7}-\sqrt{7}(1-\sqrt{7})}+1\right) c_{2} x^{-\sqrt{7}}
\end{aligned}
$$

17.6 problem 7

Internal problem ID [2922]
Internal file name [OUTPUT/2414_Sunday_June_05_2022_03_07_14_AM_72399094/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
4 x^{2} y^{\prime \prime}+y^{\prime} x \mathrm{e}^{x}-y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x^{2} y^{\prime \prime}+y^{\prime} x \mathrm{e}^{x}-y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{\mathrm{e}^{x}}{4 x} \\
q(x) & =-\frac{1}{4 x^{2}}
\end{aligned}
$$

Table 425: Table $p(x), q(x)$ singularites.

$p(x)=\frac{\mathrm{e}^{x}}{4 x}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"

$q(x)=-\frac{1}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}+y^{\prime} x \mathrm{e}^{x}-y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x \mathrm{e}^{x}-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Expanding $x \mathrm{e}^{x}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
x \mathrm{e}^{x} & =x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\frac{1}{120} x^{6}+\ldots \\
& =x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\frac{1}{120} x^{6}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}(n+r)}{120}\right) \\
& +\left(\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}(n+r)}{24}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}(n+r)}{6}\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}(n+r)}{2}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right) \\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}(n+r)}{120}=\sum_{n=5}^{\infty} \frac{a_{n-5}(n-5+r) x^{n+r}}{120} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}(n+r)}{24}=\sum_{n=4}^{\infty} \frac{a_{n-4}(n-4+r) x^{n+r}}{24} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}(n+r)}{6}=\sum_{n=3}^{\infty} \frac{a_{n-3}(n-3+r) x^{n+r}}{6} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}(n+r)}{2}=\sum_{n=2}^{\infty} \frac{a_{n-2}(n+r-2) x^{n+r}}{2} \\
& \sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)=\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=5}^{\infty} \frac{a_{n-5}(n-5+r) x^{n+r}}{120}\right) \\
& +\left(\sum_{n=4}^{\infty} \frac{a_{n-4}(n-4+r) x^{n+r}}{24}\right)+\left(\sum_{n=3}^{\infty} \frac{a_{n-3}(n-3+r) x^{n+r}}{6}\right) \tag{2B}\\
& +\left(\sum_{n=2}^{\infty} \frac{a_{n-2}(n+r-2) x^{n+r}}{2}\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right) \\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-a_{0} x^{r}=0
$$

Or

$$
\left(4 x^{r} r(-1+r)+x^{r} r-x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(4 r^{2}-3 r-1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r^{2}-3 r-1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-\frac{1}{4}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(4 r^{2}-3 r-1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{5}{4}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{4}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=-\frac{1}{4 r+5}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{-4 r^{2}-3 r+2}{32 r^{3}+144 r^{2}+202 r+90}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=\frac{-16 r^{4}-48 r^{3}-17 r^{2}+33 r+15}{384 r^{5}+3744 r^{4}+13992 r^{3}+25038 r^{2}+21426 r+7020}
$$

Substituting $n=4$ in Eq. (2B) gives

$$
a_{4}=\frac{-64 r^{6}-400 r^{5}-572 r^{4}+773 r^{3}+2385 r^{2}+1538 r+132}{24\left(64 r^{5}+624 r^{4}+2332 r^{3}+4173 r^{2}+3571 r+1170\right)\left(4 r^{2}+29 r+51\right)}
$$

For $5 \leq n$ the recursive equation is

$$
\begin{align*}
& 4 a_{n}(n+r)(n+r-1)+\frac{a_{n-5}(n-5+r)}{120}+\frac{a_{n-4}(n-4+r)}{24} \tag{3}\\
& +\frac{a_{n-3}(n-3+r)}{6}+\frac{a_{n-2}(n+r-2)}{2}+a_{n-1}(n+r-1)+a_{n}(n+r)-a_{n}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{n a_{n-5}+5 n a_{n-4}+20 n a_{n-3}+60 n a_{n-2}+120 n a_{n-1}+r a_{n-5}+5 r a_{n-4}+20 r a_{n-3}+60 r a_{n-2}+120 r}{120\left(4 n^{2}+8 n r+4 r^{2}-3 n-3 r-1\right)} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes
$a_{n}=\frac{\left(-a_{n-5}-5 a_{n-4}-20 a_{n-3}-60 a_{n-2}-120 a_{n-1}\right) n+4 a_{n-5}+15 a_{n-4}+40 a_{n-3}+60 a_{n-2}}{480 n^{2}+600 n}$
At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{4 r+5}$	$-\frac{1}{9}$
a_{2}	$\frac{-4 r^{2}-3 r+2}{32 r^{3}+144 r^{2}+202 r+90}$	$-\frac{5}{468}$
a_{3}	$\frac{-16 r^{4}-48 r^{3}-17 r^{2}+33 r+15}{384 r^{5}+3744 r^{4}+13992 r^{3}+25038 r^{2}+21426 r+7020}$	$-\frac{11}{23868}$
a_{4}	$\frac{-64 r^{6}-400 r^{5}-572 r^{4}+773 r^{3}+2385 r^{2}+1538 r+132}{24\left(64 r^{5}+624 r^{4}+2332 r^{3}+4173 r^{2}+3571 r+1170\right)\left(4 r^{2}+29 r+51\right)}$	$\frac{79}{501228}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{-256 r^{8}-2432 r^{7}-3808 r^{6}+33576 r^{5}+168107 r^{4}+308308 r^{3}+239784 r^{2}+45745 r-18960}{120\left(4 r^{2}+37 r+84\right)\left(64 r^{5}+624 r^{4}+2332 r^{3}+4173 r^{2}+3571 r+1170\right)\left(4 r^{2}+29 r+51\right)}
$$

Which for the root $r=1$ becomes

$$
a_{5}=\frac{16043}{313267500}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{4 r+5}$	$-\frac{1}{9}$
a_{2}	$\frac{-4 r^{2}-3 r+2}{32 r^{3}+144 r^{2}+202 r+90}$	$-\frac{5}{468}$
a_{3}	$\frac{-16 r^{4}-48 r^{3}-17 r^{2}+33 r+15}{384 r^{5}+3744 r^{4}+13992 r^{3}+25038 r^{2}+21426 r+7020}$	$-\frac{11}{23868}$
a_{4}	$\frac{-64 r^{6}-400 r^{5}-572 r^{4}+773 r^{3}+2385 r^{2}+1538 r+132}{24\left(64 r^{5}+624 r^{4}+2332 r^{3}+4173 r^{2}+3571 r+1170\right)\left(4 r^{2}+29 r+51\right)}$	$\frac{79}{501228}$
a_{5}	$\frac{-256 r^{8}-2432 r^{7}-3808 r^{6}+33576 r^{5}+168107 r^{4}+308308 r^{3}+239784 r^{2}+45745 r-18960}{120\left(4 r^{2}+37 r+84\right)\left(64 r^{5}+624 r^{4}+2332 r^{3}+4173 r^{2}+3571 r+1170\right)\left(4 r^{2}+29 r+51\right)}$	$\frac{16043}{313267500}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1-\frac{x}{9}-\frac{5 x^{2}}{468}-\frac{11 x^{3}}{23868}+\frac{79 x^{4}}{501228}+\frac{16043 x^{5}}{313267500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=-\frac{1}{4 r+5}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
b_{2}=\frac{-4 r^{2}-3 r+2}{32 r^{3}+144 r^{2}+202 r+90}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
b_{3}=\frac{-16 r^{4}-48 r^{3}-17 r^{2}+33 r+15}{384 r^{5}+3744 r^{4}+13992 r^{3}+25038 r^{2}+21426 r+7020}
$$

Substituting $n=4$ in Eq. (2B) gives

$$
b_{4}=\frac{-64 r^{6}-400 r^{5}-572 r^{4}+773 r^{3}+2385 r^{2}+1538 r+132}{24\left(64 r^{5}+624 r^{4}+2332 r^{3}+4173 r^{2}+3571 r+1170\right)\left(4 r^{2}+29 r+51\right)}
$$

For $5 \leq n$ the recursive equation is

$$
\begin{align*}
& 4 b_{n}(n+r)(n+r-1)+\frac{b_{n-5}(n-5+r)}{120}+\frac{b_{n-4}(n-4+r)}{24} \tag{3}\\
& +\frac{b_{n-3}(n-3+r)}{6}+\frac{b_{n-2}(n+r-2)}{2}+b_{n-1}(n+r-1)+b_{n}(n+r)-b_{n}=0
\end{align*}
$$

Solving for b_{n} from recursive equation (4) gives
$b_{n}=-\frac{n b_{n-5}+5 n b_{n-4}+20 n b_{n-3}+60 n b_{n-2}+120 n b_{n-1}+r b_{n-5}+5 r b_{n-4}+20 r b_{n-3}+60 r b_{n-2}+120 r b_{n}}{120\left(4 n^{2}+8 n r+4 r^{2}-3 n-3 r-1\right)}$
Which for the root $r=-\frac{1}{4}$ becomes
$b_{n}=\frac{\left(-4 b_{n-5}-20 b_{n-4}-80 b_{n-3}-240 b_{n-2}-480 b_{n-1}\right) n+21 b_{n-5}+85 b_{n-4}+260 b_{n-3}+540 b_{n-2}+600 b_{n}}{1920 n^{2}-2400 n}$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{1}{4}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{4 r+5}$	$-\frac{1}{4}$
b_{2}	$\frac{-4 r^{2}-3 r+2}{32 r^{3}+144 r^{2}+202 r+90}$	$\frac{5}{96}$
b_{3}	$\frac{-16 r^{4}-48 r^{3}-17 r^{2}+33 r+15}{384 r^{5}+3744 r^{4}+13992 r^{3}+25038 r^{2}+21426 r+7020}$	$\frac{17}{8064}$
b_{4}	$\frac{-64 r^{6}-400 r^{5}-572 r^{4}+773 r^{3}+2385 r^{2}+1538 r+132}{24\left(64 r^{5}+624 r^{4}+2332 r^{3}+4173 r^{2}+3571 r+1170\right)\left(4 r^{2}+29 r+51\right)}$	$-\frac{313}{1419264}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{-256 r^{8}-2432 r^{7}-3808 r^{6}+33576 r^{5}+168107 r^{4}+308308 r^{3}+239784 r^{2}+45745 r-18960}{120\left(4 r^{2}+37 r+84\right)\left(64 r^{5}+624 r^{4}+2332 r^{3}+4173 r^{2}+3571 r+1170\right)\left(4 r^{2}+29 r+51\right)}
$$

Which for the root $r=-\frac{1}{4}$ becomes

$$
b_{5}=-\frac{69703}{709632000}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{4 r+5}$	$-\frac{1}{4}$
b_{2}	$\frac{-4 r^{2}-3 r+2}{32 r^{3}+144 r^{2}+202 r+90}$	$\frac{5}{96}$
b_{3}	$\frac{-16 r^{4}-48 r^{3}-17 r^{2}+33 r+15}{384 r^{5}+3744 r^{4}+13992 r^{3}+25038 r^{2}+21426 r+7020}$	$\frac{17}{8064}$
b_{4}	$\frac{-64 r^{6}-400 r^{5}-572 r^{4}+773 r^{3}+2385 r^{2}+1538 r+132}{24\left(64 r^{5}+624 r^{4}+2332 r^{3}+4173 r^{2}+3571 r+1170\right)\left(4 r^{2}+29 r+51\right)}$	$-\frac{313}{1419264}$
b_{5}	$\frac{-256 r^{8}-2432 r^{7}-3808 r^{6}+33576 r^{5}+168107 r^{4}+308308 r^{3}+239784 r^{2}+45745 r-18960}{120\left(4 r^{2}+37 r+84\right)\left(64 r^{5}+624 r^{4}+2332 r^{3}+4173 r^{2}+3571 r+1170\right)\left(4 r^{2}+29 r+51\right)}$	$-\frac{69703}{709632000}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x}{4}+\frac{5 x^{2}}{96}+\frac{17 x^{3}}{8064}-\frac{313 x^{4}}{1419264}-\frac{6973 x^{5}}{709632000}+O\left(x^{6}\right)}{x^{\frac{1}{4}}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-\frac{x}{9}-\frac{5 x^{2}}{468}-\frac{11 x^{3}}{23868}+\frac{79 x^{4}}{501228}+\frac{16043 x^{5}}{313267500}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-\frac{x}{4}+\frac{5 x^{2}}{96}+\frac{17 x^{3}}{8064}-\frac{313 x^{4}}{1419264}-\frac{69703 x^{5}}{709632000}+O\left(x^{6}\right)\right)}{x^{\frac{1}{4}}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-\frac{x}{9}-\frac{5 x^{2}}{468}-\frac{11 x^{3}}{23868}+\frac{79 x^{4}}{501228}+\frac{16043 x^{5}}{313267500}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-\frac{x}{4}+\frac{5 x^{2}}{96}+\frac{17 x^{3}}{8064}-\frac{313 x^{4}}{1419264}-\frac{69703 x^{5}}{709632000}+O\left(x^{6}\right)\right)}{x^{\frac{1}{4}}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{gather*}
y=c_{1} x\left(1-\frac{x}{9}-\frac{5 x^{2}}{468}-\frac{11 x^{3}}{23868}+\frac{79 x^{4}}{501228}+\frac{16043 x^{5}}{313267500}+O\left(x^{6}\right)\right) \tag{1}\\
+
\end{gather*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1-\frac{x}{9}-\frac{5 x^{2}}{468}-\frac{11 x^{3}}{23868}+\frac{79 x^{4}}{501228}+\frac{16043 x^{5}}{313267500}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-\frac{x}{4}+\frac{5 x^{2}}{96}+\frac{17 x^{3}}{8064}-\frac{313 x^{4}}{1419264}-\frac{69703 x^{5}}{709632000}+O\left(x^{6}\right)\right)}{x^{\frac{1}{4}}}
\end{aligned}
$$

Verified OK.
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x})$ * Y where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $\mathrm{y}(\mathrm{x})$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) $* 2 \mathrm{~F} 1$
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
\rightarrow trying a solution of the form $r 0(x) * Y+r 1(x) * Y$ where $Y=\exp (\operatorname{int}(r(x), d x)) *$ trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form $[\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]$
-> trying a symmetry pattern 3177 the form $[0, F(x) * G(y)]$
-> trying a symmetry pattern of the form $[F(x), G(x) * y+H(x)]$
Trying Lie symmetry methods, 2nd order ---
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 45

```
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)+x*exp(x)*diff (y (x),x)-y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & \frac{c_{1}\left(1-\frac{1}{4} x+\frac{5}{96} x^{2}+\frac{17}{8064} x^{3}-\frac{313}{1419264} x^{4}-\frac{69703}{709632000} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x^{\frac{1}{4}}} \\
& +c_{2} x\left(1-\frac{1}{9} x-\frac{5}{468} x^{2}-\frac{11}{23868} x^{3}+\frac{79}{501228} x^{4}+\frac{16043}{313267500} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 86
AsymptoticDSolveValue[4*x^2*y' ' $[\mathrm{x}]+\mathrm{x} * \operatorname{Exp}[\mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1} x\left(\frac{16043 x^{5}}{313267500}+\frac{79 x^{4}}{501228}-\frac{11 x^{3}}{23868}-\frac{5 x^{2}}{468}-\frac{x}{9}+1\right) \\
& +\frac{c_{2}\left(-\frac{69703 x^{5}}{709632000}-\frac{313 x^{4}}{1419264}+\frac{17 x^{3}}{8064}+\frac{5 x^{2}}{96}-\frac{x}{4}+1\right)}{\sqrt[4]{x}}
\end{aligned}
$$

17.7 problem 8

Internal problem ID [2923]
Internal file name [OUTPUT/2415_Sunday_June_05_2022_03_07_18_AM_7303244/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
4 x y^{\prime \prime}-x y^{\prime}+2 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x y^{\prime \prime}-x y^{\prime}+2 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{4} \\
& q(x)=\frac{1}{2 x}
\end{aligned}
$$

Table 426: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=\frac{1}{2 x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x y^{\prime \prime}-x y^{\prime}+2 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
4\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty} 2 a_{n} x^{n+r} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2B}\\
& +\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r-1} a_{n}(n+r)(n+r-1)=0
$$

When $n=0$ the above becomes

$$
4 x^{-1+r} a_{0} r(-1+r)=0
$$

Or

$$
4 x^{-1+r} a_{0} r(-1+r)=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
4 x^{-1+r} r(-1+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
4 x^{-1+r} r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r-3)}{4(n+r)(n+r-1)} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n-2)}{4(n+1) n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{-2+r}{4(1+r) r}
$$

Which for the root $r=1$ becomes

$$
a_{1}=-\frac{1}{8}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+r}{4(1+r) r}$	$-\frac{1}{8}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{(-1+r)(-2+r)}{16(1+r)^{2} r(2+r)}
$$

Which for the root $r=1$ becomes

$$
a_{2}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+r}{4(1+r) r}$	$-\frac{1}{8}$
a_{2}	$\frac{(-1+r)(-2+r)}{16(1+r)^{2} r(2+r)}$	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{(-1+r)(-2+r)}{64(1+r)^{2}(2+r)^{2}(3+r)}
$$

Which for the root $r=1$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+r}{4(1+r) r}$	$-\frac{1}{8}$
a_{2}	$\frac{(-1+r)(-2+r)}{16(1+r)^{2} r(2+r)}$	0
a_{3}	$\frac{(-1+r)(-2+r)}{64(1+r)^{2}(2+r)^{2}(3+r)}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{(-1+r)(-2+r)}{256(1+r)(2+r)^{2}(3+r)^{2}(4+r)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+r}{4(1+r) r}$	$-\frac{1}{8}$
a_{2}	$\frac{(-1+r)(-2+r)}{16(1+r)^{2} r(2+r)}$	0
a_{3}	$\frac{(-1+r)(-2+r)}{64(1+r)^{2}(2+r)^{2}(3+r)}$	0
a_{4}	$\frac{(-1+r)(-2+r)}{256(1+r)(2+r)^{2}(3+r)^{2}(4+r)}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{(-1+r)(-2+r)}{1024(1+r)(2+r)(3+r)^{2}(4+r)^{2}(5+r)}
$$

Which for the root $r=1$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+r}{4(1+r) r}$	$-\frac{1}{8}$
a_{2}	$\frac{(-1+r)(-2+r)}{16(1+r)^{2} r(2+r)}$	0
a_{3}	$\frac{(-1+r)(-2+r)}{64(1+r)^{2}(2+r)^{2}(3+r)}$	0
a_{4}	$\frac{(-1+r)(-2+r)}{256(1+r)(2+r)^{2}(3+r)^{2}(4+r)}$	0
a_{5}	$\frac{(1+r)(-2+r)}{1024(1+r)(2+r)(3+r)^{2}(4+r)^{2}(5+r)}$	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1-\frac{x}{8}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{-2+r}{4(1+r) r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{-2+r}{4(1+r) r} & =\lim _{r \rightarrow 0} \frac{-2+r}{4(1+r) r} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $4 x y^{\prime \prime}-x y^{\prime}+2 y=0$ gives

$$
\begin{aligned}
& 4\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \\
& \quad-x\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +2 C y_{1}(x) \ln (x)+2\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(-y_{1}^{\prime}(x) x+4 y_{1}^{\prime \prime}(x) x+2 y_{1}(x)\right) \ln (x)+4\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x-y_{1}(x)\right) C \\
& +4\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \tag{7}\\
& -x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+2\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
-y_{1}^{\prime}(x) x+4 y_{1}^{\prime \prime}(x) x+2 y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(4\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x-y_{1}(x)\right) C \\
& +4\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \tag{8}\\
& -x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+2\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{aligned}
& \frac{\left(8\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-(x+4)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C}{x} \\
& +\frac{-\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x^{2}+4\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+2\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x}{x} \\
& =0
\end{aligned}
$$

Since $r_{1}=1$ and $r_{2}=0$ then the above becomes

$$
\begin{align*}
& \frac{\left(8\left(\sum_{n=0}^{\infty} x^{n} a_{n}(n+1)\right) x-(x+4)\left(\sum_{n=0}^{\infty} a_{n} x^{n+1}\right)\right) C}{x} \tag{10}\\
& +\frac{-\left(\sum_{n=0}^{\infty} x^{n-1} b_{n} n\right) x^{2}+4\left(\sum_{n=0}^{\infty} x^{n-2} b_{n} n(n-1)\right) x^{2}+2\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) x}{x}=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 8 C x^{n} a_{n}(n+1)\right)+\sum_{n=0}^{\infty}\left(-C x^{n+1} a_{n}\right)+\sum_{n=0}^{\infty}\left(-4 C a_{n} x^{n}\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n} b_{n} n\right)+\left(\sum_{n=0}^{\infty} 4 n x^{n-1} b_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} 2 b_{n} x^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 8 C x^{n} a_{n}(n+1) & =\sum_{n=1}^{\infty} 8 C a_{n-1} n x^{n-1} \\
\sum_{n=0}^{\infty}\left(-C x^{n+1} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-C a_{n-2} x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-4 C a_{n} x^{n}\right) & =\sum_{n=1}^{\infty}\left(-4 C a_{n-1} x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-x^{n} b_{n} n\right) & =\sum_{n=1}^{\infty}\left(-(n-1) b_{n-1} x^{n-1}\right) \\
\sum_{n=0}^{\infty} 2 b_{n} x^{n} & =\sum_{n=1}^{\infty} 2 b_{n-1} x^{n-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} 8 C a_{n-1} n x^{n-1}\right)+\sum_{n=2}^{\infty}\left(-C a_{n-2} x^{n-1}\right) \\
& \quad+\sum_{n=1}^{\infty}\left(-4 C a_{n-1} x^{n-1}\right)+\sum_{n=1}^{\infty}\left(-(n-1) b_{n-1} x^{n-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 4 n x^{n-1} b_{n}(n-1)\right)+\left(\sum_{n=1}^{\infty} 2 b_{n-1} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=N$, where $N=1$ which is the difference between the two roots, we are free to choose $b_{1}=0$. Hence for $n=1$, Eq (2B) gives

$$
4 C+2=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{1}{2}
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-a_{0}+12 a_{1}\right) C+b_{1}+8 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{5}{4}+8 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-\frac{5}{32}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-a_{1}+20 a_{2}\right) C+24 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{1}{16}+24 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=\frac{1}{384}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-a_{2}+28 a_{3}\right) C-b_{3}+48 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{1}{384}+48 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=\frac{1}{18432}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-a_{3}+36 a_{4}\right) C-2 b_{4}+80 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{1}{9216}+80 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{1}{737280}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{1}{2}$ and all b_{n}, then the second solution becomes

$$
y_{2}(x)=-\frac{1}{2}\left(x\left(1-\frac{x}{8}+O\left(x^{6}\right)\right)\right) \ln (x)+1-\frac{5 x^{2}}{32}+\frac{x^{3}}{384}+\frac{x^{4}}{18432}+\frac{x^{5}}{737280}+O\left(x^{6}\right)
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-\frac{x}{8}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{1}{2}\left(x\left(1-\frac{x}{8}+O\left(x^{6}\right)\right)\right) \ln (x)+1-\frac{5 x^{2}}{32}+\frac{x^{3}}{384}+\frac{x^{4}}{18432}+\frac{x^{5}}{737280}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-\frac{x}{8}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x}{8}+O\left(x^{6}\right)\right) \ln (x)}{2}+1-\frac{5 x^{2}}{32}+\frac{x^{3}}{384}+\frac{x^{4}}{18432}+\frac{x^{5}}{737280}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1} x\left(1-\frac{x}{8}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x}{8}+O\left(x^{6}\right)\right) \ln (x)}{2}+1-\frac{5 x^{2}}{32}+\frac{x^{3}}{384}+\frac{x^{4}}{18432}+\frac{x^{5}}{737280}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1-\frac{x}{8}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x}{8}+O\left(x^{6}\right)\right) \ln (x)}{2}+1-\frac{5 x^{2}}{32}+\frac{x^{3}}{384}+\frac{x^{4}}{18432}+\frac{x^{5}}{737280}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 46

```
Order:=6;
dsolve(4*x*diff(y(x),x$2)-x*diff (y (x), x) +2*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & \ln (x)\left(-\frac{1}{2} x+\frac{1}{16} x^{2}+\mathrm{O}\left(x^{6}\right)\right) c_{2}+c_{1} x\left(1-\frac{1}{8} x+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left(1+\frac{1}{4} x-\frac{3}{16} x^{2}+\frac{1}{384} x^{3}+\frac{1}{18432} x^{4}+\frac{1}{737280} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
$$

Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 52

```
AsymptoticDSolveValue[4*x*y''[x]-x*y'[x]+2*y[x]==0,y[x],{x,0,5}]
```

$$
y(x) \rightarrow c_{2}\left(x-\frac{x^{2}}{8}\right)+c_{1}\left(\frac{x^{4}+48 x^{3}-4608 x^{2}+13824 x+18432}{18432}+\frac{1}{16}(x-8) x \log (x)\right)
$$

17.8 problem 9

Internal problem ID [2924]
Internal file name [OUTPUT/2416_Sunday_June_05_2022_03_07_24_AM_191559/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-x \cos (x) y^{\prime}+5 y \mathrm{e}^{2 x}=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}-x \cos (x) y^{\prime}+5 y \mathrm{e}^{2 x}=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{\cos (x)}{x} \\
& q(x)=\frac{5 \mathrm{e}^{2 x}}{x^{2}}
\end{aligned}
$$

Table 427: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{\cos (x)}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{5 \mathrm{e}^{2 x}}{x^{2}}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}-x \cos (x) y^{\prime}+5 y \mathrm{e}^{2 x}=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& \quad-x \cos (x)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+5 \mathrm{e}^{2 x}\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Expanding $-\cos (x) x$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
-\cos (x) x & =-x+\frac{1}{2} x^{3}-\frac{1}{24} x^{5}+\frac{1}{720} x^{7}+\ldots \\
& =-x+\frac{1}{2} x^{3}-\frac{1}{24} x^{5}+\frac{1}{720} x^{7}
\end{aligned}
$$

Expanding $5 \mathrm{e}^{2 x}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
5 \mathrm{e}^{2 x} & =5+10 x+10 x^{2}+\frac{20}{3} x^{3}+\frac{10}{3} x^{4}+\frac{4}{3} x^{5}+\frac{4}{9} x^{6}+\ldots \\
& =5+10 x+10 x^{2}+\frac{20}{3} x^{3}+\frac{10}{3} x^{4}+\frac{4}{3} x^{5}+\frac{4}{9} x^{6}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+6} a_{n}(n+r)}{720}\right) \\
& +\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+4} a_{n}(n+r)}{24}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}(n+r)}{2}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 5 a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 10 x^{1+n+r} a_{n}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 10 x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} \frac{20 x^{n+r+3} a_{n}}{3}\right)+\left(\sum_{n=0}^{\infty} \frac{10 x^{n+r+4} a_{n}}{3}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{4 x^{n+r+5} a_{n}}{3}\right)+\left(\sum_{n=0}^{\infty} \frac{4 x^{n+r+6} a_{n}}{9}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{x^{n+r+6} a_{n}(n+r)}{720} & =\sum_{n=6}^{\infty} \frac{a_{n-6}(n-6+r) x^{n+r}}{720} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+4} a_{n}(n+r)}{24}\right) & =\sum_{n=4}^{\infty}\left(-\frac{a_{n-4}(n-4+r) x^{n+r}}{24}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}(n+r)}{2} & =\sum_{n=2}^{\infty} \frac{a_{n-2}(n+r-2) x^{n+r}}{2}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=0}^{\infty} 10 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 10 a_{n-1} x^{n+r} \\
\sum_{n=0}^{\infty} 10 x^{n+r+2} a_{n} & =\sum_{n=2}^{\infty} 10 a_{n-2} x^{n+r} \\
\sum_{n=0}^{\infty} \frac{20 x^{n+r+3} a_{n}}{3} & =\sum_{n=3}^{\infty} \frac{20 a_{n-3} x^{n+r}}{3} \\
\sum_{n=0}^{\infty} \frac{10 x^{n+r+4} a_{n}}{3} & =\sum_{n=4}^{\infty} \frac{10 a_{n-4} x^{n+r}}{3} \\
\sum_{n=0}^{\infty} \frac{4 x^{n+r+5} a_{n}}{3} & =\sum_{n=5}^{\infty} \frac{4 a_{n-5} x^{n+r}}{3} \\
\sum_{n=0}^{\infty} \frac{4 x^{n+r+6} a_{n}}{9} & =\sum_{n=6}^{\infty} \frac{4 a_{n-6} x^{n+r}}{9}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=6}^{\infty} \frac{a_{n-6}(n-6+r) x^{n+r}}{720}\right) \\
& +\sum_{n=4}^{\infty}\left(-\frac{a_{n-4}(n-4+r) x^{n+r}}{24}\right)+\left(\sum_{n=2}^{\infty} \frac{a_{n-2}(n+r-2) x^{n+r}}{2}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 5 a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} 10 a_{n-1} x^{n+r}\right) \tag{2~B}\\
& \quad+\left(\sum_{n=2}^{\infty} 10 a_{n-2} x^{n+r}\right)+\left(\sum_{n=3}^{\infty} \frac{20 a_{n-3} x^{n+r}}{3}\right)+\left(\sum_{n=4}^{\infty} \frac{10 a_{n-4} x^{n+r}}{3}\right) \\
& \quad+\left(\sum_{n=5}^{\infty} \frac{4 a_{n-5} x^{n+r}}{3}\right)+\left(\sum_{n=6}^{\infty} \frac{4 a_{n-6} x^{n+r}}{9}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+5 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+5 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-x^{r} r+5 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-2 r+5\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-2 r+5=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1+2 i \\
& r_{2}=1-2 i
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-2 r+5\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1+2 i} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+1-2 i}
\end{aligned}
$$

$y_{1}(x)$ is found first. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=-\frac{10}{r^{2}+4}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{-r^{3}-20 r^{2}-4 r+120}{2\left(r^{2}+4\right)\left(r^{2}+2 r+5\right)}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=\frac{-\frac{10}{3} r^{3}+155 r^{2}+\frac{605}{3} r-\frac{20}{3} r^{4}-\frac{625}{3}}{\left(r^{2}+4\right)\left(r^{2}+2 r+5\right)\left(r^{2}+4 r+8\right)}
$$

Substituting $n=4$ in Eq. (2B) gives

$$
a_{4}=\frac{r^{7}-68 r^{6}-179 r^{5}+4980 r^{4}+18204 r^{3}-8672 r^{2}-67056 r-25520}{24\left(r^{2}+4\right)\left(r^{2}+2 r+5\right)\left(r^{2}+4 r+8\right)\left(r^{2}+6 r+13\right)}
$$

Substituting $n=5$ in Eq. (2B) gives

$$
a_{5}=\frac{-16 r^{8}-122 r^{7}+1871 r^{6}+16327 r^{5}+12206 r^{4}-150483 r^{3}-334731 r^{2}-69372 r+174270}{12\left(r^{2}+4\right)\left(r^{2}+2 r+5\right)\left(r^{2}+4 r+8\right)\left(r^{2}+6 r+13\right)\left(r^{2}+8 r+20\right)}
$$

For $6 \leq n$ the recursive equation is

$$
\begin{align*}
& a_{n}(n+r)(n+r-1)+\frac{a_{n-6}(n-6+r)}{720}-\frac{a_{n-4}(n-4+r)}{24}+\frac{a_{n-2}(n+r-2)}{2} \tag{3}\\
& \quad-a_{n}(n+r)+5 a_{n}+10 a_{n-1}+10 a_{n-2}+\frac{20 a_{n-3}}{3}+\frac{10 a_{n-4}}{3}+\frac{4 a_{n-5}}{3}+\frac{4 a_{n-6}}{9}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{n a_{n-6}-30 n a_{n-4}+360 n a_{n-2}+r a_{n-6}-30 r a_{n-4}+360 r a_{n-2}+314 a_{n-6}+960 a_{n-5}+2520 a_{n-4}+}{720\left(n^{2}+2 n r+r^{2}-2 n-2 r+5\right)} \tag{4}
\end{equation*}
$$

Which for the root $r=1+2 i$ becomes
$a_{n}=\frac{\left(-a_{n-6}+30 a_{n-4}-360 a_{n-2}\right) n+(-315-2 i) a_{n-6}+(-2490+60 i) a_{n-4}+(-6840-720 i) a_{n-2}-}{720 n(n+4 i)}$
At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1+2 i$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-\frac{10}{r^{2}+4}}{}$$a_{2}$ $\frac{-r^{3}-20 r^{2}-4 r+120}{2\left(r^{2}+4\right)\left(r^{2}+2 r+5\right)}$ $-\frac{10}{17}+\frac{40 i}{17}$ a_{3} $\frac{-\frac{10}{3} r^{3}+155 r^{2}+\frac{605}{3} r-\frac{20}{3} r^{4}-\frac{625}{3}}{\left(r^{2}+4\right)\left(r^{2}+2 r+5\right)\left(r^{2}+4 r+8\right)}$ $-\frac{365}{136}-\frac{13 i}{17}$ a_{4} $\frac{r^{7}-68 r^{6}-179 r^{5}+4980 r^{4}+18204 r^{3}-8672 r^{2}-67056 r-25520}{24\left(r^{2}+4\right)\left(r^{2}+2 r+5\right)\left(r^{2}+4 r+8\right)\left(r^{2}+6 r+13\right)}$ $\frac{223}{1020}-\frac{1723 i}{765}$ a_{5} $\frac{-16 r^{8}-122 r^{7}+1871 r^{6}+16327 r^{5}+12206 r^{4}-150483 r^{3}-334731 r^{2}-69372 r+174270}{12\left(r^{2}+4\right)\left(r^{2}+2 r+5\right)\left(r^{2}+4 r+8\right)\left(r^{2}+6 r+13\right)\left(r^{2}+8 r+20\right)}$ $\frac{114911}{78336}-\frac{24835 i}{78336}$ $\mathbf{~}$	

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
& y_{1}(x)=x^{1+2 i}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{1+2 i}\left(1+\left(-\frac{10}{17}+\frac{40 i}{17}\right) x+\left(-\frac{365}{136}-\frac{13 i}{17}\right) x^{2}+\left(\frac{223}{1020}-\frac{1723 i}{765}\right) x^{3}\right. \\
& \\
& \left.\quad+\left(\frac{114911}{78336}-\frac{24835 i}{78336}\right) x^{4}+\left(\frac{4041077}{8029440}+\frac{1112267 i}{1605888}\right) x^{5}+O\left(x^{6}\right)\right)
\end{aligned}
$$

The second solution $y_{2}(x)$ is found by taking the complex conjugate of $y_{1}(x)$ which gives

$$
\begin{aligned}
y_{2}(x)=x^{1-2 i}(1 & +\left(-\frac{10}{17}-\frac{40 i}{17}\right) x+\left(-\frac{365}{136}+\frac{13 i}{17}\right) x^{2}+\left(\frac{223}{1020}+\frac{1723 i}{765}\right) x^{3} \\
& \left.+\left(\frac{114911}{78336}+\frac{24835 i}{78336}\right) x^{4}+\left(\frac{4041077}{8029440}-\frac{1112267 i}{1605888}\right) x^{5}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)= c_{1} y_{1}(x)+ \\
& c_{2} y_{2}(x) \\
&=c_{1} x^{1+2 i}(1+\left(-\frac{10}{17}+\frac{40 i}{17}\right) x+\left(-\frac{365}{136}-\frac{13 i}{17}\right) x^{2}+\left(\frac{223}{1020}-\frac{1723 i}{765}\right) x^{3} \\
&\left.+\left(\frac{114911}{78336}-\frac{24835 i}{78336}\right) x^{4}+\left(\frac{4041077}{8029440}+\frac{1112267 i}{1605888}\right) x^{5}+O\left(x^{6}\right)\right) \\
&+ c_{2} x^{1-2 i}\left(1+\left(-\frac{10}{17}-\frac{40 i}{17}\right) x+\left(-\frac{365}{136}+\frac{13 i}{17}\right) x^{2}+\left(\frac{223}{1020}+\frac{1723 i}{765}\right) x^{3}\right. \\
&\left.+\left(\frac{114911}{78336}+\frac{24835 i}{78336}\right) x^{4}+\left(\frac{4041077}{8029440}-\frac{1112267 i}{1605888}\right) x^{5}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\left.\left.\begin{array}{rl}
y= & y_{h} \\
=c_{1} x^{1+2 i}(1+ & \left(-\frac{10}{17}+\frac{40 i}{17}\right) x+\left(-\frac{365}{136}-\frac{13 i}{17}\right) x^{2}+\left(\frac{223}{1020}-\frac{1723 i}{765}\right) x^{3} \\
& \left.+\left(\frac{114911}{78336}-\frac{24835 i}{78336}\right) x^{4}+\left(\frac{4041077}{8029440}+\frac{1112267 i}{1605888}\right) x^{5}+O\left(x^{6}\right)\right) \\
+ & c_{2} x^{1-2 i}(1
\end{array}+\left(-\frac{10}{17}-\frac{40 i}{17}\right) x+\left(-\frac{365}{136}+\frac{13 i}{17}\right) x^{2}+\left(\frac{223}{1020}+\frac{1723 i}{765}\right) x^{3}\right) ~\left(\frac{114911}{78336}+\frac{24835 i}{78336}\right) x^{4}+\left(\frac{4041077}{8029440}-\frac{1112267 i}{1605888}\right) x^{5}+O\left(x^{6}\right)\right) .
$$

Summary

The solution(s) found are the following

$$
\left.\begin{array}{rl}
y=c_{1} x^{1+2 i}(1+ & \left(-\frac{10}{17}+\frac{40 i}{17}\right) x+\left(-\frac{365}{136}-\frac{13 i}{17}\right) x^{2}+\left(\frac{223}{1020}-\frac{1723 i}{765}\right) x^{3} \\
& \left.+\left(\frac{114911}{78336}-\frac{24835 i}{78336}\right) x^{4}+\left(\frac{4041077}{8029440}+\frac{1112267 i}{1605888}\right) x^{5}+O\left(x^{6}\right)\right) \\
+ & c_{2} x^{1-2 i}(1
\end{array}+\left(-\frac{10}{17}-\frac{40 i}{17}\right) x+\left(-\frac{365}{136}+\frac{13 i}{17}\right) x^{2}+\left(\frac{223}{1020}+\frac{1723 i}{765}\right) x^{3}\right)
$$

Verification of solutions

$$
\left.\begin{array}{rl}
y=c_{1} x^{1+2 i}(1+ & \left(-\frac{10}{17}+\frac{40 i}{17}\right) x+\left(-\frac{365}{136}-\frac{13 i}{17}\right) x^{2}+\left(\frac{223}{1020}-\frac{1723 i}{765}\right) x^{3} \\
& \left.+\left(\frac{114911}{78336}-\frac{24835 i}{78336}\right) x^{4}+\left(\frac{4041077}{8029440}+\frac{1112267 i}{1605888}\right) x^{5}+O\left(x^{6}\right)\right) \\
+ & c_{2} x^{1-2 i}(1
\end{array}+\left(-\frac{10}{17}-\frac{40 i}{17}\right) x+\left(-\frac{365}{136}+\frac{13 i}{17}\right) x^{2}+\left(\frac{223}{1020}+\frac{1723 i}{765}\right) x^{3}\right)
$$

Verified OK.

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x})$ * Y where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
-, --> Computing symmetries using: way $=5$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) $* 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way $=5 `[0, u]$
\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 71

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*\operatorname{cos}(x)*\operatorname{diff}(y(x),x)+5*exp(2*x)*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{1-2 i}(1
\end{aligned}+\left(-\frac{10}{17}-\frac{40 i}{17}\right) x+\left(-\frac{365}{136}+\frac{13 i}{17}\right) x^{2}+\left(\frac{223}{1020}+\frac{1723 i}{765}\right) x^{3} .
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 94
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' ' $[\mathrm{x}]-\mathrm{x} * \operatorname{Cos}[\mathrm{x}] * \mathrm{y}$ ' $\left.[\mathrm{x}]+5 * \operatorname{Exp}[2 * \mathrm{x}] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & \left(\frac{11}{391680}+\frac{7 i}{391680}\right) c_{1}\left((32064-31693 i) x^{4}-(30784+60608 i) x^{3}\right. \\
& \left.\quad-(80352-23904 i) x^{2}+(23040+69120 i) x+(25344-16128 i)\right) x^{1+2 i} \\
+ & \left(\frac{7}{391680}+\frac{11 i}{391680}\right) c_{2}\left((31693-32064 i) x^{4}+(60608+30784 i) x^{3}\right. \\
& \left.\quad-(23904-80352 i) x^{2}-(69120+23040 i) x+(16128-25344 i)\right) x^{1-2 i}
\end{aligned}
$$

17.9 problem 10

17.9.1 Maple step by step solution 3212

Internal problem ID [2925]
Internal file name [OUTPUT/2417_Sunday_June_05_2022_03_08_42_AM_17819108/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 10 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
4 x^{2} y^{\prime \prime}+3 x y^{\prime}+y x=0
$$

With the expansion point for the power series method at $x=0$.
The ODE is

$$
4 x^{2} y^{\prime \prime}+3 x y^{\prime}+y x=0
$$

Or

$$
x\left(4 x y^{\prime \prime}+3 y^{\prime}+y\right)=0
$$

For $x \neq 0$ the above simplifies to

$$
4 x y^{\prime \prime}+3 y^{\prime}+y=0
$$

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x^{2} y^{\prime \prime}+3 x y^{\prime}+y x=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{3}{4 x} \\
q(x) & =\frac{1}{4 x}
\end{aligned}
$$

Table 428: Table $p(x), q(x)$ singularites.

$p(x)=\frac{3}{4 x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{1}{4 x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}+3 x y^{\prime}+y x=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +3 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)+3 x^{n+r} a_{n}(n+r)=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)+3 x^{r} a_{0} r=0
$$

Or

$$
\left(4 x^{r} r(-1+r)+3 x^{r} r\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{r} r(-1+4 r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r^{2}-r=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{4} \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{r} r(-1+4 r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{1}{4}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{4}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)+3 a_{n}(n+r)+a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{4 n^{2}+8 n r+4 r^{2}-n-r} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{4 n^{2}+n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{4}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{1}{4 r^{2}+7 r+3}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
a_{1}=-\frac{1}{5}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{4 r^{2}+7 r+3}$	$-\frac{1}{5}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
a_{2}=\frac{1}{90}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{4 r^{2}+7 r+3}$	$-\frac{1}{5}$
a_{2}	$\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}$	$\frac{1}{90}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
a_{3}=-\frac{1}{3510}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{4 r^{2}+7 r+3}$	$-\frac{1}{5}$
a_{2}	$\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}$	$\frac{1}{90}$
a_{3}	$-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}$	$-\frac{1}{3510}$

For $n=4$, using the above recursive equation gives
$a_{4}=\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}$
Which for the root $r=\frac{1}{4}$ becomes

$$
a_{4}=\frac{1}{238680}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{4 r^{2}+7 r+3}$	$-\frac{1}{5}$
a_{2}	$\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}$	$\frac{1}{90}$
a_{3}	$-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386} 1$	$-\frac{1}{3510}$
a_{4}	$\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}$	$\frac{1}{238680}$

For $n=5$, using the above recursive equation gives
$a_{5}=-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)(4}$
Which for the root $r=\frac{1}{4}$ becomes

$$
a_{5}=-\frac{1}{25061400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{4 r^{2}+7 r+3}$	1
a_{2}	$\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}$	$-\frac{1}{5}$
a_{3}	$-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}$	$\frac{1}{90}$
a_{4}	$\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}$	$-\frac{1}{3510}$
a_{5}	$-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)}$	$-\frac{1}{25061400}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{1}{4}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{1}{4}}\left(1-\frac{x}{5}+\frac{x^{2}}{90}-\frac{x^{3}}{3510}+\frac{x^{4}}{238680}-\frac{x^{5}}{25061400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 b_{n}(n+r)(n+r-1)+3 b_{n}(n+r)+b_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{4 n^{2}+8 n r+4 r^{2}-n-r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{n(4 n-1)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{1}{4 r^{2}+7 r+3}
$$

Which for the root $r=0$ becomes

$$
b_{1}=-\frac{1}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{4 r^{2}+7 r+3}$	$-\frac{1}{3}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}
$$

Which for the root $r=0$ becomes

$$
b_{2}=\frac{1}{42}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{4 r^{2}+7 r+3}$	$-\frac{1}{3}$
b_{2}	$\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}$	$\frac{1}{42}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}
$$

Which for the root $r=0$ becomes

$$
b_{3}=-\frac{1}{1386}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{4 r^{2}+7 r+3}$	$-\frac{1}{3}$
b_{2}	$\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}$	$\frac{1}{42}$
b_{3}	$-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}$	$-\frac{1}{1386}$

For $n=4$, using the above recursive equation gives
$b_{4}=\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}$
Which for the root $r=0$ becomes

$$
b_{4}=\frac{1}{83160}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{4 r^{2}+7 r+3}$	$-\frac{1}{3}$
b_{2}	$\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}$	$\frac{1}{42}$
b_{3}	$-\frac{1}{44 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}$	1
b_{4}	$\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}$	$-\frac{1}{1386}$

For $n=5$, using the above recursive equation gives
$b_{5}=-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)(4}$
Which for the root $r=0$ becomes

$$
b_{5}=-\frac{1}{7900200}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{4 r^{2}+7 r+3}$	$-\frac{1}{3}$
b_{2}	$\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}$	1
b_{3}	$-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}$	$\frac{1}{42}$
b_{4}	$\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}$	$-\frac{1}{1386}$
b_{5}	$-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)}$	$-\frac{1}{83160}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =1-\frac{x}{3}+\frac{x^{2}}{42}-\frac{x^{3}}{1386}+\frac{x^{4}}{83160}-\frac{x^{5}}{7900200}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{1}{4}}\left(1-\frac{x}{5}+\frac{x^{2}}{90}-\frac{x^{3}}{3510}+\frac{x^{4}}{238680}-\frac{x^{5}}{25061400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-\frac{x}{3}+\frac{x^{2}}{42}-\frac{x^{3}}{1386}+\frac{x^{4}}{83160}-\frac{x^{5}}{7900200}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{1}{4}}\left(1-\frac{x}{5}+\frac{x^{2}}{90}-\frac{x^{3}}{3510}+\frac{x^{4}}{238680}-\frac{x^{5}}{25061400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-\frac{x}{3}+\frac{x^{2}}{42}-\frac{x^{3}}{1386}+\frac{x^{4}}{83160}-\frac{x^{5}}{7900200}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{\frac{1}{4}}\left(1-\frac{x}{5}+\frac{x^{2}}{90}-\frac{x^{3}}{3510}+\frac{x^{4}}{238680}-\frac{x^{5}}{25061400}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2}\left(1-\frac{x}{3}+\frac{x^{2}}{42}-\frac{x^{3}}{1386}+\frac{x^{4}}{83160}-\frac{x^{5}}{7900200}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\frac{1}{4}}\left(1-\frac{x}{5}+\frac{x^{2}}{90}-\frac{x^{3}}{3510}+\frac{x^{4}}{238680}-\frac{x^{5}}{25061400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-\frac{x}{3}+\frac{x^{2}}{42}-\frac{x^{3}}{1386}+\frac{x^{4}}{83160}-\frac{x^{5}}{7900200}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

17.9.1 Maple step by step solution

Let's solve

$$
4 x^{2} y^{\prime \prime}+3 x y^{\prime}+y x=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y}{4 x}-\frac{3 y^{\prime}}{4 x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{3 y^{\prime}}{4 x}+\frac{y}{4 x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{3}{4 x}, P_{3}(x)=\frac{1}{4 x}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{3}{4}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$4 y^{\prime \prime} x+3 y^{\prime}+y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-1+4 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(4 k+3+4 r)+a_{k}\right) x^{k+r}\right)=0$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(-1+4 r)=0$
- Values of r that satisfy the indicial equation $r \in\left\{0, \frac{1}{4}\right\}$
- Each term in the series must be 0, giving the recursion relation
$4\left(k+\frac{3}{4}+r\right)(k+1+r) a_{k+1}+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{a_{k}}{(4 k+3+4 r)(k+1+r)}$
- \quad Recursion relation for $r=0$
$a_{k+1}=-\frac{a_{k}}{(4 k+3)(k+1)}$
- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a_{k}}{(4 k+3)(k+1)}\right]
$$

- Recursion relation for $r=\frac{1}{4}$

$$
a_{k+1}=-\frac{a_{k}}{(4 k+4)\left(k+\frac{5}{4}\right)}
$$

- \quad Solution for $r=\frac{1}{4}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{4}}, a_{k+1}=-\frac{a_{k}}{(4 k+4)\left(k+\frac{5}{4}\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{4}}\right), a_{1+k}=-\frac{a_{k}}{(4 k+3)(1+k)}, b_{1+k}=-\frac{b_{k}}{(4 k+4)\left(k+\frac{5}{4}\right)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 44

```
Order:=6;
dsolve(4*x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{\frac{1}{4}}\left(1-\frac{1}{5} x+\frac{1}{90} x^{2}-\frac{1}{3510} x^{3}+\frac{1}{238680} x^{4}-\frac{1}{25061400} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(1-\frac{1}{3} x+\frac{1}{42} x^{2}-\frac{1}{1386} x^{3}+\frac{1}{83160} x^{4}-\frac{1}{7900200} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 85

AsymptoticDSolveValue $\left[4 * x^{\wedge} 2 * y^{\prime} '[x]+3 * x * y '[x]+x * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1} \sqrt[4]{x}\left(-\frac{x^{5}}{25061400}+\frac{x^{4}}{238680}-\frac{x^{3}}{3510}+\frac{x^{2}}{90}-\frac{x}{5}+1\right) \\
& +c_{2}\left(-\frac{x^{5}}{7900200}+\frac{x^{4}}{83160}-\frac{x^{3}}{1386}+\frac{x^{2}}{42}-\frac{x}{3}+1\right)
\end{aligned}
$$

17.10 problem 11

17.10.1 Maple step by step solution

Internal problem ID [2926]
Internal file name [OUTPUT/2418_Sunday_June_05_2022_03_08_47_AM_57705214/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
6 x^{2} y^{\prime \prime}+x(1+18 x) y^{\prime}+(1+12 x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
6 x^{2} y^{\prime \prime}+\left(18 x^{2}+x\right) y^{\prime}+(1+12 x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1+18 x}{6 x} \\
& q(x)=\frac{1+12 x}{6 x^{2}}
\end{aligned}
$$

Table 430: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1+18 x}{6 x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{1+12 x}{6 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
6 x^{2} y^{\prime \prime}+\left(18 x^{2}+x\right) y^{\prime}+(1+12 x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 6 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(18 x^{2}+x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(1+12 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 6 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 18 x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 12 x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 18 x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 18 a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} 12 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 12 a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 6 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 18 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2~B}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} 12 a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
6 x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
6 x^{r} a_{0} r(-1+r)+x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(6 x^{r} r(-1+r)+x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(6 r^{2}-5 r+1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
6 r^{2}-5 r+1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{3}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(6 r^{2}-5 r+1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{1}{6}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{3}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
6 a_{n}(n+r)(n+r-1)+18 a_{n-1}(n+r-1)+a_{n}(n+r)+a_{n}+12 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{6 a_{n-1}}{2 n+2 r-1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{3 a_{n-1}}{n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{6}{1+2 r}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{1}=-3
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{6}{1+2 r}$	-3

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{36}{4 r^{2}+8 r+3}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=\frac{9}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{6}{1+2 r}$	-3
a_{2}	$\frac{36}{4 r^{2}+8 r+3}$	$\frac{9}{2}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{216}{8 r^{3}+36 r^{2}+46 r+15}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{3}=-\frac{9}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{6}{1+2 r}$	-3
a_{2}	$\frac{36}{4 r^{2}+8 r+3}$	$\frac{9}{2}$
a_{3}	$-\frac{216}{8 r^{3}+36 r^{2}+46 r+15}$	$-\frac{9}{2}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1296}{16 r^{4}+128 r^{3}+344 r^{2}+352 r+105}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{27}{8}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{6}{1+2 r}$	-3
a_{2}	$\frac{36}{4 r^{2}+8 r+3}$	$\frac{9}{2}$
a_{3}	$-\frac{216}{8 r^{3}+36 r^{2}+46 r+15}$	$-\frac{9}{2}$
a_{4}	$\frac{1296}{16 r^{4}+128 r^{3}+344 r^{2}+352 r+105}$	$\frac{27}{8}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{7776}{32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r+945}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{5}=-\frac{81}{40}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{6}{1+2 r}$	-3
a_{2}	$\frac{36}{4 r^{2}+8 r+3}$	$\frac{9}{2}$
a_{3}	$-\frac{216}{8 r^{3}+36 r^{2}+46 r+15}$	$-\frac{9}{2}$
a_{4}	$\frac{1296}{16 r^{4}+128 r^{3}+344 r^{2}+352 r+105}$	$\frac{27}{8}$
a_{5}	$-\frac{7776}{32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r+945}$	$-\frac{81}{40}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1-3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}-\frac{81 x^{5}}{40}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. $\mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
6 b_{n}(n+r)(n+r-1)+18 b_{n-1}(n+r-1)+b_{n}(n+r)+b_{n}+12 b_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{6 b_{n-1}}{2 n+2 r-1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{18 b_{n-1}}{6 n-1} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=\frac{1}{3}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{6}{1+2 r}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
b_{1}=-\frac{18}{5}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{6}{1+2 r}$	$-\frac{18}{5}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{36}{4 r^{2}+8 r+3}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
b_{2}=\frac{324}{55}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{6}{1+2 r}$	$-\frac{18}{5}$
b_{2}	$\frac{36}{4 r^{2}+8 r+3}$	$\frac{324}{55}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{216}{8 r^{3}+36 r^{2}+46 r+15}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
b_{3}=-\frac{5832}{935}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{6}{1+2 r}$	$-\frac{18}{5}$
b_{2}	$\frac{36}{4 r^{2}+8 r+3}$	$\frac{324}{55}$
b_{3}	$-\frac{216}{8 r^{3}+36 r^{2}+46 r+15}$	$-\frac{5832}{935}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1296}{16 r^{4}+128 r^{3}+344 r^{2}+352 r+105}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
b_{4}=\frac{104976}{21505}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{6}{1+2 r}$	$-\frac{18}{5}$
b_{2}	$\frac{36}{4 r^{2}+8 r+3}$	$\frac{324}{55}$
b_{3}	$-\frac{216}{8 r^{3}+36 r^{2}+46 r+15}$	$-\frac{5832}{935}$
b_{4}	$\frac{1296}{16 r^{4}+128 r^{3}+344 r^{2}+352 r+105}$	$\frac{104976}{21505}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=-\frac{7776}{32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r+945}
$$

Which for the root $r=\frac{1}{3}$ becomes

$$
b_{5}=-\frac{1889568}{623645}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{6}{1+2 r}$	$-\frac{18}{5}$
b_{2}	$\frac{36}{4 r^{2}+8 r+3}$	$\frac{324}{55}$
b_{3}	$-\frac{216}{8 r^{3}+36 r^{2}+46 r+15}$	$-\frac{5832}{935}$
b_{4}	$\frac{1296}{16 r^{4}+128 r^{3}+344 r^{2}+352 r+105}$	$\frac{104976}{21505}$
b_{5}	$-\frac{7776}{32 r^{5}+400 r^{4}+1840 r^{3}+3800 r^{2}+3378 r+945}$	$-\frac{1889568}{623645}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =\sqrt{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =x^{\frac{1}{3}}\left(1-\frac{18 x}{5}+\frac{324 x^{2}}{55}-\frac{5832 x^{3}}{935}+\frac{104976 x^{4}}{21505}-\frac{1889568 x^{5}}{623645}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(1-3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}-\frac{81 x^{5}}{40}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{\frac{1}{3}}\left(1-\frac{18 x}{5}+\frac{324 x^{2}}{55}-\frac{5832 x^{3}}{935}+\frac{104976 x^{4}}{21505}-\frac{1889568 x^{5}}{623645}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} \sqrt{x}\left(1-3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}-\frac{81 x^{5}}{40}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{\frac{1}{3}}\left(1-\frac{18 x}{5}+\frac{324 x^{2}}{55}-\frac{5832 x^{3}}{935}+\frac{104976 x^{4}}{21505}-\frac{1889568 x^{5}}{623645}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{x}\left(1-3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}-\frac{81 x^{5}}{40}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2} x^{\frac{1}{3}}\left(1-\frac{18 x}{5}+\frac{324 x^{2}}{55}-\frac{5832 x^{3}}{935}+\frac{104976 x^{4}}{21505}-\frac{1889568 x^{5}}{623645}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-3 x+\frac{9 x^{2}}{2}-\frac{9 x^{3}}{2}+\frac{27 x^{4}}{8}-\frac{81 x^{5}}{40}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{\frac{1}{3}}\left(1-\frac{18 x}{5}+\frac{324 x^{2}}{55}-\frac{5832 x^{3}}{935}+\frac{104976 x^{4}}{21505}-\frac{1889568 x^{5}}{623645}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

17.10.1 Maple step by step solution

Let's solve
$6 x^{2} y^{\prime \prime}+\left(18 x^{2}+x\right) y^{\prime}+(1+12 x) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=-\frac{(1+12 x) y}{6 x^{2}}-\frac{(1+18 x) y^{\prime}}{6 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}+\frac{(1+18 x) y^{\prime}}{6 x}+\frac{(1+12 x) y}{6 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1+18 x}{6 x}, P_{3}(x)=\frac{1+12 x}{6 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{6}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{1}{6}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$6 x^{2} y^{\prime \prime}+x(1+18 x) y^{\prime}+(1+12 x) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(-1+3 r)(-1+2 r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(3 k+3 r-1)(2 k+2 r-1)+6 a_{k-1}(3 k+3 r-1)\right) x^{k+r}\right)=$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
(-1+3 r)(-1+2 r)=0
$$

- \quad Values of r that satisfy the indicial equation $r \in\left\{\frac{1}{2}, \frac{1}{3}\right\}$
- Each term in the series must be 0 , giving the recursion relation
$6\left(\left(k+r-\frac{1}{2}\right) a_{k}+3 a_{k-1}\right)\left(k+r-\frac{1}{3}\right)=0$
- \quad Shift index using $k->k+1$
$6\left(\left(k+\frac{1}{2}+r\right) a_{k+1}+3 a_{k}\right)\left(k+\frac{2}{3}+r\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{6 a_{k}}{2 k+1+2 r}
$$

- \quad Recursion relation for $r=\frac{1}{2}$

$$
a_{k+1}=-\frac{6 a_{k}}{2 k+2}
$$

- \quad Solution for $r=\frac{1}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+1}=-\frac{6 a_{k}}{2 k+2}\right]$
- \quad Recursion relation for $r=\frac{1}{3}$
$a_{k+1}=-\frac{6 a_{k}}{2 k+\frac{5}{3}}$
- \quad Solution for $r=\frac{1}{3}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{3}}, a_{k+1}=-\frac{6 a_{k}}{2 k+\frac{5}{3}}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{3}}\right), a_{1+k}=-\frac{6 a_{k}}{2+2 k}, b_{1+k}=-\frac{6 b_{k}}{2 k+\frac{5}{3}}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        <- Kummer successful
    <- special function solution successful
        -> Trying to convert hypergeometric functions to elementary form...
        <- elementary form is not straightforward to achieve - returning special function solu
    <- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 47

```
Order:=6;
dsolve(6*x^2*diff (y(x),x$2)+x*(1+18*x)*diff (y(x),x)+(1+12*x)*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{\frac{1}{3}}\left(1-\frac{18}{5} x+\frac{324}{55} x^{2}-\frac{5832}{935} x^{3}+\frac{104976}{21505} x^{4}-\frac{1889568}{623645} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} \sqrt{x}\left(1-3 x+\frac{9}{2} x^{2}-\frac{9}{2} x^{3}+\frac{27}{8} x^{4}-\frac{81}{40} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 88
AsymptoticDSolveValue [6*x^2*y' ' $[\mathrm{x}]+\mathrm{x} *(1+18 * x) * y$ ' $[\mathrm{x}]+(1+12 * x) * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1} \sqrt{x}\left(-\frac{81 x^{5}}{40}+\frac{27 x^{4}}{8}-\frac{9 x^{3}}{2}+\frac{9 x^{2}}{2}-3 x+1\right) \\
& +c_{2} \sqrt[3]{x}\left(-\frac{1889568 x^{5}}{623645}+\frac{104976 x^{4}}{21505}-\frac{5832 x^{3}}{935}+\frac{324 x^{2}}{55}-\frac{18 x}{5}+1\right)
\end{aligned}
$$

17.11 problem 12

17.11.1 Maple step by step solution 3241

Internal problem ID [2927]
Internal file name [OUTPUT/2419_Sunday_June_05_2022_03_08_51_AM_30665821/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x y^{\prime}-(x+2) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(-2-x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{x+2}{x^{2}}
\end{aligned}
$$

Table 432: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{x+2}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(-2-x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(-2-x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\sqrt{2} \\
& r_{2}=-\sqrt{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2 \sqrt{2}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\sqrt{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\sqrt{2}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)-2 a_{n}-a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}+2 n r+r^{2}-2} \tag{4}
\end{equation*}
$$

Which for the root $r=\sqrt{2}$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n(2 \sqrt{2}+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\sqrt{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{1}{r^{2}+2 r-1}
$$

Which for the root $r=\sqrt{2}$ becomes

$$
a_{1}=\frac{1}{1+2 \sqrt{2}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r-1}$	$\frac{1}{1+2 \sqrt{2}}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}
$$

Which for the root $r=\sqrt{2}$ becomes

$$
a_{2}=\frac{1}{20+12 \sqrt{2}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r-1}$	$\frac{1}{1+2 \sqrt{2}}$
a_{2}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}$	$\frac{1}{20+12 \sqrt{2}}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}
$$

Which for the root $r=\sqrt{2}$ becomes

$$
a_{3}=\frac{1}{228 \sqrt{2}+324}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r-1}$	$\frac{1}{1+2 \sqrt{2}}$
a_{2}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}$	$\frac{1}{20+12 \sqrt{2}}$
a_{3}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}$	$\frac{1}{228 \sqrt{2}+324}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}
$$

Which for the root $r=\sqrt{2}$ becomes

$$
a_{4}=\frac{1}{8832+6240 \sqrt{2}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r-1}$	$\frac{1}{1+2 \sqrt{2}}$
a_{2}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}$	$\frac{1}{20+12 \sqrt{2}}$
a_{3}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}$	$\frac{1}{228 \sqrt{2}+324}$
a_{4}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}$	$\frac{1}{8832+6240 \sqrt{2}}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}
$$

Which for the root $r=\sqrt{2}$ becomes

$$
a_{5}=\frac{1}{244320 \sqrt{2}+345600}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r-1}$	$\frac{1}{1+2 \sqrt{2}}$
a_{2}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}$	$\frac{1}{20+12 \sqrt{2}}$
a_{3}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}$	$\frac{1}{228 \sqrt{2}+324}$
a_{4}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}$	$\frac{1}{8832+6240 \sqrt{2}}$
a_{5}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}$	$\frac{1}{244320 \sqrt{2}+345600}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\sqrt{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\sqrt{2}}\left(1+\frac{x}{1+2 \sqrt{2}}+\frac{x^{2}}{20+12 \sqrt{2}}+\frac{x^{3}}{228 \sqrt{2}+324}+\frac{x^{4}}{8832+6240 \sqrt{2}}+\frac{x^{5}}{244320 \sqrt{2}+345600}+O(\right.
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n}(n+r)-2 b_{n}-b_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}}{n^{2}+2 n r+r^{2}-2} \tag{4}
\end{equation*}
$$

Which for the root $r=-\sqrt{2}$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}}{n(-2 \sqrt{2}+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\sqrt{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{1}{r^{2}+2 r-1}
$$

Which for the root $r=-\sqrt{2}$ becomes

$$
b_{1}=\frac{1}{1-2 \sqrt{2}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{r^{2}+2 r-1}$	$\frac{1}{1-2 \sqrt{2}}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}
$$

Which for the root $r=-\sqrt{2}$ becomes

$$
b_{2}=\frac{1}{20-12 \sqrt{2}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{r^{2}+2 r-1}$	$\frac{1}{1-2 \sqrt{2}}$
b_{2}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}$	$\frac{1}{20-12 \sqrt{2}}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}
$$

Which for the root $r=-\sqrt{2}$ becomes

$$
b_{3}=-\frac{1}{228 \sqrt{2}-324}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{r^{2}+2 r-1}$	$\frac{1}{1-2 \sqrt{2}}$
b_{2}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}$	$\frac{1}{20-12 \sqrt{2}}$
b_{3}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}$	$-\frac{1}{228 \sqrt{2}-324}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}
$$

Which for the root $r=-\sqrt{2}$ becomes

$$
b_{4}=\frac{1}{8832-6240 \sqrt{2}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{r^{2}+2 r-1}$	$\frac{1}{1-2 \sqrt{2}}$
b_{2}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}$	$\frac{1}{20-12 \sqrt{2}}$
b_{3}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}$	$-\frac{1}{228 \sqrt{2}-324}$
b_{4}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}$	$\frac{1}{8832-6240 \sqrt{2}}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}
$$

Which for the root $r=-\sqrt{2}$ becomes

$$
b_{5}=-\frac{1}{480(-1+2 \sqrt{2})(\sqrt{2}-1)(2 \sqrt{2}-3)(\sqrt{2}-2)(-5+2 \sqrt{2})}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{r^{2}+2 r-1}$	$\frac{1}{1-2 \sqrt{2}}$
b_{2}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}$	$\frac{1}{20-12 \sqrt{2}}$
b_{3}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}$	$-\frac{1}{228 \sqrt{2}-324}$
b_{4}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}$	$\frac{1}{8832-6240 \sqrt{2}}$
b_{5}	$\frac{1}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}$	$-\frac{1}{480(-1+2 \sqrt{2})(\sqrt{2}-1)(2 \sqrt{2}-3)(\sqrt{2}-2)(-5+2 \sqrt{2})}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\sqrt{2}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =x^{-\sqrt{2}}\left(1+\frac{x}{1-2 \sqrt{2}}+\frac{x^{2}}{20-12 \sqrt{2}}-\frac{x^{3}}{228 \sqrt{2}-324}+\frac{x^{4}}{8832-6240 \sqrt{2}}-\frac{}{480(-1+2 \sqrt{2})(\sqrt{2}-}\right.
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\sqrt{2}}\left(1+\frac{x}{1+2 \sqrt{2}}+\frac{x^{2}}{20+12 \sqrt{2}}+\frac{x^{3}}{228 \sqrt{2}+324}+\frac{x^{4}}{8832+6240 \sqrt{2}}\right. \\
& \left.\quad+\frac{x^{5}}{244320 \sqrt{2}+345600}+O\left(x^{6}\right)\right)
\end{aligned} \quad \begin{aligned}
+ & c_{2} x^{-\sqrt{2}}\left(1+\frac{x}{1-2 \sqrt{2}}+\frac{x^{2}}{20-12 \sqrt{2}}-\frac{x^{3}}{228 \sqrt{2}-324}+\frac{x^{4}}{8832-6240 \sqrt{2}}\right. \\
& \left.-\frac{x^{5}}{480(-1+2 \sqrt{2})(\sqrt{2}-1)(2 \sqrt{2}-3)(\sqrt{2}-2)(-5+2 \sqrt{2})}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
y=y_{h}
$$

$$
\begin{aligned}
& =c_{1} x^{\sqrt{2}}\left(1+\frac{x}{1+2 \sqrt{2}}+\frac{x^{2}}{20+12 \sqrt{2}}+\frac{x^{3}}{228 \sqrt{2}+324}+\frac{x^{4}}{8832+6240 \sqrt{2}}\right. \\
& \left.\quad+\frac{x^{5}}{244320 \sqrt{2}+345600}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{-\sqrt{2}}\left(1+\frac{x}{1-2 \sqrt{2}}+\frac{x^{2}}{20-12 \sqrt{2}}-\frac{x^{3}}{228 \sqrt{2}-324}+\frac{x^{4}}{8832-6240 \sqrt{2}}\right. \\
& \\
& \left.-\frac{x^{5}}{480(-1+2 \sqrt{2})(\sqrt{2}-1)(2 \sqrt{2}-3)(\sqrt{2}-2)(-5+2 \sqrt{2})}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{\sqrt{2}}\left(1+\frac{x}{1+2 \sqrt{2}}+\frac{x^{2}}{20+12 \sqrt{2}}+\frac{x^{3}}{228 \sqrt{2}+324}+\frac{x^{4}}{8832+6240 \sqrt{2}}\right. \\
& \left.+\frac{x^{5}}{244320 \sqrt{2}+345600}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{-\sqrt{2}}\left(1+\frac{x}{1-2 \sqrt{2}}+\frac{x^{2}}{20-12 \sqrt{2}}-\frac{x^{3}}{228 \sqrt{2}-324}+\frac{x^{4}}{8832-6240 \sqrt{2}}\right. \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\sqrt{2}}\left(1+\frac{x}{1+2 \sqrt{2}}+\frac{x^{2}}{20+12 \sqrt{2}}+\frac{x^{3}}{228 \sqrt{2}+324}+\frac{x^{4}}{8832+6240 \sqrt{2}}\right. \\
& \left.+\frac{x^{5}}{244320 \sqrt{2}+345600}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{-\sqrt{2}}\left(1+\frac{x}{1-2 \sqrt{2}}+\frac{x^{2}}{20-12 \sqrt{2}}-\frac{x^{3}}{228 \sqrt{2}-324}+\frac{x^{4}}{8832-6240 \sqrt{2}}\right. \\
& \left.-\frac{x^{5}}{480(-1+2 \sqrt{2})(\sqrt{2}-1)(2 \sqrt{2}-3)(\sqrt{2}-2)(-5+2 \sqrt{2})}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

17.11.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(-2-x) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{(x+2) y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{(x+2) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{x+2}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators
$x^{2} y^{\prime \prime}+x y^{\prime}+(-2-x) y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}\left(r^{2}-2\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}\left(k^{2}+2 k r+r^{2}-2\right)-a_{k-1}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r^{2}-2=0$
- Values of r that satisfy the indicial equation
$r \in\{\sqrt{2},-\sqrt{2}\}$
- Each term in the series must be 0, giving the recursion relation
$a_{k}\left(k^{2}+2 k r+r^{2}-2\right)-a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+1}\left((k+1)^{2}+2(k+1) r+r^{2}-2\right)-a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}}{k^{2}+2 k r+r^{2}+2 k+2 r-1}
$$

- Recursion relation for $r=\sqrt{2}$

$$
a_{k+1}=\frac{a_{k}}{k^{2}+2 k \sqrt{2}+1+2 k+2 \sqrt{2}}
$$

- \quad Solution for $r=\sqrt{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\sqrt{2}}, a_{k+1}=\frac{a_{k}}{k^{2}+2 k \sqrt{2}+1+2 k+2 \sqrt{2}}\right]
$$

- Recursion relation for $r=-\sqrt{2}$

$$
a_{k+1}=\frac{a_{k}}{k^{2}-2 k \sqrt{2}+1+2 k-2 \sqrt{2}}
$$

- \quad Solution for $r=-\sqrt{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\sqrt{2}}, a_{k+1}=\frac{a_{k}}{k^{2}-2 k \sqrt{2}+1+2 k-2 \sqrt{2}}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\sqrt{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\sqrt{2}}\right), a_{1+k}=\frac{a_{k}}{k^{2}+2 k \sqrt{2}+1+2 k+2 \sqrt{2}}, b_{1+k}=\frac{b_{k}}{k^{2}-2 k \sqrt{2}+1+2 k-2 \sqrt{2}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

 Solution by Maple
 Time used: 0.016 (sec). Leaf size: 321

```
Order:=6;
dsolve(x^2*diff(y(x), x$2)+x*diff (y (x),x) - (2+x)*y (x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{-\sqrt{2}}\left(1+\frac{1}{1-2 \sqrt{2}} x+\frac{1}{20-12 \sqrt{2}} x^{2}-\frac{1}{228 \sqrt{2}-324} x^{3}+\frac{1}{8832-6240 \sqrt{2}} x^{4}\right. \\
& \left.-\frac{1}{480} \frac{1}{(-1+2 \sqrt{2})(\sqrt{2}-1)(-3+2 \sqrt{2})(\sqrt{2}-2)(-5+2 \sqrt{2})} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
+ & c_{2} x^{\sqrt{2}}\left(1+\frac{1}{1+2 \sqrt{2}} x+\frac{1}{20+12 \sqrt{2}} x^{2}+\frac{1}{228 \sqrt{2}+324} x^{3}+\frac{1}{8832+6240 \sqrt{2}} x^{4}\right. \\
& \left.+\frac{1}{244320 \sqrt{2}+345600} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 843
AsymptoticDSolveValue $[x \wedge 2 * y$ ' $\quad[x]+x * y$ ' $[x]-(2+x) * y[x]==0, y[x],\{x, 0,5\}]$

$$
\begin{aligned}
& y(x) \\
& \rightarrow\left(\frac{x^{5}}{(-1+\sqrt{2}+\sqrt{2}(1+\sqrt{2}))(\sqrt{2}+(1+\sqrt{2})(2+\sqrt{2}))(1+\sqrt{2}+(2+\sqrt{2})(3+\sqrt{2}))(2+\sqrt{2}+(5}\right. \\
& +\frac{x^{4}}{(-1+\sqrt{2}+\sqrt{2}(1+\sqrt{2}))(\sqrt{2}+(1+\sqrt{2})(2+\sqrt{2}))(1+\sqrt{2}+(2+\sqrt{2})(3+\sqrt{2}))(2+\sqrt{2}+(} \\
& +\frac{x^{3}}{(-1+\sqrt{2}+\sqrt{2}(1+\sqrt{2}))(\sqrt{2}+(1+\sqrt{2})(2+\sqrt{2}))(1+\sqrt{2}+(2+\sqrt{2})(3+\sqrt{2}))} \\
& +\frac{x^{2}}{(-1+\sqrt{2}+\sqrt{2}(1+\sqrt{2}))(\sqrt{2}+(1+\sqrt{2})(2+\sqrt{2}))} \\
& \left.+\frac{x}{-1+\sqrt{2}+\sqrt{2}(1+\sqrt{2})}+1\right) c_{1} x^{\sqrt{2}} \\
& +\left(\frac{x^{5}}{(-1-\sqrt{2}-\sqrt{2}(1-\sqrt{2}))(-\sqrt{2}+(1-\sqrt{2})(2-\sqrt{2}))(1-\sqrt{2}+(2-\sqrt{2})(3-\sqrt{2}))(2-\sqrt{2}}\right. \\
& +\frac{x^{4}}{(-1-\sqrt{2}-\sqrt{2}(1-\sqrt{2}))(-\sqrt{2}+(1-\sqrt{2})(2-\sqrt{2}))(1-\sqrt{2}+(2-\sqrt{2})(3-\sqrt{2}))(2-\sqrt{2}+} \\
& +\frac{x^{3}}{(-1-\sqrt{2}-\sqrt{2}(1-\sqrt{2}))(-\sqrt{2}+(1-\sqrt{2})(2-\sqrt{2}))(1-\sqrt{2}+(2-\sqrt{2})(3-\sqrt{2}))} \\
& +\frac{x^{2}}{(-1-\sqrt{2}-\sqrt{2}(1-\sqrt{2}))(-\sqrt{2}+(1-\sqrt{2})(2-\sqrt{2}))} \\
& \left.+\frac{x}{-1-\sqrt{2}-\sqrt{2}(1-\sqrt{2})}+1\right) c_{2} x^{-\sqrt{2}}
\end{aligned}
$$

17.12 problem 13

17.12.1 Maple step by step solution 3253

Internal problem ID [2928]
Internal file name [OUTPUT/2420_Sunday_June_05_2022_03_08_55_AM_69503755/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
2 x y^{\prime \prime}+y^{\prime}-2 y x=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
2 x y^{\prime \prime}+y^{\prime}-2 y x=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{2 x} \\
& q(x)=-1
\end{aligned}
$$

Table 434: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{2 x}$	
singularity	type
$x=0$	"regular"

$q(x)=-1$	
singularity	type

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
2 x y^{\prime \prime}+y^{\prime}-2 y x=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives
$2\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}\right)=\sum_{n=2}^{\infty}\left(-2 a_{n-2} x^{n+r-1}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=2}^{\infty}\left(-2 a_{n-2} x^{n+r-1}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
2 x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
2 x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
$$

Or

$$
\left(2 x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
r x^{-1+r}(-1+2 r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
2 r^{2}-r=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
r x^{-1+r}(-1+2 r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{1}{2}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+a_{n}(n+r)-2 a_{n-2}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-2}}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-2}}{2 n^{2}+n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{2}{2 r^{2}+7 r+6}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=\frac{1}{5}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{2}{2 r^{2}+7 r+6}$	$\frac{1}{5}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{2}{2 r^{2}+7 r+6}$	$\frac{1}{5}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{4}{\left(2 r^{2}+7 r+6\right)\left(2 r^{2}+15 r+28\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{1}{90}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{2}{2 r^{2}+7 r+6}$	$\frac{1}{5}$
a_{3}	0	0
a_{4}	$\frac{4}{\left(2 r^{2}+7 r+6\right)\left(2 r^{2}+15 r+28\right)}$	$\frac{1}{90}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{2}{2 r^{2}+7 r+6}$	$\frac{1}{5}$
a_{3}	0	0
a_{4}	$\frac{4}{\left(2 r^{2}+7 r+6\right)\left(2 r^{2}+15 r+28\right)}$	$\frac{1}{90}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x^{2}}{5}+\frac{x^{4}}{90}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. $\mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
2 b_{n}(n+r)(n+r-1)+(n+r) b_{n}-2 b_{n-2}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{2 b_{n-2}}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
b_{n}=\frac{2 b_{n-2}}{n(2 n-1)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{2}{2 r^{2}+7 r+6}
$$

Which for the root $r=0$ becomes

$$
b_{2}=\frac{1}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{2}{2 r^{2}+7 r+6}$	$\frac{1}{3}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{2}{2 r^{2}+7 r+6}$	$\frac{1}{3}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{4}{\left(2 r^{2}+7 r+6\right)\left(2 r^{2}+15 r+28\right)}
$$

Which for the root $r=0$ becomes

$$
b_{4}=\frac{1}{42}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{2}{2 r^{2}+7 r+6}$	$\frac{1}{3}$
b_{3}	0	0
b_{4}	$\frac{4}{\left(2 r^{2}+7 r+6\right)\left(2 r^{2}+15 r+28\right)}$	$\frac{1}{42}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{2}{2 r^{2}+7 r+6}$	$\frac{1}{3}$
b_{3}	0	0
b_{4}	$\frac{4}{\left(2 r^{2}+7 r+6\right)\left(2 r^{2}+15 r+28\right)}$	$\frac{1}{42}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =1+\frac{x^{2}}{3}+\frac{x^{4}}{42}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sqrt{x}\left(1+\frac{x^{2}}{5}+\frac{x^{4}}{90}+O\left(x^{6}\right)\right)+c_{2}\left(1+\frac{x^{2}}{3}+\frac{x^{4}}{42}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} \sqrt{x}\left(1+\frac{x^{2}}{5}+\frac{x^{4}}{90}+O\left(x^{6}\right)\right)+c_{2}\left(1+\frac{x^{2}}{3}+\frac{x^{4}}{42}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x}\left(1+\frac{x^{2}}{5}+\frac{x^{4}}{90}+O\left(x^{6}\right)\right)+c_{2}\left(1+\frac{x^{2}}{3}+\frac{x^{4}}{42}+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{x}\left(1+\frac{x^{2}}{5}+\frac{x^{4}}{90}+O\left(x^{6}\right)\right)+c_{2}\left(1+\frac{x^{2}}{3}+\frac{x^{4}}{42}+O\left(x^{6}\right)\right)
$$

Verified OK.

17.12.1 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime} x+y^{\prime}-2 y x=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{2 x}+y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{2 x}-y=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{1}{2 x}, P_{3}(x)=-1\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{2}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
2 y^{\prime \prime} x+y^{\prime}-2 y x=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}
$$

- Shift index using $k->k-1$

$$
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}
$$

- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-1+2 r) x^{-1+r}+a_{1}(1+r)(1+2 r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+r+1)(2 k+1+2 r)-2 a_{k-1}\right) x^{k+r}\right)$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(-1+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0, \frac{1}{2}\right\}$
- Each term must be 0
$a_{1}(1+r)(1+2 r)=0$
- Each term in the series must be 0 , giving the recursion relation
$2\left(k+\frac{1}{2}+r\right)(k+r+1) a_{k+1}-2 a_{k-1}=0$
- \quad Shift index using $k->k+1$
$2\left(k+\frac{3}{2}+r\right)(k+2+r) a_{k+2}-2 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=\frac{2 a_{k}}{(2 k+3+2 r)(k+2+r)}$
- Recursion relation for $r=0$

$$
a_{k+2}=\frac{2 a_{k}}{(2 k+3)(k+2)}
$$

- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{2 a_{k}}{(2 k+3)(k+2)}, a_{1}=0\right]$
- Recursion relation for $r=\frac{1}{2}$

$$
a_{k+2}=\frac{2 a_{k}}{(2 k+4)\left(k+\frac{5}{2}\right)}
$$

- \quad Solution for $r=\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=\frac{2 a_{k}}{(2 k+4)\left(k+\frac{5}{2}\right)}, 3 a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{2+k}=\frac{2 a_{k}}{(2 k+3)(2+k)}, a_{1}=0, b_{2+k}=\frac{2 b_{k}}{(2 k+4)\left(k+\frac{5}{2}\right)}, 3 b_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 32

```
Order:=6;
dsolve(2*x*diff (y (x),x$2)+diff (y (x),x)-2*x*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=c_{1} \sqrt{x}\left(1+\frac{1}{5} x^{2}+\frac{1}{90} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(1+\frac{1}{3} x^{2}+\frac{1}{42} x^{4}+\mathrm{O}\left(x^{6}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 47
AsymptoticDSolveValue[2*x*y' $[\mathrm{x}]+\mathrm{y}$ ' $[\mathrm{x}]-2 * x * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1} \sqrt{x}\left(\frac{x^{4}}{90}+\frac{x^{2}}{5}+1\right)+c_{2}\left(\frac{x^{4}}{42}+\frac{x^{2}}{3}+1\right)
$$

17.13 problem 14

17.13.1 Maple step by step solution 3267

Internal problem ID [2929]
Internal file name [OUTPUT/2421_Sunday_June_05_2022_03_08_58_AM_82109773/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
3 x^{2} y^{\prime \prime}-x(x+8) y^{\prime}+6 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
3 x^{2} y^{\prime \prime}+\left(-x^{2}-8 x\right) y^{\prime}+6 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{x+8}{3 x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
$$

Table 436: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x+8}{3 x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{2}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
3 x^{2} y^{\prime \prime}+\left(-x^{2}-8 x\right) y^{\prime}+6 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 3 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-x^{2}-8 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+6\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-8 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 6 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right)=\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\sum_{n=0}^{\infty}\left(-8 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 6 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
3 x^{n+r} a_{n}(n+r)(n+r-1)-8 x^{n+r} a_{n}(n+r)+6 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
3 x^{r} a_{0} r(-1+r)-8 x^{r} a_{0} r+6 a_{0} x^{r}=0
$$

Or

$$
\left(3 x^{r} r(-1+r)-8 x^{r} r+6 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(3 r^{2}-11 r+6\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
3 r^{2}-11 r+6=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=3 \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(3 r^{2}-11 r+6\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{7}{3}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+3} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{2}{3}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
3 a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)-8 a_{n}(n+r)+6 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r-1)}{3 n^{2}+6 n r+3 r^{2}-11 n-11 r+6} \tag{4}
\end{equation*}
$$

Which for the root $r=3$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+2)}{n(3 n+7)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=3$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{r}{3 r^{2}-5 r-2}
$$

Which for the root $r=3$ becomes

$$
a_{1}=\frac{3}{10}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{3 r^{2}-5 r-2}$	$\frac{3}{10}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{r(1+r)}{9 r^{4}-12 r^{3}-23 r^{2}+18 r+8}
$$

Which for the root $r=3$ becomes

$$
a_{2}=\frac{3}{65}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{3 r^{2}-5 r-2}$	$\frac{3}{10}$
a_{2}	$\frac{r(1+r)}{9 r^{4}-12 r^{3}-23 r^{2}+18 r+8}$	$\frac{3}{65}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{(1+r)(2+r)}{27 r^{5}+27 r^{4}-153 r^{3}-107 r^{2}+150 r+56}
$$

Which for the root $r=3$ becomes

$$
a_{3}=\frac{1}{208}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{3 r^{2}-5 r-2}$	$\frac{3}{10}$
a_{2}	$\frac{r(1+r)}{9 r^{4}-12 r^{3}-23 r^{2}+18 r+8}$	$\frac{3}{65}$
a_{3}	$\frac{(1+r)(2+r)}{27 r^{5}+27 r^{4}-153 r^{3}-107 r^{2}+150 r+56}$	$\frac{1}{208}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{(2+r)(3+r)}{81 r^{6}+351 r^{5}-189 r^{4}-1851 r^{3}-620 r^{2}+1668 r+560}
$$

Which for the root $r=3$ becomes

$$
a_{4}=\frac{3}{7904}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{3 r^{2}-5 r-2}$	$\frac{3}{10}$
a_{2}	$\frac{r(1+r)}{9 r^{4}-12 r^{3}-23 r^{2}+18 r+8}$	$\frac{3}{65}$
a_{3}	$\frac{(1+r)(2+r)}{27 r^{5}+27 r^{4}-153 r^{3}-107 r^{2}+150 r+56}$	$\frac{1}{208}$
a_{4}	$\frac{(2+r)(3+r)}{81 r^{6}+351 r^{5}-189 r^{4}-1851 r^{3}-620 r^{2}+1668 r+560}$	$\frac{3}{7904}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{(4+r)(3+r)}{243 r^{7}+2106 r^{6}+3996 r^{5}-8010 r^{4}-25923 r^{3}-3056 r^{2}+23364 r+7280}
$$

Which for the root $r=3$ becomes

$$
a_{5}=\frac{21}{869440}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{3 r^{2}-5 r-2}$	$\frac{3}{10}$
a_{2}	$\frac{r(1+r)}{9 r^{4}-12 r^{3}-23 r^{2}+18 r+8}$	$\frac{3}{65}$
a_{3}	$\frac{(1+r)(2+r)}{27 r^{5}+27 r^{4}-153 r^{3}-107 r^{2}+150 r+56}$	$\frac{1}{208}$
a_{4}	$\frac{(2+r)(3+r)}{81 r^{6}+351 r^{5}-189 r^{4}-1851 r^{3}-620 r^{2}+1668 r+560}$	$\frac{3}{7904}$
a_{5}	$\frac{(4+r)(3+r)}{243 r^{7}+2106 r^{6}+3996 r^{5}-8010 r^{4}-25923 r^{3}-3056 r^{2}+23364 r+7280}$	$\frac{21}{869440}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{3}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{3}\left(1+\frac{3 x}{10}+\frac{3 x^{2}}{65}+\frac{x^{3}}{208}+\frac{3 x^{4}}{7904}+\frac{21 x^{5}}{869440}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. $\mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
3 b_{n}(n+r)(n+r-1)-b_{n-1}(n+r-1)-8 b_{n}(n+r)+6 b_{n}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}(n+r-1)}{3 n^{2}+6 n r+3 r^{2}-11 n-11 r+6} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
\begin{equation*}
b_{n}=\frac{3 n b_{n-1}-b_{n-1}}{9 n^{2}-21 n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=\frac{2}{3}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{r}{3 r^{2}-5 r-2}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
b_{1}=-\frac{1}{6}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{3 r^{2}-5 r-2}$	$-\frac{1}{6}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{r(1+r)}{9 r^{4}-12 r^{3}-23 r^{2}+18 r+8}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
b_{2}=\frac{5}{36}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{3 r^{2}-5 r-2}$	$-\frac{1}{6}$
b_{2}	$\frac{r(1+r)}{9 r^{4}-12 r^{3}-23 r^{2}+18 r+8}$	$\frac{5}{36}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{(1+r)(2+r)}{27 r^{5}+27 r^{4}-153 r^{3}-107 r^{2}+150 r+56}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
b_{3}=\frac{5}{81}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{3 r^{2}-5 r-2}$	$-\frac{1}{6}$
b_{2}	$\frac{r(1+r)}{9 r^{4}-12 r^{3}-23 r^{2}+18 r+8}$	$\frac{5}{36}$
b_{3}	$\frac{(1+r)(2+r)}{27 r^{5}+27 r^{4}-153 r^{3}-107 r^{2}+150 r+56}$	$\frac{5}{81}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{(2+r)(3+r)}{81 r^{6}+351 r^{5}-189 r^{4}-1851 r^{3}-620 r^{2}+1668 r+560}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
b_{4}=\frac{11}{972}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{3 r^{2}-5 r-2}$	$-\frac{1}{6}$
b_{2}	$\frac{r(1+r)}{9 r^{4}-12 r^{3}-23 r^{2}+18 r+8}$	$\frac{5}{36}$
b_{3}	$\frac{(1+r)(2+r)}{27 r^{5}+27 r^{4}-153 r^{3}-107 r^{2}+150 r+56}$	$\frac{5}{81}$
b_{4}	$\frac{(2+r)(3+r)}{81 r^{6}+351 r^{5}-189 r^{4}-1851 r^{3}-620 r^{2}+1668 r+560}$	$\frac{11}{972}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{(4+r)(3+r)}{243 r^{7}+2106 r^{6}+3996 r^{5}-8010 r^{4}-25923 r^{3}-3056 r^{2}+23364 r+7280}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
b_{5}=\frac{77}{58320}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{3 r^{2}-5 r-2}$	$-\frac{1}{6}$
b_{2}	$\frac{r(1+r)}{9 r^{4}-12 r^{3}-23 r^{2}+18 r+8}$	$\frac{5}{36}$
b_{3}	$\frac{(1+r)(2+r)}{27 r^{5}+27 r^{4}-153 r^{3}-107 r^{2}+150 r+56}(2+r)(3+r)$	$\frac{5}{81}$
b_{4}	$\frac{81 r^{6}+351 r^{5}-189 r^{4}-1851 r^{3}-620 r^{2}+1668 r+560}{(4+r)(3+r)}$	$\frac{11}{972}$
b_{5}	$\frac{243 r^{7}+2106 r^{6}+3996 r^{5}-8010 r^{4}-25923 r^{3}-3056 r^{2}+23364 r+7280}{}$	$\frac{77}{58320}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{3}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =x^{\frac{2}{3}}\left(1-\frac{x}{6}+\frac{5 x^{2}}{36}+\frac{5 x^{3}}{81}+\frac{11 x^{4}}{972}+\frac{77 x^{5}}{58320}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{3}\left(1+\frac{3 x}{10}+\frac{3 x^{2}}{65}+\frac{x^{3}}{208}+\frac{3 x^{4}}{7904}+\frac{21 x^{5}}{869440}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{\frac{2}{3}}\left(1-\frac{x}{6}+\frac{5 x^{2}}{36}+\frac{5 x^{3}}{81}+\frac{11 x^{4}}{972}+\frac{77 x^{5}}{58320}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{3}\left(1+\frac{3 x}{10}+\frac{3 x^{2}}{65}+\frac{x^{3}}{208}+\frac{3 x^{4}}{7904}+\frac{21 x^{5}}{869440}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{\frac{2}{3}}\left(1-\frac{x}{6}+\frac{5 x^{2}}{36}+\frac{5 x^{3}}{81}+\frac{11 x^{4}}{972}+\frac{77 x^{5}}{58320}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{3}\left(1+\frac{3 x}{10}+\frac{3 x^{2}}{65}+\frac{x^{3}}{208}+\frac{3 x^{4}}{7904}+\frac{21 x^{5}}{869440}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2} x^{\frac{2}{3}}\left(1-\frac{x}{6}+\frac{5 x^{2}}{36}+\frac{5 x^{3}}{81}+\frac{11 x^{4}}{972}+\frac{77 x^{5}}{58320}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{3}\left(1+\frac{3 x}{10}+\frac{3 x^{2}}{65}+\frac{x^{3}}{208}+\frac{3 x^{4}}{7904}+\frac{21 x^{5}}{869440}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{\frac{2}{3}}\left(1-\frac{x}{6}+\frac{5 x^{2}}{36}+\frac{5 x^{3}}{81}+\frac{11 x^{4}}{972}+\frac{77 x^{5}}{58320}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

17.13.1 Maple step by step solution

Let's solve
$3 x^{2} y^{\prime \prime}+\left(-x^{2}-8 x\right) y^{\prime}+6 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y}{x^{2}}+\frac{(x+8) y^{\prime}}{3 x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(x+8) y^{\prime}}{3 x}+\frac{2 y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{x+8}{3 x}, P_{3}(x)=\frac{2}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-\frac{8}{3}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=2$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$3 x^{2} y^{\prime \prime}-x(x+8) y^{\prime}+6 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(-2+3 r)(-3+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(3 k+3 r-2)(k+r-3)-a_{k-1}(k+r-1)\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
(-2+3 r)(-3+r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\left\{3, \frac{2}{3}\right\}
$$

- Each term in the series must be 0 , giving the recursion relation
$3\left(k+r-\frac{2}{3}\right)(k+r-3) a_{k}-a_{k-1}(k+r-1)=0$
- \quad Shift index using $k->k+1$
$3\left(k+\frac{1}{3}+r\right)(k-2+r) a_{k+1}-a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}(k+r)}{(3 k+1+3 r)(k-2+r)}
$$

- \quad Recursion relation for $r=3$

$$
a_{k+1}=\frac{a_{k}(k+3)}{(3 k+10)(k+1)}
$$

- \quad Solution for $r=3$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+3}, a_{k+1}=\frac{a_{k}(k+3)}{(3 k+10)(k+1)}\right]
$$

- Recursion relation for $r=\frac{2}{3}$
$a_{k+1}=\frac{a_{k}\left(k+\frac{2}{3}\right)}{(3 k+3)\left(k-\frac{4}{3}\right)}$
- \quad Solution for $r=\frac{2}{3}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{2}{3}}, a_{k+1}=\frac{a_{k}\left(k+\frac{2}{3}\right)}{(3 k+3)\left(k-\frac{4}{3}\right)}\right]$
- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+3}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{2}{3}}\right), a_{1+k}=\frac{a_{k}(k+3)}{(3 k+10)(1+k)}, b_{1+k}=\frac{b_{k}\left(k+\frac{2}{3}\right)}{(3 k+3)\left(k-\frac{4}{3}\right)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Kummer successful
    <- special function solution successful
    Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    -> Trying to convert hypergeometric functions to elementary form...
    <- elementary form is not straightforward to achieve - returning special function solu
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 47

```
Order:=6;
dsolve(3*x^2*diff (y (x),x$2)-x*(x+8)*diff (y (x),x)+6*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{\frac{2}{3}}\left(1-\frac{1}{6} x+\frac{5}{36} x^{2}+\frac{5}{81} x^{3}+\frac{11}{972} x^{4}+\frac{77}{58320} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x^{3}\left(1+\frac{3}{10} x+\frac{3}{65} x^{2}+\frac{1}{208} x^{3}+\frac{3}{7904} x^{4}+\frac{21}{869440} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 88
AsymptoticDSolveValue [3*x^2*y' ' $[\mathrm{x}]-\mathrm{x} *(\mathrm{x}+8) * \mathrm{y}$ ' $[\mathrm{x}]+6 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{21 x^{5}}{869440}+\frac{3 x^{4}}{7904}+\frac{x^{3}}{208}+\frac{3 x^{2}}{65}+\frac{3 x}{10}+1\right) x^{3} \\
& +c_{2}\left(\frac{77 x^{5}}{58320}+\frac{11 x^{4}}{972}+\frac{5 x^{3}}{81}+\frac{5 x^{2}}{36}-\frac{x}{6}+1\right) x^{2 / 3}
\end{aligned}
$$

17.14 problem 15

17.14.1 Maple step by step solution 3280

Internal problem ID [2930]
Internal file name [OUTPUT/2422_Sunday_June_05_2022_03_09_02_AM_8091972/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 15 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
2 x^{2} y^{\prime \prime}-x(1+2 x) y^{\prime}+2(-1+4 x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
2 x^{2} y^{\prime \prime}+\left(-2 x^{2}-x\right) y^{\prime}+(8 x-2) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1+2 x}{2 x} \\
& q(x)=\frac{-1+4 x}{x^{2}}
\end{aligned}
$$

Table 438: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{1+2 x}{2 x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{-1+4 x}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
2 x^{2} y^{\prime \prime}+\left(-2 x^{2}-x\right) y^{\prime}+(8 x-2) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-2 x^{2}-x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(8 x-2)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 8 x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty} 8 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 8 a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=1}^{\infty} 8 a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
2 x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
2 x^{r} a_{0} r(-1+r)-x^{r} a_{0} r-2 a_{0} x^{r}=0
$$

Or

$$
\left(2 x^{r} r(-1+r)-x^{r} r-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(2 r^{2}-3 r-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
2 r^{2}-3 r-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(2 r^{2}-3 r-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{5}{2}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-2 a_{n-1}(n+r-1)-a_{n}(n+r)+8 a_{n-1}-2 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}(n+r-5)}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}(n-3)}{n(2 n+5)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{-8+2 r}{2 r^{2}+r-3}
$$

Which for the root $r=2$ becomes

$$
a_{1}=-\frac{4}{7}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-8+2 r}{2 r^{2}+r-3}$	$-\frac{4}{7}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4 r^{2}-28 r+48}{4 r^{4}+12 r^{3}-r^{2}-15 r}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{4}{63}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-8+2 r}{2 r^{2}+r-3}$	$-\frac{4}{7}$
a_{2}	$\frac{4 r^{2}-28 r+48}{4 r^{4}+12 r^{3}-r^{2}-15 r}$	$\frac{4}{63}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{8(-3+r)(-4+r)(-2+r)}{8 r^{6}+60 r^{5}+134 r^{4}+45 r^{3}-142 r^{2}-105 r}
$$

Which for the root $r=2$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-8+2 r}{2 r^{2}+r-3}$	$-\frac{4}{7}$
a_{2}	$\frac{4 r^{2}-28 r+48}{4 r^{4}+12 r^{3}-r^{2}-15 r}$	$\frac{4}{63}$
a_{3}	$\frac{8(-3+r)(-4+r)(-2+r)}{8 r^{6}+60 r^{5}+134 r^{4}+45 r^{3}-142 r^{2}-105 r}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16(-3+r)(-4+r)(-2+r)}{\left(8 r^{4}+68 r^{3}+202 r^{2}+247 r+105\right) r\left(2 r^{2}+13 r+18\right)}
$$

Which for the root $r=2$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-8+2 r}{2 r^{2}+r-3}$	$-\frac{4}{7}$
a_{2}	$\frac{4 r^{2}-28 r+48}{4 r^{4}+12 r^{3}-r^{2}-15 r}$	$\frac{4}{63}$
a_{3}	$\frac{8(-3+r)(-4+r)(-2+r)}{8 r^{6}+60 r^{5}+134 r^{4}+45 r^{3}-142 r^{2}-105 r}$	0
a_{4}	$\frac{16(-3+r)(-4+r)(-2+r)}{\left(8 r^{4}+68 r^{3}+202 r^{2}+247 r+105\right) r\left(2 r^{2}+13 r+18\right)}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{32(-3+r)(-4+r)(-2+r)}{\left(8 r^{4}+68 r^{3}+202 r^{2}+247 r+105\right)\left(2 r^{2}+13 r+18\right)\left(2 r^{2}+17 r+33\right)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-8+2 r}{2 r^{2}+r-3}$	$-\frac{4}{7}$
a_{2}	$\frac{4 r^{2}-28 r+48}{4 r^{4}+12 r^{3}-r^{2}-15 r}$	$\frac{4}{63}$
a_{3}	$\frac{8(-3+r)(-4+r)(-2+r)}{8 r^{6}+60 r^{5}+134 r^{4}+45 r^{3}-142 r^{2}-105 r}$	0
a_{4}	$\frac{16(-3+r)(-4+r)(-2+r)}{\left(8 r^{4}+68 r^{3}+202 r^{2}+247 r+105\right) r\left(2 r^{2}+13 r+18\right)}$	
a_{5}	$\frac{32(-3+r)(-4+r)(-2+r)}{\left(8 r^{4}+68 r^{3}+202 r^{2}+247 r+105\right)\left(2 r^{2}+13 r+18\right)\left(2 r^{2}+17 r+33\right)}$	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1-\frac{4 x}{7}+\frac{4 x^{2}}{63}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. $\mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-2 b_{n-1}(n+r-1)-b_{n}(n+r)+8 b_{n-1}-2 b_{n}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{2 b_{n-1}(n+r-5)}{2 n^{2}+4 n r+2 r^{2}-3 n-3 r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}(2 n-11)}{n(2 n-5)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{-8+2 r}{2 r^{2}+r-3}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{1}=3
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-8+2 r}{2 r^{2}+r-3}$	3

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{4 r^{2}-28 r+48}{4 r^{4}+12 r^{3}-r^{2}-15 r}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{2}=\frac{21}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-8+2 r}{2 r^{2}+r-3}$	3
b_{2}	$\frac{4 r^{2}-28 r+48}{4 r^{4}+12 r^{3}-r^{2}-15 r}$	$\frac{21}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{8(-3+r)(-4+r)(-2+r)}{8 r^{6}+60 r^{5}+134 r^{4}+45 r^{3}-142 r^{2}-105 r}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{3}=-\frac{35}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-8+2 r}{2 r^{2}+r-3}$	3
b_{2}	$\frac{4 r^{2}-28 r+48}{4 r^{4}+12 r^{3}-r^{2}-15 r}$	$\frac{21}{2}$
b_{3}	$\frac{8(-3+r)(-4+r)(-2+r)}{8 r^{6}+60 r^{5}+134 r^{4}+45 r^{3}-142 r^{2}-105 r}$	$-\frac{35}{2}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{16(-3+r)(-4+r)(-2+r)}{\left(8 r^{4}+68 r^{3}+202 r^{2}+247 r+105\right) r\left(2 r^{2}+13 r+18\right)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{4}=\frac{35}{8}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-8+2 r}{2 r^{2}+r-3}$	3
b_{2}	$\frac{4 r^{2}-28 r+48}{4 r^{4}+12 r^{3}-r^{2}-15 r}$	$\frac{21}{2}$
b_{3}	$\frac{8(-3+r)(-4+r)(-2+r)}{8 r^{6}+60 r^{5}+134 r^{4}+45 r^{3}-142 r^{2}-105 r}$	$-\frac{35}{2}$
b_{4}	$\frac{16(-3+r)(-4+r)(-2+r)}{\left(8 r^{4}+68 r^{3}+202 r^{2}+247 r+105\right) r\left(2 r^{2}+13 r+18\right)}$	$\frac{35}{8}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{32(-3+r)(-4+r)(-2+r)}{\left(8 r^{4}+68 r^{3}+202 r^{2}+247 r+105\right)\left(2 r^{2}+13 r+18\right)\left(2 r^{2}+17 r+33\right)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{5}=-\frac{7}{40}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-8+2 r}{2 r^{2}+r-3}$	3
b_{2}	$\frac{4 r^{2}-28 r+48}{4 r^{4}+12 r^{3}-r^{2}-15 r}$	$\frac{21}{2}$
b_{3}	$\frac{8(-3+r)(-4+r)(-2+r)}{8 r^{6}+60 r^{5}+134 r^{4}+45 r^{3}-142 r^{2}-105 r}$	
b_{4}	$\frac{16(-3+r)(-4+r)(-2+r)}{\left(8 r^{4}+68 r^{3}+202 r^{2}+247 r+105\right) r\left(2 r^{2}+13 r+18\right)}$	$-\frac{35}{2}$
b_{5}	$\frac{32(-3+r)(-4+r)(-2+r)}{\left(8 r^{4}+68 r^{3}+202 r^{2}+247 r+105\right)\left(2 r^{2}+13 r+18\right)\left(2 r^{2}+17 r+33\right)}$	$-\frac{7}{40}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+3 x+\frac{21 x^{2}}{2}-\frac{35 x^{3}}{2}+\frac{35 x^{4}}{8}-\frac{7 x^{5}}{40}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}\left(1-\frac{4 x}{7}+\frac{4 x^{2}}{63}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+3 x+\frac{21 x^{2}}{2}-\frac{35 x^{3}}{2}+\frac{35 x^{4}}{8}-\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& =c_{1} x^{2}\left(1-\frac{4 x}{7}+\frac{4 x^{2}}{63}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+3 x+\frac{21 x^{2}}{2}-\frac{35 x^{3}}{2}+\frac{35 x^{4}}{8}-\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=c_{1} x^{2}\left(1-\frac{4 x}{7}+\frac{4 x^{2}}{63}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+3 x+\frac{21 x^{2}}{2}-\frac{35 x^{3}}{2}+\frac{35 x^{4}}{8}-\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right)}{\sqrt{x}}(1)
$$

Verification of solutions

$$
y=c_{1} x^{2}\left(1-\frac{4 x}{7}+\frac{4 x^{2}}{63}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+3 x+\frac{21 x^{2}}{2}-\frac{35 x^{3}}{2}+\frac{35 x^{4}}{8}-\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right)}{\sqrt{x}}
$$

Verified OK.

17.14.1 Maple step by step solution

Let's solve

$$
2 x^{2} y^{\prime \prime}+\left(-2 x^{2}-x\right) y^{\prime}+(8 x-2) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{(-1+4 x) y}{x^{2}}+\frac{(1+2 x) y^{\prime}}{2 x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(1+2 x) y^{\prime}}{2 x}+\frac{(-1+4 x) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{1+2 x}{2 x}, P_{3}(x)=\frac{-1+4 x}{x^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-\frac{1}{2}
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-1$
- $\quad x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
2 x^{2} y^{\prime \prime}-x(1+2 x) y^{\prime}+(8 x-2) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+2 r)(-2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(2 k+2 r+1)(k+r-2)-2 a_{k-1}(k-5+r)\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{2,-\frac{1}{2}\right\}$
- Each term in the series must be 0 , giving the recursion relation
$2\left(k+\frac{1}{2}+r\right)(k+r-2) a_{k}-2 a_{k-1}(k-5+r)=0$
- \quad Shift index using $k->k+1$
$2\left(k+\frac{3}{2}+r\right)(k+r-1) a_{k+1}-2 a_{k}(k+r-4)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{2 a_{k}(k+r-4)}{(2 k+3+2 r)(k+r-1)}$
- Recursion relation for $r=2$; series terminates at $k=2$
$a_{k+1}=\frac{2 a_{k}(k-2)}{(2 k+7)(k+1)}$
- Apply recursion relation for $k=0$
$a_{1}=-\frac{4 a_{0}}{7}$
- Apply recursion relation for $k=1$
$a_{2}=-\frac{a_{1}}{9}$
- Express in terms of a_{0}
$a_{2}=\frac{4 a_{0}}{63}$
- Terminating series solution of the ODE for $r=2$. Use reduction of order to find the second li $y=a_{0} \cdot\left(1-\frac{4}{7} x+\frac{4}{63} x^{2}\right)$
- Recursion relation for $r=-\frac{1}{2}$
$a_{k+1}=\frac{2 a_{k}\left(k-\frac{9}{2}\right)}{(2 k+2)\left(k-\frac{3}{2}\right)}$
- \quad Solution for $r=-\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+1}=\frac{2 a_{k}\left(k-\frac{9}{2}\right)}{(2 k+2)\left(k-\frac{3}{2}\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=a_{0} \cdot\left(1-\frac{4}{7} x+\frac{4}{63} x^{2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\frac{1}{2}}\right), b_{1+k}=\frac{2 b_{k}\left(k-\frac{9}{2}\right)}{(2+2 k)\left(k-\frac{3}{2}\right)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        <- Kummer successful
    <- special function solution successful
        Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
        -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        -> Trying to convert hypergeometric functions to elementary form...
        <- elementary form for at least one hypergeometric solution is achieved - returning wi
    <- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 41

```
Order:=6;
dsolve(2*x^2*diff(y(x),x$2)-x*(1+2*x)*diff (y(x),x)+2*(4*x-1)*y(x)=0,y(x),typ=='series' , x=0);
```

$$
\begin{aligned}
y(x)= & \frac{c_{1}\left(1+3 x+\frac{21}{2} x^{2}-\frac{35}{2} x^{3}+\frac{35}{8} x^{4}-\frac{7}{40} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{\sqrt{x}} \\
& +c_{2} x^{2}\left(1-\frac{4}{7} x+\frac{4}{63} x^{2}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 65
AsymptoticDSolveValue[2*x^2*y' $\quad[\mathrm{x}]-\mathrm{x} *(1+2 * \mathrm{x}) * \mathrm{y}$ ' $[\mathrm{x}]+2 *(4 * \mathrm{x}-1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(\frac{4 x^{2}}{63}-\frac{4 x}{7}+1\right) x^{2}+\frac{c_{2}\left(-\frac{7 x^{5}}{40}+\frac{35 x^{4}}{8}-\frac{35 x^{3}}{2}+\frac{21 x^{2}}{2}+3 x+1\right)}{\sqrt{x}}
$$

17.15 problem 16

17.15.1 Maple step by step solution 3296

Internal problem ID [2931]
Internal file name [OUTPUT/2423_Sunday_June_05_2022_03_09_07_AM_220765/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x(1-x) y^{\prime}-(x+5) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}+(-x-5) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =-\frac{x-1}{x} \\
q(x) & =-\frac{x+5}{x^{2}}
\end{aligned}
$$

Table 440: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x-1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{x+5}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}+(-x-5) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-x^{2}+x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(-x-5)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-5 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-5 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-5 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-5 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-5 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-5\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-5=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\sqrt{5} \\
& r_{2}=-\sqrt{5}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-5\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2 \sqrt{5}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\sqrt{5}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\sqrt{5}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+a_{n}(n+r)-a_{n-1}-5 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r)}{n^{2}+2 n r+r^{2}-5} \tag{4}
\end{equation*}
$$

Which for the root $r=\sqrt{5}$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+\sqrt{5})}{n(2 \sqrt{5}+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\sqrt{5}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{1+r}{r^{2}+2 r-4}
$$

Which for the root $r=\sqrt{5}$ becomes

$$
a_{1}=\frac{\sqrt{5}+1}{1+2 \sqrt{5}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1+r}{r^{2}+2 r-4}$	$\frac{\sqrt{5}+1}{1+2 \sqrt{5}}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{(1+r)(2+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)}
$$

Which for the root $r=\sqrt{5}$ becomes

$$
a_{2}=\frac{2+\sqrt{5}}{4+8 \sqrt{5}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1+r}{r^{2}+2 r-4}$	$\frac{\sqrt{5}+1}{1+2 \sqrt{5}}$
a_{2}	$\frac{(1+r)(2+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)}$	$\frac{2+\sqrt{5}}{4+8 \sqrt{5}}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{(1+r)(2+r)(3+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)}
$$

Which for the root $r=\sqrt{5}$ becomes

$$
a_{3}=\frac{(2+\sqrt{5})(3+\sqrt{5})}{276+96 \sqrt{5}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1+r}{r^{2}+2 r-4}$	$\frac{\sqrt{5}+1}{1+2 \sqrt{5}}$
a_{2}	$\frac{(1+r)(2+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)}$	$\frac{2+\sqrt{5}}{4+8 \sqrt{5}}$
a_{3}	$\frac{(1+r)(2+r)(3+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)}$	$\frac{(2+\sqrt{5})(3+\sqrt{5})}{276+96 \sqrt{5}}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{(1+r)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)\left(r^{2}+8 r+11\right)}
$$

Which for the root $r=\sqrt{5}$ becomes

$$
a_{4}=\frac{(4+\sqrt{5})(3+\sqrt{5})}{2208+768 \sqrt{5}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1+r}{r^{2}+2 r-4}$	$\frac{\sqrt{5}+1}{1+2 \sqrt{5}}$
a_{2}	$\frac{(1+r)(2+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)}$	$\frac{2+\sqrt{5}}{4+8 \sqrt{5}}$
a_{3}	$\frac{(1+r)(2+r)(3+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)}$	$\frac{(2+\sqrt{5})(3+\sqrt{5})}{276+96 \sqrt{5}}$
a_{4}	$\frac{(1+r)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)\left(r^{2}+8 r+11\right)}$	$\frac{(4+\sqrt{5})(3+\sqrt{5})}{2208+768 \sqrt{5}}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{(1+r)(2+r)(3+r)(4+r)(5+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)\left(r^{2}+8 r+11\right)\left(r^{2}+10 r+20\right)}
$$

Which for the root $r=\sqrt{5}$ becomes

$$
a_{5}=\frac{(3+\sqrt{5})(4+\sqrt{5})(5+\sqrt{5})}{41280 \sqrt{5}+93600}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1+r}{r^{2}+2 r-4}$	$\frac{\sqrt{5}+1}{1+2 \sqrt{5}}$
a_{2}	$\frac{(1+r)(2+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)}$	$\frac{2+\sqrt{5}}{4+8 \sqrt{5}}$
a_{3}	$\frac{(1+r)(2+r)(3+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)}$	$\frac{(2+\sqrt{5})(3+\sqrt{5})}{276+96 \sqrt{5}}$
a_{4}	$\frac{(1+r)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)\left(r^{2}+8 r+11\right)}$	$\frac{(4+\sqrt{5})(3+\sqrt{5})}{2208+768 \sqrt{5}}$
a_{5}	$\frac{(1+r)(2+r)(3+r)(4+r)(5+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)\left(r^{2}+8 r+11\right)\left(r^{2}+10 r+20\right)}$	$\frac{(3+\sqrt{5})(4+\sqrt{5})(5+\sqrt{5})}{41280 \sqrt{5}+93600}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\sqrt{5}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\sqrt{5}}\left(1+\frac{(\sqrt{5}+1) x}{1+2 \sqrt{5}}+\frac{(2+\sqrt{5}) x^{2}}{4+8 \sqrt{5}}+\frac{(2+\sqrt{5})(3+\sqrt{5}) x^{3}}{276+96 \sqrt{5}}+\frac{(4+\sqrt{5})(3+\sqrt{5}) x^{4}}{2208+768 \sqrt{5}}+\frac{(3+v}{}\right.
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)-b_{n-1}(n+r-1)+b_{n}(n+r)-b_{n-1}-5 b_{n}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}(n+r)}{n^{2}+2 n r+r^{2}-5} \tag{4}
\end{equation*}
$$

Which for the root $r=-\sqrt{5}$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}(-n+\sqrt{5})}{n(2 \sqrt{5}-n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\sqrt{5}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{1+r}{r^{2}+2 r-4}
$$

Which for the root $r=-\sqrt{5}$ becomes

$$
b_{1}=\frac{\sqrt{5}-1}{-1+2 \sqrt{5}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1+r}{r^{2}+2 r-4}$	$\frac{\sqrt{5}-1}{-1+2 \sqrt{5}}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{(1+r)(2+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)}
$$

Which for the root $r=-\sqrt{5}$ becomes

$$
b_{2}=\frac{-2+\sqrt{5}}{-4+8 \sqrt{5}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1+r}{r^{2}+2 r-4}$	$\frac{\sqrt{5}-1}{-1+2 \sqrt{5}}$
b_{2}	$\frac{(1+r)(2+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)}$	$\frac{-2+\sqrt{5}}{-4+8 \sqrt{5}}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{(1+r)(2+r)(3+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)}
$$

Which for the root $r=-\sqrt{5}$ becomes

$$
b_{3}=\frac{(\sqrt{5}-3)(-2+\sqrt{5})}{276-96 \sqrt{5}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1+r}{r^{2}+2 r-4}$	$\frac{\sqrt{5}-1}{-1+2 \sqrt{5}}$
b_{2}	$\frac{(1+r)(2+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)}$	$\frac{-2+\sqrt{5}}{-4+8 \sqrt{5}}$
b_{3}	$\frac{(1+r)(2+r)(3+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)}$	$\frac{(\sqrt{5}-3)(-2+\sqrt{5})}{276-96 \sqrt{5}}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{(1+r)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)\left(r^{2}+8 r+11\right)}
$$

Which for the root $r=-\sqrt{5}$ becomes

$$
b_{4}=\frac{(\sqrt{5}-3)(-4+\sqrt{5})}{2208-768 \sqrt{5}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1+r}{r^{2}+2 r-4}$	$\frac{\sqrt{5}-1}{-1+2 \sqrt{5}}$
b_{2}	$\frac{(1+r)(2+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)}$	$\frac{-2+\sqrt{5}}{-4+8 \sqrt{5}}$
b_{3}	$\frac{(1+r)(2+r)(3+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)}$	$\frac{(\sqrt{5}-3)(-2+\sqrt{5})}{276-96 \sqrt{5}}$
b_{4}	$\frac{(1+r)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)\left(r^{2}+8 r+11\right)}$	$\frac{(\sqrt{5}-3)(-4+\sqrt{5})}{2208-768 \sqrt{5}}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{(1+r)(2+r)(3+r)(4+r)(5+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)\left(r^{2}+8 r+11\right)\left(r^{2}+10 r+20\right)}
$$

Which for the root $r=-\sqrt{5}$ becomes

$$
b_{5}=\frac{(\sqrt{5}-3)(-4+\sqrt{5})(-5+\sqrt{5})}{41280 \sqrt{5}-93600}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1+r}{r^{2}+2 r-4}$	$\frac{\sqrt{5}-1}{-1+2 \sqrt{5}}$
b_{2}	$\frac{(1+r)(2+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)}$	$\frac{-2+\sqrt{5}}{-4+8 \sqrt{5}}$
b_{3}	$\frac{(1+r)(2+r)(3+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)}$	$\frac{(\sqrt{5}-3)(-2+\sqrt{5})}{276-96 \sqrt{5}}$
b_{4}	$\frac{(1+r)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)\left(r^{2}+8 r+11\right)}$	$\frac{(\sqrt{5}-3)(-4+\sqrt{5})}{2208-768 \sqrt{5}}$
b_{5}	$\frac{(1+r)(2+r)(3+r)(4+r)(5+r)}{\left(r^{2}+2 r-4\right)\left(r^{2}+4 r-1\right)\left(r^{2}+6 r+4\right)\left(r^{2}+8 r+11\right)\left(r^{2}+10 r+20\right)}$	$\frac{(\sqrt{5}-3)(-4+\sqrt{5})(-5+\sqrt{5})}{41280 \sqrt{5}-93600}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\sqrt{5}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =x^{-\sqrt{5}}\left(1+\frac{(\sqrt{5}-1) x}{-1+2 \sqrt{5}}+\frac{(-2+\sqrt{5}) x^{2}}{-4+8 \sqrt{5}}+\frac{(\sqrt{5}-3)(-2+\sqrt{5}) x^{3}}{276-96 \sqrt{5}}+\frac{(\sqrt{5}-3)(-4+\sqrt{5}) x^{4}}{2208-768 \sqrt{5}}+\right.
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\sqrt{5}}\left(1+\frac{(\sqrt{5}+1) x}{1+2 \sqrt{5}}+\frac{(2+\sqrt{5}) x^{2}}{4+8 \sqrt{5}}+\frac{(2+\sqrt{5})(3+\sqrt{5}) x^{3}}{276+96 \sqrt{5}}\right. \\
& \left.+\frac{(4+\sqrt{5})(3+\sqrt{5}) x^{4}}{2208+768 \sqrt{5}}+\frac{(3+\sqrt{5})(4+\sqrt{5})(5+\sqrt{5}) x^{5}}{41280 \sqrt{5}+93600}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{-\sqrt{5}}\left(1+\frac{(\sqrt{5}-1) x}{-1+2 \sqrt{5}}+\frac{(-2+\sqrt{5}) x^{2}}{-4+8 \sqrt{5}}+\frac{(\sqrt{5}-3)(-2+\sqrt{5}) x^{3}}{276-96 \sqrt{5}}\right. \\
& \left.+\frac{(\sqrt{5}-3)(-4+\sqrt{5}) x^{4}}{2208-768 \sqrt{5}}+\frac{(\sqrt{5}-3)(-4+\sqrt{5})(-5+\sqrt{5}) x^{5}}{41280 \sqrt{5}-93600}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y= y_{h} \\
&=c_{1} x^{\sqrt{5}}\left(1+\frac{(\sqrt{5}+1) x}{1+2 \sqrt{5}}+\frac{(2+\sqrt{5}) x^{2}}{4+8 \sqrt{5}}+\frac{(2+\sqrt{5})(3+\sqrt{5}) x^{3}}{276+96 \sqrt{5}}\right. \\
&\left.+\frac{(4+\sqrt{5})(3+\sqrt{5}) x^{4}}{2208+768 \sqrt{5}}+\frac{(3+\sqrt{5})(4+\sqrt{5})(5+\sqrt{5}) x^{5}}{41280 \sqrt{5}+93600}+O\left(x^{6}\right)\right) \\
&+c_{2} x^{-\sqrt{5}}\left(1+\frac{(\sqrt{5}-1) x}{-1+2 \sqrt{5}}+\frac{(-2+\sqrt{5}) x^{2}}{-4+8 \sqrt{5}}+\frac{(\sqrt{5}-3)(-2+\sqrt{5}) x^{3}}{276-96 \sqrt{5}}\right. \\
&\left.+\frac{(\sqrt{5}-3)(-4+\sqrt{5}) x^{4}}{2208-768 \sqrt{5}}+\frac{(\sqrt{5}-3)(-4+\sqrt{5})(-5+\sqrt{5}) x^{5}}{41280 \sqrt{5}-93600}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1} x^{\sqrt{5}}\left(1+\frac{(\sqrt{5}+1) x}{1+2 \sqrt{5}}+\frac{(2+\sqrt{5}) x^{2}}{4+8 \sqrt{5}}+\frac{(2+\sqrt{5})(3+\sqrt{5}) x^{3}}{276+96 \sqrt{5}}\right. \\
& \left.+\frac{(4+\sqrt{5})(3+\sqrt{5}) x^{4}}{2208+768 \sqrt{5}}+\frac{(3+\sqrt{5})(4+\sqrt{5})(5+\sqrt{5}) x^{5}}{41280 \sqrt{5}+93600}+O\left(x^{6}\right)\right) \\
+ & c_{2} x^{-\sqrt{5}}\left(1+\frac{(\sqrt{5}-1) x}{-1+2 \sqrt{5}}+\frac{(-2+\sqrt{5}) x^{2}}{-4+8 \sqrt{5}}+\frac{(\sqrt{5}-3)(-2+\sqrt{5}) x^{3}}{276-96 \sqrt{5}}\right. \\
& \left.+\frac{(\sqrt{5}-3)(-4+\sqrt{5}) x^{4}}{2208-768 \sqrt{5}}+\frac{(\sqrt{5}-3)(-4+\sqrt{5})(-5+\sqrt{5}) x^{5}}{41280 \sqrt{5}-93600}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\sqrt{5}}\left(1+\frac{(\sqrt{5}+1) x}{1+2 \sqrt{5}}+\frac{(2+\sqrt{5}) x^{2}}{4+8 \sqrt{5}}+\frac{(2+\sqrt{5})(3+\sqrt{5}) x^{3}}{276+96 \sqrt{5}}\right. \\
& \left.+\frac{(4+\sqrt{5})(3+\sqrt{5}) x^{4}}{2208+768 \sqrt{5}}+\frac{(3+\sqrt{5})(4+\sqrt{5})(5+\sqrt{5}) x^{5}}{41280 \sqrt{5}+93600}+O\left(x^{6}\right)\right) \\
+ & c_{2} x^{-\sqrt{5}}\left(1+\frac{(\sqrt{5}-1) x}{-1+2 \sqrt{5}}+\frac{(-2+\sqrt{5}) x^{2}}{-4+8 \sqrt{5}}+\frac{(\sqrt{5}-3)(-2+\sqrt{5}) x^{3}}{276-96 \sqrt{5}}\right. \\
& \left.+\frac{(\sqrt{5}-3)(-4+\sqrt{5}) x^{4}}{2208-768 \sqrt{5}}+\frac{(\sqrt{5}-3)(-4+\sqrt{5})(-5+\sqrt{5}) x^{5}}{41280 \sqrt{5}-93600}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

17.15.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}+(-x-5) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{(x+5) y}{x^{2}}+\frac{(x-1) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{(x-1) y^{\prime}}{x}-\frac{(x+5) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{x-1}{x}, P_{3}(x)=-\frac{x+5}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-5$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}-x(x-1) y^{\prime}+(-x-5) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}\left(r^{2}-5\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}\left(k^{2}+2 k r+r^{2}-5\right)-a_{k-1}(k+r)\right) x^{k+r}\right)=0$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$r^{2}-5=0$
- Values of r that satisfy the indicial equation
$r \in\{\sqrt{5},-\sqrt{5}\}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}\left(k^{2}+2 k r+r^{2}-5\right)-a_{k-1}(k+r)=0$
- \quad Shift index using $k->k+1$
$a_{k+1}\left((k+1)^{2}+2(k+1) r+r^{2}-5\right)-a_{k}(k+r+1)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r+1)}{k^{2}+2 k r+r^{2}+2 k+2 r-4}$
- \quad Recursion relation for $r=\sqrt{5}$
$a_{k+1}=\frac{a_{k}(k+\sqrt{5}+1)}{k^{2}+2 k \sqrt{5}+1+2 k+2 \sqrt{5}}$
- \quad Solution for $r=\sqrt{5}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\sqrt{5}}, a_{k+1}=\frac{a_{k}(k+\sqrt{5}+1)}{k^{2}+2 k \sqrt{5}+1+2 k+2 \sqrt{5}}\right]
$$

- \quad Recursion relation for $r=-\sqrt{5}$
$a_{k+1}=\frac{a_{k}(k-\sqrt{5}+1)}{k^{2}-2 k \sqrt{5}+1+2 k-2 \sqrt{5}}$
- \quad Solution for $r=-\sqrt{5}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\sqrt{5}}, a_{k+1}=\frac{a_{k}(k-\sqrt{5}+1)}{k^{2}-2 k \sqrt{5}+1+2 k-2 \sqrt{5}}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\sqrt{5}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\sqrt{5}}\right), a_{1+k}=\frac{a_{k}(k+\sqrt{5}+1)}{k^{2}+2 k \sqrt{5}+1+2 k+2 \sqrt{5}}, b_{1+k}=\frac{b_{k}(k-\sqrt{5}+1)}{k^{2}-2 k \sqrt{5}+1+2 k-2 \sqrt{5}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Kummer successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 503

```
Order:=6;
dsolve(x^2*diff (y(x),x$2)+x*(1-x)*diff (y(x),x)-(5+x)*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{-\sqrt{5}}\left(1+\frac{\sqrt{5}-1}{-1+2 \sqrt{5}} x+\frac{-2+\sqrt{5}}{-4+8 \sqrt{5}} x^{2}+\frac{(-2+\sqrt{5})(\sqrt{5}-3)}{276-96 \sqrt{5}} x^{3}\right. \\
& \left.+\frac{(\sqrt{5}-3)(\sqrt{5}-4)}{2208-768 \sqrt{5}} x^{4}+\frac{(\sqrt{5}-3)(\sqrt{5}-4)(-5+\sqrt{5})}{41280 \sqrt{5}-93600} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
+ & c_{2} x^{\sqrt{5}}\left(1+\frac{\sqrt{5}+1}{1+2 \sqrt{5}} x+\frac{\sqrt{5}+2}{4+8 \sqrt{5}} x^{2}+\frac{(\sqrt{5}+2)(3+\sqrt{5})}{276+96 \sqrt{5}} x^{3}\right. \\
& \left.+\frac{(3+\sqrt{5})(\sqrt{5}+4)}{2208+768 \sqrt{5}} x^{4}+\frac{(3+\sqrt{5})(\sqrt{5}+4)(5+\sqrt{5})}{41280 \sqrt{5}+93600} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 1093
AsymptoticDSolveValue $\left[\mathrm{x}^{2} 2 * \mathrm{y}\right.$ ' ${ }^{\prime}[\mathrm{x}]+\mathrm{x} *(1-\mathrm{x}) * \mathrm{y}$ ' $\left.[\mathrm{x}]-(5+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
\begin{aligned}
& y(x) \\
& \rightarrow\left(\frac{(-5-\sqrt{5})(-4-\sqrt{5})(-3-\sqrt{5})(-2-\sqrt{5})(1+}{(-4+\sqrt{5}+\sqrt{5}(1+\sqrt{5}))(-3+\sqrt{5}+(1+\sqrt{5})(2+\sqrt{5}))(-2+\sqrt{5}+(2+\sqrt{5})(3+\sqrt{5}))(-1}\right. \\
& -\frac{(-4-\sqrt{5})(-3-\sqrt{5})(-2-\sqrt{5})(1+\sqrt{5}) x^{4}}{(-4+\sqrt{5}+\sqrt{5}(1+\sqrt{5}))(-3+\sqrt{5}+(1+\sqrt{5})(2+\sqrt{5}))(-2+\sqrt{5}+(2+\sqrt{5})(3+\sqrt{5}))(-1} \\
& +\frac{(-3-\sqrt{5})(-2-\sqrt{5})(1+\sqrt{5}) x^{3}}{(-4+\sqrt{5}+\sqrt{5}(1+\sqrt{5}))(-3+\sqrt{5}+(1+\sqrt{5})(2+\sqrt{5}))(-2+\sqrt{5}+(2+\sqrt{5})(3+\sqrt{5}))} \\
& -\frac{(-2-\sqrt{5})(1+\sqrt{5}) x^{2}}{(-4+\sqrt{5}+\sqrt{5}(1+\sqrt{5}))(-3+\sqrt{5}+(1+\sqrt{5})(2+\sqrt{5}))} \\
& \left.+\frac{(1+\sqrt{5}) x}{-4+\sqrt{5}+\sqrt{5}(1+\sqrt{5})}+1\right) c_{1} x^{\sqrt{5}} \\
& +\left(\frac{(1-\sqrt{5})(-5+\sqrt{5})(-4+\sqrt{5})(-3+\sqrt{5})(-2}{(-4-\sqrt{5}-\sqrt{5}(1-\sqrt{5}))(-3-\sqrt{5}+(1-\sqrt{5})(2-\sqrt{5}))(-2-\sqrt{5}+(2-\sqrt{5})(3-\sqrt{5}))(-}\right. \\
& -\frac{(1-\sqrt{5})(-4+\sqrt{5})(-3+\sqrt{5})(-2+\sqrt{5}) x^{4}}{(-4-\sqrt{5}-\sqrt{5}(1-\sqrt{5}))(-3-\sqrt{5}+(1-\sqrt{5})(2-\sqrt{5}))(-2-\sqrt{5}+(2-\sqrt{5})(3-\sqrt{5}))(-1} \\
& +\frac{(1-\sqrt{5})(-3+\sqrt{5})(-2+\sqrt{5}) x^{3}}{(-4-\sqrt{5}-\sqrt{5}(1-\sqrt{5}))(-3-\sqrt{5}+(1-\sqrt{5})(2-\sqrt{5}))(-2-\sqrt{5}+(2-\sqrt{5})(3-\sqrt{5}))} \\
& -\frac{(1-\sqrt{5})(-2+\sqrt{5}) x^{2}}{(-4-\sqrt{5}-\sqrt{5}(1-\sqrt{5}))(-3-\sqrt{5}+(1-\sqrt{5})(2-\sqrt{5}))} \\
& \left.+\frac{(1-\sqrt{5}) x}{-4-\sqrt{5}-\sqrt{5}(1-\sqrt{5})}+1\right) c_{2} x^{-\sqrt{5}}
\end{aligned}
$$

17.16 problem 17

17.16.1 Maple step by step solution

Internal problem ID [2932]
Internal file name [OUTPUT/2424_Sunday_June_05_2022_03_09_11_AM_58770998/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _exact, _linear, _homogeneous]]
```

$$
3 x^{2} y^{\prime \prime}+x(3 x+7) y^{\prime}+(6 x+1) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
3 x^{2} y^{\prime \prime}+\left(3 x^{2}+7 x\right) y^{\prime}+(6 x+1) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3 x+7}{3 x} \\
& q(x)=\frac{6 x+1}{3 x^{2}}
\end{aligned}
$$

Table 442: Table $p(x), q(x)$ singularites.

$p(x)=\frac{3 x+7}{3 x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{6 x+1}{3 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
3 x^{2} y^{\prime \prime}+\left(3 x^{2}+7 x\right) y^{\prime}+(6 x+1) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 3 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(3 x^{2}+7 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(6 x+1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 7 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 6 x^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} 6 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 6 a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} 7 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=1}^{\infty} 6 a_{n-1} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
3 x^{n+r} a_{n}(n+r)(n+r-1)+7 x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
3 x^{r} a_{0} r(-1+r)+7 x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(3 x^{r} r(-1+r)+7 x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(3 r^{2}+4 r+1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
3 r^{2}+4 r+1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-\frac{1}{3} \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(3 r^{2}+4 r+1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{2}{3}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-\frac{1}{3}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
3 a_{n}(n+r)(n+r-1)+3 a_{n-1}(n+r-1)+7 a_{n}(n+r)+6 a_{n-1}+a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{3 a_{n-1}}{3 n+3 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-\frac{1}{3}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{3}{4+3 r}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
a_{1}=-1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{4+3 r}$	-1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{9}{9 r^{2}+33 r+28}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
a_{2}=\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{4+3 r}$	-1
a_{2}	$\frac{9}{9 r^{2}+33 r+28}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{27}{27 r^{3}+189 r^{2}+414 r+280}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
a_{3}=-\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{4+3 r}$	-1
a_{2}	$\frac{9}{9 r^{2}+33 r+28}$	$\frac{1}{2}$
a_{3}	$-\frac{27}{27 r^{3}+189 r^{2}+414 r+280}$	$-\frac{1}{6}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{81}{81 r^{4}+918 r^{3}+3699 r^{2}+6222 r+3640}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
a_{4}=\frac{1}{24}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{4+3 r}$	-1
a_{2}	$\frac{9}{9 r^{2}+33 r+28}$	$\frac{1}{2}$
a_{3}	$-\frac{27}{27 r^{3}+189 r^{2}+414 r+280}$	$-\frac{1}{6}$
a_{4}	$\frac{81}{81 r^{4}+918 r^{3}+3699 r^{2}+6222 r+3640}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{243}{243 r^{5}+4050 r^{4}+25785 r^{3}+77850 r^{2}+110472 r+58240}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
a_{5}=-\frac{1}{120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{4+3 r}$	-1
a_{2}	$\frac{9}{9 r^{2}+33 r+28}$	$\frac{1}{2}$
a_{3}	$-\frac{27}{27 r^{3}+189 r^{2}+414 r+280}$	$-\frac{1}{6}$
a_{4}	$\frac{81}{81 r^{4}+918 r^{3}+369 r^{2}+6222 r+3640}$	$\frac{1}{24}$
a_{5}	$-\frac{243}{243 r^{5}+4050 r^{4}+25785 r^{3}+77850 r^{2}+110472 r+58240}$	$-\frac{1}{120}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x^{\frac{1}{3}}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\frac{1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)}{x^{\frac{1}{3}}}
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
3 b_{n}(n+r)(n+r-1)+3 b_{n-1}(n+r-1)+7 b_{n}(n+r)+6 b_{n-1}+b_{n}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{3 b_{n-1}}{3 n+3 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=-\frac{3 b_{n-1}}{3 n-2} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{3}{4+3 r}
$$

Which for the root $r=-1$ becomes

$$
b_{1}=-3
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{4+3 r}$	-3

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{9}{9 r^{2}+33 r+28}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=\frac{9}{4}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{4+3 r}$	-3
b_{2}	$\frac{9}{9 r^{2}+33 r+28}$	$\frac{9}{4}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{27}{27 r^{3}+189 r^{2}+414 r+280}
$$

Which for the root $r=-1$ becomes

$$
b_{3}=-\frac{27}{28}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{4+3 r}$	-3
b_{2}	$\frac{9}{9 r^{2}+33 r+28}$	$\frac{9}{4}$
b_{3}	$-\frac{27}{27 r^{3}+189 r^{2}+414 r+280}$	$-\frac{27}{28}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{81}{81 r^{4}+918 r^{3}+3699 r^{2}+6222 r+3640}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=\frac{81}{280}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{4+3 r}$	-3
b_{2}	$\frac{9}{9 r^{2}+33 r+28}$	$\frac{9}{4}$
b_{3}	$-\frac{27}{27 r^{3}+189 r^{2}+414 r+280}$	$-\frac{27}{28}$
b_{4}	$\frac{81}{81 r^{4}+918 r^{3}+3699 r^{2}+6222 r+3640}$	$\frac{81}{280}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=-\frac{243}{243 r^{5}+4050 r^{4}+25785 r^{3}+77850 r^{2}+110472 r+58240}
$$

Which for the root $r=-1$ becomes

$$
b_{5}=-\frac{243}{3640}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{4+3 r}$	-3
b_{2}	$\frac{9}{9 r^{2}+33 r+28}$	$\frac{9}{4}$
b_{3}	$-\frac{27}{27 r^{3}+189 r^{2}+414 r+280}$	$-\frac{27}{28}$
b_{4}	$\frac{81}{81 r^{4}+918 r^{3}+3699 r^{2}+6222 r+3640}$	$\frac{81}{280}$
b_{5}	$-\frac{243}{243 r^{5}+4050 r^{4}+25785 r^{3}+77850 r^{2}+110472 r+58240}$	$-\frac{243}{3640}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =\frac{1}{x^{\frac{1}{3}}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-3 x+\frac{9 x^{2}}{4}-\frac{27 x^{3}}{28}+\frac{81 x^{4}}{280}-\frac{243 x^{5}}{3640}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & \frac{c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{\frac{1}{3}}} \\
& +\frac{c_{2}\left(1-3 x+\frac{9 x^{2}}{4}-\frac{27 x^{3}}{28}+\frac{81 x^{4}}{280}-\frac{243 x^{5}}{3640}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & \frac{c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{\frac{1}{3}}} \\
& +\frac{c_{2}\left(1-3 x+\frac{9 x^{2}}{4}-\frac{27 x^{3}}{28}+\frac{81 x^{4}}{280}-\frac{243 x^{5}}{3640}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{\frac{1}{3}}} \tag{1}\\
& +\frac{c_{2}\left(1-3 x+\frac{9 x^{2}}{4}-\frac{27 x^{3}}{28}+\frac{81 x^{4}}{280}-\frac{243 x^{5}}{3640}+O\left(x^{6}\right)\right)}{x}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{\frac{1}{3}}} \\
& +\frac{c_{2}\left(1-3 x+\frac{9 x^{2}}{4}-\frac{27 x^{3}}{28}+\frac{81 x^{4}}{280}-\frac{243 x^{5}}{3640}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Verified OK.

17.16.1 Maple step by step solution

Let's solve

$$
3 x^{2} y^{\prime \prime}+\left(3 x^{2}+7 x\right) y^{\prime}+(6 x+1) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{(6 x+1) y}{3 x^{2}}-\frac{(3 x+7) y^{\prime}}{3 x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{(3 x+7) y^{\prime}}{3 x}+\frac{(6 x+1) y}{3 x^{2}}=0$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions
$\left[P_{2}(x)=\frac{3 x+7}{3 x}, P_{3}(x)=\frac{6 x+1}{3 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{7}{3}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{1}{3}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$3 x^{2} y^{\prime \prime}+x(3 x+7) y^{\prime}+(6 x+1) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)(1+3 r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(3 k+3 r+1)+3 a_{k-1}(k+r+1)\right) x^{k+r}\right)=0$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$(1+r)(1+3 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-1,-\frac{1}{3}\right\}$
- Each term in the series must be 0 , giving the recursion relation
$3\left(\left(k+r+\frac{1}{3}\right) a_{k}+a_{k-1}\right)(k+r+1)=0$
- \quad Shift index using $k->k+1$
$3\left(\left(k+\frac{4}{3}+r\right) a_{k+1}+a_{k}\right)(k+r+2)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{3 a_{k}}{3 k+4+3 r}
$$

- Recursion relation for $r=-1$

$$
a_{k+1}=-\frac{3 a_{k}}{3 k+1}
$$

- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+1}=-\frac{3 a_{k}}{3 k+1}\right]
$$

- Recursion relation for $r=-\frac{1}{3}$

$$
a_{k+1}=-\frac{3 a_{k}}{3 k+3}
$$

- \quad Solution for $r=-\frac{1}{3}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{3}}, a_{k+1}=-\frac{3 a_{k}}{3 k+3}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\frac{1}{3}}\right), a_{1+k}=-\frac{3 a_{k}}{3 k+1}, b_{1+k}=-\frac{3 b_{k}}{3 k+3}\right]
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
    One independent solution has integrals. Trying a hypergeometric solution free of integral
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    -> Trying to convert hypergeometric functions to elementary form...
    <- elementary form is not straightforward to achieve - returning hypergeometric solution
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 47

```
Order:=6;
dsolve(3*x^2*diff (y (x),x$2)+x*(7+3*x)*diff (y(x),x)+(1+6*x)*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & \frac{c_{1}\left(1-3 x+\frac{9}{4} x^{2}-\frac{27}{28} x^{3}+\frac{81}{280} x^{4}-\frac{243}{3640} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x} \\
& +\frac{c_{2}\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x^{\frac{1}{3}}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 84
AsymptoticDSolveValue[3*x^2*y' ' $[\mathrm{x}]+\mathrm{x} *(7+3 * \mathrm{x}) * \mathrm{y}$ ' $[\mathrm{x}]+(1+6 * \mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow \frac{c_{1}\left(-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right)}{\sqrt[3]{x}}+\frac{c_{2}\left(-\frac{243 x^{5}}{3640}+\frac{81 x^{4}}{280}-\frac{27 x^{3}}{28}+\frac{9 x^{2}}{4}-3 x+1\right)}{x}
$$

17.17 problem 18

17.17.1 Maple step by step solution

Internal problem ID [2933]
Internal file name [OUTPUT/2425_Sunday_June_05_2022_03_09_15_AM_10981741/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(1-x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(1-x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =-\frac{x-1}{x^{2}}
\end{aligned}
$$

Table 444: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{x-1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(1-x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(1-x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~B}\\
& +\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}+1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=i \\
& r_{2}=-i
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}+1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+i} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-i}
\end{aligned}
$$

$y_{1}(x)$ is found first. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n}-a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}+2 n r+r^{2}+1} \tag{4}
\end{equation*}
$$

Which for the root $r=i$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n(2 i+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=i$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{1}{r^{2}+2 r+2}
$$

Which for the root $r=i$ becomes

$$
a_{1}=\frac{1}{5}-\frac{2 i}{5}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r+2}$	$\frac{1}{5}-\frac{2 i}{5}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}
$$

Which for the root $r=i$ becomes

$$
a_{2}=-\frac{1}{40}-\frac{3 i}{40}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r+2}$	$\frac{1}{5}-\frac{2 i}{5}$
a_{2}	$\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}$	$-\frac{1}{40}-\frac{3 i}{40}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}
$$

Which for the root $r=i$ becomes

$$
a_{3}=-\frac{3}{520}-\frac{7 i}{1560}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r+2}$	$\frac{1}{5}-\frac{2 i}{5}$
a_{2}	$\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}$	$-\frac{1}{40}-\frac{3 i}{40}$
a_{3}	$\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}$	$-\frac{3}{520}-\frac{7 i}{1560}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}
$$

Which for the root $r=i$ becomes

$$
a_{4}=-\frac{1}{2496}-\frac{i}{12480}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r+2}$	$\frac{1}{5}-\frac{2 i}{5}$
a_{2}	$\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}$	$-\frac{1}{40}-\frac{3 i}{40}$
a_{3}	$\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}$	$-\frac{3}{520}-\frac{7 i}{1560}$
a_{4}	$\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}$	$-\frac{1}{2496}-\frac{i}{12480}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}
$$

Which for the root $r=i$ becomes

$$
a_{5}=-\frac{9}{603200}+\frac{i}{361920}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r+2}$	$\frac{1}{5}-\frac{2 i}{5}$
a_{2}	$\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}$	$-\frac{1}{40}-\frac{3 i}{40}$
a_{3}	$\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}$	$-\frac{3}{520}-\frac{7 i}{1560}$
a_{4}	$\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}$	$-\frac{1}{2496}-\frac{i}{12480}$
a_{5}	$\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}$	$-\frac{9}{603200}+\frac{i}{361920}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x)=x^{i}\left(a_{0}+\right. & \left.a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
=x^{i}(1+ & \left(\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(-\frac{3}{520}-\frac{7 i}{1560}\right) x^{3} \\
& \left.+\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4}+\left(-\frac{9}{603200}+\frac{i}{361920}\right) x^{5}+O\left(x^{6}\right)\right)
\end{aligned}
$$

The second solution $y_{2}(x)$ is found by taking the complex conjugate of $y_{1}(x)$ which gives

$$
\begin{aligned}
y_{2}(x)=x^{-i}(1 & +\left(\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}+\left(-\frac{3}{520}+\frac{7 i}{1560}\right) x^{3} \\
& \left.+\left(-\frac{1}{2496}+\frac{i}{12480}\right) x^{4}+\left(-\frac{9}{603200}-\frac{i}{361920}\right) x^{5}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& \left.\begin{array}{rl}
= & c_{1} x^{i}\left(1+\left(\frac{1}{5}-\right.\right.
\end{array} \frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(-\frac{3}{520}-\frac{7 i}{1560}\right) x^{3}+\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4} \\
& \\
& \left.+\left(-\frac{9}{603200}+\frac{i}{361920}\right) x^{5}+O\left(x^{6}\right)\right)+c_{2} x^{-i}\left(1+\left(\frac{1}{5}+\frac{2 i}{5}\right) x\right. \\
& \\
& +\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}+\left(-\frac{3}{520}+\frac{7 i}{1560}\right) x^{3}+\left(-\frac{1}{2496}+\frac{i}{12480}\right) x^{4} \\
& \\
&
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{i}\left(1+\left(\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(-\frac{3}{520}-\frac{7 i}{1560}\right) x^{3}+\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4}\right. \\
& \left.+\left(-\frac{9}{603200}+\frac{i}{361920}\right) x^{5}+O\left(x^{6}\right)\right)+c_{2} x^{-i}\left(1+\left(\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}\right. \\
& \left.+\left(-\frac{3}{520}+\frac{7 i}{1560}\right) x^{3}+\left(-\frac{1}{2496}+\frac{i}{12480}\right) x^{4}+\left(-\frac{9}{603200}-\frac{i}{361920}\right) x^{5}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\left.\begin{array}{rl}
y=c_{1} x^{i}(1+ & \left(\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(-\frac{3}{520}-\frac{7 i}{1560}\right) x^{3} \\
& +\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4}+\left(-\frac{9}{603200}+\frac{i}{361920}\right) x^{5}+O\left(x^{6}\right)(1) \\
+ & c_{2} x^{-i}(1
\end{array}+\left(\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}+\left(-\frac{3}{520}+\frac{7 i}{1560}\right) x^{3}\right)
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{i}\left(1+\left(\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(-\frac{3}{520}-\frac{7 i}{1560}\right) x^{3}+\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4}\right. \\
& \left.+\left(-\frac{9}{603200}+\frac{i}{361920}\right) x^{5}+O\left(x^{6}\right)\right)+c_{2} x^{-i}\left(1+\left(\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}\right. \\
& \left.+\left(-\frac{3}{520}+\frac{7 i}{1560}\right) x^{3}+\left(-\frac{1}{2496}+\frac{i}{12480}\right) x^{4}+\left(-\frac{9}{603200}-\frac{i}{361920}\right) x^{5}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

17.17.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(1-x) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{(x-1) y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{(x-1) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{x-1}{x^{2}}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(1-x) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0}\left(r^{2}+1\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}\left(k^{2}+2 k r+r^{2}+1\right)-a_{k-1}\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
r^{2}+1=0
$$

- Values of r that satisfy the indicial equation
$r \in\{-\mathrm{I}, \mathrm{I}\}$
- Each term in the series must be 0 , giving the recursion relation

$$
a_{k}\left(k^{2}+2 k r+r^{2}+1\right)-a_{k-1}=0
$$

- \quad Shift index using $k->k+1$
$a_{k+1}\left((k+1)^{2}+2(k+1) r+r^{2}+1\right)-a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}}{k^{2}+2 k r+r^{2}+2 k+2 r+2}$
- Recursion relation for $r=-\mathrm{I}$

$$
a_{k+1}=\frac{a_{k}}{k^{2}-2 \mathrm{I} k+1-2 \mathrm{I}+2 k}
$$

- \quad Solution for $r=-\mathrm{I}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\mathrm{I}}, a_{k+1}=\frac{a_{k}}{k^{2}-2 \mathrm{I} k+1-2 \mathrm{I}+2 k}\right]
$$

- Recursion relation for $r=\mathrm{I}$

$$
a_{k+1}=\frac{a_{k}}{k^{2}+2 \mathrm{I} k+1+2 \mathrm{I}+2 k}
$$

- \quad Solution for $r=\mathrm{I}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\mathrm{I}}, a_{k+1}=\frac{a_{k}}{k^{2}+2 \mathrm{I} k+1+2 \mathrm{I}+2 k}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\mathrm{I}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\mathrm{I}}\right), a_{1+k}=\frac{a_{k}}{k^{2}-2 \mathrm{I} k+1-2 \mathrm{I}+2 k}, b_{1+k}=\frac{b_{k}}{k^{2}+2 \mathrm{I} k+1+2 \mathrm{I}+2 k}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 69

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(1-x)*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
& y(x)=c_{1} x^{-i}\left(1+\left(\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}+\left(-\frac{3}{520}+\frac{7 i}{1560}\right) x^{3}\right. \\
& \left.+\left(-\frac{1}{2496}+\frac{i}{12480}\right) x^{4}+\left(-\frac{9}{603200}-\frac{i}{361920}\right) x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x^{i}\left(1+\left(\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(-\frac{3}{520}-\frac{7 i}{1560}\right) x^{3}\right. \\
& \left.+\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4}+\left(-\frac{9}{603200}+\frac{i}{361920}\right) x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 90
AsymptoticDSolveValue $[x \wedge 2 * y$ ' $\quad[x]+x * y$ ' $[x]+(1-x) * y[x]==0, y[x],\{x, 0,5\}]$

$$
\begin{array}{r}
y(x) \rightarrow\left(\frac{1}{12480}+\frac{i}{2496}\right) c_{2} x^{-i}\left(i x^{4}+(8+16 i) x^{3}+(168+96 i) x^{2}+(1056-288 i) x\right. \\
+(480-2400 i))-\left(\frac{1}{2496}+\frac{i}{12480}\right) c_{1} x^{i}\left(x^{4}+(16+8 i) x^{3}+(96+168 i) x^{2}\right. \\
-(288-1056 i) x-(2400-480 i))
\end{array}
$$

17.18 problem 19

17.18.1 Maple step by step solution 3337

Internal problem ID [2934]
Internal file name [OUTPUT/2426_Sunday_June_05_2022_03_09_22_AM_60454255/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
3 x^{2} y^{\prime \prime}+x\left(3 x^{2}+1\right) y^{\prime}-2 y x=0
$$

With the expansion point for the power series method at $x=0$.
The ODE is

$$
3 x^{2} y^{\prime \prime}+\left(3 x^{3}+x\right) y^{\prime}-2 y x=0
$$

Or

$$
x\left(3 y^{\prime} x^{2}+3 x y^{\prime \prime}+y^{\prime}-2 y\right)=0
$$

For $x \neq 0$ the above simplifies to

$$
3 y^{\prime} x^{2}+3 x y^{\prime \prime}+y^{\prime}-2 y=0
$$

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
3 x^{2} y^{\prime \prime}+\left(3 x^{3}+x\right) y^{\prime}-2 y x=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3 x^{2}+1}{3 x} \\
& q(x)=-\frac{2}{3 x}
\end{aligned}
$$

Table 446: Table $p(x), q(x)$ singularites.

$p(x)=\frac{3 x^{2}+1}{3 x}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"
$x=-\infty$	"regular"

$q(x)=-\frac{2}{3 x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty,-\infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
3 x^{2} y^{\prime \prime}+\left(3 x^{3}+x\right) y^{\prime}-2 y x=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 3 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(3 x^{3}+x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r+2} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 3 x^{n+r+2} a_{n}(n+r) & =\sum_{n=2}^{\infty} 3 a_{n-2}(n+r-2) x^{n+r} \\
\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=2}^{\infty} 3 a_{n-2}(n+r-2) x^{n+r}\right) \tag{2~B}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
3 x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)=0
$$

When $n=0$ the above becomes

$$
3 x^{r} a_{0} r(-1+r)+x^{r} a_{0} r=0
$$

Or

$$
\left(3 x^{r} r(-1+r)+x^{r} r\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{r} r(-2+3 r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
3 r^{2}-2 r=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{2}{3} \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{r} r(-2+3 r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{2}{3}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{2}{3}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=\frac{2}{3 r^{2}+4 r+1}
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
3 a_{n}(n+r)(n+r-1)+3 a_{n-2}(n+r-2)+a_{n}(n+r)-2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{3 n a_{n-2}+3 r a_{n-2}-6 a_{n-2}-2 a_{n-1}}{3 n^{2}+6 n r+3 r^{2}-2 n-2 r} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
\begin{equation*}
a_{n}=\frac{-3 n a_{n-2}+4 a_{n-2}+2 a_{n-1}}{n(3 n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{2}{3}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{3 r^{2}+4 r+1}$	$\frac{2}{5}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{-9 r^{3}-12 r^{2}-3 r+4}{9 r^{4}+42 r^{3}+67 r^{2}+42 r+8}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
a_{2}=-\frac{3}{40}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{3 r^{2}+4 r+1}$	$\frac{2}{5}$
a_{2}	$\frac{-9 r^{3}-12 r^{2}-3 r+4}{9 r^{4}+42 r^{3}+67 r^{2}+42 r+8}$	$-\frac{3}{40}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{-36 r^{3}-102 r^{2}-114 r-40}{27 r^{6}+270 r^{5}+1062 r^{4}+2080 r^{3}+2103 r^{2}+1010 r+168}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
a_{3}=-\frac{43}{660}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{3 r^{2}+4 r+1}$	$\frac{2}{5}$
a_{2}	$\frac{-9 r^{3}-12 r^{2}-3 r+4}{9 r^{4}+42 r^{3}+67 r^{2}+42 r+8}$	$-\frac{3}{40}$
a_{3}	$\frac{-36 r^{3}-102 r^{2}-114 r-40}{27 r^{6}+270 r^{5}+1062 r^{4}+2080 r^{3}+2103 r^{2}+1010 r+168}$	$-\frac{43}{660}$

For $n=4$, using the above recursive equation gives
$a_{4}=\frac{81 r^{6}+702 r^{5}+2250 r^{4}+3132 r^{3}+1521 r^{2}-486 r-584}{81 r^{8}+1404 r^{7}+10206 r^{6}+40404 r^{5}+94549 r^{4}+132496 r^{3}+106844 r^{2}+44096 r+6720}$
Which for the root $r=\frac{2}{3}$ becomes

$$
a_{4}=\frac{31}{3696}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{3 r^{2}+4 r+1}$	$\frac{2}{5}$
a_{2}	$\frac{-9 r^{3}-12 r^{2}-3 r+4}{9 r^{4}+42 r^{3}+67 r^{2}+42 r+8}$	$-\frac{3}{40}$
a_{3}	$\frac{-36 r^{3}-102 r^{2}-114 r-40}{27 r^{6}+270 r^{5}+1062 r^{4}+2080 r^{3}+2103 r^{2}+1010 r+168}$	$-\frac{43}{660}$
a_{4}	$\frac{81 r^{6}+702 r^{5}+2250 r^{4}+3132 r^{3}+1521 r^{2}-486 r-584}{81 r^{8}+1404 r^{7}+10206 r^{6}+40404 r^{5}+94549 r^{4}+132496 r^{3}+106844 r^{2}+44096 r+6720}$	$\frac{31}{3696}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{486 r^{6}+5670 r^{5}+26460 r^{4}+62622 r^{3}+79734 r^{2}+52788 r+13232}{\left(81 r^{8}+1404 r^{7}+10206 r^{6}+40404 r^{5}+94549 r^{4}+132496 r^{3}+106844 r^{2}+44096 r+6720\right)\left(3 r^{2}+28\right.}
$$

Which for the root $r=\frac{2}{3}$ becomes

$$
a_{5}=\frac{2259}{261800}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{3 r^{2}+4 r+1}$	$\frac{2}{5}$
a_{2}	$\frac{-9 r^{3}-12 r^{2}-3 r+4}{9 r^{4}+42 r^{3}+67 r^{2}+42 r+8}$	$-\frac{3}{40}$
a_{3}	$\frac{-36 r^{3}-102 r^{2}-114 r-40}{27 r^{6}+270 r^{5}+1062 r^{4}+2080 r^{3}+2103 r^{2}+1010 r+168}$	$-\frac{43}{660}$
a_{4}	$\frac{81 r^{6}+702 r^{5}+2250 r^{4}+3132 r^{3}+1521 r^{2}-486 r-584}{81 r^{8}+1404 r^{7}+10206 r^{6}+40404 r^{5}+94549 r^{4}+132496 r^{3}+106844 r^{2}+44096 r+6720}$	$\frac{31}{3696}$
a_{5}	$\frac{486 r^{6}+5670 r^{5}+26460 r^{4}+62622 r^{3}+79734 r^{2}+52788 r+13232}{\left(81 r^{8}+1404 r^{7}+10206 r^{6}+40404 r^{5}+94549 r^{4}+132496 r^{3}+106844 r^{2}+44096 r+6720\right)\left(3 r^{2}+28 r+65\right)}$	$\frac{2259}{261800}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{2}{3}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{2}{3}}\left(1+\frac{2 x}{5}-\frac{3 x^{2}}{40}-\frac{43 x^{3}}{660}+\frac{31 x^{4}}{3696}+\frac{2259 x^{5}}{261800}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=\frac{2}{3 r^{2}+4 r+1}
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
3 b_{n}(n+r)(n+r-1)+3 b_{n-2}(n+r-2)+b_{n}(n+r)-2 b_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{3 n b_{n-2}+3 r b_{n-2}-6 b_{n-2}-2 b_{n-1}}{3 n^{2}+6 n r+3 r^{2}-2 n-2 r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
b_{n}=\frac{-3 n b_{n-2}+6 b_{n-2}+2 b_{n-1}}{n(3 n-2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{3 r^{2}+4 r+1}$	2

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{-9 r^{3}-12 r^{2}-3 r+4}{9 r^{4}+42 r^{3}+67 r^{2}+42 r+8}
$$

Which for the root $r=0$ becomes

$$
b_{2}=\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{3 r^{2}+4 r+1}$	2
b_{2}	$\frac{-9 r^{3}-12 r^{2}-3 r+4}{9 r^{4}+42 r^{3}+67 r^{2}+42 r+8}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{-36 r^{3}-102 r^{2}-114 r-40}{27 r^{6}+270 r^{5}+1062 r^{4}+2080 r^{3}+2103 r^{2}+1010 r+168}
$$

Which for the root $r=0$ becomes

$$
b_{3}=-\frac{5}{21}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{3 r^{2}+4 r+1}$	2
b_{2}	$\frac{-9 r^{3}-12 r^{2}-3 r+4}{9 r^{4}+42 r^{3}+67 r^{2}+42 r+8}$	$\frac{1}{2}$
b_{3}	$\frac{-36 r^{3}-102 r^{2}-114 r-40}{27 r^{6}+270 r^{5}+1062 r^{4}+2080 r^{3}+2103 r^{2}+1010 r+168}$	$-\frac{5}{21}$

For $n=4$, using the above recursive equation gives
$b_{4}=\frac{81 r^{6}+702 r^{5}+2250 r^{4}+3132 r^{3}+1521 r^{2}-486 r-584}{81 r^{8}+1404 r^{7}+10206 r^{6}+40404 r^{5}+94549 r^{4}+132496 r^{3}+106844 r^{2}+44096 r+6720}$

Which for the root $r=0$ becomes

$$
b_{4}=-\frac{73}{840}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{3 r^{2}+4 r+1}$	2
b_{2}	$\frac{-9 r^{3}-12 r^{2}-3 r+4}{9 r^{4}+42 r^{3}+67 r^{2}+42 r+8}$	$\frac{1}{2}$
b_{3}	$\frac{-36 r^{3}-102 r^{2}-114 r-40}{27 r^{6}+270 r^{5}+1062 r^{4}+2080 r^{3}+2103 r^{2}+1010 r+168}$	$-\frac{5}{21}$
b_{4}	$\frac{81 r^{+}+702 r^{5}+2250 r^{4}+3132 r^{3}+1521 r^{2}-486 r-584}{81 r^{8}+1404 r^{7}+10206 r^{6}+40404 r^{5}+94549 r^{4}+132496 r^{3}+106844 r^{2}+44096 r+6720}$	$-\frac{73}{840}$

For $n=5$, using the above recursive equation gives
$b_{5}=\frac{486 r^{6}+5670 r^{5}+26460 r^{4}+62622 r^{3}+79734 r^{2}+52788 r+13232}{\left(81 r^{8}+1404 r^{7}+10206 r^{6}+40404 r^{5}+94549 r^{4}+132496 r^{3}+106844 r^{2}+44096 r+6720\right)\left(3 r^{2}+28\right.}$
Which for the root $r=0$ becomes

$$
b_{5}=\frac{827}{27300}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{3 r^{2}+4 r+1}$	2
b_{2}	$\frac{-9 r^{3}-12 r^{2}-3 r+4}{9 r^{4}+42 r^{3}+67 r^{2}+42 r+8}$	$\frac{1}{2}$
b_{3}	$\frac{-36 r^{3}-102 r^{2}-114 r-40}{27 r^{6}+270 r^{5}+1062 r^{4}+2080 r^{3}+2103 r^{2}+1010 r+168}$	$-\frac{5}{21}$
b_{4}	$\frac{81 r^{6}+702 r^{5}+2250 r^{4}+3132 r^{3}+1521 r^{2}-486 r-584}{81 r^{8}+1404 r^{7}+10206 r^{6}+40404 r^{5}+94549 r^{4}+132496 r^{3}+106844 r^{2}+44096 r+6720}$	
b_{5}	$\frac{486 r^{6}+5670 r^{5}+26460 r^{4}+62622 r^{3}+79734 r^{2}+52788 r+13232}{\left(81 r^{8}+1404 r^{7}+10206 r^{6}+40404 r^{5}+94549 r^{4}+132496 r^{3}+106844 r^{2}+44096 r+6720\right)\left(3 r^{2}+28 r+65\right)}$	$\frac{827}{27300}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =1+2 x+\frac{x^{2}}{2}-\frac{5 x^{3}}{21}-\frac{73 x^{4}}{840}+\frac{827 x^{5}}{27300}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{2}{3}}\left(1+\frac{2 x}{5}-\frac{3 x^{2}}{40}-\frac{43 x^{3}}{660}+\frac{31 x^{4}}{3696}+\frac{2259 x^{5}}{261800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1+2 x+\frac{x^{2}}{2}-\frac{5 x^{3}}{21}-\frac{73 x^{4}}{840}+\frac{827 x^{5}}{27300}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{2}{3}}\left(1+\frac{2 x}{5}-\frac{3 x^{2}}{40}-\frac{43 x^{3}}{660}+\frac{31 x^{4}}{3696}+\frac{2259 x^{5}}{261800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1+2 x+\frac{x^{2}}{2}-\frac{5 x^{3}}{21}-\frac{73 x^{4}}{840}+\frac{827 x^{5}}{27300}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{\frac{2}{3}}\left(1+\frac{2 x}{5}-\frac{3 x^{2}}{40}-\frac{43 x^{3}}{660}+\frac{31 x^{4}}{3696}+\frac{2259 x^{5}}{261800}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2}\left(1+2 x+\frac{x^{2}}{2}-\frac{5 x^{3}}{21}-\frac{73 x^{4}}{840}+\frac{827 x^{5}}{27300}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\frac{2}{3}}\left(1+\frac{2 x}{5}-\frac{3 x^{2}}{40}-\frac{43 x^{3}}{660}+\frac{31 x^{4}}{3696}+\frac{2259 x^{5}}{261800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1+2 x+\frac{x^{2}}{2}-\frac{5 x^{3}}{21}-\frac{73 x^{4}}{840}+\frac{827 x^{5}}{27300}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

17.18.1 Maple step by step solution

Let's solve
$3 x^{2} y^{\prime \prime}+\left(3 x^{3}+x\right) y^{\prime}-2 y x=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{2 y}{3 x}-\frac{\left(3 x^{2}+1\right) y^{\prime}}{3 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{\left(3 x^{2}+1\right) y^{\prime}}{3 x}-\frac{2 y}{3 x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{3 x^{2}+1}{3 x}, P_{3}(x)=-\frac{2}{3 x}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{3}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $\quad x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$3 y^{\prime \prime} x+\left(3 x^{2}+1\right) y^{\prime}-2 y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-2+3 r) x^{-1+r}+\left(a_{1}(1+r)(1+3 r)-2 a_{0}\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+1+r)(3 k+1+3 r)-2 a_{k}\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(-2+3 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0, \frac{2}{3}\right\}$
- Each term must be 0
$a_{1}(1+r)(1+3 r)-2 a_{0}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k+1}(k+1+r)(3 k+1+3 r)-2 a_{k}+3 a_{k-1}(k+r-1)=0$
- \quad Shift index using $k->k+1$
$a_{k+2}(k+2+r)(3 k+4+3 r)-2 a_{k+1}+3 a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{3 k a_{k}+3 r a_{k}-2 a_{k+1}}{(k+2+r)(3 k+4+3 r)}$
- Recursion relation for $r=0$
$a_{k+2}=-\frac{3 k a_{k}-2 a_{k+1}}{(k+2)(3 k+4)}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{3 k a_{k}-2 a_{k+1}}{(k+2)(3 k+4)}, a_{1}-2 a_{0}=0\right]$
- Recursion relation for $r=\frac{2}{3}$
$a_{k+2}=-\frac{3 k a_{k}+2 a_{k}-2 a_{k+1}}{\left(k+\frac{8}{3}\right)(3 k+6)}$
- \quad Solution for $r=\frac{2}{3}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{2}{3}}, a_{k+2}=-\frac{3 k a_{k}+2 a_{k}-2 a_{k+1}}{\left(k+\frac{8}{3}\right)(3 k+6)}, 5 a_{1}-2 a_{0}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{2}{3}}\right), a_{2+k}=-\frac{3 k a_{k}-2 a_{1+k}}{(2+k)(3 k+4)}, a_{1}-2 a_{0}=0, b_{2+k}=-\frac{3 k b_{k}+2 b_{k}-2 b_{1+k}}{\left(k+\frac{8}{3}\right)(3 k+6)}, 5 b_{1}\right.
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius trying a solution in terms of MeijerG functions \rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius <- Heun successful: received ODE is equivalent to the HeunB ODE, case c=0
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 44

```
Order:=6;
dsolve(3*x^2*diff (y (x),x$2)+x*(1+3*x^2)*diff (y (x) , x) - 2*x*y (x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{\frac{2}{3}}\left(1+\frac{2}{5} x-\frac{3}{40} x^{2}-\frac{43}{660} x^{3}+\frac{31}{3696} x^{4}+\frac{2259}{261800} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(1+2 x+\frac{1}{2} x^{2}-\frac{5}{21} x^{3}-\frac{73}{840} x^{4}+\frac{827}{27300} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 83
AsymptoticDSolveValue [3*x^2*y' ' $\left.[\mathrm{x}]+\mathrm{x} *\left(1+3 * \mathrm{x}^{\wedge} 2\right) * \mathrm{y} \mathrm{I}^{\prime}[\mathrm{x}]-2 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{2}\left(\frac{827 x^{5}}{27300}-\frac{73 x^{4}}{840}-\frac{5 x^{3}}{21}+\frac{x^{2}}{2}+2 x+1\right) \\
& +c_{1} x^{2 / 3}\left(\frac{2259 x^{5}}{261800}+\frac{31 x^{4}}{3696}-\frac{43 x^{3}}{660}-\frac{3 x^{2}}{40}+\frac{2 x}{5}+1\right)
\end{aligned}
$$

17.19 problem 20

17.19.1 Maple step by step solution

Internal problem ID [2935]
Internal file name [OUTPUT/2427_Sunday_June_05_2022_03_09_27_AM_23375353/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x^{2}+(1+2 x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x^{2}+(1+2 x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-1 \\
& q(x)=\frac{1+2 x}{4 x^{2}}
\end{aligned}
$$

Table 448: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=\frac{1+2 x}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} x^{2}+(1+2 x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& \quad-4\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x^{2}+(1+2 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-4 a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-4 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)+a_{0} x^{r}=0
$$

Or

$$
\left(4 x^{r} r(-1+r)+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{r}(-1+2 r)^{2}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(-1+2 r)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{r}(-1+2 r)^{2}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=\frac{1}{2}$, Eqs $(1 \mathrm{~A}, 1 \mathrm{~B})$ become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+\frac{1}{2}}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the
indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)-4 a_{n-1}(n+r-1)+a_{n}+2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}(2 n+2 r-3)}{4 n^{2}+8 n r+4 r^{2}-4 n-4 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n-1)}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{-2+4 r}{(2 r+1)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{1}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+4 r}{(2 r+1)^{2}}$	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{8 r-4}{(2 r+1)(3+2 r)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+4 r}{(2 r+1)^{2}}$	0
a_{2}	$\frac{8 r-4}{(2 r+1)(3+2 r)^{2}}$	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{-8+16 r}{(3+2 r)(2 r+1)(5+2 r)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+4 r}{(2 r+1)^{2}}$	0
a_{2}	$\frac{8 r-4}{(2 r+1)(3+2 r)^{2}}$	0
a_{3}	$\frac{-8+16 r}{(3+2 r)(2 r+1)(5+2 r)^{2}}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{-16+32 r}{(3+2 r)(5+2 r)(2 r+1)(7+2 r)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+4 r}{(2 r+1)^{2}}$	0
a_{2}	$\frac{8 r-4}{(2 r+1)(3+2 r)^{2}}$	0
a_{3}	$\frac{-8+16 r}{(3+2 r)(2 r+1)(5+2 r)^{2}}$	0
a_{4}	$\frac{-16+32 r}{(3+2 r)(5+2 r)(2 r+1)(7+2 r)^{2}}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{-32+64 r}{(2 r+1)(5+2 r)(3+2 r)(7+2 r)(9+2 r)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2+4 r}{(2 r+1)^{2}}$	0
a_{2}	$\frac{8 r-4}{(2 r+1)(3+2 r)^{2}}$	0
a_{3}	$\frac{-8+16 r}{(3+2 r)(2 r+1)(5+2 r)^{2}}$	0
a_{4}	$\frac{-16+32 r}{(3+2 r)(5+2 r)(2 r+1)(7+2 r)^{2}}$	0
a_{5}	$\frac{-32+64 r}{(2 r+1)(5+2 r)(3+2 r)(7+2 r)(9+2 r)^{2}}$	0

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=\frac{1}{2}$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}\left(r=\frac{1}{2}\right)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$\frac{-2+4 r}{(2 r+1)^{2}}$	0	$\frac{-8 r+12}{(2 r+1)^{3}}$	1
b_{2}	$\frac{8 r-4}{(2 r+1)(3+2 r)^{2}}$	0	$\frac{-64 r^{2}+32 r+64}{(2 r+1)^{2}(3+2 r)^{3}}$	$\frac{1}{4}$
b_{3}	$\frac{-8+16 r}{(3+2 r)(2 r+1)(5+2 r)^{2}}$	0	$\frac{-384 r^{3}-576 r^{2}+60 r+656}{(3+2 r)^{2}(2 r+1)^{2}(5+2 r)^{3}}$	$\frac{1}{18}$
b_{4}	$\frac{-16+32 r}{(3+2 r)(5+2 r)(2 r+1)(7+2 r)^{2}}$	0	$-\frac{256\left(8 r^{4}+36 r^{3}+26 r^{2}-45 r-37\right)}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{3}}$	$\frac{1}{96}$
b_{5}	$\frac{-32+64 r}{(2 r+1)(5+2 r)(3+2 r)(7+2 r)(9+2 r)^{2}}$	0	$-\frac{64\left(160 r^{5}+1360 r^{4}+3440 r^{3}+1400 r^{2}-3942 r-2739\right)}{(2 r+1)^{2}(5+2 r)^{2}(3+2 r)^{2}(7+2 r)^{2}(9+2 r)^{3}}$	$\frac{1}{600}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =\sqrt{x}\left(1+O\left(x^{6}\right)\right) \ln (x)+\sqrt{x}\left(x+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{x^{4}}{96}+\frac{x^{5}}{600}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& \qquad \begin{aligned}
&=c_{1} \sqrt{x}\left(1+O\left(x^{6}\right)\right)+c_{2}\left(\sqrt{x}\left(1+O\left(x^{6}\right)\right) \ln (x)+\sqrt{x}\left(x+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{x^{4}}{96}+\frac{x^{5}}{600}\right.\right. \\
&\left.\left.+O\left(x^{6}\right)\right)\right)
\end{aligned}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} \sqrt{x}\left(1+O\left(x^{6}\right)\right)+c_{2}\left(\sqrt{x}\left(1+O\left(x^{6}\right)\right) \ln (x)+\sqrt{x}\left(x+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{x^{4}}{96}+\frac{x^{5}}{600}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{x}\left(1+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1+O\left(x^{6}\right)\right) \ln (x)+\sqrt{x}\left(x+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{x^{4}}{96}+\frac{x^{5}}{600}+O\left(x^{6}\right)\right)\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1+O\left(x^{6}\right)\right) \ln (x)+\sqrt{x}\left(x+\frac{x^{2}}{4}+\frac{x^{3}}{18}+\frac{x^{4}}{96}+\frac{x^{5}}{600}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Verified OK.

17.19.1 Maple step by step solution

Let's solve
$4 x^{2} y^{\prime \prime}-4 y^{\prime} x^{2}+(1+2 x) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=y^{\prime}-\frac{(1+2 x) y}{4 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-y^{\prime}+\frac{(1+2 x) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-1, P_{3}(x)=\frac{1+2 x}{4 x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{1}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}-4 y^{\prime} x^{2}+(1+2 x) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$ $x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}
$$

- Shift index using $k->k-1$

$$
x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(-1+2 r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(2 k+2 r-1)^{2}-2 a_{k-1}(2 k-3+2 r)\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(-1+2 r)^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=\frac{1}{2}
$$

- Each term in the series must be 0 , giving the recursion relation
$a_{k}(2 k+2 r-1)^{2}+(-4 k+6-4 r) a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(2 k+1+2 r)^{2}+a_{k}(-4 k-4 r+2)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{2 a_{k}(2 k+2 r-1)}{(2 k+1+2 r)^{2}}$
- Recursion relation for $r=\frac{1}{2}$

$$
a_{k+1}=\frac{4 a_{k} k}{(2 k+2)^{2}}
$$

- \quad Solution for $r=\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+1}=\frac{4 a_{k} k}{(2 k+2)^{2}}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 49

```
Order:=6;
dsolve(4*x^2*diff (y (x),x$2)-4*x^2*diff (y (x),x)+(1+2*x)*y(x)=0,y(x),type='series', x=0);
y(x)=\sqrt{}{x}((x+\frac{1}{4}\mp@subsup{x}{}{2}+\frac{1}{18}\mp@subsup{x}{}{3}+\frac{1}{96}\mp@subsup{x}{}{4}+\frac{1}{600}\mp@subsup{x}{}{5}+\textrm{O}(\mp@subsup{x}{}{6}))\mp@subsup{c}{2}{}+(\mp@subsup{c}{2}{}\operatorname{ln}(x)+\mp@subsup{c}{1}{})(1+\textrm{O}(\mp@subsup{x}{}{6})))
```

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 60
AsymptoticDSolveValue [4*x^2*y' $[\mathrm{x}]-4 * \mathrm{x}^{\wedge} 2 * \mathrm{y}$ ' $\left.[\mathrm{x}]+(1+2 * \mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\sqrt{x}\left(\frac{x^{5}}{600}+\frac{x^{4}}{96}+\frac{x^{3}}{18}+\frac{x^{2}}{4}+x\right)+\sqrt{x} \log (x)\right)+c_{1} \sqrt{x}
$$

17.20 problem 21

17.20.1 Maple step by step solution

Internal problem ID [2936]
Internal file name [OUTPUT/2428_Sunday_June_05_2022_03_09_30_AM_49471608/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.4. page 758
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x(3-2 x) y^{\prime}+(1-2 x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(-2 x^{2}+3 x\right) y^{\prime}+(1-2 x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{-3+2 x}{x} \\
& q(x)=-\frac{2 x-1}{x^{2}}
\end{aligned}
$$

Table 450: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{-3+2 x}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{2 x-1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(-2 x^{2}+3 x\right) y^{\prime}+(1-2 x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-2 x^{2}+3 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(1-2 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+3 x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+3 x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+3 x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(r+1)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(r+1)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(r+1)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=-1$, Eqs (1A,1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-1} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-2 a_{n-1}(n+r-1)+3 a_{n}(n+r)+a_{n}-2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}(n+r)}{n^{2}+2 n r+r^{2}+2 n+2 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}(n-1)}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{2 r+2}{(r+2)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{1}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2 r+2}{(r+2)^{2}}$	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4 r+4}{(r+2)(r+3)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{2}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2 r+2}{(r+2)^{2}}$	0
a_{2}	$\frac{4 r+4}{(r+2)(r+3)^{2}}$	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{8 r+8}{(r+2)(r+3)(r+4)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2 r+2}{(r+2)^{2}}$	0
a_{2}	$\frac{4 r+4}{(r+2)(r+3)^{2}}$	0
a_{3}	$\frac{8 r+8}{(r+2)(r+3)(r+4)^{2}}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16 r+16}{(r+2)(r+3)(r+4)(5+r)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2 r+2}{(r+2)^{2}}$	0
a_{2}	$\frac{4 r+4}{(r+2)(r+3)^{2}}$	0
a_{3}	$\frac{8 r+8}{(r+2)(r+3)(r+4)^{2}}$	0
a_{4}	$\frac{16 r+16}{(r+2)(r+3)(r+4)(5+r)^{2}}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{32 r+32}{(r+2)(r+3)(r+4)(5+r)(6+r)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2 r+2}{(r+2)^{2}}$	0
a_{2}	$\frac{4 r+4}{(r+2)(r+3)^{2}}$	0
a_{3}	$\frac{8 r+8}{(r+2)(r+3)(r+4)^{2}}$	0
a_{4}	$\frac{16 r+16}{(r+2)(r+3)(r+4)(5+r)^{2}}$	0
a_{5}	$\frac{32 r+32}{(r+2)(r+3)(r+4)(5+r)(6+r)^{2}}$	0

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\frac{1+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=-1$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=-1)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$\frac{2 r+2}{(r+2)^{2}}$	0	$-\frac{2 r}{(r+2)^{3}}$	2
b_{2}	$\frac{4 r+4}{(r+2)(r+3)^{2}}$	0	$\frac{-8 r^{2}-20 r-4}{(r+2)^{2}(r+3)^{3}}$	1
b_{3}	$\frac{8 r+8}{(r+2)(r+3)(r+4)^{2}}$	0	$\frac{-24 r^{3}-144 r^{2}-232 r-64}{(r+2)^{2}(r+3)^{2}(r+4)^{3}}$	$\frac{4}{9}$
b_{4}	$\frac{16 r+16}{(r+2)(r+3)(r+4)(5+r)^{2}}$	0	$-\frac{32\left(2 r^{4}+21 r^{3}+74 r^{2}+96 r+29\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{3}}$	$\frac{1}{6}$
b_{5}	$\frac{32 r+32}{(r+2)(r+3)(r+4)(5+r)(6+r)^{2}}$	0	$-\frac{32\left(5 r^{5}+80 r^{4}+475 r^{3}+1270 r^{2}+1434 r+444\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(6+r)^{3}}$	$\frac{4}{75}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =\frac{\left(1+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{x^{2}+2 x+\frac{4 x^{3}}{9}+\frac{x^{4}}{6}+\frac{4 x^{5}}{75}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{\left(1+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{x^{2}+2 x+\frac{4 x^{3}}{9}+\frac{x^{4}}{6}+\frac{4 x^{5}}{75}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& =\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{\left(1+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{x^{2}+2 x+\frac{4 x^{3}}{9}+\frac{x^{4}}{6}+\frac{4 x^{5}}{75}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{\left(1+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{x^{2}+2 x+\frac{4 x^{3}}{9}+\frac{x^{4}}{6}+\frac{4 x^{5}}{75}+O\left(x^{6}\right)}{x}\right)(1)
$$

Verification of solutions

$$
y=\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{\left(1+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{x^{2}+2 x+\frac{4 x^{3}}{9}+\frac{x^{4}}{6}+\frac{4 x^{5}}{75}+O\left(x^{6}\right)}{x}\right)
$$

Verified OK.

17.20.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+\left(-2 x^{2}+3 x\right) y^{\prime}+(1-2 x) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=\frac{(2 x-1) y}{x^{2}}+\frac{(-3+2 x) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(-3+2 x) y^{\prime}}{x}-\frac{(2 x-1) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{-3+2 x}{x}, P_{3}(x)=-\frac{2 x-1}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=3$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}-x(-3+2 x) y^{\prime}+(1-2 x) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)^{2}-2 a_{k-1}(k+r)\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation $(1+r)^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=-1
$$

- Each term in the series must be 0, giving the recursion relation
$a_{k}(k+r+1)^{2}-2 a_{k-1}(k+r)=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+2+r)^{2}-2 a_{k}(k+r+1)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{2 a_{k}(k+r+1)}{(k+2+r)^{2}}$
- \quad Recursion relation for $r=-1$
$a_{k+1}=\frac{2 a_{k} k}{(k+1)^{2}}$
- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+1}=\frac{2 a_{k} k}{(k+1)^{2}}\right]
$$

Maple trace Kovacic algorithm successful

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```


Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

```
Order:=6;
dsolve(x^2*diff (y (x), x$2)+x*(3-2*x)*diff (y(x),x)+(1-2*x)*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\frac{\left(2 x+x^{2}+\frac{4}{9} x^{3}+\frac{1}{6} x^{4}+\frac{4}{75} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}+\left(c_{2} \ln (x)+c_{1}\right)\left(1+\mathrm{O}\left(x^{6}\right)\right)}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 52

AsymptoticDSolveValue $\left[\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime} \cdot[\mathrm{x}]+\mathrm{x} *(3-2 * \mathrm{x}) * \mathrm{y}^{\prime}[\mathrm{x}]+(1-2 * \mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{\frac{4 x^{5}}{75}+\frac{x^{4}}{6}+\frac{4 x^{3}}{9}+x^{2}+2 x}{x}+\frac{\log (x)}{x}\right)+\frac{c_{1}}{x}
$$

18 Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page
771
18.1 problem Example 11.5 .2 page 763 3365
18.2 problem Example 11.5.4 page 765 3377
18.3 problem Example 11.5.5 page 768 3388
18.4 problem (a) 3404
18.5 problem (b) 3417
18.6 problem (c) 3432
18.7 problem (d) 3444
18.8 problem (e) 3462
18.9 problem 1 3478
18.10problem 2 3490
18.11problem 3 3502
18.12problem 4 3513
18.13problem 5 3528
18.14problem 6 3543
18.15problem 7 3559
18.16problem 8 3576
18.17problem 11 3587
18.18problem 12 3601
18.19problem 13 3613
18.20problem 14 3628
18.21 problem 15 3642
18.22problem 16 3656
18.23problem 17 3668
18.24problem 18 3679
18.25problem 19 3695
18.26problem 20 3707
18.27problem 21 3721
18.28problem 22 3737
18.29problem 23 3749
18.30problem 24 3764
18.31 problem 25 3778
18.32problem 26 3789
18.33problem 27 3804
18.34problem 28 3820
18.35problem 29 . 3833

18.1 problem Example 11.5.2 page 763

18.1.1 Maple step by step solution . 3373

Internal problem ID [2937]
Internal file name [OUTPUT/2429_Sunday_June_05_2022_03_09_33_AM_65018095/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: Example 11.5.2 page 763.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(-x+4) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(-x^{2}-3 x\right) y^{\prime}+(-x+4) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{x+3}{x} \\
& q(x)=-\frac{x-4}{x^{2}}
\end{aligned}
$$

Table 452: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x+3}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{x-4}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(-x^{2}-3 x\right) y^{\prime}+(-x+4) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-x^{2}-3 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(-x+4)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-3 x^{n+r} a_{n}(n+r)+4 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-3 x^{r} a_{0} r+4 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-3 x^{r} r+4 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(r-2)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(r-2)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(r-2)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=2$, Eqs (1A,1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+2}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)-3 a_{n}(n+r)-a_{n-1}+4 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r)}{n^{2}+2 n r+r^{2}-4 n-4 r+4} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+2)}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{1+r}{(-1+r)^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{1}=3
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1+r}{(-1+r)^{2}}$	3

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{(1+r)(2+r)}{(-1+r)^{2} r^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{2}=3
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1+r}{(-1+r)^{2}}$	3
a_{2}	$\frac{(1+r)(2+r)}{(-1+r)^{2} r^{2}}$	3

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{(2+r)(3+r)}{(1+r)(-1+r)^{2} r^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{3}=\frac{5}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1+r}{(-1+r)^{2}}$	3
a_{2}	$\frac{(1+r)(2+r)}{(-1+r)^{2} r^{2}}$	3
a_{3}	$\frac{(2+r)(3+r)}{(1+r)(-1+r)^{2} r^{2}}$	$\frac{5}{3}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{(3+r)(4+r)}{(1+r)(2+r)(-1+r)^{2} r^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{5}{8}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1+r}{(-1+r)^{2}}$	3
a_{2}	$\frac{(1+r)(2+r)}{(-1+r)^{2} r^{2}}$	3
a_{3}	$\frac{(2+r)(3+r)}{(1+r)(-1+r)^{2} r^{2}}$	$\frac{5}{3}$
a_{4}	$\frac{(3+r)(4+r)}{(1+r)(2+r)(-1+r)^{2} r^{2}}$	$\frac{5}{8}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{(4+r)(5+r)}{(1+r)(2+r)(-1+r)^{2} r^{2}(3+r)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=\frac{7}{40}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1+r}{(-1+r)^{2}}$	3
a_{2}	$\frac{(1+r)(2+r)}{(-1+r)^{2} r^{2}}$	3
a_{3}	$\frac{(2+r)(3+r)}{(1+r)(-1+r)^{2} r^{2}}$	$\frac{5}{3}$
a_{4}	$\frac{(3+r)(4+r)}{(1+r)(2+r)(-1+r)^{2} r^{2}}$	$\frac{5}{8}$
a_{5}	$\frac{(4+r)(5+r)}{(1+r)(2+r)(-1+r)^{2} r^{2}(3+r)}$	$\frac{7}{40}$

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(3 x^{2}+3 x+1+\frac{5 x^{3}}{3}+\frac{5 x^{4}}{8}+\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=2$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=2)$
b_{0}	1	1	$\mathrm{~N} / \mathrm{A}$ since b_{n} starts from 1	N / A
b_{1}	$\frac{1+r}{(-1+r)^{2}}$	3	$\frac{-3-r}{(-1+r)^{3}}$	-5
b_{2}	$\frac{(1+r)(2+r)}{(-1+r)^{2} r^{2}}$	3	$\frac{-2 r^{3}-9 r^{2}-5 r+4}{(-1+r)^{3} r^{3}}$	$-\frac{29}{4}$
b_{3}	$\frac{(2+r)(3+r)}{(1+r)(-1+r)^{2} r^{2}}$	$\frac{5}{3}$	$\frac{-3 r^{4}-21 r^{3}-35 r^{2}-r+12}{(1+r)^{2}(-1+r)^{3} r^{3}}$	$-\frac{173}{36}$
b_{4}	$\frac{(3+r)(4+r)}{(1+r)(2+r)(-1+r)^{2} r^{2}}$	$\frac{5}{8}$	$\frac{-4 r^{5}-42 r^{4}-136 r^{3}-132 r^{2}+26 r+48}{(1+r)^{2}(2+r)^{2}(-1+r)^{3} r^{3}}$	$-\frac{193}{96}$
b_{5}	$\frac{(4+r)(5+r)}{(1+r)(2+r)(-1+r)^{2} r^{2}(3+r)}$	$\frac{7}{40}$	$\frac{-5 r^{6}-75 r^{5}-395 r^{4}-855 r^{3}-584 r^{2}+234 r+240}{(1+r)^{2}(2+r)^{2}(-1+r)^{3} r^{3}(3+r)^{2}}$	$-\frac{1459}{2400}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & x^{2}\left(3 x^{2}+3 x+1+\frac{5 x^{3}}{3}+\frac{5 x^{4}}{8}+\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right) \ln (x) \\
& +x^{2}\left(-5 x-\frac{29 x^{2}}{4}-\frac{173 x^{3}}{36}-\frac{193 x^{4}}{96}-\frac{1459 x^{5}}{2400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(3 x^{2}+3 x+1+\frac{5 x^{3}}{3}+\frac{5 x^{4}}{8}+\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(3 x^{2}+3 x+1+\frac{5 x^{3}}{3}+\frac{5 x^{4}}{8}+\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.\quad+x^{2}\left(-5 x-\frac{29 x^{2}}{4}-\frac{173 x^{3}}{36}-\frac{193 x^{4}}{96}-\frac{1459 x^{5}}{2400}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(3 x^{2}+3 x+1+\frac{5 x^{3}}{3}+\frac{5 x^{4}}{8}+\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(3 x^{2}+3 x+1+\frac{5 x^{3}}{3}+\frac{5 x^{4}}{8}+\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.\quad+x^{2}\left(-5 x-\frac{29 x^{2}}{4}-\frac{173 x^{3}}{36}-\frac{193 x^{4}}{96}-\frac{1459 x^{5}}{2400}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{2}\left(3 x^{2}+3 x+1+\frac{5 x^{3}}{3}+\frac{5 x^{4}}{8}+\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(3 x^{2}+3 x+1+\frac{5 x^{3}}{3}+\frac{5 x^{4}}{8}+\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right) \ln (x)\right. \tag{1}\\
& \left.\quad+x^{2}\left(-5 x-\frac{29 x^{2}}{4}-\frac{173 x^{3}}{36}-\frac{193 x^{4}}{96}-\frac{1459 x^{5}}{2400}+O\left(x^{6}\right)\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{2}\left(3 x^{2}+3 x+1+\frac{5 x^{3}}{3}+\frac{5 x^{4}}{8}+\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(3 x^{2}+3 x+1+\frac{5 x^{3}}{3}+\frac{5 x^{4}}{8}+\frac{7 x^{5}}{40}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.\quad+x^{2}\left(-5 x-\frac{29 x^{2}}{4}-\frac{173 x^{3}}{36}-\frac{193 x^{4}}{96}-\frac{1459 x^{5}}{2400}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Verified OK.

18.1.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\left(-x^{2}-3 x\right) y^{\prime}+(-x+4) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{(x-4) y}{x^{2}}+\frac{(x+3) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(x+3) y^{\prime}}{x}-\frac{(x-4) y}{x^{2}}=0$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions
$\left[P_{2}(x)=-\frac{x+3}{x}, P_{3}(x)=-\frac{x-4}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-3$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=4$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+(-x+4) y=0
$$

- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(-2+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r-2)^{2}-a_{k-1}(k+r)\right) x^{k+r}\right)=0$

- a_{0} cannot be 0 by assumption, giving the indicial equation $(-2+r)^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=2
$$

- Each term in the series must be 0 , giving the recursion relation

$$
a_{k}(k+r-2)^{2}-a_{k-1}(k+r)=0
$$

- \quad Shift index using $k->k+1$

$$
a_{k+1}(k+r-1)^{2}-a_{k}(k+r+1)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}(k+r+1)}{(k+r-1)^{2}}
$$

- Recursion relation for $r=2$

$$
a_{k+1}=\frac{a_{k}(k+3)}{(k+1)^{2}}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=\frac{a_{k}(k+3)}{(k+1)^{2}}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 69

```
Order:=6;
dsolve(x^2*diff (y (x),x$2)-x*(3+x)*diff (y(x),x)+(4-x)*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
& y(x)=\left(\left((-5) x-\frac{29}{4} x^{2}-\frac{173}{36} x^{3}-\frac{193}{96} x^{4}-\frac{1459}{2400} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}\right. \\
&\left.+\left(1+3 x+3 x^{2}+\frac{5}{3} x^{3}+\frac{5}{8} x^{4}+\frac{7}{40} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\left(c_{2} \ln (x)+c_{1}\right)\right) x^{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 118
AsymptoticDSolveValue [x^2*y' ' $[x]-x *(3+x) * y$ ' $[x]+(4-x) * y[x]==0, y[x],\{x, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{7 x^{5}}{40}+\frac{5 x^{4}}{8}+\frac{5 x^{3}}{3}+3 x^{2}+3 x+1\right) x^{2} \\
+ & c_{2}\left(\left(-\frac{1459 x^{5}}{2400}-\frac{193 x^{4}}{96}-\frac{173 x^{3}}{36}-\frac{29 x^{2}}{4}-5 x\right) x^{2}\right. \\
& \left.+\left(\frac{7 x^{5}}{40}+\frac{5 x^{4}}{8}+\frac{5 x^{3}}{3}+3 x^{2}+3 x+1\right) x^{2} \log (x)\right)
\end{aligned}
$$

18.2 problem Example 11.5.4 page 765

18.2.1 Maple step by step solution . 3385

Internal problem ID [2938]
Internal file name [OUTPUT/2430_Sunday_June_05_2022_03_09_37_AM_63942638/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: Example 11.5.4 page 765.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x(-x+3) y^{\prime}+y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+3 x\right) y^{\prime}+y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{x-3}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Table 454: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x-3}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+3 x\right) y^{\prime}+y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-x^{2}+3 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right)=\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+3 x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+3 x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+3 x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(r+1)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(r+1)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(r+1)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=-1$, Eqs (1A, 1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-1} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+3 a_{n}(n+r)+a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}+2 n+2 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n-2)}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{r}{(r+2)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{1}=-1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(r+2)^{2}}$	-1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{r(r+1)}{(r+2)^{2}(r+3)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{2}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(r+2)^{2}}$	-1
a_{2}	$\frac{r(r+1)}{(r+2)^{2}(r+3)^{2}}$	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{r(r+1)}{(r+2)(r+3)^{2}(r+4)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(r+2)^{2}}$	-1
a_{2}	$\frac{r(r+1)}{(r+2)^{2}(r+3)^{2}}$	0
a_{3}	$\frac{r(r+1)}{(r+2)(r+3)^{2}(r+4)^{2}}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{r(r+1)}{(r+2)(r+3)(r+4)^{2}(5+r)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(r+2)^{2}}$	-1
a_{2}	$\frac{r(r+1)}{(r+2)^{2}(r+3)^{2}}$	0
a_{3}	$\frac{r(r+1)}{(r+2)(r+3)^{2}(r+4)^{2}}$	0
a_{4}	$\frac{r(r+1)}{(r+2)(r+3)(r+4)^{2}(5+r)^{2}}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{r(r+1)}{(r+2)(r+3)(r+4)(5+r)^{2}(6+r)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(r+2)^{2}}$	-1
a_{2}	$\frac{r(r+1)}{(r+2)^{2}(r+3)^{2}}$	0
a_{3}	$\frac{r(r+1)}{(r+2)(r+3)^{2}(r+4)^{2}}$	0
a_{4}	$\frac{r(r+1)}{(r+2)(r+3)(r+4)^{2}(5+r)^{2}}$	0
a_{5}	$\frac{r(r+1)}{(r+2)(r+3)(r+4)(5+r)^{2}(6+r)^{2}}$	0

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\frac{1-x+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=-1$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=-1)$
b_{0}	1	1	$\mathrm{~N} / \mathrm{A}$ since b_{n} starts from 1	N / A
b_{1}	$\frac{r}{(r+2)^{2}}$	-1	$\frac{-r+2}{(r+2)^{3}}$	3
b_{2}	$\frac{r(r+1)}{(r+2)^{2}(r+3)^{2}}$	0	$\frac{-2 r^{3}-3 r^{2}+7 r+6}{(r+2)^{3}(r+3)^{3}}$	$-\frac{1}{4}$
b_{3}	$\frac{r(r+1)}{(r+2)(r+3)^{2}(r+4)^{2}}$	0	$\frac{-3 r^{4}-15 r^{3}-8 r^{2}+34 r+24}{(r+2)^{2}(r+3)^{3}(r+4)^{3}}$	$-\frac{1}{36}$
b_{4}	$\frac{r(r+1)}{(r+2)(r+3)(r+4)^{2}(5+r)^{2}}$	0	$\frac{-4 r^{5}-38 r^{4}-104 r^{3}-28 r^{2}+186 r+120}{(r+2)^{2}(r+3)^{2}(r+4)^{3}(5+r)^{3}}$	$-\frac{1}{288}$
b_{5}	$\frac{r(r+1)}{(r+2)(r+3)(r+4)(5+r)^{2}(6+r)^{2}}$	0	$\frac{-5 r^{6}-75 r^{5}-395 r^{4}-795 r^{3}-134 r^{2}+1176 r+720}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{3}(6+r)^{3}}$	$-\frac{1}{2400}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =\frac{\left(1-x+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{3 x-\frac{x^{2}}{4}-\frac{x^{3}}{36}-\frac{x^{4}}{288}-\frac{x^{5}}{2400}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{c_{1}\left(1-x+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{\left(1-x+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{3 x-\frac{x^{2}}{4}-\frac{x^{3}}{36}-\frac{x^{4}}{288}-\frac{x^{5}}{2400}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Hence the final solution is

$$
y=y_{h}
$$

$$
=\frac{c_{1}\left(1-x+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{\left(1-x+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{3 x-\frac{x^{2}}{4}-\frac{x^{3}}{36}-\frac{x^{4}}{288}-\frac{x^{5}}{2400}+O\left(x^{6}\right)}{x}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{c_{1}\left(1-x+O\left(x^{6}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(1-x+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{3 x-\frac{x^{2}}{4}-\frac{x^{3}}{36}-\frac{x^{4}}{288}-\frac{x^{5}}{2400}+O\left(x^{6}\right)}{x}\right) \tag{1}
\end{align*}
$$

Verification of solutions

$y=\frac{c_{1}\left(1-x+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{\left(1-x+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{3 x-\frac{x^{2}}{4}-\frac{x^{3}}{36}-\frac{x^{4}}{288}-\frac{x^{5}}{2400}+O\left(x^{6}\right)}{x}\right)$
Verified OK.

18.2.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+\left(-x^{2}+3 x\right) y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y}{x^{2}}+\frac{(x-3) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(x-3) y^{\prime}}{x}+\frac{y}{x^{2}}=0$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions
$\left[P_{2}(x)=-\frac{x-3}{x}, P_{3}(x)=\frac{1}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=3$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}-x(x-3) y^{\prime}+y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)^{2}-a_{k-1}(k+r-1)\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=-1
$$

- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)^{2}-a_{k-1}(k+r-1)=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+2+r)^{2}-a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r)}{(k+2+r)^{2}}$
- Recursion relation for $r=-1$; series terminates at $k=1$
$a_{k+1}=\frac{a_{k}(k-1)}{(k+1)^{2}}$
- Apply recursion relation for $k=0$
$a_{1}=-a_{0}$
- Terminating series solution of the ODE for $r=-1$. Use reduction of order to find the second $y=a_{0} \cdot(1-x)$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 53

```
Order:=6;
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x$2)+x*(3-x)*\operatorname{diff}(y(x),x)+y(x)=0,y(x),type='series', x=0)
```

$$
\begin{aligned}
& y(x) \\
& =\frac{\left(3 x-\frac{1}{4} x^{2}-\frac{1}{36} x^{3}-\frac{1}{288} x^{4}-\frac{1}{2400} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}+\left(c_{2} \ln (x)+c_{1}\right)\left(1-x+\mathrm{O}\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 66
AsymptoticDSolveValue $\left[\mathrm{x} \wedge 2 * \mathrm{y}\right.$ ' $\left.{ }^{[\mathrm{x}}\right]+\mathrm{x} *(3-\mathrm{x}) * \mathrm{y}$ ' $\left.[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{-\frac{x^{5}}{2400}-\frac{x^{4}}{288}-\frac{x^{3}}{36}-\frac{x^{2}}{4}+3 x}{x}+\frac{(1-x) \log (x)}{x}\right)+\frac{c_{1}(1-x)}{x}
$$

18.3 problem Example 11.5.5 page 768

18.3.1 Maple step by step solution . 3400

Internal problem ID [2939]
Internal file name [OUTPUT/2431_Sunday_June_05_2022_03_09_40_AM_25398422/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: Example 11.5.5 page 768.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x y^{\prime}-(x+4) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(-x-4) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{x+4}{x^{2}}
\end{aligned}
$$

Table 456: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{x+4}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(-x-4) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(-x-4)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~B}\\
& +\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-4 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-4 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-4 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-4\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-4=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=-2
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-4\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=4$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{2}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)-a_{n-1}-4 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}+2 n r+r^{2}-4} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n(n+4)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{1}{r^{2}+2 r-3}
$$

Which for the root $r=2$ becomes

$$
a_{1}=\frac{1}{5}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r-3}$	$\frac{1}{5}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{(r+3)(-1+r) r(r+4)}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{1}{60}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r-3}$	$\frac{1}{5}$
a_{2}	$\frac{1}{(r+3)(-1+r) r(r+4)}$	$\frac{1}{60}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{1}{(r+3)(-1+r) r(r+4)(5+r)(r+1)}
$$

Which for the root $r=2$ becomes

$$
a_{3}=\frac{1}{1260}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r-3}$	$\frac{1}{5}$
a_{2}	$\frac{1}{(r+3)(-1+r) r(r+4)}$	$\frac{1}{60}$
a_{3}	$\frac{1}{(r+3)(-1+r) r(r+4)(5+r)(r+1)}$	$\frac{1}{1260}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(r+3) r(r+4)(5+r)\left(r^{2}+8 r+12\right)\left(r^{2}-1\right)}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{1}{40320}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r-3}$	$\frac{1}{5}$
a_{2}	$\frac{1}{(r+3)(-1+r) r(r+4)}$	$\frac{1}{60}$
a_{3}	$\frac{1}{(r+3)(-1+r) r(r+4)(5+r)(r+1)}$	$\frac{1}{1260}$
a_{4}	$\frac{1}{(r+3) r(r+4)(5+r)\left(r^{2}+8 r+12\right)\left(r^{2}-1\right)}$	$\frac{1}{40320}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{1}{(r+3)^{2} r(r+4)(5+r)(6+r)(r+2)(-1+r)(r+1)(r+7)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=\frac{1}{1814400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+2 r-3}$	$\frac{1}{5}$
a_{2}	$\frac{1}{(r+3)(-1+r) r(r+4)}$	$\frac{1}{60}$
a_{3}	$\frac{1}{(r+3)(-1+r) r(r+4)(5+r)(r+1)}$	$\frac{1}{1260}$
a_{4}	$\frac{1}{(r+3) r(r+4)(5+r)\left(r^{2}+8 r+12\right)\left(r^{2}-1\right)}$	$\frac{1}{40320}$
a_{5}	$\frac{1}{(r+3)^{2} r(r+4)(5+r)(6+r)(r+2)(-1+r)(r+1)(r+7)}$	$\frac{1}{1814400}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1+\frac{x}{5}+\frac{x^{2}}{60}+\frac{x^{3}}{1260}+\frac{x^{4}}{40320}+\frac{x^{5}}{1814400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=4$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{4}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{4} \\
& =\frac{1}{(r+3) r(r+4)(5+r)\left(r^{2}+8 r+12\right)\left(r^{2}-1\right)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1}{(r+3) r(r+4)(5+r)\left(r^{2}+8 r+12\right)\left(r^{2}-1\right)} & =\lim _{r \rightarrow-2} \frac{1}{(r+3) r(r+4)(5+r)\left(r^{2}+8 r+12\right)\left(r^{2}-1\right.} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+x y^{\prime}+(-x-4) y=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +x\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +(-x-4)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x+(-x-4) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right. \\
& \left.+y_{1}(x)\right) C+x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(-x-4)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x+(-x-4) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(-x-4)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+2 x\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) C \tag{9}\\
& +\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x-(x+4)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=2$ and $r_{2}=-2$ then the above becomes

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{-4+n} b_{n}(n-2)(-3+n)\right) x^{2}+2 x\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}(n+2)\right) C \tag{10}\\
& +\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-2)\right) x-(x+4)\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right)+\left(\sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(n+2)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}(n-2)\right)+\sum_{n=0}^{\infty}\left(-x^{n-1} b_{n}\right)+\sum_{n=0}^{\infty}\left(-4 b_{n} x^{n-2}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-2$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-2} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(n+2) & =\sum_{n=4}^{\infty} 2 C a_{-4+n}(n-2) x^{n-2} \\
\sum_{n=0}^{\infty}\left(-x^{n-1} b_{n}\right) & =\sum_{n=1}^{\infty}\left(-b_{n-1} x^{n-2}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-2$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right)+\left(\sum_{n=4}^{\infty} 2 C a_{-4+n}(n-2) x^{n-2}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}(n-2)\right)+\sum_{n=1}^{\infty}\left(-b_{n-1} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-4 b_{n} x^{n-2}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
-3 b_{1}-b_{0}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-3 b_{1}-1=0
$$

Solving the above for b_{1} gives

$$
b_{1}=-\frac{1}{3}
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
-b_{1}-4 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{1}{3}-4 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=\frac{1}{12}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
-3 b_{3}-b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-3 b_{3}-\frac{1}{12}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=-\frac{1}{36}
$$

For $n=N$, where $N=4$ which is the difference between the two roots, we are free to choose $b_{4}=0$. Hence for $n=4$, Eq (2B) gives

$$
4 C+\frac{1}{36}=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{1}{144}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
6 C a_{1}-b_{4}+5 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
5 b_{5}-\frac{1}{120}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{1}{600}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{1}{144}$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & -\frac{1}{144}\left(x^{2}\left(1+\frac{x}{5}+\frac{x^{2}}{60}+\frac{x^{3}}{1260}+\frac{x^{4}}{40320}+\frac{x^{5}}{1814400}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +\frac{1-\frac{x}{3}+\frac{x^{2}}{12}-\frac{x^{3}}{36}+\frac{x^{5}}{600}+O\left(x^{6}\right)}{x^{2}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(1+\frac{x}{5}+\frac{x^{2}}{60}+\frac{x^{3}}{1260}+\frac{x^{4}}{40320}+\frac{x^{5}}{1814400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{1}{144}\left(x^{2}\left(1+\frac{x}{5}+\frac{x^{2}}{60}+\frac{x^{3}}{1260}+\frac{x^{4}}{40320}+\frac{x^{5}}{1814400}+O\left(x^{6}\right)\right)\right) \ln (x)\right. \\
& \left.+\frac{1-\frac{x}{3}+\frac{x^{2}}{12}-\frac{x^{3}}{36}+\frac{x^{5}}{600}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(1+\frac{x}{5}+\frac{x^{2}}{60}+\frac{x^{3}}{1260}+\frac{x^{4}}{40320}+\frac{x^{5}}{1814400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{2}\left(1+\frac{x}{5}+\frac{x^{2}}{60}+\frac{x^{3}}{1260}+\frac{x^{4}}{40320}+\frac{x^{5}}{1814400}+O\left(x^{6}\right)\right) \ln (x)}{144}\right. \\
& \left.+\frac{1-\frac{x}{3}+\frac{x^{2}}{12}-\frac{x^{3}}{36}+\frac{x^{5}}{600}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\left.\begin{array}{rl}
y= & c_{1} x^{2}\left(1+\frac{x}{5}+\frac{x^{2}}{60}+\frac{x^{3}}{1260}+\frac{x^{4}}{40320}\right.
\end{array}+\frac{x^{5}}{1814400}+O\left(x^{6}\right)\right), ~(1) ~ 子 x_{2}\left(-\frac{x^{2}\left(1+\frac{x}{5}+\frac{x^{2}}{60}+\frac{x^{3}}{1260}+\frac{x^{4}}{40320}+\frac{x^{5}}{1814400}+O\left(x^{6}\right)\right) \ln (x)}{144}\right)
$$

Verification of solutions

$$
\begin{aligned}
& y=c_{1} x^{2}\left(1+\frac{x}{5}+\frac{x^{2}}{60}+\frac{x^{3}}{1260}+\frac{x^{4}}{40320}+\frac{x^{5}}{1814400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{2}\left(1+\frac{x}{5}+\frac{x^{2}}{60}+\frac{x^{3}}{1260}+\frac{x^{4}}{40320}+\frac{x^{5}}{1814400}+O\left(x^{6}\right)\right) \ln (x)}{144}\right. \\
& \left.+\frac{1-\frac{x}{3}+\frac{x^{2}}{12}-\frac{x^{3}}{36}+\frac{x^{5}}{600}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Verified OK.

18.3.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(-x-4) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{(x+4) y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{(x+4) y}{x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{x+4}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-4$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(-x-4) y=0
$$

- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(2+r)(-2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+2)(k+r-2)-a_{k-1}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(2+r)(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-2,2\}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+2)(k+r-2)-a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+3+r)(k+r-1)-a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}}{(k+3+r)(k+r-1)}
$$

- \quad Recursion relation for $r=-2$

$$
a_{k+1}=\frac{a_{k}}{(k+1)(k-3)}
$$

- Series not valid for $r=-2$, division by 0 in the recursion relation at $k=3$

$$
a_{k+1}=\frac{a_{k}}{(k+1)(k-3)}
$$

- Recursion relation for $r=2$

$$
a_{k+1}=\frac{a_{k}}{(k+5)(k+1)}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=\frac{a_{k}}{(k+5)(k+1)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 61

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-(4+x)*y(x)=0,y(x),type='series',x=0);
```

$y(x)$
$=\frac{c_{1} x^{4}\left(1+\frac{1}{5} x+\frac{1}{60} x^{2}+\frac{1}{1260} x^{3}+\frac{1}{40320} x^{4}+\frac{1}{1814400} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(\ln (x)\left(x^{4}+\frac{1}{5} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+(-144-\right.}{x^{2}}$
\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 77
AsymptoticDSolveValue $[\mathrm{x} \wedge 2 * \mathrm{y}$ ' $\quad[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]-(4+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{x^{4}-16 x^{3}+48 x^{2}-192 x+576}{576 x^{2}}-\frac{1}{144} x^{2} \log (x)\right) \\
& +c_{2}\left(\frac{x^{6}}{40320}+\frac{x^{5}}{1260}+\frac{x^{4}}{60}+\frac{x^{3}}{5}+x^{2}\right)
\end{aligned}
$$

18.4 problem (a)

18.4.1 Maple step by step solution . 3412

Internal problem ID [2940]
Internal file name [OUTPUT/2432_Sunday_June_05_2022_03_09_46_AM_34906402/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: (a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-\left(-x^{2}+x\right) y^{\prime}+\left(x^{3}+1\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+\left(x^{3}+1\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{x-1}{x} \\
& q(x)=\frac{x^{3}+1}{x^{2}}
\end{aligned}
$$

Table 458: Table $p(x), q(x)$ singularites.

$p(x)=\frac{x-1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{x^{3}+1}{x^{2}}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"
$x=-\infty$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty,-\infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+\left(x^{3}+1\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(x^{2}-x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{3}+1\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} x^{n+r+3} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} x^{n+r+3} a_{n} & =\sum_{n=3}^{\infty} a_{n-3} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=3}^{\infty} a_{n-3} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(-1+r)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(-1+r)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(-1+r)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=1$, Eqs (1A, 1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{1+n}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=-\frac{1}{r}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{1}{(1+r) r}
$$

For $3 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)-a_{n}(n+r)+a_{n-3}+a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{n a_{n-1}+r a_{n-1}+a_{n-3}-a_{n-1}}{n^{2}+2 n r+r^{2}-2 n-2 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=\frac{-n a_{n-1}-a_{n-3}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r}$	-1
a_{2}	$\frac{1}{(1+r) r}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{-r^{2}-2 r-2}{(1+r) r(2+r)^{2}}
$$

Which for the root $r=1$ becomes

$$
a_{3}=-\frac{5}{18}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r}$	-1
a_{2}	$\frac{1}{(1+r) r}$	$\frac{1}{2}$
a_{3}	$\frac{-r^{2}-2 r-2}{(1+r) r(2+r)^{2}}$	$-\frac{5}{18}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{2 r^{3}+10 r^{2}+16 r+10}{(1+r) r(2+r)^{2}(r+3)^{2}}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{19}{144}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r}$	-1
a_{2}	$\frac{1}{(1+r) r}$	$\frac{1}{2}$
a_{3}	$\frac{-r^{2}-2 r-2}{(1+r) r(2+r)^{2}}$	$-\frac{5}{18}$
a_{4}	$\frac{2 r^{3}+10 r^{2}+16 r+10}{(1+r) r(2+r)^{2}(r+3)^{2}}$	$\frac{19}{144}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{-3 r^{4}-28 r^{3}-93 r^{2}-134 r-76}{(1+r) r(2+r)^{2}(r+3)^{2}(r+4)^{2}}
$$

Which for the root $r=1$ becomes

$$
a_{5}=-\frac{167}{3600}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r}$	-1
a_{2}	$\frac{1}{(1+r) r}$	$\frac{1}{2}$
a_{3}	$\frac{-r^{2}-2 r-2}{(1+r) r(2+r)^{2}}$	$-\frac{5}{18}$
a_{4}	$\frac{2 r^{3}+10 r^{2}+16 r+10}{(1+r) r(2+r)^{2}(r+3)^{2}}$	$\frac{19}{144}$
a_{5}	$\frac{-3 r^{4}-28 r^{3}-93 r^{2}-134 r-76}{(1+r) r(2+r)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{167}{3600}$

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1-x+\frac{x^{2}}{2}-\frac{5 x^{3}}{18}+\frac{19 x^{4}}{144}-\frac{167 x^{5}}{3600}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=1$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=1)$
b_{0}	1	1	N/A since b_{n} starts from 1	$\mathrm{~N} / \mathrm{A}$
b_{1}	$-\frac{1}{r}$	-1	$\frac{1}{r^{2}}$	1
b_{2}	$\frac{1}{(1+r) r}$	$\frac{1}{2}$	$\frac{-2 r-1}{(1+)^{2} r^{2}}$	$-\frac{3}{4}$
b_{3}	$\frac{-r^{2}-2 r-2}{(1+r) r(2+r)^{2}}$	$-\frac{5}{18}$	$\frac{2 r^{4}+7 r^{3}+14 r^{2}+14 r+4}{(1+r)^{2} r^{2}(2+r)^{3}}$	$\frac{41}{108}$
b_{4}	$\frac{2 r^{3}+10 r^{2}+16 r+10}{(1+r) r(2+r)^{2}(r+3)^{2}}$	$\frac{19}{144}$	$\frac{-6 r^{6}-54 r^{5}-19 r^{4}-390 r^{3}-446 r^{2}-270 r-60}{(1+r)^{2} r^{2}(2+r)^{3}(r+3)^{3}}$	$-\frac{89}{432}$
b_{5}	$\frac{-3 r^{4}-28 r^{3}-93 r^{2}-134 r-76}{(1+r) r(2+r)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{167}{3600}$	$\frac{12 r^{8}+203 r^{7}+1453 r^{6}+5761 r^{5}+3901 r^{4}+20986 r^{3}+19276 r^{2}+9576 r+1824}{(1+r)^{2} r^{2}(2+r)^{3}(r+3)^{3}(r+4)^{3}}$	$\frac{2281}{27000}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & x\left(1-x+\frac{x^{2}}{2}-\frac{5 x^{3}}{18}+\frac{19 x^{4}}{144}-\frac{167 x^{5}}{3600}+O\left(x^{6}\right)\right) \ln (x) \\
& +x\left(x-\frac{3 x^{2}}{4}+\frac{41 x^{3}}{108}-\frac{89 x^{4}}{432}+\frac{2281 x^{5}}{27000}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-x+\frac{x^{2}}{2}-\frac{5 x^{3}}{18}+\frac{19 x^{4}}{144}-\frac{167 x^{5}}{3600}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1-x+\frac{x^{2}}{2}-\frac{5 x^{3}}{18}+\frac{19 x^{4}}{144}-\frac{167 x^{5}}{3600}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+x\left(x-\frac{3 x^{2}}{4}+\frac{41 x^{3}}{108}-\frac{89 x^{4}}{432}+\frac{2281 x^{5}}{27000}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& \begin{aligned}
= & c_{1} x\left(1-x+\frac{x^{2}}{2}-\frac{5 x^{3}}{18}+\frac{19 x^{4}}{144}-\frac{167 x^{5}}{3600}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1-x+\frac{x^{2}}{2}-\frac{5 x^{3}}{18}+\frac{19 x^{4}}{144}-\frac{167 x^{5}}{3600}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+x\left(x-\frac{3 x^{2}}{4}+\frac{41 x^{3}}{108}-\frac{89 x^{4}}{432}+\frac{2281 x^{5}}{27000}+O\left(x^{6}\right)\right)\right)
\end{aligned}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x\left(1-x+\frac{x^{2}}{2}-\frac{5 x^{3}}{18}+\frac{19 x^{4}}{144}-\frac{167 x^{5}}{3600}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1-x+\frac{x^{2}}{2}-\frac{5 x^{3}}{18}+\frac{19 x^{4}}{144}-\frac{167 x^{5}}{3600}+O\left(x^{6}\right)\right) \ln (x)\right. \tag{1}\\
& \left.+x\left(x-\frac{3 x^{2}}{4}+\frac{41 x^{3}}{108}-\frac{89 x^{4}}{432}+\frac{2281 x^{5}}{27000}+O\left(x^{6}\right)\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1-x+\frac{x^{2}}{2}-\frac{5 x^{3}}{18}+\frac{19 x^{4}}{144}-\frac{167 x^{5}}{3600}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1-x+\frac{x^{2}}{2}-\frac{5 x^{3}}{18}+\frac{19 x^{4}}{144}-\frac{167 x^{5}}{3600}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+x\left(x-\frac{3 x^{2}}{4}+\frac{41 x^{3}}{108}-\frac{89 x^{4}}{432}+\frac{2281 x^{5}}{27000}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Verified OK.

18.4.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+\left(x^{3}+1\right) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=-\frac{\left(x^{3}+1\right) y}{x^{2}}-\frac{(x-1) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{(x-1) y^{\prime}}{x}+\frac{\left(x^{3}+1\right) y}{x^{2}}=0$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions
$\left[P_{2}(x)=\frac{x-1}{x}, P_{3}(x)=\frac{x^{3}+1}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}+x(x-1) y^{\prime}+\left(x^{3}+1\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .3$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(-1+r)^{2} x^{r}+\left(a_{1} r^{2}+a_{0} r\right) x^{1+r}+\left(a_{2}(1+r)^{2}+a_{1}(1+r)\right) x^{2+r}+\left(\sum_{k=3}^{\infty}\left(a_{k}(k+r-1)^{2}+a_{k}-\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(-1+r)^{2}=0$
- Values of r that satisfy the indicial equation
$r=1$
- \quad The coefficients of each power of x must be 0

$$
\left[a_{1} r^{2}+a_{0} r=0, a_{2}(1+r)^{2}+a_{1}(1+r)=0\right]
$$

- \quad Solve for the dependent coefficient(s)
$\left\{a_{1}=-\frac{a_{0}}{r}, a_{2}=\frac{a_{0}}{r(1+r)}\right\}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r-1)^{2}+a_{k-1}(k+r-1)+a_{k-3}=0$
- \quad Shift index using $k->k+3$
$a_{k+3}(k+2+r)^{2}+a_{k+2}(k+2+r)+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+3}=-\frac{k a_{k+2}+r a_{k+2}+a_{k}+2 a_{k+2}}{(k+2+r)^{2}}$
- Recursion relation for $r=1$
$a_{k+3}=-\frac{k a_{k+2}+a_{k}+3 a_{k+2}}{(k+3)^{2}}$
- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+3}=-\frac{k a_{k+2}+a_{k}+3 a_{k+2}}{(k+3)^{2}}, a_{1}=-a_{0}, a_{2}=\frac{a_{0}}{2}\right]
$$

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
```

 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
 trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ${ }^{3} \mathbb{D E}_{1} 5^{\text {with }}$ constant coefficients
trying to convert to an ODE of Bessel type
trying to convert to an ODE of Bessel type
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 63

```
Order:=6;
dsolve(x^2*diff (y (x),x$2)-(x-x^2)*diff (y(x),x)+(1+x^3)*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & (\\
& \left(x-\frac{3}{4} x^{2}+\frac{41}{108} x^{3}-\frac{89}{432} x^{4}+\frac{2281}{27000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2} \\
& \left.+\left(1-x+\frac{1}{2} x^{2}-\frac{5}{18} x^{3}+\frac{19}{144} x^{4}-\frac{167}{3600} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\left(c_{2} \ln (x)+c_{1}\right)\right) x
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 114
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' ' $\left.[x]-\left(x-x^{\wedge} 2\right) * y '[x]+\left(1+x^{\wedge} 3\right) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x\left(-\frac{167 x^{5}}{3600}+\frac{19 x^{4}}{144}-\frac{5 x^{3}}{18}+\frac{x^{2}}{2}-x+1\right) \\
& +c_{2}\left(x\left(\frac{2281 x^{5}}{27000}-\frac{89 x^{4}}{432}+\frac{41 x^{3}}{108}-\frac{3 x^{2}}{4}+x\right)\right. \\
& \left.\quad+x\left(-\frac{167 x^{5}}{3600}+\frac{19 x^{4}}{144}-\frac{5 x^{3}}{18}+\frac{x^{2}}{2}-x+1\right) \log (x)\right)
\end{aligned}
$$

18.5 problem (b)

18.5.1 Maple step by step solution

3428
Internal problem ID [2941]
Internal file name [OUTPUT/2433_Sunday_June_05_2022_03_09_50_AM_7140631/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: (b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-(-1+2 \sqrt{5}) x y^{\prime}+\left(\frac{19}{4}-3 x^{2}\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x(1-2 \sqrt{5}) y^{\prime}+\left(\frac{19}{4}-3 x^{2}\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{-1+2 \sqrt{5}}{x} \\
& q(x)=-\frac{12 x^{2}-19}{4 x^{2}}
\end{aligned}
$$

Table 460: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{-1+2 \sqrt{5}}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{12 x^{2}-19}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x(1-2 \sqrt{5}) y^{\prime}+\left(\frac{19}{4}-3 x^{2}\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x(1-2 \sqrt{5})\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\frac{19}{4}-3 x^{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-(-1+2 \sqrt{5}) x^{n} x^{r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} \frac{19 a_{n} x^{n+r}}{4}\right)+\sum_{n=0}^{\infty}\left(-3 x^{n+r+2} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-3 x^{n+r+2} a_{n}\right)=\sum_{n=2}^{\infty}\left(-3 a_{n-2} x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-(-1+2 \sqrt{5}) x^{n} x^{r} a_{n}(n+r)\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} \frac{19 a_{n} x^{n+r}}{4}\right)+\sum_{n=2}^{\infty}\left(-3 a_{n-2} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)(1-2 \sqrt{5})+\frac{19 a_{n} x^{n+r}}{4}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r(1-2 \sqrt{5})+\frac{19 a_{0} x^{r}}{4}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r(1-2 \sqrt{5})+\frac{19 x^{r}}{4}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-2 r \sqrt{5}+\frac{19}{4}\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-2 r \sqrt{5}+\frac{19}{4}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2}+\sqrt{5} \\
& r_{2}=-\frac{1}{2}+\sqrt{5}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-2 r \sqrt{5}+\frac{19}{4}\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{\frac{1}{2}+\sqrt{5}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{-\frac{1}{2}+\sqrt{5}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}+\sqrt{5}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}+\sqrt{5}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(1-2 \sqrt{5})(n+r)+\frac{19 a_{n}}{4}-3 a_{n-2}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{12 a_{n-2}}{-19+8 \sqrt{5} n+8 r \sqrt{5}-4 n^{2}-8 n r-4 r^{2}} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}+\sqrt{5}$ becomes

$$
\begin{equation*}
a_{n}=\frac{3 a_{n-2}}{n(n+1)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}+\sqrt{5}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{12}{(-8 r-16) \sqrt{5}+4 r^{2}+16 r+35}
$$

Which for the root $r=\frac{1}{2}+\sqrt{5}$ becomes

$$
a_{2}=\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{12}{(-8 r-16) \sqrt{5}+4 r^{2}+16 r+35}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{12}{(-8 r-16) \sqrt{ } 5}+4 r^{2}+16 r+35$	$\frac{1}{2}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{144}{\left(-64 r^{3}-576 r^{2}-1968 r-2448\right) \sqrt{5}+16 r^{4}+192 r^{3}+1304 r^{2}+4368 r+5465}
$$

Which for the root $r=\frac{1}{2}+\sqrt{5}$ becomes

$$
a_{4}=\frac{3}{40}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{12}{(-8 r-16) \sqrt{5}+4 r^{2}+16 r+35}$	$\frac{1}{2}$
a_{3}	0	0
a_{4}	$\frac{3}{\left(-64 r^{3}-576 r^{2}-1968 r-2448\right) \sqrt{5}+16 r^{4}+192 r^{3}+1304 r^{2}+4368 r+5465}$	$\frac{3}{40}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{12}{(-8 r-16) \sqrt{5}+4 r^{2}+16 r+35}$	$\frac{1}{2}$
a_{3}	0	0
a_{4}	$\frac{144}{\left(-64 r^{3}-576 r^{2}-1968 r-2448\right) \sqrt{5}+16 r^{4}+192 r^{3}+1304 r^{2}+4368 r+5465}$	$\frac{3}{40}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{1}{2}+\sqrt{5}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{1}{2}+\sqrt{5}}\left(1+\frac{x^{2}}{2}+\frac{3 x^{4}}{40}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-\frac{1}{2}+\sqrt{5}} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}+\sqrt{5}}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)-2 b_{n}\left(-\frac{1}{2}+\sqrt{5}\right)(n+r)+\frac{19 b_{n}}{4}-3 b_{n-2}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-\frac{1}{2}+\sqrt{5}$ becomes
$b_{n}\left(n-\frac{1}{2}+\sqrt{5}\right)\left(n-\frac{3}{2}+\sqrt{5}\right)-2 b_{n}\left(-\frac{1}{2}+\sqrt{5}\right)\left(n-\frac{1}{2}+\sqrt{5}\right)+\frac{19 b_{n}}{4}-3 b_{n-2}=0$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{12 b_{n-2}}{-19+8 \sqrt{5} n+8 r \sqrt{5}-4 n^{2}-8 n r-4 r^{2}} \tag{5}
\end{equation*}
$$

Which for the root $r=-\frac{1}{2}+\sqrt{5}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{12 b_{n-2}}{-19+8 \sqrt{5} n+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4 n^{2}-8 n\left(-\frac{1}{2}+\sqrt{5}\right)-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{1}{2}+\sqrt{5}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{12}{-35+16 \sqrt{5}+8 r \sqrt{5}-16 r-4 r^{2}}
$$

Which for the root $r=-\frac{1}{2}+\sqrt{5}$ becomes

$$
b_{2}=-\frac{12}{-27+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{12}{(-8 r-16) \sqrt{5}+4 r^{2}+16 r+35}$	$-\frac{12}{-27+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{12}{(-8 r-16) \sqrt{5}+4 r^{2}+16 r+35}$	$-\frac{12}{-27+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives
$b_{4}=-\frac{144}{-1304 r^{2}+64 \sqrt{5} r^{3}-16 r^{4}-4368 r+576 \sqrt{5} r^{2}-192 r^{3}-5465+1968 r \sqrt{5}+2448 \sqrt{5}}$
Which for the root $r=-\frac{1}{2}+\sqrt{5}$ becomes
$b_{4}=-\frac{144}{-1304\left(-\frac{1}{2}+\sqrt{5}\right)^{2}+64 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right)^{3}-16\left(-\frac{1}{2}+\sqrt{5}\right)^{4}-3281-1920 \sqrt{5}+576 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right.}$
And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{12}{(-8 r-16) \sqrt{5}+4 r^{2}+16 r+35}$	$-\frac{12}{-27+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}}$
b_{3}	0	0
b_{4}	$\frac{144}{\left(-64 r^{3}-576 r^{2}-1968 r-2448\right) \sqrt{5}+16 r^{4}+192 r^{3}+1304 r^{2}+4368 r+5465}$	$-\frac{1304\left(-\frac{1}{2}+\sqrt{5}\right)^{2}+64 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right)^{3}-16\left(-\frac{1}{2}+\sqrt{5}\right)^{4}-328}{-10}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$\frac{12}{(-8 r-16) \sqrt{5}+4 r^{2}+16 r+35}$	$-\frac{12}{-27+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}}$
b_{3}	0	0
b_{4}	$\frac{144}{\left(-64 r^{3}-576 r^{2}-1968 r-2448\right) \sqrt{5}+16 r^{4}+192 r^{3}+1304 r^{2}+4368 r+5465}$	$-\frac{1304\left(-\frac{1}{2}+\sqrt{5}\right)^{2}+64 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right)^{3}-16\left(-\frac{1}{2}+\sqrt{5}\right)^{4}-328}{-10}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\frac{1}{2}+\sqrt{5}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =x^{-\frac{1}{2}+\sqrt{5}}\left(1-\frac{12 x^{2}}{-27+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}}-\frac{}{-1304\left(-\frac{1}{2}+\sqrt{5}\right)^{2}+64 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right.}\right.
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{1}{2}+\sqrt{5}}\left(1+\frac{x^{2}}{2}+\frac{3 x^{4}}{40}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{-\frac{1}{2}+\sqrt{5}}\left(1-\frac{12 x^{2}}{-27+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}}\right. \\
& -\frac{144 x^{4}}{-1304\left(-\frac{1}{2}+\sqrt{5}\right)^{2}+64 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right)^{3}-16\left(-\frac{1}{2}+\sqrt{5}\right)^{4}-3281-1920 \sqrt{5}+576 \sqrt{5}\left(-\frac{1}{2}+\right.} \\
& \left.+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{1}{2}+\sqrt{5}}\left(1+\frac{x^{2}}{2}+\frac{3 x^{4}}{40}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{-\frac{1}{2}+\sqrt{5}}\left(1-\frac{12 x^{2}}{-27+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}}\right. \\
& -\frac{144 x^{4}}{-1304\left(-\frac{1}{2}+\sqrt{5}\right)^{2}+64 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right)^{3}-16\left(-\frac{1}{2}+\sqrt{5}\right)^{4}-3281-1920 \sqrt{5}+576 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right)} \\
& \left.+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y & =c_{1} x^{\frac{1}{2}+\sqrt{5}}\left(1+\frac{x^{2}}{2}+\frac{3 x^{4}}{40}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2} x^{-\frac{1}{2}+\sqrt{5}}\left(1-\frac{12 x^{2}}{-27+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}}\right. \\
& -\frac{144 x^{4}}{-1304\left(-\frac{1}{2}+\sqrt{5}\right)^{2}+64 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right)^{3}-16\left(-\frac{1}{2}+\sqrt{5}\right)^{4}-3281-1920 \sqrt{5}+576 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right)^{2}} \\
& \left.+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y & =c_{1} x^{\frac{1}{2}+\sqrt{5}}\left(1+\frac{x^{2}}{2}+\frac{3 x^{4}}{40}+O\left(x^{6}\right)\right) \\
& +c_{2} x^{-\frac{1}{2}+\sqrt{5}}\left(1-\frac{12 x^{2}}{-27+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}}\right. \\
& -\frac{144 x^{4}}{-1304\left(-\frac{1}{2}+\sqrt{5}\right)^{2}+64 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right)^{3}-16\left(-\frac{1}{2}+\sqrt{5}\right)^{4}-3281-1920 \sqrt{5}+576 \sqrt{5}\left(-\frac{1}{2}+\sqrt{5}\right)^{2}} \\
& \left.+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

18.5.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+x(1-2 \sqrt{5}) y^{\prime}+\left(\frac{19}{4}-3 x^{2}\right) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=\frac{\left(12 x^{2}-19\right) y}{4 x^{2}}+\frac{(-1+2 \sqrt{5}) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(-1+2 \sqrt{5}) y^{\prime}}{x}-\frac{\left(12 x^{2}-19\right) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{-1+2 \sqrt{5}}{x}, P_{3}(x)=-\frac{12 x^{2}-19}{4 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1-2 \sqrt{5}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{19}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}-4(-1+2 \sqrt{5}) x y^{\prime}+\left(-12 x^{2}+19\right) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
\square
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
(1+2 \sqrt{5}-2 r)(-1+2 \sqrt{5}-2 r) a_{0} x^{r}+(-1+2 \sqrt{5}-2 r)(-3+2 \sqrt{5}-2 r) a_{1} x^{1+r}+\left(\sum_{k=2}^{\infty}((-\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
(1+2 \sqrt{5}-2 r)(-1+2 \sqrt{5}-2 r)=0
$$

- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{1}{2}+\sqrt{5}, \frac{1}{2}+\sqrt{5}\right\}$
- Each term must be 0

$$
(-1+2 \sqrt{5}-2 r)(-3+2 \sqrt{5}-2 r) a_{1}=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0, giving the recursion relation
$-8 a_{k}(k+r) \sqrt{5}+\left(4 k^{2}+8 k r+4 r^{2}+19\right) a_{k}-12 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$-8 a_{k+2}(k+2+r) \sqrt{5}+\left(4(k+2)^{2}+8(k+2) r+4 r^{2}+19\right) a_{k+2}-12 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{12 a_{k}}{-35+8 k \sqrt{5}+8 \sqrt{5} r-4 k^{2}-8 k r-4 r^{2}+16 \sqrt{5}-16 k-16 r}$
- \quad Recursion relation for $r=-\frac{1}{2}+\sqrt{5}$
$a_{k+2}=-\frac{12 a_{k}}{-27+8 k \sqrt{5}+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4 k^{2}-8 k\left(-\frac{1}{2}+\sqrt{5}\right)-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}-16 k}$
- \quad Solution for $r=-\frac{1}{2}+\sqrt{5}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}+\sqrt{5}}, a_{k+2}=-\frac{12 a_{k}}{-27+8 k \sqrt{5}+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4 k^{2}-8 k\left(-\frac{1}{2}+\sqrt{5}\right)-4\left(-\frac{1}{2}+\sqrt{5}\right)^{2}-16 k}, a_{1}=0\right]
$$

- \quad Recursion relation for $r=\frac{1}{2}+\sqrt{5}$

$$
a_{k+2}=-\frac{12 a_{k}}{-43+8 k \sqrt{5}+8\left(\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4 k^{2}-8 k\left(\frac{1}{2}+\sqrt{5}\right)-4\left(\frac{1}{2}+\sqrt{5}\right)^{2}-16 k}
$$

- \quad Solution for $r=\frac{1}{2}+\sqrt{5}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}+\sqrt{5}}, a_{k+2}=-\frac{12 a_{k}}{-43+8 k \sqrt{5}+8\left(\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4 k^{2}-8 k\left(\frac{1}{2}+\sqrt{5}\right)-4\left(\frac{1}{2}+\sqrt{5}\right)^{2}-16 k}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}+\sqrt{5}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}+\sqrt{5}}\right), a_{2+k}=-\frac{12 a_{k}}{-27+8 k \sqrt{5}+8\left(-\frac{1}{2}+\sqrt{5}\right) \sqrt{5}-4 k^{2}-8 k\left(-\frac{1}{2}+\sqrt{5}\right)-4\left(-\frac{1}{2}\right.}\right.
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful
```


Solution by Maple

Time used: 0.046 (sec). Leaf size: 325

```
Order:=6;
dsolve(x^2*diff (y (x),x$2)-(2*sqrt(5)-1)*x*diff (y (x),x)+(19/4-3*x^2)*y(x)=0,y(x),type='series
\[
\begin{aligned}
y(x)= & x^{-\frac{1}{2}+\sqrt{5}}\left(\left(1+\frac{3}{2} x^{2}+\frac{3}{8} x^{4}+\mathrm{O}\left(x^{6}\right)\right) c_{1}\right. \\
& \left.+c_{2} x\left(\left(1+\frac{1}{2} x^{2}+\frac{3}{40} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \ln (x)+\left(-\frac{5}{12} x^{2}-\frac{77}{800} x^{4}+\mathrm{O}\left(x^{6}\right)\right)\right)\right)
\end{aligned}
\]
```

\checkmark Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 94
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime}\right.$ ' $[\mathrm{x}]-(2 * \operatorname{Sqrt}[5]-1) * x * y$ ' $\left.[\mathrm{x}]+\left(19 / 4-3 * \mathrm{x}^{\wedge} 2\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{3}{8} x^{\frac{7}{2}+\sqrt{5}}+\frac{3}{2} x^{\frac{3}{2}+\sqrt{5}}+x^{\sqrt{5}-\frac{1}{2}}\right)+c_{2}\left(\frac{3}{40} x^{\frac{9}{2}+\sqrt{5}}+\frac{1}{2} x^{\frac{5}{2}+\sqrt{5}}+x^{\frac{1}{2}+\sqrt{5}}\right)
$$

18.6 problem (c)

18.6.1 Maple step by step solution 3439

Internal problem ID [2942]
Internal file name [OUTPUT/2434_Sunday_June_05_2022_03_09_54_AM_68650022/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: (c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+\left(-2 x^{5}+9 x\right) y^{\prime}+\left(10 x^{4}+5 x^{2}+25\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(-2 x^{5}+9 x\right) y^{\prime}+\left(10 x^{4}+5 x^{2}+25\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2 x^{4}-9}{x} \\
& q(x)=\frac{10 x^{4}+5 x^{2}+25}{x^{2}}
\end{aligned}
$$

Table 462: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{2 x^{4}-9}{x}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"
$x=-\infty$	"regular"

$q(x)=\frac{10 x^{4}+5 x^{2}+25}{x^{2}}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"
$x=-\infty$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty,-\infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(-2 x^{5}+9 x\right) y^{\prime}+\left(10 x^{4}+5 x^{2}+25\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+\left(-2 x^{5}+9 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) \tag{1}\\
& +\left(10 x^{4}+5 x^{2}+25\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-2 x^{n+r+4} a_{n}(n+r)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 9 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 10 x^{n+r+4} a_{n}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 5 x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} 25 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-2 x^{n+r+4} a_{n}(n+r)\right) & =\sum_{n=4}^{\infty}\left(-2 a_{n-4}(n-4+r) x^{n+r}\right) \\
\sum_{n=0}^{\infty} 10 x^{n+r+4} a_{n} & =\sum_{n=4}^{\infty} 10 a_{n-4} x^{n+r} \\
\sum_{n=0}^{\infty} 5 x^{n+r+2} a_{n} & =\sum_{n=2}^{\infty} 5 a_{n-2} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=4}^{\infty}\left(-2 a_{n-4}(n-4+r) x^{n+r}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 9 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=4}^{\infty} 10 a_{n-4} x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=2}^{\infty} 5 a_{n-2} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 25 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+9 x^{n+r} a_{n}(n+r)+25 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+9 x^{r} a_{0} r+25 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+9 x^{r} r+25 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}+8 r+25\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+8 r+25=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-4+3 i \\
& r_{2}=-4-3 i
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}+8 r+25\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-4+3 i} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-4-3 i}
\end{aligned}
$$

$y_{1}(x)$ is found first. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=-\frac{5}{r^{2}+12 r+45}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=0
$$

For $4 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-2 a_{n-4}(n-4+r)+9 a_{n}(n+r)+10 a_{n-4}+5 a_{n-2}+25 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{2 n a_{n-4}+2 r a_{n-4}-18 a_{n-4}-5 a_{n-2}}{n^{2}+2 n r+r^{2}+8 n+8 r+25} \tag{4}
\end{equation*}
$$

Which for the root $r=-4+3 i$ becomes

$$
\begin{equation*}
a_{n}=\frac{(-26+6 i+2 n) a_{n-4}-5 a_{n-2}}{n(n+6 i)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-4+3 i$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{5}{r^{2}+12 r+45}$	$-\frac{1}{8}+\frac{3 i}{8}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{2 r^{3}+14 r^{2}-30 r-425}{\left(r^{2}+12 r+45\right)\left(r^{2}+16 r+73\right)}
$$

Which for the root $r=-4+3 i$ becomes

$$
a_{4}=-\frac{179}{832}+\frac{483 i}{832}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{5}{r^{2}+12 r+45}$	$-\frac{1}{8}+\frac{3 i}{8}$
a_{3}	0	0
a_{4}	$\frac{2 r^{3}+14 r^{2}-30 r-425}{\left(r^{2}+12 r+45\right)\left(r^{2}+16 r+73\right)}$	$-\frac{179}{832}+\frac{483 i}{832}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{5}{r^{2}+12 r+45}$	$-\frac{1}{8}+\frac{3 i}{8}$
a_{3}	0	0
a_{4}	$\frac{2 r^{3}+14 r^{2}-30 r-425}{\left(r^{2}+12 r+45\right)\left(r^{2}+16 r+73\right)}$	$-\frac{179}{832}+\frac{483 i}{832}$
a_{5}	0	0

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{-20 r^{3}-200 r^{2}-100 r+4315}{\left(r^{2}+12 r+45\right)\left(r^{2}+16 r+73\right)\left(r^{2}+20 r+109\right)}
$$

Which for the root $r=-4+3 i$ becomes

$$
a_{6}=-\frac{433}{3744}-\frac{3943 i}{29952}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{5}{r^{2}+12 r+45}$	$-\frac{1}{8}+\frac{3 i}{8}$
a_{3}	0	0
a_{4}	$\frac{2 r^{3}+14 r^{2}-30 r-425}{\left(r^{2}+12 r+45\right)\left(r^{2}+16 r+73\right)}$	$-\frac{179}{832}+\frac{483 i}{832}$
a_{5}	0	0
a_{6}	$\frac{-20 r^{3}-200 r^{2}-100 r+4315}{\left(r^{2}+12 r+45\right)\left(r^{2}+16 r+73\right)\left(r^{2}+20 r+109\right)}$	$-\frac{433}{3744}-\frac{3943 i}{29952}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{-4+3 i}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \ldots\right) \\
& =x^{-4+3 i}\left(1+\left(-\frac{1}{8}+\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}+\frac{483 i}{832}\right) x^{4}+\left(-\frac{433}{3744}-\frac{3943 i}{29952}\right) x^{6}+O\left(x^{7}\right)\right)
\end{aligned}
$$

The second solution $y_{2}(x)$ is found by taking the complex conjugate of $y_{1}(x)$ which gives

$$
y_{2}(x)=x^{-4-3 i}\left(1+\left(-\frac{1}{8}-\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}-\frac{483 i}{832}\right) x^{4}+\left(-\frac{433}{3744}+\frac{3943 i}{29952}\right) x^{6}+O\left(x^{7}\right)\right)
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{-4+3 i}\left(1+\left(-\frac{1}{8}+\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}+\frac{483 i}{832}\right) x^{4}+\left(-\frac{433}{3744}-\frac{3943 i}{29952}\right) x^{6}+O\left(x^{7}\right)\right) \\
& +c_{2} x^{-4-3 i}\left(1+\left(-\frac{1}{8}-\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}-\frac{483 i}{832}\right) x^{4}+\left(-\frac{433}{3744}+\frac{3943 i}{29952}\right) x^{6}\right. \\
& \left.+O\left(x^{7}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{-4+3 i}\left(1+\left(-\frac{1}{8}+\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}+\frac{483 i}{832}\right) x^{4}+\left(-\frac{433}{3744}-\frac{3943 i}{29952}\right) x^{6}+O\left(x^{7}\right)\right) \\
& +c_{2} x^{-4-3 i}\left(1+\left(-\frac{1}{8}-\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}-\frac{483 i}{832}\right) x^{4}+\left(-\frac{433}{3744}+\frac{3943 i}{29952}\right) x^{6}+O\left(x^{7}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y=c_{1} x^{-4+3 i}(1+ & \left(-\frac{1}{8}+\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}+\frac{483 i}{832}\right) x^{4}+\left(-\frac{433}{3744}-\frac{3943 i}{29952}\right) x^{6} \\
\left.+O\left(x^{7}\right)\right)+c_{2} x^{-4-3 i}(1+ & \left(-\frac{1}{8}-\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}-\frac{483 i}{832}\right)\left(x^{7}\right) \\
& \left.+\left(-\frac{433}{3744}+\frac{3943 i}{29952}\right) x^{6}+O\left(x^{7}\right)\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{array}{r}
y=c_{1} x^{-4+3 i}\left(1+\left(-\frac{1}{8}+\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}+\frac{483 i}{832}\right) x^{4}+\left(-\frac{433}{3744}-\frac{3943 i}{29952}\right) x^{6}+O\left(x^{7}\right)\right) \\
+c_{2} x^{-4-3 i}\left(1+\left(-\frac{1}{8}-\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}-\frac{483 i}{832}\right) x^{4}+\left(-\frac{433}{3744}+\frac{3943 i}{29952}\right) x^{6}\right. \\
\left.+O\left(x^{7}\right)\right)
\end{array}
$$

Verified OK.

18.6.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\left(-2 x^{5}+9 x\right) y^{\prime}+\left(10 x^{4}+5 x^{2}+25\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{5\left(2 x^{4}+x^{2}+5\right) y}{x^{2}}+\frac{\left(2 x^{4}-9\right) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{\left(2 x^{4}-9\right) y^{\prime}}{x}+\frac{5\left(2 x^{4}+x^{2}+5\right) y}{x^{2}}=0
$$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=-\frac{2 x^{4}-9}{x}, P_{3}(x)=\frac{5\left(2 x^{4}+x^{2}+5\right)}{x^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=9
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=25
$$

- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}-x\left(2 x^{4}-9\right) y^{\prime}+\left(10 x^{4}+5 x^{2}+25\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .4$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .5$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}\left(r^{2}+8 r+25\right) x^{r}+a_{1}\left(r^{2}+10 r+34\right) x^{1+r}+\left(\left(r^{2}+12 r+45\right) a_{2}+5 a_{0}\right) x^{2+r}+\left(a_{3}\left(r^{2}+14 r+\right.\right.$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r^{2}+8 r+25=0$
- Values of r that satisfy the indicial equation

$$
r \in\{-4-3 \mathrm{I},-4+3 \mathrm{I}\}
$$

- \quad The coefficients of each power of x must be 0

$$
\left[a_{1}\left(r^{2}+10 r+34\right)=0,\left(r^{2}+12 r+45\right) a_{2}+5 a_{0}=0, a_{3}\left(r^{2}+14 r+58\right)+5 a_{1}=0\right]
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{1}=0, a_{2}=-\frac{5 a_{0}}{r^{2}+12 r+45}, a_{3}=0\right\}
$$

- \quad Each term in the series must be 0 , giving the recursion relation

$$
\left(k^{2}+(2 r+8) k+r^{2}+8 r+25\right) a_{k}+5 a_{k-2}-2 a_{k-4}(k-9+r)=0
$$

- \quad Shift index using $k->k+4$

$$
\left((k+4)^{2}+(2 r+8)(k+4)+r^{2}+8 r+25\right) a_{k+4}+5 a_{k+2}-2 a_{k}(k+r-5)=0
$$

- Recursion relation that defines series solution to ODE
$a_{k+4}=\frac{2 k a_{k}+2 r a_{k}-10 a_{k}-5 a_{k+2}}{k^{2}+2 k r+r^{2}+16 k+16 r+73}$
- \quad Recursion relation for $r=-4-3$ I
$a_{k+4}=\frac{2 k a_{k}-(8+6 \mathrm{I}) a_{k}-10 a_{k}-5 a_{k+2}}{k^{2}-(8+6 \mathrm{I}) k+16-24 \mathrm{I}+16 k}$
- \quad Solution for $r=-4-3$ I
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-4-3 \mathrm{I}}, a_{k+4}=\frac{2 k a_{k}-(8+6 \mathrm{I}) a_{k}-10 a_{k}-5 a_{k+2}}{k^{2}-(8+6 \mathrm{I}) k+16-24 \mathrm{I}+16 k}, a_{1}=0, a_{2}=\left(-\frac{1}{8}-\frac{3 \mathrm{I}}{8}\right) a_{0}, a_{3}=0\right]$
- \quad Recursion relation for $r=-4+3$ I
$a_{k+4}=\frac{2 k a_{k}+(-8+6 \mathrm{I}) a_{k}-10 a_{k}-5 a_{k+2}}{k^{2}+(-8+6 \mathrm{I}) k+16+24 \mathrm{I}+16 k}$
- \quad Solution for $r=-4+3$ I

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-4+3 \mathrm{I}}, a_{k+4}=\frac{2 k a_{k}+(-8+6 \mathrm{I}) a_{k}-10 a_{k}-5 a_{k+2}}{k^{2}+(-8+6 \mathrm{I}) k+16+24 \mathrm{I}+16 k}, a_{1}=0, a_{2}=\left(-\frac{1}{8}+\frac{3 \mathrm{I}}{8}\right) a_{0}, a_{3}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-4-3 \mathrm{I}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-4+3 \mathrm{I}}\right), a_{k+4}=\frac{2 k a_{k}-(8+6 \mathrm{I}) a_{k}-10 a_{k}-5 a_{2+k}}{k^{2}-(8+6 \mathrm{I}) k+16-24 \mathrm{I}+16 k}, a_{1}=0, a_{2}=\left(-\frac{1}{8}-\frac{3}{3}\right.\right.
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 55

```
Order:=7;
dsolve(x^2*diff (y(x),x$2)+(9*x-2*x^5)*diff (y(x),x)+(25+5*x^2+10*x^4)*y(x)=0,y(x),type='serie
```

$$
\begin{array}{r}
y(x)=c_{1} x^{-4-3 i}\left(1+\left(-\frac{1}{8}-\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}-\frac{483 i}{832}\right) x^{4}+\left(-\frac{433}{3744}+\frac{3943 i}{29952}\right) x^{6}\right. \\
\left.+\mathrm{O}\left(x^{7}\right)\right)+c_{2} x^{-4+3 i}\left(1+\left(-\frac{1}{8}+\frac{3 i}{8}\right) x^{2}+\left(-\frac{179}{832}+\frac{483 i}{832}\right) x^{4}\right. \\
\left.+\left(-\frac{433}{3744}-\frac{3943 i}{29952}\right) x^{6}+\mathrm{O}\left(x^{7}\right)\right)
\end{array}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 70
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]+\left(9 * x-2 * x^{\wedge} 5\right) * y^{\prime}[x]+\left(25+5 * x^{\wedge} 2+10 * x^{\wedge} 4\right) * y[x]==0, y[x],\{x, 0,6\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & \left(\frac{1}{832}+\frac{5 i}{832}\right) c_{1} x^{-4+3 i}\left((86+53 i) x^{4}+(56+32 i) x^{2}+(32-160 i)\right) \\
& -\left(\frac{5}{832}+\frac{i}{832}\right) c_{2} x^{-4-3 i}\left((53+86 i) x^{4}+(32+56 i) x^{2}-(160-32 i)\right)
\end{aligned}
$$

18.7 problem (d)

18.7.1 Maple step by step solution 3458

Internal problem ID [2943]
Internal file name [OUTPUT/2435_Sunday_June_05_2022_03_10_44_AM_75711485/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: (d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right) y^{\prime}-\frac{7 y}{4}=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right) y^{\prime}-\frac{7 y}{4}=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2 x^{2}-3 x-24}{6 x} \\
& q(x)=-\frac{7}{4 x^{2}}
\end{aligned}
$$

Table 464: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{2 x^{2}-3 x-24}{6 x}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"
$x=-\infty$	"regular"

$q(x)=-\frac{7}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty,-\infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right) y^{\prime}-\frac{7 y}{4}=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\frac{7\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)}{4}=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+2} a_{n}(n+r)}{3}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{1+n+r} a_{n}(n+r)}{2}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-\frac{7 a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+2} a_{n}(n+r)}{3}\right) & =\sum_{n=2}^{\infty}\left(-\frac{a_{n-2}(n+r-2) x^{n+r}}{3}\right) \\
\sum_{n=0}^{\infty} \frac{x^{1+n+r} a_{n}(n+r)}{2} & =\sum_{n=1}^{\infty} \frac{a_{n-1}(n+r-1) x^{n+r}}{2}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=2}^{\infty}\left(-\frac{a_{n-2}(n+r-2) x^{n+r}}{3}\right) \\
& \quad+\left(\sum_{n=1}^{\infty} \frac{a_{n-1}(n+r-1) x^{n+r}}{2}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-\frac{7 a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+4 x^{n+r} a_{n}(n+r)-\frac{7 a_{n} x^{n+r}}{4}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+4 x^{r} a_{0} r-\frac{7 a_{0} x^{r}}{4}=0
$$

Or

$$
\left(x^{r} r(-1+r)+4 x^{r} r-\frac{7 x^{r}}{4}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\frac{\left(4 r^{2}+12 r-7\right) x^{r}}{4}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+3 r-\frac{7}{4}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=-\frac{7}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\frac{\left(4 r^{2}+12 r-7\right) x^{r}}{4}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=4$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sqrt{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{\frac{7}{2}}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{7}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=-\frac{2 r}{4 r^{2}+20 r+9}
$$

For $2 \leq n$ the recursive equation is
$a_{n}(n+r)(n+r-1)-\frac{a_{n-2}(n+r-2)}{3}+\frac{a_{n-1}(n+r-1)}{2}+4 a_{n}(n+r)-\frac{7 a_{n}}{4}=0$
Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{\frac{4}{3} n a_{n-2}-2 n a_{n-1}+\frac{4}{3} r a_{n-2}-2 r a_{n-1}-\frac{8}{3} a_{n-2}+2 a_{n-1}}{4 n^{2}+8 n r+4 r^{2}+12 n+12 r-7} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=\frac{\left(4 a_{n-2}-6 a_{n-1}\right) n-6 a_{n-2}+3 a_{n-1}}{12 n(n+4)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{4 r^{2}+20 r+9}$	$-\frac{1}{20}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{16 r^{3}+92 r^{2}+48 r}{48 r^{4}+576 r^{3}+2184 r^{2}+2736 r+891}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=\frac{49}{2880}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{4 r^{2}+20 r+9}$	$-\frac{1}{20}$
a_{2}	$\frac{16 r^{3}+92 r^{2}+48 r}{48 r^{4}+576 r^{3}+2184 r^{2}+2736 r+891}$	$\frac{49}{2880}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{8 r\left(8 r^{3}+63 r^{2}+119 r+57\right)}{3\left(16 r^{4}+192 r^{3}+728 r^{2}+912 r+297\right)\left(4 r^{2}+36 r+65\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{3}=-\frac{533}{241920}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{4 r^{2}+20 r+9}$	$-\frac{1}{20}$
a_{2}	$\frac{16 r^{3}+92 r^{2}+48 r}{48 r^{4}+576 r^{3}+2184 r^{2}+2736 r+891}$	$\frac{49}{2880}$
a_{3}	$-\frac{8 r\left(8 r^{3}+63 r^{2}+119 r+57\right)}{3\left(16 r^{4}+192 r^{3}+728 r^{2}+912 r+297\right)\left(4 r^{2}+36 r+65\right)}$	$-\frac{533}{241920}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16 r\left(16 r^{5}+292 r^{4}+1869 r^{3}+5123 r^{2}+5876 r+2073\right)}{9\left(16 r^{4}+192 r^{3}+728 r^{2}+912 r+297\right)\left(4 r^{2}+36 r+65\right)\left(4 r^{2}+44 r+105\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{277}{491520}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{4 r^{2}+20 r+9}$	$-\frac{1}{20}$
a_{2}	$\frac{16 r^{3}+92 r^{2}+48 r}{48 r^{4}+576 r^{3}+2184 r^{2}+2736 r+891}$	$\frac{49}{2880}$
a_{3}	$-\frac{8 r\left(8 r^{3}+63 r^{2}+119 r+57\right)}{3\left(16 r^{4}+192 r^{3}+728 r^{2}+912 r+297\right)\left(4 r^{2}+36 r+65\right)}$	$-\frac{533}{241920}$
a_{4}	$\frac{16 r\left(16 r^{5}+292 r^{4}+1869 r^{3}+5123 r^{2}+5876 r+2073\right)}{9\left(16 r^{4}+192 r^{3}+728 r^{2}+912 r+297\right)\left(4 r^{2}+36 r+65\right)\left(4 r^{2}+44 r+105\right)}$	$\frac{277}{491520}$

For $n=5$, using the above recursive equation gives
$a_{5}=-\frac{32 r\left(48 r^{6}+1056 r^{5}+8937 r^{4}+36942 r^{3}+77608 r^{2}+76571 r+26247\right)}{9\left(16 r^{4}+192 r^{3}+728 r^{2}+912 r+297\right)\left(4 r^{2}+36 r+65\right)\left(4 r^{2}+44 r+105\right)\left(4 r^{2}+52 r+153\right)}$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{5}=-\frac{203759}{2388787200}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{4 r^{2}+20 r+9}$	$-\frac{1}{20}$
a_{2}	$\frac{16 r^{3}+92 r^{2}+48 r}{48 r^{4}+576 r^{3}+2184 r^{2}+2736 r+891}$	$\frac{49}{2880}$
a_{3}	$-\frac{8 r\left(8 r^{3}+63 r^{2}+119 r+57\right)}{3\left(16 r^{4}+192 r^{3}+728 r^{2}+912 r+297\right)\left(4 r^{2}+36 r+65\right)}$	$-\frac{533}{241920}$
a_{4}	$\frac{16 r\left(16 r^{5}+292 r^{4}+1869 r^{3}+5123 r^{2}+5876 r+2073\right)}{9\left(16 r^{4}+192 r^{3}+728 r^{2}+912 r+297\right)\left(4 r^{2}+36 r+65\right)\left(4 r^{2}+44 r+105\right)}$	$\frac{277}{491520}$
a_{5}	$-\frac{32 r\left(48 r^{6}+1056 r^{5}+8937 r^{4}+36942 r^{3}+77608 r^{2}+76571 r+26247\right)}{9\left(16 r^{4}+192 r^{3}+728 r^{2}+912 r+297\right)\left(4 r^{2}+36 r+65\right)\left(4 r^{2}+44 r+105\right)\left(4 r^{2}+52 r+153\right)}$	$-\frac{203759}{2388787200}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{x}{20}+\frac{49 x^{2}}{2880}-\frac{533 x^{3}}{241920}+\frac{277 x^{4}}{491520}-\frac{203759 x^{5}}{2388787200}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=4$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{4}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{4} \\
& =\frac{16 r\left(16 r^{5}+292 r^{4}+1869 r^{3}+5123 r^{2}+5876 r+2073\right)}{9\left(16 r^{4}+192 r^{3}+728 r^{2}+912 r+297\right)\left(4 r^{2}+36 r+65\right)\left(4 r^{2}+44 r+105\right)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{16 r\left(16 r^{5}+292 r^{4}+1869 r^{3}+5123 r^{2}+5876 r+2073\right)}{9\left(16 r^{4}+192 r^{3}+728 r^{2}+912 r+297\right)\left(4 r^{2}+36 r+65\right)\left(4 r^{2}+44 r+105\right)} & =\lim _{r \rightarrow-\frac{7}{2}} \frac{16 r(16 r}{9\left(16 r^{4}+192 r^{3}+\right.} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right) y^{\prime}-\frac{7 y}{4}=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& -\frac{7 C y_{1}(x) \ln (x)}{4}-\frac{7\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)}{4}=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)+\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right) y_{1}^{\prime}(x)-\frac{7 y_{1}(x)}{4}\right) \ln (x)\right. \\
& \left.+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+\frac{\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right) y_{1}(x)}{x}\right) C \tag{7}\\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)-\frac{7\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)}{4}=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x^{2} y_{1}^{\prime \prime}(x)+\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right) y_{1}^{\prime}(x)-\frac{7 y_{1}(x)}{4}=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+\frac{\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right) y_{1}(x)}{x}\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)-\frac{7\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)}{4}=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-\frac{\left(x^{2}-\frac{3}{2} x-9\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)}{3}\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& +\frac{\left(-2 x^{3}+3 x^{2}+24 x\right)\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right)}{6}-\frac{7\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)}{4}=0
\end{align*}
$$

Since $r_{1}=\frac{1}{2}$ and $r_{2}=-\frac{7}{2}$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-\frac{1}{2}+n} a_{n}\left(n+\frac{1}{2}\right)\right) x-\frac{\left(x^{2}-\frac{3}{2} x-9\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}}\right)}{3}\right) C \tag{10}\\
& +\left(\sum_{n=0}^{\infty} x^{-\frac{11}{2}+n} b_{n}\left(n-\frac{7}{2}\right)\left(-\frac{9}{2}+n\right)\right) x^{2} \\
& +\frac{\left(-2 x^{3}+3 x^{2}+24 x\right)\left(\sum_{n=0}^{\infty} x^{-\frac{9}{2}+n} b_{n}\left(n-\frac{7}{2}\right)\right)}{6}-\frac{7\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{7}{2}}\right)}{4}=0
\end{align*}
$$

Expanding $-\frac{C x^{\frac{5}{2}}}{3}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
-\frac{C x^{\frac{5}{2}}}{3} & =-\frac{C x^{\frac{5}{2}}}{3}+\ldots \\
& =-\frac{C x^{\frac{5}{2}}}{3}
\end{aligned}
$$

Expanding $\frac{C x^{\frac{3}{2}}}{2}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
\frac{C x^{\frac{3}{2}}}{2} & =\frac{C x^{\frac{3}{2}}}{2}+\ldots \\
& =\frac{C x^{\frac{3}{2}}}{2}
\end{aligned}
$$

Expanding $3 C \sqrt{x}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
3 C \sqrt{x} & =3 C \sqrt{x}+\ldots \\
& =3 C \sqrt{x}
\end{aligned}
$$

Expanding $-\frac{1}{6 x^{\frac{3}{2}}}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
-\frac{1}{6 x^{\frac{3}{2}}} & =-\frac{1}{6 x^{\frac{3}{2}}}+\ldots \\
& =-\frac{1}{6 x^{\frac{3}{2}}}
\end{aligned}
$$

Expanding $\frac{1}{4 x^{\frac{5}{2}}}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
\frac{1}{4 x^{\frac{5}{2}}} & =\frac{1}{4 x^{\frac{5}{2}}}+\ldots \\
& =\frac{1}{4 x^{\frac{5}{2}}}
\end{aligned}
$$

Expanding $\frac{2}{x^{\frac{7}{2}}}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
\frac{2}{x^{\frac{7}{2}}} & =\frac{2}{x^{\frac{7}{2}}}+\ldots \\
& =\frac{2}{x^{\frac{7}{2}}}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} C x^{n+\frac{1}{2}} a_{n}(2 n+1)\right)+\sum_{n=0}^{\infty}\left(-\frac{C x^{n+\frac{5}{2}} a_{n}}{3}\right)+\left(\sum_{n=0}^{\infty} \frac{C x^{n+\frac{3}{2}} a_{n}}{2}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 3 C x^{n+\frac{1}{2}} a_{n}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n-\frac{7}{2}} b_{n}\left(4 n^{2}-32 n+63\right)}{4}\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{x^{n-\frac{3}{2}} b_{n}(2 n-7)}{6}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n-\frac{5}{2}} b_{n}(2 n-7)}{4}\right) \\
& \quad+\left(\sum_{n=0}^{\infty}(4 n-14) b_{n} x^{n-\frac{7}{2}}\right)+\sum_{n=0}^{\infty}\left(-\frac{7 b_{n} x^{n-\frac{7}{2}}}{4}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-\frac{7}{2}$ in each summation term. Going over each summation term above with power of x in it which is not already $x^{n-\frac{7}{2}}$ and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} C x^{n+\frac{1}{2}} a_{n}(2 n+1) & =\sum_{n=4}^{\infty} C a_{n-4}(2 n-7) x^{n-\frac{7}{2}} \\
\sum_{n=0}^{\infty}\left(-\frac{C x^{n+\frac{5}{2}} a_{n}}{3}\right) & =\sum_{n=6}^{\infty}\left(-\frac{C a_{n-6} x^{n-\frac{7}{2}}}{3}\right) \\
\sum_{n=0}^{\infty} \frac{C x^{n+\frac{3}{2}} a_{n}}{2} & =\sum_{n=5}^{\infty} \frac{C a_{n-5} x^{n-\frac{7}{2}}}{2} \\
\sum_{n=0}^{\infty} 3 C x^{n+\frac{1}{2}} a_{n} & =\sum_{n=4}^{\infty} 3 C a_{n-4} x^{n-\frac{7}{2}} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n-\frac{3}{2}} b_{n}(2 n-7)}{6}\right) & =\sum_{n=2}^{\infty}\left(-\frac{b_{n-2}(-11+2 n) x^{n-\frac{7}{2}}}{6}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n-\frac{5}{2}} b_{n}(2 n-7)}{4} & =\sum_{n=1}^{\infty} \frac{b_{n-1}(-9+2 n) x^{n-\frac{7}{2}}}{4}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-\frac{7}{2}$.

$$
\begin{align*}
& \left(\sum_{n=4}^{\infty} C a_{n-4}(2 n-7) x^{n-\frac{7}{2}}\right)+\sum_{n=6}^{\infty}\left(-\frac{C a_{n-6} x^{n-\frac{7}{2}}}{3}\right)+\left(\sum_{n=5}^{\infty} \frac{C a_{n-5} x^{n-\frac{7}{2}}}{2}\right) \\
& \quad+\left(\sum_{n=4}^{\infty} 3 C a_{n-4} x^{n-\frac{7}{2}}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n-\frac{7}{2}} b_{n}\left(4 n^{2}-32 n+63\right)}{4}\right) \tag{2~B}\\
& \quad+\sum_{n=2}^{\infty}\left(-\frac{b_{n-2}(-11+2 n) x^{n-\frac{7}{2}}}{6}\right)+\left(\sum_{n=1}^{\infty} \frac{b_{n-1}(-9+2 n) x^{n-\frac{7}{2}}}{4}\right) \\
& \quad+\left(\sum_{n=0}^{\infty}(4 n-14) b_{n} x^{n-\frac{7}{2}}\right)+\sum_{n=0}^{\infty}\left(-\frac{7 b_{n} x^{n-\frac{7}{2}}}{4}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
-3 b_{1}-\frac{7 b_{0}}{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-3 b_{1}-\frac{7}{4}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=-\frac{7}{12}
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
-4 b_{2}+\frac{7 b_{0}}{6}-\frac{5 b_{1}}{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-4 b_{2}+\frac{91}{48}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=\frac{91}{192}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
-3 b_{3}+\frac{5 b_{1}}{6}-\frac{3 b_{2}}{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-3 b_{3}-\frac{1939}{2304}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=-\frac{1939}{6912}
$$

For $n=N$, where $N=4$ which is the difference between the two roots, we are free to choose $b_{4}=0$. Hence for $n=4$, Eq (2B) gives

$$
4 C+\frac{8491}{27648}=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{8491}{110592}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\frac{\left(a_{0}+12 a_{1}\right) C}{2}+\frac{b_{3}}{6}+\frac{b_{4}}{4}+5 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{103033}{1658880}+5 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{103033}{8294400}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{8491}{110592}$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)=-\frac{8491}{110592}(& \sqrt{x}\left(1-\frac{x}{20}+\frac{49 x^{2}}{2880}-\frac{533 x^{3}}{241920}+\frac{277 x^{4}}{491520}-\frac{203759 x^{5}}{2388787200}\right. \\
& \left.\left.+O\left(x^{6}\right)\right)\right) \ln (x)+\frac{1-\frac{7 x}{12}+\frac{91 x^{2}}{192}-\frac{1939 x^{3}}{6912}+\frac{103033 x^{5}}{8294400}+O\left(x^{6}\right)}{x^{\frac{7}{2}}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sqrt{x}\left(1-\frac{x}{20}+\frac{49 x^{2}}{2880}-\frac{533 x^{3}}{241920}+\frac{277 x^{4}}{491520}-\frac{203759 x^{5}}{2388787200}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{8491}{110592}\left(\sqrt{x}\left(1-\frac{x}{20}+\frac{49 x^{2}}{2880}-\frac{533 x^{3}}{241920}+\frac{277 x^{4}}{491520}-\frac{203759 x^{5}}{2388787200}+O\left(x^{6}\right)\right)\right) \ln (x)\right. \\
& \left.+\frac{1-\frac{7 x}{12}+\frac{91 x^{2}}{192}-\frac{1939 x^{3}}{6912}+\frac{103033 x^{5}}{8294400}+O\left(x^{6}\right)}{x^{\frac{7}{2}}}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} \sqrt{x}\left(1-\frac{x}{20}+\frac{49 x^{2}}{2880}-\frac{533 x^{3}}{241920}+\frac{277 x^{4}}{491520}-\frac{203759 x^{5}}{2388787200}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{8491 \sqrt{x}\left(1-\frac{x}{20}+\frac{49 x^{2}}{2880}-\frac{533 x^{3}}{241920}+\frac{277 x^{4}}{491520}-\frac{203759 x^{5}}{2388787200}+O\left(x^{6}\right)\right) \ln (x)}{110592}\right. \\
& \left.+\frac{1-\frac{7 x}{12}+\frac{91 x^{2}}{192}-\frac{1939 x^{3}}{6912}+\frac{103033 x^{5}}{8294400}+O\left(x^{6}\right)}{x^{\frac{7}{2}}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{x}\left(1-\frac{x}{20}+\frac{49 x^{2}}{2880}-\frac{533 x^{3}}{241920}+\frac{277 x^{4}}{491520}-\frac{203759 x^{5}}{2388787200}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{8491 \sqrt{x}\left(1-\frac{x}{20}+\frac{49 x^{2}}{2880}-\frac{533 x^{3}}{241920}+\frac{277 x^{4}}{491520}-\frac{203759 x^{5}}{2388787200}+O\left(x^{6}\right)\right) \ln (x)}{110592}(1)\right. \tag{1}\\
& \left.+\frac{1-\frac{7 x}{12}+\frac{91 x^{2}}{192}-\frac{1939 x^{3}}{6912}+\frac{103033 x^{5}}{8294400}+O\left(x^{6}\right)}{x^{\frac{7}{2}}}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-\frac{x}{20}+\frac{49 x^{2}}{2880}-\frac{533 x^{3}}{241920}+\frac{277 x^{4}}{491520}-\frac{203759 x^{5}}{2388787200}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{8491 \sqrt{x}\left(1-\frac{x}{20}+\frac{49 x^{2}}{2880}-\frac{533 x^{3}}{241920}+\frac{277 x^{4}}{491520}-\frac{203759 x^{5}}{2388787200}+O\left(x^{6}\right)\right) \ln (x)}{110592}\right. \\
& \left.+\frac{1-\frac{7 x}{12}+\frac{91 x^{2}}{192}-\frac{1939 x^{3}}{6912}+\frac{103033 x^{5}}{8294400}+O\left(x^{6}\right)}{x^{\frac{7}{2}}}\right)
\end{aligned}
$$

Verified OK.

18.7.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+\left(4 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right) y^{\prime}-\frac{7 y}{4}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{7 y}{4 x^{2}}+\frac{\left(2 x^{2}-3 x-24\right) y^{\prime}}{6 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{\left(2 x^{2}-3 x-24\right) y^{\prime}}{6 x}-\frac{7 y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{2 x^{2}-3 x-24}{6 x}, P_{3}(x)=-\frac{7}{4 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=4$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{7}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$12 x^{2} y^{\prime \prime}-2 x\left(2 x^{2}-3 x-24\right) y^{\prime}-21 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .3$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$3 a_{0}(7+2 r)(-1+2 r) x^{r}+\left(3 a_{1}(9+2 r)(1+2 r)+6 a_{0} r\right) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(3 a_{k}(2 k+2 r+7)(2 k+2 r\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$3(7+2 r)(-1+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{7}{2}, \frac{1}{2}\right\}$
- Each term must be 0
$3 a_{1}(9+2 r)(1+2 r)+6 a_{0} r=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=-\frac{2 a_{0} r}{4 r^{2}+20 r+9}$
- Each term in the series must be 0 , giving the recursion relation

$$
3 a_{k}(2 k+2 r+7)(2 k+2 r-1)+6 a_{k-1}(k+r-1)-4 a_{k-2}(k-2+r)=0
$$

- \quad Shift index using $k->k+2$
$3 a_{k+2}(2 k+11+2 r)(2 k+3+2 r)+6 a_{k+1}(k+1+r)-4 a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=\frac{2\left(2 k a_{k}-3 k a_{k+1}+2 r a_{k}-3 r a_{k+1}-3 a_{k+1}\right)}{3(2 k+11+2 r)(2 k+3+2 r)}$
- Recursion relation for $r=-\frac{7}{2}$
$a_{k+2}=\frac{2\left(2 k a_{k}-3 k a_{k+1}-7 a_{k}+\frac{15}{2} a_{k+1}\right)}{3(2 k+4)(2 k-4)}$
- Series not valid for $r=-\frac{7}{2}$, division by 0 in the recursion relation at $k=2$
$a_{k+2}=\frac{2\left(2 k a_{k}-3 k a_{k+1}-7 a_{k}+\frac{15}{2} a_{k+1}\right)}{3(2 k+4)(2 k-4)}$
- Recursion relation for $r=\frac{1}{2}$

$$
a_{k+2}=\frac{2\left(2 k a_{k}-3 k a_{k+1}+a_{k}-\frac{9}{2} a_{k+1}\right)}{3(2 k+12)(2 k+4)}
$$

- \quad Solution for $r=\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=\frac{2\left(2 k a_{k}-3 k a_{k+1}+a_{k}-\frac{9}{2} a_{k+1}\right)}{3(2 k+12)(2 k+4)}, a_{1}=-\frac{a_{0}}{20}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0 
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 63

```
Order:=6;
dsolve(x^2*diff (y(x),x$2)+(4*x+1/2*x^2-1/3*x^3)*\operatorname{diff}(y(x),x)-7/4*y(x)=0,y(x),type='series', 
y(x)
```

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 93
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime}\right.$ ' $[\mathrm{x}]+\left(4 * \mathrm{x}+1 / 2 * \mathrm{x}^{\wedge} 2-1 / 3 * \mathrm{x}^{\wedge} 3\right) * \mathrm{y}$ ' $\left.[\mathrm{x}]-7 / 4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
\begin{aligned}
y(x) & \rightarrow c_{2}\left(\frac{277 x^{9 / 2}}{491520}-\frac{533 x^{7 / 2}}{241920}+\frac{49 x^{5 / 2}}{2880}-\frac{x^{3 / 2}}{20}\right. \\
& +\sqrt{x})+c_{1}\left(\frac{65067 x^{4}-124096 x^{3}+209664 x^{2}-258048 x+442368}{442368 x^{7 / 2}}-\frac{8491 \sqrt{x} \log (x)}{110592}\right)
\end{aligned}
$$

18.8 problem (e)

18.8.1 Maple step by step solution . 3474

Internal problem ID [2944]
Internal file name [OUTPUT/2436_Sunday_June_05_2022_03_10_52_AM_13049648/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: (e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ` _with_symmetry_[0,F(x)]`]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}+y x=0
$$

With the expansion point for the power series method at $x=0$.
The ODE is

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}+y x=0
$$

Or

$$
x\left(y^{\prime \prime} x+x y^{\prime}+y\right)=0
$$

For $x \neq 0$ the above simplifies to

$$
y^{\prime \prime} x+x y^{\prime}+y=0
$$

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}+y x=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =\frac{1}{x}
\end{aligned}
$$

Table 466: Table $p(x), q(x)$ singularites.

$p(x)=1$	
singularity	type

$q(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}+y x=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives
$x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x^{2}+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)=0
$$

Or

$$
x^{r} a_{0} r(-1+r)=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{r} r(-1+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{r} r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)+a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n+r-1} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{1}{r}
$$

Which for the root $r=1$ becomes

$$
a_{1}=-1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r}$	-1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{r(1+r)}
$$

Which for the root $r=1$ becomes

$$
a_{2}=\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r}$	-1
a_{2}	$\frac{1}{r(1+r)}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{1}{r(1+r)(2+r)}
$$

Which for the root $r=1$ becomes

$$
a_{3}=-\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r}$	-1
a_{2}	$\frac{1}{r(1+r)}$	$\frac{1}{2}$
a_{3}	$-\frac{1}{r(1+r)(2+r)}$	$-\frac{1}{6}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{r(1+r)(2+r)(3+r)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{1}{24}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r}$	-1
a_{2}	$\frac{1}{r(1+r)}$	$\frac{1}{2}$
a_{3}	$-\frac{1}{r(1+r)(2+r)}$	$-\frac{1}{6}$
a_{4}	$\frac{1}{r(1+r)(2+r)(3+r)}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1}{r(1+r)(2+r)(3+r)(4+r)}
$$

Which for the root $r=1$ becomes

$$
a_{5}=-\frac{1}{120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{r}$	-1
a_{2}	$\frac{1}{r(1+r)}$	$\frac{1}{2}$
a_{3}	$-\frac{1}{r(1+r)(2+r)}$	$-\frac{1}{6}$
a_{4}	$\frac{1}{r(1+r)(2+r)(3+r)}$	$\frac{1}{24}$
a_{5}	$-\frac{1}{r(1+r)(2+r)(3+r)(4+r)}$	$-\frac{1}{120}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =-\frac{1}{r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{1}{r} & =\lim _{r \rightarrow 0}-\frac{1}{r} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+y^{\prime} x^{2}+y x=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) x^{2} \\
& +\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right) x=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(y_{1}^{\prime}(x) x^{2}+x^{2} y_{1}^{\prime \prime}(x)+y_{1}(x) x\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x) x\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
y_{1}^{\prime}(x) x^{2}+x^{2} y_{1}^{\prime \prime}(x)+y_{1}(x) x=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x) x\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x+(x-1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& +\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x=0
\end{align*}
$$

Since $r_{1}=1$ and $r_{2}=0$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{n} a_{n}(1+n)\right) x+(x-1)\left(\sum_{n=0}^{\infty} a_{n} x^{1+n}\right)\right) C \tag{10}\\
& +\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n} n(n-1)\right) x^{2}+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n} n\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) x=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n)\right)+\left(\sum_{n=0}^{\infty} C x^{n+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-C x^{1+n} a_{n}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} n x^{n} b_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} n x^{1+n} b_{n}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} b_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n) & =\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n} \\
\sum_{n=0}^{\infty} C x^{n+2} a_{n} & =\sum_{n=2}^{\infty} C a_{-2+n} x^{n} \\
\sum_{n=0}^{\infty}\left(-C x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n}\right) \\
\sum_{n=0}^{\infty} n x^{1+n} b_{n} & =\sum_{n=1}^{\infty}(n-1) b_{n-1} x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} b_{n} & =\sum_{n=1}^{\infty} b_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n}\right)+\left(\sum_{n=2}^{\infty} C a_{-2+n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} n x^{n} b_{n}(n-1)\right)+\left(\sum_{n=1}^{\infty}(n-1) b_{n-1} x^{n}\right)+\left(\sum_{n=1}^{\infty} b_{n-1} x^{n}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=N$, where $N=1$ which is the difference between the two roots, we are free to choose $b_{1}=0$. Hence for $n=1, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
C+1=0
$$

Which is solved for C. Solving for C gives

$$
C=-1
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{0}+3 a_{1}\right) C+2 b_{1}+2 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
2+2 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-1
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{1}+5 a_{2}\right) C+3 b_{2}+6 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{9}{2}+6 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=\frac{3}{4}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{2}+7 a_{3}\right) C+4 b_{3}+12 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{11}{3}+12 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{11}{36}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{3}+9 a_{4}\right) C+5 b_{4}+20 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{125}{72}+20 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{25}{288}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-1$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & (-1)\left(x\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +1-x^{2}+\frac{3 x^{3}}{4}-\frac{11 x^{4}}{36}+\frac{25 x^{5}}{288}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \\
& +c_{2}\left((-1)\left(x\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)\right) \ln (x)+1-x^{2}+\frac{3 x^{3}}{4}\right. \\
& \left.-\frac{11 x^{4}}{36}+\frac{25 x^{5}}{288}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-x\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \ln (x)+1-x^{2}+\frac{3 x^{3}}{4}-\frac{11 x^{4}}{36}\right. \\
& \left.+\frac{25 x^{5}}{288}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-x\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \ln (x)+1-x^{2}+\frac{3 x^{3}}{4}\right. \tag{1}\\
& \left.-\frac{11 x^{4}}{36}+\frac{25 x^{5}}{288}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-x\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \ln (x)+1-x^{2}+\frac{3 x^{3}}{4}-\frac{11 x^{4}}{36}\right. \\
& \left.+\frac{25 x^{5}}{288}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

18.8.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+y^{\prime} x^{2}+y x=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-y^{\prime}-\frac{y}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime}+\frac{y}{x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=1, P_{3}(x)=\frac{1}{x}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
y^{\prime \prime} x+x y^{\prime}+y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-1+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r)+a_{k}(k+1+r)\right) x^{k+r}\right)=0$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(-1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,1\}$
- Each term in the series must be 0 , giving the recursion relation
$(k+1+r)\left(a_{k+1}(k+r)+a_{k}\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{a_{k}}{k+r}$
- Recursion relation for $r=0$
$a_{k+1}=-\frac{a_{k}}{k}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a_{k}}{k}\right]$
- \quad Recursion relation for $r=1$
$a_{k+1}=-\frac{a_{k}}{k+1}$
- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=-\frac{a_{k}}{k+1}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{1+k}\right), a_{1+k}=-\frac{a_{k}}{k}, b_{1+k}=-\frac{b_{k}}{1+k}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 58

```
Order:=6;
dsolve(x^2*diff(y(x), x$2)+x^2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(\ln (x)\left(-x+x^{2}-\frac{1}{2} x^{3}+\frac{1}{6} x^{4}-\frac{1}{24} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right. \\
& \left.+\left(1-x+\frac{1}{4} x^{3}-\frac{5}{36} x^{4}+\frac{13}{288} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 80
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+x^{\wedge} 2 * y$ ' $\left.[x]+x * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{1}{6} x\left(x^{3}-3 x^{2}+6 x-6\right) \log (x)+\frac{1}{36}\left(-11 x^{4}+27 x^{3}-36 x^{2}+36\right)\right) \\
& +c_{2}\left(\frac{x^{5}}{24}-\frac{x^{4}}{6}+\frac{x^{3}}{2}-x^{2}+x\right)
\end{aligned}
$$

18.9 problem 1

18.9.1 Maple step by step solution

Internal problem ID [2945]
Internal file name [OUTPUT/2437_Sunday_June_05_2022_03_10_58_AM_51214053/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x(x-3) y^{\prime}+(-x+4) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(x^{2}-3 x\right) y^{\prime}+(-x+4) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{x-3}{x} \\
q(x) & =-\frac{x-4}{x^{2}}
\end{aligned}
$$

Table 468: Table $p(x), q(x)$ singularites.

$p(x)=\frac{x-3}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{x-4}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(x^{2}-3 x\right) y^{\prime}+(-x+4) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(x^{2}-3 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(-x+4)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-3 x^{n+r} a_{n}(n+r)+4 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-3 x^{r} a_{0} r+4 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-3 x^{r} r+4 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(r-2)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(r-2)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(r-2)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=2$, Eqs (1A,1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+2}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)-3 a_{n}(n+r)-a_{n-1}+4 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n+r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{1}{-1+r}
$$

Which for the root $r=2$ becomes

$$
a_{1}=-1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{-1+r}$	-1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{r(-1+r)}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{-1+r}$	-1
a_{2}	$\frac{1}{r(-1+r)}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{1}{r^{3}-r}
$$

Which for the root $r=2$ becomes

$$
a_{3}=-\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{-1+r}$	-1
a_{2}	$\frac{1}{r(-1+r)}$	$\frac{1}{2}$
a_{3}	$-\frac{1}{r^{3}-r}$	$-\frac{1}{6}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(2+r) r\left(r^{2}-1\right)}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{1}{24}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{-1+r}$	-1
a_{2}	$\frac{1}{r(-1+r)}$	$\frac{1}{2}$
a_{3}	$-\frac{1}{r^{3}-r}$	$-\frac{1}{6}$
a_{4}	$\frac{1}{(2+r) r\left(r^{2}-1\right)}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1}{r^{5}+5 r^{4}+5 r^{3}-5 r^{2}-6 r}
$$

Which for the root $r=2$ becomes

$$
a_{5}=-\frac{1}{120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{-1+r}$	-1
a_{2}	$\frac{1}{r(-1+r)}$	$\frac{1}{2}$
a_{3}	$-\frac{1}{r^{3}-r}$	$-\frac{1}{6}$
a_{4}	$\frac{1}{(2+r) r\left(r^{2}-1\right)}$	$\frac{1}{24}$
a_{5}	$-\frac{1}{r^{5}+5 r^{4}+5 r^{3}-5 r^{2}-6 r}$	$-\frac{1}{120}$

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=2$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=2)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$-\frac{1}{-1+r}$	-1	$\frac{1}{(-1+r)^{2}}$	1
b_{2}	$\frac{1}{r(-1+r)}$	$\frac{1}{2}$	$\frac{1-2 r}{r^{2}(-1+r)^{2}}$	$-\frac{3}{4}$
b_{3}	$-\frac{1}{r^{3}-r}$	$-\frac{1}{6}$	$\frac{3 r^{2}-1}{\left(r^{3}-r\right)^{2}}$	$\frac{11}{36}$
b_{4}	$\frac{1}{(2+r) r\left(r^{2}-1\right)}$	$\frac{1}{24}$	$\frac{-4 r^{3}-6 r^{2}+2 r+2}{(2+r)^{2} r^{2}\left(r^{2}-1\right)^{2}}$	$-\frac{25}{288}$
b_{5}	$-\frac{1}{r^{5}+5 r^{4}+5 r^{3}-5 r^{2}-6 r}$	$-\frac{1}{120}$	$\frac{5 r^{4}+20 r^{3}+15 r^{2}-10 r-6}{r^{2}\left(r^{4}+5 r^{3}+5 r^{2}-5 r-6\right)^{2}}$	$\frac{137}{7200}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & x^{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \ln (x) \\
& +x^{2}\left(x-\frac{3 x^{2}}{4}+\frac{11 x^{3}}{36}-\frac{25 x^{4}}{288}+\frac{137 x^{5}}{7200}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+x^{2}\left(x-\frac{3 x^{2}}{4}+\frac{11 x^{3}}{36}-\frac{25 x^{4}}{288}+\frac{137 x^{5}}{7200}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& \left.\begin{array}{rl}
= & c_{1} x^{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}(1-x\right.
\end{array}+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \ln (x) \\
& \\
&
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x^{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \ln (x)\right. \tag{1}\\
& \left.+x^{2}\left(x-\frac{3 x^{2}}{4}+\frac{11 x^{3}}{36}-\frac{25 x^{4}}{288}+\frac{137 x^{5}}{7200}+O\left(x^{6}\right)\right)\right)
\end{align*}
$$

Verification of solutions

$$
\left.\left.\begin{array}{rl}
y= & c_{1} x^{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}(1-x+\right.
\end{array}\right) \frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right) \ln (x) .
$$

Verified OK.

18.9.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+\left(x^{2}-3 x\right) y^{\prime}+(-x+4) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{(x-4) y}{x^{2}}-\frac{(x-3) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{(x-3) y^{\prime}}{x}-\frac{(x-4) y}{x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{x-3}{x}, P_{3}(x)=-\frac{x-4}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-3$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=4$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}+x(x-3) y^{\prime}+(-x+4) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(-2+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r-2)^{2}+a_{k-1}(k+r-2)\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
(-2+r)^{2}=0
$$

- Values of r that satisfy the indicial equation
$r=2$
- Each term in the series must be 0, giving the recursion relation
$(k+r-2)\left(a_{k}(k+r-2)+a_{k-1}\right)=0$
- \quad Shift index using $k->k+1$
$(k+r-1)\left(a_{k+1}(k+r-1)+a_{k}\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{a_{k}}{k+r-1}
$$

- Recursion relation for $r=2$

$$
a_{k+1}=-\frac{a_{k}}{k+1}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=-\frac{a_{k}}{k+1}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 69

```
Order:=6;
dsolve(x^2*diff (y (x), x$2)+x*(x-3)*diff (y (x), x)+(4-x)*y(x)=0,y(x),type='series', x=0);
    y(x)=((x-\frac{3}{4}\mp@subsup{x}{}{2}+\frac{11}{36}\mp@subsup{x}{}{3}-\frac{25}{288}\mp@subsup{x}{}{4}+\frac{137}{7200}\mp@subsup{x}{}{5}+\textrm{O}(\mp@subsup{x}{}{6}))\mp@subsup{c}{2}{}
    +(1-x+\frac{1}{2}\mp@subsup{x}{}{2}-\frac{1}{6}\mp@subsup{x}{}{3}+\frac{1}{24}\mp@subsup{x}{}{4}-\frac{1}{120}\mp@subsup{x}{}{5}+\textrm{O}(\mp@subsup{x}{}{6}))(\mp@subsup{c}{2}{}\operatorname{ln}(x)+\mp@subsup{c}{1}{}))\mp@subsup{x}{}{2}
```

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 120
AsymptoticDSolveValue [x $2 *{ }^{\prime} \mathrm{y}^{\prime}$ ' $[\mathrm{x}]+\mathrm{x} *(\mathrm{x}-3) * \mathrm{y}$ ' $\left.[\mathrm{x}]+(4-\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$
$\begin{aligned} y(x) \rightarrow c_{1}\left(-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right) & x^{2}+c_{2}\left(\left(\frac{137 x^{5}}{7200}-\frac{25 x^{4}}{288}+\frac{11 x^{3}}{36}-\frac{3 x^{2}}{4}+x\right) x^{2}\right. \\ + & \left.\left(-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right) x^{2} \log (x)\right)\end{aligned}$

18.10 problem 2

18.10.1 Maple step by step solution

Internal problem ID [2946]
Internal file name [OUTPUT/2438_Sunday_June_05_2022_03_11_01_AM_67401820/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
4 x^{2} y^{\prime \prime}+2 y^{\prime} x^{2}+y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x^{2} y^{\prime \prime}+2 y^{\prime} x^{2}+y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{2} \\
& q(x)=\frac{1}{4 x^{2}}
\end{aligned}
$$

Table 470: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=\frac{1}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}+2 y^{\prime} x^{2}+y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +2\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x^{2}+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r)=\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1) x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)+a_{0} x^{r}=0
$$

Or

$$
\left(4 x^{r} r(-1+r)+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{r}(2 r-1)^{2}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(2 r-1)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{r}(2 r-1)^{2}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=\frac{1}{2}$, Eqs (1A,1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+\frac{1}{2}}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)+2 a_{n-1}(n+r-1)+a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}(n+r-1)}{4 n^{2}+8 n r+4 r^{2}-4 n-4 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}(2 n-1)}{4 n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{2 r}{(2 r+1)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{1}=-\frac{1}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{(2 r+1)^{2}}$	$-\frac{1}{4}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4 r(1+r)}{(2 r+1)^{2}(3+2 r)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=\frac{3}{64}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{(2 r+1)^{2}}$	$-\frac{1}{4}$
a_{2}	$\frac{4 r(1+r)}{(2 r+1)^{2}(3+2 r)^{2}}$	$\frac{3}{64}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{8 r(1+r)(2+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{3}=-\frac{5}{768}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{(2 r+1)^{2}}$	$-\frac{1}{4}$
a_{2}	$\frac{4 r(1+r)}{(2 r+1)^{2}(3+2 r)^{2}}$	$\frac{3}{64}$
a_{3}	$-\frac{8 r(1+r)(2+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}}$	$-\frac{5}{768}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16 r(1+r)(2+r)(3+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}(2 r+7)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{35}{49152}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{(2 r+1)^{2}}$	$-\frac{1}{4}$
a_{2}	$\frac{4 r(1+r)}{(2 r+1)^{2}(3+2 r)^{2}}$	$\frac{3}{64}$
a_{3}	$-\frac{8 r(1+r)(2+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}}$	$-\frac{5}{768}$
a_{4}	$\frac{16 r(1+r)(2+r)(3+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}(2 r+7)^{2}}$	$\frac{35}{49152}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{32 r(1+r)(2+r)(3+r)(4+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}(2 r+7)^{2}(2 r+9)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{5}=-\frac{21}{327680}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{(2 r+1)^{2}}$	$-\frac{1}{4}$
a_{2}	$\frac{4 r(1+r)}{(2 r+1)^{2}(3+2 r)^{2}}$	$\frac{3}{64}$
a_{3}	$-\frac{8 r(1+r)(2+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}}$	$-\frac{5}{768}$
a_{4}	$\frac{16 r(1+r)(2+r)(3+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}(2 r+7)^{2}}$	$\frac{35}{49152}$
a_{5}	$-\frac{32 r(1+r)(2+r)(3+r)(4+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}(2 r+7)^{2}(2 r+9)^{2}}$	$-\frac{21}{327680}$

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{x}{4}+\frac{3 x^{2}}{64}-\frac{5 x^{3}}{768}+\frac{35 x^{4}}{49152}-\frac{21 x^{5}}{327680}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=\frac{1}{2}$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$
b_{0}	1	1	$\mathrm{~N} / \mathrm{A}$ since b_{n} starts from 1
b_{1}	$-\frac{2 r}{(2 r+1)^{2}}$	$-\frac{1}{4}$	$\frac{4 r-2}{(2 r+1)^{3}}$
b_{2}	$\frac{4 r(1+r)}{(2 r+1)^{2}(3+2 r)^{2}}$	$\frac{3}{64}$	$\frac{-32 r^{3}-48 r^{2}-8 r+12}{(3+2 r)^{3}(2 r+1)^{3}}$
b_{3}	$-\frac{8 r(1+r)(2+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}}$	$-\frac{5}{768}$	$\frac{192 r^{5}+1056 r^{4}+2000 r^{3}+1368 r^{2}+16 r-240}{(2 r+5)^{3}(3+2 r)^{3}(2 r+1)^{3}}$
b_{4}	$\frac{16 r(1+r)(2+r)(3+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}(2 r+7)^{2}}$	$\frac{35}{49152}$	$-\frac{32\left(32 r^{7}+368 r^{6}+1680 r^{5}+3832 r^{4}+4438 r^{3}+2151 r^{2}-99 r-315\right)}{(2 r+1)^{3}(3+2 r)^{3}(2 r+5)^{3}(2 r+7)^{3}}$
b_{5}	$-\frac{32 r(1+r)(2+r)(3+r)(4+r)}{(2 r+1)^{2}(3+2 r)^{2}(2 r+5)^{2}(2 r+7)^{2}(2 r+9)^{2}}$	$-\frac{21}{327680}$	$\frac{5120 r^{9}+99840 r^{8}+821760 r^{7}+3705600 r^{6}+9919296 r^{5}+15869280 r^{4}+142326}{(2 r+1)^{3}(3+2 r)^{3}(2 r+5)^{3}(2 r+7)^{3}(2 r+9)^{3}}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \sqrt{x}\left(1-\frac{x}{4}+\frac{3 x^{2}}{64}-\frac{5 x^{3}}{768}+\frac{35 x^{4}}{49152}-\frac{21 x^{5}}{327680}+O\left(x^{6}\right)\right) \ln (x) \\
& +\sqrt{x}\left(-\frac{x^{2}}{64}+\frac{x^{3}}{256}-\frac{19 x^{4}}{32768}+\frac{25 x^{5}}{393216}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sqrt{x}\left(1-\frac{x}{4}+\frac{3 x^{2}}{64}-\frac{5 x^{3}}{768}+\frac{35 x^{4}}{49152}-\frac{21 x^{5}}{327680}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1-\frac{x}{4}+\frac{3 x^{2}}{64}-\frac{5 x^{3}}{768}+\frac{35 x^{4}}{49152}-\frac{21 x^{5}}{327680}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+\sqrt{x}\left(-\frac{x^{2}}{64}+\frac{x^{3}}{256}-\frac{19 x^{4}}{32768}+\frac{25 x^{5}}{393216}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& \begin{aligned}
= & c_{1} \sqrt{x}\left(1-\frac{x}{4}+\frac{3 x^{2}}{64}-\frac{5 x^{3}}{768}+\frac{35 x^{4}}{49152}-\frac{21 x^{5}}{327680}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1-\frac{x}{4}+\frac{3 x^{2}}{64}-\frac{5 x^{3}}{768}+\frac{35 x^{4}}{49152}-\frac{21 x^{5}}{327680}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.\quad+\sqrt{x}\left(-\frac{x^{2}}{64}+\frac{x^{3}}{256}-\frac{19 x^{4}}{32768}+\frac{25 x^{5}}{393216}+O\left(x^{6}\right)\right)\right)
\end{aligned}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{x}\left(1-\frac{x}{4}+\frac{3 x^{2}}{64}-\frac{5 x^{3}}{768}+\frac{35 x^{4}}{49152}-\frac{21 x^{5}}{327680}+O\left(x^{6}\right)\right) \\
+ & c_{2}\left(\sqrt{x}\left(1-\frac{x}{4}+\frac{3 x^{2}}{64}-\frac{5 x^{3}}{768}+\frac{35 x^{4}}{49152}-\frac{21 x^{5}}{327680}+O\left(x^{6}\right)\right) \ln (x)\right. \tag{1}\\
& \left.+\sqrt{x}\left(-\frac{x^{2}}{64}+\frac{x^{3}}{256}-\frac{19 x^{4}}{32768}+\frac{25 x^{5}}{393216}+O\left(x^{6}\right)\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-\frac{x}{4}+\frac{3 x^{2}}{64}-\frac{5 x^{3}}{768}+\frac{35 x^{4}}{49152}-\frac{21 x^{5}}{327680}+O\left(x^{6}\right)\right) \\
+ & c_{2}\left(\sqrt{x}\left(1-\frac{x}{4}+\frac{3 x^{2}}{64}-\frac{5 x^{3}}{768}+\frac{35 x^{4}}{49152}-\frac{21 x^{5}}{327680}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+\sqrt{x}\left(-\frac{x^{2}}{64}+\frac{x^{3}}{256}-\frac{19 x^{4}}{32768}+\frac{25 x^{5}}{393216}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Verified OK.

18.10.1 Maple step by step solution

Let's solve
$4 x^{2} y^{\prime \prime}+2 y^{\prime} x^{2}+y=0$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{2}-\frac{y}{4 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{2}+\frac{y}{4 x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{2}, P_{3}(x)=\frac{1}{4 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{1}{4}
$$

- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}+2 y^{\prime} x^{2}+y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{2} \cdot y^{\prime}$ to series expansion
$x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}$
- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(-1+2 r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(2 k+2 r-1)^{2}+2 a_{k-1}(k-1+r)\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(-1+2 r)^{2}=0$
- Values of r that satisfy the indicial equation
$r=\frac{1}{2}$
- \quad Each term in the series must be 0 , giving the recursion relation
$a_{k}(2 k+2 r-1)^{2}+2 a_{k-1}(k-1+r)=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(2 k+1+2 r)^{2}+2 a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{2 a_{k}(k+r)}{(2 k+1+2 r)^{2}}
$$

- Recursion relation for $r=\frac{1}{2}$

$$
a_{k+1}=-\frac{2 a_{k}\left(k+\frac{1}{2}\right)}{(2 k+2)^{2}}
$$

- \quad Solution for $r=\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+1}=-\frac{2 a_{k}\left(k+\frac{1}{2}\right)}{(2 k+2)^{2}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 67

```
Order:=6;
dsolve(4*x^2*diff ( }\textrm{y}(\textrm{x}),\textrm{x}$2)+2*\mp@subsup{x}{}{\wedge}2*\mathrm{ diff ( }\textrm{y}(\textrm{x}),\textrm{x})+\textrm{y}(\textrm{x})=0,y(\textrm{x}),\mathrm{ ,type='series',x=0);
```

$$
\begin{aligned}
y(x)=\sqrt{x}\left(\left(c_{2} \ln (x)+c_{1}\right)\right. & \left(1-\frac{1}{4} x+\frac{3}{64} x^{2}-\frac{5}{768} x^{3}+\frac{35}{49152} x^{4}-\frac{21}{327680} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& \left.+\left(-\frac{1}{64} x^{2}+\frac{1}{256} x^{3}-\frac{19}{32768} x^{4}+\frac{25}{393216} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 129
AsymptoticDSolveValue [4*x^2*y' ' $[x]+2 * x \wedge 2 * y$ ' $[x]+y[x]==0, y[x],\{x, 0,5\}]$

$$
\begin{aligned}
& y(x) \rightarrow c_{1} \sqrt{x}\left(-\frac{21 x^{5}}{327680}+\frac{35 x^{4}}{49152}-\frac{5 x^{3}}{768}+\frac{3 x^{2}}{64}-\frac{x}{4}+1\right) \\
& +c_{2}\left(\sqrt{x}\left(\frac{25 x^{5}}{393216}-\frac{19 x^{4}}{32768}+\frac{x^{3}}{256}-\frac{x^{2}}{64}\right)\right. \\
& \left.\quad+\sqrt{x}\left(-\frac{21 x^{5}}{327680}+\frac{35 x^{4}}{49152}-\frac{5 x^{3}}{768}+\frac{3 x^{2}}{64}-\frac{x}{4}+1\right) \log (x)\right)
\end{aligned}
$$

18.11 problem 3

Internal problem ID [2947]
Internal file name [OUTPUT/2439_Sunday_June_05_2022_03_11_04_AM_72846286/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+x \cos (x) y^{\prime}-2 \mathrm{e}^{x} y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x \cos (x) y^{\prime}-2 \mathrm{e}^{x} y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{\cos (x)}{x} \\
& q(x)=-\frac{2 \mathrm{e}^{x}}{x^{2}}
\end{aligned}
$$

Table 472: Table $p(x), q(x)$ singularites.

$p(x)=\frac{\cos (x)}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{2 \mathrm{e}^{x}}{x^{2}}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x \cos (x) y^{\prime}-2 \mathrm{e}^{x} y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x \cos (x)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-2 \mathrm{e}^{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Expanding $\cos (x) x$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
\cos (x) x & =x-\frac{1}{2} x^{3}+\frac{1}{24} x^{5}-\frac{1}{720} x^{7}+\ldots \\
& =x-\frac{1}{2} x^{3}+\frac{1}{24} x^{5}-\frac{1}{720} x^{7}
\end{aligned}
$$

Expanding $-2 \mathrm{e}^{x}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
-2 \mathrm{e}^{x} & =-2-2 x-x^{2}-\frac{1}{3} x^{3}-\frac{1}{12} x^{4}-\frac{1}{60} x^{5}-\frac{1}{360} x^{6}+\ldots \\
& =-2-2 x-x^{2}-\frac{1}{3} x^{3}-\frac{1}{12} x^{4}-\frac{1}{60} x^{5}-\frac{1}{360} x^{6}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}(n+r)}{720}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}(n+r)}{24}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+2} a_{n}(n+r)}{2}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+3} a_{n}}{3}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+4} a_{n}}{12}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+5} a_{n}}{60}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}}{360}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}(n+r)}{720}\right) & =\sum_{n=6}^{\infty}\left(-\frac{a_{n-6}(n-6+r) x^{n+r}}{720}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}(n+r)}{24} & =\sum_{n=4}^{\infty} \frac{a_{n-4}(n-4+r) x^{n+r}}{24} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+2} a_{n}(n+r)}{2}\right) & =\sum_{n=2}^{\infty}\left(-\frac{a_{n-2}(n+r-2) x^{n+r}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r}\right) \\
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+3} a_{n}}{3}\right) & =\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n+r}}{3}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+4} a_{n}}{12}\right) & =\sum_{n=4}^{\infty}\left(-\frac{a_{n-4} x^{n+r}}{12}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+5} a_{n}}{60}\right) & =\sum_{n=5}^{\infty}\left(-\frac{a_{n-5} x^{n+r}}{60}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}}{360}\right) & =\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{n+r}}{360}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=6}^{\infty}\left(-\frac{a_{n-6}(n-6+r) x^{n+r}}{720}\right) \\
& \quad+\left(\sum_{n=4}^{\infty} \frac{a_{n-4}(n-4+r) x^{n+r}}{24}\right)+\sum_{n=2}^{\infty}\left(-\frac{a_{n-2}(n+r-2) x^{n+r}}{2}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r}\right) \tag{2B}\\
& \quad+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n+r}\right)+\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n+r}}{3}\right)+\sum_{n=4}^{\infty}\left(-\frac{a_{n-4} x^{n+r}}{12}\right) \\
& \quad+\sum_{n=5}^{\infty}\left(-\frac{a_{n-5} x^{n+r}}{60}\right)+\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{n+r}}{360}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\sqrt{2} \\
& r_{2}=-\sqrt{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2 \sqrt{2}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\sqrt{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\sqrt{2}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=\frac{2}{r^{2}+2 r-1}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{r^{3}+4 r^{2}+3 r+6}{2\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=\frac{r^{4}+12 r^{3}+42 r^{2}+51 r+34}{3\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}
$$

Substituting $n=4$ in Eq. (2B) gives

$$
a_{4}=\frac{-r^{7}-4 r^{6}+56 r^{5}+484 r^{4}+1611 r^{3}+2924 r^{2}+3066 r+1748}{24\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}
$$

Substituting $n=5$ in Eq. (2B) gives

$$
a_{5}=\frac{r^{8}+30 r^{7}+487 r^{6}+4215 r^{5}+20182 r^{4}+55655 r^{3}+89604 r^{2}+82830 r+39204}{60\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}
$$

For $6 \leq n$ the recursive equation is

$$
\begin{align*}
& a_{n}(n+r)(n+r-1)-\frac{a_{n-6}(n-6+r)}{720}+\frac{a_{n-4}(n-4+r)}{24}-\frac{a_{n-2}(n+r-2)}{2} \tag{3}\\
& \quad+a_{n}(n+r)-2 a_{n}-2 a_{n-1}-a_{n-2}-\frac{a_{n-3}}{3}-\frac{a_{n-4}}{12}-\frac{a_{n-5}}{60}-\frac{a_{n-6}}{360}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{n a_{n-6}-30 n a_{n-4}+360 n a_{n-2}+r a_{n-6}-30 r a_{n-4}+360 r a_{n-2}-4 a_{n-6}+12 a_{n-5}+180 a_{n-4}+240 a_{n-}}{720 n^{2}+1440 n r+720 r^{2}-1440} \tag{4}
\end{equation*}
$$

Which for the root $r=\sqrt{2}$ becomes

$$
\begin{equation*}
a_{n}=\frac{\left(a_{n-6}-30 a_{n-4}+360 a_{n-2}\right) \sqrt{2}+\left(a_{n-6}-30 a_{n-4}+360 a_{n-2}\right) n-4 a_{n-6}+12 a_{n-5}+180 a_{n-4}+240 a}{720 n(2 \sqrt{2}+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\sqrt{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{r^{2}+2 r-1}$	$\frac{2}{1+2 \sqrt{2}}$
a_{2}	$\frac{r^{3}+4 r^{2}+3 r+6}{2\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}$	$\frac{5 \sqrt{2}+14}{40+24 \sqrt{2}}$
a_{3}	$\frac{r^{4}+12 r^{3}+42 r^{2}+51 r+34}{3\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}$	$\frac{122+75 \sqrt{2}}{684 \sqrt{2}+972}$
a_{4}	$\frac{-r^{7}-4 r^{6}+56 r^{5}+484 r^{4}+1611 r^{3}+2924 r^{2}+3066 r+1748}{24\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}$	$\frac{1626 \sqrt{2}+2375}{52992+37440 \sqrt{2}}$
a_{5}	$\frac{r^{8}+30 r^{7}+487 r^{6}+4215 r^{5}+20182 r^{4}+55655 r^{3}+89604 r^{2}+82830 r+39204}{60\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}$	$\frac{75763+52810 \sqrt{2}}{7200(1+2 \sqrt{2})(1+\sqrt{2})(3+2 \sqrt{2})(2+\sqrt{2})(5+2 \sqrt{2})}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\sqrt{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\sqrt{2}}\left(1+\frac{2 x}{1+2 \sqrt{2}}+\frac{(5 \sqrt{2}+14) x^{2}}{40+24 \sqrt{2}}+\frac{(122+75 \sqrt{2}) x^{3}}{684 \sqrt{2}+972}+\frac{(1626 \sqrt{2}+2375) x^{4}}{52992+37440 \sqrt{2}}+\frac{}{7200(1+2 \sqrt{ }}\right.
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=\frac{2}{r^{2}+2 r-1}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
b_{2}=\frac{r^{3}+4 r^{2}+3 r+6}{2\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
b_{3}=\frac{r^{4}+12 r^{3}+42 r^{2}+51 r+34}{3\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}
$$

Substituting $n=4$ in Eq. (2B) gives

$$
b_{4}=\frac{-r^{7}-4 r^{6}+56 r^{5}+484 r^{4}+1611 r^{3}+2924 r^{2}+3066 r+1748}{24\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}
$$

Substituting $n=5$ in Eq. (2B) gives

$$
b_{5}=\frac{r^{8}+30 r^{7}+487 r^{6}+4215 r^{5}+20182 r^{4}+55655 r^{3}+89604 r^{2}+82830 r+39204}{60\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}
$$

For $6 \leq n$ the recursive equation is

$$
\begin{align*}
& b_{n}(n+r)(n+r-1)-\frac{b_{n-6}(n-6+r)}{720}+\frac{b_{n-4}(n-4+r)}{24}-\frac{b_{n-2}(n+r-2)}{2} \tag{3}\\
& +b_{n}(n+r)-2 b_{n}-2 b_{n-1}-b_{n-2}-\frac{b_{n-3}}{3}-\frac{b_{n-4}}{12}-\frac{b_{n-5}}{60}-\frac{b_{n-6}}{360}=0
\end{align*}
$$

Solving for b_{n} from recursive equation (4) gives
$b_{n}=\frac{n b_{n-6}-30 n b_{n-4}+360 n b_{n-2}+r b_{n-6}-30 r b_{n-4}+360 r b_{n-2}-4 b_{n-6}+12 b_{n-5}+180 b_{n-4}+240 b_{n-3}}{720 n^{2}+1440 n r+720 r^{2}-1440}$

Which for the root $r=-\sqrt{2}$ becomes

$$
\begin{equation*}
b_{n}=\frac{\left(-b_{n-6}+30 b_{n-4}-360 b_{n-2}\right) \sqrt{2}+\left(b_{n-6}-30 b_{n-4}+360 b_{n-2}\right) n-4 b_{n-6}+12 b_{n-5}+180 b_{n-4}+240 b_{n}}{720 n(-2 \sqrt{2}+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\sqrt{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{r^{2}+2 r-1}$	$-\frac{2}{-1+2 \sqrt{2}}$
b_{2}	$\frac{r^{3}+4 r^{2}+3 r+6}{2\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}$	$\frac{-5 \sqrt{2}+14}{40-24 \sqrt{2}}$
b_{3}	$\frac{r^{4}+12 r^{3}+42 r^{2}+51 r+34}{3\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}$	$\frac{-122+75 \sqrt{2}}{684 \sqrt{2}-972}$
b_{4}	$\frac{-r^{7}-4 r^{6}+56 r^{5}+484 r^{4}+1611 r^{3}+2924 r^{2}+3066 r+1748}{24\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}$	$\frac{-1626 \sqrt{2}+2375}{52992-37440 \sqrt{2}}$
b_{5}	$\frac{r^{8}+30 r^{7}+487 r^{6}+4215 r^{5}+20182 r^{4}+55655 r^{3}+89604 r^{2}+82830 r+39204}{60\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}$	$\frac{-75763+52810 \sqrt{2}}{7200(-1+2 \sqrt{2})(\sqrt{2}-1)(2 \sqrt{2}-3)(\sqrt{2}-2)(-5+2 \sqrt{2})}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\sqrt{2}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =x^{-\sqrt{2}}\left(1-\frac{2 x}{-1+2 \sqrt{2}}+\frac{(-5 \sqrt{2}+14) x^{2}}{40-24 \sqrt{2}}+\frac{(-122+75 \sqrt{2}) x^{3}}{684 \sqrt{2}-972}+\frac{(-1626 \sqrt{2}+2375) x^{4}}{52992-37440 \sqrt{2}}+\frac{}{7200}\right.
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{\sqrt{2}}\left(1+\frac{2 x}{1+2 \sqrt{2}}+\frac{(5 \sqrt{2}+14) x^{2}}{40+24 \sqrt{2}}+\frac{(122+75 \sqrt{2}) x^{3}}{684 \sqrt{2}+972}+\frac{(1626 \sqrt{2}+2375) x^{4}}{52992+37440 \sqrt{2}}\right. \\
& \\
& \left.+\frac{(75763+52810 \sqrt{2}) x^{5}}{7200(1+2 \sqrt{2})(1+\sqrt{2})(3+2 \sqrt{2})(2+\sqrt{2})(5+2 \sqrt{2})}+O\left(x^{6}\right)\right) \\
& + \\
& c_{2} x^{-\sqrt{2}\left(1-\frac{2 x}{-1+2 \sqrt{2}}+\frac{(-5 \sqrt{2}+14) x^{2}}{40-24 \sqrt{2}}+\frac{(-122+75 \sqrt{2}) x^{3}}{684 \sqrt{2}-972}\right.} \\
& +\frac{(-1626 \sqrt{2}+2375) x^{4}}{52992-37440 \sqrt{2}} \\
&
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y= y_{h} \\
&=c_{1} x^{\sqrt{2}}\left(1+\frac{2 x}{1+2 \sqrt{2}}+\frac{(5 \sqrt{2}+14) x^{2}}{40+24 \sqrt{2}}+\frac{(122+75 \sqrt{2}) x^{3}}{684 \sqrt{2}+972}+\frac{(1626 \sqrt{2}+2375) x^{4}}{52992+37440 \sqrt{2}}\right. \\
&\left.+\frac{(75763+52810 \sqrt{2}) x^{5}}{7200(1+2 \sqrt{2})(1+\sqrt{2})(3+2 \sqrt{2})(2+\sqrt{2})(5+2 \sqrt{2})}+O\left(x^{6}\right)\right)+c_{2} x^{-\sqrt{2}}(1 \\
&-\frac{2 x}{-1+2 \sqrt{2}}+\frac{(-5 \sqrt{2}+14) x^{2}}{40-24 \sqrt{2}}+\frac{(-122+75 \sqrt{2}) x^{3}}{684 \sqrt{2}-972}+\frac{(-1626 \sqrt{2}+2375) x^{4}}{52992-37440 \sqrt{2}} \\
&\left.+\frac{(-75763+52810 \sqrt{2}) x^{5}}{7200(-1+2 \sqrt{2})(\sqrt{2}-1)(2 \sqrt{2}-3)(\sqrt{2}-2)(-5+2 \sqrt{2})}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{\sqrt{2}}\left(1+\frac{2 x}{1+2 \sqrt{2}}+\frac{(5 \sqrt{2}+14) x^{2}}{40+24 \sqrt{2}}+\frac{(122+75 \sqrt{2}) x^{3}}{684 \sqrt{2}+972}+\frac{(1626 \sqrt{2}+2375) x^{4}}{52992+37440 \sqrt{2}}\right. \\
& \left.+\frac{(75763+52810 \sqrt{2}) x^{5}}{7200(1+2 \sqrt{2})(1+\sqrt{2})(3+2 \sqrt{2})(2+\sqrt{2})(5+2 \sqrt{2})}+O\left(x^{6}\right)\right)+c_{2} x^{-\sqrt{2}}(1 \\
& -\frac{2 x}{-1+2 \sqrt{2}}+\frac{(-5 \sqrt{2}+14) x^{2}}{40-24 \sqrt{2}}+\frac{(-122+75 \sqrt{2}) x^{3}}{684 \sqrt{2}-972}+\frac{(-1626 \sqrt{2}+2375) x^{4}}{52992-37440 \sqrt{2}} \\
& \left.+\frac{(-75763+52810 \sqrt{2}) x^{5}}{7200(-1+2 \sqrt{2})(\sqrt{2}-1)(2 \sqrt{2}-3)(\sqrt{2}-2)(-5+2 \sqrt{2})}+O\left(x^{6}\right)\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\sqrt{2}}\left(1+\frac{2 x}{1+2 \sqrt{2}}+\frac{(5 \sqrt{2}+14) x^{2}}{40+24 \sqrt{2}}+\frac{(122+75 \sqrt{2}) x^{3}}{684 \sqrt{2}+972}+\frac{(1626 \sqrt{2}+2375) x^{4}}{52992+37440 \sqrt{2}}\right. \\
& \left.+\frac{(75763+52810 \sqrt{2}) x^{5}}{7200(1+2 \sqrt{2})(1+\sqrt{2})(3+2 \sqrt{2})(2+\sqrt{2})(5+2 \sqrt{2})}+O\left(x^{6}\right)\right)+c_{2} x^{-\sqrt{2}}(1 \\
& -\frac{2 x}{-1+2 \sqrt{2}}+\frac{(-5 \sqrt{2}+14) x^{2}}{40-24 \sqrt{2}}+\frac{(-122+75 \sqrt{2}) x^{3}}{684 \sqrt{2}-972}+\frac{(-1626 \sqrt{2}+2375) x^{4}}{52992-37440 \sqrt{2}} \\
& \left.+\frac{(-75763+52810 \sqrt{2}) x^{5}}{7200(-1+2 \sqrt{2})(\sqrt{2}-1)(2 \sqrt{2}-3)(\sqrt{2}-2)(-5+2 \sqrt{2})}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x})$ * Y where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
-, --> Computing symmetries using: way $=5$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) $* 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way $=5 `[0, u]$
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 389

```
Order:=6;
dsolve(x^2*diff (y (x),x$2)+x*\operatorname{cos}(x)*diff (y(x),x)-2*exp(x)*y(x)=0,y(x),type='series',x=0);
```

$y(x)=c_{1} x^{-\sqrt{2}}\left(1-2 \frac{1}{-1+2 \sqrt{2}} x+\frac{-5 \sqrt{2}+14}{40-24 \sqrt{2}} x^{2}+\frac{-122+75 \sqrt{2}}{684 \sqrt{2}-972} x^{3}\right.$

$$
\begin{aligned}
& +\frac{-1626 \sqrt{2}+2375}{52992-37440 \sqrt{2}} x^{4} \\
& \left.+\frac{1}{7200} \frac{-75763+52810 \sqrt{2}}{(-1+2 \sqrt{2})(\sqrt{2}-1)(-3+2 \sqrt{2})(\sqrt{2}-2)(-5+2 \sqrt{2})} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2} x^{\sqrt{2}}\left(1+2 \frac{1}{1+2 \sqrt{2}} x+\frac{5 \sqrt{2}+14}{40+24 \sqrt{2}} x^{2}+\frac{122+75 \sqrt{2}}{684 \sqrt{2}+972} x^{3}+\frac{1626 \sqrt{2}+2375}{52992+37440 \sqrt{2}} x^{4}\right.
\end{aligned}
$$

$$
\left.+\frac{1}{7200} \frac{75763+52810 \sqrt{2}}{(1+2 \sqrt{2})(1+\sqrt{2})(3+2 \sqrt{2})(2+\sqrt{2})(5+2 \sqrt{2})} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 2210
AsymptoticDSolveValue[x^2*y' ' $[\mathrm{x}]+\mathrm{x} * \operatorname{Cos}[\mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]-2 * \operatorname{Exp}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$
Too large to display

18.12 problem 4

18.12.1 Maple step by step solution

Internal problem ID [2948]
Internal file name [OUTPUT/2440_Sunday_June_05_2022_03_11_12_AM_44382120/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}-(x+2) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}+(-2-x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=-\frac{x+2}{x^{2}}
\end{aligned}
$$

Table 473: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=-\frac{x+2}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}+(-2-x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x^{2}+(-2-x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-r-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=3$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)-2 a_{n}-a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{1+n+r} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{3+n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{1}{2+r}
$$

Which for the root $r=2$ becomes

$$
a_{1}=-\frac{1}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{4}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{(2+r)(3+r)}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{1}{20}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{4}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{20}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{1}{(2+r)(3+r)(4+r)}
$$

Which for the root $r=2$ becomes

$$
a_{3}=-\frac{1}{120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{4}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{20}$
a_{3}	$-\frac{1}{(2+r)(3+r)(4+r)}$	$-\frac{1}{120}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(3+r)(4+r)(2+r)(5+r)}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{1}{840}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{4}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{20}$
a_{3}	$-\frac{1}{(2+r)(3+r)(4+r)}$	$-\frac{1}{120}$
a_{4}	$\frac{1}{(3+r)(4+r)(2+r)(5+r)}$	$\frac{1}{840}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1}{(4+r)(2+r)(5+r)(3+r)(6+r)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=-\frac{1}{6720}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{4}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{20}$
a_{3}	$-\frac{1}{(2+r)(3+r)(4+r)}$	$-\frac{1}{120}$
a_{4}	$\frac{1}{(3+r)(4+r)(2+r)(5+r)}$	$\frac{1}{840}$
a_{5}	$-\frac{1}{(4+r)(2+r)(5+r)(3+r)(6+r)}$	$-\frac{1}{6720}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1-\frac{x}{4}+\frac{x^{2}}{20}-\frac{x^{3}}{120}+\frac{x^{4}}{840}-\frac{x^{5}}{6720}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=3$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{3}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{3} \\
& =-\frac{1}{(2+r)(3+r)(4+r)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{1}{(2+r)(3+r)(4+r)} & =\lim _{r \rightarrow-1}-\frac{1}{(2+r)(3+r)(4+r)} \\
& =-\frac{1}{6}
\end{aligned}
$$

The limit is $-\frac{1}{6}$. Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n-1}(n+r-1)-2 b_{n}-b_{n-1}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}(n-1)(n-2)+b_{n-1}(n-2)-2 b_{n}-b_{n-1}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{1+n+r} \tag{5}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{1}{2+r}
$$

Which for the root $r=-1$ becomes

$$
b_{1}=-1
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{1}{(2+r)(3+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{1}{(2+r)(3+r)(4+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{3}=-\frac{1}{6}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$
b_{3}	$-\frac{1}{(2+r)(3+r)(4+r)}$	$-\frac{1}{6}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1}{(3+r)(4+r)(2+r)(5+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=\frac{1}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$
b_{3}	$-\frac{1}{(2+r)(3+r)(4+r)}$	$-\frac{1}{6}$
b_{4}	$\frac{1}{(3+r)(4+r)(2+r)(5+r)}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=-\frac{1}{(4+r)(2+r)(5+r)(3+r)(6+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{5}=-\frac{1}{120}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$
b_{3}	$-\frac{1}{(2+r)(3+r)(4+r)}$	$-\frac{1}{6}$
b_{4}	$\frac{1}{(3+r)(4+r)(2+r)(5+r)}$	$\frac{1}{24}$
b_{5}	$-\frac{1}{(4+r)(2+r)(5+r)(3+r)(6+r)}$	$-\frac{1}{120}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(1-\frac{x}{4}+\frac{x^{2}}{20}-\frac{x^{3}}{120}+\frac{x^{4}}{840}-\frac{x^{5}}{6720}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(1-\frac{x}{4}+\frac{x^{2}}{20}-\frac{x^{3}}{120}+\frac{x^{4}}{840}-\frac{x^{5}}{6720}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{2}\left(1-\frac{x}{4}+\frac{x^{2}}{20}-\frac{x^{3}}{120}+\frac{x^{4}}{840}-\frac{x^{5}}{6720}+O\left(x^{6}\right)\right) \tag{1}\\
& +\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}
\end{align*}
$$

Verification of solutions

$$
\begin{gathered}
y= \\
c_{1} x^{2}\left(1-\frac{x}{4}+\frac{x^{2}}{20}-\frac{x^{3}}{120}+\frac{x^{4}}{840}-\frac{x^{5}}{6720}+O\left(x^{6}\right)\right) \\
+\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}
\end{gathered}
$$

Verified OK.

18.12.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}+(-2-x) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-y^{\prime}+\frac{(x+2) y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime}-\frac{(x+2) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=1, P_{3}(x)=-\frac{x+2}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators
$x^{2} y^{\prime \prime}+y^{\prime} x^{2}+(-2-x) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}
$$

- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)(-2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(k+r-2)+a_{k-1}(k+r-2)\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,2\}$
- Each term in the series must be 0 , giving the recursion relation
$(k+r-2)\left(a_{k}(k+r+1)+a_{k-1}\right)=0$
- \quad Shift index using $k->k+1$
$(k-1+r)\left(a_{k+1}(k+2+r)+a_{k}\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{a_{k}}{k+2+r}$
- Recursion relation for $r=-1$
$a_{k+1}=-\frac{a_{k}}{k+1}$
- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+1}=-\frac{a_{k}}{k+1}\right]
$$

- Recursion relation for $r=2$

$$
a_{k+1}=-\frac{a_{k}}{k+4}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=-\frac{a_{k}}{k+4}\right]
$$

- \quad Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{2+k}\right), a_{1+k}=-\frac{a_{k}}{1+k}, b_{1+k}=-\frac{b_{k}}{k+4}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 47

```
Order:=6;
dsolve(x^2*diff (y (x),x$2)+\mp@subsup{x}{}{\wedge}2*\operatorname{diff}(y(x),x)-(2+x)*y(x)=0,y(x),type='series',x=0);
\[
\begin{aligned}
y(x)= & c_{1} x^{2}\left(1-\frac{1}{4} x+\frac{1}{20} x^{2}-\frac{1}{120} x^{3}+\frac{1}{840} x^{4}-\frac{1}{6720} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(12-12 x+6 x^{2}-2 x^{3}+\frac{1}{2} x^{4}-\frac{1}{10} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x}
\end{aligned}
\]
```

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 66
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' $'[x]+x^{\wedge} 2 * y$ ' $\left.[x]-(2+x) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{3}}{24}-\frac{x^{2}}{6}+\frac{x}{2}+\frac{1}{x}-1\right)+c_{2}\left(\frac{x^{6}}{840}-\frac{x^{5}}{120}+\frac{x^{4}}{20}-\frac{x^{3}}{4}+x^{2}\right)
$$

18.13 problem 5

18.13.1 Maple step by step solution

3539
Internal problem ID [2949]
Internal file name [OUTPUT/2441_Sunday_June_05_2022_03_11_16_AM_23810315/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x^{2}+\left(x-\frac{3}{4}\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x^{2}+\left(x-\frac{3}{4}\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=2 \\
& q(x)=\frac{4 x-3}{4 x^{2}}
\end{aligned}
$$

Table 475: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=\frac{4 x-3}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x^{2}+\left(x-\frac{3}{4}\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +2\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x^{2}+\left(x-\frac{3}{4}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{3 a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{3 a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-\frac{3 a_{n} x^{n+r}}{4}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-\frac{3 a_{0} x^{r}}{4}=0
$$

Or

$$
\left(x^{r} r(-1+r)-\frac{3 x^{r}}{4}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\frac{\left(4 r^{2}-4 r-3\right) x^{r}}{4}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-r-\frac{3}{4}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\frac{\left(4 r^{2}-4 r-3\right) x^{r}}{4}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{\frac{3}{2}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+2 a_{n-1}(n+r-1)+a_{n-1}-\frac{3 a_{n}}{4}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-1}(2 n+2 r-1)}{4 n^{2}+8 n r+4 r^{2}-4 n-4 r-3} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}(1+n)}{n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{-8 r-4}{4 r^{2}+4 r-3}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{1}=-\frac{4}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-8 r-4}{4 r^{2}+4 r-3}$	$-\frac{4}{3}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{16}{4 r^{2}+8 r-5}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{2}=1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-8 r-4}{4 r^{2}+4 r-3}$	$-\frac{4}{3}$
a_{2}	$\frac{16}{4 r^{2}+8 r-5}$	1

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{64}{8 r^{3}+36 r^{2}+22 r-21}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{3}=-\frac{8}{15}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-8 r-4}{4 r^{2}+4 r-3}$	$-\frac{4}{3}$
a_{2}	$\frac{16}{4 r^{2}+8 r-5}$	1
a_{3}	$-\frac{64}{8 r^{3}+36 r^{2}+22 r-21}$	$-\frac{8}{15}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{256}{\left(4 r^{2}+28 r+45\right)\left(4 r^{2}+4 r-3\right)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{4}=\frac{2}{9}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-8 r-4}{4 r^{2}+4 r-3}$	$-\frac{4}{3}$
a_{2}	$\frac{16}{4 r^{2}+8 r-5}$	1
a_{3}	$-\frac{64}{8 r^{3}+36 r^{2}+22 r-21}$	$-\frac{8}{15}$
a_{4}	$\frac{256}{\left(4 r^{2}+28 r+45\right)\left(4 r^{2}+4 r-3\right)}$	$\frac{2}{9}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1024}{\left(4 r^{2}+36 r+77\right)\left(4 r^{2}+4 r-3\right)(2 r+5)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{5}=-\frac{8}{105}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-8 r-4}{4 r^{2}+4 r-3}$	$-\frac{4}{3}$
a_{2}	$\frac{16}{4 r^{2}+8 r-5}$	1
a_{3}	$-\frac{64}{8 r^{3}+36 r^{2}+22 r-21}$	$-\frac{8}{15}$
a_{4}	$\frac{256}{\left(4 r^{2}+28 r+45\right)\left(4 r^{2}+4 r-3\right)}$	$\frac{2}{9}$
a_{5}	$-\frac{1024}{\left(4 r^{2}+36 r+77\right)\left(4 r^{2}+4 r-3\right)(2 r+5)}$	$-\frac{8}{105}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{3}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{3}{2}}\left(1-\frac{4 x}{3}+x^{2}-\frac{8 x^{3}}{15}+\frac{2 x^{4}}{9}-\frac{8 x^{5}}{105}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =\frac{16}{4 r^{2}+8 r-5}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{16}{4 r^{2}+8 r-5} & =\lim _{r \rightarrow-\frac{1}{2}} \frac{16}{4 r^{2}+8 r-5} \\
& =-2
\end{aligned}
$$

The limit is -2 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+2 b_{n-1}(n+r-1)+b_{n-1}-\frac{3 b_{n}}{4}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)+2 b_{n-1}\left(n-\frac{3}{2}\right)+b_{n-1}-\frac{3 b_{n}}{4}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{4 b_{n-1}(2 n+2 r-1)}{4 n^{2}+8 n r+4 r^{2}-4 n-4 r-3} \tag{5}
\end{equation*}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{4 b_{n-1}(2 n-2)}{4 n^{2}-8 n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{4(1+2 r)}{4 r^{2}+4 r-3}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{1}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-8 r-4}{4 r^{2}+4 r-3}$	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{16}{(2 r+5)(2 r-1)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{2}=-2
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-8 r-4}{4 r^{2}+4 r-3}$	0
b_{2}	$\frac{16}{4 r^{2}+8 r-5}$	-2

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{64}{\left(4 r^{2}+20 r+21\right)(2 r-1)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{3}=\frac{8}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-8 r-4}{4 r^{2}+4 r-3}$	0
b_{2}	$\frac{16}{4 r^{2}+8 r-5}$	-2
b_{3}	$-\frac{64}{8 r^{3}+36 r^{2}+22 r-21}$	$\frac{8}{3}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{256}{(2 r-1)(3+2 r)\left(4 r^{2}+28 r+45\right)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{4}=-2
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-8 r-4}{4 r^{2}+4 r-3}$	0
b_{2}	$\frac{16}{4 r^{2}+8 r-5}$	-2
b_{3}	$-\frac{64}{8 r^{3}+36 r^{2}+22 r-21}$	$\frac{8}{3}$
b_{4}	$\frac{256}{16 r^{4}+128 r^{3}+280 r^{2}+96 r-135}$	-2

For $n=5$, using the above recursive equation gives

$$
b_{5}=-\frac{1024}{(2 r+5)(2 r-1)(3+2 r)\left(4 r^{2}+36 r+77\right)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{5}=\frac{16}{15}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{-8 r-4}{4 r^{2}+4 r-3}$	0
b_{2}	$\frac{16}{4 r^{2}+8 r-5}$	-2
b_{3}	$-\frac{64}{8 r^{3}+36 r^{2}+22 r-21}$	$\frac{8}{3}$
b_{4}	$\frac{256}{16 r^{4}+128 r^{3}+280 r^{2}+96 r-135}$	-2
b_{5}	$-\frac{1024}{(2 r+5)(2 r-1)(3+2 r)\left(4 r^{2}+36 r+77\right)}$	$\frac{16}{15}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\frac{3}{2}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-2 x^{2}+\frac{8 x^{3}}{3}-2 x^{4}+\frac{16 x^{5}}{15}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{3}{2}}\left(1-\frac{4 x}{3}+x^{2}-\frac{8 x^{3}}{15}+\frac{2 x^{4}}{9}-\frac{8 x^{5}}{105}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-2 x^{2}+\frac{8 x^{3}}{3}-2 x^{4}+\frac{16 x^{5}}{15}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{3}{2}}\left(1-\frac{4 x}{3}+x^{2}-\frac{8 x^{3}}{15}+\frac{2 x^{4}}{9}-\frac{8 x^{5}}{105}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-2 x^{2}+\frac{8 x^{3}}{3}-2 x^{4}+\frac{16 x^{5}}{15}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{gather*}
y=c_{1} x^{\frac{3}{2}}\left(1-\frac{4 x}{3}+x^{2}-\frac{8 x^{3}}{15}+\frac{2 x^{4}}{9}-\frac{8 x^{5}}{105}+O\left(x^{6}\right)\right) \\
+\frac{c_{2}\left(1-2 x^{2}+\frac{8 x^{3}}{3}-2 x^{4}+\frac{16 x^{5}}{15}+O\left(x^{6}\right)\right)}{\sqrt{x}} \tag{1}
\end{gather*}
$$

Verification of solutions

$$
\begin{gathered}
y=c_{1} x^{\frac{3}{2}}\left(1-\frac{4 x}{3}+x^{2}-\frac{8 x^{3}}{15}+\frac{2 x^{4}}{9}-\frac{8 x^{5}}{105}+O\left(x^{6}\right)\right) \\
+\frac{c_{2}\left(1-2 x^{2}+\frac{8 x^{3}}{3}-2 x^{4}+\frac{16 x^{5}}{15}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{gathered}
$$

Verified OK.

18.13.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+2 y^{\prime} x^{2}+\left(x-\frac{3}{4}\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2 nd derivative

$$
y^{\prime \prime}=-\frac{y(4 x-3)}{4 x^{2}}-2 y^{\prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+2 y^{\prime}+\frac{y(4 x-3)}{4 x^{2}}=0
$$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=2, P_{3}(x)=\frac{4 x-3}{4 x^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{3}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}+8 y^{\prime} x^{2}+y(4 x-3)=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}
$$

- Shift index using $k->k-1$

$$
x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+2 r)(-3+2 r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(2 k+2 r+1)(2 k+2 r-3)+4 a_{k-1}(2 k-1+2 r)\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-3+2 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{1}{2}, \frac{3}{2}\right\}
$$

- Each term in the series must be 0, giving the recursion relation

$$
4\left(k+r+\frac{1}{2}\right)\left(k+r-\frac{3}{2}\right) a_{k}+8\left(k-\frac{1}{2}+r\right) a_{k-1}=0
$$

- \quad Shift index using $k->k+1$

$$
4\left(k+\frac{3}{2}+r\right)\left(k-\frac{1}{2}+r\right) a_{k+1}+8\left(k+r+\frac{1}{2}\right) a_{k}=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{4(2 k+2 r+1) a_{k}}{(2 k+3+2 r)(2 k-1+2 r)}
$$

- Recursion relation for $r=-\frac{1}{2}$
$a_{k+1}=-\frac{8 k a_{k}}{(2 k+2)(2 k-2)}$
- Series not valid for $r=-\frac{1}{2}$, division by 0 in the recursion relation at $k=1$
$a_{k+1}=-\frac{8 k a_{k}}{(2 k+2)(2 k-2)}$
- Recursion relation for $r=\frac{3}{2}$

$$
a_{k+1}=-\frac{4(2 k+4) a_{k}}{(2 k+6)(2 k+2)}
$$

- \quad Solution for $r=\frac{3}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{3}{2}}, a_{k+1}=-\frac{4(2 k+4) a_{k}}{(2 k+6)(2 k+2)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 45

```
Order:=6;
dsolve(x^2*diff (y (x),x$2)+2*x^2*diff(y (x),x)+(x-3/4)*y(x)=0,y(x),type='series', x=0);
y(x)
=}\frac{\mp@subsup{c}{1}{}\mp@subsup{x}{}{2}(1-\frac{4}{3}x+\mp@subsup{x}{}{2}-\frac{8}{15}\mp@subsup{x}{}{3}+\frac{2}{9}\mp@subsup{x}{}{4}-\frac{8}{105}\mp@subsup{x}{}{5}+\textrm{O}(\mp@subsup{x}{}{6}))+\mp@subsup{c}{2}{}(-2+4\mp@subsup{x}{}{2}-\frac{16}{3}\mp@subsup{x}{}{3}+4\mp@subsup{x}{}{4}-\frac{32}{15}\mp@subsup{x}{}{5}+\textrm{O}(\mp@subsup{x}{}{6}))}{\sqrt{}{x}
```

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 77
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[\mathrm{x}]+2 * \mathrm{x}^{\wedge} 2 * \mathrm{y}\right.$ ' $\left.[\mathrm{x}]+(\mathrm{x}-3 / 4) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$
$y(x) \rightarrow c_{1}\left(-2 x^{7 / 2}+\frac{8 x^{5 / 2}}{3}-2 x^{3 / 2}+\frac{1}{\sqrt{x}}\right)+c_{2}\left(\frac{2 x^{11 / 2}}{9}-\frac{8 x^{9 / 2}}{15}+x^{7 / 2}-\frac{4 x^{5 / 2}}{3}+x^{3 / 2}\right)$

18.14 problem 6

18.14.1 Maple step by step solution

Internal problem ID [2950]
Internal file name [OUTPUT/2442_Sunday_June_05_2022_03_11_19_AM_45498510/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(2 x-1) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(2 x-1) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{2 x-1}{x^{2}}
\end{aligned}
$$

Table 477: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{2 x-1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(2 x-1) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(2 x-1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}=\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~B}\\
& +\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+2 a_{n-1}-a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}}{n^{2}+2 n r+r^{2}-1} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}}{n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{2}{r(r+2)}
$$

Which for the root $r=1$ becomes

$$
a_{1}=-\frac{2}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{r(r+2)}$	$-\frac{2}{3}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4}{r(r+2)(3+r)(r+1)}
$$

Which for the root $r=1$ becomes

$$
a_{2}=\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{r(r+2)}$	$-\frac{2}{3}$
a_{2}	$\frac{4}{r(r+2)(3+r)(r+1)}$	$\frac{1}{6}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{8}{r(r+2)^{2}(3+r)(r+1)(r+4)}
$$

Which for the root $r=1$ becomes

$$
a_{3}=-\frac{1}{45}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{r(r+2)}$	$-\frac{2}{3}$
a_{2}	$\frac{4}{r(r+2)(3+r)(r+1)}$	$\frac{1}{6}$
a_{3}	$-\frac{8}{r(r+2)^{2}(3+r)(r+1)(r+4)}$	$-\frac{1}{45}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{r(r+2)^{2}(3+r)^{2}(r+1)(r+4)(5+r)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{1}{540}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{r(r+2)}$	$-\frac{2}{3}$
a_{2}	$\frac{4}{r(r+2)(3+r)(r+1)}$	$\frac{1}{6}$
a_{3}	$-\frac{8}{r(r+2)^{2}(3+r)(r+1)(r+4)}$	$-\frac{1}{45}$
a_{4}	$\frac{16}{r(r+2)^{2}(3+r)^{2}(r+1)(r+4)(5+r)}$	$\frac{1}{540}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{32}{r(r+2)^{2}(3+r)^{2}(r+1)(r+4)^{2}(5+r)(6+r)}
$$

Which for the root $r=1$ becomes

$$
a_{5}=-\frac{1}{9450}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{r(r+2)}$	$-\frac{2}{3}$
a_{2}	$\frac{4}{r(r+2)(3+r)(r+1)}$	$\frac{1}{6}$
a_{3}	$-\frac{8}{r(r+2)^{2}(3+r)(r+1)(r+4)}$	$-\frac{1}{45}$
a_{4}	$\frac{16}{r(r+2)^{2}(3+r)^{2}(r+1)(r+4)(5+r)}$	$\frac{1}{540}$
a_{5}	$-\frac{32}{r(r+2)^{2}(3+r)^{2}(r+1)(r+4)^{2}(5+r)(6+r)}$	$-\frac{1}{9450}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1-\frac{2 x}{3}+\frac{x^{2}}{6}-\frac{x^{3}}{45}+\frac{x^{4}}{540}-\frac{x^{5}}{9450}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =\frac{4}{r(r+2)(3+r)(r+1)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{4}{r(r+2)(3+r)(r+1)} & =\lim _{r \rightarrow-1} \frac{4}{r(r+2)(3+r)(r+1)} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+x y^{\prime}+(2 x-1) y=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +x\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +(2 x-1)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x+(2 x-1) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(2 x-1)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x+(2 x-1) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(2 x-1)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+2 x\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) C \tag{9}\\
& +\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x+(2 x-1)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=1$ and $r_{2}=-1$ then the above becomes

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-1)(-2+n)\right) x^{2}+2 x\left(\sum_{n=0}^{\infty} x^{n} a_{n}(1+n)\right) C \tag{10}\\
& +\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n}(n-1)\right) x+(2 x-1)\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right)+\left(\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} 2 b_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n-1}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n) & =\sum_{n=2}^{\infty} 2 C a_{-2+n}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty} 2 b_{n} x^{n} & =\sum_{n=1}^{\infty} 2 b_{n-1} x^{n-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right)+\left(\sum_{n=2}^{\infty} 2 C a_{-2+n}(n-1) x^{n-1}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-1)\right)+\left(\sum_{n=1}^{\infty} 2 b_{n-1} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
2 b_{0}-b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
2-b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=2
$$

For $n=N$, where $N=2$ which is the difference between the two roots, we are free to choose $b_{2}=0$. Hence for $n=2$, Eq (2B) gives

$$
2 C+4=0
$$

Which is solved for C. Solving for C gives

$$
C=-2
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
4 C a_{1}+2 b_{2}+3 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
3 b_{3}+\frac{16}{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=-\frac{16}{9}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
6 C a_{2}+2 b_{3}+8 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
8 b_{4}-\frac{50}{9}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=\frac{25}{36}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
8 C a_{3}+2 b_{4}+15 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
15 b_{5}+\frac{157}{90}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=-\frac{157}{1350}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-2$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & (-2)\left(x\left(1-\frac{2 x}{3}+\frac{x^{2}}{6}-\frac{x^{3}}{45}+\frac{x^{4}}{540}-\frac{x^{5}}{9450}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +\frac{1+2 x-\frac{16 x^{3}}{9}+\frac{25 x^{4}}{36}-\frac{157 x^{5}}{1350}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)= \\
& =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& = \\
& \quad c_{1} x\left(1-\frac{2 x}{3}+\frac{x^{2}}{6}-\frac{x^{3}}{45}+\frac{x^{4}}{540}-\frac{x^{5}}{9450}+O\left(x^{6}\right)\right) \\
& \\
&
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-\frac{2 x}{3}+\frac{x^{2}}{6}-\frac{x^{3}}{45}+\frac{x^{4}}{540}-\frac{x^{5}}{9450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-2 x\left(1-\frac{2 x}{3}+\frac{x^{2}}{6}-\frac{x^{3}}{45}\right.\right.
\end{aligned} \begin{aligned}
& \left.\frac{x^{4}}{540}-\frac{x^{5}}{9450}+O\left(x^{6}\right)\right) \ln (x) \\
& \left.+\frac{1+2 x-\frac{16 x^{3}}{9}+\frac{25 x^{4}}{36}-\frac{157 x^{5}}{1350}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x\left(1-\frac{2 x}{3}+\frac{x^{2}}{6}-\frac{x^{3}}{45}+\frac{x^{4}}{540}-\frac{x^{5}}{9450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-2 x\left(1-\frac{2 x}{3}+\frac{x^{2}}{6}-\frac{x^{3}}{45}+\frac{x^{4}}{540}-\frac{x^{5}}{9450}+O\left(x^{6}\right)\right) \ln (x)\right. \tag{1}\\
& \left.+\frac{1+2 x-\frac{16 x^{3}}{9}+\frac{25 x^{4}}{36}-\frac{157 x^{5}}{1350}+O\left(x^{6}\right)}{x}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1-\frac{2 x}{3}+\frac{x^{2}}{6}-\frac{x^{3}}{45}+\frac{x^{4}}{540}-\frac{x^{5}}{9450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-2 x\left(1-\frac{2 x}{3}+\frac{x^{2}}{6}-\frac{x^{3}}{45}+\frac{x^{4}}{540}-\frac{x^{5}}{9450}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+\frac{1+2 x-\frac{16 x^{3}}{9}+\frac{25 x^{4}}{36}-\frac{157 x^{5}}{1350}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

18.14.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+x y^{\prime}+(2 x-1) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{y^{\prime}}{x}-\frac{(2 x-1) y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{(2 x-1) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{2 x-1}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(2 x-1) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+r)(-1+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(k+r-1)+2 a_{k-1}\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-1+r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\{-1,1\}
$$

- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)(k+r-1)+2 a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+2+r)(k+r)+2 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{2 a_{k}}{(k+2+r)(k+r)}$
- \quad Recursion relation for $r=-1$
$a_{k+1}=-\frac{2 a_{k}}{(k+1)(k-1)}$
- Series not valid for $r=-1$, division by 0 in the recursion relation at $k=1$

$$
a_{k+1}=-\frac{2 a_{k}}{(k+1)(k-1)}
$$

- \quad Recursion relation for $r=1$

$$
a_{k+1}=-\frac{2 a_{k}}{(k+3)(k+1)}
$$

- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=-\frac{2 a_{k}}{(k+3)(k+1)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.046 (sec). Leaf size: 63

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(2*x-1)*y(x)=0,y(x),type='series',x=0);
\(y(x)\)
\(=\frac{c_{1} x^{2}\left(1-\frac{2}{3} x+\frac{1}{6} x^{2}-\frac{1}{45} x^{3}+\frac{1}{540} x^{4}-\frac{1}{9450} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(\ln (x)\left(4 x^{2}-\frac{8}{3} x^{3}+\frac{2}{3} x^{4}-\frac{4}{45} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+\right.}{x}\)
```

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 83
AsymptoticDSolveValue[x^2*y' ' $[x]+x * y$ ' $[x]+(2 * x-1) * y[x]==0, y[x],\{x, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{31 x^{4}-88 x^{3}+36 x^{2}+72 x+36}{36 x}-\frac{1}{3} x\left(x^{2}-4 x+6\right) \log (x)\right) \\
& +c_{2}\left(\frac{x^{5}}{540}-\frac{x^{4}}{45}+\frac{x^{3}}{6}-\frac{2 x^{2}}{3}+x\right)
\end{aligned}
$$

18.15 problem 7

18.15.1 Maple step by step solution

Internal problem ID [2951]
Internal file name [OUTPUT/2443_Sunday_June_05_2022_03_11_25_AM_44152525/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{3}-(x+2) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{3}+(-2-x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=x \\
& q(x)=-\frac{x+2}{x^{2}}
\end{aligned}
$$

Table 479: Table $p(x), q(x)$ singularites.

$p(x)=x$	
singularity	type
$x=\infty$	"regular"
$x=-\infty$	"regular"

$q(x)=-\frac{x+2}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[\infty,-\infty, 0]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{3}+(-2-x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x^{3}+(-2-x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{2+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{2+n+r} a_{n}(n+r) & =\sum_{n=2}^{\infty} a_{n-2}(n+r-2) x^{n+r} \\
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=2}^{\infty} a_{n-2}(n+r-2) x^{n+r}\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-r-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=3$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=\frac{1}{r^{2}+r-2}
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-2}(n+r-2)-2 a_{n}-a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{n a_{n-2}+r a_{n-2}-2 a_{n-2}-a_{n-1}}{n^{2}+2 n r+r^{2}-n-r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=\frac{-n a_{n-2}+a_{n-1}}{n(n+3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+r-2}$	$\frac{1}{4}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{-r^{3}-r^{2}+2 r+1}{\left(r^{2}+r-2\right) r(r+3)}
$$

Which for the root $r=2$ becomes

$$
a_{2}=-\frac{7}{40}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+r-2}$	$\frac{1}{4}$
a_{2}	$\frac{-r^{3}-r^{2}+2 r+1}{\left(r^{2}+r-2\right) r(r+3)}$	$-\frac{7}{40}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{-2 r^{3}-5 r^{2}-r+1}{r^{6}+9 r^{5}+25 r^{4}+15 r^{3}-26 r^{2}-24 r}
$$

Which for the root $r=2$ becomes

$$
a_{3}=-\frac{37}{720}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+r-2}$	$\frac{1}{4}$
a_{2}	$\frac{-r^{3}-r^{2}+2 r+1}{\left(r^{2}+r-2\right) r(r+3)}$	$-\frac{7}{40}$
a_{3}	$\frac{-2 r^{3}-5 r^{2}-r+1}{r^{6}+9 r^{5}+25 r^{4}+15 r^{3}-26 r^{2}-24 r}$	$-\frac{37}{720}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{r^{6}+8 r^{5}+19 r^{4}+5 r^{3}-32 r^{2}-31 r-7}{(5+r)(r+2)^{2} r(-1+r)(r+4)(r+3)(1+r)}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{467}{20160}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+r-2}$	$\frac{1}{4}$
a_{2}	$\frac{-r^{3}-r^{2}+2 r+1}{\left(r^{2}+r-2\right) r(r+3)}$	$-\frac{7}{40}$
a_{3}	$\frac{-2 r^{3}-5 r^{2}-r+1}{r^{6}+9 r^{5}+25 r^{4}+15 r^{3}-26 r^{2}-24 r}$	$-\frac{37}{720}$
a_{4}	$\frac{r^{6}+8 r^{5}+19 r^{4}+5 r^{3}-32 r^{2}-31 r-7}{(5+r)(r+2)^{2} r(-1+r)(r+4)(r+3)(1+r)}$	$\frac{467}{20160}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{3 r^{6}+33 r^{5}+132 r^{4}+229 r^{3}+139 r^{2}-32 r-37}{(6+r)(r+3)^{2}(5+r)(r+2)^{2} r(r+4)(-1+r)(1+r)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=\frac{5647}{806400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r^{2}+r-2}$	$\frac{1}{4}$
a_{2}	$\frac{-r^{3}-r^{2}+2 r+1}{\left(r^{2}+r-2\right) r(r+3)}$	$-\frac{7}{40}$
a_{3}	$\frac{-2 r^{3}-5 r^{2}-r+1}{r^{6}+9 r^{5}+25 r^{4}+15 r^{3}-26 r^{2}-24 r}$	$-\frac{37}{720}$
a_{4}	$\frac{r^{6}+8 r^{5}+19 r^{4}+5 r^{3}-32 r^{2}-31 r-7}{(5+r)(r+2)^{2} r(-1+r)(r+4)(r+3)(1+r)}$	$\frac{467}{20160}$
a_{5}	$\frac{3 r^{6}+33 r^{5}+132 r^{4}+229 r^{3}+139 r^{2}-32 r-37}{(6+r)(r+3)^{2}(5+r)(r+2)^{2} r(r+4)(-1+r)(1+r)}$	$\frac{5647}{806400}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1+\frac{x}{4}-\frac{7 x^{2}}{40}-\frac{37 x^{3}}{720}+\frac{467 x^{4}}{20160}+\frac{5647 x^{5}}{806400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=3$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{3}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{3} \\
& =\frac{-2 r^{3}-5 r^{2}-r+1}{r^{6}+9 r^{5}+25 r^{4}+15 r^{3}-26 r^{2}-24 r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{-2 r^{3}-5 r^{2}-r+1}{r^{6}+9 r^{5}+25 r^{4}+15 r^{3}-26 r^{2}-24 r} & =\lim _{r \rightarrow-1} \frac{-2 r^{3}-5 r^{2}-r+1}{r^{6}+9 r^{5}+25 r^{4}+15 r^{3}-26 r^{2}-24 r} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+y^{\prime} x^{3}+(-2-x) y=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) x^{3} \\
& +(-2-x)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x^{3}+(-2-x) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right. \\
& \left.+y_{1}(x) x^{2}\right) C+x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x^{3}+(-2-x)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x^{3}+(-2-x) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x) x^{2}\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x^{3}+(-2-x)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x+\left(x^{2}-1\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& +\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x^{3}-(x+2)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=2$ and $r_{2}=-1$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}(n+2)\right) x+\left(x^{2}-1\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+2}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-1)(n-2)\right) x^{2} \tag{10}\\
& +\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}(n-1)\right) x^{3}-(x+2)\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(n+2)\right)+\left(\sum_{n=0}^{\infty} C x^{n+4} a_{n}\right) \\
& +\sum_{n=0}^{\infty}\left(-C x^{n+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{1+n} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 b_{n} x^{n-1}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(n+2) & =\sum_{n=3}^{\infty} 2 C a_{-3+n}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty} C x^{n+4} a_{n} & =\sum_{n=5}^{\infty} C a_{n-5} x^{n-1} \\
\sum_{n=0}^{\infty}\left(-C x^{n+2} a_{n}\right) & =\sum_{n=3}^{\infty}\left(-C a_{-3+n} x^{n-1}\right) \\
\sum_{n=0}^{\infty} x^{1+n} b_{n}(n-1) & =\sum_{n=2}^{\infty} b_{n-2}(-3+n) x^{n-1} \\
\sum_{n=0}^{\infty}\left(-b_{n} x^{n}\right) & =\sum_{n=1}^{\infty}\left(-b_{n-1} x^{n-1}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=3}^{\infty} 2 C a_{-3+n}(n-1) x^{n-1}\right)+\left(\sum_{n=5}^{\infty} C a_{n-5} x^{n-1}\right) \\
& +\sum_{n=3}^{\infty}\left(-C a_{-3+n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right) \tag{2~B}\\
& \quad+\left(\sum_{n=2}^{\infty} b_{n-2}(-3+n) x^{n-1}\right)+\sum_{n=1}^{\infty}\left(-b_{n-1} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-2 b_{n} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
-b_{0}-2 b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-1-2 b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=-\frac{1}{2}
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
-b_{0}-b_{1}-2 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{1}{2}-2 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-\frac{1}{4}
$$

For $n=N$, where $N=3$ which is the difference between the two roots, we are free to choose $b_{3}=0$. Hence for $n=3$, Eq (2B) gives

$$
3 C+\frac{1}{4}=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{1}{12}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
5 C a_{1}+b_{2}-b_{3}+4 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
4 b_{4}-\frac{17}{48}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=\frac{17}{192}
$$

For $n=5$, Eq (2B) gives

$$
\left(a_{0}+7 a_{2}\right) C+2 b_{3}-b_{4}+10 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{67}{960}+10 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{67}{9600}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{1}{12}$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & -\frac{1}{12}\left(x^{2}\left(1+\frac{x}{4}-\frac{7 x^{2}}{40}-\frac{37 x^{3}}{720}+\frac{467 x^{4}}{20160}+\frac{5647 x^{5}}{806400}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +\frac{1-\frac{x}{2}-\frac{x^{2}}{4}+\frac{17 x^{4}}{192}+\frac{67 x^{5}}{9600}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(1+\frac{x}{4}-\frac{7 x^{2}}{40}-\frac{37 x^{3}}{720}+\frac{467 x^{4}}{20160}+\frac{5647 x^{5}}{806400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{1}{12}\left(x^{2}\left(1+\frac{x}{4}-\frac{7 x^{2}}{40}-\frac{37 x^{3}}{720}+\frac{467 x^{4}}{20160}+\frac{5647 x^{5}}{806400}+O\left(x^{6}\right)\right)\right) \ln (x)\right. \\
& \left.+\frac{1-\frac{x}{2}-\frac{x^{2}}{4}+\frac{17 x^{4}}{192}+\frac{67 x^{5}}{9600}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(1+\frac{x}{4}-\frac{7 x^{2}}{40}-\frac{37 x^{3}}{720}+\frac{467 x^{4}}{20160}+\frac{5647 x^{5}}{806400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{2}\left(1+\frac{x}{4}-\frac{7 x^{2}}{40}-\frac{37 x^{3}}{720}+\frac{467 x^{4}}{20160}+\frac{5647 x^{5}}{806400}+O\left(x^{6}\right)\right) \ln (x)}{12}\right. \\
& \left.+\frac{1-\frac{x}{2}-\frac{x^{2}}{4}+\frac{17 x^{4}}{192}+\frac{67 x^{5}}{9600}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{2}\left(1+\frac{x}{4}-\frac{7 x^{2}}{40}-\frac{37 x^{3}}{720}+\frac{467 x^{4}}{20160}+\frac{5647 x^{5}}{806400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{2}\left(1+\frac{x}{4}-\frac{7 x^{2}}{40}-\frac{37 x^{3}}{720}+\frac{467 x^{4}}{20160}+\frac{5647 x^{5}}{806400}+O\left(x^{6}\right)\right) \ln (x)}{12}\right. \tag{1}\\
& \left.+\frac{1-\frac{x}{2}-\frac{x^{2}}{4}+\frac{17 x^{4}}{192}+\frac{67 x^{5}}{9600}+O\left(x^{6}\right)}{x}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{2}\left(1+\frac{x}{4}-\frac{7 x^{2}}{40}-\frac{37 x^{3}}{720}+\frac{467 x^{4}}{20160}+\frac{5647 x^{5}}{806400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{2}\left(1+\frac{x}{4}-\frac{7 x^{2}}{40}-\frac{37 x^{3}}{720}+\frac{467 x^{4}}{20160}+\frac{5647 x^{5}}{806400}+O\left(x^{6}\right)\right) \ln (x)}{12}\right. \\
& \left.+\frac{1-\frac{x}{2}-\frac{x^{2}}{4}+\frac{17 x^{4}}{192}+\frac{67 x^{5}}{9600}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

18.15.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{3}+(-2-x) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-x y^{\prime}+\frac{(x+2) y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+x y^{\prime}-\frac{(x+2) y}{x^{2}}=0
$$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=x, P_{3}(x)=-\frac{x+2}{x^{2}}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2
$$

- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{3}+(-2-x) y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{3} \cdot y^{\prime}$ to series expansion

$$
x^{3} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+2}
$$

- Shift index using $k->k-2$

$$
x^{3} \cdot y^{\prime}=\sum_{k=2}^{\infty} a_{k-2}(k-2+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+r)(-2+r) x^{r}+\left(a_{1}(2+r)(-1+r)-a_{0}\right) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+1)(k-2+r)-a_{k-1}\right.\right.$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,2\}$
- \quad Each term must be 0
$a_{1}(2+r)(-1+r)-a_{0}=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=\frac{a_{0}}{r^{2}+r-2}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)(k-2+r)+a_{k-2} k+a_{k-2} r-2 a_{k-2}-a_{k-1}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(k+3+r)(k+r)+a_{k}(k+2)+r a_{k}-2 a_{k}-a_{k+1}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{k a_{k}+r a_{k}-a_{k+1}}{(k+3+r)(k+r)}$
- \quad Recursion relation for $r=-1$
$a_{k+2}=-\frac{k a_{k}-a_{k}-a_{k+1}}{(k+2)(k-1)}$
- Series not valid for $r=-1$, division by 0 in the recursion relation at $k=1$
$a_{k+2}=-\frac{k a_{k}-a_{k}-a_{k+1}}{(k+2)(k-1)}$
- Recursion relation for $r=2$
$a_{k+2}=-\frac{k a_{k}+2 a_{k}-a_{k+1}}{(k+5)(k+2)}$
- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+2}=-\frac{k a_{k}+2 a_{k}-a_{k+1}}{(k+5)(k+2)}, a_{1}=\frac{a_{0}}{4}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunB ODE, case c = 0
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 65

```
Order:=6;
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x$2)+\mp@subsup{x}{}{\wedge}3*\operatorname{diff}(y(x),x)-(2+x)*y(x)=0,y(x),type='series', x=0)
```

$y(x)$
$=\frac{c_{1} x^{3}\left(1+\frac{1}{4} x-\frac{7}{40} x^{2}-\frac{37}{720} x^{3}+\frac{467}{20160} x^{4}+\frac{5647}{806400} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(\ln (x)\left(-x^{3}-\frac{1}{4} x^{4}+\frac{7}{40} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+\right.}{x}$
\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 82
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' $'[x]+x^{\wedge} 3 * y$ ' $\left.[x]-(2+x) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{91 x^{4}+160 x^{3}-144 x^{2}-288 x+576}{576 x}-\frac{1}{48} x^{2}(x+4) \log (x)\right) \\
& +c_{2}\left(\frac{467 x^{6}}{20160}-\frac{37 x^{5}}{720}-\frac{7 x^{4}}{40}+\frac{x^{3}}{4}+x^{2}\right)
\end{aligned}
$$

18.16 problem 8

Internal problem ID [2952]
Internal file name [OUTPUT/2444_Sunday_June_05_2022_03_11_32_AM_19801593/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2}\left(x^{2}+1\right) y^{\prime \prime}+7 y^{\prime} x \mathrm{e}^{x}+9(1+\tan (x)) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
\left(x^{4}+x^{2}\right) y^{\prime \prime}+7 y^{\prime} x \mathrm{e}^{x}+(9 \tan (x)+9) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{7 \mathrm{e}^{x}}{x\left(x^{2}+1\right)} \\
q(x) & =\frac{9 \tan (x)+9}{x^{2}\left(x^{2}+1\right)}
\end{aligned}
$$

Table 481: Table $p(x), q(x)$ singularites.

$p(x)=\frac{7 \mathrm{e}^{x}}{x\left(x^{2}+1\right)}$	
singularity	type
$x=0$	"regular"
$x=-i$	"regular"
$x=i$	"regular"
$x=\infty$	"regular"

$q(x)=\frac{9 \tan (x)+9}{x^{2}\left(x^{2}+1\right)}$	
singularity	type
$x=0$	"regular"
$x=-i$	"regular"
$x=i$	"regular"
$x=\frac{1}{2} \pi+Z \pi$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $\left[0,-i, i, \infty, \frac{1}{2} \pi+Z \pi\right]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2}\left(x^{2}+1\right) y^{\prime \prime}+7 y^{\prime} x \mathrm{e}^{x}+(9 \tan (x)+9) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(x^{2}+1\right)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +7\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x \mathrm{e}^{x}+(9 \tan (x)+9)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Expanding $7 x \mathrm{e}^{x}$ as Taylor series around $x=0$ and keeping only the first 7 terms gives

$$
\begin{aligned}
7 x \mathrm{e}^{x} & =7 x+7 x^{2}+\frac{7}{2} x^{3}+\frac{7}{6} x^{4}+\frac{7}{24} x^{5}+\frac{7}{120} x^{6}+\frac{7}{720} x^{7}+\ldots \\
& =7 x+7 x^{2}+\frac{7}{2} x^{3}+\frac{7}{6} x^{4}+\frac{7}{24} x^{5}+\frac{7}{120} x^{6}+\frac{7}{720} x^{7}
\end{aligned}
$$

Expanding $9 \tan (x)+9$ as Taylor series around $x=0$ and keeping only the first 7 terms gives

$$
\begin{aligned}
9 \tan (x)+9 & =9+9 x+3 x^{3}+\frac{6}{5} x^{5}+\frac{17}{35} x^{7}+\ldots \\
& =9+9 x+3 x^{3}+\frac{6}{5} x^{5}+\frac{17}{35} x^{7}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right) \\
& +\left(\sum_{n=0}^{\infty} \frac{7 x^{n+r+6} a_{n}(n+r)}{720}\right)+\left(\sum_{n=0}^{\infty} \frac{7 x^{n+r+5} a_{n}(n+r)}{120}\right) \\
& +\left(\sum_{n=0}^{\infty} \frac{7 x^{n+r+4} a_{n}(n+r)}{24}\right)+\left(\sum_{n=0}^{\infty} \frac{7 x^{n+r+3} a_{n}(n+r)}{6}\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} \frac{7 x^{n+r+2} a_{n}(n+r)}{2}\right)+\left(\sum_{n=0}^{\infty} 7 x^{1+n+r} a_{n}(n+r)\right) \\
& +\left(\sum_{n=0}^{\infty} 7 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 9 a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 9 x^{1+n+r} a_{n}\right) \\
& +\left(\sum_{n=0}^{\infty} 3 x^{n+r+3} a_{n}\right)+\left(\sum_{n=0}^{\infty} \frac{6 x^{n+r+5} a_{n}}{5}\right)+\left(\sum_{n=0}^{\infty} \frac{17 x^{n+r+7} a_{n}}{35}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)(n+r-1) & =\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) x^{n+r} \\
\sum_{n=0}^{\infty} \frac{7 x^{n+r+6} a_{n}(n+r)}{720} & =\sum_{n=6}^{\infty} \frac{7 a_{n-6}(n-6+r) x^{n+r}}{720}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{7 x^{n+r+5} a_{n}(n+r)}{120} & =\sum_{n=5}^{\infty} \frac{7 a_{n-5}(n-5+r) x^{n+r}}{120} \\
\sum_{n=0}^{\infty} \frac{7 x^{n+r+4} a_{n}(n+r)}{24} & =\sum_{n=4}^{\infty} \frac{7 a_{n-4}(n-4+r) x^{n+r}}{24} \\
\sum_{n=0}^{\infty} \frac{7 x^{n+r+3} a_{n}(n+r)}{6} & =\sum_{n=3}^{\infty} \frac{7 a_{n-3}(n-3+r) x^{n+r}}{6} \\
\sum_{n=0}^{\infty} \frac{7 x^{n+r+2} a_{n}(n+r)}{2} & =\sum_{n=2}^{\infty} \frac{7 a_{n-2}(n+r-2) x^{n+r}}{2} \\
\sum_{n=0}^{\infty} 7 x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 7 a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} 9 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 9 a_{n-1} x^{n+r} \\
\sum_{n=0}^{\infty} 3 x^{n+r+3} a_{n} & =\sum_{n=3}^{\infty} 3 a_{n-3} x^{n+r} \\
\sum_{n=0}^{\infty} \frac{6 x^{n+r+5} a_{n}}{5} & =\sum_{n=5}^{\infty} \frac{6 a_{n-5} x^{n+r}}{5} \\
\sum_{n=0}^{\infty} \frac{17 x^{n+r+7} a_{n}}{35} & =\sum_{n=7}^{\infty} \frac{17 a_{n-7} x^{n+r}}{35}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers
of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right) \\
& +\left(\sum_{n=6}^{\infty} \frac{7 a_{n-6}(n-6+r) x^{n+r}}{720}\right)+\left(\sum_{n=5}^{\infty} \frac{7 a_{n-5}(n-5+r) x^{n+r}}{120}\right) \\
& +\left(\sum_{n=4}^{\infty} \frac{7 a_{n-4}(n-4+r) x^{n+r}}{24}\right)+\left(\sum_{n=3}^{\infty} \frac{7 a_{n-3}(n-3+r) x^{n+r}}{6}\right) \tag{2~B}\\
& +\left(\sum_{n=2}^{\infty} \frac{7 a_{n-2}(n+r-2) x^{n+r}}{2}\right)+\left(\sum_{n=1}^{\infty} 7 a_{n-1}(n+r-1) x^{n+r}\right) \\
& +\left(\sum_{n=0}^{\infty} 7 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 9 a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} 9 a_{n-1} x^{n+r}\right) \\
& +\left(\sum_{n=3}^{\infty} 3 a_{n-3} x^{n+r}\right)+\left(\sum_{n=5}^{\infty} \frac{6 a_{n-5} x^{n+r}}{5}\right)+\left(\sum_{n=7}^{\infty} \frac{17 a_{n-7} x^{n+r}}{35}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+7 x^{n+r} a_{n}(n+r)+9 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+7 x^{r} a_{0} r+9 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+7 x^{r} r+9 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(3+r)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(3+r)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-3 \\
& r_{2}=-3
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(3+r)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=-3$, Eqs (1A,1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-3} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n-3}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=\frac{-7 r-9}{(r+4)^{2}}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{-2 r^{4}-21 r^{3}+26 r^{2}+270 r+288}{2(r+4)^{2}(5+r)^{2}}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=\frac{77 r^{5}+1098 r^{4}+3602 r^{3}-1998 r^{2}-22318 r-22347}{6(r+4)^{2}(5+r)^{2}(6+r)^{2}}
$$

Substituting $n=4$ in Eq. (2B) gives

$$
a_{4}=\frac{24 r^{8}+689 r^{7}+5132 r^{6}-7139 r^{5}-200328 r^{4}-605868 r^{3}+73708 r^{2}+2422164 r+2371896}{24(r+4)^{2}(5+r)^{2}(6+r)^{2}(r+7)^{2}}
$$

Substituting $n=5$ in Eq. (2B) gives

$$
a_{5}=\frac{-2247 r^{9}-79622 r^{8}-1065025 r^{7}-6575402 r^{6}-16492594 r^{5}+7514875 r^{4}+98942906 r^{3}+50216229}{120(r+4)^{2}(5+r)^{2}(6+r)^{2}(r+7)^{2}(r+8)^{2}}
$$

Substituting $n=6$ in Eq. (2B) gives

$$
a_{6}=\frac{-720 r^{12}-39547 r^{11}-792562 r^{10}-6305240 r^{9}+6536464 r^{8}+490611417 r^{7}+3743792400 r^{6}+12951}{720(r+4)^{2}(5+r)^{2}(6+r)^{2}}
$$

For $7 \leq n$ the recursive equation is

$$
\begin{align*}
& a_{n-2}(n+r-2)(n-3+r)+a_{n}(n+r)(n+r-1) \\
& +\frac{7 a_{n-6}(n-6+r)}{720}+\frac{7 a_{n-5}(n-5+r)}{120}+\frac{7 a_{n-4}(n-4+r)}{24} \tag{3}\\
& +\frac{7 a_{n-3}(n-3+r)}{6}+\frac{7 a_{n-2}(n+r-2)}{2}+7 a_{n-1}(n+r-1) \\
& +7 a_{n}(n+r)+9 a_{n}+9 a_{n-1}+3 a_{n-3}+\frac{6 a_{n-5}}{5}+\frac{17 a_{n-7}}{35}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{5040 n^{2} a_{n-2}+10080 n r a_{n-2}+5040 r^{2} a_{n-2}+49 n a_{n-6}+294 n a_{n-5}+1470 n a_{n-4}+5880 n a_{n-3}-75}{} \tag{4}
\end{equation*}
$$

Which for the root $r=-3$ becomes $a_{n}=\frac{-5040 n^{2} a_{n-2}+\left(-49 a_{n-6}-294 a_{n-5}-1470 a_{n-4}-5880 a_{n-3}+37800 a_{n-2}-35280 a_{n-1}\right) n-2448 a}{5040 n^{2}}$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-3$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$
a_{0}	1
a_{1}	$\frac{-7 r-9}{(r+4)^{2}}$
a_{2}	$\frac{-2 r^{4}-21 r^{3}+26 r^{2}+270 r+288}{2(r+4)^{2}(5+r)^{2}}$
a_{3}	$\frac{77 r^{5}+1098 r^{4}+3602 r^{3}-1998 r^{2}-22318 r-22347}{6(r+4)^{2}(5+r)^{2}(6+r)^{2}}$
a_{4}	$\frac{24 r^{8}+689 r^{7}+5132 r^{6}-7139 r^{5}-200328 r^{4}-605868 r^{3}+73708 r^{2}+2422164 r+2371896}{24(r+4)^{2}(5+r)^{2}(6+r)^{2}(r+7)^{2}}$
a_{5}	$\frac{-2247 r^{9}-79622 r^{8}-1065025 r^{7}-6575402 r^{6}-16492594 r^{5}+7514875 r^{4}+98942906 r^{3}+50216229 r^{2}-289883610 r-327734910}{120(r+4)^{2}(5+r)^{2}(6+r)^{2}(r+7)^{2}(r+8)^{2}}$
a_{6}	$\frac{-720 r^{12}-39547 r^{11}-792562 r^{10}-6305240 r^{9}+6536464 r^{8}+490611417 r^{7}+3743792400 r^{6}+12951080410 r^{5}+18943551934 r^{4}-1275211246 r^{3}}{720(r+4)^{2}(5+r)^{2}(6+r)^{2}(r+7)^{2}(r+8)^{2}(r+9)^{2}}$

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x^{3}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7} \ldots\right) \\
& =\frac{1+12 x+\frac{117 x^{2}}{8}-\frac{67 x^{3}}{36}+\frac{505 x^{4}}{256}-\frac{262 x^{5}}{125}+\frac{2443637 x^{6}}{2304000}+O\left(x^{7}\right)}{x^{3}}
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=-3$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$
b_{0}	1
b_{1}	$\frac{-7 r-9}{(r+4)^{2}}$
b_{2}	$\frac{-2 r^{4}-21 r^{3}+26 r^{2}+270 r+288}{2(r+4)^{2}(5+r)^{2}}$
b_{3}	$\frac{77 r^{5}+1098 r^{4}+3602 r^{3}-1998 r^{2}-22318 r-22347}{6(r+4)^{2}(5+r)^{2}(6+r)^{2}}$
b_{4}	$\frac{24 r^{8}+689 r^{7}+5132 r^{6}-7139 r^{5}-200328 r^{4}-605868 r^{3}+73708 r^{2}+2422164 r+2371896}{24(r+4)^{2}(5+r)^{2}(6+r)^{2}(r+7)^{2}}$
b_{5}	$\frac{-2247 r^{9}-79622 r^{8}-1065025 r^{7}-6575402 r^{6}-16492594 r^{5}+7514875 r^{4}+98942906 r^{3}+50216229 r^{2}-289883610 r-327734910}{120(r+4)^{2}(5+r)^{2}(6+r)^{2}(r+7)^{2}(r+8)^{2}}$
b_{6}	$\frac{-720 r^{12}-39547 r^{11}-792562 r^{10}-6305240 r^{9}+6536464 r^{8}+490611417 r^{7}+3743792400 r^{6}+12951080410 r^{5}+18943551934 r^{4}-1275211246 r^{3}-}{720(r+4)^{2}(5+r)^{2}(6+r)^{2}(r+7)^{2}(r+8)^{2}(r+9)^{2}}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7} \ldots \\
= & \frac{\left(1+12 x+\frac{117 x^{2}}{8}-\frac{67 x^{3}}{36}+\frac{505 x^{4}}{256}-\frac{262 x^{5}}{125}+\frac{2443337 x^{6}}{2304000}+O\left(x^{7}\right)\right) \ln (x)}{x^{3}} \\
& +\frac{-31 x-\frac{147 x^{2}}{2}+\frac{37 x^{3}}{8}-\frac{44803 x^{4}}{4608}+\frac{5057587 x^{5}}{480000}-\frac{3797765581 x^{6}}{622080000}+O\left(x^{7}\right)}{x^{3}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & \frac{c_{1}\left(1+12 x+\frac{117 x^{2}}{8}-\frac{67 x^{3}}{36}+\frac{505 x^{4}}{256}-\frac{262 x^{5}}{125}+\frac{2443637 x^{6}}{2304000}+O\left(x^{7}\right)\right)}{x^{3}} \\
& +c_{2}\left(\frac{\left(1+12 x+\frac{117 x^{2}}{8}-\frac{67 x^{3}}{36}+\frac{505 x^{4}}{256}-\frac{262 x^{5}}{125}+\frac{2443637 x^{6}}{2304000}+O\left(x^{7}\right)\right) \ln (x)}{x^{3}}\right. \\
& \left.\quad+\frac{-31 x-\frac{147 x^{2}}{2}+\frac{37 x^{3}}{8}-\frac{44803 x^{4}}{4608}+\frac{5057587 x^{5}}{480000}-\frac{3797765581 x^{6}}{622080000}+O\left(x^{7}\right)}{x^{3}}\right)
\end{aligned}
$$

Hence the final solution is

$$
y=y_{h}
$$

$$
\begin{aligned}
= & \frac{c_{1}\left(1+12 x+\frac{117 x^{2}}{8}-\frac{67 x^{3}}{36}+\frac{505 x^{4}}{256}-\frac{262 x^{5}}{125}+\frac{2443637 x^{6}}{2304000}+O\left(x^{7}\right)\right)}{x^{3}} \\
& +c_{2}\left(\frac{\left(1+12 x+\frac{117 x^{2}}{8}-\frac{67 x^{3}}{36}+\frac{505 x^{4}}{256}-\frac{262 x^{5}}{125}+\frac{2443637 x^{6}}{2304000}+O\left(x^{7}\right)\right) \ln (x)}{x^{3}}\right. \\
& \left.\quad+\frac{-31 x-\frac{147 x^{2}}{2}+\frac{37 x^{3}}{8}-\frac{44803 x^{4}}{4608}+\frac{5057587 x^{5}}{480000}-\frac{3797765581 x^{6}}{622080000}+O\left(x^{7}\right)}{x^{3}}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1}\left(1+12 x+\frac{117 x^{2}}{8}-\frac{67 x^{3}}{36}+\frac{505 x^{4}}{256}-\frac{262 x^{5}}{125}+\frac{2443637 x^{6}}{2304000}+O\left(x^{7}\right)\right) \\
x^{3} & +c_{2}\left(\frac{\left(1+12 x+\frac{117 x^{2}}{8}-\frac{67 x^{3}}{36}+\frac{505 x^{4}}{256}-\frac{262 x^{5}}{125}+\frac{2443637 x^{6}}{230400}+O\left(x^{7}\right)\right) \ln (x)}{x^{3}}\right. \tag{1}\\
& \quad(1) \\
& \left.\quad+\frac{-31 x-\frac{147 x^{2}}{2}+\frac{37 x^{3}}{8}-\frac{44803 x^{4}}{4608}+\frac{5057587 x^{5}}{480000}-\frac{3797765581 x^{6}}{622080000}+O\left(x^{7}\right)}{x^{3}}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{c_{1}\left(1+12 x+\frac{117 x^{2}}{8}-\frac{67 x^{3}}{36}+\frac{505 x^{4}}{256}-\frac{262 x^{5}}{125}+\frac{2443637 x^{6}}{2304000}+O\left(x^{7}\right)\right)}{x^{3}} \\
& +c_{2}\left(\frac{\left(1+12 x+\frac{117 x^{2}}{8}-\frac{67 x^{3}}{36}+\frac{505 x^{4}}{256}-\frac{262 x^{5}}{125}+\frac{2443637 x^{6}}{2304000}+O\left(x^{7}\right)\right) \ln (x)}{x^{3}}\right. \\
& \left.\quad+\frac{-31 x-\frac{147 x^{2}}{2}+\frac{37 x^{3}}{8}-\frac{44803 x^{4}}{4608}+\frac{5057587 x^{5}}{480000}-\frac{3797765581 x^{6}}{622080000}+O\left(x^{7}\right)}{x^{3}}\right)
\end{aligned}
$$

Verified OK.
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 75

```
Order:=7;
dsolve(x^2*(x^2+1)*diff (y(x),x$2)+7*x*exp(x)*diff (y (x),x)+9*(1+tan(x))*y(x)=0,y(x),type='ser
y(x)
\(=\frac{\left(c_{2} \ln (x)+c_{1}\right)\left(1+12 x+\frac{117}{8} x^{2}-\frac{67}{36} x^{3}+\frac{505}{256} x^{4}-\frac{262}{125} x^{5}+\frac{2443637}{2304000} x^{6}+\mathrm{O}\left(x^{7}\right)\right)+\left((-31) x-\frac{147}{2} x^{2}+\frac{37}{8}\right.}{x^{3}}\)
```

$\sqrt{ }$ Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 143
AsymptoticDSolveValue $\left[x^{\wedge} 2 *\left(x^{\wedge} 2+1\right) * y^{\prime} \cdot[x]+7 * x * \operatorname{Exp}[x] * y '[x]+9 *(1+\operatorname{Tan}[x]) * y[x]==0, y[x],\{x, 0,6\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & \frac{c_{1}\left(\frac{2443637 x^{6}}{2304000}-\frac{262 x^{5}}{125}+\frac{505 x^{4}}{256}-\frac{67 x^{3}}{36}+\frac{117 x^{2}}{8}+12 x+1\right)}{x^{3}} \\
& +c_{2}\left(\frac{-\frac{3797765581 x^{6}}{622080000}+\frac{5057587 x^{5}}{480000}-\frac{44803 x^{4}}{4608}+\frac{37 x^{3}}{8}-\frac{147 x^{2}}{2}-31 x}{x^{3}}\right. \\
& \left.+\frac{\left(\frac{2443637 x^{6}}{2304000}-\frac{262 x^{5}}{125}+\frac{505 x^{4}}{256}-\frac{67 x^{3}}{36}+\frac{117 x^{2}}{8}+12 x+1\right) \log (x)}{x^{3}}\right)
\end{aligned}
$$

18.17 problem 11

18.17.1 Maple step by step solution . 3597

Internal problem ID [2953]
Internal file name [OUTPUT/2445_Sunday_June_05_2022_03_13_28_AM_88092337/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2}(x+1) y^{\prime \prime}+y^{\prime} x^{2}-2 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
\left(x^{3}+x^{2}\right) y^{\prime \prime}+y^{\prime} x^{2}-2 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x+1} \\
& q(x)=-\frac{2}{x^{2}(x+1)}
\end{aligned}
$$

Table 482: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x+1}$	
singularity	type
$x=-1$	"regular"

$q(x)=-\frac{2}{x^{2}(x+1)}$	
singularity	type
$x=-1$	"regular"
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[-1,0, \infty]$
Irregular singular points: []
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2}(x+1) y^{\prime \prime}+y^{\prime} x^{2}-2 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}(x+1)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x^{2}-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r} \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2B}\\
& +\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-r-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=3$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n-1}(n+r-1)(n+r-2)+a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)-2 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}\left(n^{2}+2 n r+r^{2}-2 n-2 r+1\right)}{n^{2}+2 n r+r^{2}-n-r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}(1+n)^{2}}{n(n+3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{r^{2}}{r^{2}+r-2}
$$

Which for the root $r=2$ becomes

$$
a_{1}=-1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r^{2}}{r^{2}+r-2}$	-1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{r(r+1)^{2}}{r^{3}+4 r^{2}+r-6}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{9}{10}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r^{2}}{r^{2}+r-2}$	-1
a_{2}	$\frac{r(r+1)^{2}}{r^{3}+4 r^{2}+r-6}$	$\frac{9}{10}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{(r+1) r(r+2)}{r^{3}+6 r^{2}+5 r-12}
$$

Which for the root $r=2$ becomes

$$
a_{3}=-\frac{4}{5}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r^{2}}{r^{2}+r-2}$	-1
a_{2}	$\frac{r(r+1)^{2}}{r^{3}+4 r^{2}+r-6}$	$\frac{9}{10}$
a_{3}	$-\frac{(r+1) r(r+2)}{r^{3}+6 r^{2}+5 r-12}$	$-\frac{4}{5}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{r(r+1)(r+3)}{r^{3}+8 r^{2}+11 r-20}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{5}{7}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r^{2}}{r^{2}+r-2}$	-1
a_{2}	$\frac{r(r+1)^{2}}{r^{3}+4 r^{2}+r-6}$	$\frac{9}{10}$
a_{3}	$-\frac{(r+1) r(r+2)}{r^{3}+6 r^{2}+5 r-12}$	$-\frac{4}{5}$
a_{4}	$\frac{r(r+1)(r+3)}{r^{3}+8 r^{2}+11 r-20}$	$\frac{5}{7}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{(r+1) r(r+4)}{r^{3}+10 r^{2}+19 r-30}
$$

Which for the root $r=2$ becomes

$$
a_{5}=-\frac{9}{14}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r^{2}}{r^{2}+r-2}$	-1
a_{2}	$\frac{r(r+2)^{2}}{r^{3}+4 r^{2}+r-6}$	$\frac{9}{10}$
a_{3}	$-\frac{(r+1) r(r+2)}{r^{3}+6 r^{2}+5 r-12}$	$-\frac{4}{5}$
a_{4}	$\frac{r(r+1)(r+3)}{r^{3}+8 r^{2}+11 r-20}$	$\frac{5}{7}$
a_{5}	$-\frac{(r+1) r(r+4)}{r^{3}+10 r^{2}+19 r-30}$	$-\frac{9}{14}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1-x+\frac{9 x^{2}}{10}-\frac{4 x^{3}}{5}+\frac{5 x^{4}}{7}-\frac{9 x^{5}}{14}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=3$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{3}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{3} \\
& =-\frac{(r+1) r(r+2)}{r^{3}+6 r^{2}+5 r-12}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{(r+1) r(r+2)}{r^{3}+6 r^{2}+5 r-12} & =\lim _{r \rightarrow-1}-\frac{(r+1) r(r+2)}{r^{3}+6 r^{2}+5 r-12} \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n-1}(n+r-1)(n+r-2)+b_{n}(n+r)(n+r-1)+b_{n-1}(n+r-1)-2 b_{n}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n-1}(n-2)(n-3)+b_{n}(n-1)(n-2)+b_{n-1}(n-2)-2 b_{n}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{b_{n-1}\left(n^{2}+2 n r+r^{2}-2 n-2 r+1\right)}{n^{2}+2 n r+r^{2}-n-r-2} \tag{5}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=-\frac{b_{n-1}\left(n^{2}-4 n+4\right)}{n^{2}-3 n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{r^{2}}{r^{2}+r-2}
$$

Which for the root $r=-1$ becomes

$$
b_{1}=\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r^{2}}{r^{2}+r-2}$	$\frac{1}{2}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{r\left(r^{2}+2 r+1\right)}{\left(r^{2}+r-2\right)(r+3)}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r^{2}}{r^{2}+r-2}$	$\frac{1}{2}$
b_{2}	$\frac{r(r+1)^{2}}{r^{3}+4 r^{2}+r-6}$	0

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{(r+1) r(r+2)}{(r+4)(r+3)(-1+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r^{2}}{r^{2}+r-2}$	$\frac{1}{2}$
b_{2}	$\frac{r(r+1)^{2}}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$-\frac{(r+1) r(r+2)}{(r+4)(r+3)(-1+r)}$	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{r(r+1)(r+3)}{(r+5)(-1+r)(r+4)}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r^{2}}{r^{2}+r-2}$	$\frac{1}{2}$
b_{2}	$\frac{r(r+1)^{2}}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$-\frac{(r+1) r(r+2)}{(r+4)(r+3)(-1+r)}$	0
b_{4}	$\frac{r(r+1)(r+3)}{(r+5)(-1+r)(r+4)}$	0

For $n=5$, using the above recursive equation gives

$$
b_{5}=-\frac{(r+1) r(r+4)}{(r+6)(-1+r)(r+5)}
$$

Which for the root $r=-1$ becomes

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r^{2}}{r^{2}+r-2}$	$\frac{1}{2}$
b_{2}	$\frac{r(r+1)^{2}}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$-\frac{(r+1) r(r+2)}{(r+4)(r+3)(-1+r)}$	0
b_{4}	$\frac{r(r+1)(r+3)}{(r+5)((1+r)(r+4)}$	0
b_{5}	$-\frac{r+1) r(r+4)}{(r+6)(-1+r)(r+5)}$	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+\frac{x}{2}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}\left(1-x+\frac{9 x^{2}}{10}-\frac{4 x^{3}}{5}+\frac{5 x^{4}}{7}-\frac{9 x^{5}}{14}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x}{2}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& =c_{1} x^{2}\left(1-x+\frac{9 x^{2}}{10}-\frac{4 x^{3}}{5}+\frac{5 x^{4}}{7}-\frac{9 x^{5}}{14}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x}{2}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}\left(1-x+\frac{9 x^{2}}{10}-\frac{4 x^{3}}{5}+\frac{5 x^{4}}{7}-\frac{9 x^{5}}{14}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x}{2}+O\left(x^{6}\right)\right)}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}\left(1-x+\frac{9 x^{2}}{10}-\frac{4 x^{3}}{5}+\frac{5 x^{4}}{7}-\frac{9 x^{5}}{14}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x}{2}+O\left(x^{6}\right)\right)}{x}
$$

Verified OK.

18.17.1 Maple step by step solution

Let's solve

$$
x^{2}(x+1) y^{\prime \prime}+y^{\prime} x^{2}-2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x+1}+\frac{2 y}{x^{2}(x+1)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x+1}-\frac{2 y}{x^{2}(x+1)}=0$
Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x+1}, P_{3}(x)=-\frac{2}{x^{2}(x+1)}\right]$
- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=1$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$x^{2}(x+1) y^{\prime \prime}+y^{\prime} x^{2}-2 y=0$
- Change variables using $x=u-1$ so that the regular singular point is at $u=0$ $\left(u^{3}-2 u^{2}+u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(u^{2}-2 u+1\right)\left(\frac{d}{d u} y(u)\right)-2 y(u)=0$
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .2$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .3$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions
$a_{0} r^{2} u^{-1+r}+\left(a_{1}(1+r)^{2}-2 a_{0}\left(r^{2}+1\right)\right) u^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+1+r)^{2}-2 a_{k}\left(k^{2}+2 k r+r^{2}+1\right)+\right.\right.$
- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
r^{2}=0
$$

- Values of r that satisfy the indicial equation

$$
r=0
$$

- Each term must be 0
$a_{1}(1+r)^{2}-2 a_{0}\left(r^{2}+1\right)=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k+1}(k+1)^{2}-2 a_{k}\left(k^{2}+1\right)+a_{k-1}(k-1)^{2}=0$
- \quad Shift index using $k->k+1$
$a_{k+2}(k+2)^{2}-2 a_{k+1}\left((k+1)^{2}+1\right)+k^{2} a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+1}-4 k a_{k+1}-4 a_{k+1}}{(k+2)^{2}}$
- Recursion relation for $r=0$
$a_{k+2}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+1}-4 k a_{k+1}-4 a_{k+1}}{(k+2)^{2}}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+1}-4 k a_{k+1}-4 a_{k+1}}{(k+2)^{2}}, a_{1}-2 a_{0}=0\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+2}=-\frac{k^{2} a_{k}-2 k^{2} a_{k+1}-4 k a_{k+1}-4 a_{k+1}}{(k+2)^{2}}, a_{1}-2 a_{0}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 39

```
Order:=6;
dsolve(x^2*(1+x)*diff (y (x),x$2)+x^2*diff (y (x),x)-2*y(x)=0,y(x),type='series', x=0);
\[
y(x)=c_{1} x^{2}\left(1-x+\frac{9}{10} x^{2}-\frac{4}{5} x^{3}+\frac{5}{7} x^{4}-\frac{9}{14} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+\frac{c_{2}\left(12+6 x+\mathrm{O}\left(x^{6}\right)\right)}{x}
\]
```

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 47

AsymptoticDSolveValue $\left[\mathrm{x}^{\wedge} 2 *(1+\mathrm{x}) * \mathrm{y}^{\prime}{ }^{\prime}[\mathrm{x}]+\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime}[\mathrm{x}]-2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{5 x^{6}}{7}-\frac{4 x^{5}}{5}+\frac{9 x^{4}}{10}-x^{3}+x^{2}\right)+c_{1}\left(\frac{1}{x}+\frac{1}{2}\right)
$$

18.18 problem 12

18.18.1 Maple step by step solution

3610
Internal problem ID [2954]
Internal file name [OUTPUT/2446_Sunday_June_05_2022_03_13_32_AM_90924725/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+(1-x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+(1-x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=-\frac{x-1}{x^{2}}
\end{aligned}
$$

Table 484: Table $p(x), q(x)$ singularites.

$p(x)=\frac{3}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{x-1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+(1-x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +3 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(1-x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+3 x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+3 x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+3 x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(r+1)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(r+1)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(r+1)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=-1$, Eqs $(1 \mathrm{~A}, 1 \mathrm{~B})$ become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-1} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+3 a_{n}(n+r)+a_{n}-a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}+2 n r+r^{2}+2 n+2 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{1}{(r+2)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{1}=1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{(r+2)^{2}}$	1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{(r+2)^{2}(3+r)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{2}=\frac{1}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{(r+2)^{2}}$	1
a_{2}	$\frac{1}{(r+2)^{2}(3+r)^{2}}$	$\frac{1}{4}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{3}=\frac{1}{36}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{(r+2)^{2}}$	1
a_{2}	$\frac{1}{(r+2)^{2}(3+r)^{2}}$	$\frac{1}{4}$
a_{3}	$\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}}$	$\frac{1}{36}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{4}=\frac{1}{576}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{(r+2)^{2}}$	1
a_{2}	$\frac{1}{(r+2)^{2}(3+r)^{2}}$	$\frac{1}{4}$
a_{3}	$\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}}$	$\frac{1}{36}$
a_{4}	$\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{576}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}(6+r)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{5}=\frac{1}{14400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{(r+2)^{2}}$	1
a_{2}	$\frac{1}{(r+2)^{2}(3+r)^{2}}$	$\frac{1}{4}$
a_{3}	$\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}}$	$\frac{1}{36}$
a_{4}	$\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{576}$
a_{5}	$\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}(6+r)^{2}}$	$\frac{1}{14400}$

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\frac{x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=-1$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=-1)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$\frac{1}{(r+2)^{2}}$	1	$-\frac{2}{(r+2)^{3}}$	-2
b_{2}	$\frac{1}{(r+2)^{2}(3+r)^{2}}$	$\frac{1}{4}$	$\frac{-10-4 r}{(r+2)^{3}(3+r)^{3}}$	$-\frac{3}{4}$
b_{3}	$\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}}$	$\frac{1}{36}$	$\frac{-6 r^{2}-36 r-52}{(r+2)^{3}(3+r)^{3}(r+4)^{3}}$	$-\frac{11}{108}$
b_{4}	$\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{576}$	$\frac{-8 r^{3}-84 r^{2}-284 r-308}{(r+2)^{3}(3+r)^{3}(r+4)^{3}(5+r)^{3}}$	$-\frac{25}{3456}$
b_{5}	$\frac{1}{(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}(6+r)^{2}}$	$\frac{1}{14400}$	$\frac{-10 r^{4}-160 r^{3}-930 r^{2}-232 r-2088}{(r+2)^{3}(3+r)^{3}(r+4)^{3}(5+r)^{3}(6+r)^{3}}$	$-\frac{137}{432000}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \frac{\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)}{x} \\
& +\frac{-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & \frac{c_{1}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)}{x}\right. \\
& \left.+\frac{-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Hence the final solution is

$$
y=y_{h}
$$

$$
\begin{aligned}
= & \frac{c_{1}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)}{x}\right. \\
& \left.+\frac{-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{c_{1}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)}{x}\right. \tag{1}\\
& \left.+\frac{-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)}{x}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{c_{1}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)}{x}\right. \\
& \left.+\frac{-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

18.18.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+(1-x) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=-\frac{3 y^{\prime}}{x}+\frac{(x-1) y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{3 y^{\prime}}{x}-\frac{(x-1) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{3}{x}, P_{3}(x)=-\frac{x-1}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=3$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators
$x^{2} y^{\prime \prime}+3 x y^{\prime}+(1-x) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)^{2}-a_{k-1}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=-1
$$

- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)^{2}-a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+2+r)^{2}-a_{k}=0$
- Recursion relation that defines series solution to ODE $a_{k+1}=\frac{a_{k}}{(k+2+r)^{2}}$
- \quad Recursion relation for $r=-1$

$$
a_{k+1}=\frac{a_{k}}{(k+1)^{2}}
$$

- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+1}=\frac{a_{k}}{(k+1)^{2}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 69

```
Order:=6;
dsolve(x^2*diff (y (x),x$2)+3*x*diff (y (x), x)+(1-x)*y(x)=0,y(x),type='series',x=0);
```

$y(x)$
$=\frac{\left(c_{2} \ln (x)+c_{1}\right)\left(1+x+\frac{1}{4} x^{2}+\frac{1}{36} x^{3}+\frac{1}{576} x^{4}+\frac{1}{14400} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+\left((-2) x-\frac{3}{4} x^{2}-\frac{11}{108} x^{3}-\frac{25}{3456} x^{4}-\frac{1}{43}\right.}{x}$
$\sqrt{ }$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 118
AsymptoticDSolveValue [x^2*y' ' $[x]+3 * x * y$ ' $[x]+(1-x) * y[x]==0, y[x],\{x, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow \frac{c_{1}\left(\frac{x^{5}}{14400}+\frac{x^{4}}{576}+\frac{x^{3}}{36}+\frac{x^{2}}{4}+x+1\right)}{x} & +c_{2}\left(\frac{-\frac{137 x^{5}}{432000}-\frac{25 x^{4}}{3456}-\frac{11 x^{3}}{108}-\frac{3 x^{2}}{4}-2 x}{x}\right. \\
& \left.+\frac{\left(\frac{x^{5}}{14400}+\frac{x^{4}}{576}+\frac{x^{3}}{36}+\frac{x^{2}}{4}+x+1\right) \log (x)}{x}\right)
\end{aligned}
$$

18.19 problem 13

18.19.1 Maple step by step solution

3625
Internal problem ID [2955]
Internal file name [OUTPUT/2447_Sunday_June_05_2022_03_13_35_AM_18055943/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
x y^{\prime \prime}-y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x y^{\prime \prime}-y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=-\frac{1}{x}
\end{aligned}
$$

Table 486: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=-\frac{1}{x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x y^{\prime \prime}-y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r-1}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r-1}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)=0
$$

Or

$$
x^{-1+r} a_{0} r(-1+r)=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{-1+r} r(-1+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{-1+r} r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{(n+r)(n+r-1)} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{(n+1) n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{1}{(1+r) r}
$$

Which for the root $r=1$ becomes

$$
a_{1}=\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{(1+r) r}$	$\frac{1}{2}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{(1+r)^{2} r(2+r)}
$$

Which for the root $r=1$ becomes

$$
a_{2}=\frac{1}{12}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{(1+r) r}$	$\frac{1}{2}$
a_{2}	$\frac{1}{(1+r)^{2} r(2+r)}$	$\frac{1}{12}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)}
$$

Which for the root $r=1$ becomes

$$
a_{3}=\frac{1}{144}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{(1+r) r}$	$\frac{1}{2}$
a_{2}	$\frac{1}{(1+r)^{2} r(2+r)}$	$\frac{1}{12}$
a_{3}	$\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)}$	$\frac{1}{144}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)^{2}(4+r)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{1}{2880}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{(1+r) r}$	$\frac{1}{2}$
a_{2}	$\frac{1}{(1+r)^{2} r(2+r)}$	$\frac{1}{12}$
a_{3}	$\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)}$	$\frac{1}{144}$
a_{4}	$\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)^{2}(4+r)}$	$\frac{1}{2880}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}
$$

Which for the root $r=1$ becomes

$$
a_{5}=\frac{1}{86400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{(1+r) r}$	$\frac{1}{2}$
a_{2}	$\frac{1}{(1+r)^{2} r(2+r)}$	$\frac{1}{12}$
a_{3}	$\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)}$	$\frac{1}{144}$
a_{4}	$\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)^{2}(4+r)}$	$\frac{1}{2880}$
a_{5}	$\frac{1}{(1+r)^{2} r(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}$	$\frac{1}{86400}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{1}{(1+r) r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1}{(1+r) r} & =\lim _{r \rightarrow 0} \frac{1}{(1+r) r} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x y^{\prime \prime}-y=0$ gives

$$
\begin{aligned}
& \left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \\
& -C y_{1}(x) \ln (x)-\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(y_{1}^{\prime \prime}(x) x-y_{1}(x)\right) \ln (x)+\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x\right) C \tag{7}\\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x-\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
y_{1}^{\prime \prime}(x) x-y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x C+\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \tag{8}\\
& -\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \frac{\left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C}{x} \tag{9}\\
& +\frac{\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}-\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x}{x}=0
\end{align*}
$$

Since $r_{1}=1$ and $r_{2}=0$ then the above becomes

$$
\begin{align*}
& \frac{\left(2\left(\sum_{n=0}^{\infty} x^{n} a_{n}(n+1)\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n+1}\right)\right) C}{x}=0 \tag{10}\\
& +\frac{\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n} n(n-1)\right) x^{2}-\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) x}{x}=0
\end{align*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 C x^{n} a_{n}(n+1)\right)+\sum_{n=0}^{\infty}\left(-C x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} n x^{n-1} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and
adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n} a_{n}(n+1) & =\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n-1} \\
\sum_{n=0}^{\infty}\left(-C x^{n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-b_{n} x^{n}\right) & =\sum_{n=1}^{\infty}\left(-b_{n-1} x^{n-1}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n-1}\right)+\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} n x^{n-1} b_{n}(n-1)\right)+\sum_{n=1}^{\infty}\left(-b_{n-1} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=N$, where $N=1$ which is the difference between the two roots, we are free to choose $b_{1}=0$. Hence for $n=1, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
C-1=0
$$

Which is solved for C. Solving for C gives

$$
C=1
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
3 C a_{1}-b_{1}+2 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
2 b_{2}+\frac{3}{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-\frac{3}{4}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
5 C a_{2}-b_{2}+6 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
6 b_{3}+\frac{7}{6}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=-\frac{7}{36}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
7 C a_{3}-b_{3}+12 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
12 b_{4}+\frac{35}{144}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{35}{1728}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
9 C a_{4}-b_{4}+20 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
20 b_{5}+\frac{101}{4320}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=-\frac{101}{86400}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=1$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & 1\left(x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +1-\frac{3 x^{2}}{4}-\frac{7 x^{3}}{36}-\frac{35 x^{4}}{1728}-\frac{101 x^{5}}{86400}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1\left(x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}\right. \\
& \left.-\frac{7 x^{3}}{36}-\frac{35 x^{4}}{1728}-\frac{101 x^{5}}{86400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}-\frac{7 x^{3}}{36}\right. \\
& \left.-\frac{35 x^{4}}{1728}-\frac{101 x^{5}}{86400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1} x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}-\frac{7 x^{3}(1)}{36}\right) \\
& \left.-\frac{35 x^{4}}{1728}-\frac{101 x^{5}}{86400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1+\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}+\frac{x^{4}}{2880}+\frac{x^{5}}{86400}+O\left(x^{6}\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}-\frac{7 x^{3}}{36}\right. \\
& \left.-\frac{35 x^{4}}{1728}-\frac{101 x^{5}}{86400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

18.19.1 Maple step by step solution

Let's solve
$y^{\prime \prime} x-y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{y}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y}{x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=0, P_{3}(x)=-\frac{1}{x}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x-y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r(-1+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r)-a_{k}\right) x^{k+r}\right)=0
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(-1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,1\}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k+1}(k+1+r)(k+r)-a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}}{(k+1+r)(k+r)}$
- Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}}{(k+1) k}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}}{(k+1) k}\right]
$$

- Recursion relation for $r=1$

$$
a_{k+1}=\frac{a_{k}}{(k+2)(k+1)}
$$

- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=\frac{a_{k}}{(k+2)(k+1)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{1+k}\right), a_{1+k}=\frac{a_{k}}{(1+k) k}, b_{1+k}=\frac{b_{k}}{(2+k)(1+k)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 58

```
Order:=6;
dsolve(x*diff(y(x),x$2)-y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
& y(x)=c_{1} x\left(1+\frac{1}{2} x+\frac{1}{12} x^{2}+\frac{1}{144} x^{3}+\frac{1}{2880} x^{4}+\frac{1}{86400} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(\ln (x)\left(x+\frac{1}{2} x^{2}+\frac{1}{12} x^{3}+\frac{1}{144} x^{4}+\frac{1}{2880} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right. \\
& \left.+\left(1-\frac{3}{4} x^{2}-\frac{7}{36} x^{3}-\frac{35}{1728} x^{4}-\frac{101}{86400} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 85
AsymptoticDSolveValue [x*y''[x]-y[x]==0,y[x],\{x,0,5\}]

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{1}{144} x\left(x^{3}+12 x^{2}+72 x+144\right) \log (x)\right. \\
& \left.+\frac{-47 x^{4}-480 x^{3}-2160 x^{2}-1728 x+1728}{1728}\right)+c_{2}\left(\frac{x^{5}}{2880}+\frac{x^{4}}{144}+\frac{x^{3}}{12}+\frac{x^{2}}{2}+x\right)
\end{aligned}
$$

18.20 problem 14

18.20.1 Maple step by step solution . 3637

Internal problem ID [2956]
Internal file name [OUTPUT/2448_Sunday_June_05_2022_03_13_39_AM_73802209/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x\left(x^{2}+6\right) y^{\prime}+6 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(x^{3}+6 x\right) y^{\prime}+6 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{x^{2}+6}{x} \\
& q(x)=\frac{6}{x^{2}}
\end{aligned}
$$

Table 488: Table $p(x), q(x)$ singularites.

$p(x)=\frac{x^{2}+6}{x}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"
$x=-\infty$	"regular"

$q(x)=\frac{6}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty,-\infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(x^{3}+6 x\right) y^{\prime}+6 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(x^{3}+6 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+6\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 6 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 6 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)=\sum_{n=2}^{\infty} a_{n-2}(n+r-2) x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=2}^{\infty} a_{n-2}(n+r-2) x^{n+r}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} 6 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 6 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+6 x^{n+r} a_{n}(n+r)+6 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+6 x^{r} a_{0} r+6 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+6 x^{r} r+6 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}+5 r+6\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+5 r+6=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=-3
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}+5 r+6\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\frac{\sum_{n=0}^{\infty} a_{n} x^{n}}{x^{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{3}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-3}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-2}(n+r-2)+6 a_{n}(n+r)+6 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}(n+r-2)}{n^{2}+2 n r+r^{2}+5 n+5 r+6} \tag{4}
\end{equation*}
$$

Which for the root $r=-2$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}(n-4)}{n(n+1)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{r}{r^{2}+9 r+20}
$$

Which for the root $r=-2$ becomes

$$
a_{2}=\frac{1}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{r}{r^{2}+9 r+20}$	$\frac{1}{3}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{r}{r^{2}+9 r+20}$	$\frac{1}{3}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{r(2+r)}{(5+r)(r+4)(r+7)(6+r)}
$$

Which for the root $r=-2$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{r}{r^{2}+9 r+20}$	$\frac{1}{3}$
a_{3}	0	0
a_{4}	$\frac{r(2+r)}{(5+r)(r+4)(r+7)(6+r)}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{r}{r^{2}+9 r+20}$	$\frac{1}{3}$
a_{3}	0	0
a_{4}	$\frac{r(2+r)}{(5+r)(r+4)(r+7)(6+r)}$	0
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x^{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\frac{1+\frac{x^{2}}{3}+O\left(x^{6}\right)}{x^{2}}
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-3} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-3}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n-2}(n+r-2)+6 b_{n}(n+r)+6 b_{n}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-3$ becomes

$$
\begin{equation*}
b_{n}(n-3)(n-4)+b_{n-2}(n-5)+6 b_{n}(n-3)+6 b_{n}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{b_{n-2}(n+r-2)}{n^{2}+2 n r+r^{2}+5 n+5 r+6} \tag{5}
\end{equation*}
$$

Which for the root $r=-3$ becomes

$$
\begin{equation*}
b_{n}=-\frac{b_{n-2}(n-5)}{n^{2}-n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-3$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{r}{r^{2}+9 r+20}
$$

Which for the root $r=-3$ becomes

$$
b_{2}=\frac{3}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{r}{r^{2}+9 r+20}$	$\frac{3}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{r}{r^{2}+9 r+20}$	$\frac{3}{2}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{r(2+r)}{\left(r^{2}+9 r+20\right)\left(r^{2}+13 r+42\right)}
$$

Which for the root $r=-3$ becomes

$$
b_{4}=\frac{1}{8}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{r}{r^{2}+9 r+20}$	$\frac{3}{2}$
b_{3}	0	0
b_{4}	$\frac{r(2+r)}{(5+r)(r+4)(r+7)(6+r)}$	$\frac{1}{8}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{r}{r^{2}+9 r+20}$	$\frac{3}{2}$
b_{3}	0	0
b_{4}	$\frac{r(2+r)}{(5+r)(r+4)(r+7)(6+r)}$	$\frac{1}{8}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =\frac{1}{x^{2}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+\frac{3 x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)}{x^{3}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{c_{1}\left(1+\frac{x^{2}}{3}+O\left(x^{6}\right)\right)}{x^{2}}+\frac{c_{2}\left(1+\frac{3 x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{x^{3}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =\frac{c_{1}\left(1+\frac{x^{2}}{3}+O\left(x^{6}\right)\right)}{x^{2}}+\frac{c_{2}\left(1+\frac{3 x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{x^{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}\left(1+\frac{x^{2}}{3}+O\left(x^{6}\right)\right)}{x^{2}}+\frac{c_{2}\left(1+\frac{3 x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}\left(1+\frac{x^{2}}{3}+O\left(x^{6}\right)\right)}{x^{2}}+\frac{c_{2}\left(1+\frac{3 x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{x^{3}}
$$

Verified OK.

18.20.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+\left(x^{3}+6 x\right) y^{\prime}+6 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{6 y}{x^{2}}-\frac{\left(x^{2}+6\right) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{\left(x^{2}+6\right) y^{\prime}}{x}+\frac{6 y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{x^{2}+6}{x}, P_{3}(x)=\frac{6}{x^{2}}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=6$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=6$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}+x\left(x^{2}+6\right) y^{\prime}+6 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .3$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(3+r)(2+r) x^{r}+a_{1}(4+r)(3+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+3)(k+r+2)+a_{k-2}(k-2+r)\right.\right.$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(3+r)(2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-3,-2\}$
- Each term must be 0
$a_{1}(4+r)(3+r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+3)(k+r+2)+a_{k-2}(k-2+r)=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(k+5+r)(k+4+r)+a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{a_{k}(k+r)}{(k+5+r)(k+4+r)}$
- Recursion relation for $r=-3$
$a_{k+2}=-\frac{a_{k}(k-3)}{(k+2)(k+1)}$
- \quad Solution for $r=-3$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-3}, a_{k+2}=-\frac{a_{k}(k-3)}{(k+2)(k+1)}, a_{1}=0\right]$
- Recursion relation for $r=-2$; series terminates at $k=2$
$a_{k+2}=-\frac{a_{k}(k-2)}{(k+3)(k+2)}$
- \quad Solution for $r=-2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-2}, a_{k+2}=-\frac{a_{k}(k-2)}{(k+3)(k+2)}, a_{1}=0\right]
$$

- Combine solutions and rename parameters
$\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-3}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-2}\right), a_{2+k}=-\frac{a_{k}(k-3)}{(2+k)(1+k)}, a_{1}=0, b_{2+k}=-\frac{b_{k}(k-2)}{(k+3)(2+k)}, b_{1}=0\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Kummer successful
    <- special function solution successful
    Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    -> Trying to convert hypergeometric functions to elementary form...
    <- elementary form for at least one hypergeometric solution is achieved - returning wi
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 33

```
Order:=6;
dsolve(x^2*diff (y(x),x$2)+x*(6+x^2)*diff ( }\textrm{y}(\textrm{x}),\textrm{x})+6*y(x)=0,y(x),type='series',x=0)
```

$$
y(x)=\frac{c_{1}\left(1+\frac{1}{3} x^{2}+\mathrm{O}\left(x^{6}\right)\right) x+c_{2}\left(1+\frac{3}{2} x^{2}+\frac{1}{8} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 33
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' $\left.'[x]+x *\left(6+x^{\wedge} 2\right) * y '[x]+6 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{1}{x^{3}}+\frac{x}{8}+\frac{3}{2 x}\right)+c_{2}\left(\frac{1}{x^{2}}+\frac{1}{3}\right)
$$

18.21 problem 15

18.21.1 Maple step by step solution 3653

Internal problem ID [2957]
Internal file name [OUTPUT/2449_Sunday_June_05_2022_03_13_42_AM_36455973/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 15 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x(1-x) y^{\prime}-y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}-y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{x-1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Table 490: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x-1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}-y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-x^{2}+x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right)=\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+a_{n}(n+r)-a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{1+n+r} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2+n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{1}{2+r}
$$

Which for the root $r=1$ becomes

$$
a_{1}=\frac{1}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{2+r}$	$\frac{1}{3}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{(2+r)(3+r)}
$$

Which for the root $r=1$ becomes

$$
a_{2}=\frac{1}{12}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{2+r}$	$\frac{1}{3}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{12}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{1}{(3+r)(2+r)(4+r)}
$$

Which for the root $r=1$ becomes

$$
a_{3}=\frac{1}{60}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{2+r}$	$\frac{1}{3}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{12}$
a_{3}	$\frac{1}{(3+r)(2+r)(4+r)}$	$\frac{1}{60}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(2+r)(4+r)(5+r)(3+r)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{1}{360}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{2+r}$	$\frac{1}{3}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{12}$
a_{3}	$\frac{1}{(3+r)(2+r)(4+r)}$	$\frac{1}{60}$
a_{4}	$\frac{1}{(2+r)(4+r)(5+r)(3+r)}$	$\frac{1}{360}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{1}{(2+r)(5+r)(3+r)(4+r)(6+r)}
$$

Which for the root $r=1$ becomes

$$
a_{5}=\frac{1}{2520}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{2+r}$	$\frac{1}{3}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{12}$
a_{3}	$\frac{1}{(3+r)(2+r)(4+r)}$	$\frac{1}{60}$
a_{4}	$\frac{1}{(2+r)(4+r)(5+r)(3+r)}$	$\frac{1}{360}$
a_{5}	$\frac{1}{(2+r)(5+r)(3+r)(4+r)(6+r)}$	$\frac{1}{2520}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x}{3}+\frac{x^{2}}{12}+\frac{x^{3}}{60}+\frac{x^{4}}{360}+\frac{x^{5}}{2520}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =\frac{1}{(2+r)(3+r)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1}{(2+r)(3+r)} & =\lim _{r \rightarrow-1} \frac{1}{(2+r)(3+r)} \\
& =\frac{1}{2}
\end{aligned}
$$

The limit is $\frac{1}{2}$. Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)-b_{n-1}(n+r-1)+b_{n}(n+r)-b_{n}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}(n-1)(n-2)-b_{n-1}(n-2)+b_{n}(n-1)-b_{n}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}}{1+n+r} \tag{5}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}}{n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{1}{2+r}
$$

Which for the root $r=-1$ becomes

$$
b_{1}=1
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{2+r}$	1

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{1}{(2+r)(3+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{2+r}$	1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{1}{(3+r)(2+r)(4+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{3}=\frac{1}{6}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{2+r}$	1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$
b_{3}	$\frac{1}{(3+r)(2+r)(4+r)}$	$\frac{1}{6}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1}{(2+r)(4+r)(5+r)(3+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=\frac{1}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{2+r}$	1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$
b_{3}	$\frac{1}{(3+r)(2+r)(4+r)}$	$\frac{1}{6}$
b_{4}	$\frac{1}{(2+r)(4+r)(5+r)(3+r)}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{1}{(2+r)(5+r)(3+r)(4+r)(6+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{5}=\frac{1}{120}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{2+r}$	1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$
b_{3}	$\frac{1}{(3+r)(2+r)(4+r)}$	$\frac{1}{6}$
b_{4}	$\frac{1}{(2+r)(4+r)(5+r)(3+r)}$	$\frac{1}{24}$
b_{5}	$\frac{1}{(2+r)(5+r)(3+r)(4+r)(6+r)}$	$\frac{1}{120}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+\frac{x}{3}+\frac{x^{2}}{12}+\frac{x^{3}}{60}+\frac{x^{4}}{360}+\frac{x^{5}}{2520}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
y=y_{h}
$$

$$
=c_{1} x\left(1+\frac{x}{3}+\frac{x^{2}}{12}+\frac{x^{3}}{60}+\frac{x^{4}}{360}+\frac{x^{5}}{2520}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{gather*}
y= \tag{1}\\
c_{1} x\left(1+\frac{x}{3}+\frac{x^{2}}{12}+\frac{x^{3}}{60}+\frac{x^{4}}{360}+\frac{x^{5}}{2520}+O\left(x^{6}\right)\right) \\
+\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}
\end{gather*}
$$

Verification of solutions

$$
\begin{gathered}
y= \\
c_{1} x\left(1+\frac{x}{3}+\frac{x^{2}}{12}+\frac{x^{3}}{60}+\frac{x^{4}}{360}+\frac{x^{5}}{2520}+O\left(x^{6}\right)\right) \\
+\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x}
\end{gathered}
$$

Verified OK.

18.21.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{y}{x^{2}}+\frac{(x-1) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{(x-1) y^{\prime}}{x}-\frac{y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{x-1}{x}, P_{3}(x)=-\frac{1}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}-x(x-1) y^{\prime}-y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(1+r)(-1+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(k+r-1)-a_{k-1}(k+r-1)\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
(1+r)(-1+r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\{-1,1\}
$$

- Each term in the series must be 0 , giving the recursion relation

$$
(k+r-1)\left(a_{k}(k+r+1)-a_{k-1}\right)=0
$$

- \quad Shift index using $k->k+1$
$(k+r)\left(a_{k+1}(k+2+r)-a_{k}\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}}{k+2+r}
$$

- Recursion relation for $r=-1$

$$
a_{k+1}=\frac{a_{k}}{k+1}
$$

- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+1}=\frac{a_{k}}{k+1}\right]
$$

- \quad Recursion relation for $r=1$

$$
a_{k+1}=\frac{a_{k}}{k+3}
$$

- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=\frac{a_{k}}{k+3}\right]
$$

- Combine solutions and rename parameters
$\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{1+k}\right), a_{1+k}=\frac{a_{k}}{1+k}, b_{1+k}=\frac{b_{k}}{k+3}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 45

```
Order:=6;
dsolve(x^2*diff (y (x),x$2)+x*(1-x)*diff (y (x),x)-y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x\left(1+\frac{1}{3} x+\frac{1}{12} x^{2}+\frac{1}{60} x^{3}+\frac{1}{360} x^{4}+\frac{1}{2520} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(-2-2 x-x^{2}-\frac{1}{3} x^{3}-\frac{1}{12} x^{4}-\frac{1}{60} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 64
AsymptoticDSolveValue[x^2*y' $\quad[\mathrm{x}]+\mathrm{x} *(1-\mathrm{x}) * \mathrm{y}$ ' $[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{3}}{24}+\frac{x^{2}}{6}+\frac{x}{2}+\frac{1}{x}+1\right)+c_{2}\left(\frac{x^{5}}{360}+\frac{x^{4}}{60}+\frac{x^{3}}{12}+\frac{x^{2}}{3}+x\right)
$$

18.22 problem 16

18.22.1 Maple step by step solution

Internal problem ID [2958]
Internal file name [OUTPUT/2450_Sunday_June_05_2022_03_13_45_AM_15374412/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
4 x^{2} y^{\prime \prime}+(1-4 x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x^{2} y^{\prime \prime}+(1-4 x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=-\frac{-1+4 x}{4 x^{2}}
\end{aligned}
$$

Table 492: Table $p(x), q(x)$ singularites.

$p(x)=0$	
singularity	type

$q(x)=-\frac{-1+4 x}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}+(1-4 x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+(1-4 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-4 a_{n-1} x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=1}^{\infty}\left(-4 a_{n-1} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)+a_{0} x^{r}=0
$$

Or

$$
\left(4 x^{r} r(-1+r)+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{r}(2 r-1)^{2}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(2 r-1)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{r}(2 r-1)^{2}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=\frac{1}{2}$, Eqs (1A,1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+\frac{1}{2}}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)+a_{n}-4 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{4 a_{n-1}}{4 n^{2}+8 n r+4 r^{2}-4 n-4 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{4}{(2 r+1)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{1}=1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{4}{(2 r+1)^{2}}$	1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{16}{(2 r+1)^{2}(2 r+3)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=\frac{1}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{4}{(2 r+1)^{2}}$	1
a_{2}	$\frac{16}{(2 r+1)^{2}(2 r+3)^{2}}$	$\frac{1}{4}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{64}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{3}=\frac{1}{36}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{4}{(2 r+1)^{2}}$	1
a_{2}	$\frac{16}{(2 r+1)^{2}(2 r+3)^{2}}$	$\frac{1}{4}$
a_{3}	$\frac{64}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}}$	$\frac{1}{36}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{256}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}(2 r+7)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{1}{576}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{4}{(2 r+1)^{2}}$	1
a_{2}	$\frac{16}{(2 r+1)^{2}(2 r+3)^{2}}$	$\frac{1}{4}$
a_{3}	$\frac{64}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}}$	$\frac{1}{36}$
a_{4}	$\frac{256}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}(2 r+7)^{2}}$	$\frac{1}{576}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{1024}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}(2 r+7)^{2}(2 r+9)^{2}}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{5}=\frac{1}{14400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{4}{(2 r+1)^{2}}$	1
a_{2}	$\frac{16}{(2 r+1)^{2}(2 r+3)^{2}}$	$\frac{1}{4}$
a_{3}	$\frac{64}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}}$	$\frac{1}{36}$
a_{4}	$\frac{256}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}(2 r+7)^{2}}$	$\frac{1}{576}$
a_{5}	$\frac{1024}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}(2 r+7)^{2}(2 r+9)^{2}}$	$\frac{1}{14400}$

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=\frac{1}{2}$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}\left(r=\frac{1}{2}\right)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$\frac{4}{(2 r+1)^{2}}$	1	$-\frac{16}{(2 r+1)^{3}}$	-2
b_{2}	$\frac{16}{(2 r+1)^{2}(2 r+3)^{2}}$	$\frac{1}{4}$	$\frac{-256 r-256}{(2 r+1)^{3}(2 r+3)^{3}}$	$-\frac{3}{4}$
b_{3}	$\frac{64}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}}$	$\frac{1}{36}$	$\frac{-3072 r^{2}-9216 r-5888}{(2 r+1)^{3}(2 r+3)^{3}(2 r+5)^{3}}$	$-\frac{11}{108}$
b_{4}	$\frac{256}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}(2 r+7)^{2}}$	$\frac{1}{576}$	$-\frac{32768(2+r)\left(r^{2}+4 r+\frac{11}{4}\right)}{(2 r+1)^{3}(2 r+3)^{3}(2 r+5)^{3}(2 r+7)^{3}}$	$-\frac{25}{3456}$
b_{5}	$\frac{1024}{(2 r+1)^{2}(2 r+3)^{2}(2 r+5)^{2}(2 r+7)^{2}(2 r+9)^{2}}$	$\frac{1}{14400}$	$-\frac{4096\left(80 r^{4}+800 r^{3}+2760 r^{2}+3800 r+1689\right)}{(2 r+1)^{3}(2 r+3)^{3}(2 r+5)^{3}(2 r+7)^{3}(2 r+9)^{3}}$	$-\frac{137}{432000}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \sqrt{x}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x) \\
& +\sqrt{x}\left(-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.\quad+\sqrt{x}\left(-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} \sqrt{x}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.\quad+\sqrt{x}\left(-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{x}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)\right. \tag{1}\\
& \left.+\sqrt{x}\left(-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& y=c_{1} \sqrt{x}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(x+1+\frac{x^{2}}{4}+\frac{x^{3}}{36}+\frac{x^{4}}{576}+\frac{x^{5}}{14400}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+\sqrt{x}\left(-2 x-\frac{3 x^{2}}{4}-\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}-\frac{137 x^{5}}{432000}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Verified OK.

18.22.1 Maple step by step solution

Let's solve

$$
4 x^{2} y^{\prime \prime}+(1-4 x) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{(-1+4 x) y}{4 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(-1+4 x) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=0, P_{3}(x)=-\frac{-1+4 x}{4 x^{2}}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{1}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}+(1-4 x) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(-1+2 r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(2 k+2 r-1)^{2}-4 a_{k-1}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(-1+2 r)^{2}=0$
- Values of r that satisfy the indicial equation
$r=\frac{1}{2}$
- Each term in the series must be 0 , giving the recursion relation
$4\left(k+r-\frac{1}{2}\right)^{2} a_{k}-4 a_{k-1}=0$
- \quad Shift index using $k->k+1$
$4\left(k+\frac{1}{2}+r\right)^{2} a_{k+1}-4 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{4 a_{k}}{(2 k+1+2 r)^{2}}$
- Recursion relation for $r=\frac{1}{2}$
$a_{k+1}=\frac{4 a_{k}}{(2 k+2)^{2}}$
- \quad Solution for $r=\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+1}=\frac{4 a_{k}}{(2 k+2)^{2}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 69

```
Order:=6;
dsolve(4*x^2*diff(y(x), x$2)+(1-4*x)*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{array}{r}
y(x)=\sqrt{x}\left(\left(c_{2} \ln (x)+c_{1}\right)\left(1+x+\frac{1}{4} x^{2}+\frac{1}{36} x^{3}+\frac{1}{576} x^{4}+\frac{1}{14400} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right. \\
\left.+\left((-2) x-\frac{3}{4} x^{2}-\frac{11}{108} x^{3}-\frac{25}{3456} x^{4}-\frac{137}{432000} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}\right)
\end{array}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 124
AsymptoticDSolveValue[4*x^2*y' $\quad[\mathrm{x}]+(1-4 * x) * y[x]==0, y[x],\{x, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1} \sqrt{x}\left(\frac{x^{5}}{14400}+\frac{x^{4}}{576}+\frac{x^{3}}{36}+\frac{x^{2}}{4}+x+1\right) \\
& +c_{2}\left(\sqrt{x}\left(-\frac{137 x^{5}}{432000}-\frac{25 x^{4}}{3456}-\frac{11 x^{3}}{108}-\frac{3 x^{2}}{4}-2 x\right)\right. \\
& \left.+\sqrt{x}\left(\frac{x^{5}}{14400}+\frac{x^{4}}{576}+\frac{x^{3}}{36}+\frac{x^{2}}{4}+x+1\right) \log (x)\right)
\end{aligned}
$$

18.23 problem 17

18.23.1 Maple step by step solution . 3676

Internal problem ID [2959]
Internal file name [OUTPUT/2451_Sunday_June_05_2022_03_13_48_AM_843029/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 17 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
x y^{\prime \prime}+y^{\prime}-2 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x y^{\prime \prime}+y^{\prime}-2 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{2}{x}
\end{aligned}
$$

Table 494: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{2}{x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x y^{\prime \prime}+y^{\prime}-2 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0 \tag{2A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r-1}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
$$

Or

$$
\left(x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{-1+r} r^{2}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{-1+r} r^{2}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)-2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{2}{(r+1)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{1}=2
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{(r+1)^{2}}$	2

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4}{(r+1)^{2}(r+2)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{2}=1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{(r+1)^{2}}$	2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{8}{(r+1)^{2}(r+2)^{2}(3+r)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{3}=\frac{2}{9}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{(r+1)^{2}}$	2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1
a_{3}	$\frac{8}{(r+1)^{2}(r+2)^{2}(3+r)^{2}}$	$\frac{2}{9}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{1}{36}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{(r+1)^{2}}$	2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1
a_{3}	$\frac{8}{(r+1)^{2}(r+2)^{2}(3+r)^{2}}$	$\frac{2}{9}$
a_{4}	$\frac{16}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}}$	$\frac{1}{36}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{32}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{5}=\frac{1}{450}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{(r+1)^{2}}$	2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1
a_{3}	$\frac{8}{(r+1)^{2}(r+2)^{2}(3+r)^{2}}$	$\frac{2}{9}$
a_{4}	$\frac{16}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}}$	$\frac{1}{36}$
a_{5}	$\frac{32}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{450}$

Using the above table, then the first solution $y_{1}(x)$ becomes

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =x^{2}+2 x+1+\frac{2 x^{3}}{9}+\frac{x^{4}}{36}+\frac{x^{5}}{450}+O\left(x^{6}\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=0$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=0)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$\frac{2}{(r+1)^{2}}$	2	$-\frac{4}{(r+1)^{3}}$	-4
b_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1	$\frac{-16 r-24}{(r+1)^{3}(r+2)^{3}}$	-3
b_{3}	$\frac{8}{(r+1)^{2}(r+2)^{2}(3+r)^{2}}$	$\frac{2}{9}$	$\frac{-48 r^{2}-192 r-176}{(r+1)^{3}(r+2)^{3}(3+r)^{3}}$	$-\frac{22}{27}$
b_{4}	$\frac{16}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}}$	$\frac{1}{36}$	$-\frac{64\left(2 r^{3}+15 r^{2}+35 r+25\right)}{(r+1)^{3}(r+2)^{3}(3+r)^{3}(r+4)^{3}}$	$-\frac{25}{216}$
b_{5}	$\frac{32}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{450}$	$-\frac{64\left(5 r^{4}+60 r^{3}+255 r^{2}+450 r+274\right)}{(r+1)^{3}(r+2)^{3}(3+r)^{3}(r+4)^{3}(5+r)^{3}}$	$-\frac{137}{13500}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(x^{2}+2 x+1+\frac{2 x^{3}}{9}+\frac{x^{4}}{36}+\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}-4 x-\frac{22 x^{3}}{27}-\frac{25 x^{4}}{216}-\frac{137 x^{5}}{13500} \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(x^{2}+2 x+1+\frac{2 x^{3}}{9}+\frac{x^{4}}{36}+\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}+2 x+1+\frac{2 x^{3}}{9}+\frac{x^{4}}{36}+\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}-4 x-\frac{22 x^{3}}{27}\right. \\
& \left.-\frac{25 x^{4}}{216}-\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
y=y_{h}
$$

$$
\begin{aligned}
= & c_{1}\left(x^{2}+2 x+1+\frac{2 x^{3}}{9}+\frac{x^{4}}{36}+\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}+2 x+1+\frac{2 x^{3}}{9}+\frac{x^{4}}{36}+\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}-4 x-\frac{22 x^{3}}{27}-\frac{25 x^{4}}{216}\right. \\
& \left.-\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1}\left(x^{2}+2 x+1+\frac{2 x^{3}}{9}+\frac{x^{4}}{36}+\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}+2 x+1+\frac{2 x^{3}}{9}+\frac{x^{4}}{36}+\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}-4 x-\frac{22 x^{3}}{27}(1)\right. \\
& \left.-\frac{25 x^{4}}{216}-\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}\left(x^{2}+2 x+1+\frac{2 x^{3}}{9}+\frac{x^{4}}{36}+\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}+2 x+1+\frac{2 x^{3}}{9}+\frac{x^{4}}{36}+\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}-4 x-\frac{22 x^{3}}{27}-\frac{25 x^{4}}{216}\right. \\
& \left.-\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

18.23.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+y^{\prime}-2 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{2 y}{x}-\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{2 y}{x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{2}{x}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x+y^{\prime}-2 y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r^{2} x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)^{2}-2 a_{k}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation $r^{2}=0$
- Values of r that satisfy the indicial equation
$r=0$
- Each term in the series must be 0, giving the recursion relation $a_{k+1}(k+1)^{2}-2 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{2 a_{k}}{(k+1)^{2}}$
- Recursion relation for $r=0$

$$
a_{k+1}=\frac{2 a_{k}}{(k+1)^{2}}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{2 a_{k}}{(k+1)^{2}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```


Solution by Maple

Time used: 0.016 (sec). Leaf size: 59

```
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)-2*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1+2 x+x^{2}+\frac{2}{9} x^{3}+\frac{1}{36} x^{4}+\frac{1}{450} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left((-4) x-3 x^{2}-\frac{22}{27} x^{3}-\frac{25}{216} x^{4}-\frac{137}{13500} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 101
AsymptoticDSolveValue[x*y''[x]+y'[x]-2*y[x]==0,y[x],\{x,0,5\}]

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{x^{5}}{450}+\frac{x^{4}}{36}+\frac{2 x^{3}}{9}+x^{2}+2 x+1\right) \\
& +c_{2}\left(-\frac{137 x^{5}}{13500}-\frac{25 x^{4}}{216}-\frac{22 x^{3}}{27}-3 x^{2}+\left(\frac{x^{5}}{450}+\frac{x^{4}}{36}+\frac{2 x^{3}}{9}+x^{2}+2 x+1\right) \log (x)-4 x\right)
\end{aligned}
$$

18.24 problem 18

18.24.1 Maple step by step solution . 3691

Internal problem ID [2960]
Internal file name [OUTPUT/2452_Sunday_June_05_2022_03_13_55_AM_63124368/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y(x+1)=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(-x-1) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{x+1}{x^{2}}
\end{aligned}
$$

Table 496: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{x+1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(-x-1) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(-x-1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)-a_{n-1}-a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n^{2}+2 n r+r^{2}-1} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{1}{r(r+2)}
$$

Which for the root $r=1$ becomes

$$
a_{1}=\frac{1}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r(r+2)}$	$\frac{1}{3}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{r(r+2)(3+r)(r+1)}
$$

Which for the root $r=1$ becomes

$$
a_{2}=\frac{1}{24}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r(r+2)}$	$\frac{1}{3}$
a_{2}	$\frac{1}{r(r+2)(3+r)(r+1)}$	$\frac{1}{24}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{1}{r(r+2)^{2}(3+r)(r+1)(r+4)}
$$

Which for the root $r=1$ becomes

$$
a_{3}=\frac{1}{360}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r(r+2)}$	$\frac{1}{3}$
a_{2}	$\frac{1}{r(r+2)(3+r)(r+1)}$	$\frac{1}{24}$
a_{3}	$\frac{1}{r(r+2)^{2}(3+r)(r+1)(r+4)}$	$\frac{1}{360}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{r(r+2)^{2}(3+r)^{2}(r+1)(r+4)(5+r)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{1}{8640}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r(r+2)}$	$\frac{1}{3}$
a_{2}	$\frac{1}{r(r+2)(3+r)(r+1)}$	$\frac{1}{24}$
a_{3}	$\frac{1}{r(r+2)^{2}(3+r)(r+1)(r+4)}$	$\frac{1}{360}$
a_{4}	$\frac{1}{r(r+2)^{2}(3+r)^{2}(r+1)(r+4)(5+r)}$	$\frac{1}{8640}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{1}{r(r+2)^{2}(3+r)^{2}(r+1)(r+4)^{2}(5+r)(6+r)}
$$

Which for the root $r=1$ becomes

$$
a_{5}=\frac{1}{302400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{r(r+2)}$	$\frac{1}{3}$
a_{2}	$\frac{1}{r(r+2)(3+r)(r+1)}$	$\frac{1}{24}$
a_{3}	$\frac{1}{r(r+2)^{2}(3+r)(r+1)(r+4)}$	$\frac{1}{360}$
a_{4}	$\frac{1}{r(r+2)^{2}(3+r)^{2}(r+1)(r+4)(5+r)}$	$\frac{1}{8640}$
a_{5}	$\frac{1}{r(r+2)^{2}(3+r)^{2}(r+1)(r+4)^{2}(5+r)(6+r)}$	$\frac{1}{302400}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =\frac{1}{r(r+2)(3+r)(r+1)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1}{r(r+2)(3+r)(r+1)} & =\lim _{r \rightarrow-1} \frac{1}{r(r+2)(3+r)(r+1)} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+x y^{\prime}+(-x-1) y=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +x\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +(-x-1)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x+(-x-1) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right. \\
& \left.+y_{1}(x)\right) C+x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(-x-1)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x+(-x-1) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(-x-1)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+2 x\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) C \tag{9}\\
& +\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x-(x+1)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=1$ and $r_{2}=-1$ then the above becomes

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-1)(-2+n)\right) x^{2}+2 x\left(\sum_{n=0}^{\infty} x^{n} a_{n}(1+n)\right) C \tag{10}\\
& +\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n}(n-1)\right) x-(x+1)\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right)+\left(\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n-1}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n) & =\sum_{n=2}^{\infty} 2 C a_{-2+n}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty}\left(-b_{n} x^{n}\right) & =\sum_{n=1}^{\infty}\left(-b_{n-1} x^{n-1}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right)+\left(\sum_{n=2}^{\infty} 2 C a_{-2+n}(n-1) x^{n-1}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-1)\right)+\sum_{n=1}^{\infty}\left(-b_{n-1} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
-b_{0}-b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-1-b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=-1
$$

For $n=N$, where $N=2$ which is the difference between the two roots, we are free to choose $b_{2}=0$. Hence for $n=2$, Eq (2B) gives

$$
2 C+1=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{1}{2}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
4 C a_{1}-b_{2}+3 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
3 b_{3}-\frac{2}{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=\frac{2}{9}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
6 C a_{2}-b_{3}+8 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
8 b_{4}-\frac{25}{72}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=\frac{25}{576}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
8 C a_{3}-b_{4}+15 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
15 b_{5}-\frac{157}{2880}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{157}{43200}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{1}{2}$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & -\frac{1}{2}\left(x\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +\frac{1-x+\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}+\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{1}{2}\left(x\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right)\right) \ln (x)\right. \\
& \left.+\frac{1-x+\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}+\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \ln (x)}{2}\right. \\
& \left.+\frac{1-x+\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}+\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \ln (x)}{2}\right. \tag{1}\\
& \left.+\frac{1-x+\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}+\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{x}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \ln (x)}{2}\right. \\
& \left.+\frac{1-x+\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}+\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

18.24.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(-x-1) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{(x+1) y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{(x+1) y}{x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=-\frac{x+1}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}+x y^{\prime}+(-x-1) y=0
$$

- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)(-1+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(k+r-1)-a_{k-1}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,1\}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)(k+r-1)-a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+2+r)(k+r)-a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}}{(k+2+r)(k+r)}$
- \quad Recursion relation for $r=-1$

$$
a_{k+1}=\frac{a_{k}}{(k+1)(k-1)}
$$

- \quad Series not valid for $r=-1$, division by 0 in the recursion relation at $k=1$

$$
a_{k+1}=\frac{a_{k}}{(k+1)(k-1)}
$$

- Recursion relation for $r=1$

$$
a_{k+1}=\frac{a_{k}}{(k+3)(k+1)}
$$

- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=\frac{a_{k}}{(k+3)(k+1)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 63

```
Order:=6;
dsolve( }\mp@subsup{x}{}{~}2*\operatorname{diff}(y(x),x$2)+x*\operatorname{diff}(y(x),x)-(1+x)*y(x)=0,y(x),type='series', x=0)
```

$y(x)$
$=\frac{c_{1} x^{2}\left(1+\frac{1}{3} x+\frac{1}{24} x^{2}+\frac{1}{360} x^{3}+\frac{1}{8640} x^{4}+\frac{1}{302400} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(\ln (x)\left(x^{2}+\frac{1}{3} x^{3}+\frac{1}{24} x^{4}+\frac{1}{360} x^{5}+\mathrm{O}\left(x^{€}\right.\right.\right.}{x}$
\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 83
AsymptoticDSolveValue $[x \wedge 2 * y$ ' $\quad[x]+x * y$ ' $[x]-(1+x) * y[x]==0, y[x],\{x, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{31 x^{4}+176 x^{3}+144 x^{2}-576 x+576}{576 x}-\frac{1}{48} x\left(x^{2}+8 x+24\right) \log (x)\right) \\
& +c_{2}\left(\frac{x^{5}}{8640}+\frac{x^{4}}{360}+\frac{x^{3}}{24}+\frac{x^{2}}{3}+x\right)
\end{aligned}
$$

18.25 problem 19

18.25.1 Maple step by step solution 3703

Internal problem ID [2961]
Internal file name [OUTPUT/2453_Sunday_June_05_2022_03_13_59_AM_65157335/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+4 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(-x^{2}-3 x\right) y^{\prime}+4 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{x+3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Table 498: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x+3}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{4}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(-x^{2}-3 x\right) y^{\prime}+4 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-x^{2}-3 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right)=\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-3 x^{n+r} a_{n}(n+r)+4 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-3 x^{r} a_{0} r+4 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-3 x^{r} r+4 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(r-2)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(r-2)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(r-2)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=2$, Eqs (1A, 1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+2}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x)$ Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)-3 a_{n}(n+r)+4 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}-4 n-4 r+4} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(1+n)}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{r}{(-1+r)^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{1}=2
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(-1+r)^{2}}$	2

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1+r}{r(-1+r)^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{3}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(-1+r)^{2}}$	2
a_{2}	$\frac{1+r}{r(-1+r)^{2}}$	$\frac{3}{2}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{2+r}{r(1+r)(-1+r)^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{3}=\frac{2}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(-1+r)^{2}}$	2
a_{2}	$\frac{1+r}{r(-1+r)^{2}}$	$\frac{3}{2}$
a_{3}	$\frac{2+r}{r(1+r)(-1+r)^{2}}$	$\frac{2}{3}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{3+r}{r(1+r)(-1+r)^{2}(2+r)}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{5}{24}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(-1+r)^{2}}$	2
a_{2}	$\frac{1+r}{r(-1+r)^{2}}$	$\frac{3}{2}$
a_{3}	$\frac{2+r}{r(1+r)(-1+r)^{2}}$	$\frac{2}{3}$
a_{4}	$\frac{3+r}{r(1+r)(-1+r)^{2}(2+r)}$	$\frac{5}{24}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{4+r}{r(1+r)(-1+r)^{2}(2+r)(3+r)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=\frac{1}{20}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(-1+r)^{2}}$	2
a_{2}	$\frac{1+r}{r(-1+r)^{2}}$	$\frac{3}{2}$
a_{3}	$\frac{2+r}{r(1+r)(-1+r)^{2}}$	$\frac{2}{3}$
a_{4}	$\frac{3+r}{r(1+r)(-1+r)^{2}(2+r)}$	$\frac{5}{24}$
a_{5}	$\frac{4+r}{r(1+r)(-1+r)^{2}(2+r)(3+r)}$	$\frac{1}{20}$

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1+2 x+\frac{3 x^{2}}{2}+\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}+\frac{x^{5}}{20}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=2$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=2)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$\frac{r}{(-1+r)^{2}}$	2	$\frac{-1-r}{(-1+r)^{3}}$	-3
b_{2}	$\frac{1+r}{r(-1+r)^{2}}$	$\frac{3}{2}$	$\frac{-2 r^{2}-3 r+1}{r^{2}(-1+r)^{3}}$	$-\frac{13}{4}$
b_{3}	$\frac{2+r}{r(1+r)(-1+r)^{2}}$	$\frac{2}{3}$	$\frac{-3 r^{3}-9 r^{2}-2 r+2}{r^{2}(1+r)^{2}(-1+r)^{3}}$	$-\frac{31}{18}$
b_{4}	$\frac{3+r}{r(1+r)(-1+r)^{2}(2+r)}$	$\frac{5}{24}$	$\frac{-4 r^{4}-22 r^{3}-28 r^{2}+6}{r^{2}(1+r)^{2}(-1+r)^{3}(2+r)^{2}}$	$-\frac{173}{288}$
b_{5}	$\frac{4+r}{r(1+r)(-1+r)^{2}(2+r)(3+r)}$	$\frac{1}{20}$	$\frac{-5 r^{5}-45 r^{4}-125 r^{3}-105 r^{2}+16 r+24}{r^{2}(1+r)^{2}(-1+r)^{3}(2+r)^{2}(3+r)^{2}}$	$-\frac{187}{1200}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & x^{2}\left(1+2 x+\frac{3 x^{2}}{2}+\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}+\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \ln (x) \\
& +x^{2}\left(-3 x-\frac{13 x^{2}}{4}-\frac{31 x^{3}}{18}-\frac{173 x^{4}}{288}-\frac{187 x^{5}}{1200}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\left.\begin{array}{l}
y_{h}(x)= \\
=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
=c_{1} x^{2}\left(1+2 x+\frac{3 x^{2}}{2}+\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}+\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \\
\\
\quad+c_{2}\left(x^{2}\left(1+2 x+\frac{3 x^{2}}{2}+\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}+\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \ln (x)\right. \\
\end{array} \quad+x^{2}\left(-3 x-\frac{13 x^{2}}{4}-\frac{31 x^{3}}{18}-\frac{173 x^{4}}{288}-\frac{187 x^{5}}{1200}+O\left(x^{6}\right)\right)\right) .
$$

Hence the final solution is

$$
\left.\left.\begin{array}{rl}
y= & y_{h} \\
= & c_{1} x^{2}(1+2 x
\end{array}\right) \frac{3 x^{2}}{2}+\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}+\frac{x^{5}}{20}+O\left(x^{6}\right)\right) .
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x^{2}\left(1+2 x+\frac{3 x^{2}}{2}+\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}+\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(1+2 x+\frac{3 x^{2}}{2}+\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}+\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \ln (x)\right. \tag{1}\\
& \left.+x^{2}\left(-3 x-\frac{13 x^{2}}{4}-\frac{31 x^{3}}{18}-\frac{173 x^{4}}{288}-\frac{187 x^{5}}{1200}+O\left(x^{6}\right)\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& y=c_{1} x^{2}\left(1+2 x+\frac{3 x^{2}}{2}+\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}+\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(1+2 x+\frac{3 x^{2}}{2}+\frac{2 x^{3}}{3}+\frac{5 x^{4}}{24}+\frac{x^{5}}{20}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+x^{2}\left(-3 x-\frac{13 x^{2}}{4}-\frac{31 x^{3}}{18}-\frac{173 x^{4}}{288}-\frac{187 x^{5}}{1200}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Verified OK.

18.25.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+\left(-x^{2}-3 x\right) y^{\prime}+4 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 y}{x^{2}}+\frac{(x+3) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(x+3) y^{\prime}}{x}+\frac{4 y}{x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{x+3}{x}, P_{3}(x)=\frac{4}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-3$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=4$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}-x(x+3) y^{\prime}+4 y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(-2+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r-2)^{2}-a_{k-1}(k+r-1)\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(-2+r)^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=2
$$

- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r-2)^{2}-a_{k-1}(k+r-1)=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+r-1)^{2}-a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}(k+r)}{(k+r-1)^{2}}
$$

- \quad Recursion relation for $r=2$

$$
a_{k+1}=\frac{a_{k}(k+2)}{(k+1)^{2}}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=\frac{a_{k}(k+2)}{(k+1)^{2}}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```


\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*(x+3)*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);
\[
y(x)=\left(\left(c_{2} \ln (x)+c_{1}\right)\left(1+2 x+\frac{3}{2} x^{2}+\frac{2}{3} x^{3}+\frac{5}{24} x^{4}+\frac{1}{20} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right.
\]
\[
\left.+\left((-3) x-\frac{13}{4} x^{2}-\frac{31}{18} x^{3}-\frac{173}{288} x^{4}-\frac{187}{1200} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}\right) x^{2}
\]
```

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 122
AsymptoticDSolveValue $[\mathrm{x} \wedge 2 * y$ ' $'[x]-x *(x+3) * y '[x]+4 * y[x]==0, y[x],\{x, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{x^{5}}{20}+\frac{5 x^{4}}{24}+\frac{2 x^{3}}{3}+\frac{3 x^{2}}{2}+2 x+1\right) x^{2} \\
+ & c_{2}\left(\left(-\frac{187 x^{5}}{1200}-\frac{173 x^{4}}{288}-\frac{31 x^{3}}{18}-\frac{13 x^{2}}{4}-3 x\right) x^{2}\right. \\
& \left.+\left(\frac{x^{5}}{20}+\frac{5 x^{4}}{24}+\frac{2 x^{3}}{3}+\frac{3 x^{2}}{2}+2 x+1\right) x^{2} \log (x)\right)
\end{aligned}
$$

18.26 problem 20

18.26.1 Maple step by step solution . 3717

Internal problem ID [2962]
Internal file name [OUTPUT/2454_Sunday_June_05_2022_03_14_02_AM_42909298/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-y^{\prime} x^{2}-2 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}-y^{\prime} x^{2}-2 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-1 \\
& q(x)=-\frac{2}{x^{2}}
\end{aligned}
$$

Table 500: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=-\frac{2}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}-y^{\prime} x^{2}-2 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)-\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x^{2}-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right)=\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-r-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=3$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)-2 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}-n-r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(1+n)}{n(n+3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{r}{r^{2}+r-2}
$$

Which for the root $r=2$ becomes

$$
a_{1}=\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{r^{2}+r-2}$	$\frac{1}{2}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1+r}{r^{3}+4 r^{2}+r-6}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{3}{20}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{r^{2}+r-2}$	$\frac{1}{2}$
a_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{20}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{1}{r^{3}+6 r^{2}+5 r-12}
$$

Which for the root $r=2$ becomes

$$
a_{3}=\frac{1}{30}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{r^{2}+r-2}$	$\frac{1}{2}$
a_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{20}$
a_{3}	$\frac{1}{r^{3}+6 r^{2}+5 r-12}$	$\frac{1}{30}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{r^{4}+10 r^{3}+27 r^{2}+2 r-40}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{1}{168}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{r^{2}+r-2}$	$\frac{1}{2}$
a_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{20}$
a_{3}	$\frac{1}{r^{3}+6 r^{2}+5 r-12}$	$\frac{1}{30}$
a_{4}	$\frac{1}{r^{4}+10 r^{3}+27 r^{2}+2 r-40}$	$\frac{1}{168}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{1}{r^{5}+15 r^{4}+75 r^{3}+125 r^{2}-36 r-180}
$$

Which for the root $r=2$ becomes

$$
a_{5}=\frac{1}{1120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{r^{2}+r-2}$	$\frac{1}{2}$
a_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{20}$
a_{3}	$\frac{1}{r^{3}+6 r^{2}+5 r-12}$	$\frac{1}{30}$
a_{4}	$\frac{1}{r^{4}+10 r^{3}+27 r^{2}+2 r-40}$	$\frac{1}{168}$
a_{5}	$\frac{1}{r^{5}+15 r^{4}+75 r^{3}+125 r^{2}-36 r-180}$	$\frac{1}{1120}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1+\frac{x}{2}+\frac{3 x^{2}}{20}+\frac{x^{3}}{30}+\frac{x^{4}}{168}+\frac{x^{5}}{1120}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=3$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{3}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{3} \\
& =\frac{1}{r^{3}+6 r^{2}+5 r-12}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1}{r^{3}+6 r^{2}+5 r-12} & =\lim _{r \rightarrow-1} \frac{1}{r^{3}+6 r^{2}+5 r-12} \\
& =-\frac{1}{12}
\end{aligned}
$$

The limit is $-\frac{1}{12}$. Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)-b_{n-1}(n+r-1)-2 b_{n}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}(n-1)(n-2)-b_{n-1}(n-2)-2 b_{n}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}-n-r-2} \tag{5}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}(n-2)}{n^{2}-3 n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{r}{r^{2}+r-2}
$$

Which for the root $r=-1$ becomes

$$
b_{1}=\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{r^{2}+r-2}$	$\frac{1}{2}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{1+r}{\left(r^{2}+r-2\right)(r+3)}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{r^{2}+r-2}$	$\frac{1}{2}$
b_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	0

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{1}{(r+4)(r+3)(-1+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{3}=-\frac{1}{12}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{r^{2}+r-2}$	$\frac{1}{2}$
b_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$\frac{1}{(r+4)(r+3)(-1+r)}$	$-\frac{1}{12}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1}{(r+4)(-1+r)\left(r^{2}+7 r+10\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=-\frac{1}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{r^{2}+r-2}$	$\frac{1}{2}$
b_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$\frac{1}{(r+4)(r+3)(-1+r)}$	$-\frac{1}{12}$
b_{4}	$\frac{1}{(5+r)(2+r)(r+4)(-1+r)}$	$-\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{1}{(-1+r)\left(r^{2}+7 r+10\right)\left(r^{2}+9 r+18\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{5}=-\frac{1}{80}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{r}{r^{2}+r-2}$	$\frac{1}{2}$
b_{2}	$\frac{1+r}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$\frac{1}{(r+4)(r+3)(-1+r)}$	$-\frac{1}{12}$
b_{4}	$\frac{1}{(5+r)(2+r)(r+4)(-1+r)}$	$-\frac{1}{24}$
b_{5}	$\frac{1}{(6+r)(r+3)(5+r)(-1+r)(2+r)}$	$-\frac{1}{80}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+\frac{x}{2}-\frac{x^{3}}{12}-\frac{x^{4}}{24}-\frac{x^{5}}{80}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

$$
=c_{1} x^{2}\left(1+\frac{x}{2}+\frac{3 x^{2}}{20}+\frac{x^{3}}{30}+\frac{x^{4}}{168}+\frac{x^{5}}{1120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x}{2}-\frac{x^{3}}{12}-\frac{x^{4}}{24}-\frac{x^{5}}{80}+O\left(x^{6}\right)\right)}{x}
$$

Hence the final solution is

$$
y=y_{h}
$$

$$
=c_{1} x^{2}\left(1+\frac{x}{2}+\frac{3 x^{2}}{20}+\frac{x^{3}}{30}+\frac{x^{4}}{168}+\frac{x^{5}}{1120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x}{2}-\frac{x^{3}}{12}-\frac{x^{4}}{24}-\frac{x^{5}}{80}+O\left(x^{6}\right)\right)}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{2}\left(1+\frac{x}{2}+\frac{3 x^{2}}{20}+\frac{x^{3}}{30}+\frac{x^{4}}{168}+\frac{x^{5}}{1120}+O\left(x^{6}\right)\right) \tag{1}\\
& +\frac{c_{2}\left(1+\frac{x}{2}-\frac{x^{3}}{12}-\frac{x^{4}}{24}-\frac{x^{5}}{80}+O\left(x^{6}\right)\right)}{x}
\end{align*}
$$

Verification of solutions
$y=c_{1} x^{2}\left(1+\frac{x}{2}+\frac{3 x^{2}}{20}+\frac{x^{3}}{30}+\frac{x^{4}}{168}+\frac{x^{5}}{1120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x}{2}-\frac{x^{3}}{12}-\frac{x^{4}}{24}-\frac{x^{5}}{80}+O\left(x^{6}\right)\right)}{x}$
Verified OK.

18.26.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-y^{\prime} x^{2}-2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=y^{\prime}+\frac{2 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-y^{\prime}-\frac{2 y}{x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-1, P_{3}(x)=-\frac{2}{x^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}-y^{\prime} x^{2}-2 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y^{\prime}$ to series expansion
$x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}$
- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+r)(-2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(k+r-2)-a_{k-1}(k-1+r)\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-2+r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\{-1,2\}
$$

- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)(k+r-2)-a_{k-1}(k-1+r)=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+2+r)(k-1+r)-a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}(k+r)}{(k+2+r)(k-1+r)}
$$

- Recursion relation for $r=-1$; series terminates at $k=1$

$$
a_{k+1}=\frac{a_{k}(k-1)}{(k+1)(k-2)}
$$

- Apply recursion relation for $k=0$

$$
a_{1}=\frac{a_{0}}{2}
$$

- Terminating series solution of the ODE for $r=-1$. Use reduction of order to find the second

$$
y=a_{0} \cdot\left(1+\frac{x}{2}\right)
$$

- Recursion relation for $r=2$

$$
a_{k+1}=\frac{a_{k}(k+2)}{(k+4)(k+1)}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=\frac{a_{k}(k+2)}{(k+4)(k+1)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=a_{0} \cdot\left(1+\frac{x}{2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{2+k}\right), b_{1+k}=\frac{b_{k}(2+k)}{(k+4)(1+k)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 45

```
Order:=6;
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x$2)-x^2*diff(y(x),x)-2*y(x)=0,y(x),type='series', x=0)
```

$$
\begin{aligned}
y(x)= & c_{1} x^{2}\left(1+\frac{1}{2} x+\frac{3}{20} x^{2}+\frac{1}{30} x^{3}+\frac{1}{168} x^{4}+\frac{1}{1120} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(12+6 x-x^{3}-\frac{1}{2} x^{4}-\frac{3}{20} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 63
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]-x^{\wedge} 2 * y$ ' $\left.[x]-2 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(-\frac{x^{3}}{24}-\frac{x^{2}}{12}+\frac{1}{x}+\frac{1}{2}\right)+c_{2}\left(\frac{x^{6}}{168}+\frac{x^{5}}{30}+\frac{3 x^{4}}{20}+\frac{x^{3}}{2}+x^{2}\right)
$$

18.27 problem 21

18.27.1 Maple step by step solution

Internal problem ID [2963]
Internal file name [OUTPUT/2455_Sunday_June_05_2022_03_14_06_AM_92181284/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-y^{\prime} x^{2}-(2+3 x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}-y^{\prime} x^{2}+(-3 x-2) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-1 \\
& q(x)=-\frac{2+3 x}{x^{2}}
\end{aligned}
$$

Table 502: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=-\frac{2+3 x}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}-y^{\prime} x^{2}+(-3 x-2) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& \quad-\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x^{2}+(-3 x-2)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-3 x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty}\left(-3 x^{1+n+r} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-3 a_{n-1} x^{n+r}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\sum_{n=1}^{\infty}\left(-3 a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-r-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
r_{1} & =2 \\
r_{2} & =-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=3$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)-3 a_{n-1}-2 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r+2)}{n^{2}+2 n r+r^{2}-n-r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+4)}{n(n+3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{3+r}{r^{2}+r-2}
$$

Which for the root $r=2$ becomes

$$
a_{1}=\frac{5}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{3+r}{r^{2}+r-2}$	$\frac{5}{4}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4+r}{r\left(r^{2}+r-2\right)}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{3}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{3+r}{r^{2}+r-2}$	$\frac{5}{4}$
a_{2}	$\frac{4+r}{r\left(r^{2}+r-2\right)}$	$\frac{3}{4}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{5+r}{(r+1) r\left(r^{2}+r-2\right)}
$$

Which for the root $r=2$ becomes

$$
a_{3}=\frac{7}{24}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{3+r}{r^{2}+r-2}$	$\frac{5}{4}$
a_{2}	$\frac{4+r}{r\left(r^{2}+r-2\right)}$	$\frac{3}{4}$
a_{3}	$\frac{5+r}{(r+1) r\left(r^{2}+r-2\right)}$	$\frac{7}{24}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{6+r}{(r+2)^{2}(r+1) r(-1+r)}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{1}{12}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{3+r}{r^{2}+r-2}$	$\frac{5}{4}$
a_{2}	$\frac{4+r}{r\left(r^{2}+r-2\right)}$	$\frac{3}{4}$
a_{3}	$\frac{5+r}{(r+1) r\left(r^{2}+r-2\right)}$	$\frac{7}{24}$
a_{4}	$\frac{6+r}{(r+2)^{2}(r+1) r(-1+r)}$	$\frac{1}{12}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{7+r}{(3+r)(r+2)^{2} r\left(r^{2}-1\right)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=\frac{3}{160}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{3+r}{r^{2}+r-2}$	$\frac{5}{4}$
a_{2}	$\frac{4+r}{r\left(r^{2}+r-2\right)}$	$\frac{3}{4}$
a_{3}	$\frac{5+r}{(r+1) r\left(r^{2}+r-2\right)}$	$\frac{7}{24}$
a_{4}	$\frac{6+r}{(r+2)^{2}(r+1) r(-1+r)}$	$\frac{1}{12}$
a_{5}	$\frac{7+r}{(3+r)(r+2)^{2} r\left(r^{2}-1\right)}$	$\frac{3}{160}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1+\frac{5 x}{4}+\frac{3 x^{2}}{4}+\frac{7 x^{3}}{24}+\frac{x^{4}}{12}+\frac{3 x^{5}}{160}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=3$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{3}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{3} \\
& =\frac{5+r}{(r+1) r\left(r^{2}+r-2\right)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{5+r}{(r+1) r\left(r^{2}+r-2\right)} & =\lim _{r \rightarrow-1} \frac{5+r}{(r+1) r\left(r^{2}+r-2\right)} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}-y^{\prime} x^{2}+(-3 x-2) y=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& -\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) x^{2} \\
& +(-3 x-2)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)-y_{1}^{\prime}(x) x^{2}+(-3 x-2) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right. \\
& \left.-y_{1}(x) x\right) C+x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& -\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x^{2}+(-3 x-2)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x^{2} y_{1}^{\prime \prime}(x)-y_{1}^{\prime}(x) x^{2}+(-3 x-2) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)-y_{1}(x) x\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& -\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x^{2}+(-3 x-2)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-(x+1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& -\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x^{2}+(-3 x-2)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=2$ and $r_{2}=-1$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}(n+2)\right) x-(x+1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+2}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-1)(-2+n)\right) x^{2} \tag{10}\\
& -\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n}(n-1)\right) x^{2}+(-3 x-2)\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(n+2)\right)+\sum_{n=0}^{\infty}\left(-C x^{n+3} a_{n}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-C x^{n+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-3 b_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 b_{n} x^{n-1}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(n+2) & =\sum_{n=3}^{\infty} 2 C a_{-3+n}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty}\left(-C x^{n+3} a_{n}\right) & =\sum_{n=4}^{\infty}\left(-C a_{n-4} x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-C x^{n+2} a_{n}\right) & =\sum_{n=3}^{\infty}\left(-C a_{-3+n} x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-x^{n} b_{n}(n-1)\right) & =\sum_{n=1}^{\infty}\left(-b_{n-1}(-2+n) x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-3 b_{n} x^{n}\right) & =\sum_{n=1}^{\infty}\left(-3 b_{n-1} x^{n-1}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=3}^{\infty} 2 C a_{-3+n}(n-1) x^{n-1}\right)+\sum_{n=4}^{\infty}\left(-C a_{n-4} x^{n-1}\right)+\sum_{n=3}^{\infty}\left(-C a_{-3+n} x^{n-1}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right)+\sum_{n=1}^{\infty}\left(-b_{n-1}(-2+n) x^{n-1}\right) \tag{2B}\\
& \quad+\sum_{n=1}^{\infty}\left(-3 b_{n-1} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-2 b_{n} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1, \mathrm{Eq}$ (2B) gives

$$
-2 b_{0}-2 b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-2-2 b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=-1
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
-3 b_{1}-2 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
3-2 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=\frac{3}{2}
$$

For $n=N$, where $N=3$ which is the difference between the two roots, we are free to choose $b_{3}=0$. Hence for $n=3$, Eq (2B) gives

$$
3 C-6=0
$$

Which is solved for C. Solving for C gives

$$
C=2
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-a_{0}+5 a_{1}\right) C-5 b_{3}+4 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{21}{2}+4 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{21}{8}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-a_{1}+7 a_{2}\right) C-6 b_{4}+10 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{95}{4}+10 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=-\frac{19}{8}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=2$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & 2\left(x^{2}\left(1+\frac{5 x}{4}+\frac{3 x^{2}}{4}+\frac{7 x^{3}}{24}+\frac{x^{4}}{12}+\frac{3 x^{5}}{160}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +\frac{1-x+\frac{3 x^{2}}{2}-\frac{21 x^{4}}{8}-\frac{19 x^{5}}{8}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(1+\frac{5 x}{4}+\frac{3 x^{2}}{4}+\frac{7 x^{3}}{24}+\frac{x^{4}}{12}+\frac{3 x^{5}}{160}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(2\left(x^{2}\left(1+\frac{5 x}{4}+\frac{3 x^{2}}{4}+\frac{7 x^{3}}{24}+\frac{x^{4}}{12}+\frac{3 x^{5}}{160}+O\left(x^{6}\right)\right)\right) \ln (x)\right. \\
& \left.+\frac{1-x+\frac{3 x^{2}}{2}-\frac{21 x^{4}}{8}-\frac{19 x^{5}}{8}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& =c_{1} x^{2}\left(1+\frac{5 x}{4}+\frac{3 x^{2}}{4}+\frac{7 x^{3}}{24}+\frac{x^{4}}{12}+\frac{3 x^{5}}{160}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(2 x^{2}\left(1+\frac{5 x}{4}+\frac{3 x^{2}}{4}+\frac{7 x^{3}}{24}+\frac{x^{4}}{12}+\frac{3 x^{5}}{160}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+\frac{1-x+\frac{3 x^{2}}{2}-\frac{21 x^{4}}{8}-\frac{19 x^{5}}{8}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x^{2}\left(1+\frac{5 x}{4}+\frac{3 x^{2}}{4}+\frac{7 x^{3}}{24}+\frac{x^{4}}{12}+\frac{3 x^{5}}{160}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(2 x^{2}\left(1+\frac{5 x}{4}+\frac{3 x^{2}}{4}+\frac{7 x^{3}}{24}+\frac{x^{4}}{12}+\frac{3 x^{5}}{160}+O\left(x^{6}\right)\right) \ln (x)\right. \tag{1}\\
& \left.+\frac{1-x+\frac{3 x^{2}}{2}-\frac{21 x^{4}}{8}-\frac{19 x^{5}}{8}+O\left(x^{6}\right)}{x}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y=c_{1} x^{2}\left(1+\frac{5 x}{4}+\frac{3 x^{2}}{4}+\frac{7 x^{3}}{24}+\frac{x^{4}}{12}\right. & \left.+\frac{3 x^{5}}{160}+O\left(x^{6}\right)\right) \\
+c_{2}\left(2 x ^ { 2 } \left(1+\frac{5 x}{4}+\frac{3 x^{2}}{4}+\frac{7 x^{3}}{24}\right.\right. & \left.+\frac{x^{4}}{12}+\frac{3 x^{5}}{160}+O\left(x^{6}\right)\right) \ln (x) \\
& \left.+\frac{1-x+\frac{3 x^{2}}{2}-\frac{21 x^{4}}{8}-\frac{19 x^{5}}{8}+O\left(x^{6}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

18.27.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-y^{\prime} x^{2}+(-3 x-2) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=\frac{(2+3 x) y}{x^{2}}+y^{\prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-y^{\prime}-\frac{(2+3 x) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-1, P_{3}(x)=-\frac{2+3 x}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}-y^{\prime} x^{2}+(-3 x-2) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}
$$

- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)(-2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(k+r-2)-a_{k-1}(k+2+r)\right) x^{k+r}\right)=0$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$(1+r)(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,2\}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)(k+r-2)-a_{k-1}(k+2+r)=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+2+r)(k-1+r)-a_{k}(k+r+3)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r+3)}{(k+2+r)(k-1+r)}$
- \quad Recursion relation for $r=-1$
$a_{k+1}=\frac{a_{k}(k+2)}{(k+1)(k-2)}$
- Series not valid for $r=-1$, division by 0 in the recursion relation at $k=2$
$a_{k+1}=\frac{a_{k}(k+2)}{(k+1)(k-2)}$
- \quad Recursion relation for $r=2$
$a_{k+1}=\frac{a_{k}(k+5)}{(k+4)(k+1)}$
- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=\frac{a_{k}(k+5)}{(k+4)(k+1)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 65

```
Order:=6;
dsolve(x^2*diff (y (x),x$2)-x^2*diff (y (x), x)-(3*x+2)*y(x)=0,y(x),type='series', x=0);
```

$y(x)$
$=\frac{c_{1} x^{3}\left(1+\frac{5}{4} x+\frac{3}{4} x^{2}+\frac{7}{24} x^{3}+\frac{1}{12} x^{4}+\frac{3}{160} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(\ln (x)\left(24 x^{3}+30 x^{4}+18 x^{5}+\mathrm{O}\left(x^{6}\right)\right)+(12-\right.}{x}$
\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 84
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' $'[x]-x^{\wedge} 2 * y$ ' $\left.[x]-(3 * x+2) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{1}{2} x^{2}(5 x+4) \log (x)-\frac{3 x^{4}-6 x^{3}-6 x^{2}+4 x-4}{4 x}\right) \\
& +c_{2}\left(\frac{x^{6}}{12}+\frac{7 x^{5}}{24}+\frac{3 x^{4}}{4}+\frac{5 x^{3}}{4}+x^{2}\right)
\end{aligned}
$$

18.28 problem 22

18.28.1 Maple step by step solution

Internal problem ID [2964]
Internal file name [OUTPUT/2456_Sunday_June_05_2022_03_14_10_AM_15449460/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x(5-x) y^{\prime}+4 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+5 x\right) y^{\prime}+4 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{x-5}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Table 504: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x-5}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{4}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+5 x\right) y^{\prime}+4 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-x^{2}+5 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right)=\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+5 x^{n+r} a_{n}(n+r)+4 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+5 x^{r} a_{0} r+4 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+5 x^{r} r+4 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(r+2)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(r+2)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=-2
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(r+2)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=-2$, Eqs (1A, 1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-2} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n-2}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+5 a_{n}(n+r)+4 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}+4 n+4 r+4} \tag{4}
\end{equation*}
$$

Which for the root $r=-2$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n-3)}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{r}{(3+r)^{2}}
$$

Which for the root $r=-2$ becomes

$$
a_{1}=-2
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(3+r)^{2}}$	-2

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{r(1+r)}{(3+r)^{2}(r+4)^{2}}
$$

Which for the root $r=-2$ becomes

$$
a_{2}=\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(3+r)^{2}}$	-2
a_{2}	$\frac{r(1+r)}{(3+r)^{2}(r+4)^{2}}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{r(1+r)(r+2)}{(3+r)^{2}(r+4)^{2}(r+5)^{2}}
$$

Which for the root $r=-2$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(3+r)^{2}}$	-2
a_{2}	$\frac{r(1+r)}{(3+r)^{2}(r+4)^{2}}$	$\frac{1}{2}$
a_{3}	$\frac{r(1+r)(r+2)}{(3+r)^{2}(r+4)^{2}(r+5)^{2}}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{r(1+r)(r+2)}{(3+r)(r+4)^{2}(r+5)^{2}(6+r)^{2}}
$$

Which for the root $r=-2$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(3+r)^{2}}$	-2
a_{2}	$\frac{r(1+r)}{(3+r)^{2}(r+4)^{2}}$	$\frac{1}{2}$
a_{3}	$\frac{r(1+r)(r+2)}{(3+r)^{2}(r+4)^{2}(r+5)^{2}}$	0
a_{4}	$\frac{r(1+r)(r+2)}{(3+r)(r+4)^{2}(r+5)^{2}(6+r)^{2}}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{r(1+r)(r+2)}{(3+r)(r+4)(r+5)^{2}(6+r)^{2}(r+7)^{2}}
$$

Which for the root $r=-2$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{r}{(3+r)^{2}}$	-2
a_{2}	$\frac{r(1+r)}{(3+r)^{2}(r+4)^{2}}$	$\frac{1}{2}$
a_{3}	$\frac{r(1+r)(r+2)}{(3+r)^{2}(r+4)^{2}(r+5)^{2}}$	0
a_{4}	$\frac{r(1+r)(r+2)}{(3+r)(r+4)^{2}(r+5)^{2}(6+r)^{2}}$	0
a_{5}	$\frac{r(1+r)(r+2)}{(3+r)(r+4)(r+5)^{2}(6+r)^{2}(r+7)^{2}}$	0

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x^{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\frac{1-2 x+\frac{x^{2}}{2}+O\left(x^{6}\right)}{x^{2}}
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=-2$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=-2)$
b_{0}	1	1	$\mathrm{~N} / \mathrm{A}$ since b_{n} starts from 1	N / A
b_{1}	$\frac{r}{(3+r)^{2}}$	-2	$\frac{3-r}{(3+r)^{3}}$	5
b_{2}	$\frac{r(1+r)}{(3+r)^{2}(r+4)^{2}}$	$\frac{1}{2}$	$\frac{-2 r^{3}-3 r^{2}+17 r+12}{(3+r)^{3}(r+4)^{3}}$	$-\frac{9}{4}$
b_{3}	$\frac{r(1+r)(r+2)}{(3+r)^{2}(r+4)^{2}(r+5)^{2}}$	0	$\frac{-3 r^{5}-24 r^{4}-35 r^{3}+108 r^{2}+266 r+120}{(3+r)^{3}(r+4)^{3}(r+5)^{3}}$	$\frac{1}{18}$
b_{4}	$\frac{r(1+r)(r+2)}{(3+r)(r+4)^{2}(r+5)^{2}(6+r)^{2}}$	0	$\frac{-4 r^{6}-54 r^{5}-228 r^{4}-180 r^{3}+874 r^{2}+1716 r+720}{(3+r)^{2}(r+4)^{3}(r+5)^{3}(6+r)^{3}}$	$\frac{1}{288}$
b_{5}	$\frac{r(1+r)(r+2)}{(3+r)(r+4)(r+5)^{2}(6+r)^{2}(r+7)^{2}}$	0	$\frac{-5 r^{7}-100 r^{6}-730 r^{5}-2190 r^{4}-1089 r^{3}+7258 r^{2}+12552 r+5040}{(3+r)^{2}(r+4)^{2}(r+5)^{3}(6+r)^{3}(r+7)^{3}}$	$\frac{1}{3600}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =\frac{\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{6}\right)\right) \ln (x)}{x^{2}}+\frac{5 x-\frac{9 x^{2}}{4}+\frac{x^{3}}{18}+\frac{x^{4}}{288}+\frac{x^{5}}{3600}+O\left(x^{6}\right)}{x^{2}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & \frac{c_{1}\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{6}\right)\right)}{x^{2}} \\
& +c_{2}\left(\frac{\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{6}\right)\right) \ln (x)}{x^{2}}+\frac{5 x-\frac{9 x^{2}}{4}+\frac{x^{3}}{18}+\frac{x^{4}}{288}+\frac{x^{5}}{3600}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & \frac{c_{1}\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{6}\right)\right)}{x^{2}} \\
& +c_{2}\left(\frac{\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{6}\right)\right) \ln (x)}{x^{2}}+\frac{5 x-\frac{9 x^{2}}{4}+\frac{x^{3}}{18}+\frac{x^{4}}{288}+\frac{x^{5}}{3600}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{c_{1}\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{6}\right)\right)}{x^{2}} \\
& +c_{2}\left(\frac{\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{6}\right)\right) \ln (x)}{x^{2}}+\frac{5 x-\frac{9 x^{2}}{4}+\frac{x^{3}}{18}+\frac{x^{4}}{288}+\frac{x^{5}}{3600}+O\left(x^{6}\right)}{x^{2}}\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{c_{1}\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{6}\right)\right)}{x^{2}} \\
& +c_{2}\left(\frac{\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{6}\right)\right) \ln (x)}{x^{2}}+\frac{5 x-\frac{9 x^{2}}{4}+\frac{x^{3}}{18}+\frac{x^{4}}{288}+\frac{x^{5}}{3600}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Verified OK.

18.28.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\left(-x^{2}+5 x\right) y^{\prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 y}{x^{2}}+\frac{(x-5) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{(x-5) y^{\prime}}{x}+\frac{4 y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{x-5}{x}, P_{3}(x)=\frac{4}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=5$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=4$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}-x(x-5) y^{\prime}+4 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
\square
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(2+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+2)^{2}-a_{k-1}(k+r-1)\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(2+r)^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=-2
$$

- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+2)^{2}-a_{k-1}(k+r-1)=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+3+r)^{2}-a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r)}{(k+3+r)^{2}}$
- Recursion relation for $r=-2$; series terminates at $k=2$
$a_{k+1}=\frac{a_{k}(k-2)}{(k+1)^{2}}$
- Apply recursion relation for $k=0$
$a_{1}=-2 a_{0}$
- Apply recursion relation for $k=1$
$a_{2}=-\frac{a_{1}}{4}$
- Express in terms of a_{0}
$a_{2}=\frac{a_{0}}{2}$
- Terminating series solution of the ODE for $r=-2$. Use reduction of order to find the second $y=a_{0} \cdot\left(1-2 x+\frac{1}{2} x^{2}\right)$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 57

$$
\begin{aligned}
& \begin{array}{l}
\text { Order }:=6 ; \\
\text { dsolve }\left(\mathrm{x}^{\wedge} 2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{x} *(5-\mathrm{x}) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+4 * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x}) \text {, type='series ' }, \mathrm{x}=0\right) ;
\end{array} \\
& y(x) \\
& =\frac{\left(c_{2} \ln (x)+c_{1}\right)\left(1-2 x+\frac{1}{2} x^{2}+\mathrm{O}\left(x^{6}\right)\right)+\left(5 x-\frac{9}{4} x^{2}+\frac{1}{18} x^{3}+\frac{1}{288} x^{4}+\frac{1}{3600} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}}{x^{2}}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 80
AsymptoticDSolveValue $\left[\mathrm{x} \sim 2 * \mathrm{y}\right.$ ' ${ }^{\prime}[\mathrm{x}]+\mathrm{x} *(5-\mathrm{x}) * \mathrm{y}$ ' $\left.[\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow \frac{c_{1}\left(\frac{x^{2}}{2}-2 x+1\right)}{x^{2}}+c_{2}\left(\frac{\left(\frac{x^{2}}{2}-2 x+1\right) \log (x)}{x^{2}}+\frac{\frac{x^{5}}{3600}+\frac{x^{4}}{288}+\frac{x^{3}}{18}-\frac{9 x^{2}}{4}+5 x}{x^{2}}\right)
$$

18.29 problem 23

18.29.1 Maple step by step solution

3760
Internal problem ID [2965]
Internal file name [OUTPUT/2457_Sunday_June_05_2022_03_14_13_AM_71883718/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
4 x^{2} y^{\prime \prime}+4 x(1-x) y^{\prime}+(2 x-9) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x^{2} y^{\prime \prime}+\left(-4 x^{2}+4 x\right) y^{\prime}+(2 x-9) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{x-1}{x} \\
& q(x)=\frac{2 x-9}{4 x^{2}}
\end{aligned}
$$

Table 506: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{x-1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{2 x-9}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}+\left(-4 x^{2}+4 x\right) y^{\prime}+(2 x-9) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-4 x^{2}+4 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(2 x-9)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-9 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-4 a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-4 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-9 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)+4 x^{n+r} a_{n}(n+r)-9 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)+4 x^{r} a_{0} r-9 a_{0} x^{r}=0
$$

Or

$$
\left(4 x^{r} r(-1+r)+4 x^{r} r-9 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(4 r^{2}-9\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r^{2}-9=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=-\frac{3}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(4 r^{2}-9\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=3$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{\frac{3}{2}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{\frac{3}{2}}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{3}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)-4 a_{n-1}(n+r-1)+4 a_{n}(n+r)+2 a_{n-1}-9 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}}{2 n+2 r+3} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n+3} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{2}{5+2 r}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{1}=\frac{1}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{5+2 r}$	$\frac{1}{4}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4}{4 r^{2}+24 r+35}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{2}=\frac{1}{20}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{5+2 r}$	$\frac{1}{4}$
a_{2}	$\frac{4}{4 r^{2}+24 r+35}$	$\frac{1}{20}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{8}{8 r^{3}+84 r^{2}+286 r+315}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{3}=\frac{1}{120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{5+2 r}$	$\frac{1}{4}$
a_{2}	$\frac{4}{4 r^{2}+24 r+35}$	$\frac{1}{20}$
a_{3}	$\frac{8}{8 r^{3}+84 r^{2}+286 r+315}$	$\frac{1}{120}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{\left(4 r^{2}+32 r+63\right)(5+2 r)(11+2 r)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{4}=\frac{1}{840}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{5+2 r}$	$\frac{1}{4}$
a_{2}	$\frac{4}{4 r^{2}+24 r+35}$	$\frac{1}{20}$
a_{3}	$\frac{8}{8 r^{3}+84 r^{2}+286 r+315}$	$\frac{1}{120}$
a_{4}	$\frac{16}{\left(4 r^{2}+32 r+63\right)(5+2 r)(11+2 r)}$	$\frac{1}{840}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{32}{(11+2 r)(5+2 r)(9+2 r)(13+2 r)(7+2 r)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{5}=\frac{1}{6720}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{5+2 r}$	$\frac{1}{4}$
a_{2}	$\frac{4}{4 r^{2}+24 r+35}$	$\frac{1}{20}$
a_{3}	$\frac{8}{8 r^{3}+84 r^{2}+286 r+315}$	$\frac{1}{120}$
a_{4}	$\frac{16}{\left(4 r^{2}+32 r+63\right)(5+2 r)(11+2 r)}$	$\frac{1}{840}$
a_{5}	$\frac{32}{(11+2 r)(5+2 r)(9+2 r)(13+2 r)(7+2 r)}$	$\frac{1}{6720}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{3}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{3}{2}}\left(1+\frac{x}{4}+\frac{x^{2}}{20}+\frac{x^{3}}{120}+\frac{x^{4}}{840}+\frac{x^{5}}{6720}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=3$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{3}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{3} \\
& =\frac{8}{8 r^{3}+84 r^{2}+286 r+315}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{8}{8 r^{3}+84 r^{2}+286 r+315} & =\lim _{r \rightarrow-\frac{3}{2}} \frac{8}{8 r^{3}+84 r^{2}+286 r+315} \\
& =\frac{1}{6}
\end{aligned}
$$

The limit is $\frac{1}{6}$. Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{3}{2}}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 b_{n}(n+r)(n+r-1)-4 b_{n-1}(n+r-1)+4 b_{n}(n+r)+2 b_{n-1}-9 b_{n}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-\frac{3}{2}$ becomes

$$
\begin{equation*}
4 b_{n}\left(n-\frac{3}{2}\right)\left(n-\frac{5}{2}\right)-4 b_{n-1}\left(n-\frac{5}{2}\right)+4 b_{n}\left(n-\frac{3}{2}\right)+2 b_{n-1}-9 b_{n}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{2 b_{n-1}}{2 n+2 r+3} \tag{5}
\end{equation*}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}}{n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{2}{5+2 r}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{1}=1
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{5+2 r}$	1

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{4}{(5+2 r)(7+2 r)}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{2}=\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{5+2 r}$	1
b_{2}	$\frac{4}{4 r^{2}+24 r+35}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{8}{(5+2 r)(7+2 r)(9+2 r)}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{3}=\frac{1}{6}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{5+2 r}$	1
b_{2}	$\frac{4}{4 r^{2}+24 r+35}$	$\frac{1}{2}$
b_{3}	$\frac{8}{8 r^{3}+84 r^{2}+286 r+315}$	$\frac{1}{6}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{16}{(7+2 r)(9+2 r)(5+2 r)(11+2 r)}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{4}=\frac{1}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{5+2 r}$	1
b_{2}	$\frac{4}{4 r^{2}+24 r+35}$	$\frac{1}{2}$
b_{3}	$\frac{8}{8 r^{3}+84 r^{2}+286 r+315}$	$\frac{1}{6}$
b_{4}	$\frac{16}{16 r^{4}+256 r^{3}+1496 r^{2}+3776 r+3465}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{32}{(11+2 r)(5+2 r)(9+2 r)(13+2 r)(7+2 r)}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{5}=\frac{1}{120}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{5+2 r}$	1
b_{2}	$\frac{4}{4 r^{2}+24 r+35}$	$\frac{1}{2}$
b_{3}	$\frac{8}{8 r^{3}+84 r^{2}+286 r+315}$	$\frac{1}{6}$
b_{4}	$\frac{16}{16 r^{4}+256 r^{3}+1496 r^{2}+3776 r+3465}$	$\frac{1}{24}$
b_{5}	$\frac{32}{(11+2 r)(5+2 r)(9+2 r)(13+2 r)(7+2 r)}$	$\frac{1}{120}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\frac{3}{2}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{4}+\frac{x^{2}}{20}+\frac{x^{3}}{120}+\frac{x^{4}}{840}+\frac{x^{5}}{6720}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{4}+\frac{x^{2}}{20}+\frac{x^{3}}{120}+\frac{x^{4}}{840}+\frac{x^{5}}{6720}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{gather*}
y=c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{4}+\frac{x^{2}}{20}+\frac{x^{3}}{120}+\frac{x^{4}}{840}+\frac{x^{5}}{6720}+O\left(x^{6}\right)\right) \\
+\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}} \tag{1}
\end{gather*}
$$

Verification of solutions

$$
\begin{gathered}
y=c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{4}+\frac{x^{2}}{20}+\frac{x^{3}}{120}+\frac{x^{4}}{840}+\frac{x^{5}}{6720}+O\left(x^{6}\right)\right) \\
+\frac{c_{2}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}
\end{gathered}
$$

Verified OK.

18.29.1 Maple step by step solution

Let's solve
$4 x^{2} y^{\prime \prime}+\left(-4 x^{2}+4 x\right) y^{\prime}+(2 x-9) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{(x-1) y^{\prime}}{x}-\frac{(2 x-9) y}{4 x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(x-1) y^{\prime}}{x}+\frac{(2 x-9) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{x-1}{x}, P_{3}(x)=\frac{2 x-9}{4 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{9}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}-4 x(x-1) y^{\prime}+(2 x-9) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0}(3+2 r)(-3+2 r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(2 k+2 r+3)(2 k+2 r-3)-2 a_{k-1}(2 k+2 r-3)\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(3+2 r)(-3+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{3}{2}, \frac{3}{2}\right\}$
- Each term in the series must be 0 , giving the recursion relation
$4\left(\left(k+r+\frac{3}{2}\right) a_{k}-a_{k-1}\right)\left(k+r-\frac{3}{2}\right)=0$
- \quad Shift index using $k->k+1$
$4\left(\left(k+\frac{5}{2}+r\right) a_{k+1}-a_{k}\right)\left(k-\frac{1}{2}+r\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{2 a_{k}}{2 k+5+2 r}
$$

- Recursion relation for $r=-\frac{3}{2}$

$$
a_{k+1}=\frac{2 a_{k}}{2 k+2}
$$

- \quad Solution for $r=-\frac{3}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{3}{2}}, a_{k+1}=\frac{2 a_{k}}{2 k+2}\right]$
- \quad Recursion relation for $r=\frac{3}{2}$
$a_{k+1}=\frac{2 a_{k}}{2 k+8}$
- \quad Solution for $r=\frac{3}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{3}{2}}, a_{k+1}=\frac{2 a_{k}}{2 k+8}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{3}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{3}{2}}\right), a_{1+k}=\frac{2 a_{k}}{2+2 k}, b_{1+k}=\frac{2 b_{k}}{2 k+8}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

 Solution by Maple
 Time used: 0.047 (sec). Leaf size: 47

```
Order:=6;
dsolve(4*x^2*diff (y (x),x$2)+4*x*(1-x)*diff (y (x), x)+(2*x-9)*y (x)=0,y(x),type='series', x=0);
```

$y(x)$
$=\frac{c_{1} x^{3}\left(1+\frac{1}{4} x+\frac{1}{20} x^{2}+\frac{1}{120} x^{3}+\frac{1}{840} x^{4}+\frac{1}{6720} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(12+12 x+6 x^{2}+2 x^{3}+\frac{1}{2} x^{4}+\frac{1}{10} x^{5}+\mathrm{O}(\right.}{x^{\frac{3}{2}}}$
\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 90
AsymptoticDSolveValue[4*x^2*y' ' $[\mathrm{x}]+4 * x *(1-\mathrm{x}) * \mathrm{y}$ ' $[\mathrm{x}]+(2 * x-9) * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$
$y(x) \rightarrow c_{1}\left(\frac{x^{5 / 2}}{24}+\frac{x^{3 / 2}}{6}+\frac{1}{x^{3 / 2}}+\frac{\sqrt{x}}{2}+\frac{1}{\sqrt{x}}\right)+c_{2}\left(\frac{x^{11 / 2}}{840}+\frac{x^{9 / 2}}{120}+\frac{x^{7 / 2}}{20}+\frac{x^{5 / 2}}{4}+x^{3 / 2}\right)$

18.30 problem 24

Internal problem ID [2966]
Internal file name [OUTPUT/2458_Sunday_June_05_2022_03_14_17_AM_30109653/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 24.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+2 x(x+2) y^{\prime}+2 y(x+1)=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(2 x^{2}+4 x\right) y^{\prime}+(2+2 x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2 x+4}{x} \\
& q(x)=\frac{2+2 x}{x^{2}}
\end{aligned}
$$

Table 508: Table $p(x), q(x)$ singularites.

$p(x)=\frac{2 x+4}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{2+2 x}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(2 x^{2}+4 x\right) y^{\prime}+(2+2 x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(2 x^{2}+4 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(2+2 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+4 x^{n+r} a_{n}(n+r)+2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+4 x^{r} a_{0} r+2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+4 x^{r} r+2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}+3 r+2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+3 r+2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-2
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}+3 r+2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
y_{1}(x)=\frac{\sum_{n=0}^{\infty} a_{n} x^{n}}{x}
$$

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{2}}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+2 a_{n-1}(n+r-1)+4 a_{n}(n+r)+2 a_{n}+2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}(n+r)}{n^{2}+2 n r+r^{2}+3 n+3 r+2} \tag{4}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}(n-1)}{n(1+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{-2-2 r}{r^{2}+5 r+6}
$$

Which for the root $r=-1$ becomes

$$
a_{1}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2-2 r}{r^{2}+5 r+6}$	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4+4 r}{(r+4)(r+3)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{2}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2-2 r}{r^{2}+5 r+6}$	0
a_{2}	$\frac{4+4 r}{(r+4)(r+3)^{2}}$	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{-8-8 r}{(r+4)^{2}(r+3)(5+r)}
$$

Which for the root $r=-1$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2-2 r}{r^{2}+5 r+6}$	0
a_{2}	$\frac{4+4 r}{(r+4)(r+3)^{2}}$	0
a_{3}	$\frac{-8-8 r}{(r+4)^{2}(r+3)(5+r)}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16+16 r}{(r+4)(r+3)(5+r)^{2}(6+r)}
$$

Which for the root $r=-1$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2-2 r}{r^{2}+5 r+6}$	0
a_{2}	$\frac{4+4 r}{(r+4)(r+3)^{2}}$	0
a_{3}	$\frac{-8-8 r}{(r+4)^{2}(r+3)(5+r)}$	0
a_{4}	$\frac{16+16 r}{(r+4)(r+3)(5+r)^{2}(6+r)}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{-32-32 r}{(r+4)(r+3)(5+r)(6+r)^{2}(r+7)}
$$

Which for the root $r=-1$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-2-2 r}{r^{2}+5 r+6}$	0
a_{2}	$\frac{4+4 r}{(r+4)(r+3)^{2}}$	0
a_{3}	$\frac{-8-8 r}{(r+4)^{2}(r+3)(5+r)}$	0
a_{4}	$\frac{16+16 r}{(r+4)(r+3)(5+r)^{2}(6+r)}$	0
a_{5}	$\frac{-32-32 r}{(r+4)(r+3)(5+r)(6+r)^{2}(r+7)}$	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\frac{1+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{-2-2 r}{r^{2}+5 r+6}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{-2-2 r}{r^{2}+5 r+6} & =\lim _{r \rightarrow-2} \frac{-2-2 r}{r^{2}+5 r+6} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+\left(2 x^{2}+4 x\right) y^{\prime}+(2+2 x) y=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\left(2 x^{2}+4 x\right)\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +(2+2 x)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)+\left(2 x^{2}+4 x\right) y_{1}^{\prime}(x)+(2+2 x) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right. \\
& \left.+\frac{\left(2 x^{2}+4 x\right) y_{1}(x)}{x}\right) C+x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +\left(2 x^{2}+4 x\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(2+2 x)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x^{2} y_{1}^{\prime \prime}(x)+\left(2 x^{2}+4 x\right) y_{1}^{\prime}(x)+(2+2 x) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+\frac{\left(2 x^{2}+4 x\right) y_{1}(x)}{x}\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +\left(2 x^{2}+4 x\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(2+2 x)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x+(2 x+3)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& +2\left(x^{2}+2 x\right)\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right)+2(x+1)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=-1$ and $r_{2}=-2$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{n-2} a_{n}(n-1)\right) x+(2 x+3)\left(\sum_{n=0}^{\infty} a_{n} x^{n-1}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-4+n} b_{n}(n-2)(-3+n)\right) x^{2} \tag{10}\\
& +2\left(x^{2}+2 x\right)\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-2)\right)+2(x+1)\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} 2 C a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 3 C x^{n-1} a_{n}\right) \\
& +\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n-1} b_{n}(n-2)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 4 x^{n-2} b_{n}(n-2)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n-1} b_{n}\right)+\left(\sum_{n=0}^{\infty} 2 b_{n} x^{n-2}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-2$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-2} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty} 2 C a_{n-1}(n-2) x^{n-2} \\
\sum_{n=0}^{\infty} 2 C a_{n} x^{n} & =\sum_{n=2}^{\infty} 2 C a_{n-2} x^{n-2} \\
\sum_{n=0}^{\infty} 3 C x^{n-1} a_{n} & =\sum_{n=1}^{\infty} 3 C a_{n-1} x^{n-2} \\
\sum_{n=0}^{\infty} 2 x^{n-1} b_{n}(n-2) & =\sum_{n=1}^{\infty} 2 b_{n-1}(-3+n) x^{n-2} \\
\sum_{n=0}^{\infty} 2 x^{n-1} b_{n} & =\sum_{n=1}^{\infty} 2 b_{n-1} x^{n-2}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-2$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} 2 C a_{n-1}(n-2) x^{n-2}\right)+\left(\sum_{n=2}^{\infty} 2 C a_{n-2} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 3 C a_{n-1} x^{n-2}\right) \\
& +\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right)+\left(\sum_{n=1}^{\infty} 2 b_{n-1}(-3+n) x^{n-2}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} 4 x^{n-2} b_{n}(n-2)\right)+\left(\sum_{n=1}^{\infty} 2 b_{n-1} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} 2 b_{n} x^{n-2}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=N$, where $N=1$ which is the difference between the two roots, we are free to choose $b_{1}=0$. Hence for $n=1$, Eq (2B) gives

$$
C-2=0
$$

Which is solved for C. Solving for C gives

$$
C=2
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(2 a_{0}+3 a_{1}\right) C+2 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
4+2 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-2
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(2 a_{1}+5 a_{2}\right) C+2 b_{2}+6 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-4+6 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=\frac{2}{3}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(2 a_{2}+7 a_{3}\right) C+4 b_{3}+12 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{8}{3}+12 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{2}{9}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(2 a_{3}+9 a_{4}\right) C+6 b_{4}+20 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{4}{3}+20 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{1}{15}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=2$ and all b_{n}, then the second solution becomes

$$
y_{2}(x)=2\left(\frac{1+O\left(x^{6}\right)}{x}\right) \ln (x)+\frac{1-2 x^{2}+\frac{2 x^{3}}{3}-\frac{2 x^{4}}{9}+\frac{x^{5}}{15}+O\left(x^{6}\right)}{x^{2}}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(2\left(\frac{1+O\left(x^{6}\right)}{x}\right) \ln (x)+\frac{1-2 x^{2}+\frac{2 x^{3}}{3}-\frac{2 x^{4}}{9}+\frac{x^{5}}{15}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& =\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{2\left(1+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{1-2 x^{2}+\frac{2 x^{3}}{3}-\frac{2 x^{4}}{9}+\frac{x^{5}}{15}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{2\left(1+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{1-2 x^{2}+\frac{2 x^{3}}{3}-\frac{2 x^{4}}{9}+\frac{x^{5}}{15}+O\left(x^{6}\right)}{x^{2}}\right)(1)
$$

Verification of solutions

$$
y=\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{2\left(1+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{1-2 x^{2}+\frac{2 x^{3}}{3}-\frac{2 x^{4}}{9}+\frac{x^{5}}{15}+O\left(x^{6}\right)}{x^{2}}\right)
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 51

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)+2*x*(2+x)*diff (y (x),x)+2*(1+x)*y(x)=0,y(x),type='series',x=0);
y(x)
=}\frac{\operatorname{ln}(x)(2x+\textrm{O}(\mp@subsup{x}{}{6}))\mp@subsup{c}{2}{}+\mp@subsup{c}{1}{}x(1+\textrm{O}(\mp@subsup{x}{}{6}))+(1-2x-2\mp@subsup{x}{}{2}+\frac{2}{3}\mp@subsup{x}{}{3}-\frac{2}{9}\mp@subsup{x}{}{4}+\frac{1}{15}\mp@subsup{x}{}{5}+\textrm{O}(\mp@subsup{x}{}{6}))\mp@subsup{c}{2}{}}{\mp@subsup{x}{}{2}
```

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 48
AsymptoticDSolveValue $[\mathrm{x} \wedge 2 * \mathrm{y}$ ' ' $[\mathrm{x}]+2 * \mathrm{x} *(2+\mathrm{x}) * \mathrm{y}$ ' $[\mathrm{x}]+2 *(1+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(\frac{2 \log (x)}{x}-\frac{2 x^{4}-6 x^{3}+18 x^{2}+36 x-9}{9 x^{2}}\right)+\frac{c_{2}}{x}
$$

18.31 problem 25

18.31.1 Maple step by step solution

3785
Internal problem ID [2967]
Internal file name [OUTPUT/2459_Sunday_June_05_2022_03_14_24_AM_60169280/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-x(1-x) y^{\prime}+(1-x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+(1-x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{x-1}{x} \\
q(x) & =-\frac{x-1}{x^{2}}
\end{aligned}
$$

Table 509: Table $p(x), q(x)$ singularites.

$p(x)=\frac{x-1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{x-1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+(1-x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(x^{2}-x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(1-x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(-1+r)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(-1+r)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(-1+r)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=1$, Eqs (1A, 1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{1+n}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)-a_{n}(n+r)+a_{n}-a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}(n+r-2)}{n^{2}+2 n r+r^{2}-2 n-2 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}(n-1)}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{1-r}{r^{2}}
$$

Which for the root $r=1$ becomes

$$
a_{1}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1-r}{r^{2}}$	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{-1+r}{r(r+1)^{2}}
$$

Which for the root $r=1$ becomes

$$
a_{2}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1-r}{r^{2}}$	0
a_{2}	$\frac{-1+r}{r(r+1)^{2}}$	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{1-r}{r(r+1)(r+2)^{2}}
$$

Which for the root $r=1$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1-r}{r^{2}}$	0
a_{2}	$\frac{-1+r}{r(r+1)^{2}}$	0
a_{3}	$\frac{1-r}{r(r+1)(r+2)^{2}}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{-1+r}{(r+2)(r+1) r(3+r)^{2}}
$$

Which for the root $r=1$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1-r}{r^{2}}$	0
a_{2}	$\frac{-1+r}{r(r+1)^{2}}$	0
a_{3}	$\frac{1-r}{r(r+1)(r+2)^{2}}$	0
a_{4}	$\frac{-1+r}{(r+2)(r+1) r(3+r)^{2}}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{1-r}{r(r+1)(r+2)(3+r)(r+4)^{2}}
$$

Which for the root $r=1$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1-r}{r^{2}}$	0
a_{2}	$\frac{-1+r}{r(r+1)^{2}}$	0
a_{3}	$\frac{1-r}{r(r+1)(r+2)^{2}}$	0
a_{4}	$\frac{-1+r}{(r+2)(r+1) r(3+r)^{2}}$	0
a_{5}	$\frac{1-r}{r(r+1)(r+2)(3+r)(r+4)^{2}}$	0

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=1$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=1)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$\frac{1-r}{r^{2}}$	0	$\frac{r-2}{r^{3}}$	-1
b_{2}	$\frac{-1+r}{r(r+1)^{2}}$	0	$\frac{-2 r^{2}+3 r+1}{r^{2}(r+1)^{3}}$	$\frac{1}{4}$
b_{3}	$\frac{1-r}{r(r+1)(r+2)^{2}}$	0	$\frac{3 r^{3}-7 r-2}{r^{2}(r+1)^{2}(r+2)^{3}}$	$-\frac{1}{18}$
b_{4}	$\frac{-1+r}{(r+2)(r+1) r(3+r)^{2}}$	0	$\frac{-4 r^{4}-10 r^{3}+8 r^{2}+24 r+6}{r^{2}(r+1)^{2}(r+2)^{2}(3+r)^{3}}$	$\frac{1}{96}$
b_{5}	$\frac{1-r}{r(r+1)(r+2)(3+r)(r+4)^{2}}$	0	$\frac{5 r^{5}+30 r^{4}+35 r^{3}-60 r^{2}-106 r-24}{r^{2}(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{3}}$	$-\frac{1}{600}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =x\left(1+O\left(x^{6}\right)\right) \ln (x)+x\left(-x+\frac{x^{2}}{4}-\frac{x^{3}}{18}+\frac{x^{4}}{96}-\frac{x^{5}}{600}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+O\left(x^{6}\right)\right)+c_{2}\left(x\left(1+O\left(x^{6}\right)\right) \ln (x)+x\left(-x+\frac{x^{2}}{4}-\frac{x^{3}}{18}+\frac{x^{4}}{96}-\frac{x^{5}}{600}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} x\left(1+O\left(x^{6}\right)\right)+c_{2}\left(x\left(1+O\left(x^{6}\right)\right) \ln (x)+x\left(-x+\frac{x^{2}}{4}-\frac{x^{3}}{18}+\frac{x^{4}}{96}-\frac{x^{5}}{600}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x\left(1+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x\left(1+O\left(x^{6}\right)\right) \ln (x)+x\left(-x+\frac{x^{2}}{4}-\frac{x^{3}}{18}+\frac{x^{4}}{96}-\frac{x^{5}}{600}+O\left(x^{6}\right)\right)\right) \tag{1}
\end{align*}
$$

Verification of solutions

$y=c_{1} x\left(1+O\left(x^{6}\right)\right)+c_{2}\left(x\left(1+O\left(x^{6}\right)\right) \ln (x)+x\left(-x+\frac{x^{2}}{4}-\frac{x^{3}}{18}+\frac{x^{4}}{96}-\frac{x^{5}}{600}+O\left(x^{6}\right)\right)\right)$
Verified OK.

18.31.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+(1-x) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2 nd derivative

$$
y^{\prime \prime}=\frac{(x-1) y}{x^{2}}-\frac{(x-1) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}+\frac{(x-1) y^{\prime}}{x}-\frac{(x-1) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{x-1}{x}, P_{3}(x)=-\frac{x-1}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}+x(x-1) y^{\prime}+(1-x) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(-1+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r-1)^{2}+a_{k-1}(k-2+r)\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(-1+r)^{2}=0$
- Values of r that satisfy the indicial equation
$r=1$
- Each term in the series must be 0, giving the recursion relation
$a_{k}(k+r-1)^{2}+a_{k-1}(k-2+r)=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+r)^{2}+a_{k}(k+r-1)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{a_{k}(k+r-1)}{(k+r)^{2}}$
- Recursion relation for $r=1$
$a_{k+1}=-\frac{a_{k} k}{(k+1)^{2}}$
- \quad Solution for $r=1$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=-\frac{a_{k} k}{(k+1)^{2}}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 43

```
Order:=6;
dsolve(x^2*diff (y(x),x$2)-x*(1-x)*diff (y (x), x)+(1-x)*y(x)=0,y(x),type='series', x=0);
y(x)=((\mp@subsup{c}{2}{}\operatorname{ln}(x)+\mp@subsup{c}{1}{})(1+\textrm{O}(\mp@subsup{x}{}{6}))+(-x+\frac{1}{4}\mp@subsup{x}{}{2}-\frac{1}{18}\mp@subsup{x}{}{3}+\frac{1}{96}\mp@subsup{x}{}{4}-\frac{1}{600}\mp@subsup{x}{}{5}+\textrm{O}(\mp@subsup{x}{}{6}))\mp@subsup{c}{2}{})x
```

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 50
AsymptoticDSolveValue [x^2*y' ' $[\mathrm{x}]-\mathrm{x} *(1-\mathrm{x}) * \mathrm{y}$ ' $[\mathrm{x}]+(1-\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(x\left(-\frac{x^{5}}{600}+\frac{x^{4}}{96}-\frac{x^{3}}{18}+\frac{x^{2}}{4}-x\right)+x \log (x)\right)+c_{1} x
$$

18.32 problem 26

18.32.1 Maple step by step solution . 3800

Internal problem ID [2968]
Internal file name [OUTPUT/2460_Sunday_June_05_2022_03_14_27_AM_97326943/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
4 x^{2} y^{\prime \prime}+4 x(1+2 x) y^{\prime}+(-1+4 x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x^{2} y^{\prime \prime}+\left(8 x^{2}+4 x\right) y^{\prime}+(-1+4 x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1+2 x}{x} \\
& q(x)=\frac{-1+4 x}{4 x^{2}}
\end{aligned}
$$

Table 511: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1+2 x}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{-1+4 x}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}+\left(8 x^{2}+4 x\right) y^{\prime}+(-1+4 x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(8 x^{2}+4 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(-1+4 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 8 x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 8 x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 8 a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 8 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)+4 x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)+4 x^{r} a_{0} r-a_{0} x^{r}=0
$$

Or

$$
\left(4 x^{r} r(-1+r)+4 x^{r} r-x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(4 r^{2}-1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r^{2}-1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(4 r^{2}-1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sqrt{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)+8 a_{n-1}(n+r-1)+4 a_{n}(n+r)-a_{n}+4 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-1}}{2 n+2 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}}{1+n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{4}{3+2 r}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{1}=-1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{3+2 r}$	-1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{16}{4 r^{2}+16 r+15}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=\frac{2}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{3+2 r}$	-1
a_{2}	$\frac{16}{4 r^{2}+16 r+15}$	$\frac{2}{3}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{64}{8 r^{3}+60 r^{2}+142 r+105}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{3}=-\frac{1}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{3+2 r}$	-1
a_{2}	$\frac{16}{4 r^{2}+16 r+15}$	$\frac{2}{3}$
a_{3}	$-\frac{64}{8 r^{3}+60 r^{2}+142 r+105}$	$-\frac{1}{3}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{256}{\left(4 r^{2}+16 r+15\right)(7+2 r)(9+2 r)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{2}{15}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{3+2 r}$	-1
a_{2}	$\frac{16}{4 r^{2}+16 r+15}$	$\frac{2}{3}$
a_{3}	$-\frac{64}{8 r^{3}+60 r^{2}+142 r+105}$	$-\frac{1}{3}$
a_{4}	$\frac{256}{\left(4 r^{2}+16 r+15\right)(7+2 r)(9+2 r)}$	$\frac{2}{15}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1024}{\left(4 r^{2}+16 r+15\right)(7+2 r)(11+2 r)(9+2 r)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{5}=-\frac{2}{45}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{3+2 r}$	-1
a_{2}	$\frac{16}{4 r^{2}+16 r+15}$	$\frac{2}{3}$
a_{3}	$-\frac{64}{8 r^{3}+60 r^{2}+142 r+105}$	$-\frac{1}{3}$
a_{4}	$\frac{256}{\left(4 r^{2}+16 r+15\right)(7+2 r)(9+2 r)}$	$\frac{2}{15}$
a_{5}	$-\frac{1024}{\left(4 r^{2}+16 r+15\right)(7+2 r)(11+2 r)(9+2 r)}$	$-\frac{2}{45}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1-x+\frac{2 x^{2}}{3}-\frac{x^{3}}{3}+\frac{2 x^{4}}{15}-\frac{2 x^{5}}{45}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =-\frac{4}{3+2 r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{4}{3+2 r} & =\lim _{r \rightarrow-\frac{1}{2}}-\frac{4}{3+2 r} \\
& =-2
\end{aligned}
$$

The limit is -2 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 b_{n}(n+r)(n+r-1)+8 b_{n-1}(n+r-1)+4 b_{n}(n+r)-b_{n}+4 b_{n-1}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
4 b_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)+8 b_{n-1}\left(n-\frac{3}{2}\right)+4 b_{n}\left(n-\frac{1}{2}\right)-b_{n}+4 b_{n-1}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{4 b_{n-1}}{2 n+2 r+1} \tag{5}
\end{equation*}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{2 b_{n-1}}{n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{4}{3+2 r}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{1}=-2
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{4}{3+2 r}$	-2

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{16}{(3+2 r)(5+2 r)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{2}=2
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{4}{3+2 r}$	-2
b_{2}	$\frac{16}{4 r^{2}+16 r+15}$	2

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{64}{(3+2 r)(7+2 r)(5+2 r)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{3}=-\frac{4}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{4}{3+2 r}$	-2
b_{2}	$\frac{16}{4 r^{2}+16 r+15}$	2
b_{3}	$-\frac{64}{8 r^{3}+60 r^{2}+142 r+105}$	$-\frac{4}{3}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{256}{(3+2 r)(5+2 r)(7+2 r)(9+2 r)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{4}=\frac{2}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{4}{3+2 r}$	-2
b_{2}	$\frac{16}{4 r^{2}+16 r+15}$	2
b_{3}	$-\frac{64}{8 r^{3}+60 r^{2}+142 r+105}$	$-\frac{4}{3}$
b_{4}	$\frac{256}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}$	$\frac{2}{3}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=-\frac{1024}{(3+2 r)(7+2 r)(5+2 r)(11+2 r)(9+2 r)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{5}=-\frac{4}{15}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{4}{3+2 r}$	-2
b_{2}	$\frac{16}{4 r^{2}+16 r+15}$	2
b_{3}	$-\frac{64}{8 r^{3}+60 r^{2}+142 r+105}$	$-\frac{4}{3}$
b_{4}	$\frac{256}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}$	$\frac{2}{3}$
b_{5}	$-\frac{1024}{(3+2 r)(7+2 r)(5+2 r)(11+2 r)(9+2 r)}$	$-\frac{4}{15}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =\sqrt{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-2 x+2 x^{2}-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(1-x+\frac{2 x^{2}}{3}-\frac{x^{3}}{3}+\frac{2 x^{4}}{15}-\frac{2 x^{5}}{45}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-2 x+2 x^{2}-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} \sqrt{x}\left(1-x+\frac{2 x^{2}}{3}-\frac{x^{3}}{3}+\frac{2 x^{4}}{15}-\frac{2 x^{5}}{45}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-2 x+2 x^{2}-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{x}\left(1-x+\frac{2 x^{2}}{3}-\frac{x^{3}}{3}+\frac{2 x^{4}}{15}-\frac{2 x^{5}}{45}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-2 x+2 x^{2}-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}+O\left(x^{6}\right)\right)}{\sqrt{x}} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-x+\frac{2 x^{2}}{3}-\frac{x^{3}}{3}+\frac{2 x^{4}}{15}-\frac{2 x^{5}}{45}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-2 x+2 x^{2}-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Verified OK.

18.32.1 Maple step by step solution

Let's solve
$4 x^{2} y^{\prime \prime}+\left(8 x^{2}+4 x\right) y^{\prime}+(-1+4 x) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{(-1+4 x) y}{4 x^{2}}-\frac{(1+2 x) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{(1+2 x) y^{\prime}}{x}+\frac{(-1+4 x) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1+2 x}{x}, P_{3}(x)=\frac{-1+4 x}{4 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}+4 x(1+2 x) y^{\prime}+(-1+4 x) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+2 r)(-1+2 r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k-1}(2 k+2 r-1)\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-1+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}$
- Each term in the series must be 0 , giving the recursion relation
$4\left(k+r-\frac{1}{2}\right)\left(\left(k+r+\frac{1}{2}\right) a_{k}+2 a_{k-1}\right)=0$
- \quad Shift index using $k->k+1$
$4\left(k+r+\frac{1}{2}\right)\left(\left(k+\frac{3}{2}+r\right) a_{k+1}+2 a_{k}\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{4 a_{k}}{2 k+3+2 r}
$$

- \quad Recursion relation for $r=-\frac{1}{2}$

$$
a_{k+1}=-\frac{4 a_{k}}{2 k+2}
$$

- \quad Solution for $r=-\frac{1}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+1}=-\frac{4 a_{k}}{2 k+2}\right]$
- Recursion relation for $r=\frac{1}{2}$
$a_{k+1}=-\frac{4 a_{k}}{2 k+4}$
- \quad Solution for $r=\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+1}=-\frac{4 a_{k}}{2 k+4}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{1+k}=-\frac{4 a_{k}}{2+2 k}, b_{1+k}=-\frac{4 b_{k}}{2 k+4}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

 Solution by Maple
 Time used: 0.032 (sec). Leaf size: 47

```
Order:=6;
dsolve(4*x^2*diff (y (x),x$2)+4*x*(1+2*x)*diff (y (x),x)+(4*x-1)*y(x)=0,y(x),type='series',x=0);
```

$y(x)$
$=\frac{c_{1} x\left(1-x+\frac{2}{3} x^{2}-\frac{1}{3} x^{3}+\frac{2}{15} x^{4}-\frac{2}{45} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(1-2 x+2 x^{2}-\frac{4}{3} x^{3}+\frac{2}{3} x^{4}-\frac{4}{15} x^{5}+\mathrm{O}\left(x^{6}\right)\right)}{\sqrt{x}}$
\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 88
AsymptoticDSolveValue[4*x^2*y' ' $[\mathrm{x}]+4 * \mathrm{x} *(1+2 * \mathrm{x}) * \mathrm{y}$ ' $[\mathrm{x}]+(4 * \mathrm{x}-1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$
$y(x) \rightarrow c_{1}\left(\frac{2 x^{7 / 2}}{3}-\frac{4 x^{5 / 2}}{3}+2 x^{3 / 2}-2 \sqrt{x}+\frac{1}{\sqrt{x}}\right)+c_{2}\left(\frac{2 x^{9 / 2}}{15}-\frac{x^{7 / 2}}{3}+\frac{2 x^{5 / 2}}{3}-x^{3 / 2}+\sqrt{x}\right)$

18.33 problem 27

18.33.1 Maple step by step solution . 3816

Internal problem ID [2969]
Internal file name [OUTPUT/2461_Sunday_June_05_2022_03_14_31_AM_35036725/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
4 x^{2} y^{\prime \prime}-(4 x+3) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x^{2} y^{\prime \prime}+(-4 x-3) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=-\frac{4 x+3}{4 x^{2}}
\end{aligned}
$$

Table 513: Table $p(x), q(x)$ singularites.

$p(x)=0$	
singularity	type

$q(x)=-\frac{4 x+3}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}+(-4 x-3) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+(-4 x-3)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-4 a_{n-1} x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-4 a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)-3 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)-3 a_{0} x^{r}=0
$$

Or

$$
\left(4 x^{r} r(-1+r)-3 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(4 r^{2}-4 r-3\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r^{2}-4 r-3=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(4 r^{2}-4 r-3\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{\frac{3}{2}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)-4 a_{n-1}-3 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{4 a_{n-1}}{4 n^{2}+8 n r+4 r^{2}-4 n-4 r-3} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{4}{4 r^{2}+4 r-3}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{1}=\frac{1}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{4}{4 r^{2}+4 r-3}$	$\frac{1}{3}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{16}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{2}=\frac{1}{24}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{4}{4 r^{2}+4 r-3}$	$\frac{1}{3}$
a_{2}	$\frac{16}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}$	$\frac{1}{24}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{64}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{3}=\frac{1}{360}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{4}{4 r^{2}+4 r-3}$	$\frac{1}{3}$
a_{2}	$\frac{16}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}$	$\frac{1}{24}$
a_{3}	$\frac{64}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)}$	$\frac{1}{360}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{256}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)\left(4 r^{2}+28 r+45\right)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{4}=\frac{1}{8640}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{4}{4 r^{2}+4 r-3}$	$\frac{1}{3}$
a_{2}	$\frac{16}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}$	$\frac{1}{24}$
a_{3}	$\frac{64}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)}$	$\frac{1}{360}$
a_{4}	$\frac{256}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)\left(4 r^{2}+28 r+45\right)}$	$\frac{1}{8640}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{1024}{(2 r-1)(2 r+1)(2 r+5)^{2}(2 r+7)^{2}(2 r+3)^{2}(2 r+9)(11+2 r)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{5}=\frac{1}{302400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{4}{4 r^{2}+4 r-3}$	$\frac{1}{3}$
a_{2}	$\frac{16}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}$	$\frac{1}{24}$
a_{3}	$\frac{64}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)}$	$\frac{1}{360}$
a_{4}	$\frac{256}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+20 r+21\right)\left(4 r^{2}+28 r+45\right)}$	$\frac{1}{8640}$
a_{5}	$\frac{1024}{(2 r-1)(2 r+1)(2 r+5)^{2}(2 r+7)^{2}(2 r+3)^{2}(2 r+9)(11+2 r)}$	$\frac{1}{302400}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{3}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{3}{2}}\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =\frac{16}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{16}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)} & =\lim _{r \rightarrow-\frac{1}{2}} \frac{16}{\left(4 r^{2}+4 r-3\right)\left(4 r^{2}+12 r+5\right)} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $4 x^{2} y^{\prime \prime}+(-4 x-3) y=0$ gives

$$
\begin{aligned}
& 4 x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +(-4 x-3)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(4 x^{2} y_{1}^{\prime \prime}(x)+(-4 x-3) y_{1}(x)\right) \ln (x)+4 x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right) C \\
& +4 x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +(-4 x-3)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
4 x^{2} y_{1}^{\prime \prime}(x)+(-4 x-3) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& 4 x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) C+4 x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +(-4 x-3)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(8\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \tag{9}\\
& +4\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+(-4 x-3)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=\frac{3}{2}$ and $r_{2}=-\frac{1}{2}$ then the above becomes

$$
\begin{align*}
& \left(8\left(\sum_{n=0}^{\infty} x^{\frac{1}{2}+n} a_{n}\left(n+\frac{3}{2}\right)\right) x-4\left(\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}}\right)\right) C \tag{10}\\
& +4\left(\sum_{n=0}^{\infty} x^{-\frac{5}{2}+n} b_{n}\left(n-\frac{1}{2}\right)\left(-\frac{3}{2}+n\right)\right) x^{2}+(-4 x-3)\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)=0
\end{align*}
$$

Expanding $-4 \sqrt{x}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
-4 \sqrt{x} & =-4 \sqrt{x}+\ldots \\
& =-4 \sqrt{x}
\end{aligned}
$$

Expanding $-\frac{3}{\sqrt{x}}$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
-\frac{3}{\sqrt{x}} & =-\frac{3}{\sqrt{x}}+\ldots \\
& =-\frac{3}{\sqrt{x}}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(8 n+12) C a_{n} x^{n+\frac{3}{2}}\right)+\sum_{n=0}^{\infty}\left(-4 C a_{n} x^{n+\frac{3}{2}}\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n-\frac{1}{2}} b_{n}\left(4 n^{2}-8 n+3\right)\right)+\sum_{n=0}^{\infty}\left(-4 x^{\frac{1}{2}+n} b_{n}\right)+\sum_{n=0}^{\infty}\left(-3 b_{n} x^{n-\frac{1}{2}}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-\frac{1}{2}$ in each summation term. Going over each summation term above with power of x in it which is not already $x^{n-\frac{1}{2}}$ and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}(8 n+12) C a_{n} x^{n+\frac{3}{2}} & =\sum_{n=2}^{\infty} C a_{n-2}(8 n-4) x^{n-\frac{1}{2}} \\
\sum_{n=0}^{\infty}\left(-4 C a_{n} x^{n+\frac{3}{2}}\right) & =\sum_{n=2}^{\infty}\left(-4 C a_{n-2} x^{n-\frac{1}{2}}\right) \\
\sum_{n=0}^{\infty}\left(-4 x^{\frac{1}{2}+n} b_{n}\right) & =\sum_{n=1}^{\infty}\left(-4 b_{n-1} x^{n-\frac{1}{2}}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-\frac{1}{2}$.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} C a_{n-2}(8 n-4) x^{n-\frac{1}{2}}\right)+\sum_{n=2}^{\infty}\left(-4 C a_{n-2} x^{n-\frac{1}{2}}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n-\frac{1}{2}} b_{n}\left(4 n^{2}-8 n+3\right)\right) \\
& \quad+\sum_{n=1}^{\infty}\left(-4 b_{n-1} x^{n-\frac{1}{2}}\right)+\sum_{n=0}^{\infty}\left(-3 b_{n} x^{n-\frac{1}{2}}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
-4 b_{1}-4 b_{0}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-4 b_{1}-4=0
$$

Solving the above for b_{1} gives

$$
b_{1}=-1
$$

For $n=N$, where $N=2$ which is the difference between the two roots, we are free to choose $b_{2}=0$. Hence for $n=2$, Eq (2B) gives

$$
8 C+4=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{1}{2}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
16 C a_{1}-4 b_{2}+12 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
12 b_{3}-\frac{8}{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=\frac{2}{9}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
24 C a_{2}-4 b_{3}+32 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
32 b_{4}-\frac{25}{18}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=\frac{25}{576}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
32 C a_{3}-4 b_{4}+60 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
60 b_{5}-\frac{157}{720}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{157}{43200}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{1}{2}$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & -\frac{1}{2}\left(x^{\frac{3}{2}}\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +\frac{1-x+\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}+\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{1}{2}\left(x ^ { \frac { 3 } { 2 } } \left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}\right.\right.\right.
\end{aligned} \begin{aligned}
8640 & \left.\left.\frac{x^{4}}{302400}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& \left.+\frac{1-x+\frac{x^{5}}{9}+\frac{25 x^{4}}{576}+\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{\sqrt{x}}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{\frac{3}{2}}\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \ln (x)}{2}\right. \\
& \left.+\frac{1-x+\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}+\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{\sqrt{x}}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{\frac{3}{2}}\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \ln (x)}{2}\right. \tag{1}\\
& \left.+\frac{1-x+\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}+\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{\sqrt{x}}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{\frac{3}{2}}\left(1+\frac{x}{3}+\frac{x^{2}}{24}+\frac{x^{3}}{360}+\frac{x^{4}}{8640}+\frac{x^{5}}{302400}+O\left(x^{6}\right)\right) \ln (x)}{2}\right. \\
& \left.+\frac{1-x+\frac{2 x^{3}}{9}+\frac{25 x^{4}}{576}+\frac{157 x^{5}}{43200}+O\left(x^{6}\right)}{\sqrt{x}}\right)
\end{aligned}
$$

Verified OK.

18.33.1 Maple step by step solution

Let's solve
$4 x^{2} y^{\prime \prime}+(-4 x-3) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{(4 x+3) y}{4 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(4 x+3) y}{4 x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=0, P_{3}(x)=-\frac{4 x+3}{4 x^{2}}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{3}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}+(-4 x-3) y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+2 r)(-3+2 r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(2 k+2 r+1)(2 k+2 r-3)-4 a_{k-1}\right) x^{k+r}\right)=0$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-3+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{1}{2}, \frac{3}{2}\right\}$
- Each term in the series must be 0 , giving the recursion relation
$4\left(k+r+\frac{1}{2}\right)\left(k+r-\frac{3}{2}\right) a_{k}-4 a_{k-1}=0$
- \quad Shift index using $k->k+1$
$4\left(k+\frac{3}{2}+r\right)\left(k-\frac{1}{2}+r\right) a_{k+1}-4 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{4 a_{k}}{(2 k+3+2 r)(2 k-1+2 r)}$
- Recursion relation for $r=-\frac{1}{2}$
$a_{k+1}=\frac{4 a_{k}}{(2 k+2)(2 k-2)}$
- Series not valid for $r=-\frac{1}{2}$, division by 0 in the recursion relation at $k=1$

$$
a_{k+1}=\frac{4 a_{k}}{(2 k+2)(2 k-2)}
$$

- Recursion relation for $r=\frac{3}{2}$

$$
a_{k+1}=\frac{4 a_{k}}{(2 k+6)(2 k+2)}
$$

- \quad Solution for $r=\frac{3}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{3}{2}}, a_{k+1}=\frac{4 a_{k}}{(2 k+6)(2 k+2)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.063 (sec). Leaf size: 65

```
Order:=6;
dsolve(4*x^2*diff(y(x), x$2)-(3+4*x)*y(x)=0,y(x),type='series',x=0);
```

$y(x)$
$=\frac{c_{1} x^{2}\left(1+\frac{1}{3} x+\frac{1}{24} x^{2}+\frac{1}{360} x^{3}+\frac{1}{8640} x^{4}+\frac{1}{302400} x^{5}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(\ln (x)\left(x^{2}+\frac{1}{3} x^{3}+\frac{1}{24} x^{4}+\frac{1}{360} x^{5}+\mathrm{O}\left(x^{6}\right.\right.\right.}{\sqrt{x}}$
\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 101
AsymptoticDSolveValue[4*x^2*y' ' $[\mathrm{x}]-(3+4 * x) * y[x]==0, y[x],\{x, 0,5\}]$
$y(x)$
$\rightarrow c_{2}\left(\frac{x^{11 / 2}}{8640}+\frac{x^{9 / 2}}{360}+\frac{x^{7 / 2}}{24}+\frac{x^{5 / 2}}{3}\right.$
$\left.+x^{3 / 2}\right)+c_{1}\left(\frac{31 x^{4}+176 x^{3}+144 x^{2}-576 x+576}{576 \sqrt{x}}-\frac{1}{48} x^{3 / 2}\left(x^{2}+8 x+24\right) \log (x)\right)$

18.34 problem 28

Internal problem ID [2970]
Internal file name [OUTPUT/2462_Sunday_June_05_2022_03_14_35_AM_36856821/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Laguerre, [_2nd_order, _linear, ` _with_symmetry_[0,F(x)]`]]

$$
x y^{\prime \prime}-x y^{\prime}+y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x y^{\prime \prime}-x y^{\prime}+y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =\frac{1}{x}
\end{aligned}
$$

Table 515: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x y^{\prime \prime}-x y^{\prime}+y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty} a_{n} x^{n+r} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2~B}\\
& +\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)=0
$$

Or

$$
x^{-1+r} a_{0} r(-1+r)=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{-1+r} r(-1+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{-1+r} r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r-2)}{(n+r)(n+r-1)} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}(n-1)}{(n+1) n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{-1+r}{(1+r) r}
$$

Which for the root $r=1$ becomes

$$
a_{1}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-1+r}{(1+r) r}$	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{-1+r}{(1+r)^{2}(2+r)}
$$

Which for the root $r=1$ becomes

$$
a_{2}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-1+r}{(1+r) r}$	0
a_{2}	$\frac{-1+r}{(1+r)^{2}(2+r)}$	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{-1+r}{(1+r)(2+r)^{2}(3+r)}
$$

Which for the root $r=1$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-1+r}{(1+r) r}$	0
a_{2}	$\frac{-1+r}{(1+r)^{2}(2+r)}$	0
a_{3}	$\frac{-1+r}{(1+r)(2+r)^{2}(3+r)}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{-1+r}{(1+r)(2+r)(3+r)^{2}(4+r)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-1+r}{(1+r) r}$	0
a_{2}	$\frac{-1+r}{(1+r)^{2}(2+r)}$	0
a_{3}	$\frac{-1+r}{(1+r)(2+r)^{2}(3+r)}$	0
a_{4}	$\frac{-1+r}{(1+r)(2+r)(3+r)^{2}(4+r)}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{-1+r}{(1+r)(2+r)(3+r)(4+r)^{2}(5+r)}
$$

Which for the root $r=1$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-1+r}{(1+r) r}$	0
a_{2}	$\frac{-1+r}{(1+r)^{2}(2+r)}$	0
a_{3}	$\frac{-1+r}{(1+r)(2+r)^{2}(3+r)}$	0
a_{4}	$\frac{-1+r}{(1+r)(2+r)(3+r)^{2}(4+r)}$	0
a_{5}	$\frac{-1+r}{(1+r)(2+r)(3+r)(4+r)^{2}(5+r)}$	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x\left(1+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{-1+r}{(1+r) r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{-1+r}{(1+r) r} & =\lim _{r \rightarrow 0} \frac{-1+r}{(1+r) r} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x y^{\prime \prime}-x y^{\prime}+y=0$ gives

$$
\begin{aligned}
& \left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \\
& -x\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(-y_{1}^{\prime}(x) x+y_{1}^{\prime \prime}(x) x+y_{1}(x)\right) \ln (x)+\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x-y_{1}(x)\right) C \\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \tag{7}\\
& -x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
-y_{1}^{\prime}(x) x+y_{1}^{\prime \prime}(x) x+y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x-y_{1}(x)\right) C \\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \tag{8}\\
& -x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{aligned}
& \frac{\left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-(x+1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C}{x} \\
& +\frac{-\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x^{2}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x}{x} \\
& =0
\end{aligned}
$$

Since $r_{1}=1$ and $r_{2}=0$ then the above becomes

$$
\begin{align*}
& \frac{\left(2\left(\sum_{n=0}^{\infty} x^{n} a_{n}(n+1)\right) x-(x+1)\left(\sum_{n=0}^{\infty} a_{n} x^{n+1}\right)\right) C}{x} \tag{10}\\
& +\frac{-\left(\sum_{n=0}^{\infty} x^{n-1} b_{n} n\right) x^{2}+\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n} n(n-1)\right) x^{2}+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) x}{x}=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n} a_{n}(n+1)\right)+\sum_{n=0}^{\infty}\left(-C x^{n+1} a_{n}\right)+\sum_{n=0}^{\infty}\left(-C a_{n} x^{n}\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n} b_{n} n\right)+\left(\sum_{n=0}^{\infty} n x^{n-1} b_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n} a_{n}(n+1) & =\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n-1} \\
\sum_{n=0}^{\infty}\left(-C x^{n+1} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-C a_{-2+n} x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-C a_{n} x^{n}\right) & =\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-x^{n} b_{n} n\right) & =\sum_{n=1}^{\infty}\left(-(n-1) b_{n-1} x^{n-1}\right) \\
\sum_{n=0}^{\infty} b_{n} x^{n} & =\sum_{n=1}^{\infty} b_{n-1} x^{n-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n-1}\right)+\sum_{n=2}^{\infty}\left(-C a_{-2+n} x^{n-1}\right)+\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n-1}\right) \tag{2B}\\
& \quad+\sum_{n=1}^{\infty}\left(-(n-1) b_{n-1} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} n x^{n-1} b_{n}(n-1)\right)+\left(\sum_{n=1}^{\infty} b_{n-1} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=N$, where $N=1$ which is the difference between the two roots, we are free to choose $b_{1}=0$. Hence for $n=1$, Eq (2B) gives

$$
C+1=0
$$

Which is solved for C. Solving for C gives

$$
C=-1
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-a_{0}+3 a_{1}\right) C+2 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
1+2 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-\frac{1}{2}
$$

For $n=3$, Eq (2B) gives

$$
\left(-a_{1}+5 a_{2}\right) C-b_{2}+6 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{1}{2}+6 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=-\frac{1}{12}
$$

For $n=4$, Eq (2B) gives

$$
\left(-a_{2}+7 a_{3}\right) C-2 b_{3}+12 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{1}{6}+12 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{1}{72}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-a_{3}+9 a_{4}\right) C-3 b_{4}+20 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{1}{24}+20 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=-\frac{1}{480}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-1$ and all b_{n}, then the second solution becomes

$$
y_{2}(x)=(-1)\left(x\left(1+O\left(x^{6}\right)\right)\right) \ln (x)+1-\frac{x^{2}}{2}-\frac{x^{3}}{12}-\frac{x^{4}}{72}-\frac{x^{5}}{480}+O\left(x^{6}\right)
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x\left(1+O\left(x^{6}\right)\right)+c_{2}\left((-1)\left(x\left(1+O\left(x^{6}\right)\right)\right) \ln (x)+1-\frac{x^{2}}{2}-\frac{x^{3}}{12}-\frac{x^{4}}{72}-\frac{x^{5}}{480}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} x\left(1+O\left(x^{6}\right)\right)+c_{2}\left(-x\left(1+O\left(x^{6}\right)\right) \ln (x)+1-\frac{x^{2}}{2}-\frac{x^{3}}{12}-\frac{x^{4}}{72}-\frac{x^{5}}{480}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=c_{1} x\left(1+O\left(x^{6}\right)\right)+c_{2}\left(-x\left(1+O\left(x^{6}\right)\right) \ln (x)+1-\frac{x^{2}}{2}-\frac{x^{3}}{12}-\frac{x^{4}}{72}-\frac{x^{5}}{480}+O\left(x^{6}\right)^{1}\right)
$$

Verification of solutions
$y=c_{1} x\left(1+O\left(x^{6}\right)\right)+c_{2}\left(-x\left(1+O\left(x^{6}\right)\right) \ln (x)+1-\frac{x^{2}}{2}-\frac{x^{3}}{12}-\frac{x^{4}}{72}-\frac{x^{5}}{480}+O\left(x^{6}\right)\right)$
Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 42

```
Order:=6;
dsolve(x*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & \ln (x)\left(-x+\mathrm{O}\left(x^{6}\right)\right) c_{2}+c_{1} x\left(1+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left(1+x-\frac{1}{2} x^{2}-\frac{1}{12} x^{3}-\frac{1}{72} x^{4}-\frac{1}{480} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 41
AsymptoticDSolveValue[x*y''[x]-x*y'[x]+y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(\frac{1}{72}\left(-x^{4}-6 x^{3}-36 x^{2}+144 x+72\right)-x \log (x)\right)+c_{2} x
$$

18.35 problem 29

Internal problem ID [2971]
Internal file name [OUTPUT/2463_Sunday_June_05_2022_03_14_40_AM_41738625/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.5. page 771
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+x(x+4) y^{\prime}+(x+2) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(x^{2}+4 x\right) y^{\prime}+(x+2) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{x+4}{x} \\
q(x) & =\frac{x+2}{x^{2}}
\end{aligned}
$$

Table 516: Table $p(x), q(x)$ singularites.

$p(x)=\frac{x+4}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{x+2}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(x^{2}+4 x\right) y^{\prime}+(x+2) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(x^{2}+4 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(x+2)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+4 x^{n+r} a_{n}(n+r)+2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+4 x^{r} a_{0} r+2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+4 x^{r} r+2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}+3 r+2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+3 r+2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-2
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}+3 r+2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
y_{1}(x)=\frac{\sum_{n=0}^{\infty} a_{n} x^{n}}{x}
$$

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{2}}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)+4 a_{n}(n+r)+a_{n-1}+2 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}(n+r)}{n^{2}+2 n r+r^{2}+3 n+3 r+2} \tag{4}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}(n-1)}{n(1+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{-1-r}{r^{2}+5 r+6}
$$

Which for the root $r=-1$ becomes

$$
a_{1}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-1-r}{r^{2}+5 r+6}$	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1+r}{(r+4)(r+3)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{2}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-1-r}{r^{2}+5 r+6}$	0
a_{2}	$\frac{1+r}{(r+4)(r+3)^{2}}$	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{-1-r}{(r+4)^{2}(r+3)(5+r)}
$$

Which for the root $r=-1$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-1-r}{r^{2}+5 r+6}$	0
a_{2}	$\frac{1+r}{(r+4)(r+3)^{2}}$	0
a_{3}	$\frac{-1-r}{(r+4)^{2}(r+3)(5+r)}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1+r}{(r+4)(r+3)(5+r)^{2}(r+6)}
$$

Which for the root $r=-1$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-1-r}{r^{2}+5 r+6}$	0
a_{2}	$\frac{1+r}{(r+4)(r+3)^{2}}$	0
a_{3}	$\frac{-1-r}{(r+4)^{2}(r+3)(5+r)}$	0
a_{4}	$\frac{1+r}{(r+4)(r+3)(5+r)^{2}(r+6)}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{-1-r}{(r+4)(r+3)(5+r)(r+6)^{2}(r+7)}
$$

Which for the root $r=-1$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-1-r}{r^{2}+5 r+6}$	0
a_{2}	$\frac{1+r}{(r+4)(r+3)^{2}}$	0
a_{3}	$\frac{-1-r}{(r+4)^{2}(r+3)(5+r)}$	0
a_{4}	$\frac{1+r}{(r+4)(r+3)(5+r)^{2}(r+6)}$	0
a_{5}	$\frac{-1-r}{(r+4)(r+3)(5+r)(r+6)^{2}(r+7)}$	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\frac{1+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{-1-r}{r^{2}+5 r+6}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{-1-r}{r^{2}+5 r+6} & =\lim _{r \rightarrow-2} \frac{-1-r}{r^{2}+5 r+6} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+\left(x^{2}+4 x\right) y^{\prime}+(x+2) y=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\left(x^{2}+4 x\right)\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +(x+2)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)+\left(x^{2}+4 x\right) y_{1}^{\prime}(x)+(x+2) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right. \\
& \left.+\frac{\left(x^{2}+4 x\right) y_{1}(x)}{x}\right) C+x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +\left(x^{2}+4 x\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(x+2)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x^{2} y_{1}^{\prime \prime}(x)+\left(x^{2}+4 x\right) y_{1}^{\prime}(x)+(x+2) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+\frac{\left(x^{2}+4 x\right) y_{1}(x)}{x}\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +\left(x^{2}+4 x\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(x+2)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x+(x+3)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& +\left(x^{2}+4 x\right)\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right)+(x+2)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=-1$ and $r_{2}=-2$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{n-2} a_{n}(n-1)\right) x+(x+3)\left(\sum_{n=0}^{\infty} a_{n} x^{n-1}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-4+n} b_{n}(n-2)(-3+n)\right) x^{2} \tag{10}\\
& +\left(x^{2}+4 x\right)\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-2)\right)+(x+2)\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} C a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 3 C x^{n-1} a_{n}\right) \\
& +\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-2)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 4 x^{n-2} b_{n}(n-2)\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\right)+\left(\sum_{n=0}^{\infty} 2 b_{n} x^{n-2}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-2$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-2} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty} 2 C a_{n-1}(n-2) x^{n-2} \\
\sum_{n=0}^{\infty} C a_{n} x^{n} & =\sum_{n=2}^{\infty} C a_{n-2} x^{n-2} \\
\sum_{n=0}^{\infty} 3 C x^{n-1} a_{n} & =\sum_{n=1}^{\infty} 3 C a_{n-1} x^{n-2} \\
\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-2) & =\sum_{n=1}^{\infty} b_{n-1}(-3+n) x^{n-2} \\
\sum_{n=0}^{\infty} x^{n-1} b_{n} & =\sum_{n=1}^{\infty} b_{n-1} x^{n-2}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-2$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} 2 C a_{n-1}(n-2) x^{n-2}\right)+\left(\sum_{n=2}^{\infty} C a_{n-2} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 3 C a_{n-1} x^{n-2}\right) \\
& +\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right)+\left(\sum_{n=1}^{\infty} b_{n-1}(-3+n) x^{n-2}\right) \tag{2~B}\\
& +\left(\sum_{n=0}^{\infty} 4 x^{n-2} b_{n}(n-2)\right)+\left(\sum_{n=1}^{\infty} b_{n-1} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} 2 b_{n} x^{n-2}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=N$, where $N=1$ which is the difference between the two roots, we are free to choose $b_{1}=0$. Hence for $n=1, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
C-1=0
$$

Which is solved for C. Solving for C gives

$$
C=1
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{0}+3 a_{1}\right) C+2 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
1+2 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-\frac{1}{2}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{1}+5 a_{2}\right) C+b_{2}+6 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{1}{2}+6 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=\frac{1}{12}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{2}+7 a_{3}\right) C+2 b_{3}+12 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{1}{6}+12 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{1}{72}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{3}+9 a_{4}\right) C+3 b_{4}+20 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{1}{24}+20 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{1}{480}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=1$ and all b_{n}, then the second solution becomes

$$
y_{2}(x)=1\left(\frac{1+O\left(x^{6}\right)}{x}\right) \ln (x)+\frac{1-\frac{x^{2}}{2}+\frac{x^{3}}{12}-\frac{x^{4}}{72}+\frac{x^{5}}{480}+O\left(x^{6}\right)}{x^{2}}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(1\left(\frac{1+O\left(x^{6}\right)}{x}\right) \ln (x)+\frac{1-\frac{x^{2}}{2}+\frac{x^{3}}{12}-\frac{x^{4}}{72}+\frac{x^{5}}{480}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& =\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{\left(1+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{1-\frac{x^{2}}{2}+\frac{x^{3}}{12}-\frac{x^{4}}{72}+\frac{x^{5}}{480}+O\left(x^{6}\right)}{x^{2}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{\left(1+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{1-\frac{x^{2}}{2}+\frac{x^{3}}{12}-\frac{x^{4}}{72}+\frac{x^{5}}{480}+O\left(x^{6}\right)}{x^{2}}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}\left(1+O\left(x^{6}\right)\right)}{x}+c_{2}\left(\frac{\left(1+O\left(x^{6}\right)\right) \ln (x)}{x}+\frac{1-\frac{x^{2}}{2}+\frac{x^{3}}{12}-\frac{x^{4}}{72}+\frac{x^{5}}{480}+O\left(x^{6}\right)}{x^{2}}\right)
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 51

```
Order:=6;
dsolve(x^2*diff (y(x),x$2)+x*(4+x)*diff (y(x),x)+(2+x)*y(x)=0,y(x),type='series', x=0);
y(x)
=}\frac{\operatorname{ln}(x)(x+\textrm{O}(\mp@subsup{x}{}{6}))\mp@subsup{c}{2}{}+\mp@subsup{c}{1}{}x(1+\textrm{O}(\mp@subsup{x}{}{6}))+(1-x-\frac{1}{2}\mp@subsup{x}{}{2}+\frac{1}{12}\mp@subsup{x}{}{3}-\frac{1}{72}\mp@subsup{x}{}{4}+\frac{1}{480}\mp@subsup{x}{}{5}+\textrm{O}(\mp@subsup{x}{}{6}))\mp@subsup{c}{2}{}}{\mp@subsup{x}{}{2}
```

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 45
AsymptoticDSolveValue [x^2*y' ' $[\mathrm{x}]+\mathrm{x} *(4+\mathrm{x}) * \mathrm{y}$ ' $[\mathrm{x}]+(2+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(\frac{\log (x)}{x}-\frac{x^{4}-6 x^{3}+36 x^{2}+144 x-72}{72 x^{2}}\right)+\frac{c_{2}}{x}
$$

19 Chapter 11, Series Solutions to LinearDifferential Equations. Exercises for 11.6. page783
19.1 problem 2 3848
19.2 problem 3 3861

19.1 problem 2

19.1.1 Maple step by step solution 3857

Internal problem ID [2972]
Internal file name [OUTPUT/2464_Sunday_June_05_2022_03_14_46_AM_43825527/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.6. page 783
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{9}{4}\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{9}{4}\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{4 x^{2}-9}{4 x^{2}}
\end{aligned}
$$

Table 517: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{4 x^{2}-9}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{9}{4}\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}-\frac{9}{4}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{9 a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{9 a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-\frac{9 a_{n} x^{n+r}}{4}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-\frac{9 a_{0} x^{r}}{4}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-\frac{9 x^{r}}{4}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\frac{\left(4 r^{2}-9\right) x^{r}}{4}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-\frac{9}{4}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=-\frac{3}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\frac{\left(4 r^{2}-9\right) x^{r}}{4}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=3$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{\frac{3}{2}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{\frac{3}{2}}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{3}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}-\frac{9 a_{n}}{4}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-2}}{4 n^{2}+8 n r+4 r^{2}-9} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{4}{4 r^{2}+16 r+7}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{2}=-\frac{1}{10}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+7}$	$-\frac{1}{10}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+7}$	$-\frac{1}{10}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{\left(4 r^{2}+16 r+7\right)\left(4 r^{2}+32 r+55\right)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{4}=\frac{1}{280}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+7}$	$-\frac{1}{10}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+16 r+7\right)\left(4 r^{2}+32 r+55\right)}$	$\frac{1}{280}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+7}$	$-\frac{1}{10}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+16 r+7\right)\left(4 r^{2}+32 r+55\right)}$	$\frac{1}{280}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{3}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{3}{2}}\left(1-\frac{x^{2}}{10}+\frac{x^{4}}{280}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=3$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{3}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{3} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-\frac{3}{2}} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{3}{2}}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n}(n+r)+b_{n-2}-\frac{9 b_{n}}{4}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-\frac{3}{2}$ becomes

$$
\begin{equation*}
b_{n}\left(n-\frac{3}{2}\right)\left(n-\frac{5}{2}\right)+b_{n}\left(n-\frac{3}{2}\right)+b_{n-2}-\frac{9 b_{n}}{4}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}+8 n r+4 r^{2}-9} \tag{5}
\end{equation*}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}-12 n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{4}{4 r^{2}+16 r+7}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{2}=\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+7}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+7}$	$\frac{1}{2}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{16}{\left(4 r^{2}+16 r+7\right)\left(4 r^{2}+32 r+55\right)}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{4}=-\frac{1}{8}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+7}$	$\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{16}{\left(4 r^{2}+16 r+7\right)\left(4 r^{2}+32 r+55\right)}$	$-\frac{1}{8}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+7}$	$\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{16}{\left(4 r^{2}+16 r+7\right)\left(4 r^{2}+32 r+55\right)}$	$-\frac{1}{8}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{\frac{3}{2}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+\frac{x^{2}}{2}-\frac{x^{4}}{8}+O\left(x^{6}\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{10}+\frac{x^{4}}{280}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x^{2}}{2}-\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{10}+\frac{x^{4}}{280}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x^{2}}{2}-\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{10}+\frac{x^{4}}{280}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x^{2}}{2}-\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{10}+\frac{x^{4}}{280}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+\frac{x^{2}}{2}-\frac{x^{4}}{8}+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}
$$

Verified OK.

19.1.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{9}{4}\right) y=0$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(4 x^{2}-9\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-9\right) y}{4 x^{2}}=0
$$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-9}{4 x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{9}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-9\right) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
\square
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(3+2 r)(-3+2 r) x^{r}+a_{1}(5+2 r)(-1+2 r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 k+2 r+3)(2 k+2 r-3)+4 a\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(3+2 r)(-3+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{3}{2}, \frac{3}{2}\right\}$
- Each term must be 0

$$
a_{1}(5+2 r)(-1+2 r)=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}\left(4 k^{2}+8 k r+4 r^{2}-9\right)+4 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-9\right)+4 a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+7}
$$

- Recursion relation for $r=-\frac{3}{2}$

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+4 k-8}
$$

- \quad Solution for $r=-\frac{3}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{3}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+4 k-8}, a_{1}=0\right]
$$

- Recursion relation for $r=\frac{3}{2}$

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+28 k+40}
$$

- \quad Solution for $r=\frac{3}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{3}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+28 k+40}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{3}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{3}{2}}\right), a_{2+k}=-\frac{4 a_{k}}{4 k^{2}+4 k-8}, a_{1}=0, b_{2+k}=-\frac{4 b_{k}}{4 k^{2}+28 k+40}, b_{1}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
Order:=6;
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x$2)+x*diff(y(x),x)+(x^2-9/4)*y(x)=0,y(x),type='series', x=0)
```

$$
y(x)=\frac{c_{1} x^{3}\left(1-\frac{1}{10} x^{2}+\frac{1}{280} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(12+6 x^{2}-\frac{3}{2} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 58

AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime} '[x]+x * y^{\prime}[x]+\left(x^{\wedge} 2-9 / 4\right) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(-\frac{x^{5 / 2}}{8}+\frac{1}{x^{3 / 2}}+\frac{\sqrt{x}}{2}\right)+c_{2}\left(\frac{x^{11 / 2}}{280}-\frac{x^{7 / 2}}{10}+x^{3 / 2}\right)
$$

19.2 problem 3

19.2.1 Maple step by step solution . 3872

Internal problem ID [2973]
Internal file name [OUTPUT/2465_Sunday_June_05_2022_03_14_49_AM_639990/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Exercises for 11.6. page 783
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

$$
x y^{\prime \prime}-y^{\prime}+y x=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x y^{\prime \prime}-y^{\prime}+y x=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=1
\end{aligned}
$$

Table 519: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=1$	
singularity	type

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x y^{\prime \prime}-y^{\prime}+y x=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x-\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0 \tag{2A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)-(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)-r a_{0} x^{-1+r}=0
$$

Or

$$
\left(x^{-1+r} r(-1+r)-r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
r x^{-1+r}(-2+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r(-2+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
r x^{-1+r}(-2+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n-2}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}-2 n-2 r} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{1}{r(r+2)}
$$

Which for the root $r=2$ becomes

$$
a_{2}=-\frac{1}{8}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r(r+2)}$	$-\frac{1}{8}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r(r+2)}$	$-\frac{1}{8}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{r(r+2)^{2}(r+4)}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{1}{192}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r(r+2)}$	$-\frac{1}{8}$
a_{3}	0	0
a_{4}	$\frac{1}{r(r+2)^{2}(r+4)}$	$\frac{1}{192}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r(r+2)}$	$-\frac{1}{8}$
a_{3}	0	0
a_{4}	$\frac{1}{r(r+2)^{2}(r+4)}$	$\frac{1}{192}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if
C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =-\frac{1}{r(r+2)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{1}{r(r+2)} & =\lim _{r \rightarrow 0}-\frac{1}{r(r+2)} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x y^{\prime \prime}-y^{\prime}+y x=0$ gives

$$
\begin{aligned}
& \left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x-C y_{1}^{\prime}(x) \ln (x)-\frac{C y_{1}(x)}{x} \\
& -\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right) x=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(y_{1}(x) x+y_{1}^{\prime \prime}(x) x-y_{1}^{\prime}(x)\right) \ln (x)+\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x-\frac{y_{1}(x)}{x}\right) C \\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \tag{7}\\
& +\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x-\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
y_{1}(x) x+y_{1}^{\prime \prime}(x) x-y_{1}^{\prime}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x-\frac{y_{1}(x)}{x}\right) C \\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \tag{8}\\
& +\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x-\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{aligned}
& \frac{\left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C}{x} \\
& +\frac{\left(\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right) x^{2}-\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x}{x} \\
& =0
\end{aligned}
$$

Since $r_{1}=2$ and $r_{2}=0$ then the above becomes

$$
\begin{align*}
& \frac{\left(2\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}(n+2)\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+2}\right)\right) C}{x} \tag{10}\\
& +\frac{\left(\left(\sum_{n=0}^{\infty} x^{n-2} b_{n} n(-1+n)\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)\right) x^{2}-\left(\sum_{n=0}^{\infty} x^{-1+n} b_{n} n\right) x}{x}=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(n+2)\right)+\sum_{n=0}^{\infty}\left(-2 C x^{1+n} a_{n}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} n x^{-1+n} b_{n}(-1+n)\right)+\left(\sum_{n=0}^{\infty} x^{1+n} b_{n}\right)+\sum_{n=0}^{\infty}\left(-x^{-1+n} b_{n} n\right)=0
\end{align*}
$$

The next step is to make all powers of x be $-1+n$ in each summation term. Going over each summation term above with power of x in it which is not already x^{-1+n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(n+2) & =\sum_{n=2}^{\infty} 2 C a_{n-2} n x^{-1+n} \\
\sum_{n=0}^{\infty}\left(-2 C x^{1+n} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-2 C a_{n-2} x^{-1+n}\right) \\
\sum_{n=0}^{\infty} x^{1+n} b_{n} & =\sum_{n=2}^{\infty} b_{n-2} x^{-1+n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $-1+n$.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} 2 C a_{n-2} n x^{-1+n}\right)+\sum_{n=2}^{\infty}\left(-2 C a_{n-2} x^{-1+n}\right)+\left(\sum_{n=0}^{\infty} n x^{-1+n} b_{n}(-1+n)\right) \tag{2B}\\
& \quad+\left(\sum_{n=2}^{\infty} b_{n-2} x^{-1+n}\right)+\sum_{n=0}^{\infty}\left(-x^{-1+n} b_{n} n\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
-b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=0
$$

For $n=N$, where $N=2$ which is the difference between the two roots, we are free to choose $b_{2}=0$. Hence for $n=2$, Eq (2B) gives

$$
2 C+1=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{1}{2}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
4 C a_{1}+b_{1}+3 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
3 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=0
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
6 C a_{2}+b_{2}+8 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
8 b_{4}+\frac{3}{8}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{3}{64}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
8 C a_{3}+b_{3}+15 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
15 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=0
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{1}{2}$ and all b_{n}, then the second solution becomes

$$
y_{2}(x)=-\frac{1}{2}\left(x^{2}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right)\right) \ln (x)+1-\frac{3 x^{4}}{64}+O\left(x^{6}\right)
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{1}{2}\left(x^{2}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right)\right) \ln (x)+1-\frac{3 x^{4}}{64}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{2}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \ln (x)}{2}+1-\frac{3 x^{4}}{64}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{2}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{2}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \ln (x)}{2}+1-\frac{3 x^{4}}{64}+O\left(x^{6}\right)\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{2}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{2}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \ln (x)}{2}+1-\frac{3 x^{4}}{64}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

19.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x-y^{\prime}+y x=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{y^{\prime}}{x}-y$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{x}+y=0$
- Simplify ODE
$x^{2} y^{\prime \prime}-x y^{\prime}+x^{2} y=0$
- Make a change of variables
$y=x u(x)$
- Compute y^{\prime}
$y^{\prime}=u(x)+x u^{\prime}(x)$
- Compute $y^{\prime \prime}$
$y^{\prime \prime}=2 u^{\prime}(x)+x u^{\prime \prime}(x)$
- Apply change of variables to the ODE
$u^{\prime \prime}(x) x^{2}+x^{2} u(x)+x u^{\prime}(x)-u(x)=0$
- ODE is now of the Bessel form
- Solution to Bessel ODE

$$
u(x)=c_{1} \operatorname{BesselJ}(1, x)+c_{2} \operatorname{Bessel} Y(1, x)
$$

- Make the change from y back to y
$y=\left(c_{1} \operatorname{BesselJ}(1, x)+c_{2} \operatorname{Bessel} Y(1, x)\right) x$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 42

```
Order:=6;
dsolve(x*diff(y(x),x$2)-diff (y(x),x)+x*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{2}\left(1-\frac{1}{8} x^{2}+\frac{1}{192} x^{4}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(\ln (x)\left(x^{2}-\frac{1}{8} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\left(-2+\frac{3}{32} x^{4}+\mathrm{O}\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 59
AsymptoticDSolveValue[x*y' '[x]-y'[x]+x*y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(\frac{1}{16}\left(x^{2}-8\right) x^{2} \log (x)+\frac{1}{64}\left(-5 x^{4}+16 x^{2}+64\right)\right)+c_{2}\left(\frac{x^{6}}{192}-\frac{x^{4}}{8}+x^{2}\right)
$$

20 Chapter 11, Series Solutions to LinearDifferential Equations. Additional problems.Section 11.7. page 788
20.1 problem 1 3875
20.2 problem 2 3884
20.3 problem 3 3893
20.4 problem 4 3904
20.5 problem 5 3915
20.6 problem 6 3928
20.7 problem 7 3942
20.8 problem 8 3953
20.9 problem 9 3961
20.10problem 10 3974
20.11 problem 11 3987
20.12 problem 12 4001
20.13problem 13 4015
20.14problem 20 4027

20.1 problem 1

20.1.1 Maple step by step solution 3882

Internal problem ID [2974]
Internal file name [OUTPUT/2466_Sunday_June_05_2022_03_14_53_AM_9917556/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
y^{\prime \prime}+y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{726}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{727}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-x y^{\prime}-y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-2 y^{\prime}+x^{2} y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =x\left(x y^{\prime}+4 y\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-y x^{3}+6 x y^{\prime}+4 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-y(0) \\
& F_{2}=-2 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=4 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{0}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{180}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{504}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{6} a_{0} x^{3}-\frac{1}{12} a_{1} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{3}}{6}\right) a_{0}+\left(x-\frac{1}{12} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

20.1.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y x
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y x=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion
$x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}$
- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}$
- Convert $y^{\prime \prime}$ to series expansion
$y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}$
- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k-1}\right) x^{k}\right)=0$
- Each term must be 0
$2 a_{2}=0$
- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}+a_{k-1}=0$
- \quad Shift index using $k->k+1$

$$
\left((k+1)^{2}+3 k+5\right) a_{k+3}+a_{k}=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k}}{k^{2}+5 k+6}, 2 a_{2}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff(y(x),x$2)+x*y(x)=0,y(x),type='series',x=0);
\[
y(x)=\left(1-\frac{x^{3}}{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28

```
AsymptoticDSolveValue[y''[x]+x*y[x]==0,y[x],{x,0,5}]
```

$$
y(x) \rightarrow c_{2}\left(x-\frac{x^{4}}{12}\right)+c_{1}\left(1-\frac{x^{3}}{6}\right)
$$

20.2 problem 2

20.2.1 Maple step by step solution 3890

Internal problem ID [2975]
Internal file name [OUTPUT/2467_Sunday_June_05_2022_03_14_55_AM_24180021/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
y^{\prime \prime}-x^{2} y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{729}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{730}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =x^{2} y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =x\left(x y^{\prime}+2 y\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =y x^{4}+4 x y^{\prime}+2 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =y^{\prime} x^{4}+8 y x^{3}+6 y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =12 y^{\prime} x^{3}+x^{2} y\left(x^{4}+30\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=0 \\
& F_{2}=2 y(0) \\
& F_{3}=6 y^{\prime}(0) \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{x^{4}}{12}\right) y(0)+\left(x+\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-x^{n+2} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{n+2} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-a_{n-2}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n-2}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{12}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{20}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{12} a_{0} x^{4}+\frac{1}{20} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{x^{4}}{12}\right) a_{0}+\left(x+\frac{1}{20} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{x^{4}}{12}\right) c_{1}+\left(x+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{x^{4}}{12}\right) y(0)+\left(x+\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{x^{4}}{12}\right) c_{1}+\left(x+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{x^{4}}{12}\right) y(0)+\left(x+\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{x^{4}}{12}\right) c_{1}+\left(x+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

20.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=x^{2} y
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-x^{2} y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y$ to series expansion

$$
x^{2} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+2}
$$

- Shift index using $k->k-2$

$$
x^{2} \cdot y=\sum_{k=2}^{\infty} a_{k-2} x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions

$$
6 a_{3} x+2 a_{2}+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k-2}\right) x^{k}\right)=0
$$

- \quad The coefficients of each power of x must be 0

$$
\left[2 a_{2}=0,6 a_{3}=0\right]
$$

- \quad Solve for the dependent coefficient(s)
$\left\{a_{2}=0, a_{3}=0\right\}$
- Each term in the series must be 0 , giving the recursion relation $\left(k^{2}+3 k+2\right) a_{k+2}-a_{k-2}=0$
- \quad Shift index using $k->k+2$
$\left((k+2)^{2}+3 k+8\right) a_{k+4}-a_{k}=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=\frac{a_{k}}{k^{2}+7 k+12}, a_{2}=0, a_{3}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff(y(x),x$2)-x^2*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1+\frac{x^{4}}{12}\right) y(0)+\left(x+\frac{1}{20} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28
AsymptoticDSolveValue[y' $\left.[\mathrm{x}]-\mathrm{x}^{\wedge} 2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{20}+x\right)+c_{1}\left(\frac{x^{4}}{12}+1\right)
$$

20.3 problem 3

20.3.1 Maple step by step solution 3900

Internal problem ID [2976]
Internal file name [OUTPUT/2468_Sunday_June_05_2022_03_14_57_AM_10648152/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
\left(-x^{2}+1\right) y^{\prime \prime}-6 x y^{\prime}-4 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{732}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{733}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{2\left(3 x y^{\prime}+2 y\right)}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{38 y^{\prime} x^{2}+32 y x+10 y^{\prime}}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-272 y^{\prime} x^{3}-248 x^{2} y-208 x y^{\prime}-72 y}{\left(x^{2}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(2200 x^{4}+3280 x^{2}+280\right) y^{\prime}+\left(2080 x^{3}+1760 x\right) y}{\left(x^{2}-1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-19920 x^{5}-48480 x^{3}-12240 x\right) y^{\prime}-19200 y\left(x^{4}+\frac{33}{20} x^{2}+\frac{3}{20}\right)}{\left(x^{2}-1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=4 y(0) \\
& F_{1}=10 y^{\prime}(0) \\
& F_{2}=72 y(0) \\
& F_{3}=280 y^{\prime}(0) \\
& F_{4}=2880 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(4 x^{6}+3 x^{4}+2 x^{2}+1\right) y(0)+\left(x+\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-x^{2}+1\right) y^{\prime \prime}-6 x y^{\prime}-4 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-6 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-6 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
\sum_{n=2}^{\infty} & \left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=1}^{\infty}\left(-6 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-4 a_{0}=0 \\
a_{2}=2 a_{0}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}-10 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{5 a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-6 n a_{n}-4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{(n+4) a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
-18 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=3 a_{0}
$$

For $n=3$ the recurrence equation gives

$$
-28 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{7 a_{1}}{3}
$$

For $n=4$ the recurrence equation gives

$$
-40 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=4 a_{0}
$$

For $n=5$ the recurrence equation gives

$$
-54 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=3 a_{1}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+2 a_{0} x^{2}+\frac{5}{3} a_{1} x^{3}+3 a_{0} x^{4}+\frac{7}{3} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(3 x^{4}+2 x^{2}+1\right) a_{0}+\left(x+\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(3 x^{4}+2 x^{2}+1\right) c_{1}+\left(x+\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(4 x^{6}+3 x^{4}+2 x^{2}+1\right) y(0)+\left(x+\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(3 x^{4}+2 x^{2}+1\right) c_{1}+\left(x+\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(4 x^{6}+3 x^{4}+2 x^{2}+1\right) y(0)+\left(x+\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(3 x^{4}+2 x^{2}+1\right) c_{1}+\left(x+\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

20.3.1 Maple step by step solution

Let's solve

$$
\left(-x^{2}+1\right) y^{\prime \prime}-6 x y^{\prime}-4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{6 x y^{\prime}}{x^{2}-1}-\frac{4 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{6 x y^{\prime}}{x^{2}-1}+\frac{4 y}{x^{2}-1}=0$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{6 x}{x^{2}-1}, P_{3}(x)=\frac{4}{x^{2}-1}\right]
$$

- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=3$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=-1$

- Multiply by denominators

$$
y^{\prime \prime}\left(x^{2}-1\right)+6 x y^{\prime}+4 y=0
$$

- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$

$$
\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(6 u-6)\left(\frac{d}{d u} y(u)\right)+4 y(u)=0
$$

- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$ $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0} r(2+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+r+1)(k+3+r)+a_{k}(k+r+4)(k+r+1)\right) u^{k+r}\right)=
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r(2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-2,0\}$
- Each term in the series must be 0 , giving the recursion relation
$(k+r+1)\left((-2 k-2 r-6) a_{k+1}+a_{k}(k+r+4)\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}(k+r+4)}{2(k+3+r)}
$$

- Recursion relation for $r=-2$

$$
a_{k+1}=\frac{a_{k}(k+2)}{2(k+1)}
$$

- \quad Solution for $r=-2$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-2}, a_{k+1}=\frac{a_{k}(k+2)}{2(k+1)}\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k-2}, a_{k+1}=\frac{a_{k}(k+2)}{2(k+1)}\right]
$$

- Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}(k+4)}{2(k+3)}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(k+4)}{2(k+3)}\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+1}=\frac{a_{k}(k+4)}{2(k+3)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+1)^{k-2}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k}\right), a_{1+k}=\frac{a_{k}(2+k)}{2(1+k)}, b_{1+k}=\frac{b_{k}(k+4)}{2(k+3)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve((1-x^2)*diff (y (x), x$2)-6*x*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(3 x^{4}+2 x^{2}+1\right) y(0)+\left(x+\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 38
AsymptoticDSolveValue[(1-x^2)*y' ' $[x]-6 * x * y '[x]-4 * y[x]==0, y[x],\{x, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{7 x^{5}}{3}+\frac{5 x^{3}}{3}+x\right)+c_{1}\left(3 x^{4}+2 x^{2}+1\right)
$$

20.4 problem 4

20.4.1 Maple step by step solution . 3912

Internal problem ID [2977]
Internal file name [OUTPUT/2469_Sunday_June_05_2022_03_14_59_AM_29872371/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
x y^{\prime \prime}+y^{\prime}+2 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x y^{\prime \prime}+y^{\prime}+2 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{2}{x}
\end{aligned}
$$

Table 524: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{2}{x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x y^{\prime \prime}+y^{\prime}+2 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}=\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
$$

Or

$$
\left(x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{-1+r} r^{2}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{-1+r} r^{2}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{2}{(r+1)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{1}=-2
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{(r+1)^{2}}$	-2

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4}{(r+1)^{2}(r+2)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{2}=1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{(r+1)^{2}}$	-2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{8}{(r+1)^{2}(r+2)^{2}(3+r)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{3}=-\frac{2}{9}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{(r+1)^{2}}$	-2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1
a_{3}	$-\frac{8}{(r+1)^{2}(r+2)^{2}(3+r)^{2}}$	$-\frac{2}{9}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{1}{36}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{(r+1)^{2}}$	-2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1
a_{3}	$-\frac{8}{(r+1)^{2}(r+2)^{2}(3+r)^{2}}$	$-\frac{2}{9}$
a_{4}	$\frac{16}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}}$	$\frac{1}{36}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{32}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{5}=-\frac{1}{450}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{(r+1)^{2}}$	-2
a_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1
a_{3}	$-\frac{8}{(r+1)^{2}(r+2)^{2}(3+r)^{2}}$	$-\frac{2}{9}$
a_{4}	$\frac{16}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}}$	$\frac{1}{36}$
a_{5}	$-\frac{32}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}}$	$-\frac{1}{450}$

Using the above table, then the first solution $y_{1}(x)$ becomes

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=0$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=0)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$-\frac{2}{(r+1)^{2}}$	-2	$\frac{4}{(r+1)^{3}}$	4
b_{2}	$\frac{4}{(r+1)^{2}(r+2)^{2}}$	1	$\frac{-16 r-24}{(r+1)^{3}(r+2)^{3}}$	-3
b_{3}	$-\frac{8}{(r+1)^{2}(r+2)^{2}(3+r)^{2}}$	$-\frac{2}{9}$	$\frac{48 r^{2}+192 r+176}{(r+1)^{3}(r+2)^{3}(3+r)^{3}}$	$\frac{22}{27}$
b_{4}	$\frac{16}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}}$	$\frac{1}{36}$	$-\frac{64\left(2 r^{3}+15 r^{2}+35 r+25\right)}{(r+1)^{3}(r+2)^{3}(3+r)^{3}(r+4)^{3}}$	$-\frac{25}{216}$
b_{5}	$-\frac{32}{(r+1)^{2}(r+2)^{2}(3+r)^{2}(r+4)^{2}(5+r)^{2}}$	$-\frac{1}{450}$	$\frac{320 r^{4}+3840 r^{3}+16320 r^{2}+28800 r+17536}{(r+1)^{3}(r+2)^{3}(3+r)^{3}(r+4)^{3}(5+r)^{3}}$	$\frac{137}{13500}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & \left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}+4 x+\frac{22 x^{3}}{27}-\frac{25 x^{4}}{216}+\frac{137 x^{5}}{13500} \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}+4 x+\frac{22 x^{3}}{27}\right. \\
& \left.-\frac{25 x^{4}}{216}+\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}+4 x+\frac{22 x^{3}}{27}-\frac{25 x^{4}}{216}\right. \\
& \left.+\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1}\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}+4 x+\frac{22 x^{3}}{27}\right. \\
& \left.-\frac{25 x^{4}}{216}+\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(\left(x^{2}-2 x+1-\frac{2 x^{3}}{9}+\frac{x^{4}}{36}-\frac{x^{5}}{450}+O\left(x^{6}\right)\right) \ln (x)-3 x^{2}+4 x+\frac{22 x^{3}}{27}-\frac{25 x^{4}}{216}\right. \\
& \left.+\frac{137 x^{5}}{13500}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

20.4.1 Maple step by step solution

Let's solve
$y^{\prime \prime} x+y^{\prime}+2 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{2 y}{x}-\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{2 y}{x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{2}{x}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x+y^{\prime}+2 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r^{2} x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)^{2}+2 a_{k}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r^{2}=0$
- Values of r that satisfy the indicial equation
$r=0$
- Each term in the series must be 0, giving the recursion relation
$a_{k+1}(k+1)^{2}+2 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{2 a_{k}}{(k+1)^{2}}$
- \quad Recursion relation for $r=0$
$a_{k+1}=-\frac{2 a_{k}}{(k+1)^{2}}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{2 a_{k}}{(k+1)^{2}}\right]$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 59

```
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+2*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1-2 x+x^{2}-\frac{2}{9} x^{3}+\frac{1}{36} x^{4}-\frac{1}{450} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +\left(4 x-3 x^{2}+\frac{22}{27} x^{3}-\frac{25}{216} x^{4}+\frac{137}{13500} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\end{aligned}
$$

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 101
AsymptoticDSolveValue[x*y''[x]+y'[x]+2*y[x]==0,y[x],\{x,0,5\}]

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{x^{5}}{450}+\frac{x^{4}}{36}-\frac{2 x^{3}}{9}+x^{2}-2 x+1\right) \\
& +c_{2}\left(\frac{137 x^{5}}{13500}-\frac{25 x^{4}}{216}+\frac{22 x^{3}}{27}-3 x^{2}+\left(-\frac{x^{5}}{450}+\frac{x^{4}}{36}-\frac{2 x^{3}}{9}+x^{2}-2 x+1\right) \log (x)+4 x\right)
\end{aligned}
$$

20.5 problem 5

20.5.1 Maple step by step solution

3924
Internal problem ID [2978]
Internal file name [OUTPUT/2470_Sunday_June_05_2022_03_15_02_AM_33677441/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]

$$
x y^{\prime \prime}+2 y^{\prime}+y x=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x y^{\prime \prime}+2 y^{\prime}+y x=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=1
\end{aligned}
$$

Table 526: Table $p(x), q(x)$ singularites.

$p(x)=\frac{2}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=1$	
singularity	type

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x y^{\prime \prime}+2 y^{\prime}+y x=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+2\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0 \tag{2A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)+2(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)+2 r a_{0} x^{-1+r}=0
$$

Or

$$
\left(x^{-1+r} r(-1+r)+2 r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
r x^{-1+r}(1+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r(1+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
r x^{-1+r}(1+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+2 a_{n}(n+r)+a_{n-2}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}+n+r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(1+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{1}{r^{2}+5 r+6}
$$

Which for the root $r=0$ becomes

$$
a_{2}=-\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{6}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{6}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{1}{120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}$	$\frac{1}{120}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}$	$\frac{1}{120}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if
C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-1} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+2(n+r) b_{n}+b_{n-2}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}(n-1)(n-2)+2(n-1) b_{n}+b_{n-2}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}+2 n r+r^{2}+n+r} \tag{5}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}-n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{1}{r^{2}+5 r+6}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=-\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{2}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1}{\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=\frac{1}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r^{2}+5 r+6}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}$	$\frac{1}{24}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{x}
$$

Verified OK.

20.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+2 y^{\prime}+y x=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}-y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 y^{\prime}}{x}+y=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{2}{x}, P_{3}(x)=1\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x+2 y^{\prime}+y x=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
\square
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion
$x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}$
- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}$
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r(1+r) x^{-1+r}+a_{1}(1+r)(2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+r+1)(k+2+r)+a_{k-1}\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
r(1+r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\{-1,0\}
$$

- Each term must be 0
$a_{1}(1+r)(2+r)=0$
- Each term in the series must be 0 , giving the recursion relation

$$
a_{k+1}(k+r+1)(k+2+r)+a_{k-1}=0
$$

- \quad Shift index using $k->k+1$
$a_{k+2}(k+2+r)(k+3+r)+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{a_{k}}{(k+2+r)(k+3+r)}$
- \quad Recursion relation for $r=-1$
$a_{k+2}=-\frac{a_{k}}{(k+1)(k+2)}$
- \quad Solution for $r=-1$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a_{k}}{(k+1)(k+2)}, 0=0\right]$
- Recursion relation for $r=0$
$a_{k+2}=-\frac{a_{k}}{(k+2)(k+3)}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{(k+2)(k+3)}, 2 a_{1}=0\right]$
- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right), a_{2+k}=-\frac{a_{k}}{(1+k)(2+k)}, 0=0, b_{2+k}=-\frac{b_{k}}{(2+k)(k+3)}, 2 b_{1}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 32

```
Order:=6;
dsolve(x*diff(y(x), x$2)+2*diff (y(x), x)+x*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=c_{1}\left(1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 42

```
AsymptoticDSolveValue[x*y''[x]+2*y'[x]+x*y[x]==0,y[x],{x,0,5}]
```

$$
y(x) \rightarrow c_{1}\left(\frac{x^{3}}{24}-\frac{x}{2}+\frac{1}{x}\right)+c_{2}\left(\frac{x^{4}}{120}-\frac{x^{2}}{6}+1\right)
$$

20.6 problem 6

20.6.1 Maple step by step solution 3938

Internal problem ID [2979]
Internal file name [OUTPUT/2471_Sunday_June_05_2022_03_15_05_AM_21211276/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
2 x y^{\prime \prime}+5(1-2 x) y^{\prime}-5 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
2 x y^{\prime \prime}+(-10 x+5) y^{\prime}-5 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5(2 x-1)}{2 x} \\
& q(x)=-\frac{5}{2 x}
\end{aligned}
$$

Table 528: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{5(2 x-1)}{2 x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{5}{2 x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
2 x y^{\prime \prime}+(-10 x+5) y^{\prime}-5 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 2\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x \tag{1}\\
& +(-10 x+5)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-5\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-10 x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} 5(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-5 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-10 x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-10 a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty}\left(-5 a_{n} x^{n+r}\right) & =\sum_{n=1}^{\infty}\left(-5 a_{n-1} x^{n+r-1}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-10 a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 5(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=1}^{\infty}\left(-5 a_{n-1} x^{n+r-1}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
2 x^{n+r-1} a_{n}(n+r)(n+r-1)+5(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
2 x^{-1+r} a_{0} r(-1+r)+5 r a_{0} x^{-1+r}=0
$$

Or

$$
\left(2 x^{-1+r} r(-1+r)+5 r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
r x^{-1+r}(3+2 r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
2 r^{2}+3 r=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-\frac{3}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
r x^{-1+r}(3+2 r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{3}{2}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\frac{3}{2}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-10 a_{n-1}(n+r-1)+5 a_{n}(n+r)-5 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{5 a_{n-1}(2 n+2 r-1)}{2 n^{2}+4 n r+2 r^{2}+3 n+3 r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=\frac{(10 n-5) a_{n-1}}{n(2 n+3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{10 r+5}{2 r^{2}+7 r+5}
$$

Which for the root $r=0$ becomes

$$
a_{1}=1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{10 r+5}{2 r^{2}+7 r+5}$	1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{100 r^{2}+200 r+75}{\left(2 r^{2}+7 r+5\right)\left(2 r^{2}+11 r+14\right)}
$$

Which for the root $r=0$ becomes

$$
a_{2}=\frac{15}{14}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{10 r+5}{2 r^{2}+7 r+5}$	1
a_{2}	$\frac{100 r^{2}+200 r+75}{\left(2 r^{2}+7 r+5\right)\left(2 r^{2}+11 r+14\right)}$	$\frac{15}{14}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{500 r^{2}+1000 r+375}{4 r^{5}+56 r^{4}+299 r^{3}+754 r^{2}+885 r+378}
$$

Which for the root $r=0$ becomes

$$
a_{3}=\frac{125}{126}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{10 r+5}{2 r^{2}+7 r+5}$	1
a_{2}	$\frac{100 r^{2}+200 r+75}{\left(2 r^{2}+7 r+5\right)\left(2 r^{2}+11 r+14\right)}$	$\frac{15}{14}$
a_{3}	$\frac{500 r^{2}+1000 r+375}{4 r^{5}+56 r^{4}+299 r^{3}+754 r^{2}+885 r+378}$	$\frac{125}{126}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{2500 r^{2}+5000 r+1875}{4 r^{6}+80 r^{5}+639 r^{4}+2590 r^{3}+5561 r^{2}+5910 r+2376}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{625}{792}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{10 r+5}{2 r^{2}+7 r+5}$	1
a_{2}	$\frac{100 r^{2}+200 r+75}{\left(2 r^{2}+7 r+5\right)\left(2 r^{2}+11 r+14\right)}$	$\frac{15}{14}$
a_{3}	$\frac{500 r^{2}+1000 r+375}{4 r^{5}+56 r^{4}+299 r^{3}+754 r^{2}+885 r+378}$	$\frac{125}{126}$
a_{4}	$\frac{2500 r^{2}+5000 r+185}{4 r^{6}+80 r^{5}+6399 r^{4}+25900 r^{3}+5561 r^{2}+5910 r+2376}$	$\frac{625}{792}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{12500 r^{2}+25000 r+9375}{4 r^{7}+108 r^{6}+1203 r^{5}+7125 r^{4}+24051 r^{3}+45807 r^{2}+44942 r+17160}
$$

Which for the root $r=0$ becomes

$$
a_{5}=\frac{625}{1144}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{10 r+5}{2 r^{2}+7 r+5}$	1
a_{2}	$\frac{100 r^{2}+200 r+75}{\left(2 r^{2}+7 r+5\right)\left(2 r^{2}+11 r+14\right)}$	$\frac{15}{14}$
a_{3}	$\frac{500 r^{2}+1000 r+375}{4 r^{5}+56 r^{4}+299 r^{3}+754 r^{2}+885 r+378}$	$\frac{125}{126}$
a_{4}	$\frac{2500 r^{2}+5000 r+1875}{4 r^{6}+80 r^{5}+639 r^{4}+2590 r^{3}+5561 r^{2}+5910 r+2376}$	$\frac{625}{792}$
a_{5}	$\frac{12500 r^{2}+25000 r+9375}{4 r^{7}+108 r^{6}+1203 r^{5}+7125 r^{4}+24051 r^{3}+45807 r^{2}+44942 r+17160}$	$\frac{625}{1144}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1+x+\frac{15 x^{2}}{14}+\frac{125 x^{3}}{126}+\frac{625 x^{4}}{792}+\frac{625 x^{5}}{1144}+O\left(x^{6}\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. $\mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-10 b_{n-1}(n+r-1)+5(n+r) b_{n}-5 b_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{5 b_{n-1}(2 n+2 r-1)}{2 n^{2}+4 n r+2 r^{2}+3 n+3 r} \tag{4}
\end{equation*}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
\begin{equation*}
b_{n}=\frac{10 b_{n-1}(n-2)}{n(2 n-3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{10 r+5}{2 r^{2}+7 r+5}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{1}=10
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{10 r+5}{2 r^{2}+7 r+5}$	10

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{100 r^{2}+200 r+75}{\left(2 r^{2}+7 r+5\right)\left(2 r^{2}+11 r+14\right)}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{2}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{10 r+5}{2 r^{2}+7 r+5}$	10
b_{2}	$\frac{100 r^{2}+200 r+75}{\left(2 r^{2}+7 r+5\right)\left(2 r^{2}+11 r+14\right)}$	0

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{500 r^{2}+1000 r+375}{4 r^{5}+56 r^{4}+299 r^{3}+754 r^{2}+885 r+378}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{10 r+5}{2 r^{2}+7 r+5}$	10
b_{2}	$\frac{100 r^{2}+200 r+75}{\left(2 r^{2}+7 r+5\right)\left(2 r^{2}+11 r+14\right)}$	0
b_{3}	$\frac{500 r^{2}+1000 r+375}{4 r^{5}+56 r^{4}+299 r^{3}+754 r^{2}+885 r+378}$	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{2500 r^{2}+5000 r+1875}{4 r^{6}+80 r^{5}+639 r^{4}+2590 r^{3}+5561 r^{2}+5910 r+2376}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{4}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{10 r+5}{2 r^{2}+7 r+5}$	10
b_{2}	$\frac{100 r^{2}+200 r+75}{\left(2 r^{2}+7 r+5\right)\left(2 r^{2}+11 r+14\right)}$	0
b_{3}	$\frac{500 r^{2}+1000 r+375}{4 r^{5}+56 r^{4}+299 r^{3}+754 r^{2}+885 r+378}$	0
b_{4}	$\frac{2500^{2}+5000+1875}{4 r^{6}+80 r^{5}+639 r^{4}+2590 r^{3}+5561 r^{2}+5910 r+2376}$	0

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{12500 r^{2}+25000 r+9375}{4 r^{7}+108 r^{6}+1203 r^{5}+7125 r^{4}+24051 r^{3}+45807 r^{2}+44942 r+17160}
$$

Which for the root $r=-\frac{3}{2}$ becomes

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{10 r+5}{2 r^{2}+7 r+5}$	10
b_{2}	$\frac{100 r^{2}+200 r+75}{\left(2 r^{2}+7 r+5\right)\left(2 r^{2}+11 r+14\right)}$	0
b_{3}	$\frac{500 r^{2}+1000 r+375}{4 r^{5}+56 r^{4}+299 r^{3}+754 r^{2}+885 r+378}$	0
b_{4}	$\frac{250 r^{2}+5000 r+1875}{4 r^{6}+80 r^{5}+6390 r^{4}+2590 r^{3}+5651 r^{2}+5910 r+2376}$	0
b_{5}	$\frac{12500 r^{2}+25000 r+9375}{4 r^{7}+108 r^{6}+1203 r^{5}+7125 r^{4}+24051 r^{3}+45807 r^{2}+44942 r+17160}$	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1+10 x+O\left(x^{6}\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1}\left(1+x+\frac{15 x^{2}}{14}+\frac{125 x^{3}}{126}+\frac{625 x^{4}}{792}+\frac{625 x^{5}}{1144}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+10 x+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1}\left(1+x+\frac{15 x^{2}}{14}+\frac{125 x^{3}}{126}+\frac{625 x^{4}}{792}+\frac{625 x^{5}}{1144}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+10 x+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=c_{1}\left(1+x+\frac{15 x^{2}}{14}+\frac{125 x^{3}}{126}+\frac{625 x^{4}}{792}+\frac{625 x^{5}}{1144}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+10 x+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}(1)
$$

Verification of solutions

$$
y=c_{1}\left(1+x+\frac{15 x^{2}}{14}+\frac{125 x^{3}}{126}+\frac{625 x^{4}}{792}+\frac{625 x^{5}}{1144}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1+10 x+O\left(x^{6}\right)\right)}{x^{\frac{3}{2}}}
$$

Verified OK.

20.6.1 Maple step by step solution

Let's solve
$2 y^{\prime \prime} x+(-10 x+5) y^{\prime}-5 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate $2 n d$ derivative
$y^{\prime \prime}=\frac{5 y}{2 x}+\frac{5(2 x-1) y^{\prime}}{2 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{5(2 x-1) y^{\prime}}{2 x}-\frac{5 y}{2 x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{5(2 x-1)}{2 x}, P_{3}(x)=-\frac{5}{2 x}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{5}{2}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$2 y^{\prime \prime} x+(-10 x+5) y^{\prime}-5 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r(3+2 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(2 k+5+2 r)-5 a_{k}(2 k+2 r+1)\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(3+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0,-\frac{3}{2}\right\}$
- \quad Each term in the series must be 0 , giving the recursion relation
$2\left(k+\frac{5}{2}+r\right)(k+1+r) a_{k+1}-10 a_{k}\left(k+r+\frac{1}{2}\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{5 a_{k}(2 k+2 r+1)}{(2 k+5+2 r)(k+1+r)}$
- Recursion relation for $r=0$

$$
a_{k+1}=\frac{5 a_{k}(2 k+1)}{(2 k+5)(k+1)}
$$

- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{5 a_{k}(2 k+1)}{(2 k+5)(k+1)}\right]$
- Recursion relation for $r=-\frac{3}{2}$; series terminates at $k=1$
$a_{k+1}=\frac{5 a_{k}(2 k-2)}{(2 k+2)\left(k-\frac{1}{2}\right)}$
- \quad Apply recursion relation for $k=0$
$a_{1}=10 a_{0}$
- Terminating series solution of the ODE for $r=-\frac{3}{2}$. Use reduction of order to find the second $y=a_{0} \cdot(1+10 x)$
- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+b_{0} \cdot(1+10 x), a_{1+k}=\frac{5 a_{k}(2 k+1)}{(2 k+5)(1+k)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        <- Kummer successful
    <- special function solution successful
    -> Trying to convert hypergeometric functions to elementary form...
    <- elementary form is not straightforward to achieve - returning special function solu
    <- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 36

```
Order:=6;
dsolve(2*x*diff(y(x),x$2)+5*(1-2*x)*diff (y (x),x)-5*y(x)=0,y(x),type='series',x=0);
y(x)=\frac{\mp@subsup{c}{1}{}(1+10x+\textrm{O}(\mp@subsup{x}{}{6}))}{\mp@subsup{x}{}{\frac{3}{2}}}+\mp@subsup{c}{2}{}(1+x+\frac{15}{14}\mp@subsup{x}{}{2}+\frac{125}{126}\mp@subsup{x}{}{3}+\frac{625}{792}\mp@subsup{x}{}{4}+\frac{625}{1144}\mp@subsup{x}{}{5}+\textrm{O}(\mp@subsup{x}{}{6}))
```

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 51
AsymptoticDSolveValue [2*x*y' $[\mathrm{x}]+5 *(1-2 * \mathrm{x}) * \mathrm{y}$ ' $[\mathrm{x}]-5 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow \frac{c_{2}(10 x+1)}{x^{3 / 2}}+c_{1}\left(\frac{625 x^{5}}{1144}+\frac{625 x^{4}}{792}+\frac{125 x^{3}}{126}+\frac{15 x^{2}}{14}+x+1\right)
$$

20.7 problem 7

20.7.1 Maple step by step solution

Internal problem ID [2980]
Internal file name [OUTPUT/2472_Sunday_June_05_2022_03_15_09_AM_84619757/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[_Lienard]
```

$$
x y^{\prime \prime}+y^{\prime}+y x=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x y^{\prime \prime}+y^{\prime}+y x=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =1
\end{aligned}
$$

Table 530: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=1$	
singularity	type

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x y^{\prime \prime}+y^{\prime}+y x=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0 \tag{2A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
$$

Or

$$
\left(x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{-1+r} r^{2}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{-1+r} r^{2}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{1}{(r+2)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{2}=-\frac{1}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(r+2)^{2}(r+4)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{1}{64}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$
a_{3}	0	0
a_{4}	$\frac{1}{(r+2)^{2}(r+4)^{2}}$	$\frac{1}{64}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$
a_{3}	0	0
a_{4}	$\frac{1}{(r+2)^{2}(r+4)^{2}}$	$\frac{1}{64}$
a_{5}	0	0

Using the above table, then the first solution $y_{1}(x)$ becomes

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots \\
& =1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=0$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=0)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	0	0	0	0
b_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$	$\frac{2}{(r+2)^{3}}$	$\frac{1}{4}$
b_{3}	0	0	0	0
b_{4}	$\frac{1}{(r+2)^{2}(r+4)^{2}}$	$\frac{1}{64}$	$\frac{-4 r-12}{(r+2)^{3}(r+4)^{3}}$	$-\frac{3}{128}$
b_{5}	0	0	0	0

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right)+c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right)+c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$y=c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right)+c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}+O\left(x^{6}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+O\left(x^{6}\right)\right)$
Verified OK.

20.7.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+y^{\prime}+y x=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}-y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+y=0$
\square
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=1\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators

$$
y^{\prime \prime} x+y^{\prime}+y x=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$

Rewrite ODE with series expansions

- Convert $x \cdot y$ to series expansion
$x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}$
- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}$
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$
$y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1) x^{k+r}$
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r^{2} x^{-1+r}+a_{1}(1+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+r+1)^{2}+a_{k-1}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r^{2}=0$
- Values of r that satisfy the indicial equation
$r=0$
- \quad Each term must be 0
$a_{1}(1+r)^{2}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k+1}(k+1)^{2}+a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+2}(k+2)^{2}+a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{a_{k}}{(k+2)^{2}}
$$

- Recursion relation for $r=0$

$$
a_{k+2}=-\frac{a_{k}}{(k+2)^{2}}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{(k+2)^{2}}, a_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 41

```
Order:=6;
dsolve(x*diff(y(x),x$2)+diff(y(x),x)+x*y(x)=0,y(x),type='series', x=0);
\[
y(x)=\left(c_{2} \ln (x)+c_{1}\right)\left(1-\frac{1}{4} x^{2}+\frac{1}{64} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\left(\frac{1}{4} x^{2}-\frac{3}{128} x^{4}+\mathrm{O}\left(x^{6}\right)\right) c_{2}
\]
```

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 60
AsymptoticDSolveValue[x*y''[x]+y'[x]+x*y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(\frac{x^{4}}{64}-\frac{x^{2}}{4}+1\right)+c_{2}\left(-\frac{3 x^{4}}{128}+\frac{x^{2}}{4}+\left(\frac{x^{4}}{64}-\frac{x^{2}}{4}+1\right) \log (x)\right)
$$

20.8 problem 8

Internal problem ID [2981]
Internal file name [OUTPUT/2473_Sunday_June_05_2022_03_15_13_AM_48290938/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
\left(4 x^{2}+1\right) y^{\prime \prime}-8 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{739}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{740}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{8 y}{4 x^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{32 y^{\prime} x^{2}-64 y x+8 y^{\prime}}{\left(4 x^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-\frac{128\left(4 y^{\prime} x^{2}-8 y x+y^{\prime}\right) x}{\left(4 x^{2}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{10240\left(x^{2}-\frac{1}{20}\right)\left(\left(x^{2}+\frac{1}{4}\right) y^{\prime}-2 y x\right)}{\left(4 x^{2}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\frac{245760\left(x^{2}-\frac{3}{20}\right)\left(\left(x^{2}+\frac{1}{4}\right) y^{\prime}-2 y x\right) x}{\left(4 x^{2}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=8 y(0) \\
& F_{1}=8 y^{\prime}(0) \\
& F_{2}=0 \\
& F_{3}=-128 y^{\prime}(0) \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(4 x^{2}+1\right) y(0)+\left(x+\frac{4}{3} x^{3}-\frac{16}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(4 x^{2}+1\right) y^{\prime \prime}-8 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(4 x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-8\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} 4 x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-8 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} 4 x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=0}^{\infty}\left(-8 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-8 a_{0}=0 \\
a_{2}=4 a_{0}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}-8 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{4 a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
4 n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-8 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{4(n-2) a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=0
$$

For $n=3$ the recurrence equation gives

$$
16 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{16 a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
40 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
72 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{64 a_{1}}{35}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+4 a_{0} x^{2}+\frac{4}{3} a_{1} x^{3}-\frac{16}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(4 x^{2}+1\right) a_{0}+\left(x+\frac{4}{3} x^{3}-\frac{16}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(4 x^{2}+1\right) c_{1}+\left(x+\frac{4}{3} x^{3}-\frac{16}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(4 x^{2}+1\right) y(0)+\left(x+\frac{4}{3} x^{3}-\frac{16}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(4 x^{2}+1\right) c_{1}+\left(x+\frac{4}{3} x^{3}-\frac{16}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(4 x^{2}+1\right) y(0)+\left(x+\frac{4}{3} x^{3}-\frac{16}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(4 x^{2}+1\right) c_{1}+\left(x+\frac{4}{3} x^{3}-\frac{16}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 29

```
Order:=6;
dsolve((1+4*x^2)*diff(y(x),x$2)-8*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(4 x^{2}+1\right) y(0)+\left(x+\frac{4}{3} x^{3}-\frac{16}{15} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 33
AsymptoticDSolveValue $\left[\left(1+4 * x^{\wedge} 2\right) * y\right.$ ' $\left.'[x]-8 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(4 x^{2}+1\right)+c_{2}\left(-\frac{16 x^{5}}{15}+\frac{4 x^{3}}{3}+x\right)
$$

20.9 problem 9

20.9.1 Maple step by step solution 3970

Internal problem ID [2982]
Internal file name [OUTPUT/2474_Sunday_June_05_2022_03_15_15_AM_1559149/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4 x^{2}-1}{4 x^{2}}
\end{aligned}
$$

Table 532: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{4 x^{2}-1}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}-\frac{1}{4}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-\frac{a_{n} x^{n+r}}{4}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-\frac{a_{0} x^{r}}{4}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-\frac{x^{r}}{4}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-\frac{1}{4}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sqrt{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}-\frac{a_{n}}{4}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+1)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{4}{4 r^{2}+16 r+15}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=-\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{1}{120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{120}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{120}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-\frac{1}{2}} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n}(n+r)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)+b_{n}\left(n-\frac{1}{2}\right)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{5}
\end{equation*}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}-4 n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{4}{4 r^{2}+16 r+15}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{2}=-\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{4}=\frac{1}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{24}$
b_{5}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =\sqrt{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)}{\sqrt{x}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}+O\left(x^{6}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)}{\sqrt{x}}
$$

Verified OK.

20.9.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=-\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-1}{4 x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(1+2 r)(-1+2 r) x^{r}+a_{1}(3+2 r)(1+2 r) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k}-\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-1+2 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}
$$

- \quad Each term must be 0
$a_{1}(3+2 r)(1+2 r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}\left(4 k^{2}+8 k r+4 r^{2}-1\right)+4 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-1\right)+4 a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+15}
$$

- Recursion relation for $r=-\frac{1}{2}$

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}
$$

- \quad Solution for $r=-\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0\right]
$$

- \quad Recursion relation for $r=\frac{1}{2}$

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}
$$

- \quad Solution for $r=\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{2+k}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0, b_{2+k}=-\frac{4 b_{k}}{4 k^{2}+20 k+24}, b_{1}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 35

```
Order:=6;
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,y(x),type='series', x=0)
```

$$
y(x)=\frac{c_{1}\left(1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}+\mathrm{O}\left(x^{6}\right)\right) x+c_{2}\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\mathrm{O}\left(x^{6}\right)\right)}{\sqrt{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 58
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[\mathrm{x}]+\mathrm{x} * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\left(\mathrm{x}^{\wedge} 2-1 / 4\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{7 / 2}}{24}-\frac{x^{3 / 2}}{2}+\frac{1}{\sqrt{x}}\right)+c_{2}\left(\frac{x^{9 / 2}}{120}-\frac{x^{5 / 2}}{6}+\sqrt{x}\right)
$$

20.10 problem 10

20.10.1 Maple step by step solution

3984
Internal problem ID [2983]
Internal file name [OUTPUT/2475_Sunday_June_05_2022_03_15_18_AM_47132089/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
4 x y^{\prime \prime}+3 y^{\prime}+3 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x y^{\prime \prime}+3 y^{\prime}+3 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{4 x} \\
& q(x)=\frac{3}{4 x}
\end{aligned}
$$

Table 534: Table $p(x), q(x)$ singularites.

$p(x)=\frac{3}{4 x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{3}{4 x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x y^{\prime \prime}+3 y^{\prime}+3 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives
$4\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+3\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+3\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n+r}\right)=0 \tag{2A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 3 a_{n} x^{n+r}=\sum_{n=1}^{\infty} 3 a_{n-1} x^{n+r-1}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2~B}\\
& +\left(\sum_{n=0}^{\infty} 3(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 3 a_{n-1} x^{n+r-1}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r-1} a_{n}(n+r)(n+r-1)+3(n+r) a_{n} x^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
4 x^{-1+r} a_{0} r(-1+r)+3 r a_{0} x^{-1+r}=0
$$

Or

$$
\left(4 x^{-1+r} r(-1+r)+3 r x^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
r x^{-1+r}(-1+4 r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r^{2}-r=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{4} \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
r x^{-1+r}(-1+4 r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{1}{4}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{4}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)+3 a_{n}(n+r)+3 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{3 a_{n-1}}{4 n^{2}+8 n r+4 r^{2}-n-r} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{3 a_{n-1}}{4 n^{2}+n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{4}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{3}{4 r^{2}+7 r+3}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
a_{1}=-\frac{3}{5}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{4 r^{2}+7 r+3}$	$-\frac{3}{5}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{9}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
a_{2}=\frac{1}{10}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{4 r^{2}+7 r+3}$	$-\frac{3}{5}$
a_{2}	$\frac{9}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)}$	$\frac{1}{10}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{27}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
a_{3}=-\frac{1}{130}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{4 r^{2}+7 r+3}$	$-\frac{3}{5}$
a_{2}	$\frac{9}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)}$	$\frac{1}{10}$
a_{3}	$-\frac{27}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)}$	$-\frac{1}{130}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{81}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)\left(4 r^{2}+31 r+60\right)}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
a_{4}=\frac{3}{8840}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{4 r^{2}+7 r+3}$	$-\frac{3}{5}$
a_{2}	$\frac{9}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)}$	$\frac{1}{10}$
a_{3}	$-\frac{27}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)}$	$-\frac{1}{130}$
a_{4}	$\frac{81}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)\left(4 r^{2}+31 r+60\right)}$	$\frac{3}{8840}$

For $n=5$, using the above recursive equation gives
$a_{5}=-\frac{243}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)\left(4 r^{2}+31 r+60\right)\left(4 r^{2}+39 r+95\right)}$
Which for the root $r=\frac{1}{4}$ becomes

$$
a_{5}=-\frac{3}{309400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{4 r^{2}+7 r+3}$	$-\frac{3}{5}$
a_{2}	$\frac{9}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)}$	$\frac{1}{10}$
a_{3}	$-\frac{27}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)}$	$-\frac{1}{130}$
a_{4}	$\frac{81}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)\left(4 r^{2}+31 r+60\right)}$	$\frac{3}{8840}$
a_{5}	$-\frac{243}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)\left(4 r^{2}+31 r+60\right)\left(4 r^{2}+39 r+95\right)}$	$-\frac{3}{309400}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{1}{4}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{1}{4}}\left(1-\frac{3 x}{5}+\frac{x^{2}}{10}-\frac{x^{3}}{130}+\frac{3 x^{4}}{8840}-\frac{3 x^{5}}{309400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
4 b_{n}(n+r)(n+r-1)+3(n+r) b_{n}+3 b_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{3 b_{n-1}}{4 n^{2}+8 n r+4 r^{2}-n-r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
b_{n}=-\frac{3 b_{n-1}}{n(4 n-1)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{3}{4 r^{2}+7 r+3}
$$

Which for the root $r=0$ becomes

$$
b_{1}=-1
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{4 r^{2}+7 r+3}$	-1

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{9}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)}
$$

Which for the root $r=0$ becomes

$$
b_{2}=\frac{3}{14}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{4 r^{2}+7 r+3}$	-1
b_{2}	$\frac{9}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)}$	$\frac{3}{14}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{27}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)}
$$

Which for the root $r=0$ becomes

$$
b_{3}=-\frac{3}{154}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{4 r^{2}+7 r+3}$	-1
b_{2}	$\frac{9}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)}$	$\frac{3}{14}$
b_{3}	$-\frac{27}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)}$	$-\frac{3}{154}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{81}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)\left(4 r^{2}+31 r+60\right)}
$$

Which for the root $r=0$ becomes

$$
b_{4}=\frac{3}{3080}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{4 r^{2}+7 r+3}$	-1
b_{2}	$\frac{9}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)}$	$\frac{3}{14}$
b_{3}	$-\frac{27}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)}$	$-\frac{3}{154}$
b_{4}	$\frac{81}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)\left(4 r^{2}+31 r+60\right)}$	$\frac{3}{3080}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=-\frac{243}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)\left(4 r^{2}+31 r+60\right)\left(4 r^{2}+39 r+95\right)}
$$

Which for the root $r=0$ becomes

$$
b_{5}=-\frac{9}{292600}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{4 r^{2}+7 r+3}$	-1
b_{2}	$\frac{9}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)}$	$\frac{3}{14}$
b_{3}	$-\frac{27}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)}$	$-\frac{3}{154}$
b_{4}	$\frac{81}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)\left(4 r^{2}+31 r+60\right)}$	$\frac{3}{3080}$
b_{5}	$-\frac{243}{\left(4 r^{2}+7 r+3\right)\left(4 r^{2}+15 r+14\right)\left(4 r^{2}+23 r+33\right)\left(4 r^{2}+31 r+60\right)\left(4 r^{2}+39 r+95\right)}$	$-\frac{9}{292600}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
& =1-x+\frac{3 x^{2}}{14}-\frac{3 x^{3}}{154}+\frac{3 x^{4}}{3080}-\frac{9 x^{5}}{292600}+O\left(x^{6}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{1}{4}}\left(1-\frac{3 x}{5}+\frac{x^{2}}{10}-\frac{x^{3}}{130}+\frac{3 x^{4}}{8840}-\frac{3 x^{5}}{309400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-x+\frac{3 x^{2}}{14}-\frac{3 x^{3}}{154}+\frac{3 x^{4}}{3080}-\frac{9 x^{5}}{292600}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{1}{4}}\left(1-\frac{3 x}{5}+\frac{x^{2}}{10}-\frac{x^{3}}{130}+\frac{3 x^{4}}{8840}-\frac{3 x^{5}}{309400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-x+\frac{3 x^{2}}{14}-\frac{3 x^{3}}{154}+\frac{3 x^{4}}{3080}-\frac{9 x^{5}}{292600}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{\frac{1}{4}}\left(1-\frac{3 x}{5}+\frac{x^{2}}{10}-\frac{x^{3}}{130}+\frac{3 x^{4}}{8840}-\frac{3 x^{5}}{309400}+O\left(x^{6}\right)\right) \tag{1}\\
& +c_{2}\left(1-x+\frac{3 x^{2}}{14}-\frac{3 x^{3}}{154}+\frac{3 x^{4}}{3080}-\frac{9 x^{5}}{292600}+O\left(x^{6}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\frac{1}{4}}\left(1-\frac{3 x}{5}+\frac{x^{2}}{10}-\frac{x^{3}}{130}+\frac{3 x^{4}}{8840}-\frac{3 x^{5}}{309400}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(1-x+\frac{3 x^{2}}{14}-\frac{3 x^{3}}{154}+\frac{3 x^{4}}{3080}-\frac{9 x^{5}}{292600}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verified OK.

20.10.1 Maple step by step solution

Let's solve
$4 y^{\prime \prime} x+3 y^{\prime}+3 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{3 y}{4 x}-\frac{3 y^{\prime}}{4 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{3 y^{\prime}}{4 x}+\frac{3 y}{4 x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{3}{4 x}, P_{3}(x)=\frac{3}{4 x}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{3}{4}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$4 y^{\prime \prime} x+3 y^{\prime}+3 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$

$$
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r(-1+4 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(4 k+3+4 r)+3 a_{k}\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(-1+4 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{0, \frac{1}{4}\right\}
$$

- Each term in the series must be 0, giving the recursion relation
$4(k+1+r)\left(k+\frac{3}{4}+r\right) a_{k+1}+3 a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{3 a_{k}}{(k+1+r)(4 k+3+4 r)}
$$

- Recursion relation for $r=0$

$$
a_{k+1}=-\frac{3 a_{k}}{(k+1)(4 k+3)}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{3 a_{k}}{(k+1)(4 k+3)}\right]
$$

- Recursion relation for $r=\frac{1}{4}$
$a_{k+1}=-\frac{3 a_{k}}{\left(k+\frac{5}{4}\right)(4 k+4)}$
- \quad Solution for $r=\frac{1}{4}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{4}}, a_{k+1}=-\frac{3 a_{k}}{\left(k+\frac{5}{4}\right)(4 k+4)}\right]$
- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{4}}\right), a_{1+k}=-\frac{3 a_{k}}{(1+k)(4 k+3)}, b_{1+k}=-\frac{3 b_{k}}{\left(k+\frac{5}{4}\right)(4 k+4)}\right]
$$

Maple trace
$`$ Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [$x i=0$, eta= $F(x)$]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 44

```
Order:=6;
dsolve(4*x*diff(y(x),x$2)+3*diff (y (x), x)+3*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{\frac{1}{4}}\left(1-\frac{3}{5} x+\frac{1}{10} x^{2}-\frac{1}{130} x^{3}+\frac{3}{8840} x^{4}-\frac{3}{309400} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(1-x+\frac{3}{14} x^{2}-\frac{3}{154} x^{3}+\frac{3}{3080} x^{4}-\frac{9}{292600} x^{5}+\mathrm{O}\left(x^{6}\right)\right)
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 83
AsymptoticDSolveValue[4*x*y' ' $[\mathrm{x}]+3 * y$ ' $[\mathrm{x}]+3 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1} \sqrt[4]{x}\left(-\frac{3 x^{5}}{309400}+\frac{3 x^{4}}{8840}-\frac{x^{3}}{130}+\frac{x^{2}}{10}-\frac{3 x}{5}+1\right) \\
& +c_{2}\left(-\frac{9 x^{5}}{292600}+\frac{3 x^{4}}{3080}-\frac{3 x^{3}}{154}+\frac{3 x^{2}}{14}-x+1\right)
\end{aligned}
$$

20.11 problem 11

20.11.1 Maple step by step solution

Internal problem ID [2984]
Internal file name [OUTPUT/2476_Sunday_June_05_2022_03_15_21_AM_73552895/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+\frac{3 x y^{\prime}}{2}-\frac{y(x+1)}{2}=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\frac{3 x y^{\prime}}{2}+\left(-\frac{x}{2}-\frac{1}{2}\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{3}{2 x} \\
q(x) & =-\frac{x+1}{2 x^{2}}
\end{aligned}
$$

Table 536: Table $p(x), q(x)$ singularites.

$p(x)=\frac{3}{2 x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{x+1}{2 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\frac{3 x y^{\prime}}{2}+\left(-\frac{x}{2}-\frac{1}{2}\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\frac{3 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)}{2}+\left(-\frac{x}{2}-\frac{1}{2}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} \frac{3 x^{n+r} a_{n}(n+r)}{2}\right) \tag{2A}\\
& +\sum_{n=0}^{\infty}\left(-\frac{x^{1+n+r} a_{n}}{2}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{2}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-\frac{x^{1+n+r} a_{n}}{2}\right)=\sum_{n=1}^{\infty}\left(-\frac{a_{n-1} x^{n+r}}{2}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} \frac{3 x^{n+r} a_{n}(n+r)}{2}\right) \tag{2B}\\
& +\sum_{n=1}^{\infty}\left(-\frac{a_{n-1} x^{n+r}}{2}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{2}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+\frac{3 x^{n+r} a_{n}(n+r)}{2}-\frac{a_{n} x^{n+r}}{2}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+\frac{3 x^{r} a_{0} r}{2}-\frac{a_{0} x^{r}}{2}=0
$$

Or

$$
\left(x^{r} r(-1+r)+\frac{3 x^{r} r}{2}-\frac{x^{r}}{2}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\frac{\left(2 r^{2}+r-1\right) x^{r}}{2}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+\frac{1}{2} r-\frac{1}{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\frac{\left(2 r^{2}+r-1\right) x^{r}}{2}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{3}{2}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+\frac{3 a_{n}(n+r)}{2}-\frac{a_{n-1}}{2}-\frac{a_{n}}{2}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}+4 n r+2 r^{2}+n+r-1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n(2 n+3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{1}{2 r^{2}+5 r+2}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{1}=\frac{1}{5}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{2 r^{2}+5 r+2}$	$\frac{1}{5}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{4 r^{4}+28 r^{3}+67 r^{2}+63 r+18}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=\frac{1}{70}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{2 r^{2}+5 r+2}$	$\frac{1}{5}$
a_{2}	$\frac{1}{4 r^{4}+28 r^{3}+67 r^{2}+63 r+18}$	$\frac{1}{70}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{1}{8 r^{6}+108 r^{5}+578 r^{4}+1557 r^{3}+2195 r^{2}+1494 r+360}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{3}=\frac{1}{1890}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{2 r^{2}+5 r+2}$	$\frac{1}{5}$
a_{2}	$\frac{1}{4 r^{4}+28 r^{3}+67 r^{2}+63 r+18}$	$\frac{1}{70}$
a_{3}	$\frac{1}{8 r^{6}+108 r^{5}+578 r^{4}+1557 r^{3}+2195 r^{2}+1494 r+360}$	$\frac{1}{1890}$

For $n=4$, using the above recursive equation gives
$a_{4}=\frac{1}{16 r^{8}+352 r^{7}+3272 r^{6}+16720 r^{5}+51089 r^{4}+94798 r^{3}+102943 r^{2}+58410 r+12600}$
Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{1}{83160}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{1}{2 r^{2}+5 r+2}$	$\frac{1}{5}$
a_{2}	$\frac{1}{4 r^{4}+28 r^{3}+67 r^{2}+63 r+18}$	$\frac{1}{70}$
a_{3}	$\frac{1}{8 r^{6}+108 r^{5}+578 r^{4}+1557 r^{3}+2195 r^{2}+1494 r+360}$	$\frac{1}{1890}$
a_{4}	$\frac{1}{16 r^{8}+352 r^{7}+3272 r^{6}+16720 r^{5}+51089 r^{4}+94798 r^{3}+102943 r^{2}+58410 r+12600}$	$\frac{1}{83160}$

For $n=5$, using the above recursive equation gives
$a_{5}=\frac{1}{32 r^{10}+1040 r^{9}+14800 r^{8}+121160 r^{7}+629986 r^{6}+2165345 r^{5}+4955450 r^{4}+7397715 r^{3}+6810732}$
Which for the root $r=\frac{1}{2}$ becomes

$$
a_{5}=\frac{1}{5405400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	$\frac{1}{2}$
a_{1}	$\frac{1}{2 r^{2}+5 r+2}$	$\frac{1}{5}$
a_{2}	$\frac{1}{4 r^{4}+28 r^{3}+67 r^{2}+63 r+18}$	$\frac{1}{70}$
a_{3}	$\frac{1}{8 r^{6}+108 r^{5}+578 r^{4}+1557 r^{3}+2195 r^{2}+1494 r+360}$	$\frac{1}{1890}$
a_{4}	$\frac{1}{16 r^{8}+352 r^{7}+3272 r^{6}+16720 r^{5}+51089 r^{4}+94798 r^{3}+102943 r^{2}+58410 r+12600}$	
a_{5}	$\frac{1}{32 r^{10}+1040 r^{9}+14800 r^{8}+121160 r^{7}+629986 r^{6}+2165345 r^{5}+4955450 r^{4}+7397715 r^{3}+6810732 r^{2}+3418740 r+680400}$	$\frac{1}{5405400}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =\sqrt{x}\left(1+\frac{x}{5}+\frac{x^{2}}{70}+\frac{x^{3}}{1890}+\frac{x^{4}}{83160}+\frac{x^{5}}{5405400}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+\frac{3 b_{n}(n+r)}{2}-\frac{b_{n-1}}{2}-\frac{b_{n}}{2}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}}{2 n^{2}+4 n r+2 r^{2}+n+r-1} \tag{4}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-1}}{n(2 n-3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{1}{2 r^{2}+5 r+2}
$$

Which for the root $r=-1$ becomes

$$
b_{1}=-1
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{2 r^{2}+5 r+2}$	-1

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{1}{4 r^{4}+28 r^{3}+67 r^{2}+63 r+18}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=-\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{2 r^{2}+5 r+2}$	-1
b_{2}	$\frac{1}{4 r^{4}+28 r^{3}+67 r^{2}+63 r+18}$	$-\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{1}{8 r^{6}+108 r^{5}+578 r^{4}+1557 r^{3}+2195 r^{2}+1494 r+360}
$$

Which for the root $r=-1$ becomes

$$
b_{3}=-\frac{1}{18}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{2 r^{2}+5 r+2}$	-1
b_{2}	$\frac{1}{4 r^{4}+28 r^{3}+67 r^{2}+63 r+18}$	1
b_{3}	$\frac{1}{8 r^{6}+108 r^{5}+578 r^{4}+1557 r^{3}+2195 r^{2}+1494 r+360}$	$-\frac{1}{2}$

For $n=4$, using the above recursive equation gives
$b_{4}=\frac{1}{16 r^{8}+352 r^{7}+3272 r^{6}+16720 r^{5}+51089 r^{4}+94798 r^{3}+102943 r^{2}+58410 r+12600}$
Which for the root $r=-1$ becomes

$$
b_{4}=-\frac{1}{360}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{2 r^{2}+5 r+2}$	-1
b_{2}	$\frac{1}{4 r^{4}+28 r^{3}+67 r^{2}+63 r+18}$	
b_{3}	$\frac{1}{8 r^{6}+108 r^{5}+578 r^{4}+1557 r^{3}+2195 r^{2}+1494 r+360}$	$-\frac{1}{2}$
b_{4}	$\frac{1}{16 r^{8}+352 r^{7}+3272 r^{6}+16720 r^{5}+51089 r^{4}+94798 r^{3}+102943 r^{2}+58410 r+12600}$	$-\frac{1}{18}$

For $n=5$, using the above recursive equation gives
$b_{5}=\frac{1}{32 r^{10}+1040 r^{9}+14800 r^{8}+121160 r^{7}+629986 r^{6}+2165345 r^{5}+4955450 r^{4}+7397715 r^{3}+6810732}$
Which for the root $r=-1$ becomes

$$
b_{5}=-\frac{1}{12600}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{1}{2 r^{2}+5 r+2}$	-1
b_{2}	$\frac{1}{4 r^{4}+28 r^{3}+67 r^{2}+63 r+18}$	1
b_{3}	$\frac{1}{8 r^{6}+108 r^{5}+578 r^{4}+1557 r^{3}+2195 r^{2}+1494 r+360}$	$-\frac{1}{2}$
b_{4}	$\frac{1}{16 r^{8}+352 r^{7}+3272 r^{6}+16720 r^{5}+51089 r^{4}+94798 r^{3}+102943 r^{2}+58410 r+12600}$	$-\frac{1}{18}$
b_{5}	$\frac{1}{32 r^{10}+1040 r^{9}+14800 r^{8}+121160 r^{7}+629986 r^{6}+2165345 r^{5}+4955450 r^{4}+7397715 r^{3}+6810732 r^{2}+3418740 r+680400}$	$-\frac{1}{12600}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =\sqrt{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots\right) \\
& =\frac{1-x-\frac{x^{2}}{2}-\frac{x^{3}}{18}-\frac{x^{4}}{360}-\frac{x^{5}}{12600}+O\left(x^{6}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(1+\frac{x}{5}+\frac{x^{2}}{70}+\frac{x^{3}}{1890}+\frac{x^{4}}{83160}+\frac{x^{5}}{5405400}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-x-\frac{x^{2}}{2}-\frac{x^{3}}{18}-\frac{x^{4}}{360}-\frac{x^{5}}{12600}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} \sqrt{x}\left(1+\frac{x}{5}+\frac{x^{2}}{70}+\frac{x^{3}}{1890}+\frac{x^{4}}{83160}+\frac{x^{5}}{5405400}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-x-\frac{x^{2}}{2}-\frac{x^{3}}{18}-\frac{x^{4}}{360}-\frac{x^{5}}{12600}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \sqrt{x}\left(1+\frac{x}{5}+\frac{x^{2}}{70}+\frac{x^{3}}{1890}+\frac{x^{4}}{83160}+\frac{x^{5}}{5405400}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-x-\frac{x^{2}}{2}-\frac{x^{3}}{18}-\frac{x^{4}}{360}-\frac{x^{5}}{12600}+O\left(x^{6}\right)\right)}{x} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1+\frac{x}{5}+\frac{x^{2}}{70}+\frac{x^{3}}{1890}+\frac{x^{4}}{83160}+\frac{x^{5}}{5405400}+O\left(x^{6}\right)\right) \\
& +\frac{c_{2}\left(1-x-\frac{x^{2}}{2}-\frac{x^{3}}{18}-\frac{x^{4}}{360}-\frac{x^{5}}{12600}+O\left(x^{6}\right)\right)}{x}
\end{aligned}
$$

Verified OK.

20.11.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\frac{3 x y^{\prime}}{2}+\left(-\frac{x}{2}-\frac{1}{2}\right) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{3 y^{\prime}}{2 x}+\frac{(x+1) y}{2 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{3 y^{\prime}}{2 x}-\frac{(x+1) y}{2 x^{2}}=0$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions
$\left[P_{2}(x)=\frac{3}{2 x}, P_{3}(x)=-\frac{x+1}{2 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{3}{2}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{2}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$2 x^{2} y^{\prime \prime}+3 x y^{\prime}+(-x-1) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)(-1+2 r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(2 k+2 r-1)-a_{k-1}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-1+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-1, \frac{1}{2}\right\}$
- Each term in the series must be 0 , giving the recursion relation
$2\left(k+r-\frac{1}{2}\right)(k+r+1) a_{k}-a_{k-1}=0$
- \quad Shift index using $k->k+1$
$2\left(k+\frac{1}{2}+r\right)(k+2+r) a_{k+1}-a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}}{(2 k+1+2 r)(k+2+r)}
$$

- \quad Recursion relation for $r=-1$

$$
a_{k+1}=\frac{a_{k}}{(2 k-1)(k+1)}
$$

- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+1}=\frac{a_{k}}{(2 k-1)(k+1)}\right]
$$

- \quad Recursion relation for $r=\frac{1}{2}$

$$
a_{k+1}=\frac{a_{k}}{(2 k+2)\left(k+\frac{5}{2}\right)}
$$

- \quad Solution for $r=\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}}{(2 k+2)\left(k+\frac{5}{2}\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{1+k}=\frac{a_{k}}{(2 k-1)(1+k)}, b_{1+k}=\frac{b_{k}}{(2+2 k)\left(k+\frac{5}{2}\right)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 47

```
Order:=6;
dsolve(x^2*diff (y(x),x$2)+3/2*x*diff(y(x),x)-1/2*(1+x)*y(x)=0,y(x),type='series',x=0);
y(x)
= c
```

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 86

$$
\begin{aligned}
y(x) \rightarrow & c_{1} \sqrt{x}\left(\frac{x^{5}}{5405400}+\frac{x^{4}}{83160}+\frac{x^{3}}{1890}+\frac{x^{2}}{70}+\frac{x}{5}+1\right) \\
& +\frac{c_{2}\left(-\frac{x^{5}}{12600}-\frac{x^{4}}{360}-\frac{x^{3}}{18}-\frac{x^{2}}{2}-x+1\right)}{x}
\end{aligned}
$$

20.12 problem 12

Internal problem ID [2985]
Internal file name [OUTPUT/2477_Sunday_June_05_2022_03_15_26_AM_26802/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-x(-x+2) y^{\prime}+\left(x^{2}+2\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(x^{2}-2 x\right) y^{\prime}+\left(x^{2}+2\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{x-2}{x} \\
& q(x)=\frac{x^{2}+2}{x^{2}}
\end{aligned}
$$

Table 538: Table $p(x), q(x)$ singularites.

$p(x)=\frac{x-2}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{x^{2}+2}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(x^{2}-2 x\right) y^{\prime}+\left(x^{2}+2\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(x^{2}-2 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}+2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-2 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} x^{n+r+2} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-2 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-2 x^{n+r} a_{n}(n+r)+2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-2 x^{r} a_{0} r+2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-2 x^{r} r+2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-3 r+2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-3 r+2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-3 r+2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{1+n}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=-\frac{1}{-1+r}
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)-2 a_{n}(n+r)+a_{n-2}+2 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{n a_{n-1}+r a_{n-1}+a_{n-2}-a_{n-1}}{n^{2}+2 n r+r^{2}-3 n-3 r+2} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=\frac{-n a_{n-1}-a_{n-2}-a_{n-1}}{n(1+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{-1+r}$	-1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{2}{r^{3}-r}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{1}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{-1+r}$	-1
a_{2}	$\frac{2}{r^{3}-r}$	$\frac{1}{3}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{r^{2}-r-4}{(r+2)(1+r)^{2} r(-1+r)}
$$

Which for the root $r=2$ becomes

$$
a_{3}=-\frac{1}{36}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{-1+r}$	-1
a_{2}	$\frac{2}{r^{3}-r}$	$\frac{1}{3}$
a_{3}	$\frac{r^{2}-r-4}{(r+2)(1+r)^{2} r(-1+r)}$	$-\frac{1}{36}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{-r^{3}-4 r^{2}+r+8}{(3+r)(r+2)^{2}(-1+r)(1+r)^{2} r}
$$

Which for the root $r=2$ becomes

$$
a_{4}=-\frac{7}{720}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{-1+r}$	-1
a_{2}	$\frac{2}{r^{3}-r}$	$\frac{1}{3}$
a_{3}	$\frac{r^{2}-r-4}{(r+2)(1+r)^{2} r(-1+r)}$	$-\frac{1}{36}$
a_{4}	$\frac{-r^{3}-4 r^{2}+r+8}{(3+r)(r+2)^{2}(-1+r)(1+r)^{2} r}$	$-\frac{7}{720}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{4 r^{3}+18 r^{2}+14 r-8}{(3+r)^{2}(r+2)^{2}(-1+r)(1+r)^{2} r(r+4)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=\frac{31}{10800}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{-1+r}$	-1
a_{2}	$\frac{2}{r^{3}-r}$	$\frac{1}{3}$
a_{3}	$\frac{r^{2}-r-4}{(r+2)(1+r)^{2} r(-1+r)}$	$-\frac{1}{36}$
a_{4}	$\frac{-r^{3}-4{ }^{2}+r+8}{(3+r)(r+2)^{2}(-1+r)(1+r)^{2} r}$	$-\frac{7}{720}$
a_{5}	$\frac{4 r^{3}+18 r^{2}+14 r-8}{(3+r)^{2}(r+2)^{2}(-1+r)(1+r)^{2} r(r+4)}$	$\frac{31}{10800}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(1-x+\frac{x^{2}}{3}-\frac{x^{3}}{36}-\frac{7 x^{4}}{720}+\frac{31 x^{5}}{10800}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =-\frac{1}{-1+r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{1}{-1+r} & =\lim _{r \rightarrow 1}-\frac{1}{-1+r} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+\left(x^{2}-2 x\right) y^{\prime}+\left(x^{2}+2\right) y=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\left(x^{2}-2 x\right)\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +\left(x^{2}+2\right)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)+\left(x^{2}-2 x\right) y_{1}^{\prime}(x)+\left(x^{2}+2\right) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right. \\
& \left.+\frac{\left(x^{2}-2 x\right) y_{1}(x)}{x}\right) C+x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +\left(x^{2}-2 x\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(x^{2}+2\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x^{2} y_{1}^{\prime \prime}(x)+\left(x^{2}-2 x\right) y_{1}^{\prime}(x)+\left(x^{2}+2\right) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+\frac{\left(x^{2}-2 x\right) y_{1}(x)}{x}\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +\left(x^{2}-2 x\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(x^{2}+2\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x+(x-3)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& +\left(x^{2}-2 x\right)\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right)+\left(x^{2}+2\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=2$ and $r_{2}=1$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}(n+2)\right) x+(x-3)\left(\sum_{n=0}^{\infty} a_{n} x^{n+2}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(1+n) n\right) x^{2}+\left(x^{2}-2 x\right)\left(\sum_{n=0}^{\infty} x^{n} b_{n}(1+n)\right) \tag{10}\\
& +\left(x^{2}+2\right)\left(\sum_{n=0}^{\infty} b_{n} x^{1+n}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(n+2)\right)+\left(\sum_{n=0}^{\infty} C x^{n+3} a_{n}\right)+\sum_{n=0}^{\infty}\left(-3 C x^{n+2} a_{n}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} n x^{1+n} b_{n}(1+n)\right)+\left(\sum_{n=0}^{\infty} x^{n+2} b_{n}(1+n)\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-2 x^{1+n} b_{n}(1+n)\right)+\left(\sum_{n=0}^{\infty} x^{n+3} b_{n}\right)+\left(\sum_{n=0}^{\infty} 2 b_{n} x^{1+n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $1+n$ in each summation term. Going over each summation term above with power of x in it which is not already x^{1+n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(n+2) & =\sum_{n=1}^{\infty} 2 C a_{n-1}(1+n) x^{1+n} \\
\sum_{n=0}^{\infty} C x^{n+3} a_{n} & =\sum_{n=2}^{\infty} C a_{n-2} x^{1+n} \\
\sum_{n=0}^{\infty}\left(-3 C x^{n+2} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-3 C a_{n-1} x^{1+n}\right) \\
\sum_{n=0}^{\infty} x^{n+2} b_{n}(1+n) & =\sum_{n=1}^{\infty} b_{n-1} n x^{1+n} \\
\sum_{n=0}^{\infty} x^{n+3} b_{n} & =\sum_{n=2}^{\infty} b_{n-2} x^{1+n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $1+n$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} 2 C a_{n-1}(1+n) x^{1+n}\right)+\left(\sum_{n=2}^{\infty} C a_{n-2} x^{1+n}\right)+\sum_{n=1}^{\infty}\left(-3 C a_{n-1} x^{1+n}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} n x^{1+n} b_{n}(1+n)\right)+\left(\sum_{n=1}^{\infty} b_{n-1} n x^{1+n}\right) \tag{2B}\\
& \quad+\sum_{n=0}^{\infty}\left(-2 x^{1+n} b_{n}(1+n)\right)+\left(\sum_{n=2}^{\infty} b_{n-2} x^{1+n}\right)+\left(\sum_{n=0}^{\infty} 2 b_{n} x^{1+n}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=N$, where $N=1$ which is the difference between the two roots, we are free to choose $b_{1}=0$. Hence for $n=1$, Eq (2B) gives

$$
C+1=0
$$

Which is solved for C. Solving for C gives

$$
C=-1
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{0}+3 a_{1}\right) C+b_{0}+2 b_{1}+2 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
3+2 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-\frac{3}{2}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{1}+5 a_{2}\right) C+b_{1}+3 b_{2}+6 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{31}{6}+6 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=\frac{31}{36}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{2}+7 a_{3}\right) C+b_{2}+4 b_{3}+12 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{65}{36}+12 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{65}{432}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{3}+9 a_{4}\right) C+b_{3}+5 b_{4}+20 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{121}{540}+20 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=-\frac{121}{10800}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-1$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & (-1)\left(x^{2}\left(1-x+\frac{x^{2}}{3}-\frac{x^{3}}{36}-\frac{7 x^{4}}{720}+\frac{31 x^{5}}{10800}+O\left(x^{6}\right)\right)\right) \ln (x) \\
& +x\left(1-\frac{3 x^{2}}{2}+\frac{31 x^{3}}{36}-\frac{65 x^{4}}{432}-\frac{121 x^{5}}{10800}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}\left(1-x+\frac{x^{2}}{3}-\frac{x^{3}}{36}-\frac{7 x^{4}}{720}+\frac{31 x^{5}}{10800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left((-1)\left(x^{2}\left(1-x+\frac{x^{2}}{3}-\frac{x^{3}}{36}-\frac{7 x^{4}}{720}+\frac{31 x^{5}}{10800}+O\left(x^{6}\right)\right)\right) \ln (x)\right. \\
& \left.+x\left(1-\frac{3 x^{2}}{2}+\frac{31 x^{3}}{36}-\frac{65 x^{4}}{432}-\frac{121 x^{5}}{10800}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(1-x+\frac{x^{2}}{3}-\frac{x^{3}}{36}-\frac{7 x^{4}}{720}+\frac{31 x^{5}}{10800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-x^{2}\left(1-x+\frac{x^{2}}{3}-\frac{x^{3}}{36}-\frac{7 x^{4}}{720}+\frac{31 x^{5}}{10800}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+x\left(1-\frac{3 x^{2}}{2}+\frac{31 x^{3}}{36}-\frac{65 x^{4}}{432}-\frac{121 x^{5}}{10800}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{2}\left(1-x+\frac{x^{2}}{3}-\frac{x^{3}}{36}-\frac{7 x^{4}}{720}+\frac{31 x^{5}}{10800}+O\left(x^{6}\right)\right) \\
+ & c_{2}\left(-x^{2}\left(1-x+\frac{x^{2}}{3}-\frac{x^{3}}{36}-\frac{7 x^{4}}{720}+\frac{31 x^{5}}{10800}+O\left(x^{6}\right)\right) \ln (x)\right. \tag{1}\\
& \left.+x\left(1-\frac{3 x^{2}}{2}+\frac{31 x^{3}}{36}-\frac{65 x^{4}}{432}-\frac{121 x^{5}}{10800}+O\left(x^{6}\right)\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{2}\left(1-x+\frac{x^{2}}{3}-\frac{x^{3}}{36}-\frac{7 x^{4}}{720}+\frac{31 x^{5}}{10800}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-x^{2}\left(1-x+\frac{x^{2}}{3}-\frac{x^{3}}{36}-\frac{7 x^{4}}{720}+\frac{31 x^{5}}{10800}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+x\left(1-\frac{3 x^{2}}{2}+\frac{31 x^{3}}{36}-\frac{65 x^{4}}{432}-\frac{121 x^{5}}{10800}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Whittaker successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 65

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*(2-x)*diff (y(x),x)+(2+x^2)*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)=\left(c_{1} x(1-x\right. & \left.+\frac{1}{3} x^{2}-\frac{1}{36} x^{3}-\frac{7}{720} x^{4}+\frac{31}{10800} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{2}\left(\ln (x)\left(-x+x^{2}-\frac{1}{3} x^{3}+\frac{1}{36} x^{4}+\frac{7}{720} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right. \\
& \left.\left.+\left(1-x-\frac{1}{2} x^{2}+\frac{19}{36} x^{3}-\frac{53}{432} x^{4}-\frac{1}{675} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right)\right) x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 85
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime}\right.$ ' $\left.[x]-x *(2-x) * y '[x]+\left(2+x^{\wedge} 2\right) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{1}{36} x^{2}\left(x^{3}-12 x^{2}+36 x-36\right) \log (x)-\frac{1}{432} x\left(65 x^{4}-372 x^{3}+648 x^{2}-432\right)\right) \\
& +c_{2}\left(-\frac{7 x^{6}}{720}-\frac{x^{5}}{36}+\frac{x^{4}}{3}-x^{3}+x^{2}\right)
\end{aligned}
$$

20.13 problem 13

20.13.1 Maple step by step solution

Internal problem ID [2986]
Internal file name [OUTPUT/2478_Sunday_June_05_2022_03_15_31_AM_15359822/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y(x+1)=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4 x+4}{x^{2}}
\end{aligned}
$$

Table 539: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{3}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{4 x+4}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& \quad-3 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(4 x+4)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n}=\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& \quad+\left(\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-3 x^{n+r} a_{n}(n+r)+4 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-3 x^{r} a_{0} r+4 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-3 x^{r} r+4 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(r-2)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(r-2)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(r-2)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=2$, Eqs (1A,1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+2}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-3 a_{n}(n+r)+4 a_{n-1}+4 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-1}}{n^{2}+2 n r+r^{2}-4 n-4 r+4} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{4}{(-1+r)^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{1}=-4
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(-1+r)^{2}}$	-4

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{16}{(-1+r)^{2} r^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{2}=4
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(-1+r)^{2}}$	-4
a_{2}	$\frac{16}{(-1+r)^{2} r^{2}}$	4

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{3}=-\frac{16}{9}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(-1+r)^{2}}$	-4
a_{2}	$\frac{16}{(-1+r)^{2} r^{2}}$	4
a_{3}	$-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}$	$-\frac{16}{9}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{256}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{4}{9}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(-1+r)^{2}}$	-4
a_{2}	$\frac{16}{(-1+r)^{2} r^{2}}$	4
a_{3}	$-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}$	$-\frac{16}{9}$
a_{4}	$\frac{256}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}}$	$\frac{4}{9}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1024}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(3+r)^{2}}
$$

Which for the root $r=2$ becomes

$$
a_{5}=-\frac{16}{225}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(-1+r)^{2}}$	-4
a_{2}	$\frac{16}{(-1+r)^{2} r^{2}}$	4
a_{3}	$-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}$	$-\frac{16}{9}$
a_{4}	$\frac{256}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}}$	$\frac{4}{9}$
a_{5}	$-\frac{1024}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(3+r)^{2}}$	$-\frac{16}{225}$

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=2$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=2)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$-\frac{4}{(-1+r)^{2}}$	-4	$\frac{8}{(-1+r)^{3}}$	8
b_{2}	$\frac{16}{(-1+r)^{2} r^{2}}$	4	$\frac{-64 r+32}{(-1+r)^{3} r^{3}}$	-12
b_{3}	$-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}$	$-\frac{16}{9}$	$\frac{384 r^{2}-128}{(-1+r)^{3} r^{3}(r+1)^{3}}$	$\frac{176}{27}$
b_{4}	$\frac{256}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}}$	$\frac{4}{9}$	$\frac{-2048 r^{3}-3072 r^{2}+1024 r+1024}{(-1+r)^{3} r^{3}(r+1)^{3}(r+2)^{3}}$	$-\frac{50}{27}$
b_{5}	$-\frac{1024}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(3+r)^{2}}$	$-\frac{16}{225}$	$\frac{10240 r^{4}+40960 r^{3}+30720 r^{2}-20480 r-12288}{(-1+r)^{3} r^{3}(r+1)^{3}(r+2)^{3}(3+r)^{3}}$	$\frac{1096}{3375}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6} \ldots \\
= & x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+O\left(x^{6}\right)\right) \ln (x) \\
& +x^{2}\left(-12 x^{2}+8 x+\frac{176 x^{3}}{27}-\frac{50 x^{4}}{27}+\frac{1096 x^{5}}{3375}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)= \\
& \qquad \begin{array}{c}
c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= \\
\quad c_{1} x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+O\left(x^{6}\right)\right) \\
\\
\quad+c_{2}\left(x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+O\left(x^{6}\right)\right) \ln (x)\right. \\
\left.\quad+x^{2}\left(-12 x^{2}+8 x+\frac{176 x^{3}}{27}-\frac{50 x^{4}}{27}+\frac{1096 x^{5}}{3375}+O\left(x^{6}\right)\right)\right)
\end{array}
\end{aligned}
$$

Hence the final solution is

$$
\left.\left.\begin{array}{rl}
y= & y_{h} \\
= & c_{1} x^{2}\left(4 x^{2}-4 x\right.
\end{array}\right)+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+O\left(x^{6}\right)\right) .
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+O\left(x^{6}\right)\right) \ln (x)\right. \tag{1}\\
& \left.+x^{2}\left(-12 x^{2}+8 x+\frac{176 x^{3}}{27}-\frac{50 x^{4}}{27}+\frac{1096 x^{5}}{3375}+O\left(x^{6}\right)\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& y=c_{1} x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+O\left(x^{6}\right)\right) \ln (x)\right. \\
& \left.+x^{2}\left(-12 x^{2}+8 x+\frac{176 x^{3}}{27}-\frac{50 x^{4}}{27}+\frac{1096 x^{5}}{3375}+O\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Verified OK.

20.13.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{3 y^{\prime}}{x}-\frac{4(x+1) y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{3 y^{\prime}}{x}+\frac{4(x+1) y}{x^{2}}=0$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions
$\left[P_{2}(x)=-\frac{3}{x}, P_{3}(x)=\frac{4(x+1)}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-3$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=4$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(-2+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r-2)^{2}+4 a_{k-1}\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation $(-2+r)^{2}=0$
- Values of r that satisfy the indicial equation
$r=2$
- Each term in the series must be 0, giving the recursion relation

$$
a_{k}(k+r-2)^{2}+4 a_{k-1}=0
$$

- \quad Shift index using $k->k+1$

$$
a_{k+1}(k+r-1)^{2}+4 a_{k}=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{4 a_{k}}{(k+r-1)^{2}}
$$

- \quad Recursion relation for $r=2$

$$
a_{k+1}=-\frac{4 a_{k}}{(k+1)^{2}}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=-\frac{4 a_{k}}{(k+1)^{2}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 69

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+4*(x+1)*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
& y(x)=\left(\left(c_{2} \ln (x)+\right.\right.\left.c_{1}\right) \\
&\left(1-4 x+4 x^{2}-\frac{16}{9} x^{3}+\frac{4}{9} x^{4}-\frac{16}{225} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
&\left.+\left(8 x-12 x^{2}+\frac{176}{27} x^{3}-\frac{50}{27} x^{4}+\frac{1096}{3375} x^{5}+\mathrm{O}\left(x^{6}\right)\right) c_{2}\right) x^{2}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 116
AsymptoticDSolveValue [x^2*y' ' $[\mathrm{x}]-3 * x * y$ ' $[\mathrm{x}]+4 *(\mathrm{x}+1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{16 x^{5}}{225}+\frac{4 x^{4}}{9}-\frac{16 x^{3}}{9}+4 x^{2}-4 x+1\right) x^{2} \\
& +c_{2}\left(\left(\frac{1096 x^{5}}{3375}-\frac{50 x^{4}}{27}+\frac{176 x^{3}}{27}-12 x^{2}+8 x\right) x^{2}\right. \\
& \left.+\left(-\frac{16 x^{5}}{225}+\frac{4 x^{4}}{9}-\frac{16 x^{3}}{9}+4 x^{2}-4 x+1\right) x^{2} \log (x)\right)
\end{aligned}
$$

20.14 problem 20

20.14.1 Maple step by step solution

Internal problem ID [2987]
Internal file name [OUTPUT/2479_Sunday_June_05_2022_03_15_34_AM_55759182/index.tex]
Book: Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section: Chapter 11, Series Solutions to Linear Differential Equations. Additional problems.
Section 11.7. page 788
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+\left(1-\frac{3}{4 x^{2}}\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
y^{\prime \prime}+\left(1-\frac{3}{4 x^{2}}\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\frac{4 x^{2}-3}{4 x^{2}}
\end{aligned}
$$

Table 541: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=\frac{4 x^{2}-3}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}+\left(4 x^{2}-3\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+\left(4 x^{2}-3\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 4 x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 4 x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} 4 a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=2}^{\infty} 4 a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)-3 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)-3 a_{0} x^{r}=0
$$

Or

$$
\left(4 x^{r} r(-1+r)-3 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(4 r^{2}-4 r-3\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r^{2}-4 r-3=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(4 r^{2}-4 r-3\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{\frac{3}{2}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)+4 a_{n-2}-3 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-2}}{4 n^{2}+8 n r+4 r^{2}-4 n-4 r-3} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{4}{4 r^{2}+12 r+5}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{2}=-\frac{1}{8}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+12 r+5}$	$-\frac{1}{8}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+12 r+5}$	$-\frac{1}{8}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+28 r+45\right)}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
a_{4}=\frac{1}{192}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+12 r+5}$	$-\frac{1}{8}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+28 r+45\right)}$	$\frac{1}{192}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+12 r+5}$	$-\frac{1}{8}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+12 r+5\right)\left(4 r^{2}+28 r+45\right)}$	$\frac{1}{192}$
a_{5}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{3}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
& =x^{\frac{3}{2}}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =-\frac{4}{4 r^{2}+12 r+5}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{4}{4 r^{2}+12 r+5} & =\lim _{r \rightarrow-\frac{1}{2}}-\frac{4}{4 r^{2}+12 r+5} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $4 x^{2} y^{\prime \prime}+\left(4 x^{2}-3\right) y=0$ gives

$$
\begin{aligned}
& 4 x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\left(4 x^{2}-3\right)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(4 x^{2} y_{1}^{\prime \prime}(x)+\left(4 x^{2}-3\right) y_{1}(x)\right) \ln (x)+4 x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right) C \\
& +4 x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +\left(4 x^{2}-3\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
4 x^{2} y_{1}^{\prime \prime}(x)+\left(4 x^{2}-3\right) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& 4 x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) C+4 x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +\left(4 x^{2}-3\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(8\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C+4\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x^{2} \tag{9}\\
& +4\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}-3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=\frac{3}{2}$ and $r_{2}=-\frac{1}{2}$ then the above becomes

$$
\begin{align*}
& \left(8\left(\sum_{n=0}^{\infty} x^{\frac{1}{2}+n} a_{n}\left(n+\frac{3}{2}\right)\right) x-4\left(\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}}\right)\right) C+4\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right) x^{2} \tag{10}\\
& +4\left(\sum_{n=0}^{\infty} x^{-\frac{5}{2}+n} b_{n}\left(n-\frac{1}{2}\right)\left(-\frac{3}{2}+n\right)\right) x^{2}-3\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(8 n+12) C a_{n} x^{n+\frac{3}{2}}\right)+\sum_{n=0}^{\infty}\left(-4 C a_{n} x^{n+\frac{3}{2}}\right)+\left(\sum_{n=0}^{\infty} 4 x^{n+\frac{3}{2}} b_{n}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n-\frac{1}{2}} b_{n}\left(4 n^{2}-8 n+3\right)\right)+\sum_{n=0}^{\infty}\left(-3 b_{n} x^{n-\frac{1}{2}}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-\frac{1}{2}$ in each summation term. Going over each summation term above with power of x in it which is not already $x^{n-\frac{1}{2}}$ and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}(8 n+12) C a_{n} x^{n+\frac{3}{2}} & =\sum_{n=2}^{\infty} C a_{n-2}(8 n-4) x^{n-\frac{1}{2}} \\
\sum_{n=0}^{\infty}\left(-4 C a_{n} x^{n+\frac{3}{2}}\right) & =\sum_{n=2}^{\infty}\left(-4 C a_{n-2} x^{n-\frac{1}{2}}\right) \\
\sum_{n=0}^{\infty} 4 x^{n+\frac{3}{2}} b_{n} & =\sum_{n=2}^{\infty} 4 b_{n-2} x^{n-\frac{1}{2}}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-\frac{1}{2}$.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} C a_{n-2}(8 n-4) x^{n-\frac{1}{2}}\right)+\sum_{n=2}^{\infty}\left(-4 C a_{n-2} x^{n-\frac{1}{2}}\right)+\left(\sum_{n=2}^{\infty} 4 b_{n-2} x^{n-\frac{1}{2}}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n-\frac{1}{2}} b_{n}\left(4 n^{2}-8 n+3\right)\right)+\sum_{n=0}^{\infty}\left(-3 b_{n} x^{n-\frac{1}{2}}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
-4 b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-4 b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=0
$$

For $n=N$, where $N=2$ which is the difference between the two roots, we are free to choose $b_{2}=0$. Hence for $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
8 C+4=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{1}{2}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
16 C a_{1}+4 b_{1}+12 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
12 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=0
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
24 C a_{2}+4 b_{2}+32 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
32 b_{4}+\frac{3}{2}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{3}{64}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
32 C a_{3}+4 b_{3}+60 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
60 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=0
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{1}{2}$ and all b_{n}, then the second solution becomes

$$
y_{2}(x)=-\frac{1}{2}\left(x^{\frac{3}{2}}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right)\right) \ln (x)+\frac{1-\frac{3 x^{4}}{64}+O\left(x^{6}\right)}{\sqrt{x}}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{1}{2}\left(x^{\frac{3}{2}}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right)\right) \ln (x)+\frac{1-\frac{3 x^{4}}{64}+O\left(x^{6}\right)}{\sqrt{x}}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{\frac{3}{2}}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \ln (x)}{2}+\frac{1-\frac{3 x^{4}}{64}+O\left(x^{6}\right)}{\sqrt{x}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{\frac{3}{2}}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \ln (x)}{2}+\frac{1-\frac{3 x^{4}}{64}+O\left(x^{6}\right)}{\sqrt{x}}\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\frac{3}{2}}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \\
& +c_{2}\left(-\frac{x^{\frac{3}{2}}\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}+O\left(x^{6}\right)\right) \ln (x)}{2}+\frac{1-\frac{3 x^{4}}{64}+O\left(x^{6}\right)}{\sqrt{x}}\right)
\end{aligned}
$$

Verified OK.

20.14.1 Maple step by step solution

Let's solve

$$
4 x^{2} y^{\prime \prime}+\left(4 x^{2}-3\right) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{\left(4 x^{2}-3\right) y}{4 x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{\left(4 x^{2}-3\right) y}{4 x^{2}}=0$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions
$\left[P_{2}(x)=0, P_{3}(x)=\frac{4 x^{2}-3}{4 x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{3}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}+\left(4 x^{2}-3\right) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(1+2 r)(-3+2 r) x^{r}+a_{1}(3+2 r)(-1+2 r) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(2 k+2 r+1)(2 k+2 r-3)+4 a\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-3+2 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{1}{2}, \frac{3}{2}\right\}
$$

- Each term must be 0

$$
a_{1}(3+2 r)(-1+2 r)=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$4\left(k+r-\frac{3}{2}\right)\left(k+r+\frac{1}{2}\right) a_{k}+4 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$4\left(k+r+\frac{1}{2}\right)\left(k+\frac{5}{2}+r\right) a_{k+2}+4 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{4 a_{k}}{(2 k+2 r+1)(2 k+5+2 r)}$
- Recursion relation for $r=-\frac{1}{2}$

$$
a_{k+2}=-\frac{2 a_{k}}{k(2 k+4)}
$$

- \quad Solution for $r=-\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{2 a_{k}}{k(2 k+4)}, a_{1}=0\right]
$$

- Recursion relation for $r=\frac{3}{2}$

$$
a_{k+2}=-\frac{4 a_{k}}{(2 k+4)(2 k+8)}
$$

- \quad Solution for $r=\frac{3}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{3}{2}}, a_{k+2}=-\frac{4 a_{k}}{(2 k+4)(2 k+8)}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{3}{2}}\right), a_{2+k}=-\frac{2 a_{k}}{k(2 k+4)}, a_{1}=0, b_{2+k}=-\frac{4 b_{k}}{(2 k+4)(2 k+8)}, b_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 49

```
Order:=6;
dsolve(diff(y(x),x$2)+(1-3/(4*x^2))*y(x)=0,y(x),type='series', x=0);
```

$y(x)$
$=\frac{c_{1} x^{2}\left(1-\frac{1}{8} x^{2}+\frac{1}{192} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+c_{2}\left(\ln (x)\left(x^{2}-\frac{1}{8} x^{4}+\mathrm{O}\left(x^{6}\right)\right)+\left(-2+\frac{3}{32} x^{4}+\mathrm{O}\left(x^{6}\right)\right)\right)}{\sqrt{x}}$
\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 72
AsymptoticDSolveValue[y' $\left.\quad[x]+\left(1-3 /\left(4 * x^{\wedge} 2\right)\right) * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{11 / 2}}{192}-\frac{x^{7 / 2}}{8}+x^{3 / 2}\right)+c_{1}\left(\frac{1}{16} x^{3 / 2}\left(x^{2}-8\right) \log (x)-\frac{5 x^{4}-16 x^{2}-64}{64 \sqrt{x}}\right)
$$

